CA2317152A1 - Near infrared absorbing compound - Google Patents

Near infrared absorbing compound Download PDF

Info

Publication number
CA2317152A1
CA2317152A1 CA002317152A CA2317152A CA2317152A1 CA 2317152 A1 CA2317152 A1 CA 2317152A1 CA 002317152 A CA002317152 A CA 002317152A CA 2317152 A CA2317152 A CA 2317152A CA 2317152 A1 CA2317152 A1 CA 2317152A1
Authority
CA
Canada
Prior art keywords
phytic acid
copper
near infrared
copper salt
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002317152A
Other languages
French (fr)
Inventor
Shun Hasegawa
Gen Masuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshinbo Holdings Inc
Original Assignee
Nisshinbo Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Industries Inc filed Critical Nisshinbo Industries Inc
Publication of CA2317152A1 publication Critical patent/CA2317152A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H23/00Compounds containing boron, silicon, or a metal, e.g. chelates, vitamin B12
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/117Esters of phosphoric acids with cycloaliphatic alcohols

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Optical Filters (AREA)

Abstract

By forming a copper salt of phytic acid at a molar ratio of copper ion (Cu2+) to phytic acid of 2:1 or higher, there is provided a compound absorbing near infrared rays, which does not substantially absorb lights of visible light wavelength range, but strongly absorb lights of near infrared wavelength range, and shows extremely good water solubility.

Description

SPECIFICATION
Near Infrared Absorbing Compound BACKGROUND OF THE INVENTION
Field of the Invention The present invention relates to a novel substance that efficiently absorbs lights of near infrared wavelength range.
Description of the Related Art Materials that absorb lights of near infrared wavelength range are utilized as heat ray absorbers or optical filters.
Various materials including those mentioned below have been examined so far.
For example, metal iron oxides such as ferrous oxide are known to absorb heat rays. However, since their absorption coefficient is considerably low, and they suffer from a problem of poor solubility in solvents. Therefore, they are not practically useful.
Further, copper carboxylates as organic copper salts such as copper benzoate, copper acetate and copper naphthenate are also known to absorb heat rays. However, they have a maximum absorption wavelength of around 600-750 nm, and they only show weak absorption in near .7 infrared range.
It has also been reported that a water-based solution added with ferrous sulfate or ferrous ammonium sulfate absorbs lights of near infrared wavelength range (Japanese Patent Laid-open (Kokai) Nos. 63-116625/1988, Japanese Patent Laid-open (Kokai) Nos. 63-116626/1988).
However, if a solution of these sulfates is left for a while, they react with water to generate deposition or precipitation. Therefore, they suffer from a problem of troublesome handling, i.e., a suitable amount of sulfuric acid must be added to the solution in order to avoid such deposition or precipitation.
It is noted that phthalocyanine and naphthalocyanine are known as copper-containing organic compounds absorbing near infrared rays. However, both of these show absorption in visible light range.
Further, they have a maximum absorption wavelength of 800 nm or shorter with a sharp peak, and hence they do not show absorption in broad wavelength range.
ZO Furthermore, there has been proposed an optical filter absorbing lights of near infrared range, characterized in that it comprises a copolymer obtained by copolymerizing a monomer with a specific structure having a phosphoric acid group and a monomer copolymerizable with the former monomer, and a metal salt mainly consisting of a copper salt (Japanese Patent Laid-open (Kokai) No. 6-118228/1994). There have also :3 been proposed a near infrared absorbing resin composition comprising a resin obtained by polymerizing a monomer having an unsaturated double bond, a phosphorus atom-containing compound with a specific structure and copper hydroxide, and a near infrared absorbing resin composition comprising a phosphorus atom-containing compound with a specific structure (Japanese Patent Laid-open (Kokai) Nos. 10-152598/1998 and 10-153964/1998). Although these compositions absorb lights of near infrared wavelength range, they suffer from a problem of low water solubility.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a compound absorbing near infrared rays, which does not substantially absorb lights of visible light wavelength range, but strongly absorb lights of near infrared wavelength range, and shows extremely good water solubility.
The inventors of the present invention assiduously studied in order to achieve the aforementioned object.
As a result, they found that a copper salt of naturally occurring phytic acid strongly absorbs lights of near infrared wavelength range, and thus accomplished the present invention.

That is, the present invention provides the followings.
(1) A copper salt of phytic acid, which is formed from copper ion (Cuz+) and phytic acid at a molar ratio of copper ion to phytic acid of 2:1 or higher.
(2) The copper salt of phytic acid according to (1), which is obtainable by reacting an inorganic copper salt or an organic copper salt with phytic acid.
(3) The copper salt of phytic acid according to (2), wherein the organic copper salt is a copper salt of a C2-C8 carboxylic acid.
(4) A near infrared absorber comprising a copper salt of phytic acid according to any one of (1) to (3).
BRIEF EXPLANATION OF THE DRAWING
Other objects and advantages of the present invention will become apparent during the following discussion in conjunction with the accompanying drawing, in which:
Fig. 1 represents an absorption spectrum of a compound of the present invention.
DETAILED DESCRIPTION OF THE EMBODIMENTS

Hereafter, the present invention will be explained in more detail.
<1> Copper salt of phytic acid Phytic acid exists in nature, and it is a compound 5 corresponding to myoinositol of which six hydroxyl groups are substituted with phosphoric acid groups (-P(O)(OH)z). In the present invention, phytic acid may include those compounds partially dephosphorylated, and the term "phytic acid" is used to encompass such a substance.
As the aforementioned phytic acid, commercially available one may be used. For example, 50~ phytic acid (Tokyo Kasei Co., Ltd.) can be used, which also contains phytic acid partially dephosphorylated.
The copper salt of phytic acid is formed by substitution of one mole of copper ions (Cu2+) for the two hydrogen atoms of phosphoric acid groups in 1 mole of phytic acid. In the present invention, a copper salt of phytic acid in which copper ions (Cu2+) and phytic acid form a salt at a molar ratio of 2:1 or higher means a salt formed with 1 mole of phytic acid and 2 moles or more of copper ions (Cu2+). That is, when the copper salt is formed with 1 mole of phytic acid and 2 moles of copper ions (Cuz+), four hydrogen atoms of the phosphoric acid groups in the phytic acid molecule is substituted with two copper ions (Cuz+).
The molar ratio of phytic acid:copper ions (Cu2+) G
may be 1:6 at most.
The copper salt of phytic acid of the present invention can be obtained by reacting an inorganic copper salt or an organic copper salt with the aforementioned phytic acid.
As the inorganic copper salt used for the reaction, copper sulfate, copper chloride, copper carbonate and so forth can be mentioned. While the amount of the inorganic copper salt varies depending on the type of the inorganic copper salt to be used, it is preferably used in an amount of 0.5-6.0 molar equivalents, more preferably 1.5-2.5 molar equivalents on the phosphoric acid groups of phytic acid.
When an organic copper salt is used, copper salts of carboxylic acids such as copper acetate, copper formate, copper stearate, copper tartrate, copper citrate and copper benzoate can be used, and copper acetate is preferred.
While the amount of the organic copper salt varies depending on the type of the organic copper salt to be used, it is preferably used in an amount of 0.5-6.0 molar equivalents, more preferably 1.5-2.5 molar equivalents on the phosphoric acid groups of phytic acid.
The reaction temperature varies depending on the kind of the reactants and so forth. However, it is generally 10-90°C, preferably 20-30°C.
The reaction time is a time required for full ' CA 02317152 2000-08-31 I
dissolution of the reactants, and it varies depending on the kinds of the reactants and so forth. It is usually around 0.5 to 4 hours.
Treatments after the reaction can be performed by adding dropwisely the reaction mixture into an organic solvent that is miscible with water at an arbitrary ratio after the completion of the reaction, and collecting deposited copper salt of phytic acid by, for example, filtration.
The organic solvent that is miscible with water at an arbitrary ratio may be a poor solvent that causes deposition of the copper salt of phytic acid after the completion of the reaction. Examples thereof include lower alcohols such as methanol, ethanol, n-propanol and isopropanol, acetonitrile, acetone, dimethylformamide, dimethyl sulfoxide, tetrahydrofuran, mixed solvents of these and so forth. -The solid obtained as described above may be, for example, washed with a solvent such as alcohols, as required.
<2> Near infrared absorber The present invention also provides a near infrared absorber comprising the aforementioned copper salt of phytic acid.
Since the copper salt of phytic acid of the present invention also has ability to absorb lights of ' CA 02317152 2000-08-31 ultraviolet wavelength range, it can also serve as an ultraviolet absorber.
The near infrared absorber of the present invention can be made as, for example, a film that can be obtained by adding a suitable amount of the copper salt of phytic acid of the present invention to a synthetic resin such as vinyl resin. This film is preferably a transparent film.
Further, since the copper salt of phytic acid of the present invention shows extremely high solubility in water, the copper salt of phytic acid can also be used by being dissolved it in water. In this case, the near infrared absorber may be, for example, a filter that comprises an aqueous solution of the copper salt of phytic acid which is sealed up between two transparent plates (of which material may be a synthetic resin such as polycarbonate, acrylic resin and vinyl chloride, or-plate glass) disposed so as to face to each other.
By adhering the aforementioned film or filter to window glass of buildings, it becomes possible to shield lights of near infrared wavelength range. Since the compound of the present invention does not shield visible lights unlike curtains or blinds, it can shield lights of near infrared wavelength range without reducing indoor brightness.
Furthermore, if the film or filter is used as a film or filter for cultivation in plant cultivation, J
good growing power of plants can be obtained, since the film or filter shields heat rays and ultraviolet rays harmful to plant growth, but does not shields visible lights required for plant growth.
These film and filter can be utilized also as an optical filter such as filter for light measurement that adjusts characteristics of photodiodes.
Example The present invention will be more specifically explained with reference to the following example.
However, the present invention is not limited by the following example.
Example 1 Into 13.7 g of 50~ phytic acid solution (Tokyo Kasei Co., Ltd.), 4.15 g of copper acetate monohydrate (Wako Pure Chemical Industries, Ltd.) was added and fully dissolved by stirring. This solution was added dropwisely little by little to a vigorously stirred mixture of 400 ml of isopropanol and 50 ml of methanol.
After deposition of crystals, the crystals were filtered under reduced pressure by using a Kiriyama funnel, and washed several times with isopropanol to obtain solid showing slight viscosity. The solid was wetted with methanol, and pulverized into fine powder with a spatula.

The powder was added with methanol again, and stirred for 30 minutes to wash it. The suspension was filtered again by using a Kiriyama funnel and dried in vacuo to obtain 6.60 g of near infrared absorbing composition as 5 blue powder.
The ratio of copper to phosphoric acid groups in this powder was analyzed, and it was found to be 1:2.45.
This powder was dissolved in ion-exchanged water at a concentration of 20 mg/ml, and absorption spectrum 10 of the solution was determined. The result is shown in Fig. 1.
The compound of the present invention, of which absorption spectrum is shown in Fig. 1, does not substantially show absorption in the region of 400-600 nm, which corresponds to visible light, but shows absorption over a wide range of 750-1100 nm.
According to the present invention, there can be provided a near infrared absorbing compound that hardly absorbs lights of visible light wavelength range, but strongly broadly absorbs lights of near infrared wavelength range.
Further, the compound of the present invention is highly water-soluble: Therefore, it can be utilized for aqueous filter devices by being dissolved in water at a high concentration to provide such devices absorbing lights of near infrared rays but well transmitting visible lights.
Furthermore, the compound of present invention can be produced at a low cost, since it is produced from a raw material abundantly present in nature.
The present invention also provides a near infrared absorber comprising the compound of the present invention.
Having thus described the present invention, it will be obvious that the same may be practiced in various ways. Such variations are not to be regarded as departure from the spirit and scope of the invention, and all such modifications would be obvious for one skilled in the art intended to be included within the scope of the following claims.

Claims (4)

1. A copper salt of phytic acid, which is formed from copper ion (Cu2+) and phytic acid at a molar ratio of copper ion to phytic acid of 2:1 or higher.
2. The copper salt of phytic acid according to claim 1, which is obtainable by reacting an inorganic copper salt or an organic copper salt with phytic acid.
3. The copper salt of phytic acid according to claim 2, wherein the organic copper salt is a copper salt of a C2-C8 carboxylic acid.
4. A near infrared absorber comprising a copper salt of phytic acid according to any one of claims 1-3.
CA002317152A 1999-09-28 2000-08-31 Near infrared absorbing compound Abandoned CA2317152A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP27475899A JP2001097984A (en) 1999-09-28 1999-09-28 Novel near infrared-absorbing compound
JP11-274758 1999-09-28

Publications (1)

Publication Number Publication Date
CA2317152A1 true CA2317152A1 (en) 2001-03-28

Family

ID=17546179

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002317152A Abandoned CA2317152A1 (en) 1999-09-28 2000-08-31 Near infrared absorbing compound

Country Status (5)

Country Link
US (1) US6388116B1 (en)
EP (1) EP1088872A3 (en)
JP (1) JP2001097984A (en)
KR (1) KR20010070105A (en)
CA (1) CA2317152A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100614250B1 (en) * 2004-08-10 2006-08-21 (주) 우석켐 Composition of film-formation to absorb short-infrared ray
KR101142730B1 (en) * 2009-03-16 2012-05-04 가천의과학대학교 산학협력단 Magnetic resonance imaging contrast agent with paramagnetic-inositol phosphates complexes
FR3060352B1 (en) * 2016-12-21 2020-11-06 Oreal PHOSPHATE COMPOUNDS AS ANTI-INFRARED
WO2019044505A1 (en) * 2017-08-31 2019-03-07 富士フイルム株式会社 Resin composition, film, near-infrared cut filter, infrared-transmitting filter, solid imaging element, image display device, infrared sensor, and camera module

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55142045A (en) 1979-04-20 1980-11-06 Mitsubishi Rayon Co Ltd Methacrylic resin material having excellent solar radiation absorptivity, and its preparation
DE3532860C1 (en) * 1985-09-14 1987-03-12 Blendax Werke Schneider Co Oral hygiene products
JPS63116625A (en) 1986-11-04 1988-05-20 タバイエスペック株式会社 Culture of plant under intensive solar radiation condition intensive solar radiation condition
JPS63116626A (en) 1986-11-04 1988-05-20 タバイエスペック株式会社 Water filtering apparatus
JP2859926B2 (en) * 1990-05-15 1999-02-24 株式会社和廣武 Pseudo sunlight irradiation device and spectrum adjusting method thereof
US5037634A (en) * 1990-08-16 1991-08-06 Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. Oral compositions containing stabilized copper
JP3446214B2 (en) * 1991-06-21 2003-09-16 ライオン株式会社 Liquid transparent oral composition
US5286479A (en) * 1991-12-10 1994-02-15 The Dow Chemical Company Oral compositions for suppressing mouth odors
JP2633170B2 (en) * 1992-08-20 1997-07-23 呉羽化学工業株式会社 Optical filter
JP3224869B2 (en) 1992-08-27 2001-11-05 ダイセル化学工業株式会社 Near-infrared absorbing transparent resin composition and molded article thereof
JPH10153964A (en) 1996-05-09 1998-06-09 Sumitomo Chem Co Ltd Display front surface plate
JPH10152598A (en) 1996-11-22 1998-06-09 Sumitomo Chem Co Ltd Near-infrared absorption resin composition and material

Also Published As

Publication number Publication date
JP2001097984A (en) 2001-04-10
KR20010070105A (en) 2001-07-25
EP1088872A2 (en) 2001-04-04
US6388116B1 (en) 2002-05-14
EP1088872A3 (en) 2002-01-02

Similar Documents

Publication Publication Date Title
EP2212401B1 (en) Method for the production of coated luminescent substances
Bredol et al. Designing luminescent materials
DE102008060680A1 (en) Surface modified silicate phosphors
DE69909345T2 (en) Phthalocyanine compound, its manufacturing process and use
CN101280070B (en) Light conversion agent composition and preparation thereof, preparation of light conversion agricultural film
US6388116B1 (en) Near infrared absorbing compound
CN111253939A (en) Three-dimensional non-lead inorganic bismuth-doped silver-indium-based double perovskite material and synthesis and application thereof
CN109810256B (en) Ternary heteronuclear metal organic framework luminescent material and preparation method and application thereof
CN111253940A (en) Three-dimensional non-lead indium bismuth mixed double perovskite yellow light material, synthesis and application
CN113717438A (en) Calcium-zinc stabilizer with ultraviolet light shielding effect and preparation method thereof
CN115745811A (en) Undoped or stibium-doped non-lead-doped indium-based halogen perovskite material and synthesis and application thereof
KR101014359B1 (en) Method for producing alkaline earth sulphate nanoparticles
CN107502085B (en) Transparent heat-insulating coating of near-infrared absorption pigment and preparation method thereof
JP4530086B2 (en) Near-infrared absorber
JP4674633B2 (en) Manufacturing method of near-infrared absorber
CN107602925B (en) A kind of supermolecular intercalation structure anti-light aging material and preparation method thereof
CN108659023A (en) Rare earth with high fluorescence quantum yield-potassium bimetal complexes
CN108181285B (en) Selective recognition Cu2+ fluorescent sensor material and application and preparation method thereof
CN1176182C (en) Multi-kernel rare-earth light-converting powder, its preparing process and its application
EP0537479B1 (en) Zinc stannate powder for molding materials and process for preparation thereof
KR100223124B1 (en) A composition for producing film used in agriculture
Wasfi et al. The preparation and characterization of three new fluorotungstate anions having the Dawson structure [Cu+ W17O54F8NaH4] 8-,[MgW17O57F5NaH6] 8-, and [Fe+ 3W+ 5W16+ 6O55F7NaH4] 8
CN107513179A (en) A kind of ultraviolet absorber of supermolecular intercalation structure containing auxiliary agent and preparation method thereof
JPH0518345B2 (en)
JP3836533B2 (en) Radiographic phosphor panel

Legal Events

Date Code Title Description
FZDE Discontinued