CA2317862C - Portable conveyor belt scale - Google Patents

Portable conveyor belt scale Download PDF

Info

Publication number
CA2317862C
CA2317862C CA002317862A CA2317862A CA2317862C CA 2317862 C CA2317862 C CA 2317862C CA 002317862 A CA002317862 A CA 002317862A CA 2317862 A CA2317862 A CA 2317862A CA 2317862 C CA2317862 C CA 2317862C
Authority
CA
Canada
Prior art keywords
frame
conveyor system
weigh
conveyor
belt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002317862A
Other languages
French (fr)
Other versions
CA2317862A1 (en
Inventor
Bryan Tomlinson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EDENDERRY AGGREGATES Ltd
Original Assignee
EDENDERRY AGGREGATES Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EDENDERRY AGGREGATES Ltd filed Critical EDENDERRY AGGREGATES Ltd
Publication of CA2317862A1 publication Critical patent/CA2317862A1/en
Application granted granted Critical
Publication of CA2317862C publication Critical patent/CA2317862C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G11/00Apparatus for weighing a continuous stream of material during flow; Conveyor belt weighers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G11/00Apparatus for weighing a continuous stream of material during flow; Conveyor belt weighers
    • G01G11/003Details; specially adapted accessories

Abstract

A conveyor system for accurate weighing of a material where all system components are integrated as a single unit and are mounted on either a first or a second frame portion. A trailer hitch and a pair of wheels mounted on the first frame portion provide a portability feature of the conveyor system. The conveyor system consists of the first portion of the frame adjustable to a true horizontal orientation and the second frame portion is inclined at a predetermined angle relative to the first frame portion. A continuous conveyor belt is disposed around the second frame portion and is supported by a series of support roller assemblies on the upper portion of the belt, and by a series of return rollers on the lower portion of the belt.
The upper and lower portions of the conveyor belt travel in opposite directions with respect to one another around the second frame portion during operation of the conveyor system. A hydraulic drive system is mounted on the first frame portion. A drive pulley, driven by a hydraulic motor, is located at a discharge end of the second frame portion and an idler pulley is located at an inlet end thereof.
A weigh station consisting of a pair of weigh rollers and a pair of corresponding weigh scales is positioned on the second frame portion between the discharge and the inlet ends.

Description

PORTABLE CONVEYOR BELT SCALE
BACKGROUND OF THE INVENTION
1. FIELD OF THE INVENTION
The present invention relates to a conveyor system which provides an accurate and reproducible weight measurement of a material transported by a continuous conveyor belt.
2. DESCRIPTION OF THE PRIOR ART
There is a current need for measuring the weight of a material being transported on continuous conveyor belts. When the transported material is of a granular nature, such as grain, ore, coal and crushed aggregate etc., a belt speed, a flow rate of the conveyed material, a tension of the belt, an orientation of the weigh rollers, and an angle of the conveyor belt with respect to a level plane are all important factors in affecting the accuracy and reliability of weight measurement of the material. The disadvantage of present conveyor belt weighing systems is that they must be recertified whenever they are moved to another job site.
SUMMARY OF THE INVENTION
In one aspect of the invention, there is provided a conveyor system for continuous conveying and accurate weighing of a bulk material. The conveyor system comprises a frame, at least one continuous conveyor belt positioned on the frame including an upper portion and a lower portion moving in opposite directions. A drive system is mounted on the frame to rotate the belt, and a plurality of frame rests are mounted on the frame to support the frame relative to a ground surface. The frame includes a first portion and a second portion. Said frame second portion includes a support frame. A plurality of support roller assemblies and a plurality of return rollers are transversely situated on the support frame in a spaced apart parallel relationship. A weight station is located between a pair of the support roller assemblies, between an inlet end and a discharge end. A drive pulley is located at one of the ends and an idler pulley is located at an opposite ends. The first portion of the frame includes a generally planar base, a plurality of frame supports projecting substantially upwards from the base and connected to the second portion of the frame. The conveyor belt is disposed about the support roller assemblies, the weigh station, the idler pulley, the drive pulley, and the return rollers.
All of the components of the conveyor system are integrated as a single unit and the conveyor system is thereby portable.
In a preferred embodiment, the second portion of the frame is inclined at a predetermined fixed angle relative to the first portion of the frame. A series of adjustable jacks are attached to the first portion to facilitate a true horizontal positioning thereof. A pair of wheels and a trailer hitch are mounted on the first portion of the frame to facilitate mobility and transport of the conveyor system.
In a further aspect of the invention, the conveyor system may be used as a second link between a device to crush aggregate material and a stacker, whereby the crushed material may be piled in a substantially 360° arc around the crusher.
BRIEF DESCRIPTION OF THE DRAWINGS
These and other features of the preferred embodiments of the invention will become more apparent in the following detailed description, in which reference is made to the appended drawings by way of example only:
Figure 1 is a side elevation of a conveyor system.
Figure 2 is a plan view of Figure 1.
Figure 3 is an end view of Figure 1.
Figure 4 is a side view of a weigh station of Figure 1.
Figure 5 is a side view of a hopper frame shown in Figure 1.
Figure 6 is an end view of Figure 5.
Figure 7 is a side view of the drive system of Figure 1.
Figure 8 is a flow chart of the drive system of Figure 7.
Figure 9 shows the connection between the drive system and the drive pulley of Figure 1.
Figure 10 is a side view of a pulley tension adjustment system.
Figure 11 is a further embodiment of Figure 1.
Figure 12 shows the components of the computer station.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Referring to Figures l and 2, a conveyor system 10 includes a platform 14 supporting a conveyor frame 16 on a series of frame supports 32, which fixedly maintain a predetermined angle 8 of the conveyor frame 16 relative to the platform 14. The platform is supported on a ground surface 12 by a pair of wheels 37 and platform supports 34. Disposed around the conveyor frame 16 is a continuous conveyor belt 18, which rotates during operation of the system 10 to transport a bulk material 21 from an inlet end 42 to a discharge end 44. Mounted at the inlet end 42 is a hopper 17, which directs the bulk material 21 from a holder (not shown) onto the rotating belt 18. A weigh station 19 is positioned on the conveyor frame 16 to weigh the bulk material 21 as it is transported on the conveyor belt 18. The weigh station 19 is described in more detail below.
The belt 18 is rotated by a frictional engagement between the belt 18 and an outer surface of a drive pulley 28, which is driven by a drive system 24 mounted on the platform 14. An idler pulley 26 is mounted at the inlet end 42 and is used to adjust the tension of the conveyor belt 18, which will be described later.
The belt is supported by the platform 14 which includes a planar base 30 consisting of a pair of ends 29, a pair of sides 31, and a series of structural support members 33. The frame supports 32 project substantially upward from the base 30, extend between the platform 14 and frame 16, and are securely connected thereto. The platform supports 34, such as a series of leveling jacks, are positioned adjacent to each corner 36 of the base 30. A
series of bubble levels 38 are positioned on the sides 31 and the ends 29 of the base 30 to assist in leveling of the platform 14, by the supports 34, into a true horizontal orientation. This helps to ensure that an inclination between the plane the conveyor frame 16 and a level plane is the same, irrespective of the nature of the ground surface 12 upon which the system 10 is situated.
The conveyor frame 16 includes a pair of side rails 40, a top surface 46, and a bottom surface 48. A plurality of support roller assemblies 50, comprising rollers 49 and 51 shown in Figure 3, are distributed in a spaced apart parallel relationship on the top surface 46 between the pulleys 26 and 28, along the longitudinal axis 52. The pair of side support rollers 51, shown in Figure 3 are placed in an angled orientation with respect to each of the support rollers 49 on either side thereof . This arrangement of support rollers 49, 51 causes the belt 18 to have a generally concave shape and inhibits the bulk material 21 from falling off the rotating belt 18.
As shown in Figure 3, it is preferable to orient the support roller assemblies perpendicular to the longitudinal axis 52 of the conveyor frame 16 to inhibit travel of the belt 18 transverse to the longitudinal axis 52 during operation of the system 10.
Distributed on the bottom surface 48 of the conveyor frame 16, shown in Figures 1 and 2, is a series of return rollers 54, where-between the belt 18 is directed, whereby a tension of the belt 18 is maintained and a linear speed measured thereof.
The weigh station 19 situated on the conveyor frame 16 shown in Figure 4, includes a pair of weigh rollers 58 spaced apart in a parallel relationship to one another, and oriented S perpendicular to the longitudinal axis 52. The pair of weigh rollers 58 is generally positioned centrally on the conveyor frame, between a pair of adjacent support roller assemblies 50, and is supported by a pair of corresponding weigh scales 60. The weigh scales 60 can be protected from damage due to foreign matter by protective covers 62, if desired. A
computer stationl 10 is connected to the return rollers 54 and the weigh scales 60 to record and indicate, to a user of the system 10 various parameters of the system, such as belt speed, belt tension, and weight of the bulk material 21.
As shown in Figure 12, the computer station 110 includes a display 130 to the desired load parameters. An input device such as a keyboard 132 is provided to configure the output parameters on the display 130. Additional information can be entered into the computer station 110 via the keyboard 132 such as physical characteristics of the bulk material 21, as well as particular load characteristics such as transport truck identification and other desired log information. A printer 134 allows the computer station 110 to issue certified tickets 135 indicating desired load parameters such as time, date, type of material, load weight, customer LD., location, and transport truck identification. The printer 134 can also be used to generate logs after a certain specified interval, such as daily or weekly.
The bulk material 21 is loaded onto the belt 18 in a controlled manner by means of the hopper 17, located at the inlet end 42 of the conveyor frame 16. The hopper frame, shown in Figures 5 and 6, is fastened to the conveyor frame 16 and includes a pair of top rails 66, a series of end rails 68, and a pair of bottom rails 70. The geometrical shape of the frame 19 is a trapezoidal prism, but other frame shapes may also be used if desired. A
series of angled members 72, 74 on the frame 19 are used to funnel the bulk material 21 from a material source (not shown), such as a crusher, onto the belt 18. A wire mesh 76, shown in Figure 1, may encase the side surfaces 78 and end surface 80 of the hopper frame 19 to protect an operator (not shown) during use of the conveyor system 10. Other sections of the conveyor system 10 may be encased by the mesh 76, if desired.
The drive system 24, shown in Figure 7, is employed to displace the belt 18 along the longitudinal axis 52. The system 24 comprises a fuel driven motor 82 to drive a hydraulic pump 84, and a reservoir 87 to supply hydraulic fluid 88 to the pump 84, all of which are mounted on the platform 14. An oil filter 91 is positioned between the pump 84 and the fluid reservoir 87. A
series of hydraulic lines 92 connect the pump 84 with a hydraulic motor 90, which is attached to the drive pulley 28. A fuel tank 86 is mounted on the platform 14 and is connected to the motor 82 by a series of fuel lines 94. A number of valves 96 may be positioned in the lines 92, 94 to restrict the flow of fuel 89 and fluid 88 when the conveyor system 10 is not in use.
A flow chart, shown in Figure 8, demonstrates the interconnections between the components of the drive fuel system 24. In operation of the drive system 24, a flow control unit 136 is employed to control the speed of the hydraulic motor 90. A valve bank 138 is positioned between the pump 84 and motor 90 to control the direction of rotation thereof.
Drive system configurations other than shown may also be used, if desired.
In the preferred embodiment shown in Figure 9, a mount 98 is used to mount the hydraulic motor 90 to the conveyor frame 16. The mount 98 is comprised of a series of rigid plates 99, preferably made of steel or aluminum. The hydraulic motor 90 is mounted squarely to the motor mount 98, preferably with bolts 101. The drive pulley 28 is mounted on a motor shaft 100 and an energy absorbing bushing 102, preferably made of rubber or the like, is positioned between the side rails 40 and the plates 99. If the plates 99 are not rigid, the body of the motor 90 may vibrate and cause the bushings 102 to disintegrate during operation of the bolt 18.
As can best be seen in Figure 10, a belt tensioning system 105 is mounted on the conveyor frame 16 at the inlet end 42. The idler pulley 26 is positioned between a pair of bearings 104, which are each mounted to a corresponding slider plate 106. The tension of the conveyor belt 18 is adjusted by displacement of the pair of slider plates 106 along the longitudinal axis 52 by a pair of corresponding threaded rods 108. The slider plates 106 are moveably attached to a pair of extensions 110, mounted to either side of the side rails 40. A nut 112 is welded to one distal end of each of the rods 108 and a slide adjustment 114 is positioned on each of the rods 108 to releasably secure a predetermined longitudinal position of the slider plate 106. A correct tension of the moving belt 18 is critical to the measurement of the speed thereof by the return rollers 54. The belt must not have any discernable sag and in trial operation of the preferred embodiment of the invention, a belt tension value of 4 pounds per inch was deemed satisfactory. Belt tensioning systems 105 other than that shown in Figure 10, such as all manner of springs and other threaded arrangements may be employed, if desired.
In order to operate the conveyor system 10, it is first transported to a desired location and the height of the discharge end 44 is adjusted using the jacks 34. The wheels 35 are preferably raised off of the ground surface 12 during the leveling procedure. The bubble levels 38 may be used to ensure the plane of the base 30 is in a horizontal orientation. Next, the taps 96 are opened and the motor 82 is started. The motor 82 drives the pump 84, whereby the hydraulic motor 90 and the drive pulley 28 are rotated. The outer surface of the pulley 28 engages the conveyor belt 18 and causes the belt 18 to travel along the longitudinal axis 52.
The hopper 17 facilitates placement of the bulk material 21 onto the moving belt 18 at the inlet end 42. The bulk material is subsequently transported, between the side rails 40, towards the discharge end 44. As the bulk material 21 travels the linear distance between the rotational axii of adjacent weigh rollers 58, the weight of the bulk material 21 per the linear distance is measured by the scales 60. The linear speed of the belt 18 is measured by the return rollers 54 and parameters such as the mass flow rate of the bulk material 21 is subsequently calculated and indicated by the computer station 110. A certified printout can be obtained from the printer 136 if desired.
The return rollers 54 are preferably solid and perfectly round to provide accurate speed measurement of the belt 18. The rollers 54 are preferably coated with a fluro-carbon resin, such as Teflon or the like, to inhibit foreign matter from adhering to the outer surface of the rollers 54.
The rollers 54 are dimensioned 5 inches in diameter by 42 inches in length, and are a product of Assinck Bros. (Markham, Ontario). The weigh rollers 58 are provided by Milltronics (Peterborough, Ontario) and are also preferably coated with a fluro-carbon resin, such as Teflon or the like. The support rollers 49, 51 of the support roller assembly 50 are dimensioned 5 inches in diameter by 13 inches and angled at 35 degrees, and are supplied by Assinck Bros., with a part number Ab25535s36. The rollers 49, S 1 are perfectly round to enable the belt 18 to follow a substantially straight path along the longitudinal axis 52. The drive pulley 28 and the idler pulley 26 each are dimensioned 12 inches in diameter by 36 inches in length, both are supplied by Assinck Bros., with part numbers d12c38xt25 and w12c38xt25 respectively.
All of the rollers 54, S0, 51, 58 and pulleys 26, 28 are preferably mounted on the conveyor system 10 with threaded fasteners, such as bolts or the like, through their respective rotational axii.
The weigh scales 60 are supplied by Milltronics, model C o mpuscale III N4 115 volts.
The hydraulic motor 90 is supplied by CTI (Brampton, Ontario), part number 8010106. The motor 82 is a 25 hp Dewitts (Toronto, Ontario) motor and the pump 84 is a 29 gallon Victor (Toronto, Ontario) pump. The hydraulic fid reservoir 87 has a capacity of 90 gallons and the capacity of the fuel tank 86 is 40 gallons.
A different type of support structure 32 to support the conveyor frame 16 on the platform 14 may be other than shown, such as a solid walls. Placement of the jacks 34 and the bubble levels 38 may also be other than shown, such as on the frame supports 32 or the structural members 33, if desired.
One additional embodiment, shown in Figure 2, is a set of weights 126 used to calibrate the conveyor system 10, which are positioned adj acent to the trailer hitch 31 to provide tongue weights during transport. These weights 126 are releasably secured to a platform 128 and are meant to be removed before the conveyor system 10 is detached from a transport vehicle (not shown).
In a further embodiment of the invention shown in Figure 11, the conveyor system 10 is used as a second link between a stacker 116 and a crusher 118. Typically, the stacker 116 can only deposit crushed material 21 in a series of conical piles 120 in an arc 122, measuring approximately 180°, in front of the crusher 118. Once an area defined by the arc 122 is piled to capacity, additional material 21 can only be piled typically after the crusher 118 is moved further from the piles 120. As demonstrated by the dashed lines, the conveyor system 10 can act as a second link between the crusher 118 and stacker 116 to enable a wider distribution 124 of the piled material 21, without moving the crusher 118. A further benefit of using the system 10 as a second link is that a substantially accurate measure of the weight of the crushed material 21 may be obtained, if so desired.
In the preferred embodiment the spacing between the adjacent support roller assemblies 50; the spacing between the adjacent weigh rollers 58 and support roller assemblies 50; the magnitude of the fixed angle of the conveyor frame 16 relative to the platform 14; the linear speed of the belt 18; the perpendicular positioning of the roller assemblies 50, the weigh rollers 58, and the return rollers 54; all affect, in combination, the weighing accuracy of conveyor system 10. It is the integral combination as a single portable unit, including the above listed attributes, which make the conveyor system 10 a potentially certifiable product. The specific _7_ dimensions of the above mentioned roller spacings are given by way of example only and it is recognized that other combinations thereof may be possible without departing from the spirit and scope of the invention.
By having a pre-determined conveyor angle and self contained power and measurement means the apparatus of the present invention provides reliable and reproducible results.
While only specific combinations of the various features and components of the present invention have been discussed herein, it will be apparent to those of skilled in the art that desired subsets of the disclosed features and components andlor alternative combinations of these features and components can be utilized, as desired, as outlined in the claims appended hereto.
_g_

Claims (16)

1. A conveyor system for simultaneously conveying and weighing a bulk material comprising: a frame; at least one continuous conveyor belt positioned on said frame, a drive system mounted on said frame to rotate said belt; and a plurality of frame rests to support said frame relative to a ground surface; said frame including a first portion and a second portion; said frame second portion including a support frame, a plurality of support roller assemblies and a plurality of return rollers transversely situated on said support frame in a spaced apart parallel relationship, a weigh station located on said support frame and between a pair of said support roller assemblies between an inlet end and a discharge end, and a drive pulley located at one of said ends and an idler pulley located at another of said ends; said conveyor belt disposed around said support roller assemblies, said weigh station, said idler pulley, said drive pulley, and said return rollers;
said first portion of said frame including a generally planar base, a plurality of frame supports projecting substantially upwards from said base and connected to said second portion; wherein all of the components of said conveyor system are integrated as a single unit and said conveyor system is portable; said weigh station is centered between said pair of adjacent said support roller assemblies and includes at least two corresponding weigh scales spaced apart for measuring the weight of said bulk material per linear distance; two spaced apart weigh rollers in a parallel relationship to one another and perpendicular to said side rails; and said weigh rollers are mounted on said weigh scales.
2. The conveyor system according to claim 1, wherein said spacing between each rotational axis of adjacent said weigh rollers is 28.5 inches, said spacing between each rotational axis of adjacent support rollers is 28 inches, and said spacing between each rotational axis of an adjacent said support roller and said weigh roller is 28 inches.
3. The conveyor system according to claim 1, wherein said second portion of said frame is inclined at a predetermined fixed angle relative to said first portion of said frame.
4. The conveyor system according to claim 3, wherein said inclined angle is in the range between 5° and 20°.
5. The conveyor system according to claim 4, wherein said angle is about 11 °
6. The conveyor system according to claim 1, wherein some of said frame rests comprise a plurality of adjustable jacks to permit variation in a height of said conveyor system, whereby a levelling of said base is achieved.
7. The conveyor system according to claim 6 further comprising a plurality of bubble levels located on said base of said frame to assist in said levelling of said base by said jacks in both planar directions.
8. The conveyor system according to claim 1, wherein some of said frame rests comprise a pair of wheels attached to said base to facilitate mobility and transport of said conveyor system.
9. The conveyor system according to claim 1 further comprising at least one displacement mechanism for said pulleys, whereby a tension of said conveyor belt is adjusted by displacing and releasably fixing in position at least one of said pulleys along a longitudinal axis of said second portion of said frame.
10. The conveyor system according to claim 1, wherein an outer surface of each weigh roller in said weigh roller assemblies include a surface treatment to inhibit an adhesion of foreign material thereto.
11. The conveyor system according to claim 1, wherein said support roller assemblies comprise a series of individual support rollers oriented in a shape of a trough, to inhibit said bulk material from falling off of said belt between said inlet and said discharge end.
12. The conveyor system according to claim 1, wherein said drive system includes a motor coupled to said drive pulley for rotating said belts, and said drive system is located on said frame.
13. The conveyor system according to claim 12, further comprising a transverse calibration device to center on a central axis said transverse placement of said conveyor belt.
14. The conveyor system according to claim 1 further comprising a mesh disposed around desired sections of said second portion of said frame to allow said conveyor system to inhibit said bulk material from becoming caught up in-between said upper and lower portions of said conveyor belt.
15. The conveyor system according to claim 1; wherein said drive system includes a motor, a hydraulic pump releasably attached to said motor, and a hydraulic motor attached to said drive pulley, said hydraulic motor is connected to said hydraulic pump by a series of hydraulic fluid lines.
16. The conveyor system according to claim 15, wherein said fuel driven motor, and said hydraulic pump are mounted on said frame.
CA002317862A 1999-09-07 2000-09-07 Portable conveyor belt scale Expired - Fee Related CA2317862C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/390,705 1999-09-07
US09/390,705 US6329613B1 (en) 1999-09-07 1999-09-07 Portable conveyor belt scale

Publications (2)

Publication Number Publication Date
CA2317862A1 CA2317862A1 (en) 2001-03-07
CA2317862C true CA2317862C (en) 2006-11-21

Family

ID=23543577

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002317862A Expired - Fee Related CA2317862C (en) 1999-09-07 2000-09-07 Portable conveyor belt scale

Country Status (2)

Country Link
US (1) US6329613B1 (en)
CA (1) CA2317862C (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6538216B2 (en) * 2001-01-19 2003-03-25 Alexis Batista Scale with sideways ramp
US6683262B2 (en) * 2001-04-27 2004-01-27 William M. Scott Apparatus for moving baggage to a conveyor
US6852933B2 (en) * 2001-06-13 2005-02-08 Fred Messerle Mobile scale assembly
US9260253B2 (en) * 2012-08-07 2016-02-16 Baker Hughes Incorporated Apparatus and methods for assisting in controlling material discharged from a conveyor
US10935416B1 (en) * 2013-12-18 2021-03-02 Amazon Technologies, Inc. System for generating compensated weight data using a gyroscope
WO2017136457A1 (en) * 2016-02-03 2017-08-10 Innovative Process Solutions, Inc. Automated hopper and belt conveyor apparatus
CN108045990A (en) * 2017-12-14 2018-05-18 武汉开锐海洋起重技术有限公司 A kind of bulk goods charging planarization system
GB2571358B (en) * 2018-02-27 2021-06-16 Terex Gb Ltd A conveyor system with weighing capability
US20210062632A1 (en) * 2019-04-23 2021-03-04 Solaris Oilfield Site Services Operating Llc Blending system for fracturing fluid
CA3086857A1 (en) * 2019-07-26 2021-01-26 Ty-Crop Manufacturing Ltd. Proppant metering and loading in a hydraulic fracturing blender
WO2021163748A1 (en) * 2020-02-19 2021-08-26 Tba Industries Pty Ltd Bulk material conveyor

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3786951A (en) * 1971-11-01 1974-01-22 Tryco Mfg Co Inc Modular structure transporting apparatus
SE377187B (en) * 1972-11-13 1975-06-23 Bofors Ab
US3885813A (en) * 1974-03-25 1975-05-27 Eltra Corp Method and apparatus for leveling a trailer
US4141442A (en) 1977-10-20 1979-02-27 Nabisco, Inc. Apparatus for separating articles into groups by weight
US4463816A (en) * 1983-03-18 1984-08-07 Autoweigh Co. Load cell assembly for conveyor weighing of bulk material
US4788930A (en) * 1987-10-26 1988-12-06 Canadian Corporate Management Company Limited Weigh bridge for variable inclination conveyor
US5170857A (en) * 1990-10-04 1992-12-15 Cintex Of America Inc. Motorized weighing conveyor
US5296654A (en) 1991-12-20 1994-03-22 Cst Autoweight Universal belt scale
US5300736A (en) 1992-03-12 1994-04-05 Hi-Speed Checkweigher Co., Inc. Adaptive timing in-motion checkweigher
US5340950A (en) * 1992-09-15 1994-08-23 United Parcel Service Of America, Inc. Method and apparatus for weighing objects
US5624183A (en) * 1993-03-29 1997-04-29 Schuff; David A. Apparatus for metering and mixing aggregate and cement
US5393937A (en) * 1993-08-02 1995-02-28 Dosco Overseas Engineering Ltd. Vehicle control system
US5567919A (en) * 1993-12-22 1996-10-22 Combustion Engineering, Inc. Gravimetric feeding system for boiler fuel and sorbent
US5547034A (en) 1994-01-10 1996-08-20 Accu-Sort Systems, Inc. Conveyor friction scale
US5696354A (en) 1994-03-30 1997-12-09 Sauk Valley Systems, Inc. Scale for weighing material transported along a movable conveyor
US5736682A (en) * 1995-04-07 1998-04-07 Hauni Machinenbau Ag Method of and apparatus for ascertaining the mass of rod-shaped articles of the tobacco processing industry
US5747747A (en) 1996-01-23 1998-05-05 General Signal Corporation Continuing belt-type conveyor and means for weighing contents transported thereon
US5880407A (en) * 1996-03-29 1999-03-09 Flammang; John D. Apparatus for dispensing materials
US5686653A (en) 1996-05-09 1997-11-11 General Signal Corporation System for checking the calibration of gravimetric feeders and belt scales
US5866855A (en) 1997-07-22 1999-02-02 Engineering Services And Systems, Inc. General purpose belt scale
US5959257A (en) * 1998-04-15 1999-09-28 Harvestmaster, Inc. System for weighing material on a conveyor

Also Published As

Publication number Publication date
US6329613B1 (en) 2001-12-11
CA2317862A1 (en) 2001-03-07

Similar Documents

Publication Publication Date Title
CA2317862C (en) Portable conveyor belt scale
US7331210B2 (en) Conveyor weighbridge with built-in calibration weight
CN1262824C (en) Chain converyor in form of scales
US8067704B2 (en) System and method for weighing particulate material moving on a conveyor
US4248337A (en) Equipment for handling bulk material
JPH1048030A (en) Calibration check device of weighing meter feeder and belt scale
US4570729A (en) High speed transporting and weighing machine with dynamic balance
KR100574756B1 (en) Chain conveyor
EP2416128A1 (en) A weighing device for an improved bulk material conveyor.
CN1241806C (en) Fully enclosed automatic material flow purchasing and storaging system and controlling
US5880407A (en) Apparatus for dispensing materials
US5511650A (en) Air-operated conveyor belt tensioning apparatus
US3786961A (en) Set rate gravimetric feeder
US7141745B1 (en) In-line mail weighing system and scale
US8274001B2 (en) Weighing apparatus having opposed wheels
KR102504509B1 (en) Apparatus for sorting fruit
JP3164903B2 (en) Method of supplying objects to be weighed by combination weighing device and apparatus for supplying objects to be weighed
US4062413A (en) Feeder unit and method for use in a weighing system
US20220065678A1 (en) Weigh belt assembly
DE1960107A1 (en) Weighing device for bulk goods
JP3237388B2 (en) Inspection and adjustment method for steep conveyor
US4166510A (en) Continuous automatic weighing conveyor for flowable solids
JP2023148291A (en) Levelling device and combination measurement device having the same
USRE24113E (en) Ship loading and trimming machine
JPH0540219U (en) Belt conveyor

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed
MKLA Lapsed

Effective date: 20100907