CA2319598A1 - Three dimensional composite joint reinforcement for an automotive vehicle - Google Patents

Three dimensional composite joint reinforcement for an automotive vehicle Download PDF

Info

Publication number
CA2319598A1
CA2319598A1 CA002319598A CA2319598A CA2319598A1 CA 2319598 A1 CA2319598 A1 CA 2319598A1 CA 002319598 A CA002319598 A CA 002319598A CA 2319598 A CA2319598 A CA 2319598A CA 2319598 A1 CA2319598 A1 CA 2319598A1
Authority
CA
Canada
Prior art keywords
extension
adhesive layer
carrier
longitudinal axis
reinforcement member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002319598A
Other languages
French (fr)
Inventor
Joseph S. Wycech
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2319598A1 publication Critical patent/CA2319598A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D29/00Superstructures, understructures, or sub-units thereof, characterised by the material thereof
    • B62D29/001Superstructures, understructures, or sub-units thereof, characterised by the material thereof characterised by combining metal and synthetic material
    • B62D29/002Superstructures, understructures, or sub-units thereof, characterised by the material thereof characterised by combining metal and synthetic material a foamable synthetic material or metal being added in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/04Door pillars ; windshield pillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/06Fixed roofs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D27/00Connections between superstructure or understructure sub-units
    • B62D27/02Connections between superstructure or understructure sub-units rigid
    • B62D27/026Connections by glue bonding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/34Branched
    • Y10T403/341Three or more radiating members
    • Y10T403/342Polyhedral
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/47Molded joint

Abstract

The joint reinforcement member (30) for a hollow structure of an automobile vehicle (13) has a carrier portion (22) with an outer surface. The carrier portion has a base portion (30) with a first extension having a first longitudinal axis and a second extension having a second longitudinal axis.
The first longitudinal axis and second longitudinal axis correspond to the hollow structure. A thermally expandable adhesive layer (38) is disposed on the outer surface of the carrier portion and substantially covers the outer surface. A method for forming the joint member includes providing a carrier having a plurality of extensions extending from a base portion that correspond to the hollow structure, applying a layer of thermally expandable adhesive materials applied to the carrier portion. The carrier portion is heated to activate the adhesive layer. The adhesive layer is cooled so that the adhesive is bonded to the structural member.

Description

THREE DIMENSIONAL COMPOSITE JOINT REINFORCEMENT
FOR AN AUTOMOTIVE VEHICLE
TECHNICAL FIELD
The present invention relates generally to reinforcement of hollow structural members and, more specifically, to reinforcement of hollow structures of automotive vehicles that are generally inaccessible after assembly.
BACKGROUND OF THE INVENTION
Impact resistance, fuel economy standards and structural rigidity are important fundamental concerns in automotive structural design. Fuel economy standards dictate the use of lighter materials. This usually translates into reducing the thickness of materials or using lighter weight material. Impact resistance dictates the use of thicker materials at least in localized areas. Structural rigidity also typically requires an increase of material.
The use of composite materials which are generally stronger and lighter than their metallic counterparts has increased over the years. The present inventor has pioneered a novel approach to structural part reinforcement through localized reinforcement of critical regions using microsphere-filled thermally expandable resins, such as:
composite door beam which has a resin based core that occupies one-third of the bore of a metal tube; a hollow laminate beam characterized by high stiffness-to-mass ratio and having an outer portion which is separated from an inner tube by a thin layer of structural foam; a W-shaped carrier insert reinforcement which carries a foam body for use in reinforcing a hollow beam;
a bulk head that utilizes a thermally expandable foam to provide localized reinforcement of a rail for the attachment of an engine cradle or the like.

Joints of an automotive vehicles are the weakest part of the structure.
Stiffening the joint improves the overall stiffness in ride characteristics of the vehicle.
In the formation of the automotive vehicle body, several structural/body panel members are welded or bonded together. The joints typically are hollow by their very nature. The hollow structure allows the flow of E-coat through the structural members to increase corrosion resistance.
Various techniques have been used by automotive manufacturers to increase the rigidity of the joints of the vehicle. Typically, the solutions have involved substantially increasing the bulk, size and/or complexity of the joints to thereby increase rigidity. By increasing the bulk of the joints, precious packaging space has been reduced. Also, the weight of the structure due to its bulk has been increased.
SUMMARY OF THE INVENTION
It is therefore one object of the invention to reinforce a joint of an automotive vehicle I S without having to increase the amount of sheet metal required in the joint.
In one aspect, the present invention provides a carrier portion having an outer surface. The outer surface has a plurality of extensions that conform to the joint into which the joint reinforcement is to be placed. An adhesive layer is disposed on the outer surface of the carrier portion. The outer surface is substantially covered by the adhesive layer. The adhesive layer is formed of a thermally expandable resin material.
In another aspect, the invention provides a method of forming a reinforcement member. The method comprises the steps of providing a carrier portion;
applying a layer of adhesive material to the carrier portion; heating the carrier portion and the adhesive portion; and bonding the adhesive portion to the structural member.
In yet another aspect, the present invention provides a method of forming an automotive body having at least two body members. The assembly of the body members defines a hollow space therebetween. The method includes the steps of forming a reinforcement member by applying a layer of adhesive material to a carrier portion; inserting the reinforcement member in the hollow space; and heating the body members and the carrier portion with the adhesive layer so that the adhesive material bonds to the body $ members.
One advantage of the present invention is that a reduced packaging space can be provided for the body members. This is in part due to the fact that a lower gauge sheet metal may be utilized in all the body members since the structural joints have been reinforced. This results in a desirable overall reduction in weight of the automotive vehicle.
BRIEF DESCRIPTION OF THE DRAWINGS
Other features and advantages of the invention will become apparent from the Detailed Description which should be read in conjunction with the drawings in which:
Figure 1 is a cutaway perspective view of an automotive vehicle having a structural reinforcement member;
Figures 2a and 2b are perspective views of two portions of a carrier member;
Figure 3 is a perspective view of a carrier wrapped with an adhesive layer;
Figure 4 is a plan view of a sheet of adhesive material to be applied to a carrier;
Figure 5 is a cross-sectional view of a carrier within a mold;
Figure 6 is a cross-sectional view of a reinforcement member in a hollow structure of an automotive vehicle; and Figure 7 is an alternative cross-sectional view of a reinforcement member having a foam interior in a hollow structure of an automotive vehicle.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
S
In the following figures, like reference numerals will be used to represent like components. The figures illustrate a carrier member having a particular shape.
Other shapes and sizes for a joint reinforcement, however, would be evident to those skilled in the art based on the teachings herein.
Referring now to Figure 1, an automotive vehicle 10 is shown having a joint 12.
Joint 12 is a hollow structure 13 defined by inner rear quarter panel 14, outer rear quarter panel 16, inner door panel 18 and outer door panel 20. A reinforcement member 22 is inserted within hollow structure 13 to strengthen joint 12. Although reinforcement member 22 is shown illustrated within a particular joint, the present invention has application to the many joints of an automotive vehicle. As shown, the reinforcement member extends between the roof 24 and D-pillar 26. Reinforcement member 22 is particularly suitable for reinforcing the area where three hollow channels 28 intersect. However, a modified reinforcement member 22 may also be suitable for reinforcing the intersection of two channels. Reinforcement member 22 has a body portion 30 and three extension portions 32.
Each extension portion 32 has a longitudinal axis 34. Longitudinal axes 34 preferably coincide with the elongated axis of each of channels 28. That is, reinforcement members 22 may be constructed so that longitudinal axes 34 are at various angles with respect to each other. Longitudinal axes 34 may be perpendicular to each other to coincide with channels 28 to correspond to the various angles of an automotive vehicle design.
The length of extension portions 32 from body portions 30 are a function of the amount of joint 12 to be reinforced. Various distances may be reinforced within channels 28 depending on the body structure into which reinforcement member 22 is applied. In most applications, extension portions 32 will extend several inches from body portion 30.
As shown, extension portions 32 have a generally square cross-section.
However, it is preferred that extension portions 32 be shaped similarly to that of channels 28. In this manner, a better fit may be achieved between reinforcement member and channels 28.
Refernng now to Figures 2A, 2B and 3, reinforcement member 22 is preferably formed of a carrier 36 wrapped by an adhesive layer 38. Carrier 36 is preferably formed of a thin material capable of supporting adhesive layer 38. The amount of support provided by carrier 36 is enough so that reinforcement member 22 may be handled and placed into the hollow structure of the automotive vehicle during manufacturing without deforming.
Carrier 36 may, for example, be formed of a metallic material such as an aluminum sheet, a steel sheet or an aluminum foil. Suitable thicknesses of such material may be, for example, .007 - .015 inches thick, .006 - .025 inches thick and .002 - .006 inches thick respectively. Other materials suitable for use as a Garner are injected molded glass filled nylon, .062 - .25 inches thick, blow molded or rotational molded high temperature plastic, .06 - .25 inches thick (abs or polystyrene) or rotational molded or cast cement foam, .25 .5 inches thick. Of course, the various thicknesses may vary depending on the particular circumstances.
Several methods for forming carrier 36 may be used depending on the carrier material. As illustrated in Figures 2A and 2B, two pieces of aluminum or steel may be stamped to form two halves 40 and 42 of carrier 36. Halves 40 and 42 may then be welded or snapped together to form carrier 36. As shown, half 40 has ends 44 along each extension portion 32. In the preferred embodiment, though, carrier 36 either does not have ends 44 or has holes within ends 44 to allow the passage of E-coat during manufacturing to increase corrosion protection. The addition of ends 44, however, further increases the strength of carrier 36.
Carrier 36 may also be formed by placing a foil backed sheet over a foam three-dimensional core. Carrier 36 may also be formed by blow molding, injection molding, casting foam cement around a Styrofoam core, or utilizing an "aluminum can" or shell as the internal Garner with processes based on techniques for forming aluminum beverage cans.
Carrier 36 may also be formed by hydroforming a metal into a three-dimensional shape.
After or during the formation of carrier 36, metal extensions such as pins 46 or metal tabs may be added to carrier 36. Pins 46 align with holes in or near joints 12. The number of pins 46 may vary with each application. The pins locate reinforcement member 22 within channels 28 during assembly of the vehicle. Channels 28 may have holes therethrough that align with pins 46.
The polymer used to form adhesive layer 22 is a resin-based material which is thermally expandable. A number of resin-based compositions can be utilized to form adhesive layer 38 in the present invention. The preferred compositions impart excellent strength and stiffness characteristics while adding only marginally to the weight. With specific reference now to the composition of adhesive layer 38, the density of the material should preferably be from about 20 pounds per cubic foot to about SO pounds per cubic foot to minimize weight. The melting point, heat distortion temperature, and the temperature at which chemical breakdown occurs must be sufficiently high such that adhesive layer 38 maintains its structure at high temperatures typically encountered in paint ovens and other vehicle assembly processing. Therefore, adhesive layer 38 should be able to withstand temperatures in excess of 320°F., and preferably 350°F. for short times. Also, adhesive layer 38 should be able to withstand in final service heats of about 90°F. to 200°F. for extended periods of time without exhibiting substantial heat-induced distortion or degradation.
In more detail, in one particularly preferred embodiment, the thermally expanded structural foam of adhesive layer 38 includes a synthetic resin, a cell-forming agent, and a filler. A synthetic resin comprises from about 40% to about 80% by weight, preferably from about 45% to about 75% by weight, and most preferably from about 50% to about 70% by weight of adhesive layer 38. Most preferably, a portion of the resin includes a flexible epoxy. As used herein, the term "cell-forming agent" refers generally to agents which produce bubbles, pores, or cavities in adhesive layer 38. That is, adhesive layer 38 has a cellular structure, having numerous cells disposed throughout its mass. The cellular structure provides a low density, high strength material, which provides a strong, yet light-weight structure. Cell forming agents which are compatible with the present invention include reinforcing "hollow" microspheres or microbubbles which may be formed of either glass or plastic. Glass microspheres are particularly preferred. Also, the cell-fornling agent may comprise a blowing agent which may be either a chemical blowing agent or a physical blowing agent. Where the cell-forming agent comprises microspheres or macrospheres, it constitutes from about 10% to 50% by weight, preferably from about 15% to about 40% by weight, and most preferably from 20% to about 40% be weight of the material which forms adhesive layer 22. Where the cell-forming agent comprises a blowing agent, it constitutes from about .5% to about 5.0% by weight, preferably from about 1% to about 4.0%
by weight, and most preferably from about 1% to about 3% by weight of adhesive layer 38.
Suitable fillers include glass or plastic microspheres, fumed silica, cathium carbonate, milled glass fiber, and chopped glass strand. A thixotropic filler is particularly preferred. Other materials may be suitable. The filler comprises from about 1 % to about 1 S%
by weight, preferably from about 2% to about 10% by weight, and most preferably from about 3% to about 8% by weight of adhesive layer 38.
Preferred synthetic resins for use in the present invention include thermosets such as epoxy resins, phenol ester resins, thermoset polyester resins, and urethane resins. It is not intended that the scope of the present invention be limited by molecular weight of the resin and suitable weights will be understood by those skilled in the art based on the present disclosure. Where the resin component of the liquid filler material is a thermoset resin, various accelerators such as imidizoles and curing agents, preferably dicyandiamide may also be included to enhance the cure rate. A functional amount of accelerator is typically from about .5% to about 2.0% of the resin weight with corresponding reduction in one of the three components, resin, cell-forming agent or filler. Similarly, the amount of curing agent is typically from about 1 % to about 8% of the resin weight with a corresponding reduction in one of the three components, resin, cell-forming agent or filler.
Effective amounts of processing aids, stabilizers, colorants, tJV-absorbers and the like may also be included in the layer. Thermoplastics may also be suitable.
In the following table, a preferred formulation for adhesive layer 38 is set forth. It has been found that this formulation provides a material which fully expands and cures at about 320 °F. and provides excellent structural properties. All percentages in the present discloswe are percent by weight unless otherwise specifically designated.
by Wei ht R a, preferred Percentage nTe EPON 828 (epoxy resin) 30-40 36.96 DER 331 (flexible epoxy resin) 10-20 15.06 AMICURE CGNA (curing agent) 3.5-4.6 4.12 AMICURE VR (accelerator) .4-1.2 .g0 TS720 (thixotropic filler) .5-1.5 1.1 CELOGEN AZ 199 .7-1.8 1.2 I

(azodicarbonamide blowing agent) B38 MICROS (glass microspheres) 30.0-45.0 37.16 WINNOFIL CALCIUM CARBONATE
.1-1.1 .6 (C,C03 filler) or CARBON BLACK

NIPOL 1312 (liquid rubber) 2.0-4.0 3.01 In addition colorings and other additives may be included such as Phtalocyanine blue and KR55.
Adhesive layer 38 in most applications is a layer extending around or substantially around the entire outer surface of carrier 36. It is preferred that adhesive layer 38 is of relatively uniform thickness, for example, from about 2 to about 6 mm, in the unexpanded state.
Referring now to Figure 4, adhesive layer 38 may be prepared by die cutting a sheet 48 of resin to the required geometry. The die cut portion 50 is then wrapped around the three-dimensional carrier 36. Alternatively, other forms of coating carrier 36 may be used.
For example, adhesive layer 38 may be applied by spraying or compression molding.
Refen~ing now to Figure 5, another method for applying adhesive layer 38 to carrier 36 is by the use of a mold 52. Carrier 36 is located within a mold 52. A gap 54 between mold 52 and carrier 36 is preferably uniform and sized to the desired thickness of adhesive layer 38. A port 56 is provided through mold 52 so that molten adhesive layer material may be injected into gap 54 to surround carrier 36.
It is preferred that mold 52 is cooled and polished to ease part release. This may be done in several manners such as by running coolant fluids through mold body 52. By cooling mold 52, separating adhesive layer 38 from mold 52 is simplified.
Referring now to Figure 6, a cross-sectional view of a reinforcement member 22 formed according to Figures 3, 4 or 5 as shown. Adhesive layer 38 is applied uniformly around carrier 36. Carrier 36 is preferably hollow and generally conforms to channel 28.
Adhesive layer 38 has the characteristics that when the vehicle is subjected to paint baking, adhesive layer 38 expands and bonds to channels 28. Thus, after adhesive layer 38 cools, the adhesive layer 38 bonds to channels 28 to reinforce joint 12. Because the joints of vehicle are structurally reinforced, vehicle stiffness and ride characteristics are improved which allow for weight reduction by reducing the gauge of metal provided to form the body panels of the vehicle.
Referring now to Figure 7, a cross-sectional view of an alternative method for forming reinforcement member 22 is shown. Instead of having a hollow shell as in Figure 6, carrier 36 is formed having a foam core 58. A foil or metallic layer forms carrier 36. For example, an aluminum foil may be wrapped around foam core 58. Using a form core 58, adhesive layer 38 may be applied in any of the above specified manners. Foam core S8 is preferably formed of a thermally activated or fugitive material. That is, when the foam core is subject to heat, the form core breaks down to leave a hollow carrier 36.
The heat preferred for foam core 58 to break down is at a maximum temperature to which the vehicle is subject to during paint bake operation. By using a foam core 58, a slightly more rigid reinforcement member 22 is obtained and thus reinforcement member 22 may be easier to handle during vehicle assembly, especially when foil carriers are used.
In operation, reinforcement members 22 as described above would likely be supplied to automotive vehicle assembly plants. Reinforcement members may be manufactured according to any of the methods set forth above. During the assembly of the vehicle body and before welding or masticing of the various body panels, reinforcement members would be placed at various joints of the vehicle. Preferably, any joints and adhesive layer 38 align with any of the seams in the body of the vehicle. After the reinforcement members 22 are inserted in the joints, the body panels are joined together. Commonly, the vehicle body once welded together is subjected to E-coat. During E-coat, the body is dipped into a pool of E-coat. E-coat flows through the hollow reinforcement member 22 to coat the body including the interior of channels 28.
Subsequently, paint is then applied to the body panels. After paint is applied to the body panels, the paint is baked. During this baking process, the temperature of the body panels is substantially raised. Commonly, body temperatures exceed 325 °F. The temperature of the interior of channels 28 also is raised to that temperature.
This temperature then activates the adhesive layer 38 so that it expands and bonds with the interior of the body panels within channels 28. When cooled, reinforcement member 22 is bonded to the body panels and the joint is then reinforced.
While the best mode for carrying out the present invention has been described in detail, those familiar with the art to which this invention relates will recognize various alternative designs and embodiments for practicing the invention as defined by the following claims.

Claims

What is claimed is:

1, A joint reinforcement member for hollow structure of an automotive vehicle comprising:
a carrier portion having an outer surface, said carrier portion having a base portion having a first extension having a first longitudinal axis extending therefrom and having a second extension having a second longitudinal axis extending therefrom, said first longitudinal axis and said second longitudinal axis corresponding to said hollow structure;
and, a thermally expandable adhesive layer disposed on said outer surface and substantially covering said outer surface.
2. A joint reinforcement member as recited in claim 1, wherein said first longitudinal axis is perpendicular to said second longitudinal axis.
3. A joint reinforcement member as recited in claim 1, wherein said carrier portion comprises a third extension extending from said base portion, said third extension having a third longitudinal axis.
4. A joint reinforcement member as recited in claim 3, wherein said third longitudinal axis is substantially perpendicular to said first and second longitudinal axis.
5. A joint reinforcement member as recited in claim 1, wherein said carrier portion is hollow.
6. A joint reinforcement member as recited in claim 1, wherein said outer surface having a metallic layer.

8. A joint reinforcement member as recited in claim 21, wherein said carrier has through holes.
9. A joint reinforcement member for a hollow structure of an automotive vehicle comprising:
a carrier portion having an outer surface, said carrier portion having a base portion having a first extension having a first longitudinal axis extending therefrom and having a second extension having a second longitudinal axis extending therefrom;
a thermally expandable adhesive layer disposed on said outer surface and substantially covering said outer surface; and wherein said carrier portion comprises two stamped metal channels coupled together.
10. A joint reinforcement member for a hollow structure of an automotive vehicle comprising:
a Garner portion having an outer surface, said carrier portion having a base portion having a first extension having a first longitudinal axis extending therefrom and having a second extension having a second longitudinal axis extending therefrom;
a thermally expandable adhesive layer disposed on said outer surface and substantially covering said outer surface; and wherein said carrier portion comprises a foil coated foam member, said foil forming said outer surface.
11. A joint reinforcement member as recited in claim 10, wherein said foam member is heat activated.
12. A joint reinforcement member for a hollow structure of an automotive vehicle comprising:
a carrier portion having an outer surface, said carrier portion having a base portion having a first extension having a first longitudinal axis extending therefrom and having a second extension having a second longitudinal axis extending therefrom;

a thermally expandable adhesive layer disposed on said outer surface and substantially covering said outer surface; and wherein said adhesive layer comprises by percentage weight, synthetic resin ~between about 40% and about 80%, filler ~ ~between about 1% and about 15%
chemical blowing agent between about .5% and about 5%

13. A method of forming a reinforcement member for placement within a hollow structure member of an automotive vehicle comprising:
providing a carrier portion having a plurality of extensions extending from a base portion corresponding to the hollow structure member;
applying a layer of thermally expandable adhesive material to said carrier portion;
heating the carrier portion and the adhesive layer;
activating the adhesive layer;
bonding the adhesive layer to the structure member; and cooling the structure member and the adhesive layer; and further comprising the step of cutting the adhesive layer from a sheet of adhesive material.
15. A method of forming a reinforcement member for placement within a hollow structure member of an automotive vehicle comprising:
providing a carrier portion having a plurality of extensions extending from a base portion corresponding to the hollow structure member;
applying a layer of thermally expandable adhesive material to said carrier portion;
heating the carrier portion and the adhesive layer;
activating the adhesive layer;
bonding the adhesive layer to the structure member; and cooling the structure member and the adhesive layer;
wherein the step of applying the layer of adhesive further comprises the sub-steps of placing the carrier portion in a mold; injecting the adhesive layer between the carrier portion and the mold; and, removing the carrier portion having the adhesive layer from the mold.
16. A method of foaming a reinforcement member as recited in claim 15, further comprising the step of chilling the mold.

17. A method of forming an automotive body having at least two elongated hollow body members, the assembly of said body members defining a hollow space therebetween comprising:
inserting a reinforcement member in the hollow space, the reinforcement member having a carrier portion having an outer surface and a base portion having a first extension having a first longitudinal axis extending therefrom and having a second extension having a second longitudinal axis extending therefrom, the outer surface of the carrier having a thermally expandable adhesive layer disposed thereon;
aligning the first extension with the one of the hollow body members;
aligning the second extension with the other of the hollow body members;
heating the body members, the carrier portion and the adhesive layer;
bonding the adhesive material within the hollow body members; and cooling the structural member and the adhesive layer; and further comprising the steps of forming the adhesive layer by cutting the adhesive layer from a sheet of adhesive material.
19. A method of forming an automotive body 17, further comprising the step of applying the layer of adhesive to the carrier.
20. A method of forming an automotive body 17, wherein the step of applying the layer of adhesive to the carrier comprises the sub-steps of placing the carrier portion in a mold; injecting the adhesive layer between the carrier portion and the mold;
and, removing the carrier portion having the adhesive layer from the mold.
21. A joint reinforcement member for use in reinforcing a hollow structure of an automotive vehicle comprising a carrier portion having an outer surface, said carrier portion having a base portion, a first extension secured to and extending away from said base portion, a second extension secured to and extending away from said base portion, said base portion connecting said first extension to said second extension to form a continuous integral outer surface of said first extension to said second extension, each of said first extension and said second extension being longer than said base portion, each of said first extension and said second extension having a longitudinal axis, said longitudinal axis of said first extension being non-colinear with said longitudinal axis of said second extension, said longitudinal axis of said first extension and said longitudinal axis of said second extension intersecting at said base portion, and a thermally expandable structural foam bonded to said outer surface and substantially covering said outer surface.
22. A joint reinforcement member as recited in claim 3 wherein said base portion connects said third extension with each of said first extension and said second extension to form a continuous integral outer surface of said third extension with each of said first extension and said second extension.
23. A joint reinforcement member as recited in claim 22 wherein said base portion and each of said extensions are of tubular shape.
24. A joint reinforcement member as recited in claim 21 wherein said base portion and each of said extensions are of tubular shape.
25. A joint reinforcement member as recited in claim 24 wherein said carrier is filled with a core foam.
26. A joint reinforcement member as recited in claim 24 wherein said carrier is hollow and empty.
27. A joint reinforcement member as recited in claim 23 wherein said carrier is filled with a core foam.
28. A joint reinforcement member as recited in claim 23 wherein said carrier is hollow and empty.
29. A joint reinforcement member as recited in claim 12 wherein said adhesive layer further comprises from about 10 to 50% by weight hollow glass microspheres.
30. A method of reinforcing a hollow structural member formed by at least two offset passageways which are connected at a joint comprising providing a carrier portion having a plurality of extensions extending from a base portion corresponding to the hollow structure with each of the extensions being connected together by the base portion to form a continuous integral outer surface of each pair of extensions and with each extension being longer than the base portion, applying a layer of thermally expandable adhesive material to the carrier portion, locating each of the extensions in a respective passageway with the base portion being at the joint of the passageways, heating the carrier portion and the adhesive layer, activating the adhesive layer, bonding the adhesive layer to the structural member, and cooling the structural member and the heated layer.
31. The method of claim 30 wherein there are three offset connecting passageways and three corresponding extensions, and locating each extension in a corresponding passageway.

32. The method of claim 31 each of the extensions and the base portion is of tubular form, and including the step of filling the tubular form with a foam core.
33. The method of claim 31 each of the extensions and the base portion is of tubular form, and including maintaining the tubular form hollow and empty.
34. The method of claim 30 wherein the offset connecting passageways are located at a joint between the roof and the pillar of an automobile vehicle.
CA002319598A 1998-02-04 1999-02-03 Three dimensional composite joint reinforcement for an automotive vehicle Abandoned CA2319598A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/018,387 US6068424A (en) 1998-02-04 1998-02-04 Three dimensional composite joint reinforcement for an automotive vehicle
US09/018,387 1998-02-04
PCT/US1999/001855 WO1999039882A1 (en) 1998-02-04 1999-02-03 Three dimensional composite joint reinforcement for an automotive vehicle

Publications (1)

Publication Number Publication Date
CA2319598A1 true CA2319598A1 (en) 1999-08-12

Family

ID=21787672

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002319598A Abandoned CA2319598A1 (en) 1998-02-04 1999-02-03 Three dimensional composite joint reinforcement for an automotive vehicle

Country Status (18)

Country Link
US (2) US6068424A (en)
EP (1) EP1060056B1 (en)
JP (1) JP2002502744A (en)
KR (1) KR20010040612A (en)
CN (1) CN1290203A (en)
AR (1) AR018275A1 (en)
AT (1) ATE264781T1 (en)
AU (1) AU2565899A (en)
BR (1) BR9909263A (en)
CA (1) CA2319598A1 (en)
DE (2) DE69916587D1 (en)
ES (1) ES2216488T3 (en)
FR (1) FR2774352B1 (en)
PL (1) PL342238A1 (en)
SK (1) SK11772000A3 (en)
TR (1) TR200002278T2 (en)
WO (1) WO1999039882A1 (en)
ZA (1) ZA99852B (en)

Families Citing this family (120)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6341467B1 (en) 1996-05-10 2002-01-29 Henkel Corporation Internal reinforcement for hollow structural elements
US6270600B1 (en) * 1996-07-03 2001-08-07 Henkel Corporation Reinforced channel-shaped structural member methods
US6103341A (en) 1997-12-08 2000-08-15 L&L Products Self-sealing partition
US6068424A (en) * 1998-02-04 2000-05-30 Henkel Corporation Three dimensional composite joint reinforcement for an automotive vehicle
DE19856255C1 (en) 1998-03-20 2000-01-20 Moeller Plast Gmbh Hollow profile with internal reinforcement
US6131897A (en) 1999-03-16 2000-10-17 L & L Products, Inc. Structural reinforcements
US6358584B1 (en) 1999-10-27 2002-03-19 L&L Products Tube reinforcement with deflecting wings and structural foam
US6668457B1 (en) * 1999-12-10 2003-12-30 L&L Products, Inc. Heat-activated structural foam reinforced hydroform
JP3428545B2 (en) * 2000-01-07 2003-07-22 本田技研工業株式会社 Body reinforcement structure
US7188176B1 (en) 2000-01-20 2007-03-06 Priceline.Com Incorporated Apparatus, system, and method for maintaining a persistent data state on a communications network
US6199940B1 (en) 2000-01-31 2001-03-13 Sika Corporation Tubular structural reinforcing member with thermally expansible foaming material
US6475577B1 (en) 2000-02-07 2002-11-05 Sika Corporation Reinforcing member with intersecting support legs
US6467834B1 (en) 2000-02-11 2002-10-22 L&L Products Structural reinforcement system for automotive vehicles
AU2001230965A1 (en) 2000-02-11 2001-08-20 L And L Products, Inc. Structural reinforcement system for automotive vehicles
CA2397236A1 (en) * 2000-02-24 2001-08-30 Marshall Ray Porter Low-density injection-molded body components
US6843954B2 (en) 2000-02-24 2005-01-18 Conix Corporation Injection molding techniques utilizing fluid channels
US6998174B2 (en) * 2000-02-24 2006-02-14 Conix Corporation Integrated co-injection molded vehicle components and methods of making the same
US6296298B1 (en) 2000-03-14 2001-10-02 L&L Products, Inc. Structural reinforcement member for wheel well
US6482486B1 (en) 2000-03-14 2002-11-19 L&L Products Heat activated reinforcing sleeve
US6422575B1 (en) 2000-03-14 2002-07-23 L&L Products, Inc. Expandable pre-formed plug
US6321793B1 (en) 2000-06-12 2001-11-27 L&L Products Bladder system for reinforcing a portion of a longitudinal structure
US6820923B1 (en) 2000-08-03 2004-11-23 L&L Products Sound absorption system for automotive vehicles
US6634698B2 (en) 2000-08-14 2003-10-21 L&L Products, Inc. Vibrational reduction system for automotive vehicles
US6403222B1 (en) 2000-09-22 2002-06-11 Henkel Corporation Wax-modified thermosettable compositions
US6419305B1 (en) 2000-09-29 2002-07-16 L&L Products, Inc. Automotive pillar reinforcement system
US6561571B1 (en) 2000-09-29 2003-05-13 L&L Products, Inc. Structurally enhanced attachment of a reinforcing member
US6471285B1 (en) 2000-09-29 2002-10-29 L&L Products, Inc. Hydroform structural reinforcement system
US6451876B1 (en) 2000-10-10 2002-09-17 Henkel Corporation Two component thermosettable compositions useful for producing structural reinforcing adhesives
AU2002219981A1 (en) * 2000-11-17 2002-07-01 Henkel Kommanditgesellschaft Auf Aktien Storage-stable foamable compositions
US6585202B2 (en) 2001-01-05 2003-07-01 Daimlerchrysler Corporation Multi-tiered carrier structure for a motor vehicle
US20030211307A1 (en) * 2001-02-23 2003-11-13 Porter Marshall Ray Low-density injection-molded body components
GB0106911D0 (en) * 2001-03-20 2001-05-09 L & L Products Structural foam
US20030018095A1 (en) * 2001-04-27 2003-01-23 Agarwal Rajat K. Thermosettable compositions useful for producing structural adhesive foams
GB2375328A (en) * 2001-05-08 2002-11-13 L & L Products Reinforcing element for hollow structural member
US6502821B2 (en) 2001-05-16 2003-01-07 L&L Products, Inc. Automotive body panel damping system
FR2826093B1 (en) * 2001-06-15 2003-08-08 Peugeot Citroen Automobiles Sa METHOD FOR ACOUSTICALLY ISOLATING A HOLLOW BODY, SUCH AS A BODY PART OF A MOTOR VEHICLE
US6855652B2 (en) 2001-08-24 2005-02-15 L&L Products, Inc. Structurally reinforced panels
US6729425B2 (en) 2001-09-05 2004-05-04 L&L Products, Inc. Adjustable reinforced structural assembly and method of use therefor
US6786533B2 (en) * 2001-09-24 2004-09-07 L&L Products, Inc. Structural reinforcement system having modular segmented characteristics
US6793274B2 (en) * 2001-11-14 2004-09-21 L&L Products, Inc. Automotive rail/frame energy management system
US7041355B2 (en) * 2001-11-29 2006-05-09 Dow Global Technologies Inc. Structural reinforcement parts for automotive assembly
CA2471368A1 (en) 2001-12-21 2003-07-03 Henkel Teroson Gmbh Expandable epoxy resin-based systems modified with thermoplastic polymers
WO2003061934A1 (en) * 2002-01-22 2003-07-31 Dow Global Technologies Inc. Reinforced structural body and manufacturing method therefor
US20030192643A1 (en) * 2002-03-15 2003-10-16 Rainer Schoenfeld Epoxy adhesive having improved impact resistance
US7318873B2 (en) 2002-03-29 2008-01-15 Zephyros, Inc. Structurally reinforced members
CA2482168A1 (en) * 2002-04-15 2003-10-30 Dow Global Technologies Inc. Improved vehicular structural members and method of making the members
US6969551B2 (en) * 2002-04-17 2005-11-29 L & L Products, Inc. Method and assembly for fastening and reinforcing a structural member
US7169344B2 (en) * 2002-04-26 2007-01-30 L&L Products, Inc. Method of reinforcing at least a portion of a structure
US7077460B2 (en) * 2002-04-30 2006-07-18 L&L Products, Inc. Reinforcement system utilizing a hollow carrier
GB0211287D0 (en) * 2002-05-17 2002-06-26 L & L Products Inc Improved baffle precursors
GB0211268D0 (en) * 2002-05-17 2002-06-26 L & L Products Inc Hole plugs
GB0211775D0 (en) * 2002-05-23 2002-07-03 L & L Products Inc Multi segment parts
US6920693B2 (en) * 2002-07-24 2005-07-26 L&L Products, Inc. Dynamic self-adjusting assembly for sealing, baffling or structural reinforcement
US7004536B2 (en) * 2002-07-29 2006-02-28 L&L Products, Inc. Attachment system and method of forming same
US20040034982A1 (en) * 2002-07-30 2004-02-26 L&L Products, Inc. System and method for sealing, baffling or reinforcing
US6923499B2 (en) * 2002-08-06 2005-08-02 L & L Products Multiple material assembly for noise reduction
DE10238204A1 (en) * 2002-08-21 2004-03-25 Daimlerchrysler Ag Rough structure for vehicle body comprises several hollow profiles with passage opening reinforced by reinforcement shells which when installed span opening and are fixed to edge thereof
US6883858B2 (en) * 2002-09-10 2005-04-26 L & L Products, Inc. Structural reinforcement member and method of use therefor
US7105112B2 (en) * 2002-11-05 2006-09-12 L&L Products, Inc. Lightweight member for reinforcing, sealing or baffling
DE10260531B4 (en) * 2002-12-21 2016-11-24 Volkswagen Ag Device for creating a support between a body component and at least one adjacent mounting part of motor vehicles
CA2509629A1 (en) * 2002-12-27 2004-07-22 Dow Global Technologies Inc. Heat activated epoxy adhesive and use in a structural foam insert
GB0300159D0 (en) * 2003-01-06 2003-02-05 L & L Products Inc Improved reinforcing members
US7313865B2 (en) 2003-01-28 2008-01-01 Zephyros, Inc. Process of forming a baffling, sealing or reinforcement member with thermoset carrier member
KR101033417B1 (en) * 2003-03-05 2011-05-11 다우 글로벌 테크놀로지스 엘엘씨 Structural Reinforcement Article and Process for Preparation Thereof
US7111899B2 (en) * 2003-04-23 2006-09-26 L & L Products, Inc. Structural reinforcement member and method of use therefor
GB2401349A (en) * 2003-05-08 2004-11-10 L & L Products Reinforcement for a vehicle panel
US7041193B2 (en) * 2003-05-14 2006-05-09 L & L Products, Inc. Method of adhering members and an assembly formed thereby
JPWO2005003588A1 (en) * 2003-07-01 2006-08-17 本田技研工業株式会社 Skeletal structure member for transport machinery
US20050016807A1 (en) * 2003-07-21 2005-01-27 L&L Products, Inc. Crash box
US20070173553A1 (en) * 2003-07-29 2007-07-26 Taylor Jr Edward W Waterborne coatings and foams and methods of forming them
US7469459B2 (en) * 2003-09-18 2008-12-30 Zephyros, Inc. System and method employing a porous container for sealing, baffling or reinforcing
US20050102815A1 (en) * 2003-11-03 2005-05-19 L&L Products, Inc. Reinforced members formed with absorbent mediums
US20050127145A1 (en) * 2003-11-20 2005-06-16 L&L Products, Inc. Metallic foam
FR2864816B1 (en) * 2004-01-02 2006-04-14 Plastic Omnium Cie METHOD FOR MANUFACTURING A BODY COMPONENT OF A MOTOR VEHICLE, BODY PIECE
US20050166532A1 (en) * 2004-01-07 2005-08-04 L&L Products, Inc. Structurally reinforced panels
US20050172486A1 (en) * 2004-02-05 2005-08-11 L&L Products, Inc. Member for sealing, baffling or reinforcing and method of forming same
DE102004016134A1 (en) * 2004-04-01 2005-11-03 Bayerische Motoren Werke Ag Motor vehicle with a roof
GB2415658A (en) * 2004-06-21 2006-01-04 L & L Products Inc An overmoulding process
US20060021697A1 (en) * 2004-07-30 2006-02-02 L&L Products, Inc. Member for reinforcing, sealing or baffling and reinforcement system formed therewith
US20060210736A1 (en) 2004-08-05 2006-09-21 Wycech Joseph S Method for forming a tangible item and a tangible item which is made by a method which allows the created tangible item to efficiently absorb energy
US20060043772A1 (en) * 2004-08-26 2006-03-02 L&L Products, Inc. Baffle and system formed therewith
US7251915B2 (en) * 2004-09-10 2007-08-07 Pullman Industries, Inc. Frame system for motor vehicle
US7374219B2 (en) * 2004-09-22 2008-05-20 Zephyros, Inc. Structural reinforcement member and method of use therefor
US20060090343A1 (en) * 2004-10-28 2006-05-04 L&L Products, Inc. Member for reinforcing, sealing or baffling and reinforcement system formed therewith
GB2421478A (en) 2004-12-21 2006-06-28 L & L Products Inc Vehicle structure reinforcement member
US7579068B2 (en) 2005-04-05 2009-08-25 Dow Global Technologies, Inc. Rigid polyurethane-isocyanurate reinforcing foams
US20070080559A1 (en) * 2005-04-28 2007-04-12 L&L Products, Inc. Member for baffling, reinforcement of sealing
US7503620B2 (en) * 2005-05-12 2009-03-17 Zephyros, Inc. Structural reinforcement member and method of use therefor
US20060286333A1 (en) * 2005-06-17 2006-12-21 Pei-Chung Wang Method of and apparatus for weld-bonding workpieces
US7926179B2 (en) * 2005-08-04 2011-04-19 Zephyros, Inc. Reinforcements, baffles and seals with malleable carriers
GB0600901D0 (en) * 2006-01-17 2006-02-22 L & L Products Inc Improvements in or relating to reinforcement of hollow profiles
US8163116B2 (en) * 2006-05-09 2012-04-24 Zephyros, Inc. Joints and a system and method of forming the joints
DE102006026385A1 (en) * 2006-06-07 2007-12-13 Volkswagen Ag Frame element e.g. for frame element, has two hollow profile brackets connected to each other by node with carrier provided in opening with first bracket and second carrier arranged in opening of second bracket
US8288447B2 (en) * 2006-06-07 2012-10-16 Henkel Ag & Co. Kgaa Foamable compositions based on epoxy resins and polyesters
US7913467B2 (en) * 2006-07-25 2011-03-29 Zephyros, Inc. Structural reinforcements
PL2049611T3 (en) 2006-07-31 2019-04-30 Henkel Ag & Co Kgaa Curable epoxy resin-based adhesive compositions
WO2008045270A1 (en) 2006-10-06 2008-04-17 Henkel Ag & Co. Kgaa Pumpable epoxy paste adhesives resistant to wash-off
US7820002B2 (en) * 2006-11-16 2010-10-26 Wycech Joseph S Method for making a reception assembly and an reception assembly
US20080202674A1 (en) * 2007-02-28 2008-08-28 L&L Products, Inc. Structural reinforcements
FR2914601B1 (en) * 2007-04-06 2009-07-10 Plastic Omnium Cie ASSEMBLY OF A SHOCK BEAM AND ABSORBER
FR2920397B1 (en) * 2007-08-29 2010-02-26 Peugeot Citroen Automobiles Sa AUTOMOTIVE VEHICLE STRUCTURE FORMING A REAR OPENING FRAME
US7641264B2 (en) * 2007-10-05 2010-01-05 Sika Technology, AG Reinforcement device
JP4328822B1 (en) * 2008-03-28 2009-09-09 中川産業株式会社 Manufacturing method of thermally expandable base material for vehicle interior and manufacturing method of base material for vehicle interior using the same
FR2945507B1 (en) * 2009-05-14 2013-11-29 Plastic Omnium Cie METHOD FOR ASSEMBLING A VEHICLE OPENING.
US8342598B2 (en) * 2009-11-26 2013-01-01 Faroex Ltd. Structure including a composite panel joint
US8262155B2 (en) * 2009-12-06 2012-09-11 Honda Motor Co., Ltd. Overmolded joint for beam assembly
FR2954201B1 (en) * 2009-12-21 2012-03-02 Peugeot Citroen Automobiles Sa ASSEMBLY COMPRISING TWO SHEETS AND AN INSERT INTENDED TO ENSURE SEALING BETWEEN SAID SHEETS.
DE102010000772A1 (en) 2010-01-11 2011-07-21 Ford Global Technologies, LLC, Mich. Method for producing prefabricated wheel suspension component, involves producing base body which has base bar and front side flanges arranged at base bar
WO2012125995A1 (en) 2011-03-17 2012-09-20 Zephyros, Inc. Bonding assembly
GB201106161D0 (en) 2011-04-12 2011-05-25 Zephyros Inc Improvements in or relating to vehicle subframe reinforcement
JP2013006586A (en) * 2011-05-23 2013-01-10 Toyota Boshoku Corp Vehicular door
GB2492157A (en) * 2011-06-24 2012-12-26 Zephyros Inc Heel plate comprising a structural foam
DE102011113910A1 (en) * 2011-09-21 2013-03-21 Daimler Ag Roof frame part of a body of a passenger car
WO2013177377A1 (en) * 2012-05-24 2013-11-28 Zephyros, Inc. Vehicle body structure cut zones
JP6148915B2 (en) * 2012-09-26 2017-06-14 株式会社Subaru vehicle
EP2899100B1 (en) * 2014-01-27 2018-06-27 MAGNA STEYR Fahrzeugtechnik AG & Co KG Bonded joint and bonding method of two hollow profiles
DE102016001241A1 (en) * 2016-02-04 2017-08-10 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Structure node for a motor vehicle body
JP6228256B2 (en) * 2016-04-13 2017-11-08 本田技研工業株式会社 Auto body structure
EP3486146B1 (en) * 2017-11-15 2021-04-14 Sika Technology Ag Device for reinforcing and sealing a structural element
US11346384B2 (en) * 2019-07-12 2022-05-31 Ralph Sloan Wilson, JR. Three-axis ninety-degree triangular brace

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3123170A (en) * 1964-03-03 Radiator with resilient mounting
GB628863A (en) * 1947-03-29 1949-09-06 Nuffield Metal Products Ltd Improvements in distance pieces for reinforcing hollow sheet metal structural members
US3493257A (en) * 1967-03-22 1970-02-03 Gen Motors Corp Resilient microcellular foam bumper
JPS5639698Y2 (en) * 1975-10-01 1981-09-16
DE2919046A1 (en) * 1979-05-11 1980-11-20 Volkswagenwerk Ag Impact absorbing car bumper strip - has overlapping profiles containing hard foam aggregate granular
US4238540A (en) * 1979-05-29 1980-12-09 Celanese Corporation Fiber reinforced composite shaft with metallic connector sleeves mounted by connector ring interlock
JPS6044187B2 (en) * 1979-09-08 1985-10-02 日産自動車株式会社 Automotive plate material and its manufacturing method
JPS57151361A (en) * 1981-03-16 1982-09-18 Nissan Motor Reinforcing material and reinforcing panel
JPS57151357A (en) * 1981-03-16 1982-09-18 Nissan Motor Reinforcing material and reinforcing panel
US4397490A (en) * 1981-05-04 1983-08-09 Ford Motor Company Low profile bumper
DE3215616C2 (en) * 1982-04-27 1984-12-13 Ford-Werke AG, 5000 Köln Method for producing composite components in sandwich construction, in particular for motor vehicles
US4610836A (en) * 1983-09-12 1986-09-09 General Motors Corporation Method of reinforcing a structural member
US4751249A (en) * 1985-12-19 1988-06-14 Mpa Diversified Products Inc. Reinforcement insert for a structural member and method of making and using the same
WO1989006595A1 (en) * 1986-09-29 1989-07-27 Sekisui Kagaku Kogyo Kabushiki Kaisha A method for the production of composite pipes
DE3639195A1 (en) * 1986-11-15 1988-05-26 Daimler Benz Ag BUMPER FOR A VEHICLE
JPS6469309A (en) * 1987-09-09 1989-03-15 Mazda Motor Method for filling foaming agent in structural member with enclosed section
JPS6469308A (en) * 1987-09-09 1989-03-15 Mazda Motor Method for filling foaming agent in structural member with enclosed section
US4922596A (en) * 1987-09-18 1990-05-08 Essex Composite Systems Method of manufacturing a lightweight composite automotive door beam
US4861097A (en) * 1987-09-18 1989-08-29 Essex Composite Systems Lightweight composite automotive door beam and method of manufacturing same
US4901500A (en) * 1987-09-18 1990-02-20 Essex Composite Systems Lightweight composite beam
US4995545A (en) * 1988-03-10 1991-02-26 Essex Composite Systems Method of reinforcing a structure member
US4923902A (en) * 1988-03-10 1990-05-08 Essex Composite Systems Process and compositions for reinforcing structural members
US4908930A (en) * 1988-04-25 1990-03-20 Essex Composite Systems Method of making a torsion bar
US4836516A (en) * 1988-04-25 1989-06-06 Essex Composite Systems Filled tubular torsion bar and its method of manufacture
US4853270A (en) * 1988-06-27 1989-08-01 Essex Specialty Products, Inc. Knee blocker for automotive application
JPH02206537A (en) * 1989-02-06 1990-08-16 Nitto Denko Corp Composite reinforcing member
NL8902122A (en) * 1989-08-22 1991-03-18 Polyplastic Bv VEHICLE, PARTICULARLY CARAVAN OR CAMPING CAR.
DE3936194A1 (en) * 1989-10-31 1991-05-02 Basf Ag RECYCLABLE BUMPER SYSTEM
US4978562A (en) * 1990-02-05 1990-12-18 Mpa Diversified Products, Inc. Composite tubular door beam reinforced with a syntactic foam core localized at the mid-span of the tube
US5124186A (en) * 1990-02-05 1992-06-23 Mpa Diversified Products Co. Composite tubular door beam reinforced with a reacted core localized at the mid-span of the tube
US5040803A (en) * 1990-04-23 1991-08-20 Cieslik David R Cavity sealing arrangement and method
DE9011147U1 (en) * 1990-07-28 1990-10-31 Ascher, Peter, 4100 Duisburg, De
DE4026459A1 (en) * 1990-08-17 1992-02-20 Mannesmann Ag DOOR AMPLIFIER PIPE
US5213391A (en) * 1990-10-25 1993-05-25 Nissan Motor Co., Ltd. Body skeleton element of vehicle and manufacturing method thereof
WO1993005103A1 (en) * 1991-09-03 1993-03-18 Terence Allan Russell Strengthening structures
DE4204825C2 (en) * 1991-12-14 1997-01-16 Porsche Ag Car body for motor vehicles, in particular passenger cars
US5209541A (en) * 1992-04-13 1993-05-11 Ford Motor Company Space frame joint construction
DE9320333U1 (en) * 1993-05-10 1994-07-28 Austria Metall Bent hollow profile part
US5575526A (en) * 1994-05-19 1996-11-19 Novamax Technologies, Inc. Composite laminate beam for radiator support
CA2161040A1 (en) * 1994-10-21 1996-04-22 Delbert D. Derees Vehicle assembly method
IT1268634B1 (en) * 1994-10-21 1997-03-06 Fiat Auto Spa TUBULAR ELEMENTS ASSEMBLY PROCEDURE.
DE19603098C2 (en) * 1996-01-29 1998-03-19 Daimler Benz Ag Passenger cell for a passenger car
US5720510A (en) * 1996-03-28 1998-02-24 Ford Global Technologies, Inc. Energy absorbing vehicle pillar structure
EP0897439B1 (en) * 1996-05-10 2003-04-02 Henkel Kommanditgesellschaft auf Aktien Internal reinforcement for hollow structural elements
US5885494A (en) * 1996-05-22 1999-03-23 E. I. Du Pont De Nemours And Company Method of forming foamed fluoropolymer composites
US5806919A (en) * 1996-11-04 1998-09-15 General Motors Corporation Low density-high density insert reinforced structural joints
DE19648164C2 (en) * 1996-11-21 2000-01-27 Karmann Gmbh W Body part, in particular profile frame support
US6068424A (en) * 1998-02-04 2000-05-30 Henkel Corporation Three dimensional composite joint reinforcement for an automotive vehicle

Also Published As

Publication number Publication date
ATE264781T1 (en) 2004-05-15
BR9909263A (en) 2000-12-05
DE19904442A1 (en) 1999-08-26
ES2216488T3 (en) 2004-10-16
EP1060056B1 (en) 2004-04-21
ZA99852B (en) 1999-08-03
CN1290203A (en) 2001-04-04
FR2774352A1 (en) 1999-08-06
EP1060056A4 (en) 2001-04-25
DE19904442B4 (en) 2006-01-19
DE69916587D1 (en) 2004-05-27
US6068424A (en) 2000-05-30
KR20010040612A (en) 2001-05-15
SK11772000A3 (en) 2001-02-12
PL342238A1 (en) 2001-06-04
EP1060056A1 (en) 2000-12-20
AR018275A1 (en) 2001-11-14
WO1999039882A1 (en) 1999-08-12
TR200002278T2 (en) 2001-01-22
AU2565899A (en) 1999-08-23
FR2774352B1 (en) 2001-03-30
JP2002502744A (en) 2002-01-29
US6332731B1 (en) 2001-12-25

Similar Documents

Publication Publication Date Title
US6068424A (en) Three dimensional composite joint reinforcement for an automotive vehicle
CN100467243C (en) Reinforced structural body and manufacturing method therefor
US8530015B2 (en) Reinforcement of hollow profiles
US7105112B2 (en) Lightweight member for reinforcing, sealing or baffling
US7077460B2 (en) Reinforcement system utilizing a hollow carrier
US4861097A (en) Lightweight composite automotive door beam and method of manufacturing same
US4922596A (en) Method of manufacturing a lightweight composite automotive door beam
US20060021697A1 (en) Member for reinforcing, sealing or baffling and reinforcement system formed therewith
US4901500A (en) Lightweight composite beam
US7926867B2 (en) Reinforcing component
EP1248690B1 (en) Heat-activated structural foam reinforced hydroform
US20060090343A1 (en) Member for reinforcing, sealing or baffling and reinforcement system formed therewith
EP1931555A1 (en) Structural reinforcement for vehicles
US9427902B2 (en) Cavity filling
MXPA00007607A (en) Three dimensional composite joint reinforcement for an automotive vehicle
CZ20002753A3 (en) Reinforcing part and process for producing thereof
JP2005502530A (en) Manufacturing method of structural elements
MXPA96005533A (en) Composite laminated beam for automotive body construction

Legal Events

Date Code Title Description
FZDE Discontinued