CA2322973A1 - Intraluminal stent - Google Patents

Intraluminal stent Download PDF

Info

Publication number
CA2322973A1
CA2322973A1 CA002322973A CA2322973A CA2322973A1 CA 2322973 A1 CA2322973 A1 CA 2322973A1 CA 002322973 A CA002322973 A CA 002322973A CA 2322973 A CA2322973 A CA 2322973A CA 2322973 A1 CA2322973 A1 CA 2322973A1
Authority
CA
Canada
Prior art keywords
stent
zig
stent according
adjacent
hoops
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002322973A
Other languages
French (fr)
Other versions
CA2322973C (en
Inventor
David Tseng
Ellen Golds
Bruce Parsons
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Ltd Barbados
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2322973A1 publication Critical patent/CA2322973A1/en
Application granted granted Critical
Publication of CA2322973C publication Critical patent/CA2322973C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/88Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements formed as helical or spiral coils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30317The prosthesis having different structural features at different locations within the same prosthesis
    • A61F2002/30322The prosthesis having different structural features at different locations within the same prosthesis differing in surface structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2002/828Means for connecting a plurality of stents allowing flexibility of the whole structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0026Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in surface structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/006Additional features; Implant or prostheses properties not otherwise provided for modular

Abstract

This invention is an intra-luminal stent (10) made of a zigzag or sinusoidal member defining a successive series of struts (14) connected by apex sections (15), and formed into a series of axially displaced hoop members (12a-12n) wherein at least one of the hoop members has at least one strut (14) connected to a strut (14) of an adjacent hoop. The connected struts (14) may be connected by spot welding, continuous welding, or suturing, for example, or by a bridging member (26) connected to each strut (14), and may be spaced along the length of the stent in a pattern to form a connective spine (16). The number of zigs of the zigzag member in each hoop member (12a-12n) may be varied, as can the zig length (L1). A plurality of connective spines (16) may also be included.

Claims (56)

1. A tubular stent having a tubular axis, said stent comprising a plurality of circumferential hoops linearly disposed in succession along said axis, each of said hoops comprising zig-zag or sinusoidal members defined by a successive series of struts connected by apex sections alternately pointing in opposite axial directions, at least one pair of adjacent hoops being connected to one another by a connecting member, said connecting member connecting a first strut, which is part of one of said connected adjacent hoops, to a second strut, which is part of the other of said adjacent hoops, said first and second struts being aligned with one another.
2. The stent according to claim 1 wherein each connecting member is a connector selected from the group consisting of: a spot weld, a continuous weld, an absorbable suture, a non-absorbable suture, a staple, absorbable glue, non-absorbable glue, and a polymer-containing connection.
3. The stent according to claim 1 wherein axially opposed apex sections of adjacent hoops are axially spaced from one another and said connecting member is a bridge member aligned with and connected to said first and second struts.
4. The stent according to claim 3 wherein each bridge member is connected to each of said first and second struts by a connector selected from the group consisting of: a spot weld, a continuous weld, an absorbable suture, a non-absorbable suture, a staple, absorbable glue, non-absorbable glue, and a polymer-containing connection.
5. The stent according to claim 3 wherein said bridging member and said struts connected thereto are comprised of the same material of construction and are of the same cross sectional dimensions.
6. The stent according to claim 1 wherein axially opposed apex sections of adjacent hoops are axially spaced from one another and one or both of said first and second struts are elongated, relative to the remainder of the straits in said adjacent hoops, and lie adjacent one another for at least some axial distance to permit connection therebetween.
7. The stent of claim 1, wherein the stent comprises a continuous series of similarly-oriented apex sections that point in a first direction, said similarly-oriented apex sections arranged in a helix in which each hoop comprises one 360-degree wrap of said helix.
8. The stent according to claim 7 wherein each apex section in said helix comprises two stints attached thereto, one strut being longer than the other.
9. The stent according to claim 8 wherein at least some of said axially opposed apex sections of adjacent hoops overlap one another axially.
10. The stent according to claim 9 wherein the included angle and axial length of said apex sections are generally uniform, except for selected apex sections including said first and second struts.
11. The stent according to claim 9 wherein the included angle and axial length of said apex sections are generally uniform, except for selected apex sections including said first and second struts and end apex sections comprising one or both end hoops of said stent.
12. The stent according to claim 11 wherein said end apex sections define a plane perpendicular to said tubular axis at the end of said stent.
13. The stent according to claim 9 wherein the included angle and axial length of said apex sections are generally uniform, except for those apex sections including said first and second struts, and those non-uniform apex sections include, respectively, included angles more and less than those of said uniform apex sections.
14. The stent according to claim 9, wherein the selected apex sections are spaced every N+ 1 zigs.
15. The stent according to claim 8 further comprising an end hoop disposed at each end of said stent in which apex sections that point outwardly from said stent lie in a common plane perpendicular to the axis of the stent.
16. The stent according to claim 15 wherein the apex sections of said end hoop have a progressively shorter zig length or amplitude leading to an end strut.
17. The stent according to claim 15 wherein the struts between apex sections of said end hoop progressively further overlap struts of an adjacent hoop leading to an end strut.
18. The stent according to claim 15 wherein the end hoops each comprise an end strut that is aligned adjacent to and connected to a another strut of said end hoop.
19. The stent according to claim 18 wherein said end strut is connected to said another strut with a weld having a first weld length and said connecting members in said hoops that are not end hoops comprise a weld having a second weld length that is less than said first weld length.
20. The stent according to claim 19 wherein the end strut terminates short of said common plane perpendicular to the axis of the stent on which lie said end hoop apex sections that point outwardly from said stent.
21. The stent according to claim 1 wherein the connecting members of adjacent pairs of hoops are arranged in a pattern to form a connective spine along the length of the stent.
22. The stent according to claim 21 wherein each pair of adjacent hoops includes a plurality of paired struts in axially opposed apex sections, each of said strut pairs being connected to one another to form a plurality of connective spines along the length of said stent.
23. The stent according to claim 21 or 22 wherein the connected struts forming said connective spines are aligned with one another helically along the length of said stent.
24. The stent according to claim 21 or 22 wherein the connected struts forming said connective spines are not aligned with one another along the length of said stent.
25. The stent according to claim 1 wherein said stent comprises at least one continuous filament wound into said zig-zag members, said filament comprising a material selected from the group consisting of: nitinol wire, stainless steel wire, and thermoplastic polymer.
26. The stent according to claim 25 wherein said stent comprises a single continuous filament.
27. The stent according to claim 25 wherein said stent comprises a plurality of continuous filaments.
28. The stent according to claim 1 wherein facing apex sections of adjacent hoops abut one another.
29. The stent according to claim 1 wherein facing apex sections of adjacent hoops are circumferentially offset from one another.
30. The stent according to claim 1 comprising four to six similarly-oriented apex sections in each hoop.
31. The stent according to claim 1 in which all of said hoops have a similar number of similarly-oriented apex sections.
32. The stent according to claim 1 further comprising at least two longitudinal segments, the hoops in at least one of said segments differing from those in another of said segments with respect one or more of apex section included angles, zig length, and number of apex sections per hoop.
33. The stent according to claim 1 wherein the stent has a length and comprises a constant number of continuous filaments and connective spines along its length.
34. The stent according to claim 1 further comprising at least two longitudinal segments, at least one of said segments having a different number of continuous filaments and connective spines than a second of said segments.
35. The stent according to claim 1 further comprising at least two longitudinal segments, each hoop a first of said segments having a first zig length and each hoop in a second of said segments having a second zig length that is different from said first zig length.
36. The stent according to claim 35 further comprising a transition segment between said first and second segments, each hoop in said transition segment having a third zig length intermediate said first and second zig lengths.
37. The stent according to claim 35 further comprising a transition segment between said one and said second segments, said transition segment having a plurality of zig lengths that provide a gradual transition between said first and second zig lengths.
38. The stent of claim 1 wherein each apex section pointing in a first direction and two struts attached thereto comprise a zig, the zig length and zig width of each adjacent zig being uniform in each hoop.
39. The stent of claim 1 wherein each zig of each hoop has a different zig length, a different zig width, or a combination thereof, with respect to each adjacent zig.
40. The stent of claim 39 wherein one or more selected zigs of each hoop are connected to a zig of an adjacent hoop with a bridging member.
41. The stent of claim 40 wherein the bridging members between selected zigs of a first and second hoop are angled with respect to the stent tubular axis in a first direction and bridging members between selected zigs of said second and a third hoop are angled with respect to the stent tubular axis in a second direction opposite said first direction.
42. The stent according to claim 1 having an diameter of 3-40 millimeters.
43. The stent according to claim 1 further comprising a graft layer enclosing at least a portion of the interior space defined by said stent.
44. The stent according to claim 1 wherein the apex sections have a geometry selected from the group consisting of: rounded or straight-edged.
45. The stent according to claim 1 further comprising at least one selected surface area, said selected surface area having a different radiopacity than the surface area surrounding said selected surface area.
46. The stent according to claim 1 wherein the zig-zag members have a sinusoidal configuration.
47. A tubular stent having a tubular axis, said stem comprising a plurality of zig-zag members arranged in a helix, said zig-zag members defined by a successive series of struts connected by apex sections alternately pointing in first and second axial directions, the apex sections that point in the first direction axially overlapping the apex sections that point in the second direction on axially adjacent traversals of said helix, wherein at least one strait of an apex section that points in the first direction on one traversal of said helix is aligned with and welded to another stint of an apex section that points in the second direction on an adjacent traversal of said helix, said welded one and another strut comprising a connecting member.
48. The stent of claim 47 further comprising a plurality of connecting members uniformly distributed along the stent according to a predetermined helical spacing.
49. The stent of claim 48 wherein the predetermined helical spacing is once approximately every 450 degrees.
50. A method of making a stent comprising, a) winding a first wire in a predetermined pattern about pins disposed on the surface of a mandrel conforming generally to the intended stent outer shape:
i) transversely about the zig-zag pins into a series of zig-zag members defined by a successive series of substantially straight sections connected by apex sections alternately pointing in opposite axial directions, ii) circumferentially about the mandrel to form at least two circumferential hoops of zig-zag members disposed axially in succession along the length of said stent, b) winding a second wire having end portions between a pair of weld segment pins disposed between proximate sections of said adjacent hoops, respectively, c) welding the end portions of the second wire to proximate sections of said adjacent hoops to define a weld segment connecting said adjacent hoops.
51. The method of claim 50 wherein step c) includes directing a laser through a hole formed in the mandrel to weld the end portions of the second wire to the first wire, to shorten the end portions of the second wire, or a combination thereof.
52. A method of making a stent comprising, first, winding a filamentary material in a predetermined pattern around pins on a mandrel, said preselected pattern including segments wherein a first portion of said filament lies adjacent a second portion of said filament at an area on said mandrel surface which includes an access hole to the interior of said mandrel, and, second, using said access hole to connect said first and second portions of said filament.
53. The method of claim 52 wherein said filamentary material is a wire and said access hole is used to connect said first and second filamentary portions by a weldment thereof.
54. A method of making a stent segment comprising (1) winding N
filaments, where N is a whole number of at least 2, around N respective sets of pegs on a tubular mandrel, each of said N sets including at least three axially offset pegs defining a zig-zag configuration at a preselected axial location on said mandrel, each of said sets including at least one common peg adjacent a circumferentially adjoining set, each of said filaments following a common path for a full distance between the common pegs of said circumferentially adjoining sets, and (2) forming a connection between said filaments along said common paths, and thus forming a circumferential stent segment comprising a succession of zig-zags.
55. A method of making a stent segment comprising (1) winding N
filaments, where N is a whole number of at least 1, around N respective sets of pegs on a tubular mandrel, each of said N sets including at least three axially offset pegs defining a zig-zag configuration at a preselected axial location on said mandrel, circumferentially successive pairs of pegs being axially offset in a preselected direction from the pair which precedes it so as to form a helical zig-zag pattern along the length of the stent, wherein in at least one circumferential location in each traversal of a preselected angular portion of the mandrel by said pegs there is a common peg approximately 360°
offset from an adjacent peg of the same or a circumferentially adjoining set, adjacent which each filament contacts a portion of the same filament or an adjacent filament, and (2) forming a connection between said contacting adjacent filament portions, and thus forming a circumferential stent segment comprised of a helical succession of zig-zags.
56. A method of making a stent comprising making a succession of stent segment, as recited in either of claims 54 or 55.
CA2322973A 1998-03-05 1999-03-04 Intraluminal stent Expired - Fee Related CA2322973C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US7694698P 1998-03-05 1998-03-05
US60/076,946 1998-03-05
PCT/US1999/004694 WO1999044535A1 (en) 1998-03-05 1999-03-04 Intraluminal stent

Publications (2)

Publication Number Publication Date
CA2322973A1 true CA2322973A1 (en) 1999-09-10
CA2322973C CA2322973C (en) 2011-04-12

Family

ID=22135152

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2322973A Expired - Fee Related CA2322973C (en) 1998-03-05 1999-03-04 Intraluminal stent

Country Status (7)

Country Link
US (4) US6730117B1 (en)
EP (3) EP1065993B1 (en)
JP (2) JP4801838B2 (en)
AU (1) AU2891899A (en)
CA (1) CA2322973C (en)
DE (1) DE69942666D1 (en)
WO (1) WO1999044535A1 (en)

Families Citing this family (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7204848B1 (en) 1995-03-01 2007-04-17 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US6896696B2 (en) 1998-11-20 2005-05-24 Scimed Life Systems, Inc. Flexible and expandable stent
EP0884029B1 (en) * 1997-06-13 2004-12-22 Gary J. Becker Expandable intraluminal endoprosthesis
EP1065993B1 (en) * 1998-03-05 2010-08-11 Boston Scientific Limited Intraluminal stent
US6261319B1 (en) 1998-07-08 2001-07-17 Scimed Life Systems, Inc. Stent
US20040267349A1 (en) 2003-06-27 2004-12-30 Kobi Richter Amorphous metal alloy medical devices
US8382821B2 (en) 1998-12-03 2013-02-26 Medinol Ltd. Helical hybrid stent
DK1156757T3 (en) * 1999-02-01 2006-04-18 Univ Texas Woven intravascular devices and methods of making them
US7018401B1 (en) 1999-02-01 2006-03-28 Board Of Regents, The University Of Texas System Woven intravascular devices and methods for making the same and apparatus for delivery of the same
US6544279B1 (en) * 2000-08-09 2003-04-08 Incept, Llc Vascular device for emboli, thrombus and foreign body removal and methods of use
US6302907B1 (en) * 1999-10-05 2001-10-16 Scimed Life Systems, Inc. Flexible endoluminal stent and process of manufacture
US6585758B1 (en) 1999-11-16 2003-07-01 Scimed Life Systems, Inc. Multi-section filamentary endoluminal stent
US6610087B1 (en) 1999-11-16 2003-08-26 Scimed Life Systems, Inc. Endoluminal stent having a matched stiffness region and/or a stiffness gradient and methods for providing stent kink resistance
US6699278B2 (en) * 2000-09-22 2004-03-02 Cordis Corporation Stent with optimal strength and radiopacity characteristics
DK2311411T3 (en) 2000-12-11 2015-11-02 Orbusneich Medical Inc Stent having helical elements
US8038708B2 (en) 2001-02-05 2011-10-18 Cook Medical Technologies Llc Implantable device with remodelable material and covering material
DE10118944B4 (en) * 2001-04-18 2013-01-31 Merit Medical Systems, Inc. Removable, essentially cylindrical implants
US6746466B2 (en) 2001-05-22 2004-06-08 Scimed Life Systems, Inc. Method and apparatus for managing multiple guidewires
US7727221B2 (en) 2001-06-27 2010-06-01 Cardiac Pacemakers Inc. Method and device for electrochemical formation of therapeutic species in vivo
US7163553B2 (en) * 2001-12-28 2007-01-16 Advanced Cardiovascular Systems, Inc. Intravascular stent and method of use
US20030187495A1 (en) 2002-04-01 2003-10-02 Cully Edward H. Endoluminal devices, embolic filters, methods of manufacture and use
US6865810B2 (en) * 2002-06-27 2005-03-15 Scimed Life Systems, Inc. Methods of making medical devices
DE10243136A1 (en) * 2002-09-17 2004-05-19 Campus Medizin & Technik Gmbh Stent for implantation in or around a hollow organ
US20040093012A1 (en) 2002-10-17 2004-05-13 Cully Edward H. Embolic filter frame having looped support strut elements
US20040093056A1 (en) 2002-10-26 2004-05-13 Johnson Lianw M. Medical appliance delivery apparatus and method of use
US7875068B2 (en) 2002-11-05 2011-01-25 Merit Medical Systems, Inc. Removable biliary stent
US7959671B2 (en) 2002-11-05 2011-06-14 Merit Medical Systems, Inc. Differential covering and coating methods
US7637942B2 (en) 2002-11-05 2009-12-29 Merit Medical Systems, Inc. Coated stent with geometry determinated functionality and method of making the same
US6916409B1 (en) * 2002-12-31 2005-07-12 Advanced Cardiovascular Systems, Inc. Apparatus and process for electrolytic removal of material from a medical device
US7637934B2 (en) 2003-03-31 2009-12-29 Merit Medical Systems, Inc. Medical appliance optical delivery and deployment apparatus and method
US7717952B2 (en) * 2003-04-24 2010-05-18 Cook Incorporated Artificial prostheses with preferred geometries
US7625399B2 (en) * 2003-04-24 2009-12-01 Cook Incorporated Intralumenally-implantable frames
US7658759B2 (en) * 2003-04-24 2010-02-09 Cook Incorporated Intralumenally implantable frames
DE602004023708D1 (en) 2003-04-24 2009-12-03 Cook Inc ARTIFICIAL FLAP FLAP WITH IMPROVED FLOW BEHAVIOR
US7604660B2 (en) 2003-05-01 2009-10-20 Merit Medical Systems, Inc. Bifurcated medical appliance delivery apparatus and method
US9039755B2 (en) * 2003-06-27 2015-05-26 Medinol Ltd. Helical hybrid stent
US9155639B2 (en) 2009-04-22 2015-10-13 Medinol Ltd. Helical hybrid stent
US7344559B2 (en) * 2003-08-25 2008-03-18 Biophan Technologies, Inc. Electromagnetic radiation transparent device and method of making thereof
EP1789107B1 (en) 2004-08-30 2009-05-27 Interstitial Therapeutics Medical stent provided with inhibitors of atp synthesis
WO2006036912A2 (en) * 2004-09-27 2006-04-06 Echobio Llc Systems, apparatus and methods related to helical, non-helical or removable stents with rectilinear ends
US7887579B2 (en) * 2004-09-29 2011-02-15 Merit Medical Systems, Inc. Active stent
CA2587960C (en) * 2004-11-12 2013-05-21 Kabushikikaisha Igaki Iryo Sekkei Stent for vessel
US7803180B2 (en) 2005-04-04 2010-09-28 Flexible Stenting Solutions, Inc. Flexible stent
US20060237407A1 (en) * 2005-04-25 2006-10-26 Nguyen Anh V Medical devices having laser brazed joints
US7731654B2 (en) 2005-05-13 2010-06-08 Merit Medical Systems, Inc. Delivery device with viewing window and associated method
US7637939B2 (en) * 2005-06-30 2009-12-29 Boston Scientific Scimed, Inc. Hybrid stent
DE102006017873A1 (en) * 2005-07-14 2007-01-25 Qualimed Innovative Medizinprodukte Gmbh Temporary stent
KR100633020B1 (en) * 2005-07-15 2006-10-11 주식회사 스텐다드싸이텍 Stent and method for manufacturing the same
DE102005037863B4 (en) 2005-08-10 2018-10-18 Carlo Civelli Tubular supporting prosthesis with laterally overlapping curvature arches
US8956400B2 (en) * 2005-10-14 2015-02-17 Flexible Stenting Solutions, Inc. Helical stent
CA2857815C (en) * 2005-12-30 2016-10-11 C.R. Bard Inc. Stent with bio-resorbable connector and methods
US8840660B2 (en) 2006-01-05 2014-09-23 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
KR100664531B1 (en) * 2006-01-26 2007-01-04 (주) 태웅메디칼 Flexible self-expandable stent and methods for making the stent for lumen
US8089029B2 (en) 2006-02-01 2012-01-03 Boston Scientific Scimed, Inc. Bioabsorbable metal medical device and method of manufacture
US9615832B2 (en) * 2006-04-07 2017-04-11 Penumbra, Inc. Aneurysm occlusion system and method
US8048150B2 (en) 2006-04-12 2011-11-01 Boston Scientific Scimed, Inc. Endoprosthesis having a fiber meshwork disposed thereon
US20110230958A1 (en) * 2006-07-25 2011-09-22 Mani, Inc. Stent
US8052743B2 (en) 2006-08-02 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis with three-dimensional disintegration control
JP2010503491A (en) 2006-09-15 2010-02-04 ボストン サイエンティフィック リミテッド Bioerodible endoprosthesis with biologically stable inorganic layers
EP2081616B1 (en) 2006-09-15 2017-11-01 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
EP2068782B1 (en) 2006-09-15 2011-07-27 Boston Scientific Limited Bioerodible endoprostheses
US20080071348A1 (en) * 2006-09-15 2008-03-20 Boston Scientific Scimed, Inc. Medical Devices
EP2066363A2 (en) * 2006-09-15 2009-06-10 Boston Scientific Limited Endoprosthesis containing magnetic induction particles
CA2663220A1 (en) 2006-09-15 2008-03-20 Boston Scientific Limited Medical devices and methods of making the same
AU2007309087B2 (en) 2006-10-22 2012-07-05 Idev Technologies, Inc. Devices and methods for stent advancement
CA2934202A1 (en) 2006-10-22 2008-05-02 Idev Technologies, Inc. Methods for securing strand ends and the resulting devices
US9622888B2 (en) 2006-11-16 2017-04-18 W. L. Gore & Associates, Inc. Stent having flexibly connected adjacent stent elements
US8768486B2 (en) 2006-12-11 2014-07-01 Medtronic, Inc. Medical leads with frequency independent magnetic resonance imaging protection
DE602007010669D1 (en) 2006-12-28 2010-12-30 Boston Scient Ltd HREN FOR THIS
US7758635B2 (en) * 2007-02-13 2010-07-20 Boston Scientific Scimed, Inc. Medical device including cylindrical micelles
US20080319535A1 (en) * 2007-06-25 2008-12-25 Medtronic Vascular, Inc. Vascular Stent and Method of Making Vascular Stent
US7988723B2 (en) 2007-08-02 2011-08-02 Flexible Stenting Solutions, Inc. Flexible stent
US8052745B2 (en) 2007-09-13 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis
US8926688B2 (en) 2008-01-11 2015-01-06 W. L. Gore & Assoc. Inc. Stent having adjacent elements connected by flexible webs
US8042251B2 (en) * 2008-05-21 2011-10-25 Boston Scientific Scimed, Inc. Systems and methods for heating and cooling during stent crimping
US8236046B2 (en) * 2008-06-10 2012-08-07 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
ES2528655T3 (en) * 2008-06-27 2015-02-11 Kabusiki Kaisha Kyoto Iryo Sekkei Vascular cannula
US8109985B2 (en) * 2008-07-23 2012-02-07 Boston Scientific Scimed, Inc. Occlusion crossing device and method
US7985252B2 (en) 2008-07-30 2011-07-26 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US8382824B2 (en) 2008-10-03 2013-02-26 Boston Scientific Scimed, Inc. Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides
US9149376B2 (en) 2008-10-06 2015-10-06 Cordis Corporation Reconstrainable stent delivery system
US9168161B2 (en) 2009-02-02 2015-10-27 Cordis Corporation Flexible stent design
WO2010101901A2 (en) 2009-03-02 2010-09-10 Boston Scientific Scimed, Inc. Self-buffering medical implants
GB2472603B (en) * 2009-08-11 2011-12-14 Cook Medical Technologies Llc Implantable medical device
US8226705B2 (en) * 2009-09-18 2012-07-24 Medtronic Vascular, Inc. Methods for forming an orthogonal end on a helical stent
WO2011064782A2 (en) 2009-11-30 2011-06-03 Endospan Ltd. Multi-component stent-graft system for implantation in a blood vessel with multiple branches
DE102010008362A1 (en) * 2010-02-17 2011-08-18 Transcatheter Technologies GmbH, 93053 Medical implant which is expandable from a non-expanded state
US20110218615A1 (en) * 2010-03-02 2011-09-08 Medtronic Vascular, Inc. Stent With Multi-Crown Constraint and Method for Ending Helical Wound Stents
US8206434B2 (en) 2010-03-02 2012-06-26 Medtronic Vascular, Inc. Stent with sinusoidal wave form and orthogonal end and method for making same
US8668732B2 (en) 2010-03-23 2014-03-11 Boston Scientific Scimed, Inc. Surface treated bioerodible metal endoprostheses
US9023095B2 (en) 2010-05-27 2015-05-05 Idev Technologies, Inc. Stent delivery system with pusher assembly
US8328072B2 (en) 2010-07-19 2012-12-11 Medtronic Vascular, Inc. Method for forming a wave form used to make wound stents
JP2014508559A (en) 2010-12-30 2014-04-10 ボストン サイエンティフィック サイムド,インコーポレイテッド Multi-stage open stent design
CA2826022A1 (en) 2011-02-03 2012-08-09 Endospan Ltd. Implantable medical devices constructed of shape memory material
GB2488165B (en) * 2011-02-18 2013-08-07 Cook Medical Technologies Llc Prosthesis and method of manufacturing the same
WO2012117395A1 (en) 2011-03-02 2012-09-07 Endospan Ltd. Reduced-strain extra- vascular ring for treating aortic aneurysm
WO2012119037A1 (en) 2011-03-03 2012-09-07 Boston Scientific Scimed, Inc. Stent with reduced profile
EP2680797B1 (en) 2011-03-03 2016-10-26 Boston Scientific Scimed, Inc. Low strain high strength stent
EP2685934A4 (en) * 2011-03-17 2015-01-07 Pq Bypass Inc Differential dilation stent and method of use
US8840659B2 (en) 2011-04-28 2014-09-23 Cook Medical Technologies Llc Stent and stent-graft designs
US9254209B2 (en) 2011-07-07 2016-02-09 Endospan Ltd. Stent fixation with reduced plastic deformation
US9296034B2 (en) 2011-07-26 2016-03-29 Medtronic Vascular, Inc. Apparatus and method for forming a wave form for a stent from a wire
US9839510B2 (en) * 2011-08-28 2017-12-12 Endospan Ltd. Stent-grafts with post-deployment variable radial displacement
WO2013120082A1 (en) 2012-02-10 2013-08-15 Kassab Ghassan S Methods and uses of biological tissues for various stent and other medical applications
US9636241B2 (en) * 2012-03-30 2017-05-02 Manli International Ltd Coil bioabsorbable stents
US9242290B2 (en) 2012-04-03 2016-01-26 Medtronic Vascular, Inc. Method and apparatus for creating formed elements used to make wound stents
US9238260B2 (en) 2012-04-18 2016-01-19 Medtronic Vascular, Inc. Method and apparatus for creating formed elements used to make wound stents
US9364351B2 (en) * 2012-04-23 2016-06-14 Medtronic Vascular, Inc. Method for forming a stent
ES2891099T3 (en) 2012-05-31 2022-01-26 Javelin Medical Ltd embolic protection devices
US9204887B2 (en) 2012-08-14 2015-12-08 W. L. Gore & Associates, Inc. Devices and systems for thrombus treatment
CN105007860B (en) 2013-01-08 2017-05-10 恩多斯潘有限公司 Minimization of stent-graft migration during implantation
EP2945577B1 (en) 2013-01-18 2021-08-11 Javelin Medical Ltd. Monofilament implants and systems for delivery thereof
EP2953580A2 (en) 2013-02-11 2015-12-16 Cook Medical Technologies LLC Expandable support frame and medical device
CN105208969B (en) 2013-03-11 2017-10-20 恩多斯潘有限公司 Multicompartment stent graft system for dissection of aorta
EP3010452B1 (en) 2013-06-20 2018-08-01 Biosensors International Group, Ltd. A vascular stent with a mixed configuration of connectors
CA2919384C (en) * 2013-08-09 2018-01-02 Boston Scientific Scimed, Inc. Stent designs and methods of manufacture
WO2015075708A1 (en) 2013-11-19 2015-05-28 Endospan Ltd. Stent system with radial-expansion locking
US9592110B1 (en) 2013-12-06 2017-03-14 Javelin Medical, Ltd. Systems and methods for implant delivery
KR101488972B1 (en) * 2014-09-12 2015-02-02 (주)시지바이오 A Stent, and A Manufacturing Method The Same
US10299948B2 (en) 2014-11-26 2019-05-28 W. L. Gore & Associates, Inc. Balloon expandable endoprosthesis
US10485684B2 (en) 2014-12-18 2019-11-26 Endospan Ltd. Endovascular stent-graft with fatigue-resistant lateral tube
US11083603B2 (en) * 2016-03-29 2021-08-10 CARDINAL HEALTH SWITZERLAND 515 GmbH Contracting stent with bioresorbable struts
US10568752B2 (en) 2016-05-25 2020-02-25 W. L. Gore & Associates, Inc. Controlled endoprosthesis balloon expansion
CN106725643A (en) * 2016-06-22 2017-05-31 苏州茵络医疗器械有限公司 For the membrane-repturing device of Endovascular operation
EP3528712B1 (en) 2016-10-21 2023-10-18 Javelin Medical Ltd. Devices for embolic protection
US11224910B2 (en) 2017-03-03 2022-01-18 Cook Medical Technologies Llc Method of forming a bend of a predetermined bend angle in a shape memory alloy wire and method of making a self-expanding stent
US11464998B2 (en) 2019-02-14 2022-10-11 Videra Surgical Inc. Fiducial marker for oncological and other procedures
US11517457B2 (en) 2019-07-03 2022-12-06 Abbott Cardiovascular Systems Inc. Intravascular stent
CN112972083B (en) * 2019-12-17 2022-11-11 北京迈迪顶峰医疗科技股份有限公司 Pulmonary artery stent for children
KR102438975B1 (en) * 2020-08-12 2022-09-01 주식회사 에스앤지바이오텍 Double structure stent and the manufacturing method thereof

Family Cites Families (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4512338A (en) 1983-01-25 1985-04-23 Balko Alexander B Process for restoring patency to body vessels
US5102417A (en) 1985-11-07 1992-04-07 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
WO1989003197A1 (en) 1987-10-08 1989-04-20 Terumo Kabushiki Kaisha Instrument and apparatus for securing inner diameter of lumen of tubular organ
US5133732A (en) 1987-10-19 1992-07-28 Medtronic, Inc. Intravascular stent
US4886062A (en) 1987-10-19 1989-12-12 Medtronic, Inc. Intravascular radially expandable stent and method of implant
US5019090A (en) 1988-09-01 1991-05-28 Corvita Corporation Radially expandable endoprosthesis and the like
CA1322628C (en) 1988-10-04 1993-10-05 Richard A. Schatz Expandable intraluminal graft
US4856516A (en) 1989-01-09 1989-08-15 Cordis Corporation Endovascular stent apparatus and method
US4994071A (en) 1989-05-22 1991-02-19 Cordis Corporation Bifurcating stent apparatus and method
US5292331A (en) 1989-08-24 1994-03-08 Applied Vascular Engineering, Inc. Endovascular support device
US5674278A (en) 1989-08-24 1997-10-07 Arterial Vascular Engineering, Inc. Endovascular support device
CA2026604A1 (en) 1989-10-02 1991-04-03 Rodney G. Wolff Articulated stent
US5035706A (en) 1989-10-17 1991-07-30 Cook Incorporated Percutaneous stent and method for retrieval thereof
DE9117152U1 (en) 1990-10-09 1996-07-11 Cook Inc Stent
US5217483A (en) 1990-11-28 1993-06-08 Numed, Inc. Intravascular radially expandable stent
US5135536A (en) 1991-02-05 1992-08-04 Cordis Corporation Endovascular stent and method
US5314472A (en) * 1991-10-01 1994-05-24 Cook Incorporated Vascular stent
US5443498A (en) 1991-10-01 1995-08-22 Cook Incorporated Vascular stent and method of making and implanting a vacsular stent
US5354309A (en) 1991-10-11 1994-10-11 Angiomed Ag Apparatus for widening a stenosis in a body cavity
CA2380683C (en) 1991-10-28 2006-08-08 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
US5507767A (en) 1992-01-15 1996-04-16 Cook Incorporated Spiral stent
US5626599A (en) 1992-01-22 1997-05-06 C. R. Bard Method for the percutaneous transluminal front-end loading delivery of a prosthetic occluder
US5405377A (en) 1992-02-21 1995-04-11 Endotech Ltd. Intraluminal stent
US5282823A (en) * 1992-03-19 1994-02-01 Medtronic, Inc. Intravascular radially expandable stent
US5370683A (en) 1992-03-25 1994-12-06 Cook Incorporated Vascular stent
US6336938B1 (en) * 1992-08-06 2002-01-08 William Cook Europe A/S Implantable self expanding prosthetic device
DE69308568T2 (en) * 1992-08-06 1997-10-02 Cook William Europ PROSTHESIS FOR SUPPORTING A BLOOD VESSEL OR A LUMEN OF A CAVE ORGAN
BE1006440A3 (en) * 1992-12-21 1994-08-30 Dereume Jean Pierre Georges Em Luminal endoprosthesis AND METHOD OF PREPARATION.
DE4303181A1 (en) * 1993-02-04 1994-08-11 Angiomed Ag Implantable catheter
GB2281865B (en) * 1993-09-16 1997-07-30 Cordis Corp Endoprosthesis having multiple laser welded junctions,method and procedure
US5913897A (en) * 1993-09-16 1999-06-22 Cordis Corporation Endoprosthesis having multiple bridging junctions and procedure
JP2703510B2 (en) 1993-12-28 1998-01-26 アドヴァンスド カーディオヴァスキュラー システムズ インコーポレーテッド Expandable stent and method of manufacturing the same
US5609627A (en) 1994-02-09 1997-03-11 Boston Scientific Technology, Inc. Method for delivering a bifurcated endoluminal prosthesis
US5549663A (en) * 1994-03-09 1996-08-27 Cordis Corporation Endoprosthesis having graft member and exposed welded end junctions, method and procedure
US5449373A (en) 1994-03-17 1995-09-12 Medinol Ltd. Articulated stent
US6165210A (en) 1994-04-01 2000-12-26 Gore Enterprise Holdings, Inc. Self-expandable helical intravascular stent and stent-graft
CA2189006A1 (en) * 1994-04-29 1995-11-09 David L. Sandock Medical prosthetic stent and method of manufacture
DE69528216T2 (en) * 1994-06-17 2003-04-17 Terumo Corp Process for the production of a permanent stent
US5575816A (en) 1994-08-12 1996-11-19 Meadox Medicals, Inc. High strength and high density intraluminal wire stent
US5891108A (en) * 1994-09-12 1999-04-06 Cordis Corporation Drug delivery stent
NL9500283A (en) * 1994-10-21 1996-06-03 Cordis Europ Catheter with guide wire channel.
DE69637527D1 (en) 1995-03-01 2008-06-26 Boston Scient Scimed Inc Longitudinally flexible and expandable stent
US6818014B2 (en) 1995-03-01 2004-11-16 Scimed Life Systems, Inc. Longitudinally flexible expandable stent
EP0734698B9 (en) * 1995-04-01 2006-07-05 Variomed AG Stent for transluminal implantation into hollow organs
CN1150777A (en) * 1995-04-12 1997-05-28 伊斯曼柯达公司 A liquid ink printing apparatus and system
US5667523A (en) * 1995-04-28 1997-09-16 Impra, Inc. Dual supported intraluminal graft
CA2223479A1 (en) * 1995-06-08 1996-12-27 Bard Galway Limited Endovascular stent
FR2735016B1 (en) * 1995-06-09 1997-12-12 Sgro Jean Claude ENDO-LUMINAL IMPLANT
FR2737404B1 (en) * 1995-08-03 1997-09-19 Braun Celsa Sa PROSTHESIS IMPLANTABLE IN A HUMAN OR ANIMAL CONDUCT, SUCH AS A WALL Expander, OR ANEURISM PROSTHESIS
DK171865B1 (en) * 1995-09-11 1997-07-21 Cook William Europ Expandable endovascular stent
WO1997014375A1 (en) 1995-10-20 1997-04-24 Bandula Wijay Vascular stent
US5843158A (en) * 1996-01-05 1998-12-01 Medtronic, Inc. Limited expansion endoluminal prostheses and methods for their use
US5895406A (en) * 1996-01-26 1999-04-20 Cordis Corporation Axially flexible stent
DE69729137T2 (en) * 1996-03-10 2005-05-12 Terumo K.K. Stent for implantation
CA2199890C (en) 1996-03-26 2002-02-05 Leonard Pinchuk Stents and stent-grafts having enhanced hoop strength and methods of making the same
EP0801934B1 (en) * 1996-04-16 2000-06-14 Medtronic, Inc. Welded sinusoidal wave stent
FR2750853B1 (en) 1996-07-10 1998-12-18 Braun Celsa Sa MEDICAL PROSTHESIS, IN PARTICULAR FOR ANEVRISMS, WITH PERFECTIONED CONNECTION BETWEEN ITS SHEATH AND ITS STRUCTURE
FR2750852B3 (en) * 1996-07-10 1998-08-07 Braun Celsa Sa MEDICAL PROSTHESIS IN MEANDRES COMPRISING MEANS OF RETAINING ITS APEX
US6174326B1 (en) * 1996-09-25 2001-01-16 Terumo Kabushiki Kaisha Radiopaque, antithrombogenic stent and method for its production
JP2000501328A (en) * 1996-10-01 2000-02-08 ヌームド インコーポレーテッド Expandable stent
US6530951B1 (en) * 1996-10-24 2003-03-11 Cook Incorporated Silver implantable medical device
WO1998020810A1 (en) 1996-11-12 1998-05-22 Medtronic, Inc. Flexible, radially expansible luminal prostheses
US6551350B1 (en) 1996-12-23 2003-04-22 Gore Enterprise Holdings, Inc. Kink resistant bifurcated prosthesis
US5925061A (en) 1997-01-13 1999-07-20 Gore Enterprise Holdings, Inc. Low profile vascular stent
US5911732A (en) * 1997-03-10 1999-06-15 Johnson & Johnson Interventional Systems, Co. Articulated expandable intraluminal stent
US5810872A (en) * 1997-03-14 1998-09-22 Kanesaka; Nozomu Flexible stent
US5855597A (en) * 1997-05-07 1999-01-05 Iowa-India Investments Co. Limited Stent valve and stent graft for percutaneous surgery
EP0890346A1 (en) * 1997-06-13 1999-01-13 Gary J. Becker Expandable intraluminal endoprosthesis
US5948016A (en) * 1997-09-25 1999-09-07 Jang; G. David Intravascular stent with non-parallel slots
WO1999038458A1 (en) * 1998-02-03 1999-08-05 Cardiovascular Interventional Systems, Inc. Tubular stent consists of non-parallel expansion struts and contralaterally attached diagonal connectors
EP1065993B1 (en) * 1998-03-05 2010-08-11 Boston Scientific Limited Intraluminal stent
US6558415B2 (en) * 1998-03-27 2003-05-06 Intratherapeutics, Inc. Stent
US6132460A (en) * 1998-03-27 2000-10-17 Intratherapeutics, Inc. Stent
US6042597A (en) * 1998-10-23 2000-03-28 Scimed Life Systems, Inc. Helical stent design
US6368346B1 (en) * 1999-06-03 2002-04-09 American Medical Systems, Inc. Bioresorbable stent
US6364904B1 (en) * 1999-07-02 2002-04-02 Scimed Life Systems, Inc. Helically formed stent/graft assembly
FR2799363B1 (en) 1999-10-11 2001-11-30 Braun Celsa Sa MEDICAL IMPLANT IN MEANDRES IN ZIGZAG
US6331189B1 (en) * 1999-10-18 2001-12-18 Medtronic, Inc. Flexible medical stent
US6423091B1 (en) * 2000-05-16 2002-07-23 Cordis Corporation Helical stent having flat ends
EP1284683B1 (en) 2000-05-22 2011-08-10 OrbusNeich Medical, Inc. Self-expanding stent
US7279003B2 (en) * 2003-04-24 2007-10-09 Medtronic Vascular, Inc. Stent graft tapered spring
WO2006005026A2 (en) 2004-06-30 2006-01-12 Cordis Corporation Stent having asymetrical members of unequal length
US7404823B2 (en) * 2005-10-31 2008-07-29 Boston Scientific Scimed, Inc. Stent configurations

Also Published As

Publication number Publication date
CA2322973C (en) 2011-04-12
EP2198813A2 (en) 2010-06-23
EP2277477B1 (en) 2012-05-09
WO1999044535A1 (en) 1999-09-10
EP2198813A3 (en) 2010-10-13
EP1065993A4 (en) 2006-04-19
EP2198813B1 (en) 2012-08-29
DE69942666D1 (en) 2010-09-23
EP1065993B1 (en) 2010-08-11
EP2277477A2 (en) 2011-01-26
US20110015721A1 (en) 2011-01-20
US20130178948A1 (en) 2013-07-11
AU2891899A (en) 1999-09-20
US8118858B2 (en) 2012-02-21
JP4801838B2 (en) 2011-10-26
WO1999044535A8 (en) 2001-11-01
US8764815B2 (en) 2014-07-01
US6730117B1 (en) 2004-05-04
EP1065993A1 (en) 2001-01-10
JP2002505146A (en) 2002-02-19
JP2010155120A (en) 2010-07-15
US20040143318A1 (en) 2004-07-22
EP2277477A3 (en) 2011-03-02

Similar Documents

Publication Publication Date Title
CA2322973A1 (en) Intraluminal stent
US6340366B2 (en) Stent with nested or overlapping rings
EP2311412B2 (en) Stent having helical elements
US6821292B2 (en) Crimpable intraluminal endoprosthesis having helical elements
US6416539B1 (en) Controlled length intraluminal implant
US8038707B2 (en) Helical stent having improved flexibility and expandability
US6471720B1 (en) Stent configurations
CA2155527A1 (en) Stent
CA2387040A1 (en) Multi-section filamentary endoluminal stent
JP4410468B2 (en) Crimpable lumen endoprosthesis with helical elements
WO2003007842A2 (en) Stents
US20230190498A1 (en) Stent with shaped wires
ITBS970074A1 (en) RADIALLY EXPANDABLE STENT STRUCTURE
KR19980067399A (en) Endoscopic expansion medical device and manufacturing method thereof

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20140304