CA2329025C - Improved polyurea coatings from dimethyl-substituted polyaspartic ester mixtures - Google Patents

Improved polyurea coatings from dimethyl-substituted polyaspartic ester mixtures Download PDF

Info

Publication number
CA2329025C
CA2329025C CA002329025A CA2329025A CA2329025C CA 2329025 C CA2329025 C CA 2329025C CA 002329025 A CA002329025 A CA 002329025A CA 2329025 A CA2329025 A CA 2329025A CA 2329025 C CA2329025 C CA 2329025C
Authority
CA
Canada
Prior art keywords
polyaspartic ester
polypropylene oxide
mixture
dimethyl
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002329025A
Other languages
French (fr)
Other versions
CA2329025A1 (en
Inventor
Richard R. Roesler
Edward P. Squiller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Corp
Original Assignee
Bayer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Corp filed Critical Bayer Corp
Publication of CA2329025A1 publication Critical patent/CA2329025A1/en
Application granted granted Critical
Publication of CA2329025C publication Critical patent/CA2329025C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/02Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3253Polyamines being in latent form
    • C08G18/3259Reaction products of polyamines with inorganic or organic acids or derivatives thereof other than metallic salts
    • C08G18/3262Reaction products of polyamines with inorganic or organic acids or derivatives thereof other than metallic salts with carboxylic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3819Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen
    • C08G18/3821Carboxylic acids; Esters thereof with monohydroxyl compounds

Abstract

A method for making a polyurea coating by: (a) coating a substrate with a coating composition containing effective coating-forming amounts of (i) a polyisocyanate component, and (ii) an polyaspartic ester mixture. The invention also relates to the coatings made by the method, the polyaspartic ester mixtures used to make the coatings, and methods to make the mixtures.

Description

Mo-5455 IMPROVED POLYUREA COATINGS FROM
DIMETHYL-SUBSTITUTED POLYASPARTIC ESTER MIXTURES

FIELD OF THE INVENTION
The invention relates to the field of polyaspartic ester mixtures, and more particularly to the use of polyaspartic ester mixtures in polyurea coating applications.
BACKGROUND OF THE INVENTION
Two-component polyurea coating compositions containing a polyisocyanate in combination with a polyaspartic ester component are known. They are suitable for the formation of coatings and can be adjusted to produce coatings that are hard, elastic, abrasion resistant, solvent resistant, and especially weather resistant. Despite their wide-spread use, however, known coating compositions contain disadvantages which limit their use in important applications.

Coating compositions with an appreciable amount of polyaspartic esters with dimethyl groups would be desired because dimethyl groups would add desired properties to coatings made from such compositions.
U.S. Pat. No. 5,126,170 discloses a process for making polyurethane coatings in which an isocyanate-reactive component b) includes a polyaspartic ester mixture made from an optionally-substituted maleic or fumaric acid ester and a primary amine. Although the patent teaches that maleic acid or fumaric acid ester can be substituted with dimethyl, diethyl and di-n-butyl esters, it has been observed that; during the Michael Addition Reaction of dimethyl maleate and primary amines, dimethyl maleate isomerizes to dimethyl fumarate in the presence of amines, according to the following geometric isomerization reaction:
o O

O-R R~NHZ )-"O-R
O-R R-O

O O

The dimethyl fumarate forms long needle-like crystals which no longer participate in the Michael Addition Reaction and prevent the react-ion from completing. Although the resulting reaction produces yields of only about 30 to 40%, the entire composition is useless for commercial purposes. This is because the composition contains a mixture of compounds that preclude the formation of a suitable coating. The crude mixture generally contains (i) dimethyl fumarate crystals, (ii) starting diamine material, (iii) mono-primary-amine-monoaspartate and (iv) diaspartate. The presence of crystals in such a mixture prevents the formation of a coating. Filtering the crystals from the mixture has not been an option because filtration removes an appreciable amount of starting material, thereby adding substantial costs. Also, a filtrated mixture contains unreacted primary amines whose presence undesirably speed the crosslinking reaction.

U.S. Pat. No. 5,126,170 teaches preparing its polyaspartic esters in a solvent. The use of a 50% methanol reaction medium, however, is not practical in a production situation for the following reasons. First, the use of a 50% solution means that yields of product are half of what could be achieved if the reaction was run without solvent.
Second, the methanol is highly flammable and its presence in manufacturing would be a safety hazard. Finally, in order for the polyaspartic ester to be used with polyisocyanates, the methanol would have to be completely removed. Even small, residual amounts of methanol would react with polyisocyanates to form urethanes, which would decrease the crosslink density of the films and so cause a decrease in properties.

For the foregoing reasons, it has been desired to develop a method for making a polyurea coating ingredient that contains an appreciable amount of dimethyl-substituted polyaspartic esters.

SUMMARY OF THE INVENTION

The invention relates to a method for making an asymmetric polyaspartic ester mixture. The method comprises reacting (a) an ester mixture containing a dimethyl-substituted first ester component and a second ester component substituted with an alkyl group having at least two carbon atoms with (b) a propylene oxide amine component, such that the equivalent number ratio of the first ester component and the DOCSMTL: 3040926\1 second ester component is sufficient to prevent the formation of a reaction-stopping crude mixture containing dimethyl fumarate crystals.

In particular the equivalent number ratio of the first ester component to the second ester component is from 7:3 to 1:9. Preferably the reaction is carried out in the absence of an organic solvent or in the presence of less than 5% of an organic solvent, based on the total weight of the solution. Specifically the ester mixture comprises i) a member selected from the group consisting of dimethyl maleate and dimethyl fumarate and ii) a member selected from the group consisting of dialkyl maleates and dialkyl fumarates wherein the alkyl groups have at least two carbon atoms; and the propylene oxide amine component is a polypropylene oxide diamine, triamine or tetraamine.

In a specific embodiment step a) comprises a step of forming the ester mixture.

The invention also relates to an asymmetric polyaspartic ester mixture comprising the reaction product of (a) an ester mixture containing a dimethyl-substituted first ester component and a second ester component substituted with an alkyl group having at least two carbon atoms with (b) a propylene oxide amine component, such that the equivalent number ratio of the first ester component to the second ester component is from less than 7:3 to more than 1:9.

The invention further relates to polyurea coating composition containing a polyisocyanate component, the ester component used to make the polyaspartic ester mixture, and the asymmetric polyaspartic ester mixture, a method for making a coating with the polyaspartic ester mixture, and a coating made with the asymmetric polyaspartic ester mixture.

These and other features, aspects, and advantages of the present invention will become better understood with reference to the following description.
DOCSMTL: 3040926\1 -3a DESCRIPTION OF THE INVENTION

The invention is based on the surprising discovery that the crystallization that has been observed during the reaction of dimethyl-substituted maleic acid or dimethyl-substituted fumaric acid and a propylene oxide amine can be substantially reduced or eliminated altogether by reacting the propylene oxide amine with a mixture containing dimethyl maleate and a small amount of at least one dialkyl maleate having two or more carbon atoms, e.g., diethyl maleate, dipropyl maleate. By practicing the invention, polyaspartic esters based on dimethyl maleate can now be made simply and directly, without crystallization and without the need for solvents.
The asymmetric polyaspartic ester mixtures produced can then be used as isocyanate-reactive components in coating compositions for making polyurea coatings having a novel structure and improved properties.

Maleic acid esters and fumaric acid esters include suitable dialkyl maleates or dialkyl fumarates. Suitable dialkyl maleates include dimethyl maleate, diethyl maleate, dipropyl maleate, dibutyl maleate, methyl propyl maleate, ethyl propyl maleate, and the like. Suitable dialkyl fumurates include dimethyl fumurate, diethyl fumurate, dipropyl fumurate, dibutyl fumurate, methyl propyl fumurate, ethyl propyl fumurate, and the like.

The propylene oxide amine component includes any propylene oxide amine that can accomplish the objects of the invention. Suitable polypropylene oxide amines generally include difunctional and multi-functional amines with polypropylene oxide groups. These amines are well known and can be prepared by methods such as those described in German Offenlegungsschrift No.1,193,671, U.S. Pat. No. 3,236,895, French. Pat. No.1,466,708. Suitable examples of such difunctional amines include polypropylene oxide diamine which can be obtained from Huntsman Corporation under the trade-mark Jeffamine D-2000. Examples of suitable trifunctional polypropylene oxide amines include polyoxypropylene triamine, (Jeffamine*TM
DOCSMTL: 3040926\1 Mo-5455 - 4 -T-403), Jeffamine* T-3000 and Jeffamine* T-5000, also available from Huntsman. It is believed that multifunctional propylene oxide amines, e.g., tetrafunctional polypropylene oxide amines, can also be used.
The equivalent number ratio of (i) the dimethyl maleates (or the dimethyl fumurates) to (ii) the dialkyl maleates (dialkyl fumurates) that have at least 2 carbon atoms is sufficient to prevent the formation of a reaction-stopping crude mixture containing dimethyl fumarate crystals. I
Generally, the equivalent number ratio is from less than about 7:3, preferably from about 5:5 to more than 0:10, more preferably from about 4.5:5.5 to 1:9, and even more preferably from about 4:6 to about 2:8.
Stated in a number percentage basis, the amount of the dimethyl-substituted maleic acid ester or fumaric acid ester is present from less than about 70% to more than 0%, preferably less than 50% to more than 0%, preferably from about 45% to about 10%, and even more preferably from about 40 to about 20%, based on the total number of esters. It has been discovered that these following ranges are critical to accomplish the objects of the invention. The equivalent number ratio of the propylene oxide amine component to the ester component is generally about 1:1.
As such, the ratio of the first ester component and the second ester component must be greater than 0:10.
The polyisocyanate component used to react with the polyaspartic ester mixtures includes any polyisocyanate, which, when used in accor-dance with the invention, meets the object of the invention. Suitable polyisocyanates for use as polyisocyanate component in accordance with the present invention include the known polyisocyanates of polyurethane chemistry. Examples of suitable low molecular weight polyisocyanates having a molecular weight of 168 to 300 include 1,4-diisocyanatobutane, 1,6-hexamethylene diisocyanate, 2,2,4- and/or 2,4,4-trimethyl-1,6-hexamethylene diisocyanate, dodecamethylene diisocyanate, 1,4-diisocyanatocyclohexane, 1 -isocyanato-3,3,5-trimethyl-5-isocyana-tomethylcyclohexane (IPDI), 2,4'- and/or 4,4'-diisocyanato-dicyclohexyl methane, 2,4- and/or 4,4'-diisocyanatodiphenyl methane and mixtures of these isomers with their higher homologues which are obtained in a known manner by the phosgenation of aniline/formaldehyde condenses. 2,4-and/or 2,6-diisocyanatotoluene and any mixtures of these *trade-mark +Mo-5455Ca -5-compounds. Preferred cyclic isocyanates include diphenylmethane 4,4'-diisocyanate (MDI), diphenylmethane 2,4'-diisocyanate, 2,4- and/or 2,6-diisocyanatotoluene. Preferred aliphatic isocyanates include hexamethylene diisocyanate, isophorone diisocyanate, 2,4'- and/or 4,4'-diisocyanato-dicyclohexyl methane.

Additional suitable polyisocyanate components include derivatives of the above-mentioned monomeric polyisocyanates, as is conventional in coatings technology. These derivatives include polyisocyanates containing biuret groups as described, for example, in U.S. Pat. Nos. 3,124,605 and 3,201,372 and DE-OS 1,101,394; polyisocyanates containing isocyanurate groups as described in U.S. Pat. No. 3,001,973, DE-PS 1,022,789, 1,222,067 and 1,027,394 and DE-OS
1,929,034 and 2,004,048; polyisocyanates containing urethane groups as described, for instance, in DE-OS 953,012, BE-PS 752,261 and U.S. Pat. Nos.
3,394,164 and 3,644,457; polyisocyanates containing carbodiimide groups as described in DE-PS 1,092,007, U.S. Pat. No. 3,152,162 and DE-OS 2,504,400, 2,537,685 and 2,552,350; and polyisocyanates containing allophanate groups as described, for example, in GB-PS 994,890, BE-PS 761,626 and NL-OS
7,102,524. Suitable polyisocyanates also include polyisocyanates that contain uretdione groups. In one embodiment, asymmetric trimers such as those in U.S.
Pat. No. 5,717,091, can be used.

lsocyanate group-containing prepolymers and semi-prepolymers based on polyisocyanates can also be used as the polyisocyanate component. These prepolymers and semi-prepolymers generally have an isocyanate content ranging from about 0.5 to 30% by weight, preferably about 1 to 20% by weight, and are prepared in a known manner by the reaction of starting materials, e.g., isocyanate-reactive compounds such as polyols, at an NCO/OH equivalent number ratio of about 1.05:1 to 10:1, preferably about 1.1:1 to 3:1.
The asymmetric polyaspartic ester mixtures of the invention are made by combining a suitable polyamine component with an ester component containing maleic acid/fumaric acid mixture containing a *trade-mark Mo-5455 - 6 -dimethyl-substituted maleic acid and a maleic acid/fumaric acid ester substituted with an alkyl group containing at least two carbon atoms in suitable amounts under conditions that favor the reaction of the reactants.
The duration of the reaction varies. Reactions involving aliphatic diamines such as hexane-diamine and 2-methyl-1,5-pentanediamine can be fully completed within two weeks. Reactions involving cyclic diamines such as H12MDI and 4'-dimethyl H12MDI ordinarily take a few months, e.g., 2-3 months, depending on the polypropylene oxide amine used when the reaction has reached 97 or 98% completion. Since it can take as long as 52 to 100 weeks for the reaction to reach 100% completion, it is ordinarily not practical to wait for full completion. Specific duration times can be obtained by routine experimentation. The yields at which the polyaspartic esters are produced are generally at least at about 70, 80 and preferably about 100%. The method is ordinarily practiced without any appreciable amount of an organic solvent, e.g., generally less than about 10%
preferably less than 5%, based on the total weight of the solution, and even more preferably no solvents.
Generally, when difunctional amines are used, the asymmetric polyaspartic ester mixture includes, in addition to pure compounds, a polyaspartic ester having the formula:

CH3 R, H3C:"~TN O O O OO~R2 "'X`N ',-kO
H H

in which X is a polypropylene oxide group obtained by the removal of amino groups from a amine corresponding to the formula, X-(NHz)n in which R, and R2 each are the same or different and each is an alkyl group having at least two carbon atoms and n is two. When trifunctional amines are used, the composition includes, in addition to pure compounds, one or both of the following polyaspartic esters:

Mo-5455 - 7 -ao CH3 CH3 H3C~0 O O H3C\ O O ?1111-' C~
'N _ O H N H O N-XNH
H j H N j H
O r Ol R2 O/ O O''R2 RI I

in which X is a polypropylene oxide group obtained by the removal of amino groups from an amine corresponding to the formula X-(NH2)n in which R, and R2 each are the same or different and each is an alkyl group having at least two carbon atoms and n is three.

The method provides previously unavailable advantages. Since the method avoids the crystallization that ordinarily forms when dimethyl-substituted esters or maleic or fumaric acid reacts with amines, the method avoids the formation of a commercially useless reaction-stopping crude mixture containing dimethyl fumarate crystals (and other compounds) typically formed by known methods. Also, since the method of the invention does not require the use of solvents, e.g., methanol, it pro-duces polyaspartic ester mixtures in greater yields than solvent-based systems, and avoids the fire hazards typically associated with flammable solvents. Also, since the method does not use solvents such as methanol, the crosslink density and properties of the films are not adversely affected by the polyurethanes which form by the reaction of residual amounts of methanol would react with polyisocyanates to form urethanes.

A polyurea coating composition can readily be formed by combining suitable amounts of (a) a polyisocyanate component and (b) an effective coating-forming amount of the asymmetric polyaspartic ester mixture. A
coating is made from such a coating composition by (a) coating a substrate with a coating composition including effective coating-forming amounts of (i) a polyisocyanate component, and (ii) the asymmetric polyaspartic ester mixture. The polyisocyanate component and the Mo-5455 - 8 -asymmetric polyaspartic ester component are mixed in a ratio that is generally at least 0.9:1.1, preferably about 1:1 eq:eq, preferably from about 0.9:1.0 eq:eq to 1.5:1.0 and more preferably from about 0.9:1.0 eq:eq to 1.1:1 eq:eq. After the coating compositions have been applied to a suitable substrate, the compositions are hardened by curing at a suitable temperature, e.g., from about 30 C to 150 C. In one embodiment, the polyisocyanate component and the effective coating-forming amounts of the asymmetric polyaspartic ester mixture also reacts with a polyol.
Suitable polyols include an suitable polyol, e.g., polyethers such as those in U.S. Pat. No. 5,126,170.

The coating can be made on substrates such as cement, asphalt, metal, glass, and wood. The coatings are particularly useful in applications such as spray elastomer, heavy duty maintenance, product finishing, automotive, and flooring applications.

The invention will now be described in the following illustrative examples. All references to percentages are by weight unless otherwise indicated.

EXAMPLES

A three-neck, round-bottom flask is fitted with stirrer, thermometer, nitrogen inlet, addition funnel and heater. 1000 g (0.5 eq.) polypropylene oxide diamine (Jeffamine* D-2000 available from Huntsman Corporation) are added to the reactor at 40 C. A 0.5 eq. of an 1:1 eq:eq mixture of dimethyl maleate and diethyl maleate is added through the addition funnel. The reaction is exothermic, so that cooling is applied to maintain a temperature below 80 C. After addition is complete, the reaction is heated at 60 to 80 C for an additional 10 hours. The resin is then stored under ambient laboratory conditions until the reaction is complete.
No crystals form.

The procedure of Example 1 is repeated except that a 0.65:35 equivalent mixture of dimethyl maleate and diethyl maleate is used. No crystals form.

*trade-mark Mo-5455 - 9 -COMPARATIVE EXAMPLE A
The procedure of Example 1 is repeated except that 1000 g (0.5 eq.) polypropylenoxide diamine (Jeffamine* D-2000 available from Huntsman Corporation) is placed in the reactor at 40 C to melt the amine. 72.1 g (0.5 eq.) dimethyl maleate is added over a one hour period. The reaction is heated at 60 C for nine hours when needle-like crystals begin to grow.
COMPARATIVE EXAMPLE B
The procedure of Example 1 is repeated except that a 0.8:0.2 equivalent mixture of dimethyl maleate and diethyl maleate is used.
Crystals form.
Although the invention has been described in detail in the foregoing for the purpose of illustration, it is to be understood that such detail is solely for illustrative purposes and that variations can be made therein by those skilled in the art without departing from the spirit and scope of the invention.

*trade-mark

Claims (12)

1. A method for making a polyaspartic ester mixture which comprises reacting (a) a mixture comprising i) a member selected from the group consisting of dimethyl maleate and dimethyl fumarate and ii) a member selected from the group consisting of dialkyl maleates and dialkyl fumarates wherein the alkyl groups have at least two carbon atoms with (b) a polyproplene oxide diamine, triamine or tetraamine, wherein the equivalent ratio of component i) to component ii) is from 7:3 to 1:9 and the reaction is carried out in the absence of an organic solvent or in the presence of less than 5% of an organic solvent, based on the total weight of the solution.
2. The method of Claim 1 wherein amine b) comprises a polypropylene oxide diamine and the polyaspartic ester mixture contains a polyaspartic ester having the formula:

wherein X is a polypropylene oxide group obtained by the removal of amino groups from a diamine corresponding to the formula, X-(NH2)n, R1 and R2 each are the same or different and each is an alkyl group having at least two carbon atoms and n is 2.
3. The method of Claim 1 wherein amine b) comprises a polypropylene oxide triamine and the polyaspartic ester mixture comprises a polyaspartic ester having one of the following formulae:

wherein X is a polypropylene oxide group obtained by the removal of amino groups from an amine corresponding to the formula X-(NH2)n, R1 and R2 each are the same or different and represent an alkyl group having at least two carbon atoms and n is 3.
4. The method of Claim 1 wherein amine b) comprises a polypropylene oxide tetraamine.
5. The method of Claim 1 wherein the reaction is carried out in the absence of an organic solvent.
6. The method of Claim 1 or 2 wherein component ii) comprises a member selected from the group consisting of diethyl maleate and diethyl fumarate.
7. An asymmetric polyaspartic ester mixture comprising the reaction product of a) a mixture comprising i) a member selected from the group consisting of dimethyl maleate and dimethyl fumarate and ii) a member selected from the group consisting of dialkyl maleates and dialkyl fumarates wherein the alkyl groups have at least two carbon atoms with b) a polyoxypropylene diamine, triamine or tetraamine, wherein the equivalent ratio of component i) to component ii) is from less than 7:3 to more than 1:9.
8. The asymmetric polyaspartic ester mixture of Claim 7 wherein amine b) comprises a polypropylene oxide diamine and the asymmetric polyaspartic ester mixture contains a polyaspartic ester having the formula:

wherein X is a polypropylene oxide group obtained by the removal of amino groups from a diamine corresponding to the formula, X-(NH2)n, R1 and R2 are the same or different and represent an alkyl group having at least two carbon atoms and n is 2.
9. The asymmetric polyaspartic ester mixture of Claim 7 wherein amine b) comprises a polypropylene oxide triamine and the polyaspartic ester mixture comprises a polyaspartic ester having one of the following formulae:

X is a polypropylene oxide group obtained by the removal of amino groups from a diamine corresponding to the formula, X-(NH2)n, R1 and R2 are the same or different and represent an alkyl group having at least two carbon atoms and N is 3.
10. The asymmetric polyaspartic ester mixture of Claim 7 wherein amine b) comprises a polypropylene oxide tetraamine.
11. The asymmetric polyaspartic ester mixture of Claim 7 wherein the mixture does not contain an organic solvent.
12. The asymmetric polyaspartic ester mixture of Claim 7 or 8 wherein component ii) comprises a member selected from the group consisting of diethyl maleate and diethyl fumarate.
CA002329025A 1999-12-30 2000-12-18 Improved polyurea coatings from dimethyl-substituted polyaspartic ester mixtures Expired - Fee Related CA2329025C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/476,314 1999-12-30
US09/476,314 US6482333B1 (en) 1999-12-30 1999-12-30 Polyurea coatings from dimethyl-substituted polyaspartic ester mixtures

Publications (2)

Publication Number Publication Date
CA2329025A1 CA2329025A1 (en) 2001-06-30
CA2329025C true CA2329025C (en) 2009-02-24

Family

ID=23891357

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002329025A Expired - Fee Related CA2329025C (en) 1999-12-30 2000-12-18 Improved polyurea coatings from dimethyl-substituted polyaspartic ester mixtures

Country Status (7)

Country Link
US (1) US6482333B1 (en)
EP (1) EP1113032B1 (en)
AT (1) ATE286088T1 (en)
CA (1) CA2329025C (en)
DE (1) DE60017065T2 (en)
ES (1) ES2234505T3 (en)
MX (1) MXPA01000049A (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050059790A1 (en) * 2003-09-16 2005-03-17 Roesler Richard R. Process for preparing aspartates
US6984715B2 (en) * 2003-10-03 2006-01-10 Bayer Materialscience Llc Process for preparing aspartates
US7276572B2 (en) * 2003-10-03 2007-10-02 Bayer Materialscience Llc Process for preparing aspartates
US6911501B1 (en) 2004-01-21 2005-06-28 Bayer Materialscience Llc Process for preparing aspartates
US20060011295A1 (en) * 2004-07-14 2006-01-19 Karsten Danielmeier Aspartic ester functional compounds
US20060058492A1 (en) * 2004-09-15 2006-03-16 Specialty Products, Inc. Polyisocyanate prepolymer component for preparing a polyurethane-polyurea polymer
US20060057394A1 (en) * 2004-09-15 2006-03-16 Specialty Products, Inc. System and method for coating a substrate
US7655309B2 (en) * 2004-09-15 2010-02-02 Specialty Products, Inc. Isocyanate-reactive component for preparing a polyurethane-polyurea polymer
US7307140B2 (en) 2004-11-16 2007-12-11 Bayer Materialscience Llc Polyaspartimides
US7910212B1 (en) * 2005-02-18 2011-03-22 Rodney Burton Concrete floor finishing system and method
US7968212B2 (en) * 2006-12-18 2011-06-28 Ppg Industries Ohio, Inc. Triamine/aspartate curative and coatings comprising the same
US7960495B2 (en) 2006-12-18 2011-06-14 Ppg Industries Ohio, Inc. (Meth)acrylate/aspartate amine curatives and coatings and articles comprising the same
US8119245B2 (en) 2008-02-05 2012-02-21 Bayer Materialscience Llc Dual-cure coating compositions based on polyaspartates polyisocyanates and acrylate-containing compounds
EP2275466A1 (en) * 2009-07-16 2011-01-19 Bayer MaterialScience AG Polyuric-based cloth adhesive
DK2673310T3 (en) * 2011-02-09 2015-02-23 Medical Adhesive Revolution Gmbh Tissue adhesives based on nitrogen-modified aspartates
EP2699615B1 (en) * 2011-04-19 2015-06-17 Medical Adhesive Revolution GmbH Medical adhesive for stemming bleeding
CN108463521A (en) 2015-12-22 2018-08-28 科思创聚合物(中国)有限公司 Low solvent paint systems for textile
US20190359850A1 (en) 2017-01-13 2019-11-28 Covestro Deutschland Ag Low-solvent coating systems for textiles
CN110229305A (en) * 2019-06-27 2019-09-13 青岛爱尔家佳新材料股份有限公司 A kind of explosion-proof polyurea materials and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0403921B1 (en) 1989-06-23 1994-11-02 Bayer Ag Process for the preparation of coatings
US5243012A (en) * 1992-06-10 1993-09-07 Miles Inc. Polyurea coating compositions having improved pot lives
DE4415778A1 (en) * 1994-05-05 1995-11-09 Bayer Ag Process for the production of coatings
US5516873A (en) 1994-07-11 1996-05-14 Bayer Corporation Polyisocyanate/polyamine mixtures and their use for the production of polyurea coatings
DE19542119C1 (en) * 1995-11-11 1997-02-13 Herberts Gmbh Coating agents and process for the production of multilayer coatings
US5736604A (en) 1996-12-17 1998-04-07 Bayer Corporation Aqueous, two-component polyurea coating compositions
CA2290346C (en) * 1997-06-13 2006-12-19 Minnesota Mining And Manufacturing Company Liquid pavement marking compositions
DE19822842A1 (en) * 1998-05-22 1999-11-25 Bayer Ag 2K PUR corrosion protection topcoat
US6107436A (en) * 1998-10-05 2000-08-22 3M Innovative Properties Company Polyfunctional polymer

Also Published As

Publication number Publication date
US6482333B1 (en) 2002-11-19
EP1113032B1 (en) 2004-12-29
EP1113032A1 (en) 2001-07-04
ATE286088T1 (en) 2005-01-15
MXPA01000049A (en) 2002-08-06
ES2234505T3 (en) 2005-07-01
DE60017065T2 (en) 2005-12-08
DE60017065D1 (en) 2005-02-03
CA2329025A1 (en) 2001-06-30

Similar Documents

Publication Publication Date Title
CA2313065C (en) Improved process for mixture of methyl and higher alkyl esters polyaspartic acid for polyurea coatings
CA2329025C (en) Improved polyurea coatings from dimethyl-substituted polyaspartic ester mixtures
EP1091929B1 (en) Secondary aspartic acid amide esters
JP3976359B2 (en) Aspartate-functional polyhydantoin prepolymer and its use in paints
CA2451170C (en) In-situ preparation of polyaspartic ester mixtures
US6642305B2 (en) Thixotropic amino formaldehyde resin
CA2172578A1 (en) Hyperbranched polyaspartate esters and a process for their preparation
MXPA00008304A (en) Coating compositions containing polyisocyanates and aspartate-terminated urea/urethane prepolymers.
EP1403245B1 (en) Polyaspartate resins with good hardness and flexibility
NZ235530A (en) Fire-retardant compositions containing a solid fire-retardant and polymer particles dispersed in a liquid poly isocyanate
US5100995A (en) Storage stable polyurethane adhesives
CA2172579A1 (en) Hydroxy-functional polyhydantoin prepolymers and their use in coating compositions
US4124569A (en) Process for the preparation of polyisocyanates containing urethane and biuret groups
EP1403246B1 (en) Polyaspartate resins with improved flexibility
JPH055847B2 (en)
MXPA06003622A (en) Aspartate derivatives and process for their preparation.
CA2172571C (en) Hydroxy-functional prepolymers containing hydantoin group precursors and their use in coating compositions
MXPA06003624A (en) Process for preparing aspartates.
CA2287738A1 (en) One-component thermoset coating compositions
MXPA00007367A (en) Improved polyurea coatings from dimethyl-substituted polyaspartic ester mixtures
EP1004645A1 (en) One-component thermoset coating compositions
MXPA98006556A (en) Polyisocianates containing alofanate groups that have a better compatibility with aldimi

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20151218