CA2330321A1 - Method for making a wallet card with an integral magnifying lens - Google Patents

Method for making a wallet card with an integral magnifying lens Download PDF

Info

Publication number
CA2330321A1
CA2330321A1 CA002330321A CA2330321A CA2330321A1 CA 2330321 A1 CA2330321 A1 CA 2330321A1 CA 002330321 A CA002330321 A CA 002330321A CA 2330321 A CA2330321 A CA 2330321A CA 2330321 A1 CA2330321 A1 CA 2330321A1
Authority
CA
Canada
Prior art keywords
card
lens
transparent
forming die
lens forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002330321A
Other languages
French (fr)
Inventor
Alan Finkelstein
Don Joyce
Laurence Mayer
Robert Mayer
Michael Nicholson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LENSCARD INTERNATIONAL Ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2330321A1 publication Critical patent/CA2330321A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/04Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/351Translucent or partly translucent parts, e.g. windows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/369Magnetised or magnetisable materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/378Special inks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/40Manufacture
    • B42D25/405Marking
    • B42D25/425Marking by deformation, e.g. embossing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/40Manufacture
    • B42D25/45Associating two or more layers
    • B42D25/465Associating two or more layers using chemicals or adhesives
    • B42D25/47Associating two or more layers using chemicals or adhesives using adhesives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B25/00Eyepieces; Magnifying glasses
    • G02B25/002Magnifying glasses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/04Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the shape
    • G06K19/041Constructional details
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose

Abstract

A wallet card (10) adapted for use in reading externally stored information includes a transparent, substantially non-foldable semi-rigid base (202). The semi-rigid base comprises a magnifying lens. The lens is formed by heating a lens forming die (210) to a temperature sufficient to soften the base material and then cooling the die prior to withdrawing the die from the base material.

Description

I
METHOD FOR MAKING A WALLET
CARD WITH AN INTEGRAL MAGNIFYING LENS
1. RELATED APPLICATIONS
This is a continuation-in-part of co-pending U.S. Patent Application Serial No. 08/758,640 filed November 27, 1996, which is a continuation-in-part of U.S.
Patent Application Serial No. 08/582,601 filed January 3, 1996, now U.S.
Patent No. 5,608,203, which is a continuation of U.S. Patent Application Serial No.
08/250,801 filed May 27, 1994, which is a continuation-in-part of U.S. Patent Application Serial No. 08/197,218, filed Fcbtuary 16, 1994, now U.S. Patent No.
5,434,405 which is a continuation-in-part of U.S. Patent Application Serial No.
07/834,490, filed February 12, 1992, now U.S. Patent No. 5,412,199.
2. FIELD OF THE INVENTION
The present invention relates to pocket magnifiers and is specifically directed to a wallet card, such as a credit card, having an integral magnifying lens.
3. PRIOR ART
There have long been reading lenses and magnifying glasses available to assist people in reading books, documents and the like without the use of reading glasses. These are particularly useful when the person encounters small print during an activity which makes it inconvenient or difficult to stop and put on reading glasses.
As an example, a book mark such as that shown in U.S. Patent 3,140,883 issued to R.L. Anthony on July 14, 1964 may be integrally attached to a book such as a telephone directory or a dictionary, wherein the end of the book mark is provided with a sealed pocket for receiving a plastic magnifying lens. The magnifying lens may be moved up and down the page as desired to provide magnification of the text in the book. This permits the user to read the text without first putting on his eyeglasses.
A pocket magnifier such as that shown in U.S. Patent 3,409,347 issued to R. Vogel on November 5, 1968 includes a pocket pouch adapted to be carried in the breast or hip pocket of the user or in a purse or wallet. The lens is formed of a transparent plastic sheet material having a substantial degree of stiffness and having fresnel lens contours molded into its upper surface. The lens unit may be slidably retracted into and extended out of the pocket. The pocket magnifier may be easily utilized to magnify small print and the like when the user is in a location where it is not feasibie-or desirable to stop an activity in order to put on reading glasses.
Other examples of special purposes magnifying lens structures are shown, by way of example, in U.S. Patent No. 4,044,889 entitled "Cosmetic Container Including Integrated Lens Structure," issued to S. Orentreich et al. on August 30, 1977, and U.S. Patent No. 4,393,610 entitled "Card Carrying Microfilm and Associated Reading Lens and Process of Forming Same," issued to D. Adrian on duly 19, 1983.
With the ever expanding use of credit cards and other transaction cards, there is an increasing requirement that the card user be able to verify a transaction at the point-of-use. This means the user must be able to read the card invoice to detemtine the accuracy of the information before he signs the invoice to indicate his acceptance. Since most of the information on the invoice is impact printed either on a carbon set or carbonless form, the print is not only controlled in size but is often of a low contrast with respect to the base form paper. This makes the form difficult to read, particularly for those who normally require reading glasses. Also, when the transaction card is used, it is often not convenient to take the time to put on reading glasses before reviewing the card invoice. While the pocket magnifiers of the prior art could be used for this purpose, use of such devices requires a separate activity which does not provide a great improvement over the use of reading glasses. As a result, many credit card users simply do not take the time and effort to accurately verify a transaction at the point-of-sale, relying on the sales clerk for the accuracy of the information. A transaction card incorporating a magnifying tens has been proposed in Japanese Utility Model Application Kokai No. 2-56680 published April 24, 1990. This reference, however does not disclose a method for efficiently manufacturing such a card.
Therefore, there.remains a need for a practical, cost-efficient method of manufacturing a financial transaction card with an integral magnifying lens.

WO 99156240 PCT/US99l08878 S>sIMMARY OF THE INVENTION
It is, therefore, ate object and feature of the subject invention to provide for a financial transaction card having an integral magnifying lens permitting the user to immediately verify financial transactions at the point-of sale without first requiring that the user put on reading glasses or the like.
It is another objeca and feature of the invention to enhance the use of credit cards by permitting immediate verification of credit card transactions by users normally having difficulty in reading small print, without requiring an additional activity of locating a magnifying lens or putting on reading glasses.
It is another object and feature of the subject invention to provide for a credit card having an integral magnifying lens and adapted for enlarging the small print generally used in the confined space of the credit card transaction form.
It is yet another object and feature of the invention to provide for an integral lens in a financial transaction card wherein the lens does not interfere with the machine readable information required on the card in order to complete a point-of sale transaction.
The subject invention is directed to a wallet card, such as a credit card or the like, which incorporates an integral magnifying lens. Use of the card of the subject invention automatically places a magnifying lens at the disposal of the user, whereby, for example, the user may immediately verify a financial transaction at the point-of sale without first locating a magnifying glass or taking the time and effort to put on reading glasses. As an illustrative example, the invention is particularly useful when making credit card transactions during an activity where the user would not normally be wearing his reading glasses. For example, during sports activities or other types of activities where a person does not normally encounter reading material, it may be desirable to make a credit card transaction in order to pay for rental of equipment or user fees or the like. By using the credit card of the subject invention, the user can immediately read and verify the financial transaction at the point-of sale by placing the magnifying lens incorporated in the credit card over the printed material an the transaction form. Thus, the print is magnified with the card used for the transaction, eliminating the need to locate a pocket magnifier or the time and effort required to put on reading glasses in order to verify the transaction.
In a preferred form of the invention, a typical card blank is subdivided into a plurality of zones, specifically a data zone and a non-data zone. The data zone is adapted for receiving and carrying machine readable information as prescribed by ISO standards. Information may be carried on the card in the form of a strip such as a magnetic strip including magnetically encoded information, embossed alpha numeric lettering for creating an imprint on the credit card transaction form, a bar code or variants thereof, and for electronic data, smart card IC contact area or contactless smart card keep out area, or a combination of smart card contact areas and contactless smart card keep out areas for so-called combi-cards. The non-data zone is generally free of any information required to be machine read, although this zone often includes identitjring indicia, logo types and other information relating to the issuing institution. In one preferred form of the invention, a portion of the non-data zone includes an integral magnifying lens carried in and forming a part of the card. It has been found that a substantially rigid, transparent plastic material of a thickness corresponding to the thickness of the card base may be incorporated in a window provided in the base. In a preferred embodiment of the invention, the transparent plastic includes fresnel lens contours on one of its surfaces for defining a magnifying lens. By placing the lens in the non-data zone, the lens does not interfere with the machine transactions required in order to use the card for its primary purpose.
In a more specific embodiment of the invention, the lens is an elongated rectangle generally placed in parallel with the magnetic strip which is commonly attached to the back of the card. In this embodiment, there is no alteration of the data zone as commonly incorporated on cards.
A second embodiment of the invention incorporates a lens with a larger usable area. However, this particular embodiment requires alteration of the data zone. Depending on the issuing institution, one embodiment may be more desirable over the other, depending on the flexibility of the location and format of the data zones on the card.
In a typical wallet card, the base is made of a substantially semi-rigid plastic material which is printed on one or both sides and laminated with a thin material on both the top surface and the bottom surface thereof. The card may include identifying indicia, logotypes and the like on the top, a magnetic strip, a signature strip and various terms and conditions on the bottom. In one embodiment of the invention, the lens may be placed in the card prior to the laminating process, whereby the laminate cover materials may be used to overlap the edge of the lens and help retain it in the card. The lens may be sonically welded, adhesively secured or otherwise mounted in a window in the card base, with or without utilizing the laminate material of the et~rd to assist in framing and mounting the lens in the card.
In another embodiment, the lens is integral with the card base. In this embodiment, the card base is formed from a transparent material, such as an amorphous plastic. The stamped card base can be overprinted, laminated with printed material, etc. Thereafter, fresnel lens contours are stamped on a surface of the blank in a selected area to define the magnifying lens. A hologram may also be added after the lamination.
In a particularly preferred embodiment, the inventive card comprises a substantially non- foldable yet still flexible semi-rigid base. The semi-rigid base comprises a magnifying lens. The card further comprises a strip, such as a magnetic tape strip, for carrying machine readable information, and optionally other features such as a signature strip or hologram patch.
The semi-rigid base can be a laminate formed from a plurality of layers, or can be a single layer. The magnifying lens may be formed by stamping fresnel contours directly onto a surface of the semi-rigid laminate, or a surface of a single layer. The fresnel contours are stamped into a transparent area of the laminate or single layer, and together with the transparent area form the magnifying lens.
There are also provided methods of producing a wallet card as described above. One such method comprises the steps of providing a transparent, substantially non-foldable senu-rigid base; forming a shallow cavity in the base;
partially filling the cavity with a radiation or heat curable liquid resin;
impressing a lens pattern on the surface of the resin with a die; and exposing the resin to radiation or heat of sufficient intensity to cure the resin.
Another method of producing a wallet card in accordance with the present invention comprises the steps of making a card blank having a transparent window region; heating a lens-forming die to a first temperature sufficient to soften the card blank; impressing the lens-forming die into the window region of the card blank;
cooling the lens-forming die to a second temperature at which the card blank is not significantly softened; and withdrawing the lens-forming die to leave a lens pattern on the surface of the card blank. This procedure can be realized by providing the heat to soften the card blank with a sonic source as well as more conventional heat sources to imprint the lens pattern.
Other objects, features and advantages of the present invention will become apparent to those skilled in the art from the following detailed description.
It is to be understood, however, that the detailed description and specific examples, while indicating preferred embodiments of the present invention, are given by way of illustration and not limitation. Many changes and modifications within the scope of the present invention may be made without departing from the spirit thereof, and the invention includes all such modifications.

~l3RIEF pESCRIPTION OF THE DRAWIN
The invention may be more readily understood by referring to the accompanying drawings in which FIGURE 1 shows the top side of a wallet card incorporating a magnifying lens, in accordance with the subject invention;
FIGURE 2 shows the bottom side of the wallet card of FIGURE I;
FIGURE 3 shows the top side of an alternative embodiment of a wallet card incorporating a magnifying lens in accordance with the subject invention;
FIGURE 4 shows the bottom side of the wallet card of FIGURE 3;
FIGURE 5 is a cross sectional view of the wallet card and lens combination, taking generally along the. line 5-5 of FIGURE 3;
FIGURE 6 shows the top side of a wallet card blank having an integral magnifying lens;
FIGURE 7 is a cross sectional view of the wallet card blank of FIGURE 6 taken generally along the line 7-7 of FIGURE 6;
FIGURE 8 shows the top side of a wallet card having an integral horizontally extending magnifying lens and a hologram patch;
FIGURE 9 shows the top side of a wallet card having an integral vertically extending magnifying lens and a hologram patch;

FIGURE 10 is a cross-sectional view of a wallet card comprising three layers of material having aligned transparent areas, in which fresnel lines are formed in the top layer thereof to form an integral magnifying lens; and FIGURES 1 I and 12 are cross-sectional views of wallet cards comprising two layers of a material having aligned transparent areas, in which fresnel lines are formed thereon to form integral magnifying lenses.
FIGURES 13-16 illustrate a method of fabricating the magnifying Lens of the present invention.
FIGURES 17-19 illustrate another method of fabricating the magnifying lens of the present invention.
Like elements are numbered alike throughout the drawings.

WO 99!56240 PCTIUS99/08878 DETAILED DESCRIPTION OF TH INVENTION
In the following description, for purposes of explanation and not limitation, specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be apparent to one skilled in the art that the present invention may be practiced in other embodiments that depart from these specific details. In other instances, detailed descriptions of well-known methods and devices are omitted so ;xs to not obscure the description of the present invention with unnecessary detail.
A typical credit card 10 is shown in Figure 1. The size and general layout of card 10 have become standardized and similar cards are widely used for a variety of transactions and other purposes. Apart from credit cards, similar cards are used as debit cards, ATM access cards, driver's licenses, identification cards, library cards, etc. Such cards are typically carried in a wallet and are generally referred to herein as "wallet cards".
Card 10 includes, as is common, embossed lettering at 12, which is machine readable for permitting the credit card to be imprinted at a point-of sale transaction.
As is shown in Figure 2, mast credit cards now contain a strip 14 for canTying machine readable information, for example a magnetic strip material which includes magnetically encoded information readable by computer terminals utilized in many point-of sale terminals. Also included is a signature strip 16 which is on the back of the card and which typically is adapted for receiving a signature to be manually applied by the user of the card. The card may further include one- or multi-dimensional bar codes as well as smart card contact, contactless or combi-card electronic information storage.

The magnetic strip 14 and embossed lettering 12, along with the signature strip 16, identify a data zone on the card. For financial transaction cards, this data zone is generally controlled by ISO standards in an effort to standardize the cards so that various cards issued by a multiplicity of institutions may be used on standardized terminals the point-of-sale. For example, the placement of the magnetic strip 14 relative to the top edge 18 of the card is standardized, as is the width of the strip 14 in order to permit ready readability of the magnetically coded information by any typical point-of sale magnetic reader. Likewise, the font, size and position of the embassed lettering 12 is controlled to assure machine readability of the information imprinted from the card when a point-of sale transaction is made on a typical credit card imprinter. Only the position of the signature strip 16 can be altered without interfering with the machine readability of the card.
Today, many cards also include identifying indicia such as logotypes and the like as indicated at 20 for identifying the issuing institution. An increasing number of cards also include a hologram patch 22 which includes issuing institution indicia.
The hologram panel 22 is generally located in or near the portion of the data zone including the embossed lettering 12. In the embodiment of the invention shown in Figs. 1 and 2, a magnifying tens 24 is positioned in a window 25 provided in the base 11 of the card 10 such that it is in noninterfering relationship with the magnetic strip 14 and the embossed lettering 12. The magnifying lens 24 is an elongate, rectangular lens mounted parallel to the magnetic strip 14 in the space between the magnetic strip and the emlossed lettering. This space is generally sufficient in size to accommodate the lens 24 since it is required that the embossed lettering 12 be spaced sufficiently from the magnetic strip 14 to assure that the embossing of the card does not in any way alter the functionality of the magnetic strip.

In one embodiment of the invention, the lens member 24 comprises a substantially rigid, transparent plastic element having approximately the same rigidity as the credit card base. As shown in Figures 1 and 2, the credit card base 11 includes a window 25 having a top edge 30, a bottom edge 31 and side edges 32 and 33. The lens element 24 is adapted to be placed in the window 25 and has outer edges common with the window edges 30-33. The lens may then be sonic welded or adhesively secured to the credit card base 11 in the manner well known to those who are skilled in the art. In the preferred embodiment of the invention, the lens 24 is of a thickness corresponding to the thickness of the credit card base 11, assuring that the presence of the lens in the credit card does not interfere in any manner with the machine readability of the information contained in the embossed lettering 12 or in the magnetic strip l4. A fresnel-type contour lens has been found to be particularly useful for this type of application. Such a lens is formed with concentric fresnel contour lines 36.
An alternative embodiment of the invention is shown in Figures 3 and 4.
There, the lens element 124 is of a substantially square cross section utilizing a fresnel lens comprising the concentric circle configuration shown at 60, and mounted in a complementary window 125 in the base 11. This particular configuration of the invention is useful when it is possible to alter the shape of the data zone and the placement of the embossed lettering 112. As terminal encoders come more widely accepted, and the magnetic encoding strip 14 (Figure 4) more commonly used as the source for machine readable information, the importance of the embossed lettering is becoming diminished. This will permit alteration of the placement of the embossed lettering on the card without interfering with the machine readability of the card at the point of sale. This permits the embossed lens element WO 99/Sb240 PC'f/llS99108878 124 to be customized to varying desires and taste without interfering with the overall machine readability of the card.
As is shown in Figure 5, the typical card base 11 is a laminated composite member including a solid core material as shown at 48 with a thin plastic laminate 50 on the top surface and a similar thin plastic material 52 laminated on the bottom surface. The term "thin" herein denotes that thicknesses of the plastic laminates SO
and 52 are small relative to the. thickness of core 48. If desired, the core 48 and plastic laminates 50 and 52 can have any relative thicknesses. The laminates SO and 52 are generally printed in a four-color format, permitting attractive logotypes identifying the issuing institution and permitting customized color schemes for the card. The laminate materials 50 and 52 also carry the magnetic encoding strip 14, the signature strip 16 and the hologram panel 22. As shown in Figure 5, the fresnel lens element 124 is located in the window 125 of the card and may be secured therein by sonic welding, adhesives or the like along the side edges of the window, as at 60. Where a laminated card is used, the laminate material 50 and 52 may overlap the edges 62, 64 of the window and the lens 124 may include a peripheral lip or rim 58 for holding the lens in place. Of course, the lens may also be of a rectangular cross section and sonically welded or adhesively secured to the base 48 with or without use of the laminates 50 and 52.
It will be understood that the lens could be incorporated in the card a variety of ways, including being an integral, unitary member of the card base.
Integral, unitary lenses can be formed in a number of ways, such as by molding or casting a transparent material into a window of a semi-rigid base, or by stamping a transparent area of a semi-rigid base. Figure 6 illustrates one such alternative embodiment of the invention in which the lens is integral with the card base.
Card base 48 comprises a substantially transparent plastic material. Preferably, the material is an amorphous plastic, such as polyvinyl chloride (PVC), polycarbonate, polyester or any other similar material. Lens 24 is formed in the card base 48 by, for example, stamping the desired fresnel contour lines 36 onto a surface thereof.
Embossed lettering (not shown) can be formed in the base simultaneously, or can be formed before or after the fresnel contour lines 36 are stamped onto the card base 48. Plastic laminates 50 and 52 can optionally also be applied to the top and bottom surfaces of the card base 48. 'fhe order in which the foregoing stamping, embossing and laminating steps are carried out is a matter of routine design choice.
In a preferred embodiment, described in greater detail below, the fresnel contours 36 are hot-stamped after a card blank has been laminated.
As with the preceding embodiments, magnetic strips, signature strips, hologram patches, ete. can also be added in the conventional manner. For example, in Figure 8, an embodiment of a card 10 includes a lens 24 which hori2ontally extends partially across card base 11. Card 10 also includes hologram patch 22. if desired, plastic laminates 50 and 52 can be omitted, and strips, patches, ete.
can be applied directly to base 48.
Another embodiment, shown in Figure 9, includes a vertically-oriented lens 24 stamped on one side of card base 11, with hologram patch 22 disposed near the opposite side of card base 11. Such an embodiment can, of course, also be produced by mounting a separate lens 24 in a card base 11 in a manner similar to the embodiment shown in Figure 1.
Still another embodiment is shown in Figure 10. Card core 48 and bottom and top plastic laminates 50 and 52 comprise a substantially transparent plastic material, such as the amorphous plastics described above. Card core 48 can be comprised of a single layer, as shown, or can comprise multiple layers (a "split core"). Top and bottom plastic laminates 52 and 50 are laminated to core 48, fornung top and bottom layers around a core layer. The structure thus forms a semi-rigid and substantially non-foldable base. Lens 24 (not shown) is subsequently formed by stamping the desired fresnel contour lines 36 onto the surface of either top layer 52 or bottom layer 50. Depending on the relative thicknesses of core and layers 50, 52, fresnel contours 36 may be impressed into core 48 as well as the layer 50 or 52.
Preferably, core 48 and bottom and top plastic laminates 50 and 52 comprise the same substantially transparent plastic material. Bottom and top plastic laminates 50 and 52 preferably are colored over substantially all of their outer surfaces (areas 70 and 72), such as by printing, except for window areas 74 and 76. Core 48 can remain transparent, or can also be colored over substantially all of its lateral surfaces (areas 78 on either side of core 48), except for window area 8U. The edges of core 48 can also optionally be colored. Window areas 74, 76 and 80 are located such that they are aligned when the laminate structure is formed. 'together with fresnel contours 36, aligned window areas 74,76 and 80 thus form magnifying lens 24.
The transparent material forming core 48 and top and bottom plastic laminates 50 and 52 should be chosen to display refractive properties such that, together with appropriately designed fresnel contour lines 36, a magnifying lens 24 having the desired magnification is produced. Selection of suitable plastic materials, and design of appropriate fresnel contours, is a matter of routine design choice to those skilled in the art.
Card 10 can include embossed lettering (not shown}, as described previously, in addition to a magnetic strip and optionally a signature strip.
A
hologram patch can also be included. other desired graphical features such as symbols, logos, pictorial representations, etc., can also be provided if desired. The magnetic strip, signature strip and/or hologram patch can be on either side of the card 10. That is, these features can be disposed on the same side of the card as the fresnel contours 36 are stamped on, or on the opposite side, in any desired combination. Placement of the various strips and patches in any embodiment of the instant invention is a matter of routine design choice.
However, in the foregoing embodiment it is preferable that no lamination steps are carried out after fresnel contour lines 36 have been formed, or at the least no lamination steps over the entire surface of card 10 including fresnel contour lines 36. This is because such subsequent lamination steps may fill in or flatten the fresnel contour lines 36 and thus render magnifying lens 24 inoperative.
Fresnel contour lines 36 can be stamped into bottom 50 or top 52 plastic laminate in any desired orientation, such as horizontally, vertically, etc., and can be of any desired shape, such as rectangular, square, triangular, circular, oval, elliptical, star-shaped, diamond-shaped, etc., similarly to the lenses 24 described previously.
Selection of a particular embodiment from those described herein can be made by the individual manufacturer taking into account factors such as manufacturing capability, eirse of manufacture, cost, etc.
Another embodiment is shown in Figure 11. Here, card core 48 functions as a "top" Iayer, while bottom plastic laminate 50 comprises the "bottom" layer.
Core 48 and bottom plastic laminate 50 again comprise a substantially transparent plastic material. Bottom plastic laminate 50 is laminated to core 48, forming top and bottom layers. The two layers together form a semi-rigid, substantially non-foldable laminate structure. Lens 24 (not shown) is subsequently formed in core 48 by WO 99/56240 PCTlLIS99/08878 stamping the desired fresnel contour lines 36 onto the top surface thereof.
Alternatively, the lens contours may be stamped onto the bottom surface of laminate 50.
As with the preceding embodiment, core 48 and bottom plastic laminate 50 preferably comprise the same substantially transparent plastic material.
Bottom plastic laminate 50 preferably is colored over substantially all of one or both of its sides (areas 70), such as by printing, except for window area 74. When both sides are so colored, core 48 can remain transparent, thus allowing printed information on the inner surface of bottom plastic laminate 50 (the side to which core 48 is laminated) to be read through the transparent plastic material. In the alternative, core 48 can also be colored over substantially all of the surface opposite the surface to which it is laminated with bottom layer 50 (areas 78 on the outer side of core 48), except for window area 80. Window areas 74 and 80 are located such that they are aligned when the laminate stmcture is formed. Together with fresnel contours 36, aligned window areas 74 and 80 form magnifying lens 24.
A variant of the foregoing preferred embodiment is shown in Figure 12.
Here, credit card core 48 functions as a "bottom" layer, while top plastic laminate 52 comprises the "top" layer. Core 48 and top plastic laminate 52 again comprise a substantially transparent plastic material. Top plastic laminate 52 is laminated to core 48, forming top and bottom layers. The two layers together form a semi-rigid, substantially non-foldable laminate structure. Lens 24 (not shown) is subsequently formed in top layer 52 by stamping the desired fresnel contour lines 36 onto the tap surface thereof. Alternatively, the lens contours may be stamped onto the bottom surface of core 48.

Core 48 and top plastic laminate S2 preferably comprise the same substantially transparent plastic material. Top plastic laminate S2 preferably is colored over substantially all of one or both of its sides (areas 72), such as by printing, except for window area 76. When both sides are so colored, core 48 can remain transparent, thus allowing printed information on the inner surface of top plastic laminate S2 (the side to which core 48 is laminated) to be read through the transparent plastic material. In the alternative, core 48 can also be colored over substantially all of the surface opposite the surface to which it is laminated with top layer S2 (areas 78 on the outer side of core 48), except for window area 80.
Window areas 76 and 80 are located such that they are aligned when the laminate structure is formed. Together with fresnel contours 36, aligned window areas and 80 form magnifying lens 24.
One process for making a card in accordance with the invention is illustrated in Figures 13-16. Referring first to Figure 13, a card blank or core 202 is provided. The core material is transparent and is preferably polyvinyl chloride (PVC) although other suitable transparent materials may be used. A shallow cavity 204 is formed in the core material with a router 206 or other suitable means.
The dimensions of cavity 204 correspond to the desired dimensions of the lens 24 (Figures 1, 2, 6, 8 and 9) or lens 124 (Figures 3,4). As already explained, cavity 204 should be located in a non-data region of the card. The depth of cavity 204 will depend on the particular material used to make the lens as described below, but is generally on the order of 0.008 inches. It is important to minimize any residual tool marks which will leave the floor of cavity 204 with a frosty appearance and thereby impair the clarity and sharpness of images viewed through the lens. If necessary, the floor of cavity 204 may be polished to remove residual tool marks.

Referring now to Figure 14, cavity 204 is partially filled with a liquid resin.
The preferred class of resins for use with the method described herein comprises radiation-curable resins, with the curing of the resin being carried out by exposure to a suitable source of actinic radiation, such as ultraviolet light. A
particular resin suitable for such use is a proprietary product of Decochem having the designation 7294 mod 7025. This particular material has been found to produce excellent replication of the lens die profile, good adhesion to the PVC card core and poor adhesion to the surface of the die. Other suitable radiation-curable resin systems or thermosetting resin systems may also be used.
Referring to Figure 15, once cavity 204 has been filled with a sufficient quantity of liquid resin, a die 210 is brought into contact with the surface of the resin. Die 210 is machined with a negative image of a fresnel lens pattern.
The die is brought into contact with the .surface of the liquid resin, taking care to prevent entrapment of air and expulsion of resin from the cavity. Once die 210 is properly positioned, resin 208 is exposed to the appropriate from of radiation or heat for a sufficient period of time to cure the resin. Using the preferred resin system, curing is accomplished in approximately 1-3 seconds.
With reference to Figure 16, the die 210 is removed after the resin has cured, leaving fresnel contours in the surface of the cured resin, thereby forming a lens 212. The lens contours arc disposed below the upper surface of core 202, thereby helping to protect the lens from damage during routine handling.
An alternative process for making a card in accordance with the present invention is illustrated in Figures 17-19. Referring first to Figure 17, the structure of a card blank 302 prior to formation of the magnifying lens is shown in cross section. Card blank 302 comprises a laminated structure of several layers.
Core material 304 is a transparent thermoplastic material. Suitable materials include PVC, polyethylene terel>hthalate modified with cyclohexanedimethanol (PETG) and polycarbonate, although other transparent plastic materials may also be used.
The top and bottom surfaces of core material 304 are printed with a silk screen and/or gravure process to provide the card graphics as previously described.
Depending on the process used and the nature of the inks employed, the thickness of printed layers 306 may range from less than 1 to more than 5 mils. The printing applied to core 304 will generally be opaque, or at least translucent, over the entire card except far window region 308. This region must remain transparent for subsequent formation of the magnifying lens.
After printed layers 306 have been applied, the top and bottom surfaces of core 304 are laminated with clear films 310. Films 310 are preferably PVC or other suitable clear plastic material. Films 310 arc suitably bonded to core 304.
Such bonding may require use of a transparent adhesive to adhere over printed layers 306.
Films 310 typically have a thickness of about 1-3 mils. If printed layers 306 are relatively thick, it may be desirable to apply a clear ink or a clear adhesive in window region 308 at the time of printing. Otherwise, films 310 may have a tendency to "drape" across the window region with the potential for voids to form between films 310 and core material 304 in the window region. Such voids would degrade the optical properties of a magnifying lens formed in the window region.
Card blanks 302 may be conveniently manufactured in large sheets.
Printing of core material 304 and lamination with films 310 is preferably done in large sheets. Individual card blanks 302 may then be die cut from the large sheets for further processing.

Referring next to Figure 18, a magnifying lens is formed on card blank 302 with a hot stamping process using die 320. Prior to being impressed on card blank 302, die 320 is heated to a temperature which is sufficient to soften, but not necessarily melt, the plastic material of film 310 and core 304. Die 320 may be conveniently heated with a conventional heater cartridge, although sonic heating is an attractive alternative since it permits faster cycle times. Once the die has been brought up to temperature, it is impressed into card blank 302 to a depth sufficient to fully forth the fresnel lens contours. An effective magnifying lens may be formed with contours having a depth of approximately 10 mils. In the case of sonic heating, heating and impressing may occur simultaneously.
It is important to maintain the die precisely parallel to the surface of the card so that the lens contours are formed uniformly within window region 308. Such uniformity is necessary for the magnifying lens to have the desired optical properties and also prevents warping of the finished card. The lens contours are preferably formed on the bottom surface of card blank 302; however, an equally effective lens can be formed on the top surface.
Die 320 preferably has a vent 322 so that air will not be trapped between the die and the surface of the card. Any such entrapment of air would interfere with proper formation of the lens contours and would degrade the optical properties of the lens. The need for vent 322 and its location , if needed, depend on the particular lens contour design.
Once die 320 has been itnpressed to a desired depth in card blank 302, the die is cooled so that the plastic will set before the die is withdrawn.
Cooling of die 320 is important for the quality and transparency of the magnifying lens.
Cooling the die prevents plastic flow when the die is withdrawn, thereby insuring that the contours of the fresnel lens have sharp edges. This is important for achieving a high quality lens. Furthermore, it has been found that withdrawing the die prior to cooling tends to cloud the plastic. Any suitable means for cooling die 320 may be employed. In practice, it has been found that cooling may be effectively accomplished with compressed air blown directly onto the die. Alternatively, the dic may be fabricated with internal channels for liquid or air cooling.
Regardless of the means by which the die is cooled, it is desirable to minimize the thermal mass of the die so that the temperature of the die can be rapidly cycled.
Using a hot stamping technique for forming the magnifying lens, it is important to confine the heat from the die as much as possible. Therefore, the platen 330 on which card blank 302 rests is preferably chilled. This helps to nunimize distortions in the finished card.
Once the fresnel lens contours have been formed, the optical quality of the lens may be conveniently tested using a simple photocell test arrangement.
Assuming the focal length of a properly formed lens, a light source is positioned in a spaced-apart relationship relative to the photocell. Light Crom the light source is focused onto the photocel l by the hot-stamped lens. The output of the photocell is proportional to the focusing properties of the lens and provides a gross quantitative measure of lens quality. More sophisticated automated or manual image quality tests can also be implemented as appropriate for fresnel lenses.
The various embodiments of the invention described herein utilize a fresnel lens for magnification. Although this is the presently preferred type of lens for ease of manufacture, the invention is not limited in this regard. Suitable magnifying lenses may also comprise conventional convex lenses and other optical devices such as holograms. Whatever type of optical device is used for magnification, it may be mounted within the card or formed integrally with the card by any of the means previously described. The magnifying device may be formed in the core material, in a filler within a window in the core material andlor in a laminate applied over the core material.
It will be recognized that the above described invention may be embodied in other specific forms without departing from the spirit or essential characteristics of the disclosure. Thus, it is understood that the invention is not to be limited by the foregoing illustrative details, but rather is to be defined by the appended claims.

Claims (18)

WHAT IS CLAIMED IS:
1. A method of making a card having an integral magnifying lens comprising the steps of:

making a card blank having a transparent window region;
heating a lens forming die to a first temperature;
impressing the lens forming die into the window region of the card blank;
cooling the lens forming die to a second temperature; and withdrawing the lens forming die from the card blank.
2. The method of claim 1 wherein the step of making a card blank comprises laminating a plurality of layers of transparent plastic.
3. The method of claim 2 wherein at least one of the layers of transparent plastic is printed with non-transparent markings in regions other than the window region.
4. The method of claim 1 wherein the steps of beating and impressing are performed substantially concurrently.
5. A method of making a card having an integral magnifying lens comprising the steps of:

making a card blank from a transparent plastic sheet material;
printing at least one of top and bottom surfaces of the card blank, leaving a transparent window region on each printed surface;
applying a transparent film over each printed surface of the card blank;
heating a lens forming die to a first temperature;
impressing the lens forming die into the transparent film in the window region;
cooling the lens forming die to a second temperature; and withdrawing the lens forming die from the transparent film.
6. The method of claim 5 wherein the first temperature is sufficiently high to soften the transparent film but is below the melting temperature of the transparent film.
7. The method of claim 5 wherein the second temperature is lower than a temperature that softens the transparent film.
8. The method of claim 5 wherein the transparent plastic sheet material is a thermoplastic.
9. The method of claim 5 wherein the transparent plastic sheet material is selected from the group consisting of PVC, PETG and polycarbonate.
10. The method of claim 5 wherein the step of printing is performed using a silk screen process.
11. The method of claim 5 wherein the step of printing is performed using a gravure process.
12. The method of claim 5 wherein the step of printing comprises printing the window region with a transparent ink.
13. The method of claim 5 further comprising the step of applying a transparent adhesive on the card blank in the window region.
14. The method of claim 5 wherein the lens forming die is impressed to a depth that penetrates the card blank.
15. The method of claim 5 wherein the lens forming die is impressed to a depth of approximately 10 mils.
16. The method of claim 5 wherein the transparent film is a thermoplastic.
17. The method of claim 5 where in the transparent film is PVC.
18. The method of claim 5 wherein the steps of heating and impressing are performed substantially concurrently.
CA002330321A 1998-04-24 1999-04-23 Method for making a wallet card with an integral magnifying lens Abandoned CA2330321A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/066,799 US6176430B1 (en) 1992-02-12 1998-04-24 Method for making a wallet card with an integral magnifying lens
US09/066,799 1998-04-24
PCT/US1999/008878 WO1999056240A1 (en) 1998-04-24 1999-04-23 Method for making a wallet card with an integral magnifying lens

Publications (1)

Publication Number Publication Date
CA2330321A1 true CA2330321A1 (en) 1999-11-04

Family

ID=22071784

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002330321A Abandoned CA2330321A1 (en) 1998-04-24 1999-04-23 Method for making a wallet card with an integral magnifying lens

Country Status (14)

Country Link
US (1) US6176430B1 (en)
EP (1) EP1073994A1 (en)
JP (1) JP2002513174A (en)
KR (1) KR20010042971A (en)
CN (1) CN1307713A (en)
AU (1) AU756486B2 (en)
BR (1) BR9910138A (en)
CA (1) CA2330321A1 (en)
ID (1) ID26844A (en)
IL (1) IL139256A (en)
NZ (1) NZ507907A (en)
TR (1) TR200003466T2 (en)
WO (1) WO1999056240A1 (en)
ZA (1) ZA200006415B (en)

Families Citing this family (153)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6769618B1 (en) * 1992-02-12 2004-08-03 Lenscard U.S., Llc Wallet card with a magnifying lens and light
US6817532B2 (en) * 1992-02-12 2004-11-16 Lenscard U.S., Llc Wallet card with built-in light
US7654580B2 (en) * 1995-11-29 2010-02-02 Graphic Security Systems Corporation Self-authenticating documents with printed or embossed hidden images
US7114750B1 (en) * 1995-11-29 2006-10-03 Graphic Security Systems Corporation Self-authenticating documents
US6375081B1 (en) * 1999-02-02 2002-04-23 The Standard Register Company Business form including smart card and smart card reader
US6277232B1 (en) 1999-04-22 2001-08-21 Mbna America Bank, N.A. Method of manufacturing a plastic card with a lenticular lens therein
US6533181B1 (en) * 2000-07-22 2003-03-18 Roboric Vision Systems, Inc. Direct marking of parts with encoded symbology method, apparatus and symbolody
EP1346315A4 (en) * 2000-11-02 2008-06-04 Taylor Corp Lenticular card and processes for making
US6390372B1 (en) * 2001-03-01 2002-05-21 Michael Waters Cards with reading lenses
US6899276B2 (en) * 2002-02-15 2005-05-31 Axalto Sa Wrapped-card assembly and method of manufacturing the same
US6641260B1 (en) 2002-08-06 2003-11-04 See Card Corporation Flat pack optical device kit
US20040155103A1 (en) * 2002-08-19 2004-08-12 Fargo Electronics, Inc. Card processing verification
US6908035B2 (en) * 2003-03-18 2005-06-21 Eastman Kodak Company Optical security system
US7161747B2 (en) * 2004-02-10 2007-01-09 Yang Jr Peter S One piece clear plastic cardholder, cardholder shaped fresnel magnifying lens and method of making the same
US7896250B2 (en) 2004-09-21 2011-03-01 Michael Waters Reading card
US7036740B2 (en) * 2004-09-21 2006-05-02 Michael Waters Light card
EP1882220A2 (en) 2005-03-26 2008-01-30 Privasys, Inc. Electronic financial transaction cards and methods
US8226001B1 (en) 2010-06-23 2012-07-24 Fiteq, Inc. Method for broadcasting a magnetic stripe data packet from an electronic smart card
US8684267B2 (en) 2005-03-26 2014-04-01 Privasys Method for broadcasting a magnetic stripe data packet from an electronic smart card
US20060226236A1 (en) * 2005-04-07 2006-10-12 Cullen Mary A Optical magnifier system and method
US7599192B2 (en) * 2005-04-11 2009-10-06 Aveso, Inc. Layered structure with printed elements
US7821794B2 (en) * 2005-04-11 2010-10-26 Aveso, Inc. Layered label structure with timer
EP1882229B1 (en) 2005-04-27 2014-07-23 Privasys, Inc. Electronic cards and methods for making same
US20080035738A1 (en) * 2005-05-09 2008-02-14 Mullen Jeffrey D Dynamic credit card with magnetic stripe and embedded encoder and methods for using the same to provide a copy-proof credit card
US7793851B2 (en) * 2005-05-09 2010-09-14 Dynamics Inc. Dynamic credit card with magnetic stripe and embedded encoder and methods for using the same to provide a copy-proof credit card
JP5684475B2 (en) * 2006-10-31 2015-03-11 ソリコア インコーポレイテッドSOLICORE,Incorporated Battery powered devices
CA2703805A1 (en) * 2006-10-31 2008-05-08 Solicore, Inc. Powered authenticating cards
CN201029010Y (en) * 2006-12-20 2008-02-27 叶海帆 Card type sliding push-and-pull spectacles
US7677458B2 (en) * 2006-12-22 2010-03-16 Target Brands, Inc. Financial transaction card with visual effect
US7967214B2 (en) * 2006-12-29 2011-06-28 Solicore, Inc. Card configured to receive separate battery
WO2008082617A2 (en) * 2006-12-29 2008-07-10 Solicore, Inc. Mailing apparatus for powered cards
US8267327B2 (en) * 2007-02-17 2012-09-18 Qsecure, Inc. Payment card manufacturing technology
US8511571B2 (en) 2007-03-19 2013-08-20 Nagraid S.A. Intermediate product intervening in the manufacturing of electronic cards
DK2140406T3 (en) * 2007-03-19 2014-08-18 Nagravision Sa Digital display card
AU2012211464B2 (en) * 2007-03-19 2015-05-28 Nagravision S.A. Card with digital display
US20080277481A1 (en) * 2007-05-11 2008-11-13 David Engel Renewable cards
US20090065138A1 (en) * 2007-05-11 2009-03-12 Innovative Graphics, Inc. Manufacture of environmentally safe cards
US20090159699A1 (en) 2007-12-24 2009-06-25 Dynamics Inc. Payment cards and devices operable to receive point-of-sale actions before point-of-sale and forward actions at point-of-sale
US8579203B1 (en) 2008-12-19 2013-11-12 Dynamics Inc. Electronic magnetic recorded media emulators in magnetic card devices
US8931703B1 (en) 2009-03-16 2015-01-13 Dynamics Inc. Payment cards and devices for displaying barcodes
US9329619B1 (en) 2009-04-06 2016-05-03 Dynamics Inc. Cards with power management
US8282007B1 (en) 2009-04-06 2012-10-09 Dynamics Inc. Laminated cards with manual input interfaces
US8622309B1 (en) 2009-04-06 2014-01-07 Dynamics Inc. Payment cards and devices with budgets, parental controls, and virtual accounts
US8393545B1 (en) 2009-06-23 2013-03-12 Dynamics Inc. Cards deployed with inactivated products for activation
US8511574B1 (en) 2009-08-17 2013-08-20 Dynamics Inc. Advanced loyalty applications for powered cards and devices
US9306666B1 (en) 2009-10-08 2016-04-05 Dynamics Inc. Programming protocols for powered cards and devices
US8727219B1 (en) 2009-10-12 2014-05-20 Dynamics Inc. Magnetic stripe track signal having multiple communications channels
US8523059B1 (en) 2009-10-20 2013-09-03 Dynamics Inc. Advanced payment options for powered cards and devices
US8393546B1 (en) 2009-10-25 2013-03-12 Dynamics Inc. Games, prizes, and entertainment for powered cards and devices
WO2011103160A1 (en) 2010-02-16 2011-08-25 Dynamics Inc. Systems and methods for drive circuits for dynamic magnetic stripe communications devices
US8348172B1 (en) 2010-03-02 2013-01-08 Dynamics Inc. Systems and methods for detection mechanisms for magnetic cards and devices
US10693263B1 (en) 2010-03-16 2020-06-23 Dynamics Inc. Systems and methods for audio connectors for powered cards and devices
EP3091473A1 (en) 2010-05-18 2016-11-09 Dynamics Inc. Systems and methods for cards and devices operable to communicate via light pulses and touch sensitive displays
US8317103B1 (en) 2010-06-23 2012-11-27 FiTeq Method for broadcasting a magnetic stripe data packet from an electronic smart card
USD674013S1 (en) 2010-07-02 2013-01-08 Dynamics Inc. Multiple button interactive electronic card with light sources
USD672389S1 (en) 2010-07-02 2012-12-11 Dynamics Inc. Multiple button interactive electronic card with light sources
USD652075S1 (en) 2010-07-02 2012-01-10 Dynamics Inc. Multiple button interactive electronic card
USD652449S1 (en) 2010-07-02 2012-01-17 Dynamics Inc. Multiple button interactive electronic card
USD687094S1 (en) 2010-07-02 2013-07-30 Dynamics Inc. Multiple button interactive electronic card with light sources
USD652867S1 (en) 2010-07-02 2012-01-24 Dynamics Inc. Multiple button interactive electronic card
USD670759S1 (en) 2010-07-02 2012-11-13 Dynamics Inc. Multiple button interactive electronic card with light sources
USD652448S1 (en) 2010-07-02 2012-01-17 Dynamics Inc. Multiple button interactive electronic card
USD652076S1 (en) 2010-07-09 2012-01-10 Dynamics Inc. Multiple button interactive electronic card with display
USD651237S1 (en) 2010-07-09 2011-12-27 Dynamics Inc. Interactive electronic card with display
USD653288S1 (en) 2010-07-09 2012-01-31 Dynamics Inc. Multiple button interactive electronic card
USD651238S1 (en) 2010-07-09 2011-12-27 Dynamics Inc. Interactive electronic card with display
USD792511S1 (en) 2010-07-09 2017-07-18 Dynamics Inc. Display with font
USD666241S1 (en) 2010-07-09 2012-08-28 Dynamics Inc. Multiple button interactive electronic card with light source
USD643063S1 (en) 2010-07-09 2011-08-09 Dynamics Inc. Interactive electronic card with display
USD792512S1 (en) 2010-07-09 2017-07-18 Dynamics Inc. Display with font
USD665447S1 (en) 2010-07-09 2012-08-14 Dynamics Inc. Multiple button interactive electronic card with light source and display
USD665022S1 (en) 2010-07-09 2012-08-07 Dynamics Inc. Multiple button interactive electronic card with light source
USD792513S1 (en) 2010-07-09 2017-07-18 Dynamics Inc. Display with font
USD651644S1 (en) 2010-07-09 2012-01-03 Dynamics Inc. Interactive electronic card with display
USD652450S1 (en) 2010-07-09 2012-01-17 Dynamics Inc. Multiple button interactive electronic card
US8322623B1 (en) 2010-07-26 2012-12-04 Dynamics Inc. Systems and methods for advanced card printing
US9818125B2 (en) 2011-02-16 2017-11-14 Dynamics Inc. Systems and methods for information exchange mechanisms for powered cards and devices
US10055614B1 (en) 2010-08-12 2018-08-21 Dynamics Inc. Systems and methods for advanced detection mechanisms for magnetic cards and devices
US9053398B1 (en) 2010-08-12 2015-06-09 Dynamics Inc. Passive detection mechanisms for magnetic cards and devices
KR101275983B1 (en) 2010-09-01 2013-06-14 현대카드 주식회사 A metal payment card and make method thereof
SG189354A1 (en) 2010-10-11 2013-05-31 Graphic Security Systems Corp Method for constructing a composite image incorporating a hidden authentication image
US10022884B1 (en) 2010-10-15 2018-07-17 Dynamics Inc. Systems and methods for alignment techniques for magnetic cards and devices
US8561894B1 (en) 2010-10-20 2013-10-22 Dynamics Inc. Powered cards and devices designed, programmed, and deployed from a kiosk
US9646240B1 (en) 2010-11-05 2017-05-09 Dynamics Inc. Locking features for powered cards and devices
JP5548608B2 (en) * 2010-12-24 2014-07-16 昌栄印刷株式会社 card
US8567679B1 (en) 2011-01-23 2013-10-29 Dynamics Inc. Cards and devices with embedded holograms
US10095970B1 (en) 2011-01-31 2018-10-09 Dynamics Inc. Cards including anti-skimming devices
US9836680B1 (en) 2011-03-03 2017-12-05 Dynamics Inc. Systems and methods for advanced communication mechanisms for magnetic cards and devices
US8485446B1 (en) 2011-03-28 2013-07-16 Dynamics Inc. Shielded magnetic stripe for magnetic cards and devices
EP2707847A4 (en) 2011-05-10 2015-04-01 Dynamics Inc Systems, devices, and methods for mobile payment acceptance, mobile authorizations, mobile wallets, and contactless communication mechanisms
USD676904S1 (en) 2011-05-12 2013-02-26 Dynamics Inc. Interactive display card
USD670332S1 (en) 2011-05-12 2012-11-06 Dynamics Inc. Interactive card
USD670329S1 (en) 2011-05-12 2012-11-06 Dynamics Inc. Interactive display card
USD670331S1 (en) 2011-05-12 2012-11-06 Dynamics Inc. Interactive display card
USD670330S1 (en) 2011-05-12 2012-11-06 Dynamics Inc. Interactive card
US8628022B1 (en) 2011-05-23 2014-01-14 Dynamics Inc. Systems and methods for sensor mechanisms for magnetic cards and devices
US8827153B1 (en) 2011-07-18 2014-09-09 Dynamics Inc. Systems and methods for waveform generation for dynamic magnetic stripe communications devices
US11551046B1 (en) 2011-10-19 2023-01-10 Dynamics Inc. Stacked dynamic magnetic stripe commmunications device for magnetic cards and devices
US11409971B1 (en) 2011-10-23 2022-08-09 Dynamics Inc. Programming and test modes for powered cards and devices
US8960545B1 (en) 2011-11-21 2015-02-24 Dynamics Inc. Data modification for magnetic cards and devices
US9619741B1 (en) 2011-11-21 2017-04-11 Dynamics Inc. Systems and methods for synchronization mechanisms for magnetic cards and devices
US9064194B1 (en) 2012-02-03 2015-06-23 Dynamics Inc. Systems and methods for spike suppression for dynamic magnetic stripe communications devices
US9710745B1 (en) 2012-02-09 2017-07-18 Dynamics Inc. Systems and methods for automated assembly of dynamic magnetic stripe communications devices
US8888009B1 (en) 2012-02-14 2014-11-18 Dynamics Inc. Systems and methods for extended stripe mechanisms for magnetic cards and devices
US9916992B2 (en) 2012-02-20 2018-03-13 Dynamics Inc. Systems and methods for flexible components for powered cards and devices
US9734669B1 (en) 2012-04-02 2017-08-15 Dynamics Inc. Cards, devices, systems, and methods for advanced payment game of skill and game of chance functionality
US11418483B1 (en) 2012-04-19 2022-08-16 Dynamics Inc. Cards, devices, systems, and methods for zone-based network management
US9033218B1 (en) 2012-05-15 2015-05-19 Dynamics Inc. Cards, devices, systems, methods and dynamic security codes
US9064195B2 (en) 2012-06-29 2015-06-23 Dynamics Inc. Multiple layer card circuit boards
USD729869S1 (en) 2012-08-27 2015-05-19 Dynamics Inc. Interactive electronic card with display and button
USD676487S1 (en) 2012-08-27 2013-02-19 Dynamics Inc. Interactive electronic card with display and buttons
USD687095S1 (en) 2012-08-27 2013-07-30 Dynamics Inc. Interactive electronic card with buttons
USD828870S1 (en) 2012-08-27 2018-09-18 Dynamics Inc. Display card
USD730439S1 (en) 2012-08-27 2015-05-26 Dynamics Inc. Interactive electronic card with buttons
USD729871S1 (en) 2012-08-27 2015-05-19 Dynamics Inc. Interactive electronic card with display and buttons
USD687488S1 (en) 2012-08-27 2013-08-06 Dynamics Inc. Interactive electronic card with buttons
USD687489S1 (en) 2012-08-27 2013-08-06 Dynamics Inc. Interactive electronic card with buttons
USD730438S1 (en) 2012-08-27 2015-05-26 Dynamics Inc. Interactive electronic card with display and button
USD695636S1 (en) 2012-08-27 2013-12-17 Dynamics Inc. Interactive electronic card with display and buttons
USD692053S1 (en) 2012-08-27 2013-10-22 Dynamics Inc. Interactive electronic card with display and button
USD687487S1 (en) 2012-08-27 2013-08-06 Dynamics Inc. Interactive electronic card with display and button
USD687490S1 (en) 2012-08-27 2013-08-06 Dynamics Inc. Interactive electronic card with display and button
USD688744S1 (en) 2012-08-27 2013-08-27 Dynamics Inc. Interactive electronic card with display and button
USD675256S1 (en) 2012-08-27 2013-01-29 Dynamics Inc. Interactive electronic card with display and button
USD729870S1 (en) 2012-08-27 2015-05-19 Dynamics Inc. Interactive electronic card with display and button
USD673606S1 (en) 2012-08-27 2013-01-01 Dynamics Inc. Interactive electronic card with display and buttons
USD687887S1 (en) 2012-08-27 2013-08-13 Dynamics Inc. Interactive electronic card with buttons
USD694322S1 (en) 2012-08-27 2013-11-26 Dynamics Inc. Interactive electronic card with display buttons
US11126997B1 (en) 2012-10-02 2021-09-21 Dynamics Inc. Cards, devices, systems, and methods for a fulfillment system
US9010647B2 (en) 2012-10-29 2015-04-21 Dynamics Inc. Multiple sensor detector systems and detection methods of magnetic cards and devices
US9659246B1 (en) 2012-11-05 2017-05-23 Dynamics Inc. Dynamic magnetic stripe communications device with beveled magnetic material for magnetic cards and devices
US9010644B1 (en) 2012-11-30 2015-04-21 Dynamics Inc. Dynamic magnetic stripe communications device with stepped magnetic material for magnetic cards and devices
US10949627B2 (en) 2012-12-20 2021-03-16 Dynamics Inc. Systems and methods for non-time smearing detection mechanisms for magnetic cards and devices
USD765173S1 (en) 2013-03-04 2016-08-30 Dynamics Inc. Interactive electronic card with display and button
USD751639S1 (en) 2013-03-04 2016-03-15 Dynamics Inc. Interactive electronic card with display and button
USD750166S1 (en) 2013-03-04 2016-02-23 Dynamics Inc. Interactive electronic card with display and buttons
USD751640S1 (en) 2013-03-04 2016-03-15 Dynamics Inc. Interactive electronic card with display and button
USD750168S1 (en) 2013-03-04 2016-02-23 Dynamics Inc. Interactive electronic card with display and button
USD750167S1 (en) 2013-03-04 2016-02-23 Dynamics Inc. Interactive electronic card with buttons
USD765174S1 (en) 2013-03-04 2016-08-30 Dynamics Inc. Interactive electronic card with button
USD764584S1 (en) 2013-03-04 2016-08-23 Dynamics Inc. Interactive electronic card with buttons
USD777252S1 (en) 2013-03-04 2017-01-24 Dynamics Inc. Interactive electronic card with buttons
CN104252017A (en) * 2013-06-28 2014-12-31 苏州印象镭射科技有限公司 Laser holographic digital lens die and manufacturing method thereof
USD767024S1 (en) 2013-09-10 2016-09-20 Dynamics Inc. Interactive electronic card with contact connector
USD737373S1 (en) 2013-09-10 2015-08-25 Dynamics Inc. Interactive electronic card with contact connector
US20150109688A1 (en) * 2013-10-23 2015-04-23 Darren M Teren Magnifying card
US10380476B1 (en) 2013-12-10 2019-08-13 Wells Fargo Bank, N.A. Transaction instrument
US10354175B1 (en) * 2013-12-10 2019-07-16 Wells Fargo Bank, N.A. Method of making a transaction instrument
US10513081B1 (en) 2013-12-10 2019-12-24 Wells Fargo Bank, N.A. Method of making a transaction instrument
US10479126B1 (en) 2013-12-10 2019-11-19 Wells Fargo Bank, N.A. Transaction instrument
US10108891B1 (en) 2014-03-21 2018-10-23 Dynamics Inc. Exchange coupled amorphous ribbons for electronic stripes
US10032049B2 (en) 2016-02-23 2018-07-24 Dynamics Inc. Magnetic cards and devices for motorized readers
US10482365B1 (en) 2017-11-21 2019-11-19 Wells Fargo Bank, N.A. Transaction instrument containing metal inclusions

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US373597A (en) 1887-11-22 Glass and bank note examinee
US2234942A (en) 1939-07-24 1941-03-11 Edgar B Nichols Combined writing implement and magnifying device
US2631368A (en) 1948-10-27 1953-03-17 Frank W Baukus Combined saw and housing for a plurality of cutting tools
US2826959A (en) 1956-02-27 1958-03-18 C J Bates & Son Direction reading and measuring device
US3108853A (en) 1961-03-09 1963-10-29 Procter & Gamble Method of making reinforced plastic die boxes
US3209648A (en) 1962-05-11 1965-10-05 William M Chapman Telephone book mark with magnifying lens
US3117608A (en) 1962-06-28 1964-01-14 Life Service Inc Medical history pocket folders
US3140883A (en) 1962-10-23 1964-07-14 Ralph L Anthony Book cover
US3437548A (en) 1964-12-24 1969-04-08 Johns Manville Decorative products and process for making same
US3408347A (en) 1966-04-20 1968-10-29 Warner Lambert Pharmaceutical Pyrido-[1, 2-b] [1, 2]benzothiazin-10, 11-(7h, 10alphah)-dione 5, 5-dioxides and 7, 8-dihydropyrido-[1, 2-b] [1, 2]benzothiazin-10, 11-(9h, 10alphah)-dione 5, 5-dioxidesand process for their production
US3571957A (en) 1968-01-04 1971-03-23 Ncr Co Positive identification means and method for owner-presented documents
DE6920055U (en) 1969-05-16 1970-02-05 Picard & Wielpuetz Besteckfabr ASPARAGUS TONGS
US3712707A (en) * 1970-02-27 1973-01-23 Gen Electric Composite back projection screen and method of forming
AT332763B (en) * 1972-12-15 1976-10-11 Swarovski & Co REFLECTIVE FILM
DE2519617A1 (en) 1975-05-02 1976-11-11 Agfa Gevaert Ag PROJECTION SCREEN
US4011857A (en) * 1975-11-24 1977-03-15 Rice Harold D Solar energy converter and elongated Fresnel lens element
US4044889A (en) 1976-09-13 1977-08-30 Seymour Orentreich Cosmetic container including integrated lens structure
US4067947A (en) 1976-12-27 1978-01-10 Camillus Cutlery Co. Method of fabricating a decorative knife handle
US4137863A (en) 1977-04-12 1979-02-06 Anglin Russell E Reading instrument
US4435912A (en) 1978-03-20 1984-03-13 Frank J. King Card carrying microfilm and associated reading lens
JPS5561587A (en) 1978-10-27 1980-05-09 Hitachi Ltd Step for man conveyor
JPS5583015A (en) 1978-12-18 1980-06-23 Shiro Goto Magnifier sheet
US4294782A (en) 1979-04-10 1981-10-13 Jerome Bauer Method for substantially instantaneous liquid molding of an article
CH647607A5 (en) 1980-01-12 1985-01-31 Kurt Ehrat MACHINE-READABLE DATA CARD IN PLASTIC.
JPS56159039A (en) * 1980-05-09 1981-12-08 Dainippon Printing Co Ltd Manufacture of transparent television screen
US4502236A (en) 1981-01-30 1985-03-05 Adrian David L Card carrying microfilm and associated reading lens
US4393610A (en) 1981-01-30 1983-07-19 Lens-Card Systems, Inc. Card carrying microfilm and associated reading lens and process of forming same
JPS58112714A (en) * 1981-12-25 1983-07-05 Dainippon Printing Co Ltd Manufacture of fresnel lens
JPS58200275A (en) * 1982-05-18 1983-11-21 Dainippon Printing Co Ltd Production for patterned fresnel hologram
US4571497A (en) * 1982-08-19 1986-02-18 Eastman Kodak Company Method for continuously measuring the perimeter of wrapped objects
US4486363A (en) * 1982-09-30 1984-12-04 Amerace Corporation Method and apparatus for embossing a precision optical pattern in a resinous sheet
US4601861A (en) * 1982-09-30 1986-07-22 Amerace Corporation Methods and apparatus for embossing a precision optical pattern in a resinous sheet or laminate
US4509823A (en) * 1982-10-15 1985-04-09 Dai Nippon Insatsu Kabushiki Kaisha Rear projection screen
JPS59124818A (en) * 1982-12-29 1984-07-19 Matsushita Electric Ind Co Ltd Manufacture of plastic optical part
JPS59124819A (en) * 1982-12-29 1984-07-19 Matsushita Electric Ind Co Ltd Manufacture of plastic optical part
US4805680A (en) 1986-08-15 1989-02-21 Minoru Ueno Card case with a magnifying glass
JP2823016B2 (en) 1986-12-25 1998-11-11 ソニー株式会社 Method of manufacturing transmission screen
US4881334A (en) 1987-06-01 1989-11-21 Morrie Brown Viewer
JPH0662025B2 (en) 1987-12-28 1994-08-17 凸版印刷株式会社 Method of manufacturing colored display card having transparency
US4869946A (en) 1987-12-29 1989-09-26 Nimslo Corporation Tamperproof security card
US4863026A (en) 1988-05-13 1989-09-05 Perkowski Thomas J Storage cases for information recording devices
GB2222280A (en) 1988-08-01 1990-02-28 Leona Electronics Co Ltd Electronic calculator with lens
JPH0256680A (en) 1988-08-23 1990-02-26 Nec Corp Image data retrieving system
JPH0293513A (en) 1988-09-30 1990-04-04 Toshihiko Okabe Magnifying lens for binder notebook
US5114513A (en) * 1988-10-27 1992-05-19 Omron Tateisi Electronics Co. Optical device and manufacturing method thereof
JPH02166577A (en) 1988-12-21 1990-06-27 Hitachi Ltd Automatic transaction processor
US5183597A (en) * 1989-02-10 1993-02-02 Minnesota Mining And Manufacturing Company Method of molding microstructure bearing composite plastic articles
US5695346A (en) * 1989-12-07 1997-12-09 Yoshi Sekiguchi Process and display with moveable images
US5141677A (en) 1991-01-22 1992-08-25 Minnesota Mining And Manufacturing Company Method of hot stamping intraocular lens bodies
CA2043471C (en) 1991-05-29 1995-01-17 Royce N. Thurston Method for providing an inlay on a substrate
US5856661A (en) * 1993-02-12 1999-01-05 Universal Magnifier Llc Credit card with magnifying lens formed with a radiation-curable resin
US5608203A (en) * 1992-02-12 1997-03-04 Finkelstein; Alan Credit card with magnifying lens
US5215334A (en) 1992-07-23 1993-06-01 Presson Ronald C Emergency medical card
JP2826057B2 (en) 1993-12-21 1998-11-18 株式会社小糸製作所 Resin molded lens
US5534101A (en) 1994-03-02 1996-07-09 Telecommunication Research Laboratories Method and apparatus for making optical components by direct dispensing of curable liquid
FR2726384A1 (en) 1994-10-31 1996-05-03 Torelli Christine Treanton Integrated circuit telephone card with integral magnifying glass
US5681871A (en) 1995-05-24 1997-10-28 Johnson & Johnson Vision Products, Inc. Method for preparing ultraviolet radiation absorbing contact lenses

Also Published As

Publication number Publication date
CN1307713A (en) 2001-08-08
BR9910138A (en) 2001-10-02
AU3757899A (en) 1999-11-16
NZ507907A (en) 2002-08-28
KR20010042971A (en) 2001-05-25
JP2002513174A (en) 2002-05-08
EP1073994A1 (en) 2001-02-07
ZA200006415B (en) 2001-07-16
TR200003466T2 (en) 2001-06-21
US6176430B1 (en) 2001-01-23
IL139256A0 (en) 2001-11-25
WO1999056240A1 (en) 1999-11-04
AU756486B2 (en) 2003-01-16
ID26844A (en) 2001-02-15
IL139256A (en) 2005-05-17

Similar Documents

Publication Publication Date Title
AU756486B2 (en) Method for making a wallet card with an integral magnifying lens
US6769618B1 (en) Wallet card with a magnifying lens and light
CA2272919C (en) Credit card with magnifying lens
US5608203A (en) Credit card with magnifying lens
CA2129355C (en) Credit card with magnifying lens
US6749925B2 (en) Data carrier
RU2267406C2 (en) Method of producing data carrier printed by means of laser, data carrier produced by the method and blank for the carrier
US7997496B2 (en) Laminated printable multi-layer card with entrapped security element
JPH0615272B2 (en) ID card manufacturing method
CA2446899A1 (en) Methods of creating tamper resistant informational articles
CA2538444A1 (en) Identification document with lenticular watermark
CA2427993A1 (en) Methods of creating a tamper resistant informational article
US4259391A (en) Indicia bearing plastic laminate and method of producing same
JPH10258596A (en) Card containing precious metal and its manufacture
MX2012012146A (en) Optically writable holographic media.
KR102390238B1 (en) Polymer laminate having at least one diffractive element and method for making same
CN112469572A (en) Method for producing a security element having two security features and use of the method
MXPA00010395A (en) Method for making a wallet card with an integral magnifying lens
AU7671994A (en) Credit card with magnifying lens
JP2538445Y2 (en) Authentication identification card
JPH0634149Y2 (en) Authentication identification card
CA2412937A1 (en) Methods of creating a tamper resistant informational article
JP2002042073A (en) Information recording medium with two kinds of display form
JP2002059680A (en) Information recording medium with information display part
JP2002007994A (en) Optical non-contact hybrid card and manufacturing method therefor

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued