CA2347897A1 - Method for the secondary cross-linking of hydrogels with 2-oxotetrahydro-1,3-oxazines - Google Patents

Method for the secondary cross-linking of hydrogels with 2-oxotetrahydro-1,3-oxazines Download PDF

Info

Publication number
CA2347897A1
CA2347897A1 CA002347897A CA2347897A CA2347897A1 CA 2347897 A1 CA2347897 A1 CA 2347897A1 CA 002347897 A CA002347897 A CA 002347897A CA 2347897 A CA2347897 A CA 2347897A CA 2347897 A1 CA2347897 A1 CA 2347897A1
Authority
CA
Canada
Prior art keywords
acid
polymer
water
weight
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002347897A
Other languages
French (fr)
Inventor
Ulrich Riegel
Matthias Weismantel
Volker Frenz
Thomas Daniel
Fritz Engelhardt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2347897A1 publication Critical patent/CA2347897A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/245Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/14Water soluble or water swellable polymers, e.g. aqueous gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof

Abstract

The invention relates to a method for the secondary cross-linking of gels or surfaces of water-absorbing polymers by treating the polymer with a surface secondary cross-linking agent and subsequently subjecting it to a secondary cross-linking reaction during or after the treatment by raising the temperature and drying the polymer. According to the invention, the cross- linking agent is a compound of formula (I), wherein R1 is hydrogen, C1-C4 alkyl, C1-C4 hydroxyalkyl, trialkylsilyl or acetyl and R2, R2', R3, R3', R4, R4' independently is hydrogen, C1-C12 alkyl, C2-C12 alkenyl or C6-C12 aryl, dissolved in an inert solvent. The invention also relates to the liquid- absorbing polymers obtained by said method, to their use in hygiene items, packaging material and nonwovens.

Description

Postcrosslinking hydrogels with 2-oxotetrahydro-1,3-oxazines Description The present invention relates to a process for the gel or surface postcrosslinking of water-absorbent hydrogels with 2-oxotetrahydro-1,3-oxazines, the polymers thus obtainable and their use in hygiene articles, packaging materials and nonwovens.
Hydrophilic, highly swellable hydrogels are in particular polymers of (co)polymerized hydrophilic monomers, graft (co)polymers of one or more hydrophilic monomers on a suitable grafting base, crosslinked cellulose or starch ethers, crosslinked carboxymethylcellulose, partly crosslinked polyalkylene oxide or natural products that are swellable in aqueous fluids, for example guar derivatives. Such hydrogels are used as products for absorbing aqueous solutions in the manufacture of diapers, tampons, sanitary napkins and other hygiene articles, and as water retainers in market gardening.
To improve application properties, for example diaper rewet and absorbency under load (AUL), hydrophilic, highly swellable hydrogels are generally surface or gel postcrosslinked. This postcrosslinking is preferably carried out in the aqueous gel phase or as surface postcrosslinking of the ground and classified polymer particles.
Useful crosslinkers for this purpose include compounds containing at least two groups capable of entering covalent bonds with the carboxyl groups of the hydrophilic polymer. Useful compounds include for example di- or polyglycidyl compounds, such as diglycidyl phosphonate, alkoxysilyl compounds, polyaziridines, polyamines or polyamidoamines, and these compounds can also be used in mixtures with each other (see for example EP-A-0 083 022, EP-A-0 543 303 and EP-A-0 530 438). Polyamidoamines useful as crosslinkers are described in EP-A-0 349 935 in particular.
A major disadvantage of these crosslinkers is their high reactivity, since it necessitates particular precautions in production to avoid undesirable side effects. Moreover, the aforementioned crosslinkers have skin-irritating properties, which makes their use in hygiene articles problematical.
Known crosslinkers also include polyfunctional alcohols. For instance, EP-A-0 372 981, US-A-4 666 983 and US-A-5 385 983 teach the use of hydrophilic polyalcohols and the use of polyhydroxy surfactants. The reaction is carried out at 120-250°C. The process has the disadvantage that the esterification which leads to crosslinking is very s:Low even at such temperatures.
Prior German Patent Application DE-A-19 807 502 describes a process for postcrosslinking with 2-oxazolidinones.
It is an object of the present invention to provide gel or surface postcrosslinking equivalent to or superior to the prior art by using relatively inert compounds capable of reacting with carboxyl groups. This object is to be achieved with a very short reaction time and a very low reaction temperature.
We have found that this object is achieved, surprisingly, when 2-oxotetrahydro-1,3-oxazines are used as c:rosslinkers. More particularly, the moderate reactivity of the crosslinkers can be boosted with inorganic or organic acidic catalysts. Useful catalysts include known inorganic mineral acids, their acidic salts with alkali metals or ammonium and also their corresponding anhydrides. Useful organic catalysts include known carboxylic acids, sulfonic acids and amino acids.
The invention accordingly provides a process for the gel and/or surface postcrosslinking of water-absorbent polymers by the polymer being treated with a surface postcrosslinking solution and being postcrosslinked and dried during and after the treatment by raising the temperature, wherein the crosslinker comprises a compound of the formula I
O
~ R1 R4, O~N~
RZ CI).
R4 ~ ~ R2, R3' R3 where R1 is hydrogen, C1-C4-alkyl, C1-C4-hydroxyalkyl, trialkylsilyl or acetyl and RZ, Rz', R3, R3', R4, R4' are each independently hydrogen, C1-C12-alkyl, C1-C12-alkenyl or C6-C12-aryl, dissolved in an inert solvent.
The postcrosslinking and drying temperature is preferably 50-250°C, especially 50-200°C, most preferably 100-180°C.
The surface postcrosslinking solution is preferably sprayed onto the polymer in suitable spray mixers. Following spray application, the polymer powder is dried thermally, and the crosslinking reaction can take place not only before but also during'the drying. Preference is given to spray application of a solution of the crosslinker in reaction mixers or mixing and drying systems such as, for example, Lodige mixers, BEPEX~ mixers, NAUTA~ mixers, SHUGGI~ mixers or PROCESSALL~. Moreover, fluidized-bed dryers may also be used.
Drying may take place in the mixer itself, by heating the outer casing or by blowing hot air in. It is similarly possible to use a downstream dryer such as a tray dryer, a rotary tube dryer or a heatable screw. But it is also possible, for example, to use an azeotropic distillation as a drying technique. The preferred residence time at this temperature in the reaction mixer or dryer is less than 60 min, particularly preferably less than 30 min.
In a preferred embodiment of the invention, the reaction is accelerated by adding an acidic catalyst to the surface postcrosslinking solution. Useful catalysts for the process of the invention include all inorganic acids, their corresponding anhydrides, and organic acids. Examples are boric acid, sulfuric acid, hydroiodic acid, phosphoric acid, tartaric acid, acetic acid and toluenesulfonic acid. More particularly their polymeric forms, anhydrides and also the acidic salts of the polybasic acids are also suitable. Examples of these are boron oxide, sulfur trioxide, diphosphorus pentoxide and ammonium dihydrogenphosphate.
The crosslinker is dissolved in inert solvents. The crosslinker is used in an amount of from 0.01 to 5~, preferably 0.01-1.0~, preferably from 0.05 to 0.5~, by weight, based on the polymer used. The preferred inert solvent is water or a mixture of water with mono- or polyhydric alcohols. However, it is also possible to use any unlimitedly water-miscible organic solvent which is not itself reactive under the process conditions. When an alcohol-water mixture is used, the alcohol content of this solution is for example 10-90~ by weight, preferably 30-70$ by weight, especially 40-60~ by weight. Any alcohol of unlimited miscibility with water can be used, as can mixtures of two or more alcohols (eg. methanol + glycerol + water). The alcohol mixtures may contain the alcohols in any desired mixing ratio.
However, it is particularly preferable to use the following alcohols in aqueous solution: methanol, ethanol, isopropanol, ethylene glycol and particularly preferably 1,2-propanediol and 1,3-propanediol.
In a further preferred embodiment of the invention, the surface ,, postcrosslinking solution is used in a ratio of 1-20~ by weight, based on the mass of the polymer. Particular preference is given to a solution quantity of 0.5-10$ by weight, based on the polymer.
The invention further provides crosslinked water-absorbent polymers that are obtainable by the process according to the invention.
The hydrophilic, highly swellable hydrogels to be used in the process of the invention are in particular polymers of (co)polymerized hydrophilic monomers, graft (co)polymers of one or more hydrophilic monomers on a suitable grafting base, crosslinked cellulose or starch ethers or natural products swellable in aqueous fluids, for example guar derivatives.
Preferably the polymer to be crosslinked is a polymer containing structural units derived from acrylic acid or its esters, or obtained by graft copolymerization of acrylic acid or acrylic esters onto a water-soluble polymer matrix. These hydrogels are known to one skilled in the art and are described for example in US-A-4 286 082, DE-C-27 06 135, US-A-4 340 706, DE-C-37 13 601, DE-C-28 40 010, DE-A-43 44 548, DE-A-40 20 780, DE-A-40 15 085, DE-A-39 17 846, DE-A-38 07 289, DE-A-35 33 337, DE-A-35 03 458, DE-A-42 44 548, DE-A-42 19 607, DE-A-40 21 847, DE-A-38 31 261, DE-A-35 11 086, DE-A-31 18 172, DE-A-30 28 043, DE-A-44 18 881, EP-A-0 801 483, EP-A-0 455 985, EP-A-0 467 073, EP-A-0 312 952, EP-A-0 205 874, EP-A-0 499 774, DE-A 26 12 846, DE-A-40 20 780, EP-A-0 205 674, US-A-5 145 906, EP-A-0 530 438, EP-A-0 670 073, US-A-4 057 521, US-A-4 062 817, US-A-4 525 527, US-A-4 295 987, US-A-5 011 892, US-A-4 076 663 or US-A-4 931 497. The content of the aforementioned patent documents is expressly incorporated herein by reference.
Examples of hydrophilic monomers useful for preparing these hydrophilic, highly swellable hydrogels are polymerizable acids, such as acrylic acid, methacrylic acid, vinylsulfonic acid, vinylphosphonic acid, malefic acid including its anhydride, fumaric acid, itaconic acid, 2-acrylamido-2-methylpropanesulfonic acid, 2-acrylamido-2-methylpropanephosphonic acid and its amides, hydroxyalkyl esters and amino- or ammonium-containing esters and amides and also the alkali metal and/or ammonium salts of monomers containing acid groups. Also suitable are water-soluble N-vinylamides such as N-vinylformamide or else diallyldimethyl-ammonium chloride. Preferred hydrophilic monomers are compounds of the general formula II

(II), where R5 is hydrogen, methyl or ethyl, R6 is -COORS, hydroxysulfonyl or phosphonyl, a (C1-C4)-alkanol-esterified phosphonyl group or a group of the formula III

~ H3C ~ , CH3 ~C\ ~R5 (III) R7 is hydrogen, methyl, ethyl or carboxyl, R$ is hydrogen, amino-(C1-C4)-alkyl, hydroxy-(C1-C4)-alkyl, alkali metal or ammonium ion and R9 is a sulfonyl group, a phosphonyl group or a carboxyl group or an alkali metal or ammonium salt of each of these.
Examples of C1-C4-alkanols are methanol, ethanol, n-propanol, isopropanol or n-butanol.
Particularly preferred hydrophilic monomers are acrylic acid and methacrylic acid and also their alkali metal and ammonium salts, for example sodium acrylate, potassium acrylate or ammonium acrylate.
Useful grafting bases for hydrophilic hydrogels obtainable by graft copolymerization of olefinically unsaturated acids or their alkali metal or ammonium salts may be of natural or synthetic origin. Examples are starch, cellulose or cellulose derivatives and also other polysaccharides and oligosaccharides, polyalkylene oxides, in particular polyethylene oxides and polyethylene oxides and polypropylene oxides, and also hydrophilic polyesters.
Useful polyalkylene oxides have for example the formula IV
Ril R1~ ~0~ HzC - CH - 0'J ( IV) , n X
where R1~ and R11 are independently hydrogen, alkyl, alkenyl or aryl, X is hydrogen or methyl, and n is an integer from 1 to 10,000.
R1~ and R11 are each preferably hydrogen, (C1-C4)alkyl, (CZ-C6)alkenyl or phenyl.
Preferred hydrogels are in particular polyacrylates, polymethacrylates and also the graft polymers described in US-A-4 931 497, US-A-5 011 892 and US-A-5 041 496.
The hydrophilic, highly swellable hydrogels are preferably in crosslinked form; that is, they include compounds having at least two double bonds which have been copolymerized into the polymer network. Suitable crosslinkers are in particular N,N'-methylenebisacrylamide, N,N'-methylenebismethacrylamide, esters of unsaturated mono- or polycarboxylic acids of polyols, such as diacrylate or t:riacrylate, examples being the diacrylates and dimethacrylates of butanediol and of ethylene glycol, and trimethylolpropanetriacrylate, and also all.yl compounds such as allyl (meth)acrylate, triallyl cyanurate, diallyl maleate, polyallyl esters, tetraallyloxyethane, triallylamine, tetraallylethylenediamine, allyl esters of phosphoric acid and also vinylphosphonic acid derivatives as described for example in EP-A-0 343 427. In the process of the invention, however, particular preference is given to hydrogels prepared using polyallyl ethers as crosslinkers and by acidic homopolymerization of acrylic acid. Suitable crosslinkers are pentaerythritol tri-and tetraallyl ether, polyethylene glycol diallyl ether, monoethylene glycol diallyl ether, glycerol di- and triallyl ether, polyallyl ethers based on sorbitol and also ethoxylated variants thereof.
The water-absorbent polymer is preferably a polymeric acrylic acid or a polyacrylate. This water-absorbent polymer may be prepared by a process known from the literature. Preference is given to polymers containing crosslinking comonomers in amounts of 0.001-10 mol$, preferably 0.01-1 mol$, but very particular preference is given to polymers obtained by free-radical polymerization using a polyfunctional ethylenically unsaturated free-radical crosslinker which additionally bears at least one free hydroxyl group (eg. pentaerythritol triallyl ether or trimethylolpropane diallyl ether).
The hydrophilic, highly swellable hydrogels are preparable by conventional polymerization processes. Preference is given to addition polymerization in aqueous solution by the process known as gel polymerization. In this process from 15 to 50~ strength by weight aqueous solutions of one or more hydrophilic monomers and optionally of a suitable grafting base are polymerized in the presence of a free-radical initiator, preferably without mechanical mixing, utilizing the Trommsdorff-Norrish effect (Makromol. Chem. 1, 169 (1947)). The polymerization reaction may be carried out in the temperature range from 0 to 150°C, preferably from 10 to 100°C, not only at atmospheric pressure but also at elevated or reduced pressure. As customary, the polymerization may also be carried out in a protective gas atmosphere, preferably under nitrogen. The polymerization may be initiated using high-energy electromagnetic radiation or the customary chemical polymerization initiators, for example organic peroxides, such as benzoyl peroxide, tert-butyl hydroperoxide, methyl ethyl ketone peroxide, cumene hydroperoxide, azo compounds such as azodiisobutyronitrile and also inorganic peroxy compounds such as (NH4)25208 ~ KZS20$ or H202. They may if desired be used in combination with reducing agents such as sodium hydrogensulfite and iron(II) sulfate or redox systems where the reducing component is an aliphatic or aromatic sulfinic acid, such as benzenesulfinic acid or toluenesulfinic acid or derivatives thereof, such as Mannich adducts of sulfinic acids, aldehydes and amino compounds as described in DE-A-1 301 566. The qualities of the polymers may be further improved by postheating the polymer gels for a number of hours within the temperature range from 50 to 130°C, preferably from 70 to 100°C.
The gels obtained are neutralized for example to the extent of 0-100 mold, preferably 25-100 mold, particularly preferably 50-85 mold, based on monomer used, for which the customary neutralizing agent can be used, preferably alkali metal hydroxides or oxides, but particularly preferably sodium hydroxide, sodium carbonate or sodium bicarbonate.
Neutralization is customarily effected by mixing in the neutralizing agent as an aqueous solution or else, preferably, as a solid. For this purpose the gel is mechanically comminuted, by means of a mincer for example, and the neutralizing agent is sprayed on, scattered over or poured on and then carefully mixed in. To effect homogenization, the resultant gel mass may be passed through the mincer again a number of times. The neutralized gel mass is then dried with a belt dryer or roller dryer until the residual moisture content is less than 10~ by weight, especially below 5~ by weight. The dried hydrogel is then ground and sieved, the customary grinding apparatus being roll mills, pin mills or vibratory mills. The particle size of the sieved hydrogel is preferably in the range 45-1000 Nzn, particularly preferably 45-850 ~m most preferably 200-850 ~.m.
To ascertain the quality of surface postcrosslinking, the dried hydrogel is tested using the test methods described hereinbelow:
Methods:
1) Centrifuge retention capacity (CRC):
This method measures the free swellability of the hydrogel in a teabag. About 0.200 g of dried hydrogel is sealed in a teabag (format: 60 mm x 60 mm, Dexter 1234 T paper) and soaked for min in a 0.9$ strength by weight sodium chloride solution. The teabag is then spun for 3 min in a customary commercial spindryer (Bauknecht WS 130, 1400 rpm, basket diameter 230 mm). The amount 25 of liquid absorbed is determined by weighing the centrifuged teabag. The absorption capacity of the teabag itself is taken into account by determining a blank value (teabag without hydrogel), which is deducted from the weighing result (teabag with swollen hydrogel).
Retention CRC [g/g) _ (weighing result for teabag - blank value -initial weight of hydrogel) - initial weight of hydrogel.
2) Absorbency under load (0.3/0.5/0.7 psi):
For the absorbency under load, 0.900 g of dry hydrogel is distributed uniformly on the screen base of a measuring cell. The measuring cell consists of a Plexiglass cylinder (50 mm in height and 60 mm in diameter) whose base is formed by adhering a screen of steel mesh (mesh size 36 micron or 400 mesh). A coverplate is placed over the uniformly distributed hydrogel and loaded with an appropriate weight. The cell is then placed on a filter paper (S&S 589 Schwarzband, diameter = 90 mm) lying on a porous glass filter plate, this filter plate itself lying in a Petri dish (30 mm in height, 200 mm in diameter) which contains 0.90 strength by weight sodium chloride solution so that the liquid level at the beginning of the experiment is level with the top edge of the glass frit. Hydrogel is then left to~absorb the salt solution for 60 min. Subsequently the complete cell with the swollen gel is removed from the filter plate and the apparatus is reweighed following removal of the weight.
Absorbency under load (AUL) is calculated as follows:
AUL [g/g] _ (Wb-Wa) - Ws where Wb is the mass of the apparatus + gel after swelling, Wa is the mass of the apparatus + initial weight of the gel before swelling, and Ws is the initial weight of dry hydrogel.
The apparatus is measuring cylinder + coverplate.
Examples la and lb Base polymer:
In a 40 1 plastic bucket, 6.9 kg of glacial acrylic acid are diluted with 23 kg of water. 45 g of pentaerythritol triallyl ether are added to this solution with stirring, and the sealed bucket is inertized by passing nitrogen thrc>ugh it. The polymerization is then initiated by adding about 400 mg of hydrogen peroxide and 200 mg of ascorbic acid. After the reaction has ended, the gel is mechanically comminuted and admixed with sufficient aqueous sodium hydroxide solution to provide a degree of neutralization of 75 mold, based on the acrylic acid used. The neutralized gel is then dried on a roll dryer, ground with a pin mill and finally classified. This is the base polymer used in the subsequent examples.
The base polymer is sprayed in a blaring lab blender with crosslinker solution of the following composition: 4$ by weight of methanol, 6~ by weight of water and 0.20 by weight of 2-oxotetrahydro-1,3-oxazine, based on polymer used. The moist polymer is then divided into two portions which are each heat treated at 175~C in a through circulation cabinet, one portion for 60 min and the other for 90 min. The dried product is classified at 850 micron to remove lumps.
Examples 2a and 2b Base polymer as per Example 1 is sprayed with crosslinker solution in a blaring lab blender. The solution has a composition such that the following dosage is obtained, based on base polymer used: 0.40% by weight of 2-oxotetrahydro-1,3-oxazine, 4$ by weight of propylene glycol and 6% by weight of water. One portion of the moist polymer is then dried at 165°C for 60 min, another at 5 165°C for 90 min.
Example 3 Base polymer as per Example 1 is sprayed with crosslinker 10 solution in a blaring lab blender. The composition of the solution is such that the following dosage is achieved, based on base polymer used: 0.30% by weight of 2-oxotetrahydro-1,3-oxazine, 3%
by weight of 1,2-propanediol, 7% by weight of water and 0.2% by weight of boric acid. The moist polymer is then dried at 175°C for 60 min.
Example 4 Base polymer as per Example 1 is sprayed with crosslinker solution in a blaring lab blender. The composition of the solution is such that the following dosage is achieved, based on base polymer used: 0.40% by weight of N-methyl-2-oxotetrahydro-1,3-oxazine, 4% by weight of ethanol, 6%
by weight of water and 0.2% by weight of ammonium dihydrogenphosphate. The moist polymer is then dried at 175°C for 60 min.
The polymers prepared as per the above examples were tested. The results are reported below in Table 1.
ro o ~o--N tT

a o \

a c tr M oo a o ~r, ,Q,'.~ O1 O~ .--I .-i N N N

.,.I

a M \

CTO .---~ M 1f1 M ~T N

R',O ~ -~ M M M M M M

>T

U \

fxLT N O 00 t0 N ~f1 .-1 ()~ C V' M M M M M

O O O
N N N

x x o 0 o x N N N

da da ~ x x da ~o .o ~o + + ~ ~ c~ +

I
+~ x x + + + x a o 0 0 a~ a~ a~ ~ ~ o > ~ ~ w w w w U dP as da ac as as U7 V c!' C' V' M C

+~

~

r- I I I I I dP
i f1 N

ro o ~
x +J N~ N
~!

ro M x v ox o z .-1 r-i .~ ~ .--iN

:a 1a ~I 1.a la la Sa U N N N v U N

x x x x x .~ x a ~ a a a a ,., -.I ,~ ~ r, fA dPN dPU7dPUIdPU1 dPU7 aiP
N

U) I O N O N O UlO UI Ofn O
Ul O N O N O d O a O MO c O

la Sa 1.1 1-1 f.1 LI 1.I

U o V o U o U o V oU o U

O~ C s~ C C ~ >~

-ri -.~ -.~ -.-I ~r-I -rl --1N ~ ~ E ~ ~ E

I

N -.~ 0 0 0 0 0 0 Ca+~ ~o a~ ~a a~ ~o ~o i i C
~ 0 0 0 0 0 -~W 0 7.f~ I ui u W W t1 ~ u1 l.iN s t~ c~ ~ ~c r~ t~

C~~ I .-i ,--a ~ .-~ .-~ .1 N

U

ro N w CT

d ~

-.-Iro ,~ ro .ca .-1'.,N ?G-n w N N M V

G

N O +~-.iN ~ N N N U

r1C.L~ r~.-~ .-I r-1 .-i .-~ r-1 r-i ~ N .CN ~ E ~ ~ E

x ro~ ~

. X X X 7C >C X
ro ~

W a73 U W W W W W W
E~
Crosslinker 1: 2-oxotetrahydro-1,3-oxazine _Crosslinker 2: N-methyl-2-oxotetrahydro-1,3-oxazine Percentages are by weight based on polymer used. Drying temperature and time relate to the heat treatment of the base polymer after it has been sprayed with surface postcrosslinking solution.

Claims (8)

we claim:-
1. The process for the gel and/or surface postcrosslinking of water-absorbent polymers by the polymer being treated with a surface postcrosslinking solution and being postcrosslinked and dried during and after the treatment by raising the temperature, wherein the crosslinker comprises a compound of the formula I

where R1 is hydrogen, C1-C4-alkyl, C1-C4-hydroxyalkyl, trialkylsilyl or acetyl and R2, R2', R3, R3', R4, R4' are each independently hydrogen, C1-C12-alkyl, C1-C12-alkenyl or C6-C12-aryl, dissolved in an inert solvent.
2. The process of claim 1, wherein the polymer to be crosslinked is a polymer containing structural units derived from acrylic acid or esters thereof or obtained by graft copolymerization of acrylic acid or acrylic esters onto a water-soluble polymer matrix.
3. The process of claim 1 or 2, wherein surface postcrosslinking is effected using a catalyst comprising an acid or anhydride thereof.
4. The process of claim 3, wherein the acid is boric acid, sulfuric acid, hydroiodic acid, phosphoric acid, tartaric acid, acetic acid or toluenesulfonic acid or polymeric forms, acidic salts or anhydrides thereof.
5. The process of one or more of claims 1 to 4, wherein the inert solvent is water or a mixture of water with mono- or polyhydric alcohols comprising from 10 to 90% by weight of alcohol.
6. The process of one or more of claims 1 to 5, wherein the crosslinker is used in an amount of from 0.01 to 5% by weight, based on the weight of the polymer.
7. Water-absorbent polymer obtainable by the process of claims 1 to 6.
8. The use of the polymer obtainable as per claim 7 in hygiene articles, packaging materials and nonwovens.
CA002347897A 1998-11-26 1999-11-23 Method for the secondary cross-linking of hydrogels with 2-oxotetrahydro-1,3-oxazines Abandoned CA2347897A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19854573.8 1998-11-26
DE19854573A DE19854573A1 (en) 1998-11-26 1998-11-26 Process for post-crosslinking hydrogels with 2-oxo-tetrahydro-1,3-oxazines
PCT/EP1999/009003 WO2000031153A1 (en) 1998-11-26 1999-11-23 Method for the secondary cross-linking of hydrogels with 2-oxotetrahydro-1,3-oxazines

Publications (1)

Publication Number Publication Date
CA2347897A1 true CA2347897A1 (en) 2000-06-02

Family

ID=7889097

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002347897A Abandoned CA2347897A1 (en) 1998-11-26 1999-11-23 Method for the secondary cross-linking of hydrogels with 2-oxotetrahydro-1,3-oxazines

Country Status (8)

Country Link
US (1) US6657015B1 (en)
EP (1) EP1141039B1 (en)
JP (1) JP2002530491A (en)
AT (1) ATE259834T1 (en)
CA (1) CA2347897A1 (en)
DE (2) DE19854573A1 (en)
ES (1) ES2216617T3 (en)
WO (1) WO2000031153A1 (en)

Families Citing this family (241)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19854575A1 (en) * 1998-11-26 2000-05-31 Basf Ag Cross-linked swellable polymers
US6809158B2 (en) 2000-10-20 2004-10-26 Nippon Shokubai Co., Ltd. Water-absorbing agent and process for producing the same
BR0203825A (en) 2001-01-26 2002-12-17 Nippon Catalytic Chem Ind Water-absorbing agent and process for producing the same and water-absorbing structure
CN1277583C (en) 2001-06-08 2006-10-04 株式会社日本触媒 Water-absorbing agent, its production and sanitary material
CN1305914C (en) * 2001-10-05 2007-03-21 巴斯福股份公司 Method for crosslinking hydrogels with morpholine-2,3-diones
US6867269B2 (en) * 2001-12-19 2005-03-15 Nippon Shokubai Co., Ltd. Water-absorbent resin and production process therefor
DE10204938A1 (en) * 2002-02-07 2003-08-21 Stockhausen Chem Fab Gmbh Process for post-crosslinking of a water absorbing polymer surface with a cyclic urea useful in foams, fibers, films, cables, especially sealing materials, liquid absorbing hygiene articles, packaging materials, and soil additives
ES2428693T3 (en) 2003-02-12 2013-11-08 The Procter & Gamble Company Absorbent core for an absorbent article
ATE523180T1 (en) 2003-02-12 2011-09-15 Procter & Gamble ABSORBENT CORE FOR AN ABSORBENT ARTICLE
DE10334584A1 (en) 2003-07-28 2005-02-24 Basf Ag Post crosslinking of water absorbing polymers, useful for hygiene articles and packaging, comprises treatment with a bicyclic amideacetal crosslinking agent with simultaneous or subsequent heating
EP1651282A1 (en) 2003-08-06 2006-05-03 The Procter & Gamble Company Absorbant structures comprising coated water-swellable material
MXPA06001295A (en) 2003-08-06 2006-04-11 Procter & Gamble Absorbent article comprising coated water-swellable material.
WO2005014697A1 (en) 2003-08-06 2005-02-17 The Procter & Gamble Company Coated water-swellable material
EP1518567B1 (en) 2003-09-25 2017-06-28 The Procter & Gamble Company Absorbent articles comprising fluid acquisition zones with coated superabsorbent particles
DE102004009438A1 (en) 2004-02-24 2005-09-15 Basf Ag Process for the surface postcrosslinking of water-absorbing polymers
DE102004038015A1 (en) * 2004-08-04 2006-03-16 Basf Ag Process for the post-crosslinking of water-absorbing polymers with cyclic carbamates and / or cyclic ureas
ATE534671T1 (en) 2004-09-28 2011-12-15 Basf Se METHOD FOR THE CONTINUOUS PRODUCTION OF CROSS-LINKED FINE PARTICLE GEL-SHAPED POLYMERS
DE102004051242A1 (en) 2004-10-20 2006-05-04 Basf Ag Finely divided water-absorbing polymer particles with high liquid transport and absorption performance
DE102004057868A1 (en) 2004-11-30 2006-06-01 Basf Ag Preparation of water-absorbing polymer comprises polymerizing (where metal sulfate is added) mixture of e.g. acid group containing monomer, cross linkers and unsaturated monomers and treating the ground polymer with post crosslinking agent
JP2008529590A (en) * 2005-02-04 2008-08-07 ザ プロクター アンド ギャンブル カンパニー Absorbent structure with improved water-absorbing material
US20080154224A1 (en) * 2005-02-04 2008-06-26 Basf Aktiengesellschaft Process for Producing a Water-Absorbing Material Having a Coating of Elastic Filmforming Polymers
TW200635959A (en) * 2005-02-04 2006-10-16 Basf Ag Water swellable material
WO2006082239A2 (en) * 2005-02-04 2006-08-10 Basf Aktiengesellschaft Water-absorbing material having a coating of elastic film-forming polymers
DE602006015422D1 (en) * 2005-02-04 2010-08-26 Basf Se METHOD FOR PRODUCING A WATER ABSORBENT MATERIAL WITH A COATING OF ELASTIC FILM-FORMING POLYMERS
DE102005010198A1 (en) * 2005-03-05 2006-09-07 Degussa Ag Hydrolysis stable, post-crosslinked superabsorbent
DE102005014291A1 (en) 2005-03-24 2006-09-28 Basf Ag Process for the preparation of water-absorbing polymers
TWI344469B (en) 2005-04-07 2011-07-01 Nippon Catalytic Chem Ind Polyacrylic acid (salt) water-absorbent resin, production process thereof, and acrylic acid used in polymerization for production of water-absorbent resin
US20060264861A1 (en) 2005-05-20 2006-11-23 Lavon Gary D Disposable absorbent article having breathable side flaps
DE102005042604A1 (en) 2005-09-07 2007-03-08 Basf Ag Neutralization process
TWI394789B (en) * 2005-12-22 2013-05-01 Nippon Catalytic Chem Ind Water-absorbent resin composition, method of manufacturing the same, and absorbent article
TWI377222B (en) 2005-12-22 2012-11-21 Nippon Catalytic Chem Ind Method for surface crosslinking water-absorbing resin and method for manufacturing water-absorbing resin
US20090012486A1 (en) * 2005-12-28 2009-01-08 Basf Se Process for Production of a Water-Absorbing Material
EP1837348B9 (en) * 2006-03-24 2020-01-08 Nippon Shokubai Co.,Ltd. Water-absorbing resin and method for manufacturing the same
KR101160344B1 (en) 2006-03-27 2012-06-26 니폰 쇼쿠바이 컴파니 리미티드 Method for preparing water absorbing resin composition
MY148533A (en) 2006-07-19 2013-04-30 Basf Se Method for producing water-absorbent polymer particles with a higher permeability by polymerising droplets of a monomer solution
DE102008000237A1 (en) 2007-02-06 2008-08-07 Basf Se Mixtures, useful e.g. as an inhibitor or retarder for the stabilization of polymerizable compound, preferably swellable hydrogel-forming polymers, comprises a phenol imidazole derivative and a polymerizable compound
US8729190B2 (en) 2007-03-01 2014-05-20 Nippon Shokubai Co., Ltd. Particular water-absorbent agent having water-absorbent resin as main component
US20100120940A1 (en) 2007-04-05 2010-05-13 Nippon Shokubai Co., Ltd. Particulate water-absorbing agent having water-absorbing resin as main component
CN101677892B (en) 2007-06-18 2014-03-12 宝洁公司 Disposable absorbent article with sealed absorbent core with substantially continuously distributed absorbent particulate polymer material
ES2443535T3 (en) 2007-06-18 2014-02-19 The Procter & Gamble Company Disposable absorbent article with substantially continuous continuously distributed particle-shaped polymeric material and method
EP2018876A1 (en) * 2007-07-27 2009-01-28 The Procter and Gamble Company Absorbent article comprising water-absorbing polymeric particles and method for the production thereof
SA08290542B1 (en) 2007-08-28 2012-11-14 نيبون شوكوباي كو. ، ليمتد Method for Producing Water Absorbent Resin
SA08290556B1 (en) * 2007-09-07 2012-05-16 نيبون شوكوباي كو. ، ليمتد Binding Mehtod of Water Absorbent Resins
WO2009134780A1 (en) 2008-04-29 2009-11-05 The Procter & Gamble Company Process for making an absorbent core with strain resistant core cover
US20090318884A1 (en) * 2008-06-20 2009-12-24 Axel Meyer Absorbent structures with immobilized absorbent material
US8608096B2 (en) 2009-02-18 2013-12-17 Basf Se Method for the production of water-absorbing polymer particles
EP2404954B1 (en) 2009-03-04 2015-04-22 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin
US20100247916A1 (en) 2009-03-24 2010-09-30 Basf Se Process for Producing Surface Postcrosslinked Water-Absorbing Polymer Particles
WO2010124954A1 (en) 2009-04-30 2010-11-04 Basf Se Method for removing metal impurities
US20120064792A1 (en) 2009-05-20 2012-03-15 Basf Se Water Absorbent Storage Layers
US8502012B2 (en) * 2009-06-16 2013-08-06 The Procter & Gamble Company Absorbent structures including coated absorbent material
US8410221B2 (en) 2009-06-26 2013-04-02 Basf Se Process for producing water-absorbing polymer particles with low caking tendency and high absorption under pressure
CN105854063A (en) 2009-08-26 2016-08-17 巴斯夫欧洲公司 Odor-Inhibiting Compositions
JP5629688B2 (en) 2009-08-27 2014-11-26 株式会社日本触媒 Polyacrylic acid (salt) water-absorbing resin and method for producing the same
US8481159B2 (en) 2009-09-04 2013-07-09 Basf Se Water-absorbent porous polymer particles having specific sphericity and high bulk density
CN102498167A (en) 2009-09-18 2012-06-13 巴斯夫欧洲公司 Open-cell foams having superabsorbers
CN102548654A (en) 2009-09-29 2012-07-04 株式会社日本触媒 Particulate water absorbent and process for production thereof
WO2011042468A2 (en) 2009-10-09 2011-04-14 Basf Se Method for re-wetting surface post-cross-linked, water-absorbent polymer particles
US20120184690A1 (en) 2009-10-09 2012-07-19 Basf Se Method for Continuous Production of Water-Absorbent Polymer Particles
JP5794991B2 (en) 2009-10-09 2015-10-14 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Use of heated vapor condensate to produce water-absorbing polymer particles
EP2486084B1 (en) 2009-10-09 2016-03-23 Basf Se Process for remoisturizing surface-postcrosslinked water-absorbing polymer particles
EP2496343A1 (en) 2009-11-06 2012-09-12 Basf Se Textiles comprising improved superabsorbers
EP2504368B1 (en) 2009-11-23 2014-01-08 Basf Se Method for producing water-absorbing polymer particles having improved color stability
CN102665772B (en) 2009-11-23 2016-08-03 巴斯夫欧洲公司 The method preparing water absorbent polymer foam
JP2013511612A (en) 2009-11-23 2013-04-04 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing foamed water-absorbing polymer particles
EP2329803B1 (en) 2009-12-02 2019-06-19 The Procter & Gamble Company Apparatus and method for transferring particulate material
WO2011092098A1 (en) 2010-01-27 2011-08-04 Basf Se Odor-inhibiting, water-absorbing composite materials
WO2011099586A1 (en) 2010-02-10 2011-08-18 株式会社日本触媒 Process for producing water-absorbing resin powder
EP2539382B1 (en) 2010-02-24 2014-10-22 Basf Se Method for producing water-absorbing polymer particles
EP2539381A1 (en) 2010-02-24 2013-01-02 Basf Se Method for producing water-absorbing polymer particles
WO2011111857A1 (en) 2010-03-12 2011-09-15 株式会社日本触媒 Method for manufacturing a water-absorbing resin
EP2547703A1 (en) 2010-03-15 2013-01-23 Basf Se A process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution
US8703876B2 (en) 2010-03-15 2014-04-22 Basf Se Process for producing water absorbing polymer particles with improved color stability
CN102905661B (en) 2010-03-24 2016-09-07 巴斯夫欧洲公司 Ultrathin Fluid-Absorbent Cores
WO2011117215A1 (en) 2010-03-24 2011-09-29 Basf Se Method for removing residual monomers from water-absorbent polymer particles
EP2550306B1 (en) 2010-03-24 2014-07-02 Basf Se A process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution
EP2550316B2 (en) 2010-03-25 2018-11-14 Basf Se Method for producing water-absorbing polymer particles
WO2011131526A1 (en) 2010-04-19 2011-10-27 Basf Se Method for producing water-absorbing polymer particles
WO2011157656A2 (en) 2010-06-14 2011-12-22 Basf Se Water-absorbing polymer particles with improved colour stability
US9962459B2 (en) 2010-07-02 2018-05-08 Basf Se Ultrathin fluid-absorbent cores
US9089624B2 (en) 2010-08-23 2015-07-28 Basf Se Ultrathin fluid-absorbent cores comprising adhesive and having very low dry SAP loss
CN103153455A (en) 2010-09-30 2013-06-12 株式会社日本触媒 Particulate water absorbent and production method for same
EP2625207A1 (en) 2010-10-06 2013-08-14 Basf Se Method for producing thermally surface post-crosslinked water-absorbing polymer particles
EP2630183A1 (en) 2010-10-21 2013-08-28 Basf Se Water-absorbing polymeric particles and method for the production thereof
EP2464680B1 (en) 2010-10-21 2013-10-02 The Procter & Gamble Company Absorbent structures comprising post-crosslinked water-absorbent particles
EP2476714A1 (en) 2011-01-13 2012-07-18 Basf Se Polyurethane integral foams with improved surface hardness
US10493429B2 (en) 2011-01-28 2019-12-03 Nippon Shokubai Co., Ltd. Method for producing polyacrylic acid (salt)-based water absorbent resin powder
EP2669318B1 (en) 2011-01-28 2020-06-17 Nippon Shokubai Co., Ltd. Manufacturing method for polyacrylic acid (salt) -based water-absorbent resin powder
WO2012107344A1 (en) 2011-02-07 2012-08-16 Basf Se Method for producing water-absorbing polymer particles
EP2673011B2 (en) 2011-02-07 2019-01-16 Basf Se Procedure for preparing water absorbing polymer particles having high free swell rate
DE102011003877A1 (en) 2011-02-09 2012-08-09 Sb Limotive Company Ltd. Composition for extinguishing and / or inhibiting fluorinated and / or phosphorus-containing fires
DE102011003882A1 (en) 2011-02-09 2012-08-09 Sb Limotive Company Ltd. Composition for extinguishing and / or inhibiting fluorinated and / or phosphorus-containing fires
CN103415553B (en) 2011-03-08 2015-07-08 巴斯夫欧洲公司 Method for producing water-absorbing polymer particles having improved permeability
EP2705075B1 (en) 2011-05-06 2016-12-21 Basf Se Method for the production of water-absorbing polymer particles
US20120296297A1 (en) 2011-05-18 2012-11-22 Achille Di Cintio Feminine hygiene absorbent articles comprising water-absorbing polymeric foams
WO2012156386A1 (en) 2011-05-18 2012-11-22 Basf Se Use of water-absorbing polymer particles for dewatering faeces
US8987545B2 (en) 2011-05-18 2015-03-24 The Procter & Gamble Company Feminine hygiene absorbent articles comprising water-absorbing polymer particles
CN103596599B (en) 2011-05-18 2016-08-17 巴斯夫欧洲公司 Water-absorbing polymer particles is for absorbing the purposes of blood and/or menstruation
EP2714103B1 (en) 2011-05-26 2019-08-21 Basf Se Process for the continuous production of water-absorbing polymer particles
JP6253575B2 (en) 2011-05-26 2017-12-27 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing water-absorbing polymer particles
US8999884B2 (en) 2011-06-01 2015-04-07 The Procter & Gamble Company Absorbent structures with coated water-absorbing material
DE112012002289A5 (en) 2011-06-01 2014-03-13 Basf Se Odor-inhibiting mixtures for incontinence articles
US8664151B2 (en) 2011-06-01 2014-03-04 The Procter & Gamble Company Articles comprising reinforced polyurethane coating agent
EP2714755B1 (en) 2011-06-03 2017-04-26 Basf Se Method for continuous production of water-absorbent polymer particles
WO2012163930A1 (en) 2011-06-03 2012-12-06 Basf Se Method for continuously producing water-absorbing polymer particles
EP2532334B1 (en) 2011-06-10 2016-10-12 The Procter and Gamble Company Absorbent core for disposable absorbent article
EP2717821B1 (en) 2011-06-10 2019-08-07 The Procter and Gamble Company Disposable diapers
US10561546B2 (en) 2011-06-10 2020-02-18 The Procter & Gamble Company Absorbent structure for absorbent articles
ES2459724T3 (en) 2011-06-10 2014-05-12 The Procter & Gamble Company Method and apparatus for making absorbent structures with absorbent material
EP2532329B1 (en) 2011-06-10 2018-09-19 The Procter and Gamble Company Method and apparatus for making absorbent structures with absorbent material
WO2012170808A1 (en) 2011-06-10 2012-12-13 The Procter & Gamble Company Absorbent core for disposable absorbent articles
WO2012170779A1 (en) 2011-06-10 2012-12-13 The Procter & Gamble Company Absorbent structure for absorbent articles
ES2484695T5 (en) 2011-06-10 2018-02-13 The Procter & Gamble Company Disposable diaper that has a reduced joint between the absorbent core and the backing sheet
CA2840641A1 (en) 2011-06-30 2013-01-03 The Procter & Gamble Company Absorbent structure comprising an oil-scavenger component
JP5980325B2 (en) 2011-07-14 2016-08-31 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Process for producing water-absorbing polymer particles having a high swelling rate
WO2013045163A1 (en) 2011-08-12 2013-04-04 Basf Se A process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution
ES2686023T3 (en) 2011-10-18 2018-10-16 Basf Se Fluid absorbent article
EP2586412A1 (en) 2011-10-24 2013-05-01 Bostik SA New absorbent article and process for making it
EP2586410A1 (en) 2011-10-24 2013-05-01 Bostik SA Novel process for preparing an absorbent article
EP2586409A1 (en) 2011-10-24 2013-05-01 Bostik SA New absorbent article and process for making it
US9126186B2 (en) 2011-11-18 2015-09-08 Basf Se Process for producing thermally surface postcrosslinked water-absorbing polymer particles
WO2013083698A1 (en) 2011-12-08 2013-06-13 Basf Se Process for producing water-absorbing polymer fibres
WO2013117496A1 (en) 2012-02-06 2013-08-15 Basf Se Method for producing water-absorbing polymer particles
JP6133332B2 (en) 2012-02-15 2017-05-24 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Water-absorbing polymer particles with high swelling rate and high permeability
CN104204039A (en) 2012-03-30 2014-12-10 巴斯夫欧洲公司 Method for thermal surface post-crosslinking in a drum-type heat exchanger having an inverse screw flight
EP2838572A1 (en) 2012-04-17 2015-02-25 Basf Se Process for producing surface postcrosslinked water-absorbing polymer particles
WO2013156330A1 (en) 2012-04-17 2013-10-24 Basf Se Process for producing surface postcrosslinked water-absorbing polymer particles
EP2671554B1 (en) 2012-06-08 2016-04-27 The Procter & Gamble Company Absorbent core for use in absorbent articles
WO2013182469A2 (en) 2012-06-08 2013-12-12 Basf Se Odour-control superabsorbent
JP6250042B2 (en) 2012-06-13 2017-12-20 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing water-absorbing polymer particles in a polymerization reactor having at least two shafts rotating in parallel to the axis
EP2861633B1 (en) 2012-06-19 2016-08-10 Basf Se Method for the production of water-absorbing polymer particles
EP2679208B1 (en) 2012-06-28 2015-01-28 The Procter & Gamble Company Absorbent core for use in absorbent articles
EP2679210B1 (en) 2012-06-28 2015-01-28 The Procter & Gamble Company Absorbent articles with improved core
EP2679209B1 (en) 2012-06-28 2015-03-04 The Procter & Gamble Company Absorbent articles with improved core
WO2014005860A1 (en) 2012-07-03 2014-01-09 Basf Se Method for producing water-absorbent polymer particles with improved properties
WO2014019813A1 (en) 2012-07-30 2014-02-06 Basf Se Odour-inhibiting mixtures for incontinence products
WO2014034667A1 (en) 2012-08-27 2014-03-06 株式会社日本触媒 Particulate water-absorbing agent and process for producing same
CN104583241B (en) 2012-08-27 2018-01-16 巴斯夫欧洲公司 The method for preparing water-absorbing polymeric particles
WO2014041968A1 (en) 2012-09-11 2014-03-20 株式会社日本触媒 Method for manufacturing polyacrylic acid (polyacrylate)-based water-absorbent agent, and water-absorbent agent
CN107376866B (en) 2012-09-11 2021-06-01 株式会社日本触媒 Method for producing polyacrylic acid (salt) water-absorbing agent and water-absorbing agent
CN104718228B (en) 2012-09-19 2017-06-20 巴斯夫欧洲公司 The method for preparing water-absorbing polymeric particles
CN104703691B (en) 2012-10-03 2018-03-02 株式会社日本触媒 Water absorbing agent and its manufacture method
IN2015DN03110A (en) 2012-11-13 2015-10-02 Procter & Gamble
EP2730596A1 (en) 2012-11-13 2014-05-14 Basf Se Polyurethane soft foam materials containing plant seeds
EP3896104A1 (en) 2012-11-21 2021-10-20 Basf Se Surface-postcrosslinked water-absorbent polymer particles
CN104812418B (en) 2012-11-26 2019-02-19 巴斯夫欧洲公司 The method for preparing superabsorbents based on renewable raw materials
PL2740452T3 (en) 2012-12-10 2022-01-31 The Procter & Gamble Company Absorbent article with high absorbent material content
HUE044699T2 (en) 2012-12-10 2019-11-28 Procter & Gamble Absorbent article with profiled acquisition-distribution system
DE202012013572U1 (en) 2012-12-10 2017-12-05 The Procter & Gamble Company Absorbent article with high absorption material content
US9216116B2 (en) 2012-12-10 2015-12-22 The Procter & Gamble Company Absorbent articles with channels
US10639215B2 (en) 2012-12-10 2020-05-05 The Procter & Gamble Company Absorbent articles with channels and/or pockets
US8979815B2 (en) 2012-12-10 2015-03-17 The Procter & Gamble Company Absorbent articles with channels
EP2740450A1 (en) 2012-12-10 2014-06-11 The Procter & Gamble Company Absorbent core with high superabsorbent material content
DE202012013571U1 (en) 2012-12-10 2017-12-06 The Procter & Gamble Company Absorbent particles with high absorption material content
US9216118B2 (en) 2012-12-10 2015-12-22 The Procter & Gamble Company Absorbent articles with channels and/or pockets
EP2740449B1 (en) 2012-12-10 2019-01-23 The Procter & Gamble Company Absorbent article with high absorbent material content
JP2016506981A (en) 2013-01-29 2016-03-07 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing water-absorbing polymer particles having high permeability of swollen gel bed, fast swelling speed and high centrifugal retention capacity
JP6395727B2 (en) 2013-01-30 2018-09-26 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for removing residual monomer from water-absorbing polymer particles
US9820894B2 (en) 2013-03-22 2017-11-21 The Procter & Gamble Company Disposable absorbent articles
EP2813201B1 (en) 2013-06-14 2017-11-01 The Procter and Gamble Company Absorbent article and absorbent core forming channels when wet
JP2016535646A (en) 2013-08-26 2016-11-17 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Fluid absorbent product
US9987176B2 (en) 2013-08-27 2018-06-05 The Procter & Gamble Company Absorbent articles with channels
US10335324B2 (en) 2013-08-27 2019-07-02 The Procter & Gamble Company Absorbent articles with channels
CN105452303B (en) 2013-08-28 2017-04-26 株式会社日本触媒 Method for producing water-absorbing resin
WO2015036273A1 (en) 2013-09-12 2015-03-19 Basf Se Method for producing acrylic acid
RU2636366C2 (en) 2013-09-16 2017-11-22 Дзе Проктер Энд Гэмбл Компани Absorbing products with channels and indicating elements
US11207220B2 (en) 2013-09-16 2021-12-28 The Procter & Gamble Company Absorbent articles with channels and signals
EP3351225B1 (en) 2013-09-19 2021-12-29 The Procter & Gamble Company Absorbent cores having material free areas
KR102191077B1 (en) 2013-10-30 2020-12-15 바스프 에스이 Method for producing water-absorbing polymer particles by suspension polymerization
WO2015074966A1 (en) 2013-11-22 2015-05-28 Basf Se Process for producing water-absorbing polymer particles
US9789009B2 (en) 2013-12-19 2017-10-17 The Procter & Gamble Company Absorbent articles having channel-forming areas and wetness indicator
PL2886092T3 (en) 2013-12-19 2017-03-31 The Procter And Gamble Company Absorbent cores having channel-forming areas and c-wrap seals
WO2015093594A1 (en) 2013-12-20 2015-06-25 株式会社日本触媒 Polyacrylic acid (salt) water absorbent, and method for producing same
EP2905001B1 (en) 2014-02-11 2017-01-04 The Procter and Gamble Company Method and apparatus for making an absorbent structure comprising channels
EP2949302B1 (en) 2014-05-27 2018-04-18 The Procter and Gamble Company Absorbent core with curved channel-forming areas
EP2949300B1 (en) 2014-05-27 2017-08-02 The Procter and Gamble Company Absorbent core with absorbent material pattern
ES2643577T3 (en) 2014-05-27 2017-11-23 The Procter & Gamble Company Absorbent core with absorbent material design
EP2949301B1 (en) 2014-05-27 2018-04-18 The Procter and Gamble Company Absorbent core with curved and straight absorbent material areas
EP2995322B1 (en) 2014-09-15 2017-03-01 Evonik Degussa GmbH Smell adsorbent
EP2995323B1 (en) 2014-09-15 2019-02-27 Evonik Degussa GmbH Amino polycarboxylic acids as processing aids in the production of superabsorbents
WO2016050397A1 (en) 2014-09-30 2016-04-07 Basf Se Method for producing water-absorbing polymer particles
EP3009474B1 (en) 2014-10-16 2017-09-13 Evonik Degussa GmbH Method for the production of water soluble polymers
WO2016135020A1 (en) 2015-02-24 2016-09-01 Basf Se Method for the continuous dehydration of 3-hydroxypropionic acid to give acrylic acid
RU2017133027A (en) 2015-03-16 2019-04-16 Дзе Проктер Энд Гэмбл Компани Rugged Absorbent Products
JP2018508292A (en) 2015-03-16 2018-03-29 ザ プロクター アンド ギャンブル カンパニー Absorbent article with improved core
US10537874B2 (en) 2015-04-02 2020-01-21 Nippon Shokubai Co., Ltd. Method for producing particulate water-absorbing agent
US10835634B2 (en) 2015-04-07 2020-11-17 Basf Se Method for the agglomeration of superabsorber particles
US10857256B2 (en) 2015-04-07 2020-12-08 Basf Se Method for producing super absorber particles
WO2016162175A1 (en) 2015-04-07 2016-10-13 Basf Se Method for the dehydration of 3-hydroxypropanoic acid to form acrylic acid
KR102597114B1 (en) 2015-05-08 2023-11-01 바스프 에스이 Production method for producing water-absorbing polymer particles and belt dryer
CN107592805B (en) 2015-05-12 2021-07-06 宝洁公司 Absorbent article with improved core and backsheet adhesive
US10543129B2 (en) 2015-05-29 2020-01-28 The Procter & Gamble Company Absorbent articles having channels and wetness indicator
WO2016207444A1 (en) 2015-06-26 2016-12-29 Bostik Inc. New absorbent article comprising an acquisition/distribution layer and process for making it
CN107847905A (en) 2015-07-01 2018-03-27 株式会社日本触媒 Particulate water-absorbing agent
EP3167859B1 (en) 2015-11-16 2020-05-06 The Procter and Gamble Company Absorbent cores having material free areas
ES2838027T3 (en) 2015-12-02 2021-07-01 Hartmann Paul Ag Absorbent article with improved core
EP3205318A1 (en) 2016-02-11 2017-08-16 The Procter and Gamble Company Absorbent article with high absorbent capacity
US20170281425A1 (en) 2016-03-30 2017-10-05 Basf Se Fluid-absorbent article
US10881555B2 (en) 2016-03-30 2021-01-05 Basf Se Fluid-absorbent article
US10806640B2 (en) 2016-03-30 2020-10-20 Basf Se Ultrathin fluid-absorbent article
EP3238676B1 (en) 2016-04-29 2019-01-02 The Procter and Gamble Company Absorbent core with profiled distribution of absorbent material
EP3238678B1 (en) 2016-04-29 2019-02-27 The Procter and Gamble Company Absorbent core with transversal folding lines
EP3251648A1 (en) 2016-05-31 2017-12-06 The Procter and Gamble Company Absorbent article with improved fluid distribution
KR102528637B1 (en) 2016-05-31 2023-05-03 바스프 에스이 Manufacturing method of superabsorbent
EP3278782A1 (en) 2016-08-02 2018-02-07 The Procter and Gamble Company Absorbent article with improved fluid storage
US11325990B2 (en) 2016-08-10 2022-05-10 Basf Se Method for the production of superabsorbers
US20190255514A1 (en) 2016-10-26 2019-08-22 Basf Se Method for discharging superabsorbent particles from a silo and filling them into bulk containers
US10828208B2 (en) 2016-11-21 2020-11-10 The Procte & Gamble Company Low-bulk, close-fitting, high-capacity disposable absorbent pant
PL3576701T3 (en) 2017-02-06 2023-03-20 Basf Se Fluid-absorbent article
EP3582734B1 (en) 2017-02-17 2021-12-01 Basf Se Fluid-absorbent article
EP3391960B1 (en) 2017-04-19 2023-11-22 The Procter & Gamble Company Superabsorbent polymer particles comprising one, or more than one area(s) with clay platelets and at least two distinct, non-adjacent areas with no clay platelets
US10875985B2 (en) 2017-04-19 2020-12-29 The Procter & Gamble Company Superabsorbent polymer particles comprising one or more than one area(s) with clay platelets and at least two distinct areas substantially free of clay platelets
EP3391962A1 (en) 2017-04-19 2018-10-24 The Procter & Gamble Company Method for making water-absorbing polymer particles
EP3391961A1 (en) 2017-04-19 2018-10-24 The Procter & Gamble Company Agglomerated superabsorbent polymer particles having a specific size ratio
EP3391958B1 (en) 2017-04-19 2020-08-12 The Procter & Gamble Company Method of making surface-coated water-absorbing polymer particles in a microfluidic device
US11053370B2 (en) 2017-04-19 2021-07-06 The Procter & Gamble Company Agglomerated superabsorbent polymer particles having a specific size ratio
EP3391963B1 (en) 2017-04-19 2021-04-14 The Procter & Gamble Company Process to prepare agglomerated superabsorbent polymer particles comprising clay platelets with edge modification and/or surface modification
EP3391959A1 (en) 2017-04-19 2018-10-24 The Procter & Gamble Company Method for making water-absorbing polymer particles having areas with inorganic solid particles and areas substantially free of inorganic solid particles
WO2018202490A1 (en) 2017-05-02 2018-11-08 Basf Se Method for the discontinuous production of superabsorber particles by polymerizing an aqueous monomer solution dispersed in a hydrophobic solvent
WO2018202489A1 (en) 2017-05-02 2018-11-08 Basf Se Method for the discontinuous production of superabsorber particles by polymerizing an aqueous monomer solution dispersed in a hydrophobic solvent
US20180333310A1 (en) 2017-05-18 2018-11-22 The Procter & Gamble Company Incontinence pant with low-profile unelasticized zones
CN110832011B (en) 2017-07-12 2023-03-10 巴斯夫欧洲公司 Method of preparing superabsorbent polymer particles
EP3661662A1 (en) 2017-07-31 2020-06-10 Basf Se Classification process for superabsorbent polymer particles
WO2019076682A1 (en) 2017-10-18 2019-04-25 Basf Se Method for the production of superabsorbers
DE202017005496U1 (en) 2017-10-24 2017-12-19 The Procter & Gamble Company disposable diaper
DE202017006014U1 (en) 2017-11-21 2018-01-14 The Procter & Gamble Company Absorbent article with pockets
DE202017006016U1 (en) 2017-11-21 2017-12-01 The Procter & Gamble Company Absorbent article with channels
KR102568226B1 (en) 2017-12-11 2023-08-18 주식회사 엘지화학 Super absorbent polymer and preparation method for the same
US11491463B2 (en) 2018-01-09 2022-11-08 Basf Se Superabsorber mixtures
KR20200118002A (en) 2018-02-06 2020-10-14 바스프 에스이 Pneumatic transport method of super absorbent particles
KR20200125931A (en) 2018-02-22 2020-11-05 바스프 에스이 Method for producing super absorbent particles
US20220071818A9 (en) 2018-04-20 2022-03-10 Basf Se Thin fluid absorbent core-absorbent paper
JP7362653B2 (en) 2018-04-20 2023-10-17 ビーエーエスエフ ソシエタス・ヨーロピア How to make superabsorbents
KR20210035807A (en) 2018-07-24 2021-04-01 바스프 에스이 Method of manufacturing super absorbent
JP2021532865A (en) 2018-08-01 2021-12-02 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se Fluid absorbent core
CN112638337B (en) 2018-08-01 2023-01-20 巴斯夫欧洲公司 Feminine hygiene absorbent article
JP7450603B2 (en) 2018-08-20 2024-03-15 ベーアーエスエフ・エスエー Superabsorbent manufacturing method
JP2022502543A (en) 2018-09-28 2022-01-11 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method of manufacturing superabsorbent
US20210354108A1 (en) 2018-10-29 2021-11-18 Basf Se Process for producing long-term color stable superabsorbent polymer particles
KR102418591B1 (en) 2018-11-13 2022-07-07 주식회사 엘지화학 Super absorbent polymer and preparation method for the same
WO2022058190A1 (en) 2020-09-17 2022-03-24 Basf Se Process for producing superabsorbent polymer particles

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1297109B (en) 1963-03-13 1969-06-12 Hoechst Ag Process for the preparation of N-acylmorpholone (2) derivatives
US3364181A (en) * 1965-11-10 1968-01-16 Dow Chemical Co Cyclic carbamate resins and method of preparation
DE1301566B (en) 1966-11-30 1969-08-21 Continental Gummi Werke Ag Process for the production of hydrolysis-resistant polyurethane elastomers
DE2304630A1 (en) 1973-01-31 1974-08-08 John L Grund Sewing machine needle - with lateral thread insertion
US4056502A (en) 1974-08-05 1977-11-01 The Dow Chemical Company Absorbent articles made from carboxylic polyelectrolyte solutions containing bis-oxazoline crosslinker and methods for their preparation
US4057521A (en) 1974-08-05 1977-11-08 The Dow Chemical Company Absorbent articles made from carboxylic synthetic polyelectrolytes having copolymerized N-substituted acrylamide crosslinker
CS177602B1 (en) 1975-03-20 1977-07-29 Jaroslav Stehlicek Process for preparing polymers containing n-acyllactamic groups
JPS51125468A (en) 1975-03-27 1976-11-01 Sanyo Chem Ind Ltd Method of preparing resins of high water absorbency
DE2706135C2 (en) 1977-02-14 1982-10-28 Chemische Fabrik Stockhausen GmbH, 4150 Krefeld Thickener for excreted intestinal contents and urine
US4062817A (en) 1977-04-04 1977-12-13 The B.F. Goodrich Company Water absorbent polymers comprising unsaturated carboxylic acid, acrylic ester containing alkyl group 10-30 carbon atoms, and another acrylic ester containing alkyl group 2-8 carbon atoms
US4131576A (en) 1977-12-15 1978-12-26 National Starch And Chemical Corporation Process for the preparation of graft copolymers of a water soluble monomer and polysaccharide employing a two-phase reaction system
US4286082A (en) 1979-04-06 1981-08-25 Nippon Shokubai Kagaku Kogyo & Co., Ltd. Absorbent resin composition and process for producing same
US4295987A (en) 1979-12-26 1981-10-20 The Procter & Gamble Company Cross-linked sodium polyacrylate absorbent
JPS6025045B2 (en) 1980-03-19 1985-06-15 製鉄化学工業株式会社 Method for producing acrylic acid polymer with excellent salt water absorption ability
DE3028043A1 (en) 1980-07-24 1982-02-18 Vdo Adolf Schindling Ag, 6000 Frankfurt Electric clock drive for stepping motor - has meshing gears with damping liq. in gap between two adjacent teeth
DE3118172A1 (en) 1981-05-08 1982-11-25 Philips Kommunikations Industrie AG, 8500 Nürnberg Longitudinally watertight optical communication cable
JPS6018690B2 (en) 1981-12-30 1985-05-11 住友精化株式会社 Method for improving water absorbency of water absorbent resin
US4525527A (en) 1982-01-25 1985-06-25 American Colloid Company Production process for highly water absorbable polymer
JPS58180233A (en) 1982-04-19 1983-10-21 Nippon Shokubai Kagaku Kogyo Co Ltd Absorbing agent
JPS60163956A (en) 1984-02-04 1985-08-26 Arakawa Chem Ind Co Ltd Production of water-absorptive resin
JPS6173704A (en) 1984-09-19 1986-04-15 Arakawa Chem Ind Co Ltd Production of highly water-absorptive resin
DE3511086A1 (en) 1985-03-27 1986-10-09 Belzer-Dowidat Gmbh Werkzeug-Union, 5600 Wuppertal PLIERS
US4588490A (en) 1985-05-22 1986-05-13 International Business Machines Corporation Hollow cathode enhanced magnetron sputter device
US4654039A (en) 1985-06-18 1987-03-31 The Proctor & Gamble Company Hydrogel-forming polymer compositions for use in absorbent structures
DE3713601A1 (en) 1987-04-23 1988-11-10 Stockhausen Chem Fab Gmbh METHOD FOR PRODUCING A STRONG WATER-ABSORBENT POLYMER
US4833222A (en) 1987-10-22 1989-05-23 The Dow Chemical Company Crosslinker stabilizer for preparing absorbent polymers
DE3738602A1 (en) 1987-11-13 1989-05-24 Cassella Ag HYDROPHILY-SOURCE-PURPLE POLYMERISES, THEIR PREPARATION AND USE
EP0331805B1 (en) 1988-03-05 1992-02-26 Henkel Kommanditgesellschaft auf Aktien Packaging container with a flexible bag resting in a rigid envelope and having a closable spout
DE3822490A1 (en) 1988-07-02 1990-01-04 Hoechst Ag WAFER SOLUTIONS OF POLYAMIDOAMINE-EPICHLORHYRIN RESINS, PROCESS FOR THEIR PREPARATION AND THEIR USE
AT391321B (en) 1988-08-29 1990-09-25 Chemie Linz Gmbh METHOD FOR PRODUCING LIQUID-ABSORBING ACRYLIC RESINS
CA2004864A1 (en) 1988-12-08 1990-06-08 Kinya Nagasuna Method for production of absorbent resin excelling in durability
DE3910563A1 (en) 1989-04-01 1990-10-04 Cassella Ag HYDROPHILIC, SWELLABLE Graft Copolymers, THE PRODUCTION AND USE THEREOF
DE3911433A1 (en) 1989-04-07 1990-10-11 Cassella Ag HYDROPHILIC SWELLABLE GRAFT POLYMERISATES, THEIR PRODUCTION AND USE
DE3917846A1 (en) 1989-06-01 1990-12-06 Hilti Ag CARRIER STRIP FOR POWDER-POWERED SETTING EQUIPMENT
US5145906A (en) 1989-09-28 1992-09-08 Hoechst Celanese Corporation Super-absorbent polymer having improved absorbency properties
US5051545A (en) 1990-04-06 1991-09-24 Summagraphics Corporation Digitizer with serpentine conductor grid having non-uniform repeat increment
US5408019A (en) 1990-05-11 1995-04-18 Chemische Fabrik Stockhausen Gmbh Cross-linked, water-absorbing polymer and its use in the production of hygiene items
DE4015085C2 (en) 1990-05-11 1995-06-08 Stockhausen Chem Fab Gmbh Crosslinked, water-absorbent polymer and use for the manufacture of hygiene articles, for soil improvement and in cable sheathing
DE4020780C1 (en) 1990-06-29 1991-08-29 Chemische Fabrik Stockhausen Gmbh, 4150 Krefeld, De
DE4021847C2 (en) 1990-07-09 1994-09-08 Stockhausen Chem Fab Gmbh Process for the preparation of water-swellable products using Feinstanteilen water-swellable polymers
DE69108804T2 (en) 1990-07-17 1995-08-24 Sanyo Chemical Ind Ltd Process for the production of water-absorbent resins.
DE4105000A1 (en) 1991-02-19 1992-08-20 Starchem Gmbh METHOD FOR PRODUCING FINE-PARTICULATED, WATER-SWELLABLE POLYSACCHARIDE GRAFT POLYMERS
ATE148898T1 (en) 1991-09-03 1997-02-15 Hoechst Celanese Corp SUPERABSORBENT POLYMER WITH IMPROVED ABSORBENT PROPERTIES
DE4138408A1 (en) 1991-11-22 1993-05-27 Cassella Ag HYDROPHILES, HIGHLY SOURCE HYDROGELS
DE4219607C2 (en) 1992-06-16 1995-09-21 Kabelmetal Electro Gmbh Process for the production of an optical hollow or loose tube
WO1994009043A1 (en) 1992-10-14 1994-04-28 The Dow Chemical Company Water-absorbent polymer having improved properties
US5385983A (en) 1992-11-12 1995-01-31 The Dow Chemical Company Process for preparing a water-absorbent polymer
US5288811A (en) * 1992-11-05 1994-02-22 Exxon Research And Engineering Company Cyclic carbonyl containing compounds via radical grafting
DE4244548C2 (en) 1992-12-30 1997-10-02 Stockhausen Chem Fab Gmbh Powdery liquids under load as well as blood-absorbing polymers, processes for their production and their use in textile constructions for personal hygiene
US5417316A (en) 1993-03-18 1995-05-23 Authentication Technologies, Inc. Capacitive verification device for a security thread embedded within currency paper
DE4440015A1 (en) 1993-12-24 1995-06-29 Rieter Ingolstadt Spinnerei Bobbin sleeve storage and feed
DE4418881A1 (en) 1994-05-30 1995-12-07 Rexroth Mannesmann Gmbh Electrohydraulic control system and control valve for farm vehicle lifting gear
GB9606834D0 (en) 1996-03-30 1996-06-05 Int Computers Ltd Inter-processor communication
DE19807502B4 (en) 1998-02-21 2004-04-08 Basf Ag Process for post-crosslinking hydrogels with 2-oxazolidinones, hydrogels made therefrom and their use

Also Published As

Publication number Publication date
DE59908601D1 (en) 2004-03-25
EP1141039B1 (en) 2004-02-18
EP1141039A1 (en) 2001-10-10
ES2216617T3 (en) 2004-10-16
DE19854573A1 (en) 2000-05-31
US6657015B1 (en) 2003-12-02
ATE259834T1 (en) 2004-03-15
JP2002530491A (en) 2002-09-17
WO2000031153A1 (en) 2000-06-02

Similar Documents

Publication Publication Date Title
US6657015B1 (en) Method for the secondary cross-linking of hydrogels with 2-oxotetrahydro-1,3-oxazines
US6559239B1 (en) Method for the secondary cross-linking of hydrogels with N-acyl-2-oxazolidinones
US6472478B1 (en) Process for crosslinking hydrogels with bis- and poly-2- oxazolidinones
US6503979B1 (en) Method for cross-linking hydrogels with bis- and poly-2-oxazolidinones
US7754822B2 (en) Method for the secondary crosslinking of hydrogels with bicyclic amide acetals
US8071222B2 (en) Polymeric particles capable of absorbing blood and/or body fluids
JP5065039B2 (en) Insoluble metal sulfate in water-absorbing polymer particles
WO2005095498A1 (en) Improved method of manufacturing superabsorbent polymers
CA2319455A1 (en) Postcrosslinking of hydrogels using boric esters
EP1858935B1 (en) Water-absorbent crosslinked polymers
CA2319457A1 (en) Cross-linking of hydrogels with phosphoric acid esters
MXPA01004094A (en) Method for the secondary cross-linking of hydrogels with 2-oxotetrahydro-1,3-oxazines
MXPA00007001A (en) Cross-linking of hydrogels with phosphoric acid esters
MXPA00007695A (en) Secondary cross-linking of hydrogels with 2-oxazolidinones
MXPA00007062A (en) Secondary cross-linking of hydrogels by means of boric acid esters
MXPA00007225A (en) Method for cross-linking hydrogels with bis- and poly-2-oxazolidinones

Legal Events

Date Code Title Description
FZDE Discontinued