CA2353604C - Polymeric coatings for controlled delivery of active agents - Google Patents

Polymeric coatings for controlled delivery of active agents Download PDF

Info

Publication number
CA2353604C
CA2353604C CA002353604A CA2353604A CA2353604C CA 2353604 C CA2353604 C CA 2353604C CA 002353604 A CA002353604 A CA 002353604A CA 2353604 A CA2353604 A CA 2353604A CA 2353604 C CA2353604 C CA 2353604C
Authority
CA
Canada
Prior art keywords
bioactive agent
polymer
layer
barrier layer
bioactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002353604A
Other languages
French (fr)
Other versions
CA2353604A1 (en
Inventor
Kalpana R. Kamath
James J. Barry
Sepideh H. Nott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Ltd Barbados
Original Assignee
Boston Scientific Ltd Barbados
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boston Scientific Ltd Barbados filed Critical Boston Scientific Ltd Barbados
Publication of CA2353604A1 publication Critical patent/CA2353604A1/en
Application granted granted Critical
Publication of CA2353604C publication Critical patent/CA2353604C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/08Materials for coatings
    • A61L29/085Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • A61L29/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/60Deposition of organic layers from vapour phase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/416Anti-neoplastic or anti-proliferative or anti-restenosis or anti-angiogenic agents, e.g. paclitaxel, sirolimus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/602Type of release, e.g. controlled, sustained, slow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/606Coatings
    • A61L2300/608Coatings having two or more layers

Abstract

Implantable medical device having a structure adapted for introduction into a patient wherein the structure is composed of a base material positioned over the structure. The implantable medical device further includes at least one composite layer of a bioactive agent and a polymer material and at least a barrier layer positioned over the composite layer and being of thickness adequate to provide a controlled release of the bioactive agent. The barrier layer being applied by a lower energy plasma polymerization process which includes placing the device with the at least one composite layer in a plasma chamber and introducing at least one monomer gas.

Description

POLYMERIC COATINGS FOR CONTROLLED DELIVERY
OF ACTIVE AGENTS

Field of the Invention The present invention relates to methods and medical devices for the controlled, localized delivery of bioactive agents within a body.

Background of the Invention The systemic administration of drug agents, such as by intravenous means, treats the body as a whole even though the disease to be treated may be localized.
Thus, it has become common to treat a variety of medical conditions by introducing an implantable medical device partly or completely into a body cavity such as the esophagus, trachea, colon, biliary tract, urinary tract, vascular system or other location within a human or veterinary patient. For example, many treatments of the vascular system entail the introduction of a device such as a stent, catheter, balloon, guide wire, cannula or the like. One of the potential drawbacks to conventional drug delivery techniques with the use of these devices being introduced into and manipulated through the vascular system, is that blood vessel walls can be disturbed or injured. Clot formation or thrombosis often results at the injured site, causing stenosis (closure) of the blood vessel.

Another cause of stenosis is vascular disease.
Probably the most common disease causing stenosis of blood vessels is atherosclerosis. Atherosclerosis is a condition which commonly affects the coronary arteries, the aorta, the iliofemoral arteries and the carotid arteries.

Many medical devices and therapeutic methods are known for the treatment of atherosclerotic disease.
One particular therapy for certain atherosclerotic lesions is percutaneous transluminal coronary angioplasty (PTCA). Another therapy for certain atherosclerotic lesions is percutaneous transluminal angioplasty (PTA).
During PTA, a deflated balloon-tipped catheter is inserted in a patient's artery. The tip of the catheter is advanced to the site of atherosclerotic plaque.
Inflation of the balloon "cracks" the atherosclerotic plaque and expands the vessel, thereby relieving the stenosis, at least in part.

While PTA presently enjoys wide use, it suffers from two major problems. First, the blood vessel may suffer acute occlusion immediately after or within the initial hour after the dilation procedure. Such occlusion is referred to as "abrupt closure." A second major problem encountered in PTA is the re-narrowing of an artery after an initially successful angioplasty.

This re-narrowing is referred to as "restenosis" and typically occurs within the first six months after angioplasty. Restenosis is believed to arise through the proliferation and migration of cellular components from the arterial wall, as well as through geometric changes in the arterial wall refexred to as "remodeling."

A device such as an intravascular stent including stent grafts and covered stents can be a useful adjunct to PTA, particularly in the case of either acute or threatened closure after angioplasty. The stent is placed in the dilated segment of the artery to mechanically prevent abrupt closure and restenosis.

Unfortunately, even when the implantation of the stent is accompanied by aggressive and precise antiplatelet and anticoagulation therapy (typically by systemic administration), the incident of thrombotic vessel closure or other thrombotic complication remains significant, and the prevention of restenosis is not as successful as desired. Furthermore, an undesirable side effect of the systemic antiplatelet and anticoagulation therapy is an increased incidence of bleeding complications, most often at the percutaneous entry site.
Other conditions and diseases are also treatable with stents, catheters, cannulae and other devices inserted into the esophagus, trachea, colon, biliary tract, urinary tract and other locations in the body, or with orthopedic devices, implants, or replacements, for example. One of the drawbacks of conventional means of drug delivery using such devices is the difficulty in effectively delivering the bioactive agent over a short term (that is, the initial hours and days after insertion of the device) as well as over a long term (the weeks and months after insertion of the device). Another difficulty with the conventional use of stents for drug delivery purposes is providing precise control over the delivery rate of the desired bioactive agents, drug agents or other bioactive material. The term "bioactive agent" is used herein to mean any agent such as a pharmaceutical agent or drug or other material that has a therapeutic effect.

It is desirable to develop devices and methods for reliably delivering suitable amounts of therapeutic agents, drugs or bioactive materials directly into a body portion during or following a medical procedure, so as to treat or prevent such conditions and diseases, for example, to prevent abrupt closure and/or restenosis of a body portion such as a passage, lumen or blood vessel.

In view of the potential drawbacks to conventional drug delivery techniques, there exists a need for a device, method and method of manufacture which enable a controlled localized delivery of active agents, drug agents or bioactive material to target locations within a body.
Summary of the Invention The foregoing problems are solved and a technical advance is achieved in an illustrative vascular stent or other implantable medical device that provides a controlled release of at least one bioactive agent into the vascular or other system, or other location in the body, into which the stent or medical device is positioned. In one aspect, the present invention provides an implantable medical device having a structure adapted for introduction into a patient, e. g., a stent, coil, catheter, etc. The implantable medical device of the invention comprises at least one composite layer of a bioactive agent and a polymer material and at least one barrier layer positioned over the composite layer or layers. The barrier layer has a thickness adequate to provide a controlled release of the bioactive material.
The barrier layer is applied to the medical device by a low energy plasma polymerization process which comprises placing the composite covered medical device in a plasma chamber and introducing at least one monomer gas into the chamber to form at least one barrier layer. In another embodiment of the invention, the barrier layer comprises at least one bioactive agent. In a further aspect of the invention, the medical device may be selected from the group consisting of a catheter, wire guide, cannula, stent graft, covered stent, vascular or other graft, cardiac pacemaker lead or lead tip; an angioplasty device or portion thereof; and any portion thereof.
In another aspect, the present invention includes a method for the localized delivery of a bioactive agent to a target location within the body.
The method includes the first steps of providing a medical device having a structure adapted for introduction into a patient wherein the structure is composed of a base material, at least one composite layer of a bioactive agent and a polymer material applied to the base material. At least one barrier layer is positioned over the composite layer and applied to the composite layer by a low energy plasma polymerization process. The barrier layer has a thickness adequate to provide a controlled release of the bioactive material.
The plasma polymerization process includes the steps of placing the composite covered device in a plasma chamber and introducing at least one monomer gas into the plasma chamber to form at least one barrier layer on the outer surface of the composite covered device. The method for localized delivery of a bioactive material includes a second step of delivering the implantable medical device to the target location.

Brief Description of the Drawings Fig. 1 is a cross-sectional view of a first preferred embodiment of the present invention;

Fig. 2 shows side and end views of a stent used in an embodiment of the present invention;

Fig. 3 shows a release profile of the effect of increasing the plasma polymerization time for a siloxane barrier layer in which paclitaxel is released; and Fig. 4 is a cross-sectional view of a preferred embodiment of the present invention.

Detailed Description The present invention provides implantable medical devices and methods for the controlled, localized delivery of a bioactive agent to target locations within a body. The term "controlled localized delivery" as used herein is defined as a characteristic release rate of the bioactive agent over a desired period of time at a fixed location. The implantable medical devices of the present invention may have a simple construction, provide a minimal cross-sectional profile, and allow for easy and reproducible loading of active agents, drug agents and bioactive material.

With reference to Fig. 1, an implantable medical device 1 in accordance with the present invention is shown and includes a structure 2 adapted for introduction into a patient. The term "adapted" is used herein to mean that the structure 2 is shaped and sized for such introduction. For clarity, only a portion of structure 2 is shown in Fig. 1.

By way of example, strVcture 2 is configured as a stent particularly adapted for insertion into the vascular system of the patient. As known in the art, stents are tubular support structures that are implanted in coronary and peripheral blood vessels or arteries or other non-vascular lumens, blood vessels or other tubular body lumens. The present invention can thus be used for the dual purpose of localized drug delivery and stent placement, for example. The stent structure may also be used in non-vascular systems and sites such as the esophagus, trachea, colon, biliary ducts, urethra, and ureters, among others. A stent 210 used with the present invention is of any suitable design and is configured in mesh design as shown in Fig. 2.

Referring back to Fig. 1, structure 2 is alternatively configured as any conventional vascular or other medical device, and includes any of a variety of conventional stent or other adjuncts, such as helically wound strands, perforated cylinders or the like.
Accordingly, the structure 2 is configured as at least one, or any portion of, a medical device that is adapted for insertion into the body. Examples of such medical devices include catheters, guide wires, balloons, filters (e.g., vena cava filters), stents, stent grafts, vascular grafts, intraluminal paving systems, implants and other devices used in connection with drug-loaded polymer coatings. Such devices are implanted or otherwise utilized in body lumens and organs such as the coronary vasculature, esophagus, trachea, colon, biliary tract, urinary tract, prostate, brain, and the like. Examples of suitable vascular grafts are described in U. S. Pat.
Nos. 5,509,931,5,527,353, and 5,556,426. Vena cava filters such as those described in WO 96/12448 and WO
96/17634 may also be used in the present invention.
The grafts, including stent grafts, that are provided with a bioactive agent-polymer composite layer in accordance with the present invention include synthetic vascular grafts that are used for replacement of blood vessels in part or in whole. A typical vascular graft is a synthetic tube with each end thereof sutured to the remaining ends of a blood vessel from which a diseased or otherwise damaged portion has been removed.
In a typical stent graft, each end of the synthetic tube portion includes a stent that is affixed to each of the remaining ends of a blood vessel from which a diseased or otherwise damaged portion has been removed. Alternatively in a stent graft, the replacement vessel may be a segment of a vessel removed from another location in the patient, such as a portion of a femoral artery or the like. In the case of a synthetic graft, the graft is typically tubular and may be, e. g., of a woven, knit or velour construction. Preferred base materials for the grafts and covering material for the stent grafts include polyethylene terephthalate and polytetrafluoroethylene.
The vascular grafts may be reinforced with, for example, helices, rings, etc. in order to provide uniform strength over the entire surface of the graft tubing. The materials with which such grafts are constructed are biologically compatible materials including, but not limited to, thermoplastic materials such as polyester, polytetrafluoroethylene (PTFE), silicone and polyurethanes. The preferred materials include polyester fibers and PTFE.

Examples of other suitable grafts are described in U. S. Patents Nos. 5,509,931,5,527,353, and 5,556,426.
In a most preferred embodiment of the invention, the graft is provided with a composite layer of polymeric material/ paclitaxel, and most preferably, the polymeric material is a polyurethane and derivatives thereof. This polymer/paclitaxel composite-coated graft, when positioned at a desired site in the body provides an extended release of paclitaxel to the site.

Turning back to Fig. 1, structure 2 is composed of a base material 3 which is compatible with the intended use of structure 2. The base material 3 is preferably biocompatible.

A variety of conventional materials may be employed as the base material 3. For example, the base material 3 may be either elastic or inelastic. The base material 3 may be either biodegradable or nonbiodegradable. Moreover, some biologic agents have sufficient strength to serve as the base material 3 of structure 2, even if not especially useful in the exemplary coronary stent.

Accordingly, the base material 3 may be formed of stainless steel, tantalum, titanium, nitinol, gold, platinum, inconel, iridium, silver, tungsten, or another biocompatible metal, or alloys of any of these; carbon or carbon fiber; cellulose acetate, cellulose nitrate;
silicone, polyethylene terephthalate, polyurethane, polyamide, polyester, polyorthoester, polyanhydride, polyether sulfone, polycarbonate, polypropylene, high molecular weight polyethylene, polytetrafluoroethylene, or another biocompatible polymeric material, or mixtures or copolymers of these; polylactic acid, polyglycolic acid or copolymers thereof, a polyanhydride, polycaprolactone, polyhydroxybutyrate valerate or another biodegradable polymer, or mixtures or copolymers of these; a protein, an extracellular matrix component, collagen, fibrin or another biologic agent; or a suitable mixture of any of these. Stainless steel and nitinol are particularly useful as base materials when the structure 2 is configured as a vascular stent.

The implantable medical device 1 of the present invention also includes at least one layer 5 formed by a composite of at least one bioactive agent and a biocompatible polymeric or copolymeric material. When multiple polymer-bioactive agent composite layers are used, the layers may contain the same or different bioactive agents and/or the same or different polymers.
The combination of bioactive agent and polymer serves as a monolithic matrix depot of the bioactive agent. This depot contributes partially to providing control over the release rate of the bioactive agent from the medical device.
The composite layer(s) are formed from a solution or dispersion (e.g. suspension, emulsion, or semisolid) which is applied to at least a portion of the surface of the base material 3 to form the polymer-bioactive agent composite layer S. The terms "bioactive agent", "drug agent" and "bioactive material" are used interchangeably herein. The application of polymer-bioactive agent composite 5 onto at least a portion of the base material 3 may be accomplished by a physical method such as, but not limited to, spraying, dipping, painting, electrostatic interaction, physical adsorption or covalent method such as, but not limited to, chemical attachment to the base material 3. The polymer-bioactive agent composite layer 5 is preferably capable of incorporating a substantial amount of bioactive agent, such as, for example, 0.2 g/mmz to 20 g/mm2. The percent of drug in composite layer 5 can be varied from 1% to 50%
w/w. The polymer-bioactive agent composite layer 5 is typically applied at a thickness of greater than 1 micron, preferably a thickness of about 5-50 microns and most preferably a thickness of about 5 to 25 microns in order to adjust the bioactive agent dosage. Very thin polymer-bioactive agent composites, e.g., of about 0.2-0.3 microns are also possible. Optionally, multiple layers of polymer-bioactive agent composites may be applied onto the outer surface of the base material (or part(s) thereof) 3 of structure 2. Such multiple layers can be of the same or different polymer materials and/or bioactive agents.

A vast range of bioactive agents may be incorporated in composite layer 5 as long as the selected bioactive material survives the processes required for application of the bioactive agent-polymerization composite layer onto the device, e.g., plasma polymerization or vapor deposition. Particularly useful in the practice of the present invention are bioactive agents which prevent or ameliorate abrupt closure and restenosis of blood vessels previously opened by stenting surgery or other procedures.

The bioactive agents used in the present invention are selected from a number of therapeutic agents depending on the desired application. For example, these therapeutic agents include anti-inflammatory agents such as dexamethasone, prednisolone, corticosterone, budesonide, estrogen, sulfasalazine, mesalamine, and analogues thereof; antineoplastic/

antiproliferative/antimiotic agents such as paclitaxel, 5-fluorouracil, cisplatin, vinblastine, vincristine, epothilones, endostatin, angiostatin, tyrosine kinase inhibitors, and analogues thereof; anesthetic agents such as lidocaine, bupivacaine, ropivacaine, and analogues thereof; anti-coagulants; angiogenic factors and growth factors; and genes encoding for such growth factors and other inhibitory or stimulatory proteins/factors. Also included are nucleic acid compounds such as antisense oligonucleotides, ribozymes, and genes carried by viral vectors (retro, adeno, adenoassociated, lenti, ebola, herpes simplex, etc.) and non viral systems (plasmid, cationic lipid materials, compacting agents, etc.) The bioactive agents useful in accordance with the present invention may be used singly or in combination.
For example, an anti-proliferative agent such as paclitaxel may be used in combination with another drug agent, such as an anticoagulant, anti-inflammatory, antithrombogenic, thrombolytic, nitric oxide-containing polymer, or a vascular cell promoter such as VEGF and FGF, for example.

Paclitaxel is a preferred drug agent for use with the present invention either alone or in combination with another drug agent, as described above. Paclitaxel is a complex alkaloid extracted from the Pacific Yew Taxus brevifolia Family (Family Taxacea) which has been demonstrated to have antiproliferative activity. As used herein, paclitaxel includes the alkaloid and any pharmacologically active derivative or analog thereof.
Thus paclitaxel includes naturally occurring forms and derivatives thereof and synthetic and semi-synthetic forms thereof. TAXOL (Bristol- Meyers Squibb Company) is a commercially available form of paclitaxel. These and other compounds are added to the polymer material using similar methods and routinely tested as set forth in the specification. Any modifications are routinely made by one skilled in the art.
The biocompatible polymeric material used to form the bioactive agent-polymer composite layer(s)may include any polymeric material capable of forming a solidified composite layer in the presence of the bioactive material. The polymeric material of the present invention is hydrophilic or hydrophobic, and is, for example, polycarboxylic acids, cellulosic polymers, including cellulose acetate and cellulose nitrate, gelatin, polyvinylpyrrolidone, cross-linked polyvinylpyrrolidone, polyanhydrides including maleic anhydride polymers, polyamides, polyvinyl alcohols, polyolefins, copolymers of vinyl monomers such as EVA, polyvinyl ethers, polyvinyl aromatics, polyethylene oxides, glycosaminoglycans, polysaccharides, polyesters including polyethylene terephthalate, polyacrylamides, polyethers, polyether sulfone, polycarbonate, polyalkylenes including polypropylene, polyethylene and high molecular weight polyethylene, halogenated polyalkylenes including polytetrafluoroethylene, polyurethanes, polyorthoesters, proteins, polypeptides, silicones, siloxane polymers, polylactic acid, polyglycolic acid, polycaprolactone, polyhydroxybutyrate valerate and blends and copolymers thereof as well as other biodegradable, bioabsorbable and biostable polymers and copolymers. Coatings from polymer dispersions such as polyurethane dispersions (BAYHDROL , etc.) and acrylic latex dispersions are also within the scope of the present invention. The polymer may be a protein polymer, fibrin, collagen and derivatives thereof, polysaccharides such as celluloses, starches, dextrans, alginates and derivatives of these polysaccharides, an extracellular matrix component, hyaluronic acid, or another biologic agent or a suitable mixture of any of these, for example.
Composite layer 5 can include of a single polymer or copolymer. It may also include copolymers or physical blends of any of the materials indicated above. In one embodiment of the invention, the preferred polymer is polyacrylic acid, available as HYDROPLUS (Boston Scientific Corporation, Natick, Mass.), and described in U. S. Patent No. 5,091,205. U. S. Patent No. 5,091,205 describes medical devices coated with one or more polyisocyanates such that the devices become instantly lubricious when exposed to body fluids. In a most preferred embodiment of the invention, the polymer is a polyurethane and derivatives thereof.

The use of the bioactive agent-polymer composite layer 5 in the present invention has the added advantage in that this layer or multilayers allow for enhanced adhesion of the mixture to the base material 3 as opposed to the prior art methods of first applying a polymer followed by a drug coating. The bioactive agent-polymer composite layer 5 also provides for an effective way of adjusting the amount of the bioactive agent placed on the base material 3. This is accomplished by adjusting the bioactive agent/polymer ratio and/or thickness of the bioactive agent-polymer composite layer.
Also, composite layer 5 provides a co-compliant surface for a subsequent barrier layer and aids in maintaining the mechanical integrity of the barrier layer during the expansion of the medical device. The bioactive agent-polymer composite also has the added benefit of providing a blood compatible surface to the medical device. Thus, the biocompatible polymer material acts as an intermediary between the vascular walls or the blood stream and the implantable medical device 1.

The release profile of the drug from the bioactive agent-polymer composite layer 5 is determined by many factors including the drug solubility, the amount of the drug applied, the drug-to-polymer ratio in composite layer 5 and the thickness and porosity of the composite layer. The release profile is also regulated by the presence of an outer barrier layer which is formed by a vapor deposition process or a low energy plasma polymerization process.

Still with reference to Fig. 1, implantable medical device 1 of the present invention also includes at least one barrier layer 20 positioned over the bioactive agent-polymer composite layer(s) 5. One purpose of this barrier layer or layers is to provide further controlled release of the bioactive material when device 1 is positioned in the vascular system or other body lumen of a patient. The thickness of the barrier layer 6 is chosen so as to provide such control. Also, the barrier layer 20 protects the drug from the routine handling process and physiologic milieu until the drug reaches the target site. In an alternative embodiment of the invention, the barrier layer(s) may contain an additional bioactive agent which may be the same or different from the bioactive agent of the bioactive agent-polymer composite layer(s).

The barrier layer 20 is a polymer or copolymer layer deposited on the outer surface of the bioactive agent-polymer composite layer 5 by a vapor deposition process or a low energy plasma polymerization process.
Low-energy plasma polymerization is performed by exposing the composite coated implantable medical device to a monomer gas at the inception of the plasma polymerization process. The bioactive agent-polymer composite-coated device is placed in a plasma chamber or other similar device and exposed to a monomer gas such as, for example, silicone-based monomers such as cyclic or acyclic siloxanes, silanes, silylimidazoles; fluorine-based monomers such as hydrofluorocarbons; aliphatic or aromatic hydrocarbons; acrylic monomers; N-vinyl pyrrolidone; ethylene oxide or combinations thereof. The monomer gas may have functional groups to allow covalent attachment of appropriate drugs by anchoring to these functional groups. Polymer blends, copolymers, or interpenetrating networks can be deposited in addition to homopolymer deposition, by simultaneous or subsequent introduction of two or more monomer gases. When introduced as a mixture, the ratio of the monomer gases could be adjusted to obtain desired properties. An energy source such as a radio frequency energy source is used to produce the low energy generating process.

Alternatively, the barrier layer can be applied by the vapor deposition process. Examples of polymers that can be deposited in such a manner are parylene or polyamides. For deposition of parylene using this process, the monomer vapor of p-xylylene formed by high temperature pyrolysis of its dimer form, is condensed at temperatures of 50 C or lower on the surface of composite layer (5) to form the barrier layer polymer.
Low-energy plasma generates active species in a circulating monomer gas, a polymer is formed and is subsequently deposited on the outer surface of the previously-coated device. The plasma may also generate active species on the device to be coated along with the monomer gas. This leads to plasma grafting in addition to plasma polymerization. Properties of the low-energy plasma polymerization barrier layer (i.e., the thickness and/or cross-linking density of the formed polymer) are controlled, for example, by the monomer flow rate, pressure and power of the plasma supplied, reaction time, and combinations thereof in a manner such that the properties of the bioactive agent(s) are not negatively effected.

The use of low-energy plasma polymerization provides for elimination of thermal effects of typical polymerization methods because the low-energy process occurs at room temperature. Also, since the monomer is introduced in a gaseous form, in the plasma chamber, no solvents are necessary for the application to the bioactive agent-composite layer. Furthermore, since the time frame used for the low-energy process is small, the possibility of any adverse effects to the bioactive agent is minimal.

Another purpose of barrier layer 20 is to provide protection of the bioactive agent-polymer composite layer 5 from damage that may occur, e.g., from handling of the device, such as during maneuvering of the device through the body until it is placed at the desired target site. This could be achieved in one or more different way.

For example, the plasma polymerization process allows covalent anchoring of the barrier layer 20 to the polymer matrix in the composite layer 5. The formation of covalent bonds between the composite layer 5 and the barrier layer 20 subsequently offers a stronger adhesion of the barrier layer 20 and hence an enhanced protection of the drug depot in the composite layer 5 in comparison to that offered by other methods described in the prior art.

Also, in'the case of a hydrophobic barrier layer, the diffusion of water from the physiologic environment is restricted, thus limiting contact of the bioactive agent with the eluting environment.
Additionally, the barrier layer formed by plasma polymerization is cross-linked in nature as opposed to barrier layers formed by other approaches described in the prior art. The degree of cross-linking can be varied by varying the plasma polymerization process parameters, such as the power. An added endurance could be obtained by increasing the cross-linking density and hence.a more rigid barrier layer, while lowering the cross-linking density provides a more flexible barrier layer.

The at least one barrier layer 20 of the present invention is preferably less than 5000 A thick and optimally about 50-2000 A thick.

As noted above, the release profile of the bioactive material from the medical device is determined by many factors including the solubility of the bioactive agent in the barrier layer, porosity of both the composite and barrier layers, cross-linking density and thickness of the barrier layer, and hence resistance to the transport of the bioactive agent through the barrier lay.er.

Fig. 3 shows the effects of increasing the plasma polymerization time on the release rate of the bioactive agent. In Figure 3, a siloxane barrier layer is applied onto a paclitaxel-polyurethane composite layer of a stent by a low energy plasma polymerization process including polyurethane and derivatives thereof including polycarbonate based, polyurea based, polyether based, and polyester based derivatives. Also included are Inter-Penetrating Network (INP)s such as siliconized polyurethane. The paclitaxel-polyurethane-coated stent is exposed to gaseous monomers of tetramethylcyclotetrasiloxane, which are then polymerized by low energy plasma polymerization onto the surface of the paclitaxel-polyurethane coating. As can be seen from Figure 3, it is possible to achieve progressively slower release profiles of paclitaxel by increasing the plasma polymerization times, for example, from 6 seconds to 10 seconds to 20 seconds. An increase in polymerization time results in the formation of a thicker siloxane barrier layer, which in turn causes a sustaining effect on the paclitaxel release rate. Thus, the release profile of paclitaxel or other bioactive agent is precisely controlled by varying the time of the low energy plasma polymerization process.

Furthermore, modifications of any one or more of the basic plasma parameters such as the plasma polymerization time, the monomer flow rate, the pressure, and the energy applied offers the possibility of either changing the thickness and/or cross-linking density of the formed polymer. Both of these properties can, in turn, provide a means to control drug release by offering an enhanced resistance to the drug elution from the composite layer.
Also, since the low energy plasma polymerization process utilizes gaseous phase for polymer application, coating selective areas on the coated stent may easily be achieved (by masking appropriate areas), which is difficult to achieve in a solution phase coating application.

In an alternative embodiment, a bioactive material(s) is incorporated into or on the outer surface of the barrier layer. For example, a second bioactive material is introduced into the barrier layer 20 by any suitable method. Fig.4 shows a stent having an outer coating of bioactive agent, such as heparin, which is applied to barrier layer 20 to produce layer 25. The outer bioactive material, which may be the same or different from the bioactive agent of the bioactive agent-polymer composite layer, is placed in solution and applied to the barrier layer 20 by any suitable means, including dipping the coated medical device into the drug solution or by applying the solution onto the layer 20 such as by spraying. In the former method, the amount of bioactive material loading is controlled by regulating the time the barrier layer is exposed to the drug solution or dispersion, the extent of polymer cross-linking, the concentration of the drug in the solution or dispersion and/or the amount of barrier layer applied to the medical device.

The barrier layer with the second bioactive drug may have a similar composition or may differ physically or chemically from the first barrier layer.
The nature of the second barrier layer would be dictated by the physicochemical properties of the second drug to be incorporated on the outer surface. For example, for the incorporation of hydrophilic agent, such as heparin, the second barrier layer may include a hydrophilic/hydrophobic polymer network formed by plasma polymerization. The hydrophilic component may be provided by plasma polymerization of monomers such as, N-vinyl pyrrolidone or ethylene oxide, while the hydrophobic component is provided by siloxane-based polymers. The incorporation and release of the hydrophilic bioactive agent is thus facilitated due to its higher affinity for the hydrophilic polymer. In such a situation, the drug release occurs by dissolution/erosion of the hydrophilic polymeric component followed by diffusion through the hydrophobic counterpart.

In the event that the bioactive material used in the layer 5 is the same as the bioactive material in layer 20, the bioactive material of layer 5 provides an initial bolus loading dose required to reach the therapeutic window, which is further maintained by the bioactive agent-polymer composite layer 5.

In the event that the bioactive material of layer 5 is different from the bioactive material used with layer 20, the bioactive material in layer 20 provides a combination of biological effects achieved by either a synergistic or independent bioactivity of the two bioactive materials. For example, a combination of paclitaxel with corticosteroids or nitric oxide or nitric oxide donors as the bioactive material provides a synergistic effect. An example of a combination of bioactive agents that provide independent bioactivity useful for the treatment of restenosis is paclitaxel and heparin. In another example, heparin, heparin binding growth factors and nitric oxide donor are incorporated within the barrier layer 20 to obtain multiple benefits of non-thrombogenecity and enhanced endothelialization.
In an additional embodiment, layer 20 includes proteins or biological moieties to further modulate the drug release from layer 20.

When implanted, a substantial amount of the bioactive material contained in the bioactive agent-polymer composite layer 5 of the medical device is diffused into the affected area over an extended period of time and in a controlled manner.

The present invention provides a device, method of treatment and method of manufacture which controls the localized delivery of active agents, drug agents or bioactive material to target locations within a body.
Although the present invention has been described with respect to several exemplary embodiments, there are many other variations of the above-described embodiments which will be apparent to those skilled in the art, even when elements have not explicitly been designated as exemplary. It is understood that these modifications are within the teaching of the present invention, which is to be limited only to the claims appended hereto.

Claims (12)

Claims:
1. An implantable medical device comprising:

a structure adapted for introduction into a patient, wherein the structure comprises a base material;

at least one layer comprising at least one bioactive agent in a polymer matrix applied to at least a portion of the outer surface of said base material; and at least one barrier layer positioned over the layer comprising at least one bioactive agent in a polymer matrix, said barrier layer having a thickness of less than 5,000 .ANG., wherein said barrier layer is formed in situ by a low energy plasma polymerization process of a monomer gas.
2. The implantable device of claim 1, wherein said polymer matrix comprises a polymer selected from the group consisting of polyurethane, polycarboxylic acids, polyorthoesters, polyvinylpyrrolidone, maleic anhydride polymers, polyamides, polyvinyl alcohols, polyethylene oxides, glycosaminoglycans, proteins, polypeptides, silicones, polysaccharides, polyesters, polyacrylamides, polyethers, copolymers of vinyl monomers, and mixtures and copolymers thereof.
3. The device of claim 1, wherein said at least one bioactive agent is paclitaxel.
4. The device of claim 1, wherein said at least one layer comprising at least one bioactive agent in a polymer matrix is formed by dissolution, dispersion, absorption, or adsorption of said at least one bioactive agent and polymer material.
5. The device of claim 1, wherein said at least one layer comprising at least one bioactive agent in a polymer matrix forms a matrix depot of the bioactive agent.
6. The device of claim 1, wherein the thickness of said at least one barrier layer is about 50 to 2000 .ANG..
7. The device of claim 1, wherein the medical device is a device selected from the group consisting of a catheter, wire guide, cannula, stent graft, covered stent, vascular or other graft, cardiac pacemaker lead or lead tip, an angioplasty, and any portion thereof.
8. The device of claim 1, wherein the base material of the structure comprises at least one of metal or polymer.
9. The device of claim 1, further comprising a drug layer over said barrier layer.
10. The device of claim 10, wherein said drug layer comprises heparin.
11. The device of claim 1, wherein said monomer gas is selected from the group consisting of a cyclic or acyclic siloxane, silane, silylimidazoles, hydrofluorocarbon-based monomers; aliphatic or aromatic hydrocarbon-based monomer;
acrylic monomer; and combinations thereof.
12. The device of claim 1, wherein the amount of bioactive agent in the polymer matrix is 1% to 50% (w/w).
CA002353604A 1998-12-03 1999-11-12 Polymeric coatings for controlled delivery of active agents Expired - Fee Related CA2353604C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/204,259 US6335029B1 (en) 1998-08-28 1998-12-03 Polymeric coatings for controlled delivery of active agents
US09/204,259 1998-12-03
PCT/US1999/026887 WO2000032255A1 (en) 1998-12-03 1999-11-12 Polymeric coatings with controlled delivery of active agents

Publications (2)

Publication Number Publication Date
CA2353604A1 CA2353604A1 (en) 2000-06-08
CA2353604C true CA2353604C (en) 2009-09-22

Family

ID=22757232

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002353604A Expired - Fee Related CA2353604C (en) 1998-12-03 1999-11-12 Polymeric coatings for controlled delivery of active agents

Country Status (8)

Country Link
US (2) US6335029B1 (en)
EP (1) EP1135178B1 (en)
JP (1) JP3803857B2 (en)
AT (1) ATE500856T1 (en)
AU (1) AU758175B2 (en)
CA (1) CA2353604C (en)
DE (1) DE69943269D1 (en)
WO (1) WO2000032255A1 (en)

Families Citing this family (541)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070203520A1 (en) * 1995-06-07 2007-08-30 Dennis Griffin Endovascular filter
US7867275B2 (en) * 1995-06-07 2011-01-11 Cook Incorporated Coated implantable medical device method
US7846202B2 (en) * 1995-06-07 2010-12-07 Cook Incorporated Coated implantable medical device
US6774278B1 (en) * 1995-06-07 2004-08-10 Cook Incorporated Coated implantable medical device
US7896914B2 (en) * 1995-06-07 2011-03-01 Cook Incorporated Coated implantable medical device
US7611533B2 (en) * 1995-06-07 2009-11-03 Cook Incorporated Coated implantable medical device
US7550005B2 (en) * 1995-06-07 2009-06-23 Cook Incorporated Coated implantable medical device
US20060030826A1 (en) * 1996-06-04 2006-02-09 Vance Products Incorporated,d/b/a Cook Urological Incorporated Implantable medical device with anti-neoplastic drug
US20060025726A1 (en) * 1996-06-04 2006-02-02 Vance Products Incorporated, D/B/A Cook Urological Incorporated Implantable medical device with pharmacologically active layer
US20060052757A1 (en) * 1996-06-04 2006-03-09 Vance Products Incorporated, D/B/A Cook Urological Incorporated Implantable medical device with analgesic or anesthetic
US20030093143A1 (en) * 1999-03-01 2003-05-15 Yiju Zhao Medical device having surface depressions containing nitric oxide releasing compound
US7220257B1 (en) * 2000-07-25 2007-05-22 Scimed Life Systems, Inc. Cryotreatment device and method
US8790391B2 (en) 1997-04-18 2014-07-29 Cordis Corporation Methods and devices for delivering therapeutic agents to target vessels
US6273913B1 (en) * 1997-04-18 2001-08-14 Cordis Corporation Modified stent useful for delivery of drugs along stent strut
US6776792B1 (en) * 1997-04-24 2004-08-17 Advanced Cardiovascular Systems Inc. Coated endovascular stent
DE19731021A1 (en) 1997-07-18 1999-01-21 Meyer Joerg In vivo degradable metallic implant
US6884429B2 (en) * 1997-09-05 2005-04-26 Isotechnika International Inc. Medical devices incorporating deuterated rapamycin for controlled delivery thereof
US20030129215A1 (en) * 1998-09-24 2003-07-10 T-Ram, Inc. Medical devices containing rapamycin analogs
US6890546B2 (en) 1998-09-24 2005-05-10 Abbott Laboratories Medical devices containing rapamycin analogs
US8668737B2 (en) 1997-10-10 2014-03-11 Senorx, Inc. Tissue marking implant
US7637948B2 (en) 1997-10-10 2009-12-29 Senorx, Inc. Tissue marking implant
US6241762B1 (en) 1998-03-30 2001-06-05 Conor Medsystems, Inc. Expandable medical device with ductile hinges
US7208010B2 (en) 2000-10-16 2007-04-24 Conor Medsystems, Inc. Expandable medical device for delivery of beneficial agent
US7713297B2 (en) * 1998-04-11 2010-05-11 Boston Scientific Scimed, Inc. Drug-releasing stent with ceramic-containing layer
US20020099438A1 (en) * 1998-04-15 2002-07-25 Furst Joseph G. Irradiated stent coating
US20030040790A1 (en) * 1998-04-15 2003-02-27 Furst Joseph G. Stent coating
US8029561B1 (en) * 2000-05-12 2011-10-04 Cordis Corporation Drug combination useful for prevention of restenosis
US20020188037A1 (en) * 1999-04-15 2002-12-12 Chudzik Stephen J. Method and system for providing bioactive agent release coating
CA2320259C (en) * 1998-04-27 2006-01-24 Surmodics, Inc. Bioactive agent release coating
US6200477B1 (en) * 1998-05-06 2001-03-13 Alltech Associates, Inc. Continuously regenerated and integrated suppressor and detector for suppressed ion chromatography and method
US7967855B2 (en) * 1998-07-27 2011-06-28 Icon Interventional Systems, Inc. Coated medical device
US8070796B2 (en) 1998-07-27 2011-12-06 Icon Interventional Systems, Inc. Thrombosis inhibiting graft
US6335029B1 (en) * 1998-08-28 2002-01-01 Scimed Life Systems, Inc. Polymeric coatings for controlled delivery of active agents
US20050171594A1 (en) * 1998-12-31 2005-08-04 Angiotech International Ag Stent grafts with bioactive coatings
US20020065546A1 (en) * 1998-12-31 2002-05-30 Machan Lindsay S. Stent grafts with bioactive coatings
US7651505B2 (en) 2002-06-17 2010-01-26 Senorx, Inc. Plugged tip delivery for marker placement
US9820824B2 (en) 1999-02-02 2017-11-21 Senorx, Inc. Deployment of polysaccharide markers for treating a site within a patent
US6862470B2 (en) 1999-02-02 2005-03-01 Senorx, Inc. Cavity-filling biopsy site markers
US8361082B2 (en) 1999-02-02 2013-01-29 Senorx, Inc. Marker delivery device with releasable plug
US8498693B2 (en) 1999-02-02 2013-07-30 Senorx, Inc. Intracorporeal marker and marker delivery device
US20090216118A1 (en) 2007-07-26 2009-08-27 Senorx, Inc. Polysaccharide markers
US6725083B1 (en) 1999-02-02 2004-04-20 Senorx, Inc. Tissue site markers for in VIVO imaging
US7983734B2 (en) 2003-05-23 2011-07-19 Senorx, Inc. Fibrous marker and intracorporeal delivery thereof
US6575991B1 (en) 1999-06-17 2003-06-10 Inrad, Inc. Apparatus for the percutaneous marking of a lesion
US6258121B1 (en) * 1999-07-02 2001-07-10 Scimed Life Systems, Inc. Stent coating
US20030130657A1 (en) * 1999-08-05 2003-07-10 Tom Curtis P. Devices for applying energy to tissue
EP1400204A1 (en) * 1999-08-05 2004-03-24 Broncus Technologies, Inc. Methods and devices for creating collateral channels in the lungs
US20050060044A1 (en) * 1999-08-05 2005-03-17 Ed Roschak Methods and devices for maintaining patency of surgically created channels in a body organ
US20050137715A1 (en) * 1999-08-05 2005-06-23 Broncus Technologies, Inc. Methods and devices for maintaining patency of surgically created channels in a body organ
US20030070676A1 (en) * 1999-08-05 2003-04-17 Cooper Joel D. Conduits having distal cage structure for maintaining collateral channels in tissue and related methods
US7462162B2 (en) * 2001-09-04 2008-12-09 Broncus Technologies, Inc. Antiproliferative devices for maintaining patency of surgically created channels in a body organ
US20040073155A1 (en) * 2000-01-14 2004-04-15 Broncus Technologies, Inc. Methods and devices for maintaining patency of surgically created channels in tissue
US6759054B2 (en) * 1999-09-03 2004-07-06 Advanced Cardiovascular Systems, Inc. Ethylene vinyl alcohol composition and coating
US7682647B2 (en) * 1999-09-03 2010-03-23 Advanced Cardiovascular Systems, Inc. Thermal treatment of a drug eluting implantable medical device
US20040029952A1 (en) * 1999-09-03 2004-02-12 Yung-Ming Chen Ethylene vinyl alcohol composition and coating
US6790228B2 (en) * 1999-12-23 2004-09-14 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
US7807211B2 (en) * 1999-09-03 2010-10-05 Advanced Cardiovascular Systems, Inc. Thermal treatment of an implantable medical device
US20070032853A1 (en) * 2002-03-27 2007-02-08 Hossainy Syed F 40-O-(2-hydroxy)ethyl-rapamycin coated stent
CN1195458C (en) * 1999-10-04 2005-04-06 清水庆彦 Artificial trachea
US20050238686A1 (en) * 1999-12-23 2005-10-27 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
US6908624B2 (en) * 1999-12-23 2005-06-21 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
US6899731B2 (en) * 1999-12-30 2005-05-31 Boston Scientific Scimed, Inc. Controlled delivery of therapeutic agents by insertable medical devices
US7604663B1 (en) 1999-12-30 2009-10-20 St. Jude Medical, Inc. Medical devices with polymer/inorganic substrate composites
US20160287708A9 (en) * 2000-03-15 2016-10-06 Orbusneich Medical, Inc. Progenitor Endothelial Cell Capturing with a Drug Eluting Implantable Medical Device
US8088060B2 (en) * 2000-03-15 2012-01-03 Orbusneich Medical, Inc. Progenitor endothelial cell capturing with a drug eluting implantable medical device
US9522217B2 (en) * 2000-03-15 2016-12-20 Orbusneich Medical, Inc. Medical device with coating for capturing genetically-altered cells and methods for using same
US20050271701A1 (en) * 2000-03-15 2005-12-08 Orbus Medical Technologies, Inc. Progenitor endothelial cell capturing with a drug eluting implantable medical device
EP1267954B1 (en) * 2000-04-04 2006-08-09 Boston Scientific Limited Medical devices suitable for gene therapy regimens
AU2001253479A1 (en) * 2000-04-13 2001-10-30 Sts Biopolymers, Inc. Targeted therapeutic agent release devices and methods of making and using the same
US8236048B2 (en) 2000-05-12 2012-08-07 Cordis Corporation Drug/drug delivery systems for the prevention and treatment of vascular disease
US7419678B2 (en) * 2000-05-12 2008-09-02 Cordis Corporation Coated medical devices for the prevention and treatment of vascular disease
US6776796B2 (en) 2000-05-12 2004-08-17 Cordis Corportation Antiinflammatory drug and delivery device
US20020007214A1 (en) * 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20050002986A1 (en) * 2000-05-12 2005-01-06 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020005206A1 (en) * 2000-05-19 2002-01-17 Robert Falotico Antiproliferative drug and delivery device
US20020007215A1 (en) * 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20040243097A1 (en) * 2000-05-12 2004-12-02 Robert Falotico Antiproliferative drug and delivery device
US7682648B1 (en) 2000-05-31 2010-03-23 Advanced Cardiovascular Systems, Inc. Methods for forming polymeric coatings on stents
US6451373B1 (en) * 2000-08-04 2002-09-17 Advanced Cardiovascular Systems, Inc. Method of forming a therapeutic coating onto a surface of an implantable prosthesis
US6953560B1 (en) * 2000-09-28 2005-10-11 Advanced Cardiovascular Systems, Inc. Barriers for polymer-coated implantable medical devices and methods for making the same
US20060222756A1 (en) * 2000-09-29 2006-10-05 Cordis Corporation Medical devices, drug coatings and methods of maintaining the drug coatings thereon
US7261735B2 (en) * 2001-05-07 2007-08-28 Cordis Corporation Local drug delivery devices and methods for maintaining the drug coatings thereon
ATE343969T1 (en) * 2000-09-29 2006-11-15 Cordis Corp COATED MEDICAL DEVICES
DE20122506U1 (en) 2000-10-16 2005-12-08 Conor Medsystems, Inc., Menlo Park Expandable medical device for delivering a beneficial agent
US7807210B1 (en) * 2000-10-31 2010-10-05 Advanced Cardiovascular Systems, Inc. Hemocompatible polymers on hydrophobic porous polymers
WO2002041786A2 (en) 2000-11-20 2002-05-30 Senorx, Inc. Tissue site markers for in vivo imaging
US6812217B2 (en) * 2000-12-04 2004-11-02 Medtronic, Inc. Medical device and methods of use
US6824559B2 (en) * 2000-12-22 2004-11-30 Advanced Cardiovascular Systems, Inc. Ethylene-carboxyl copolymers as drug delivery matrices
JP4707227B2 (en) * 2000-12-27 2011-06-22 グンゼ株式会社 Biological duct stent
JP2002200175A (en) * 2000-12-27 2002-07-16 Gunze Ltd Biological duct stent
US8632845B2 (en) * 2000-12-28 2014-01-21 Abbott Cardiovascular Systems Inc. Method of drying bioabsorbable coating over stents
US6682553B1 (en) * 2000-12-28 2004-01-27 Advanced Cardiovascular Systems, Inc. System and method for stent retention
US6540776B2 (en) * 2000-12-28 2003-04-01 Advanced Cardiovascular Systems, Inc. Sheath for a prosthesis and methods of forming the same
US7771468B2 (en) * 2001-03-16 2010-08-10 Angiotech Biocoatings Corp. Medicated stent having multi-layer polymer coating
DE10115740A1 (en) 2001-03-26 2002-10-02 Ulrich Speck Preparation for restenosis prophylaxis
US6780424B2 (en) * 2001-03-30 2004-08-24 Charles David Claude Controlled morphologies in polymer drug for release of drugs from polymer films
US7396582B2 (en) 2001-04-06 2008-07-08 Advanced Cardiovascular Systems, Inc. Medical device chemically modified by plasma polymerization
SK287686B6 (en) * 2001-04-10 2011-06-06 Ciba Specialty Chemicals Holding Inc. Stabilized medium and high voltage cable insulation composition and a method for the production thereof
DE10118603A1 (en) * 2001-04-12 2002-10-17 Gerd Hausdorf Biodegradable implant, e.g. for sealing defects in blood vessels or the heart, comprises a corrosively degradable tungsten, iron or magnesium alloy support structure bonded with another material
US6764505B1 (en) * 2001-04-12 2004-07-20 Advanced Cardiovascular Systems, Inc. Variable surface area stent
US7056339B2 (en) * 2001-04-20 2006-06-06 The Board Of Trustees Of The Leland Stanford Junior University Drug delivery platform
US6712845B2 (en) * 2001-04-24 2004-03-30 Advanced Cardiovascular Systems, Inc. Coating for a stent and a method of forming the same
US20040225326A1 (en) * 2001-05-07 2004-11-11 Weiner Mike L. Apparatus for the detection of restenosis
US6656506B1 (en) * 2001-05-09 2003-12-02 Advanced Cardiovascular Systems, Inc. Microparticle coated medical device
JP2002345972A (en) * 2001-05-30 2002-12-03 Kaneka Medix Corp Stent and method of manufacturing for the same
US6743462B1 (en) * 2001-05-31 2004-06-01 Advanced Cardiovascular Systems, Inc. Apparatus and method for coating implantable devices
US8741378B1 (en) 2001-06-27 2014-06-03 Advanced Cardiovascular Systems, Inc. Methods of coating an implantable device
AU2002345328A1 (en) 2001-06-27 2003-03-03 Remon Medical Technologies Ltd. Method and device for electrochemical formation of therapeutic species in vivo
US6695920B1 (en) * 2001-06-27 2004-02-24 Advanced Cardiovascular Systems, Inc. Mandrel for supporting a stent and a method of using the mandrel to coat a stent
US6565659B1 (en) * 2001-06-28 2003-05-20 Advanced Cardiovascular Systems, Inc. Stent mounting assembly and a method of using the same to coat a stent
SE523216C2 (en) * 2001-07-27 2004-04-06 Zoucas Kirurgkonsult Ab heparin stent
US7682669B1 (en) 2001-07-30 2010-03-23 Advanced Cardiovascular Systems, Inc. Methods for covalently immobilizing anti-thrombogenic material into a coating on a medical device
US7842083B2 (en) 2001-08-20 2010-11-30 Innovational Holdings, Llc. Expandable medical device with improved spatial distribution
US6641611B2 (en) 2001-11-26 2003-11-04 Swaminathan Jayaraman Therapeutic coating for an intravascular implant
US20040137066A1 (en) * 2001-11-26 2004-07-15 Swaminathan Jayaraman Rationally designed therapeutic intravascular implant coating
US20050060042A1 (en) * 2001-09-04 2005-03-17 Broncus Technologies, Inc. Methods and devices for maintaining surgically created channels in a body organ
US7708712B2 (en) 2001-09-04 2010-05-04 Broncus Technologies, Inc. Methods and devices for maintaining patency of surgically created channels in a body organ
US20050137611A1 (en) * 2001-09-04 2005-06-23 Broncus Technologies, Inc. Methods and devices for maintaining surgically created channels in a body organ
US8303651B1 (en) * 2001-09-07 2012-11-06 Advanced Cardiovascular Systems, Inc. Polymeric coating for reducing the rate of release of a therapeutic substance from a stent
US7285304B1 (en) * 2003-06-25 2007-10-23 Advanced Cardiovascular Systems, Inc. Fluid treatment of a polymeric coating on an implantable medical device
US7989018B2 (en) * 2001-09-17 2011-08-02 Advanced Cardiovascular Systems, Inc. Fluid treatment of a polymeric coating on an implantable medical device
WO2003035135A1 (en) 2001-09-24 2003-05-01 Boston Scientific Limited Optimized dosing for drug coated stents
US20050025808A1 (en) * 2001-09-24 2005-02-03 Herrmann Robert A. Medical devices and methods for inhibiting smooth muscle cell proliferation
US6827737B2 (en) * 2001-09-25 2004-12-07 Scimed Life Systems, Inc. EPTFE covering for endovascular prostheses and method of manufacture
US7223282B1 (en) * 2001-09-27 2007-05-29 Advanced Cardiovascular Systems, Inc. Remote activation of an implantable device
US6753071B1 (en) * 2001-09-27 2004-06-22 Advanced Cardiovascular Systems, Inc. Rate-reducing membrane for release of an agent
US20030065377A1 (en) * 2001-09-28 2003-04-03 Davila Luis A. Coated medical devices
US20030065345A1 (en) * 2001-09-28 2003-04-03 Kevin Weadock Anastomosis devices and methods for treating anastomotic sites
US20030065382A1 (en) * 2001-10-02 2003-04-03 Fischell Robert E. Means and method for the treatment of coronary artery obstructions
US8740973B2 (en) * 2001-10-26 2014-06-03 Icon Medical Corp. Polymer biodegradable medical device
US6939376B2 (en) 2001-11-05 2005-09-06 Sun Biomedical, Ltd. Drug-delivery endovascular stent and method for treating restenosis
US7682387B2 (en) 2002-04-24 2010-03-23 Biosensors International Group, Ltd. Drug-delivery endovascular stent and method for treating restenosis
US6517889B1 (en) 2001-11-26 2003-02-11 Swaminathan Jayaraman Process for coating a surface of a stent
US8123799B1 (en) * 2001-11-30 2012-02-28 Advanced Cardiovascular Systems, Inc. Modified implantable device surface and a method of making the same
US8470019B1 (en) 2001-11-30 2013-06-25 Advanced Cardiovascular Systems, Inc. TiNxOy modified surface for an implantable device and a method of producing the same
US6709514B1 (en) * 2001-12-28 2004-03-23 Advanced Cardiovascular Systems, Inc. Rotary coating apparatus for coating implantable medical devices
US6887270B2 (en) * 2002-02-08 2005-05-03 Boston Scientific Scimed, Inc. Implantable or insertable medical device resistant to microbial growth and biofilm formation
US8133501B2 (en) 2002-02-08 2012-03-13 Boston Scientific Scimed, Inc. Implantable or insertable medical devices for controlled drug delivery
US7993390B2 (en) 2002-02-08 2011-08-09 Boston Scientific Scimed, Inc. Implantable or insertable medical device resistant to microbial growth and biofilm formation
US8685427B2 (en) * 2002-07-31 2014-04-01 Boston Scientific Scimed, Inc. Controlled drug delivery
US20060093771A1 (en) * 2002-02-15 2006-05-04 Frantisek Rypacek Polymer coating for medical devices
ES2276084T3 (en) * 2002-02-15 2007-06-16 Cv Therapeutics, Inc. POLYMER COATING FOR MEDICAL DEVICES.
US20110306997A9 (en) * 2002-02-21 2011-12-15 Roschak Edmund J Devices for creating passages and sensing for blood vessels
US7919075B1 (en) 2002-03-20 2011-04-05 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices
DE10216971A1 (en) * 2002-04-16 2003-10-30 Lothar Sellin Medical implant, e.g. stent, has drug combined directly or by drug release system with biocompatible e.g. hemocompatible surface coating e.g. of carbon, silicon carbide or pyrolytic carbon
WO2003088820A2 (en) * 2002-04-19 2003-10-30 Broncus Technologies, Inc. Devices for maintaining surgically created openings
US7008979B2 (en) * 2002-04-30 2006-03-07 Hydromer, Inc. Coating composition for multiple hydrophilic applications
US7048962B2 (en) * 2002-05-02 2006-05-23 Labcoat, Ltd. Stent coating device
US7709048B2 (en) * 2002-05-02 2010-05-04 Labcoat, Ltd. Method and apparatus for coating a medical device
US6645547B1 (en) 2002-05-02 2003-11-11 Labcoat Ltd. Stent coating device
US7931687B2 (en) * 2002-05-13 2011-04-26 Articular Engineering, Llc Tissue engineered osteochondral implant
US8313760B2 (en) * 2002-05-24 2012-11-20 Angiotech International Ag Compositions and methods for coating medical implants
MXPA04011651A (en) * 2002-05-24 2005-03-07 Angiotech Pharm Inc Compositions and methods for coating medical implants.
US7097850B2 (en) 2002-06-18 2006-08-29 Surmodics, Inc. Bioactive agent release coating and controlled humidity method
US7939094B2 (en) * 2002-06-19 2011-05-10 Boston Scientific Scimed, Inc. Multiphase polymeric drug release region
US20030236513A1 (en) * 2002-06-19 2003-12-25 Scimed Life Systems, Inc. Implantable or insertable medical devices for controlled delivery of a therapeutic agent
US8211455B2 (en) * 2002-06-19 2012-07-03 Boston Scientific Scimed, Inc. Implantable or insertable medical devices for controlled delivery of a therapeutic agent
US7105175B2 (en) * 2002-06-19 2006-09-12 Boston Scientific Scimed, Inc. Implantable or insertable medical devices for controlled delivery of a therapeutic agent
US7217426B1 (en) 2002-06-21 2007-05-15 Advanced Cardiovascular Systems, Inc. Coatings containing polycationic peptides for cardiovascular therapy
US8506617B1 (en) 2002-06-21 2013-08-13 Advanced Cardiovascular Systems, Inc. Micronized peptide coated stent
US7794743B2 (en) * 2002-06-21 2010-09-14 Advanced Cardiovascular Systems, Inc. Polycationic peptide coatings and methods of making the same
US7056523B1 (en) 2002-06-21 2006-06-06 Advanced Cardiovascular Systems, Inc. Implantable medical devices incorporating chemically conjugated polymers and oligomers of L-arginine
US7033602B1 (en) * 2002-06-21 2006-04-25 Advanced Cardiovascular Systems, Inc. Polycationic peptide coatings and methods of coating implantable medical devices
EP1516597A4 (en) * 2002-06-27 2010-11-10 Microport Medical Shanghai Co Drug eluting stent
CN1671400A (en) * 2002-07-03 2005-09-21 派瑞克科学公司 Compositions of hyaluronic acid and methods of use
EP1521603B1 (en) 2002-07-12 2011-01-19 Cook Incorporated Coated medical device
US8016881B2 (en) 2002-07-31 2011-09-13 Icon Interventional Systems, Inc. Sutures and surgical staples for anastamoses, wound closures, and surgical closures
US8920826B2 (en) * 2002-07-31 2014-12-30 Boston Scientific Scimed, Inc. Medical imaging reference devices
DE60333566D1 (en) * 2002-08-13 2010-09-09 Medtronic Inc MEDICAL DEVICE WITH IMPROVED LIABILITY BETWEEN A POLYMERIC TOUCH AND A SUBSTRATE
JP2006502135A (en) * 2002-08-13 2006-01-19 メドトロニック・インコーポレーテッド Active drug delivery system, medical device and method
US20040127978A1 (en) * 2002-08-13 2004-07-01 Medtronic, Inc. Active agent delivery system including a hydrophilic polymer, medical device, and method
EP1536846A1 (en) * 2002-08-13 2005-06-08 Medtronic, Inc. Active agent delivery system including a polyurethane, medical device, and method
US7438925B2 (en) * 2002-08-26 2008-10-21 Biovention Holdings Ltd. Drug eluting coatings for medical implants
US7029495B2 (en) * 2002-08-28 2006-04-18 Scimed Life Systems, Inc. Medical devices and methods of making the same
US8075585B2 (en) * 2002-08-29 2011-12-13 Stryker Corporation Device and method for treatment of a vascular defect
US7201935B1 (en) 2002-09-17 2007-04-10 Advanced Cardiovascular Systems, Inc. Plasma-generated coatings for medical devices and methods for fabricating thereof
AU2003275190A1 (en) * 2002-09-18 2004-04-08 Medtronic Vascular, Inc. Controllable drug releasing gradient coatings for medical devices
DE10244847A1 (en) * 2002-09-20 2004-04-01 Ulrich Prof. Dr. Speck Medical device for drug delivery
US7087263B2 (en) * 2002-10-09 2006-08-08 Advanced Cardiovascular Systems, Inc. Rare limiting barriers for implantable medical devices
KR100511030B1 (en) * 2002-10-21 2005-08-31 한국과학기술연구원 Blood compatible metallic materials and preparation thereof
GB0225197D0 (en) * 2002-10-30 2002-12-11 Univ Sheffield Surface
PL376752A1 (en) * 2002-11-07 2006-01-09 Abbott Laboratories Prosthesis having varied concentration of beneficial agent
AU2003291311A1 (en) * 2002-11-07 2004-06-03 Carbon Medical Technologies, Inc. Biocompatible medical device coatings
US8524148B2 (en) * 2002-11-07 2013-09-03 Abbott Laboratories Method of integrating therapeutic agent into a bioerodible medical device
US8221495B2 (en) 2002-11-07 2012-07-17 Abbott Laboratories Integration of therapeutic agent into a bioerodible medical device
US6896965B1 (en) * 2002-11-12 2005-05-24 Advanced Cardiovascular Systems, Inc. Rate limiting barriers for implantable devices
US7022372B1 (en) 2002-11-12 2006-04-04 Advanced Cardiovascular Systems, Inc. Compositions for coating implantable medical devices
US20060036158A1 (en) * 2003-11-17 2006-02-16 Inrad, Inc. Self-contained, self-piercing, side-expelling marking apparatus
US6982004B1 (en) * 2002-11-26 2006-01-03 Advanced Cardiovascular Systems, Inc. Electrostatic loading of drugs on implantable medical devices
US7491234B2 (en) 2002-12-03 2009-02-17 Boston Scientific Scimed, Inc. Medical devices for delivery of therapeutic agents
US20040111144A1 (en) * 2002-12-06 2004-06-10 Lawin Laurie R. Barriers for polymeric coatings
US7776926B1 (en) 2002-12-11 2010-08-17 Advanced Cardiovascular Systems, Inc. Biocompatible coating for implantable medical devices
US7758880B2 (en) 2002-12-11 2010-07-20 Advanced Cardiovascular Systems, Inc. Biocompatible polyacrylate compositions for medical applications
US7074276B1 (en) * 2002-12-12 2006-07-11 Advanced Cardiovascular Systems, Inc. Clamp mandrel fixture and a method of using the same to minimize coating defects
US8435550B2 (en) * 2002-12-16 2013-05-07 Abbot Cardiovascular Systems Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US7758881B2 (en) * 2004-06-30 2010-07-20 Advanced Cardiovascular Systems, Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US20060002968A1 (en) * 2004-06-30 2006-01-05 Gordon Stewart Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders
AU2003300022A1 (en) * 2002-12-30 2004-07-29 Angiotech International Ag Silk-containing stent graft
US7144419B2 (en) 2003-01-24 2006-12-05 Medtronic Vascular, Inc. Drug-polymer coated stent with blended phenoxy and styrenic block copolymers
US6918929B2 (en) 2003-01-24 2005-07-19 Medtronic Vascular, Inc. Drug-polymer coated stent with pegylated styrenic block copolymers
US20050079199A1 (en) * 2003-02-18 2005-04-14 Medtronic, Inc. Porous coatings for drug release from medical devices
US7563483B2 (en) * 2003-02-26 2009-07-21 Advanced Cardiovascular Systems Inc. Methods for fabricating a coating for implantable medical devices
US6926919B1 (en) * 2003-02-26 2005-08-09 Advanced Cardiovascular Systems, Inc. Method for fabricating a coating for a medical device
US7063884B2 (en) * 2003-02-26 2006-06-20 Advanced Cardiovascular Systems, Inc. Stent coating
US8313759B2 (en) * 2003-03-06 2012-11-20 Boston Scientific Scimed, Inc. Implantable or insertable medical devices containing miscible polymer blends for controlled delivery of a therapeutic agent
DE10311729A1 (en) * 2003-03-18 2004-09-30 Schultheiss, Heinz-Peter, Prof. Dr. Endovascular implant with an at least sectionally active coating of ratjadon and / or a ratjadon derivative
US20050164951A1 (en) * 2003-04-03 2005-07-28 The Regents Of The University Of California Inhibitors for the soluble epoxide hydrolase
EP1608319A4 (en) * 2003-04-03 2007-02-28 Univ California Improved inhibitors for the soluble epoxide hydrolase
US7241455B2 (en) * 2003-04-08 2007-07-10 Boston Scientific Scimed, Inc. Implantable or insertable medical devices containing radiation-crosslinked polymer for controlled delivery of a therapeutic agent
US7306580B2 (en) * 2003-04-16 2007-12-11 Cook Incorporated Medical device with therapeutic agents
EP1470828A1 (en) * 2003-04-25 2004-10-27 Medtronic Vascular, Inc. Plasticized stent coatings
US20040230298A1 (en) * 2003-04-25 2004-11-18 Medtronic Vascular, Inc. Drug-polymer coated stent with polysulfone and styrenic block copolymer
US20050100654A1 (en) * 2003-04-29 2005-05-12 Ast Products, Inc., A Massachusetts Corporation Methods for coating implants
EP1633320A2 (en) * 2003-05-02 2006-03-15 SurModics, Inc. Implantable controlled release bioactive agent delivery device
US8246974B2 (en) * 2003-05-02 2012-08-21 Surmodics, Inc. Medical devices and methods for producing the same
US6923996B2 (en) 2003-05-06 2005-08-02 Scimed Life Systems, Inc. Processes for producing polymer coatings for release of therapeutic agent
US7279174B2 (en) * 2003-05-08 2007-10-09 Advanced Cardiovascular Systems, Inc. Stent coatings comprising hydrophilic additives
EP1475110A1 (en) * 2003-05-09 2004-11-10 B. Braun Melsungen Ag Stent for controlled drug release
US7877133B2 (en) 2003-05-23 2011-01-25 Senorx, Inc. Marker or filler forming fluid
US20050118344A1 (en) 2003-12-01 2005-06-02 Pacetti Stephen D. Temperature controlled crimping
US7335185B2 (en) * 2003-07-18 2008-02-26 Boston Scientific Scimed, Inc. Protective coatings for medical devices
US8308682B2 (en) 2003-07-18 2012-11-13 Broncus Medical Inc. Devices for maintaining patency of surgically created channels in tissue
US20050021127A1 (en) * 2003-07-21 2005-01-27 Kawula Paul John Porous glass fused onto stent for drug retention
US7056591B1 (en) * 2003-07-30 2006-06-06 Advanced Cardiovascular Systems, Inc. Hydrophobic biologically absorbable coatings for drug delivery devices and methods for fabricating the same
US7914805B2 (en) * 2003-07-31 2011-03-29 Boston Scientific Scimed, Inc. Implantable or insertable medical devices containing radiation-treated polymer for improved delivery of therapeutic agent
US9114199B2 (en) * 2003-07-31 2015-08-25 Boston Scientific Scimed, Inc. Implantable or insertable medical devices containing acrylic copolymer for controlled delivery of therapeutic agent
US7645474B1 (en) 2003-07-31 2010-01-12 Advanced Cardiovascular Systems, Inc. Method and system of purifying polymers for use with implantable medical devices
US7785512B1 (en) 2003-07-31 2010-08-31 Advanced Cardiovascular Systems, Inc. Method and system of controlled temperature mixing and molding of polymers with active agents for implantable medical devices
US7357940B2 (en) * 2003-07-31 2008-04-15 Boston Scientific Scimed, Inc. Implantable or insertable medical devices containing graft copolymer for controlled delivery of therapeutic agents
US8870814B2 (en) * 2003-07-31 2014-10-28 Boston Scientific Scimed, Inc. Implantable or insertable medical devices containing silicone copolymer for controlled delivery of therapeutic agent
US7431959B1 (en) 2003-07-31 2008-10-07 Advanced Cardiovascular Systems Inc. Method and system for irradiation of a drug eluting implantable medical device
US20050064005A1 (en) * 2003-08-13 2005-03-24 Dinh Thomas Q. Active agent delivery systems including a miscible polymer blend, medical devices, and methods
US20050055078A1 (en) * 2003-09-04 2005-03-10 Medtronic Vascular, Inc. Stent with outer slough coating
US20050058768A1 (en) * 2003-09-16 2005-03-17 Eyal Teichman Method for coating prosthetic stents
US7441513B1 (en) 2003-09-26 2008-10-28 Advanced Cardiovascular Systems, Inc. Plasma-generated coating apparatus for medical devices and a method of coating deposition
US7198675B2 (en) * 2003-09-30 2007-04-03 Advanced Cardiovascular Systems Stent mandrel fixture and method for selectively coating surfaces of a stent
US7318932B2 (en) * 2003-09-30 2008-01-15 Advanced Cardiovascular Systems, Inc. Coatings for drug delivery devices comprising hydrolitically stable adducts of poly(ethylene-co-vinyl alcohol) and methods for fabricating the same
US7704544B2 (en) * 2003-10-07 2010-04-27 Advanced Cardiovascular Systems, Inc. System and method for coating a tubular implantable medical device
US7329413B1 (en) 2003-11-06 2008-02-12 Advanced Cardiovascular Systems, Inc. Coatings for drug delivery devices having gradient of hydration and methods for fabricating thereof
WO2005044328A1 (en) * 2003-11-07 2005-05-19 Bayco Tech Limited Method for preparing drug eluting medical devices and devices obtained therefrom
JP2007516740A (en) * 2003-11-10 2007-06-28 アンジオテック インターナショナル アーゲー Medical implants and scarring inhibitors
WO2005046747A2 (en) * 2003-11-10 2005-05-26 Angiotech International Ag Intravascular devices and fibrosis-inducing agents
US20050273002A1 (en) 2004-06-04 2005-12-08 Goosen Ryan L Multi-mode imaging marker
US9114198B2 (en) * 2003-11-19 2015-08-25 Advanced Cardiovascular Systems, Inc. Biologically beneficial coatings for implantable devices containing fluorinated polymers and methods for fabricating the same
US20050209664A1 (en) * 2003-11-20 2005-09-22 Angiotech International Ag Electrical devices and anti-scarring agents
EP1685085A2 (en) * 2003-11-20 2006-08-02 Angiotech International Ag Implantable sensors and implantable pumps and anti-scarring agents
US8192752B2 (en) * 2003-11-21 2012-06-05 Advanced Cardiovascular Systems, Inc. Coatings for implantable devices including biologically erodable polyesters and methods for fabricating the same
US7553326B2 (en) * 2003-11-24 2009-06-30 Sweet Richard M Method and apparatus for preventing dialysis graft intimal hyperplasia
DE10355511A1 (en) * 2003-11-24 2005-06-09 Biotronik Gmbh & Co. Kg Endovascular implant with an active coating
US7560492B1 (en) 2003-11-25 2009-07-14 Advanced Cardiovascular Systems, Inc. Polysulfone block copolymers as drug-eluting coating material
US7807722B2 (en) * 2003-11-26 2010-10-05 Advanced Cardiovascular Systems, Inc. Biobeneficial coating compositions and methods of making and using thereof
US7220816B2 (en) * 2003-12-16 2007-05-22 Advanced Cardiovascular Systems, Inc. Biologically absorbable coatings for implantable devices based on poly(ester amides) and methods for fabricating the same
US20050131513A1 (en) * 2003-12-16 2005-06-16 Cook Incorporated Stent catheter with a permanently affixed conductor
US20050137568A1 (en) * 2003-12-17 2005-06-23 Jones Donald K. Activatable bioactive implantable medical device and method of use
US7294123B2 (en) * 2003-12-17 2007-11-13 Corris Neurovascular, Inc. Activatable bioactive vascular occlusive device and method of use
US7435788B2 (en) * 2003-12-19 2008-10-14 Advanced Cardiovascular Systems, Inc. Biobeneficial polyamide/polyethylene glycol polymers for use with drug eluting stents
US8309112B2 (en) * 2003-12-24 2012-11-13 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices comprising hydrophilic substances and methods for fabricating the same
WO2005068020A1 (en) * 2004-01-02 2005-07-28 Advanced Cardiovascular Systems, Inc. High-density lipoprotein coated medical devices
US7854756B2 (en) * 2004-01-22 2010-12-21 Boston Scientific Scimed, Inc. Medical devices
US7349971B2 (en) * 2004-02-05 2008-03-25 Scenera Technologies, Llc System for transmitting data utilizing multiple communication applications simultaneously in response to user request without specifying recipient's communication information
EP1713417A4 (en) * 2004-02-12 2008-08-06 Univ Akron Improved stent for use in arteries
US20050187608A1 (en) * 2004-02-24 2005-08-25 O'hara Michael D. Radioprotective compound coating for medical devices
US20090018092A1 (en) 2004-03-16 2009-01-15 The Regents Of The University Of California Reducing Nephropathy with Inhibitors of Soluble Epoxide Hydrolase and Epoxyeicosanoids
US8685431B2 (en) * 2004-03-16 2014-04-01 Advanced Cardiovascular Systems, Inc. Biologically absorbable coatings for implantable devices based on copolymers having ester bonds and methods for fabricating the same
US8431145B2 (en) 2004-03-19 2013-04-30 Abbott Laboratories Multiple drug delivery from a balloon and a prosthesis
US20100030183A1 (en) * 2004-03-19 2010-02-04 Toner John L Method of treating vascular disease at a bifurcated vessel using a coated balloon
US20070027523A1 (en) * 2004-03-19 2007-02-01 Toner John L Method of treating vascular disease at a bifurcated vessel using coated balloon
EP1735042B1 (en) * 2004-03-19 2011-11-23 Abbott Laboratories Multiple drug delivery from a balloon and a prosthesis
US8551512B2 (en) 2004-03-22 2013-10-08 Advanced Cardiovascular Systems, Inc. Polyethylene glycol/poly(butylene terephthalate) copolymer coated devices including EVEROLIMUS
US20050208093A1 (en) * 2004-03-22 2005-09-22 Thierry Glauser Phosphoryl choline coating compositions
US20050220835A1 (en) * 2004-03-30 2005-10-06 Jayaraman Ramesh B Agent eluting bioimplantable devices and polymer systems for their preparation
US8778014B1 (en) 2004-03-31 2014-07-15 Advanced Cardiovascular Systems, Inc. Coatings for preventing balloon damage to polymer coated stents
US9498563B2 (en) * 2004-04-23 2016-11-22 Boston Scientific Scimed, Inc. Medical articles having therapeutic-agent-containing regions formed from coalesced polymer particles
US8293890B2 (en) 2004-04-30 2012-10-23 Advanced Cardiovascular Systems, Inc. Hyaluronic acid based copolymers
US20050288481A1 (en) * 2004-04-30 2005-12-29 Desnoyer Jessica R Design of poly(ester amides) for the control of agent-release from polymeric compositions
US20050265960A1 (en) * 2004-05-26 2005-12-01 Pacetti Stephen D Polymers containing poly(ester amides) and agents for use with medical articles and methods of fabricating the same
US7820732B2 (en) * 2004-04-30 2010-10-26 Advanced Cardiovascular Systems, Inc. Methods for modulating thermal and mechanical properties of coatings on implantable devices
US7758892B1 (en) * 2004-05-20 2010-07-20 Boston Scientific Scimed, Inc. Medical devices having multiple layers
US9561309B2 (en) * 2004-05-27 2017-02-07 Advanced Cardiovascular Systems, Inc. Antifouling heparin coatings
US7563780B1 (en) 2004-06-18 2009-07-21 Advanced Cardiovascular Systems, Inc. Heparin prodrugs and drug delivery stents formed therefrom
US8512388B1 (en) 2004-06-24 2013-08-20 Advanced Cardiovascular Systems, Inc. Stent delivery catheter with improved stent retention and method of making same
JP2008504295A (en) * 2004-06-25 2008-02-14 ボード オブ リージェンツ, ザ ユニバーシティ オブ テキサス システム Methods and compositions for the treatment of attention deficit hyperactivity disorder and hyperphenylalaninemia
US20050287184A1 (en) 2004-06-29 2005-12-29 Hossainy Syed F A Drug-delivery stent formulations for restenosis and vulnerable plaque
US8709469B2 (en) 2004-06-30 2014-04-29 Abbott Cardiovascular Systems Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
WO2006017275A1 (en) 2004-07-13 2006-02-16 The University Of Tennessee Research Foundation Adhesive composition for carrying therapeutic agents as delivery vehicle on coatings applied to vascular grafts
CA2591543A1 (en) * 2004-07-19 2006-02-09 Broncus Technologies, Inc. Methods and devices for maintaining patency of surgically created channels in a body organ
US8409167B2 (en) 2004-07-19 2013-04-02 Broncus Medical Inc Devices for delivering substances through an extra-anatomic opening created in an airway
US7494665B1 (en) * 2004-07-30 2009-02-24 Advanced Cardiovascular Systems, Inc. Polymers containing siloxane monomers
US8357391B2 (en) 2004-07-30 2013-01-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable devices comprising poly (hydroxy-alkanoates) and diacid linkages
ES2432556T3 (en) 2004-08-04 2013-12-04 Evonik Corporation Methods for manufacturing supply devices and their devices
US8980300B2 (en) 2004-08-05 2015-03-17 Advanced Cardiovascular Systems, Inc. Plasticizers for coating compositions
US20060039950A1 (en) * 2004-08-23 2006-02-23 Zhengrong Zhou Multi-functional biocompatible coatings for intravascular devices
US7648727B2 (en) * 2004-08-26 2010-01-19 Advanced Cardiovascular Systems, Inc. Methods for manufacturing a coated stent-balloon assembly
US7244443B2 (en) * 2004-08-31 2007-07-17 Advanced Cardiovascular Systems, Inc. Polymers of fluorinated monomers and hydrophilic monomers
US20060051390A1 (en) * 2004-09-03 2006-03-09 Schwarz Marlene C Medical devices having self-forming rate-controlling barrier for drug release
CN101052362A (en) * 2004-09-08 2007-10-10 株式会社钟化 Organism indwelling support
US20080077232A1 (en) * 2004-09-08 2008-03-27 Kaneka Corporation Stent for Placement in Body
US8110211B2 (en) * 2004-09-22 2012-02-07 Advanced Cardiovascular Systems, Inc. Medicated coatings for implantable medical devices including polyacrylates
US9011831B2 (en) 2004-09-30 2015-04-21 Advanced Cardiovascular Systems, Inc. Methacrylate copolymers for medical devices
US20060068224A1 (en) * 2004-09-30 2006-03-30 George Grobe Coated biomedical device and associated method
US7166680B2 (en) * 2004-10-06 2007-01-23 Advanced Cardiovascular Systems, Inc. Blends of poly(ester amide) polymers
US20060083770A1 (en) * 2004-10-15 2006-04-20 Specialty Coating Systems, Inc. Medical devices and methods of preparation and use
EP1814875A4 (en) 2004-10-20 2010-02-17 Univ California Improved inhibitors for the soluble epoxide hydrolase
US8603634B2 (en) 2004-10-27 2013-12-10 Abbott Cardiovascular Systems Inc. End-capped poly(ester amide) copolymers
US20060089485A1 (en) * 2004-10-27 2006-04-27 Desnoyer Jessica R End-capped poly(ester amide) copolymers
US7147659B2 (en) * 2004-10-28 2006-12-12 Cordis Neurovascular, Inc. Expandable stent having a dissolvable portion
US7390497B2 (en) * 2004-10-29 2008-06-24 Advanced Cardiovascular Systems, Inc. Poly(ester amide) filler blends for modulation of coating properties
US20060095122A1 (en) * 2004-10-29 2006-05-04 Advanced Cardiovascular Systems, Inc. Implantable devices comprising biologically absorbable star polymers and methods for fabricating the same
US8419656B2 (en) 2004-11-22 2013-04-16 Bard Peripheral Vascular, Inc. Post decompression marker introducer system
US7214759B2 (en) * 2004-11-24 2007-05-08 Advanced Cardiovascular Systems, Inc. Biologically absorbable coatings for implantable devices based on polyesters and methods for fabricating the same
US8609123B2 (en) * 2004-11-29 2013-12-17 Advanced Cardiovascular Systems, Inc. Derivatized poly(ester amide) as a biobeneficial coating
US20060115449A1 (en) * 2004-11-30 2006-06-01 Advanced Cardiovascular Systems, Inc. Bioabsorbable, biobeneficial, tyrosine-based polymers for use in drug eluting stent coatings
US7892592B1 (en) 2004-11-30 2011-02-22 Advanced Cardiovascular Systems, Inc. Coating abluminal surfaces of stents and other implantable medical devices
US20060127443A1 (en) * 2004-12-09 2006-06-15 Helmus Michael N Medical devices having vapor deposited nanoporous coatings for controlled therapeutic agent delivery
US20060134162A1 (en) * 2004-12-16 2006-06-22 Larson Christopher W Methods for fabricating a drug delivery device
US7604818B2 (en) * 2004-12-22 2009-10-20 Advanced Cardiovascular Systems, Inc. Polymers of fluorinated monomers and hydrocarbon monomers
US7419504B2 (en) * 2004-12-27 2008-09-02 Advanced Cardiovascular Systems, Inc. Poly(ester amide) block copolymers
US8007775B2 (en) * 2004-12-30 2011-08-30 Advanced Cardiovascular Systems, Inc. Polymers containing poly(hydroxyalkanoates) and agents for use with medical articles and methods of fabricating the same
US7202325B2 (en) * 2005-01-14 2007-04-10 Advanced Cardiovascular Systems, Inc. Poly(hydroxyalkanoate-co-ester amides) and agents for use with medical articles
AU2005100176A4 (en) * 2005-03-01 2005-04-07 Gym Tv Pty Ltd Garbage bin clip
US8323333B2 (en) * 2005-03-03 2012-12-04 Icon Medical Corp. Fragile structure protective coating
US7540995B2 (en) 2005-03-03 2009-06-02 Icon Medical Corp. Process for forming an improved metal alloy stent
US20060201601A1 (en) * 2005-03-03 2006-09-14 Icon Interventional Systems, Inc. Flexible markers
AU2006221046B2 (en) * 2005-03-03 2012-02-02 Icon Medical Corp. Improved metal alloys for medical device
US20060264914A1 (en) * 2005-03-03 2006-11-23 Icon Medical Corp. Metal alloys for medical devices
US9107899B2 (en) 2005-03-03 2015-08-18 Icon Medical Corporation Metal alloys for medical devices
WO2006110197A2 (en) * 2005-03-03 2006-10-19 Icon Medical Corp. Polymer biodegradable medical device
US20060216431A1 (en) * 2005-03-28 2006-09-28 Kerrigan Cameron K Electrostatic abluminal coating of a stent crimped on a balloon catheter
WO2006109590A1 (en) * 2005-04-05 2006-10-19 National University Corporation Kanazawa University Medical instrument
US10357328B2 (en) 2005-04-20 2019-07-23 Bard Peripheral Vascular, Inc. and Bard Shannon Limited Marking device with retractable cannula
US7795467B1 (en) 2005-04-26 2010-09-14 Advanced Cardiovascular Systems, Inc. Bioabsorbable, biobeneficial polyurethanes for use in medical devices
US8778375B2 (en) 2005-04-29 2014-07-15 Advanced Cardiovascular Systems, Inc. Amorphous poly(D,L-lactide) coating
US20060257355A1 (en) * 2005-05-10 2006-11-16 Abiomed, Inc. Impregnated polymer compositions and devices using them
WO2006130873A2 (en) * 2005-06-01 2006-12-07 Broncus Technologies, Inc. Methods and devices for maintaining surgically created channels in a body organ
US7622070B2 (en) * 2005-06-20 2009-11-24 Advanced Cardiovascular Systems, Inc. Method of manufacturing an implantable polymeric medical device
WO2007005758A2 (en) * 2005-06-30 2007-01-11 Mc3, Inc. Methods , compositions and devices for promoting angiogenesis
US7823533B2 (en) * 2005-06-30 2010-11-02 Advanced Cardiovascular Systems, Inc. Stent fixture and method for reducing coating defects
US20070038176A1 (en) * 2005-07-05 2007-02-15 Jan Weber Medical devices with machined layers for controlled communications with underlying regions
US8021676B2 (en) 2005-07-08 2011-09-20 Advanced Cardiovascular Systems, Inc. Functionalized chemically inert polymers for coatings
US7785647B2 (en) * 2005-07-25 2010-08-31 Advanced Cardiovascular Systems, Inc. Methods of providing antioxidants to a drug containing product
US7735449B1 (en) 2005-07-28 2010-06-15 Advanced Cardiovascular Systems, Inc. Stent fixture having rounded support structures and method for use thereof
US20070031611A1 (en) * 2005-08-04 2007-02-08 Babaev Eilaz P Ultrasound medical stent coating method and device
US9101949B2 (en) * 2005-08-04 2015-08-11 Eilaz Babaev Ultrasonic atomization and/or seperation system
US7896539B2 (en) * 2005-08-16 2011-03-01 Bacoustics, Llc Ultrasound apparatus and methods for mixing liquids and coating stents
US7914809B2 (en) * 2005-08-26 2011-03-29 Boston Scientific Scimed, Inc. Lubricious composites for medical devices
AU2006286158A1 (en) * 2005-09-02 2007-03-08 Colbar Lifescience Ltd. Cross-linked polysaccharide and protein matrices and methods for their preparation
CA2562580C (en) * 2005-10-07 2014-04-29 Inrad, Inc. Drug-eluting tissue marker
US20090304766A1 (en) * 2005-11-30 2009-12-10 Lawrence Mayer Localized delivery of drug combinations
US20090287072A1 (en) * 2005-12-02 2009-11-19 The Regents Of The University Of Michigan Polymer compositions, coatings and devices, and methods of making and using the same
US20070128246A1 (en) * 2005-12-06 2007-06-07 Hossainy Syed F A Solventless method for forming a coating
US20070135909A1 (en) * 2005-12-08 2007-06-14 Desnoyer Jessica R Adhesion polymers to improve stent retention
US7976891B1 (en) 2005-12-16 2011-07-12 Advanced Cardiovascular Systems, Inc. Abluminal stent coating apparatus and method of using focused acoustic energy
US7867547B2 (en) 2005-12-19 2011-01-11 Advanced Cardiovascular Systems, Inc. Selectively coating luminal surfaces of stents
US20070148390A1 (en) * 2005-12-27 2007-06-28 Specialty Coating Systems, Inc. Fluorinated coatings
US8840660B2 (en) * 2006-01-05 2014-09-23 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US7919108B2 (en) * 2006-03-10 2011-04-05 Cook Incorporated Taxane coatings for implantable medical devices
US20080286325A1 (en) * 2006-01-05 2008-11-20 Med Institute, Inc. Cyclodextrin elution media for medical device coatings comprising a taxane therapeutic agent
US8089029B2 (en) * 2006-02-01 2012-01-03 Boston Scientific Scimed, Inc. Bioabsorbable metal medical device and method of manufacture
US8591531B2 (en) 2006-02-08 2013-11-26 Tyrx, Inc. Mesh pouches for implantable medical devices
US8636753B2 (en) * 2006-02-08 2014-01-28 Tyrx, Inc. Temporarily stiffened mesh prostheses
US9526814B2 (en) * 2006-02-16 2016-12-27 Boston Scientific Scimed, Inc. Medical balloons and methods of making the same
US20070191931A1 (en) * 2006-02-16 2007-08-16 Jan Weber Bioerodible endoprostheses and methods of making the same
US20070196428A1 (en) * 2006-02-17 2007-08-23 Thierry Glauser Nitric oxide generating medical devices
US7601383B2 (en) * 2006-02-28 2009-10-13 Advanced Cardiovascular Systems, Inc. Coating construct containing poly (vinyl alcohol)
US7713637B2 (en) * 2006-03-03 2010-05-11 Advanced Cardiovascular Systems, Inc. Coating containing PEGylated hyaluronic acid and a PEGylated non-hyaluronic acid polymer
US7875284B2 (en) * 2006-03-10 2011-01-25 Cook Incorporated Methods of manufacturing and modifying taxane coatings for implantable medical devices
AR059826A1 (en) 2006-03-13 2008-04-30 Univ California UREA INHIBITORS CONFORMATIONALLY RESTRICTED OF SOLUBLE HYDROLASSE EPOXIDE
US20070224244A1 (en) * 2006-03-22 2007-09-27 Jan Weber Corrosion resistant coatings for biodegradable metallic implants
US20070224235A1 (en) * 2006-03-24 2007-09-27 Barron Tenney Medical devices having nanoporous coatings for controlled therapeutic agent delivery
US8187620B2 (en) * 2006-03-27 2012-05-29 Boston Scientific Scimed, Inc. Medical devices comprising a porous metal oxide or metal material and a polymer coating for delivering therapeutic agents
US20070231363A1 (en) * 2006-03-29 2007-10-04 Yung-Ming Chen Coatings formed from stimulus-sensitive material
US8048150B2 (en) * 2006-04-12 2011-11-01 Boston Scientific Scimed, Inc. Endoprosthesis having a fiber meshwork disposed thereon
JP2010500050A (en) * 2006-04-27 2010-01-07 シェノイ,ナルマダ,アール. Compositions and methods for treating or preventing diseases of body passages
US20070259101A1 (en) * 2006-05-02 2007-11-08 Kleiner Lothar W Microporous coating on medical devices
US8003156B2 (en) * 2006-05-04 2011-08-23 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US8304012B2 (en) * 2006-05-04 2012-11-06 Advanced Cardiovascular Systems, Inc. Method for drying a stent
US7985441B1 (en) 2006-05-04 2011-07-26 Yiwen Tang Purification of polymers for coating applications
US20070264303A1 (en) * 2006-05-12 2007-11-15 Liliana Atanasoska Coating for medical devices comprising an inorganic or ceramic oxide and a therapeutic agent
US7775178B2 (en) * 2006-05-26 2010-08-17 Advanced Cardiovascular Systems, Inc. Stent coating apparatus and method
US8568764B2 (en) * 2006-05-31 2013-10-29 Advanced Cardiovascular Systems, Inc. Methods of forming coating layers for medical devices utilizing flash vaporization
US9561351B2 (en) * 2006-05-31 2017-02-07 Advanced Cardiovascular Systems, Inc. Drug delivery spiral coil construct
EP2023874A4 (en) * 2006-06-02 2009-07-08 Bioseek Inc Methods for identifying agents and their use for the prevention of restenosis
US8703167B2 (en) 2006-06-05 2014-04-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices for controlled release of a hydrophilic drug and a hydrophobic drug
US20080124372A1 (en) * 2006-06-06 2008-05-29 Hossainy Syed F A Morphology profiles for control of agent release rates from polymer matrices
US8778376B2 (en) * 2006-06-09 2014-07-15 Advanced Cardiovascular Systems, Inc. Copolymer comprising elastin pentapeptide block and hydrophilic block, and medical device and method of treating
US20070286882A1 (en) * 2006-06-09 2007-12-13 Yiwen Tang Solvent systems for coating medical devices
US8603530B2 (en) 2006-06-14 2013-12-10 Abbott Cardiovascular Systems Inc. Nanoshell therapy
US8114150B2 (en) 2006-06-14 2012-02-14 Advanced Cardiovascular Systems, Inc. RGD peptide attached to bioabsorbable stents
US8048448B2 (en) * 2006-06-15 2011-11-01 Abbott Cardiovascular Systems Inc. Nanoshells for drug delivery
US8017237B2 (en) * 2006-06-23 2011-09-13 Abbott Cardiovascular Systems, Inc. Nanoshells on polymers
US8815275B2 (en) 2006-06-28 2014-08-26 Boston Scientific Scimed, Inc. Coatings for medical devices comprising a therapeutic agent and a metallic material
US8771343B2 (en) * 2006-06-29 2014-07-08 Boston Scientific Scimed, Inc. Medical devices with selective titanium oxide coatings
US9028859B2 (en) * 2006-07-07 2015-05-12 Advanced Cardiovascular Systems, Inc. Phase-separated block copolymer coatings for implantable medical devices
WO2008008291A2 (en) * 2006-07-13 2008-01-17 Icon Medical Corp. Stent
US8685430B1 (en) 2006-07-14 2014-04-01 Abbott Cardiovascular Systems Inc. Tailored aliphatic polyesters for stent coatings
EP2054537A2 (en) 2006-08-02 2009-05-06 Boston Scientific Scimed, Inc. Endoprosthesis with three-dimensional disintegration control
US20100222875A1 (en) * 2006-08-08 2010-09-02 Abbott Cardiovascular Systems Inc. Method for forming a porous stent coating
US8703169B1 (en) 2006-08-15 2014-04-22 Abbott Cardiovascular Systems Inc. Implantable device having a coating comprising carrageenan and a biostable polymer
US20080085293A1 (en) * 2006-08-22 2008-04-10 Jenchen Yang Drug eluting stent and therapeutic methods using c-Jun N-terminal kinase inhibitor
US8926620B2 (en) 2006-08-25 2015-01-06 Kyphon Sarl Apparatus and methods for use of expandable members in surgical applications
US7985228B2 (en) * 2006-08-25 2011-07-26 Kyphon Sarl Apparatus and methods for use of expandable members in surgical applications
WO2008033711A2 (en) 2006-09-14 2008-03-20 Boston Scientific Limited Medical devices with drug-eluting coating
WO2008034048A2 (en) * 2006-09-15 2008-03-20 Boston Scientific Limited Bioerodible endoprosthesis with biostable inorganic layers
WO2008034031A2 (en) * 2006-09-15 2008-03-20 Boston Scientific Limited Bioerodible endoprostheses and methods of making the same
JP2010503494A (en) 2006-09-15 2010-02-04 ボストン サイエンティフィック リミテッド Biodegradable endoprosthesis and method for producing the same
CA2663220A1 (en) * 2006-09-15 2008-03-20 Boston Scientific Limited Medical devices and methods of making the same
EP2073764A2 (en) * 2006-09-18 2009-07-01 Boston Scientific Limited Controlling biodegradation of a medical instrument
EP2068962B1 (en) * 2006-09-18 2013-01-30 Boston Scientific Limited Endoprostheses
US7963942B2 (en) * 2006-09-20 2011-06-21 Boston Scientific Scimed, Inc. Medical balloons with modified surfaces
US20080086195A1 (en) * 2006-10-05 2008-04-10 Boston Scientific Scimed, Inc. Polymer-Free Coatings For Medical Devices Formed By Plasma Electrolytic Deposition
ES2443526T3 (en) 2006-10-23 2014-02-19 C.R. Bard, Inc. Breast marker
US9023114B2 (en) 2006-11-06 2015-05-05 Tyrx, Inc. Resorbable pouches for implantable medical devices
US7981150B2 (en) 2006-11-09 2011-07-19 Boston Scientific Scimed, Inc. Endoprosthesis with coatings
US8414526B2 (en) 2006-11-20 2013-04-09 Lutonix, Inc. Medical device rapid drug releasing coatings comprising oils, fatty acids, and/or lipids
US8998846B2 (en) 2006-11-20 2015-04-07 Lutonix, Inc. Drug releasing coatings for balloon catheters
US8414910B2 (en) * 2006-11-20 2013-04-09 Lutonix, Inc. Drug releasing coatings for medical devices
US8430055B2 (en) 2008-08-29 2013-04-30 Lutonix, Inc. Methods and apparatuses for coating balloon catheters
US20080276935A1 (en) 2006-11-20 2008-11-13 Lixiao Wang Treatment of asthma and chronic obstructive pulmonary disease with anti-proliferate and anti-inflammatory drugs
US8425459B2 (en) 2006-11-20 2013-04-23 Lutonix, Inc. Medical device rapid drug releasing coatings comprising a therapeutic agent and a contrast agent
US9737640B2 (en) 2006-11-20 2017-08-22 Lutonix, Inc. Drug releasing coatings for medical devices
US8414525B2 (en) 2006-11-20 2013-04-09 Lutonix, Inc. Drug releasing coatings for medical devices
US20080175887A1 (en) * 2006-11-20 2008-07-24 Lixiao Wang Treatment of Asthma and Chronic Obstructive Pulmonary Disease With Anti-proliferate and Anti-inflammatory Drugs
US9700704B2 (en) 2006-11-20 2017-07-11 Lutonix, Inc. Drug releasing coatings for balloon catheters
JP2010510029A (en) * 2006-11-22 2010-04-02 ブロンカス テクノロジーズ, インコーポレイテッド Device for passage creation and blood vessel sensing
US9579077B2 (en) 2006-12-12 2017-02-28 C.R. Bard, Inc. Multiple imaging mode tissue marker
US8597673B2 (en) * 2006-12-13 2013-12-03 Advanced Cardiovascular Systems, Inc. Coating of fast absorption or dissolution
US20080142616A1 (en) * 2006-12-15 2008-06-19 Bacoustics Llc Method of Producing a Directed Spray
EP2101670B1 (en) 2006-12-18 2013-07-31 C.R.Bard, Inc. Biopsy marker with in situ-generated imaging properties
ES2506144T3 (en) * 2006-12-28 2014-10-13 Boston Scientific Limited Bioerodible endoprosthesis and their manufacturing procedure
EP2118079A1 (en) 2007-02-07 2009-11-18 The Government of the United States of America as represented by the Secretary of the Department of Health and Human Services Synthetic macrocyclic compounds for treating cancer
ES2530862T3 (en) * 2007-02-07 2015-03-06 Cook Medical Technologies Llc Coatings of medical devices to release a therapeutic agent at different rates
US8431149B2 (en) 2007-03-01 2013-04-30 Boston Scientific Scimed, Inc. Coated medical devices for abluminal drug delivery
US8070797B2 (en) 2007-03-01 2011-12-06 Boston Scientific Scimed, Inc. Medical device with a porous surface for delivery of a therapeutic agent
US8067054B2 (en) 2007-04-05 2011-11-29 Boston Scientific Scimed, Inc. Stents with ceramic drug reservoir layer and methods of making and using the same
US8147769B1 (en) 2007-05-16 2012-04-03 Abbott Cardiovascular Systems Inc. Stent and delivery system with reduced chemical degradation
US7976915B2 (en) * 2007-05-23 2011-07-12 Boston Scientific Scimed, Inc. Endoprosthesis with select ceramic morphology
US9056155B1 (en) 2007-05-29 2015-06-16 Abbott Cardiovascular Systems Inc. Coatings having an elastic primer layer
US8109904B1 (en) 2007-06-25 2012-02-07 Abbott Cardiovascular Systems Inc. Drug delivery medical devices
US8048441B2 (en) 2007-06-25 2011-11-01 Abbott Cardiovascular Systems, Inc. Nanobead releasing medical devices
US7909864B2 (en) 2007-07-06 2011-03-22 Boston Scientific Scimed, Inc. Implantable medical devices having adjustable pore volume and methods for making the same
US7942926B2 (en) * 2007-07-11 2011-05-17 Boston Scientific Scimed, Inc. Endoprosthesis coating
US8002823B2 (en) * 2007-07-11 2011-08-23 Boston Scientific Scimed, Inc. Endoprosthesis coating
US7780095B2 (en) 2007-07-13 2010-08-24 Bacoustics, Llc Ultrasound pumping apparatus
US7753285B2 (en) 2007-07-13 2010-07-13 Bacoustics, Llc Echoing ultrasound atomization and/or mixing system
US9284409B2 (en) 2007-07-19 2016-03-15 Boston Scientific Scimed, Inc. Endoprosthesis having a non-fouling surface
US7931683B2 (en) 2007-07-27 2011-04-26 Boston Scientific Scimed, Inc. Articles having ceramic coated surfaces
US8815273B2 (en) * 2007-07-27 2014-08-26 Boston Scientific Scimed, Inc. Drug eluting medical devices having porous layers
US8221822B2 (en) * 2007-07-31 2012-07-17 Boston Scientific Scimed, Inc. Medical device coating by laser cladding
WO2009020520A1 (en) * 2007-08-03 2009-02-12 Boston Scientific Scimed, Inc. Coating for medical device having increased surface area
EP2187746A4 (en) 2007-08-06 2011-01-19 Univ California Preparation of novel 1,3-substituted ureas as inhibitors of soluble epoxide hydrolase
US20090041845A1 (en) * 2007-08-08 2009-02-12 Lothar Walter Kleiner Implantable medical devices having thin absorbable coatings
US8052745B2 (en) * 2007-09-13 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis
US9775882B2 (en) * 2007-09-20 2017-10-03 Medtronic, Inc. Medical devices and methods including polymers having biologically active agents therein
US8216632B2 (en) 2007-11-02 2012-07-10 Boston Scientific Scimed, Inc. Endoprosthesis coating
US20090118813A1 (en) * 2007-11-02 2009-05-07 Torsten Scheuermann Nano-patterned implant surfaces
US20090118818A1 (en) * 2007-11-02 2009-05-07 Boston Scientific Scimed, Inc. Endoprosthesis with coating
US7938855B2 (en) * 2007-11-02 2011-05-10 Boston Scientific Scimed, Inc. Deformable underlayer for stent
US20090118809A1 (en) * 2007-11-02 2009-05-07 Torsten Scheuermann Endoprosthesis with porous reservoir and non-polymer diffusion layer
US8029554B2 (en) * 2007-11-02 2011-10-04 Boston Scientific Scimed, Inc. Stent with embedded material
US20090143855A1 (en) * 2007-11-29 2009-06-04 Boston Scientific Scimed, Inc. Medical Device Including Drug-Loaded Fibers
WO2009079389A2 (en) * 2007-12-14 2009-06-25 Boston Scientific Limited Drug-eluting endoprosthesis
US20090163919A1 (en) * 2007-12-19 2009-06-25 Peter Tarcha Devices, systems, and methods for delivery of a pharmaceutical to a subject's spine
EP2222281B1 (en) 2007-12-20 2018-12-05 Evonik Corporation Process for preparing microparticles having a low residual solvent volume
US20090163958A1 (en) * 2007-12-20 2009-06-25 Peter Tarcha Compositions, devices, systems, and methods for inhibiting an inflammatory response
US20090171453A1 (en) * 2007-12-28 2009-07-02 Adams Tara K Drug Coated Stent Having a Surface Treatment and Method of Manufacturing
WO2009099767A2 (en) 2008-01-31 2009-08-13 C.R. Bard, Inc. Biopsy tissue marker
JP5581311B2 (en) 2008-04-22 2014-08-27 ボストン サイエンティフィック サイムド,インコーポレイテッド MEDICAL DEVICE HAVING INORGANIC MATERIAL COATING AND MANUFACTURING METHOD THEREOF
US8932346B2 (en) 2008-04-24 2015-01-13 Boston Scientific Scimed, Inc. Medical devices having inorganic particle layers
US7998192B2 (en) * 2008-05-09 2011-08-16 Boston Scientific Scimed, Inc. Endoprostheses
US8042251B2 (en) * 2008-05-21 2011-10-25 Boston Scientific Scimed, Inc. Systems and methods for heating and cooling during stent crimping
US20100040672A1 (en) * 2008-06-09 2010-02-18 Northwestern University Delivery of therapeutics
US8236046B2 (en) 2008-06-10 2012-08-07 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
WO2009155328A2 (en) 2008-06-18 2009-12-23 Boston Scientific Scimed, Inc. Endoprosthesis coating
US20100004733A1 (en) * 2008-07-02 2010-01-07 Boston Scientific Scimed, Inc. Implants Including Fractal Structures
US7985252B2 (en) * 2008-07-30 2011-07-26 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
EP2151253A1 (en) 2008-07-31 2010-02-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Biocompatibility coating and coated objects
JP2011530347A (en) * 2008-08-07 2011-12-22 エクソジェネシス コーポレーション Drug delivery system and method of manufacturing the drug delivery system
US9327061B2 (en) 2008-09-23 2016-05-03 Senorx, Inc. Porous bioabsorbable implant
US8076529B2 (en) * 2008-09-26 2011-12-13 Abbott Cardiovascular Systems, Inc. Expandable member formed of a fibrous matrix for intraluminal drug delivery
US8500687B2 (en) 2008-09-25 2013-08-06 Abbott Cardiovascular Systems Inc. Stent delivery system having a fibrous matrix covering with improved stent retention
US8049061B2 (en) 2008-09-25 2011-11-01 Abbott Cardiovascular Systems, Inc. Expandable member formed of a fibrous matrix having hydrogel polymer for intraluminal drug delivery
US8226603B2 (en) * 2008-09-25 2012-07-24 Abbott Cardiovascular Systems Inc. Expandable member having a covering formed of a fibrous matrix for intraluminal drug delivery
US8382824B2 (en) * 2008-10-03 2013-02-26 Boston Scientific Scimed, Inc. Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides
ES2440751T3 (en) * 2008-10-07 2014-01-30 Boston Scientific Scimed, Inc. Medical devices for administration of therapeutic agents to body lumens
US8231980B2 (en) * 2008-12-03 2012-07-31 Boston Scientific Scimed, Inc. Medical implants including iridium oxide
WO2010077244A1 (en) 2008-12-30 2010-07-08 C.R. Bard Inc. Marker delivery device for tissue marker placement
WO2010078620A1 (en) * 2009-01-07 2010-07-15 Martin Kean Chong Ng Chemically and biologically modified medical devices
US9339630B2 (en) * 2009-02-19 2016-05-17 Medtronic Vascular, Inc. Retractable drug delivery system and method
US20100209475A1 (en) * 2009-02-19 2010-08-19 Biomet Manufacturing Corp. Medical implants having a drug delivery coating
WO2010101901A2 (en) * 2009-03-02 2010-09-10 Boston Scientific Scimed, Inc. Self-buffering medical implants
US8071156B2 (en) * 2009-03-04 2011-12-06 Boston Scientific Scimed, Inc. Endoprostheses
US20100249783A1 (en) * 2009-03-24 2010-09-30 Warsaw Orthopedic, Inc. Drug-eluting implant cover
US20100247600A1 (en) * 2009-03-24 2010-09-30 Warsaw Orthopedic, Inc. Therapeutic drug eluting implant cover and method of making the same
US9078712B2 (en) * 2009-04-15 2015-07-14 Warsaw Orthopedic, Inc. Preformed drug-eluting device to be affixed to an anterior spinal plate
US9414864B2 (en) 2009-04-15 2016-08-16 Warsaw Orthopedic, Inc. Anterior spinal plate with preformed drug-eluting device affixed thereto
US8287937B2 (en) * 2009-04-24 2012-10-16 Boston Scientific Scimed, Inc. Endoprosthese
US20100274352A1 (en) * 2009-04-24 2010-10-28 Boston Scientific Scrimed, Inc. Endoprosthesis with Selective Drug Coatings
US20100285085A1 (en) * 2009-05-07 2010-11-11 Abbott Cardiovascular Systems Inc. Balloon coating with drug transfer control via coating thickness
US9265633B2 (en) 2009-05-20 2016-02-23 480 Biomedical, Inc. Drug-eluting medical implants
JP5820370B2 (en) 2009-05-20 2015-11-24 アーセナル メディカル, インコーポレイテッド Medical implant
US8888840B2 (en) * 2009-05-20 2014-11-18 Boston Scientific Scimed, Inc. Drug eluting medical implant
US8992601B2 (en) 2009-05-20 2015-03-31 480 Biomedical, Inc. Medical implants
US9309347B2 (en) 2009-05-20 2016-04-12 Biomedical, Inc. Bioresorbable thermoset polyester/urethane elastomers
US20110319987A1 (en) 2009-05-20 2011-12-29 Arsenal Medical Medical implant
US20110022158A1 (en) * 2009-07-22 2011-01-27 Boston Scientific Scimed, Inc. Bioerodible Medical Implants
US8372133B2 (en) * 2009-10-05 2013-02-12 480 Biomedical, Inc. Polymeric implant delivery system
US9320890B2 (en) * 2009-11-09 2016-04-26 W. L. Gore & Associates, Inc. Drug eluting composite
US20110144577A1 (en) * 2009-12-11 2011-06-16 John Stankus Hydrophilic coatings with tunable composition for drug coated balloon
US8480620B2 (en) * 2009-12-11 2013-07-09 Abbott Cardiovascular Systems Inc. Coatings with tunable solubility profile for drug-coated balloon
US8951595B2 (en) * 2009-12-11 2015-02-10 Abbott Cardiovascular Systems Inc. Coatings with tunable molecular architecture for drug-coated balloon
US9296693B2 (en) 2010-01-29 2016-03-29 The Regents Of The University Of California Acyl piperidine inhibitors of soluble epoxide hydrolase
US8398916B2 (en) 2010-03-04 2013-03-19 Icon Medical Corp. Method for forming a tubular medical device
US8668732B2 (en) * 2010-03-23 2014-03-11 Boston Scientific Scimed, Inc. Surface treated bioerodible metal endoprostheses
US8685433B2 (en) 2010-03-31 2014-04-01 Abbott Cardiovascular Systems Inc. Absorbable coating for implantable device
US8389041B2 (en) 2010-06-17 2013-03-05 Abbott Cardiovascular Systems, Inc. Systems and methods for rotating and coating an implantable device
US8802603B2 (en) * 2010-06-17 2014-08-12 Becton, Dickinson And Company Medical components having coated surfaces exhibiting low friction and low reactivity
EP2675274B1 (en) 2011-02-14 2017-05-03 The Regents of The University of California SORAFENIB DERIVATIVES AS sEH INHIBITORS
US8709034B2 (en) 2011-05-13 2014-04-29 Broncus Medical Inc. Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall
US9345532B2 (en) 2011-05-13 2016-05-24 Broncus Medical Inc. Methods and devices for ablation of tissue
WO2013078235A1 (en) 2011-11-23 2013-05-30 Broncus Medical Inc Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall
CN104093708B (en) 2012-02-01 2016-11-09 加利福尼亚大学董事会 The acylpiperidine inhibitor of soluble epoxide hydrolase
US9687445B2 (en) 2012-04-12 2017-06-27 Lts Lohmann Therapie-Systeme Ag Oral film containing opiate enteric-release beads
US9427300B2 (en) * 2012-04-30 2016-08-30 BiO2 Medical, Inc. Multi-lumen central access vena cava filter apparatus for clot management and method of using same
MX351261B (en) 2012-06-01 2017-10-06 Surmodics Inc Apparatus and method for coating balloon catheters.
US9827401B2 (en) 2012-06-01 2017-11-28 Surmodics, Inc. Apparatus and methods for coating medical devices
ES2457991B1 (en) * 2012-09-28 2015-02-09 Universidad Del País Vasco Composite material of biovidrio and biodegradable polymer with improved thermal stability
AU2013338051C1 (en) 2012-10-29 2017-08-10 Ariste Medical, Llc. Polymer coating compositions and coated products
USD716451S1 (en) 2013-09-24 2014-10-28 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
USD716450S1 (en) 2013-09-24 2014-10-28 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
USD715942S1 (en) 2013-09-24 2014-10-21 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
USD715442S1 (en) 2013-09-24 2014-10-14 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
JP2017505817A (en) 2014-02-04 2017-02-23 アボット カーディオバスキュラー システムズ インコーポレイテッド Drug delivery scaffold or stent having a coating based on NOVOLIMUS and lactide so that the binding of NOVOLIMUS to the coating is minimized
GB2528421B (en) 2014-04-22 2016-12-14 Ariste Medical Inc Methods and processes for application of drug delivery polymeric coatings
BR112016030273A2 (en) 2014-06-24 2017-08-22 Icon Medical Corp MEDICAL DEVICE AND METHOD FOR FORMING SAID DEVICE
JP6249987B2 (en) * 2015-05-13 2017-12-20 ルトニックス,インコーポレーテッド Drug release coating for medical devices
US9763892B2 (en) 2015-06-01 2017-09-19 Autotelic Llc Immediate release phospholipid-coated therapeutic agent nanoparticles and related methods
US11766506B2 (en) 2016-03-04 2023-09-26 Mirus Llc Stent device for spinal fusion
WO2020112816A1 (en) 2018-11-29 2020-06-04 Surmodics, Inc. Apparatus and methods for coating medical devices
KR20210135268A (en) * 2019-03-01 2021-11-12 디에스엠 아이피 어셋츠 비.브이. Medical implant components including composite biotextiles and manufacturing methods
US11819590B2 (en) 2019-05-13 2023-11-21 Surmodics, Inc. Apparatus and methods for coating medical devices
RU2702239C1 (en) * 2019-06-25 2019-10-07 Федеральное государственное бюджетное научное учреждение "Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний" (НИИ КПССЗ) Technology of producing functionally active biodegradable small-diameter vascular prostheses with drug coating

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5091205A (en) 1989-01-17 1992-02-25 Union Carbide Chemicals & Plastics Technology Corporation Hydrophilic lubricious coatings
SE9102448D0 (en) 1990-08-28 1991-08-26 Meadox Medicals Inc RAVEL RESISTANT, SELF-SUPPORTING WOVEN GRAFT
US5463010A (en) 1993-11-12 1995-10-31 Surface Engineering Technologies, Division Of Innerdyne, Inc. Hydrocyclosiloxane membrane prepared by plasma polymerization process
US5527353A (en) 1993-12-02 1996-06-18 Meadox Medicals, Inc. Implantable tubular prosthesis
US5556426A (en) 1994-08-02 1996-09-17 Meadox Medicals, Inc. PTFE implantable tubular prostheses with external coil support
US5601595A (en) 1994-10-25 1997-02-11 Scimed Life Systems, Inc. Remobable thrombus filter
US5709704A (en) 1994-11-30 1998-01-20 Boston Scientific Corporation Blood clot filtering
US5869127A (en) * 1995-02-22 1999-02-09 Boston Scientific Corporation Method of providing a substrate with a bio-active/biocompatible coating
US5609629A (en) * 1995-06-07 1997-03-11 Med Institute, Inc. Coated implantable medical device
US5876753A (en) 1996-04-16 1999-03-02 Board Of Regents, The University Of Texas System Molecular tailoring of surfaces
DE69812042T2 (en) 1997-02-14 2003-10-16 Sumitomo Electric Industries WIRE SAW AND MANUFACTURE THERE
KR100526913B1 (en) 1997-02-20 2005-11-09 쿡 인코포레이티드 Coated implantable medical device
US6818016B1 (en) 1997-06-27 2004-11-16 The Regents Of The University Of Michigan Methods for coating stents with DNA and expression of recombinant genes from DNA coated stents in vivo
US6335029B1 (en) * 1998-08-28 2002-01-01 Scimed Life Systems, Inc. Polymeric coatings for controlled delivery of active agents

Also Published As

Publication number Publication date
US6335029B1 (en) 2002-01-01
DE69943269D1 (en) 2011-04-21
ATE500856T1 (en) 2011-03-15
CA2353604A1 (en) 2000-06-08
WO2000032255A9 (en) 2001-03-29
AU3099900A (en) 2000-06-19
US20020054900A1 (en) 2002-05-09
EP1135178A1 (en) 2001-09-26
WO2000032255A1 (en) 2000-06-08
JP2002531183A (en) 2002-09-24
AU758175B2 (en) 2003-03-20
US6589546B2 (en) 2003-07-08
JP3803857B2 (en) 2006-08-02
EP1135178B1 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
CA2353604C (en) Polymeric coatings for controlled delivery of active agents
US6918929B2 (en) Drug-polymer coated stent with pegylated styrenic block copolymers
US8273402B2 (en) Drug coated stent with magnesium topcoat
US6306166B1 (en) Loading and release of water-insoluble drugs
US5609629A (en) Coated implantable medical device
US8227016B2 (en) Laminated drug-polymer coated stent with dipped and cured layers
US20050159809A1 (en) Implantable medical devices for treating or preventing restenosis
US20050180919A1 (en) Stent with radiopaque and encapsulant coatings
US8518097B2 (en) Plasticized stent coatings
JP2006500996A (en) Apparatus and method for delivering mitomycin via an eluting biocompatible implantable medical device
EP1470830A1 (en) Drug-polymer coated stent with polysulfone and styrenic block copolymer
JP2005507708A (en) Device and method for delivery of a variably controlled substance from an implanted prosthesis
JP2007536991A (en) Drug / polymer coated stent
US20040147999A1 (en) Stent with epoxy primer coating
JP2004222953A (en) Indwelling stent
WO2005075003A1 (en) Implantable medical devices for treating or preventing restenosis

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed
MKLA Lapsed

Effective date: 20121113

MKLA Lapsed

Effective date: 20121113