CA2353889A1 - Method for improving the operation of a flotation cell line - Google Patents

Method for improving the operation of a flotation cell line Download PDF

Info

Publication number
CA2353889A1
CA2353889A1 CA002353889A CA2353889A CA2353889A1 CA 2353889 A1 CA2353889 A1 CA 2353889A1 CA 002353889 A CA002353889 A CA 002353889A CA 2353889 A CA2353889 A CA 2353889A CA 2353889 A1 CA2353889 A1 CA 2353889A1
Authority
CA
Canada
Prior art keywords
cell line
flotation cell
flotation
flowing direction
flotatable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002353889A
Other languages
French (fr)
Inventor
Timo Niitti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Outokumpu Oyj
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2353889A1 publication Critical patent/CA2353889A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/02Froth-flotation processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B11/00Feed or discharge devices integral with washing or wet-separating equipment

Abstract

The invention relates to a method for improving the operation of a flotation cell line, said flotation cell line comprising several flotation cells (1, 2 , 3, 4, 5; 11, 12, 13, 14, 15) that are connected by means of liquid stream flow. According to the invention, at least part of the material flotated in the flotation cell line is conducted past the cell (1, 11) that is located first in the flotation cell line, when seen in the flowing direction (7, 16) of the flotatable material.

Description

METHOD FOR IMPROVING THE OPERATION OF A FLOTATION CELL LINE
The present invention relates to a method for improving the operation of a flota-tion cell line, particularly in the beginning of the flotation cell line, when at least part of the flotatable material is fed past the flotation cell that is located first in the flotation cell line, when seen in the flowing direction of the flotatable material.
In a flotation cell, there are treated slurry-like materials in order to remove from the rest of the material the desired ingredients that can be utilized. The main task of the flotation cell is to keep the flotatable material in suspension, to feed air into the suspension and to disperse the suspension into small air bubbles, as well as to conduct the utilizable ingredients, i.e. the concentrate, and the rest of the material, to separate locations. However, with respect to the recovered concentrate, the efficiency of the flotation cell is essentially low.
Consequently, in order to achieve the desired degree of concentration for the utilizable ingredi-ent, the flotation cells are usually coupled in series, so that the waste from the preceding flotation cell serves as the feed for the successive flotation cell.
The concentrates obtained from the cells of the accordingly created flotation cell line are then combined and conducted to further treatment.
Because the flotation cell line processes a slurry-like material, which already prior to feeding into the flotation cell line is usually treated in several different process stages, the treated slurry-like material often causes fluctuation or disturbances in the flotation cell line feed. In that case the flotation cell line must be dimensioned according to the additional load required by said fluctuations and disturbances. As the size of the flotation cells grows, the effect of said additional load grows further, because when the size of the flotation cells grows, their volume grows in proportion to the third power of the dimensions.
On the other hand, the area of the flotation cells only grows in proportion to the quadrature of the longitudinal dimensions. Thus there is often reached a situation where the froth area of the flotation cell restricts the productive capacity of the cell. Said phenomenon is most obvious in a cell that is located first in the flotation cell line, when seen in the flowing direction of the flotatable material.
The object of the present invention is to eliminate some of the drawbacks of the prior art and to improve the efficiency of the flotation cell line, particularly in the beginning of the flotation cell line, where the concentrate recovery obtained from the flotation cell line is most advantageous. The essential novel features of the invention are apparent from the appended claims.
According to the invention, the efficiency of the flotation cell line is improved so that the feed, i.e. the flotatable material, fed into the flotation cell line is distribu-ted into the flotation cell line so that at least part of the flotatable material is conducted past the cell located first in the flotation cell line, when seen in the flowing direction of the flotatable material, to at least one flotation cell that is located next in succession to the cell located first in the flotation cell line, when seen in the flowing direction of the flotatable material. This procedure prevents a situation where the fluctuations and disturbances in the feed only affect the first cell in the flotation cell line. Simultaneously it prevents any drawbacks that are caused by a possible insufficiency of the froth area of the first cell in the flotation cell line.
The improving of the efficiency of the flotation cell line according to the inventi-on, by feeding the material to be flotated in the flotation cell line to at least two flotation cells located in the flotation cell line can be carried out so that into the first cell in the flotation cell line, when seen in the flowing direction of the flota-table material, the fiotatable material is fed in a flow that is essentially homoge-neous in volume. Consequently any flows that surpass said desired, essentially equally large flow of the flotatable material are conducted past the cell located first in the flotation cell line when seen in the flowing direction of the flotatabie material, to another cell located in the flotation cell line. Thus any possible fluctuations and disturbances in the feeding of the flotatable material, caused by the pre-flotation process stages, can advantageously be eliminated, because in the cell located first in the flotation cell line, when seen in the flowing direction of the flotatable material, there can be created conditions that are profitable for flotation. Because flotation in general is most advantageous in the cell located first in the flotation cell line, when seen in the flowing direction of the flotatable material, by following the feeding method according to the invention there are avoided any drawbacks resulting from the fluctuations and disturbances in the feed of the flotatable material, and thus the operation in the beginning of the flotation cell line is improved.
According to the invention, the feeding of the flotatable material can also be carried out so that the flotatable material is fed in an essentially equally large flow both to the cell located first in the flotation cell line, when seen in the flowing direction of the flotatable material, and to at least one flotation cell located in succession to said first flotation cell. Thus, when feeding the flota-table material advantageously to the first and second cells in the flotation cell line, when seen in the flowing direction of the flotatable material, essentially half of the material to be fed can be fed into both flotation ceNs. At the same time, the flotation period obtained for the whole material is doubled. Because the flotatable material is thus distributed between several flotation cells, each flota-tion cell to which non-flotated material is fed, consequently serves as the first primary flotation stage for the fiotatable material. Thus the quantity of the flota-table material in the flotation cells of the flotation cell line that are successive to the primary flotation stage can be decreased, because in general the efficiency of the flow is highest in the cell of the flotation cell line that is located first in the flowing direction of the flotatable material. When the quantity of the material to be flotated in the flotation cell line is thus decreased, the control of the flotation cell line according to the invention and at the same time the control of the indivi-dual flotation cells contained in the flotation cell line is improved in order to obtain an advantageous flotation yield. As the quality of the concentrate obtained from the flotation cell line can be effectively adjusted, also the capacity of the flotation cell line can advantageously be increased.
According to the invention, into the first cell of the flotation cell line, when seen in the flowing direction of the flotatable material, there is advantageously fed flotatable material in a flow of a predetermined quantity. Any amount of the flotatable material that surpasses said predetermined quantity is advanta-geously conducted to the cell located second in the flotation cell line, when seen in the flowing direction of the flotatable material, said second cell being coupled either in series or in parallel with the cell located first in the flotation cell line when seen in the flowing direction.
According to the invention, the flotatable material can also be fed so that into the flotation cell located second in the flowing direction of the flotatable material, there is fed flotatable material in a flow of a predetermined quantity, and the rest of the flotatable material is fed into the flotation cell located first in the flowing direction.
The invention is explained in more detail with respect to the appended drawings, where figure 1 is a schematical top-view illustration of a preferred embodiment of the invention, and figure 2 is a schematical top-view illustration of another preferred embodiment of the invention.
According to figure 1, the flotation cells 1, 2, 3, 4 and 5 are installed in a flota-tion cell line, whereto the flotatable material is fed from the feeding device 6. In between the feeding device 6 and the first 1 and second 2 flotation cell located in the flowing direction 7 of the flotatable material, there are provided conduits 8 and 9 in order tv feed the flotatable material. The conduit 8 in between the feeding device 6 and the first flotation cell 1 is adjusted to operate so that via the conduit 8, only a flow that is smaller than the predetermined material flow, is allowed to flow in to the first flotation cell 1. When the material flow allowed for the conduit 8 is surpassed, the surpassing part of the flow is conducted, via the 5 conduit 9, directly to the flotation cell 2, located second in the flowing direction 7 of the flotatable material. Because part of the material is removed as concent-rate from the first flotation cell 1, the material left non-flotated in the first flota-tion cell 1 can be further conducted to the flotation cell 2 located second in the flowing direction of the flotatable material, whereto also the non-flotated material that surpasses the quantity allowed for the conduit 8 is conducted via the conduit 9. Thus the first and second cells 1 and 2 of the flotation cell line, when seen in the flowing direction 7 of the flotatable material, are installed in series with respect to each other.
According to figure 2, the flotation cells 11, 12, 13, 14 and 15 forming the flota-tion cell line are arranged, with respect to each other, so that the frrst two flota-tion cells 11 and 12, when seen in the flowing direction 16 of the flotatable material, are installed in parallel, whereas the rest of the flotation cells 13, 14 and 15 are installed in series both with respect to each other and with respect to the flotation cells 11 and 12. From the feeding device 17, the flotatable material is conducted both via the conduit 18 of the flotation cell 11 and via the conduit 19 of the flotation cell 12, so that essentially about halt of the feed of the flotation cell line flows to both flotation cells 11 and 12. Now the obtained concentrate in the two first cells 11 and 12 of the flotation cell line is advanta-geously distributed between two flotation cells 11 and 12 in an essentially equal fashion, which from the point of view of usage improves the operation of the flotation cell line.

Claims (9)

6
1. A method for improving the operation of a flotation cell line, said flotation cell line comprising several flotation cells (1, 2, 3, 4, 5; 11, 12, 13, 14, 15) that are connected by means of liquid stream flow, characterized in that at least part of the material flotated in the flotation cell line is conducted past the cell (1, 11) that is located first in the flotation cell line, when seen in the flowing direction (7, 16) of the flotatable material.
2. A method according to claim 1, characterized in that no more than half of the material flotated in the flotation cell line is conducted past the cell (1, 11) that is located first in the flotation cell line, when seen in the flowing direction (7, 16) of the flotatable material.
3. A method according to claim 1 or 2, characterized in that the amount of flotatable material that is fed past the cell (1, 11) that is located first in the flota-tion cell line, when seen in the flowing direction (7, 16) of the flotatable material, is fed into at least one flotation cell (2, 3, 4, 5; 12, 13, 14, 15) of the flotation cell line that is located next to the first flotation cell (1, 11) when seen in the flowing direction (7, 16) of the flotatable material.
4. A method according to claim 1, 2 or 3, characterized in that an essentially predetermined quantity of the material flotated in the flotation cell line is conducted to the first flotation cell (1, 11) when seen in the flowing direction (7, 16) of the flotatable material.
5. A method according to claim 4, characterized in that any amount of the flotatable material that surpasses the predetermined quantity is conducted to the cell (2, 12) that is located second in the flotation cell line when seen in the flowing direction (7, 16) of the flotatable material, said second cell (2, 12) being coupled in series with respect to the flotation cell (1, 11) that is located first in the flowing direction (7, 16) of the flotatable material.
6. A method according to claim 4, characterized in that the amount of the flota-table material that surpasses the predetermined quantity is conducted to the cell (2, 12) that is located second in the flotation cell line, when seen in the flowing direction (7, 16) of the flotatable material, said cell (2, 12) being coupled in parallel with the cell (1, 11) that is located first in the flotation cell line in, when seen in the flowing direction (7, 16) of the flotatable material.
7. A method according to claim 1, 2 or 3, characterized in that an essentially predetermined quantity of the material to be flotated in the flotation cell line is conducted to the cell (2, 12) that is located second in the flotation cell line, when seen in the flowing direction (7, 16) of the flotatable material.
8. A method according to claim 7, characterized in that the amount of the flota-table material that surpasses the predetermined quantity is conducted to the cell (1, 11) that is located first in the flotation cell line when seen in the flowing direction (7, 16) of the flotatable material, said cell (1, 11) being coupled in series with the cell (2, 12) located second in the flotation cell line, when seen in the flowing direction (7, 16) of the flotatable material.
9. A method according to claim 7, characterized in that that the amount of the flotatable material that surpasses the predetermined quantity is conducted to the cell (1, 11) that is located first in the flotation cell line when seen in the flowing direction (7, 16) of the flotatable material, said cell (1, 11) being coupled in parallel with the cell (2, 12) located second in the flowing direction (7, 16) of the flotatable material.
CA002353889A 1998-09-15 1999-09-13 Method for improving the operation of a flotation cell line Abandoned CA2353889A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FI981981A FI115386B (en) 1998-09-15 1998-09-15 The method enhances the efficiency of the flotation cell line
FI981981 1998-09-15
PCT/FI1999/000737 WO2000015344A1 (en) 1998-09-15 1999-09-13 Method for improving the operation of a flotation cell line

Publications (1)

Publication Number Publication Date
CA2353889A1 true CA2353889A1 (en) 2000-03-23

Family

ID=8552488

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002353889A Abandoned CA2353889A1 (en) 1998-09-15 1999-09-13 Method for improving the operation of a flotation cell line

Country Status (12)

Country Link
US (1) US6520340B1 (en)
EP (1) EP1113880A1 (en)
AU (1) AU760645B2 (en)
BR (1) BR9913667A (en)
CA (1) CA2353889A1 (en)
FI (1) FI115386B (en)
ID (1) ID28635A (en)
NZ (1) NZ510068A (en)
PE (1) PE20000922A1 (en)
PL (1) PL346534A1 (en)
WO (1) WO2000015344A1 (en)
ZA (1) ZA200101365B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006020968B4 (en) * 2006-05-05 2008-04-03 Voith Patent Gmbh Process for removing contaminants from an aqueous fiber suspension

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1197403B (en) * 1962-03-14 1965-07-29 Electro Physique Flotation plant with a plurality of cells
US4121945A (en) 1976-04-16 1978-10-24 Amax Resource Recovery Systems, Inc. Fly ash benificiation process
DE3108913A1 (en) * 1981-03-09 1982-09-23 Ruhrkohle Ag, 4300 Essen METHOD AND DEVICE FOR THE TREATMENT OF ASH-RICH CARBON SLUDGE BY FLOTATION, IN PARTICULAR FOR THE TREATMENT OF GAS AND GAS FLAME COALS WHICH ARE DIFFICULT TO FLOT

Also Published As

Publication number Publication date
WO2000015344A1 (en) 2000-03-23
FI115386B (en) 2005-04-29
US6520340B1 (en) 2003-02-18
FI981981A (en) 2000-03-16
PE20000922A1 (en) 2000-10-02
PL346534A1 (en) 2002-02-11
NZ510068A (en) 2003-09-26
BR9913667A (en) 2001-10-09
ID28635A (en) 2001-06-21
EP1113880A1 (en) 2001-07-11
AU760645B2 (en) 2003-05-22
FI981981A0 (en) 1998-09-15
AU5747999A (en) 2000-04-03
ZA200101365B (en) 2001-08-22

Similar Documents

Publication Publication Date Title
US4960509A (en) Ore flotation device and process
WO1992010298A1 (en) Method for achieving enhanced copper flotation concentrate grade by oxidation and flotation
AU2020256410B2 (en) A flotation arrangement, its use, a plant and a method
JPH0641888A (en) Method for controlling used paper
CA2353889A1 (en) Method for improving the operation of a flotation cell line
CN108525842B (en) Beneficiation process for floatability treatment of slag middlings
US6536596B1 (en) Flotation cell line
NZ531603A (en) A method of controlling feed variation in a valuable mineral flotation circuit
US8118171B2 (en) Process and device for aerating suspensions
FI79953B (en) APPARATUR FOER FLOTATIONSANRIKNING.
US7267231B2 (en) Process and device for aerating suspensions
CN217774398U (en) Comprehensive recovery system for gold flotation tailings
MXPA01002381A (en) Method for improving the operation of a flotation cell line
CN217431957U (en) High-efficient screening edulcoration device of molybdenum ore deposit
US6889844B1 (en) Collectorless flotation
SU1227247A1 (en) Machine for froth separation
AU744935B2 (en) Flotation separation of valuable minerals
AU751768B2 (en) Collectorless flotation
AU2002325966A1 (en) A method of controlling feed variation in a valuable mineral flotation circuit
CA2010904A1 (en) Flotation apparatus
MXPA01002443A (en) Flotation cell line
RO106341B1 (en) Valorification process of usefull mineral substances from copper-zincironed minerals

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued