CA2355788A1 - Method and apparatus for mapping a chamber of a heart - Google Patents

Method and apparatus for mapping a chamber of a heart Download PDF

Info

Publication number
CA2355788A1
CA2355788A1 CA002355788A CA2355788A CA2355788A1 CA 2355788 A1 CA2355788 A1 CA 2355788A1 CA 002355788 A CA002355788 A CA 002355788A CA 2355788 A CA2355788 A CA 2355788A CA 2355788 A1 CA2355788 A1 CA 2355788A1
Authority
CA
Canada
Prior art keywords
chamber
mapping
heart according
sensor
condition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002355788A
Other languages
French (fr)
Other versions
CA2355788C (en
Inventor
Margarita Osadchy
Alexander Goldin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biosense Webster Inc
Original Assignee
Biosense, Inc.
Margarita Osadchy
Alexander Goldin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biosense, Inc., Margarita Osadchy, Alexander Goldin filed Critical Biosense, Inc.
Publication of CA2355788A1 publication Critical patent/CA2355788A1/en
Application granted granted Critical
Publication of CA2355788C publication Critical patent/CA2355788C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0064Body surface scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • A61B5/062Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/283Invasive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/12Devices for detecting or locating foreign bodies

Abstract

A method for intracardially mapping a condition such as an electrical or mechanical property of a chamber of a heart with a catheter having a distal tip and at least one condition sensor contained therein or proximate thereto. The at least one sensor is capable of sensing condition information in the chamber and provides the three-dimensional position of the catheter tip in a positional frame of reference.
The method comprises the steps of acquiring first and second images of the chamber.
The images are acquired from different projections and contain topological information of the chamber. The chamber images are registered with the positional frame of reference. The catheter distal tip is advanced into the catheter and is navigated to acquisition points under the guidance of topological information contained in or derived from the images. Condition and position information are acquired at each of the acquisition points, the points being sufficient in number and spacing to permit the generation of a map of the condition in the chamber. The topological information used to guide the navigation of the catheter is preferably a three dimensional reconstruction of the chamber derived from topological information contained in the images.

Claims (57)

1. A method for intracardially mapping a condition of a camber of a heart of a subject, said method comprising the steps of:

a) providing a catheter having a distal tip, said catheter distal tip having at least one sensor contained therein or proximate thereto, said at least one sensor being capable of sensing condition information of said chamber and providing three-dimensional position information of the catheter tip in a positional frame of reference;
b) acquiring a first image of said chamber, said first image taken from a first projection and containing topological information of said chamber;
c) acquiring a second image of said chamber, said second image taken from a second projection different from said first projection, said second image containing topological information of said chamber, d) registering said first image and said second image with said positional frame of reference;
e) advancing said distal tip of said catheter into said chamber;
f) navigating said distal tip of said catheter proximate an acquisition point in said chamber, said navigation guided by topological information contained in or derived from said first and said second images;
g) acquiring condition information and position information at said acquisition point with said at least one sensor;

h) repeating step (f) and (g) at additional acquisition points to generate a map of said condition in said chamber.
2. A method of mapping a chamber of a heart according to claim 1 wherein said condition is an electrical condition.
3. A method of mapping a chamber of a heart according to claim 1 wherein said condition is a mechanical condition.
4. A method of mapping a chamber of a heart according to claim 1 wherein said condition is an electromechanical condition.
5. A method of mapping a chamber of a heart according to claim 1 wherein said chamber is a left ventricle.
6. A method of mapping a chamber of a heart according to claim 1 wherein said at least one sensor comprises a position sensor capable of providing said three-dimensional position information, said position sensor further providing mechanical condition information.
7. A method of mapping a chamber of a heart according to claim 1 wherein said at least one sensor comprises a position sensor capable of providing said three-dimensional position information and an electrode for sensing electrical information.
8. A method of mapping a chamber of a heart according to claim 1 wherein said at least one sensor comprises an electromagnetic sensor, said electromagnetic sensor generating signals responsive to the strength of a magnetic field external to the patient, said signals indicative of the three-dimensional position of the sensor in said frame of reference.
9. A method of mapping a chamber of a heart according to claim 1 wherein said first and said second images of said chamber are contrast-assisted fluoroscopic images.
10. A method of mapping a chamber of a heart according to claim 1 wherein each of said first and said second images depict the chamber at the same phase of the cardiac cycle.
11. A method of mapping a chamber of a heart according to claim 10 wherein each of said first and said second images depict the chamber in end-diastole.
12. A method of mapping a chamber of a heart according to claim 1 wherein said topological information comprises the chamber contour.
13. A method of mapping a chamber of a heart according to claim 1 wherein said first projection and said second projection are separated by an angle of about degrees to about 105 degrees.
14. A method of mapping a chamber of a heart according to claim 1 wherein said first image and said second image are taken from an LAO projection and an RAO
projection.
15. A method of mapping a chamber of a heart according to claim 1 which further comprises acquiring an image of a scaling object from each of said first and said second projections.
16. A method of mapping a chamber of a heart according to claim 15 wherein said images of said scaling object are used to scale said images of said chamber.
17. A method of mapping a chamber of a heart according to claim 1 which further comprises affixing a registration position sensor to said patient prior to acquisition of said first and said second images of said chamber, wherein said chamber images include an image of said registration position sensor.
18. A method of mapping a chamber of a heart according to claim 17 which further comprises determining the three-dimensional position coordinates of said registration position sensor, and using said determined position coordinates to register said images of said chamber in said frame of reference.
19. A method of mapping a chamber of a heart according to claim 1 wherein said topological information used to guide said catheter tip to said acquisition points comprises a reconstruction of said chamber.
20. A method of mapping a chamber of a heart according to claim 19 wherein said reconstruction is a three-dimensional reconstruction.
21. A method of mapping a chamber of a heart according to claim 1 which further comprises the step of creating a map of said chamber from said acquired condition and position information.
22. A method for intracardially mapping a condition of a chamber of a heart of a subject, said method comprising the steps of:

a) providing a mapping catheter having a distal tip, said catheter distal tip having at least one sensor contained therein or proximate thereto, said at least one sensor being capable of sensing condition information of said chamber and providing three-dimensional position information of the catheter tip in a positional frame of reference;

b) providing a reconstruction of topological features of said chamber registered with said positional frame of reference;

c) advancing said distal tip of said catheter into said chamber;

d) navigating said distal tip of said catheter proximate an acquisition point in said chamber, said navigation guided by said topological features of said reconstruction;

e) acquiring condition information and position information at said acquisition point with said at least one sensor;

f) repeating step (d) and (e) at additional acquisition points throughout the chamber to generate a map of said condition in said chamber.
23. A method of mapping a chamber of a heart according to claim 22 wherein said reconstruction is a three dimensional reconstruction.
24. A method of mapping a chamber of a heart according to claim 22 wherein said reconstruction is based on:

a) a first image of said chamber taken from a first projection; and b) a second image of said chamber taken from a second projection;
wherein each of said first and said second images contain topological information of said chamber.
25. A method of mapping a chamber of a heart according to claim 24 wherein said first and said second images of said chamber are contrast-assisted fluoroscopic images.
26. A method of mapping a chamber of a heart according to claim 24 wherein each of said first and said second images depict the chamber at the same phase of the cardiac cycle.
27. A method of mapping a chamber of a heart according to claim 24 wherein each of said first and said second images depict the chamber in end-diastole.
28. A method of mapping a chamber of a heart according to claim 24 wherein said topological information comprises the chamber contour.
29. A method of mapping a chamber of a heart according to claim 24 wherein said first projection and said second projection are separated by an angle of about 75 degrees to about 105 degrees.
30. A method of mapping a chamber of a heart according to claim 24 wherein said first image and said second image are taken from an LAO projection and an RAO projection.
31. A method of mapping a chamber of a heart according to claim 24 which further comprises acquiring an image of a scaling object from each of said first and said second projections.
32. A method of mapping a chamber of a heart according to claim 31 wherein said images of said scaling object are used to scale said images of said chamber.
33. A method of mapping a chamber of a heart according to claim 24 which further comprises affixing a registration position sensor to said patient prior to acquisition of said first and said second images of said chamber, wherein said chamber images include an image of said registration position sensor.
34. A method of mapping a chamber of a heart according to claim 33 which further comprises determining the three-dimensional position coordinates of said registration position sensor, and using said determined position coordinates to register said images of said chamber in said frame of reference.
35. A method of mapping a chamber of a heart according to claim 22 wherein said condition is an electrical condition.
36. A method of mapping a chamber of a heart according to claim 22 wherein said condition is a mechanical condition.
37. A method of mapping a chamber of a heart according to claim 22 wherein said condition is an electromechanical condition.
38. A method of mapping a chamber of a heart according to claim 22 wherein said chamber is a left ventricle.
39. A method of mapping a chamber of a heart according to claim 22 wherein said at least one sensor comprises a position sensor capable of providing said three-dimensional position information, said position sensor further providing mechanical condition information.
40. A method of mapping a chamber of a heart according to claim 22 wherein said at least one sensor comprises a position sensor capable of providing said three-dimensional position information and an electrode for sensing electrical information.
41. A method of mapping a chamber of a heart according to claim 22 wherein said at least one sensor comprises an electromagnetic sensor, said electromagnetic sensor generating signals responsive to the strength of a magnetic field external to the patient, said signals indicative of the three-dimensional position of the sensor in said frame of reference.
42. A method of mapping a chamber of a heart according to claim 22 which further comprises the step of creating a map of said chamber from said acquired condition and position information.
43. Apparatus for intracardially mapping a condition of a chamber of a heart of a subject comprising:
a) a catheter having a distal tip, said catheter distal tip having at least one sensor contained therein or proximate thereto, said at least one sensor being capable of sensing condition information of said chamber and providing three-dimensional position information of the catheter tip in a frame of reference;
b) image processing circuitry for registering a plurality of images of said chamber with said positional frame of reference, said images taken from a plurality of projections relative to said chamber, said images containing topological information of said chamber;~
c) signal processing circuits for acquiring condition information and position information at a plurality of acquisition points in said chamber with said at least one sensor, said condition and position information permitting the generation of a map of said condition in said chamber.
44. Apparatus for mapping a chamber of a heart according to claim 43 wherein said at least one sensor comprises a position sensor capable of providing said three-dimensional position information and an electrode for sensing electrical information.
45. Apparatus for mapping a chamber of a heart according to claim 43 wherein said at least one sensor comprises an electromagnetic sensor, said electromagnetic sensor generating signals responsive to the strength of a magnetic field external to the patient, said signals indicative of the three-dimensional position of the sensor in said frame of reference.
46. Apparatus for mapping a chamber of a heart according to claim 43 which further comprises a scaling object.
47. Apparatus for mapping a chamber of a heart according to claim 43 which further comprises a registration position sensor to register said images with said frame of reference.
48. Apparatus for mapping a chamber of a heart according to claim 43 which further comprises image processing circuits for constructing a reconstruction of said chamber from said topological information contained in said images.
49. Apparatus for mapping a chamber of a heart according to claim 48 wherein said reconstruction is a three-dimensional reconstruction.
50. Apparatus for mapping a chamber of a heart according to claim 43 which further comprises circuits for mapping said condition of said chamber using said condition information and said position information.
51. Apparatus for intracardially mapping a condition of a chamber of a heart of a subject comprising:

a) a catheter having a distal tip, said catheter distal tip having at least one sensor contained therein or proximate thereto, said at least one sensor being capable of sensing condition information of said chamber and providing three-dimensional position information of the catheter tip in a frame of reference;
b) image processing circuits for constructing a topological reconstruction of said chamber registered with said frame of reference;
c) signal processing circuits for acquiring condition information and position information at a plurality of acquisition points in said chamber with said at least one sensor, said condition information and position information permitting the generation of a map of said condition in said chamber.
52. Apparatus for mapping a condition of a chamber of a heart of claim 51 wherein said reconstruction is a three dimensional reconstruction.
53. Apparatus for mapping a condition of a chamber of a heart of claim 51 wherein said image processing circuits construct said topological reconstruction from a plurality of images of said chamber, said images taken from a plurality of projections relative to said chamber, each of said images containing topological information of said chamber.
54. Apparatus for mapping a chamber of a heart according to claim 51 wherein said at least one sensor comprises a position sensor capable of providing said three-dimensional position information and an electrode for sensing electrical information.
55. Apparatus for mapping a chamber of a heart according to claim 51 wherein said at least one sensor comprises an electromagnetic sensor, said electromagnetic sensor generating signals responsive to the strength of a magnetic field external to the patient, said signals indicative of the three-dimensional position of the sensor in said frame of reference.
56. Apparatus for mapping a chamber of a heart according to claim 51 which further comprises a scaling object.
57. Apparatus for mapping a chamber of a heart according to claim 51 which further comprises a registration position sensor to register said images with said frame of reference.
CA002355788A 2000-08-18 2001-08-16 Method and apparatus for mapping a chamber of a heart Expired - Lifetime CA2355788C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/643,667 US6368285B1 (en) 1999-09-21 2000-08-18 Method and apparatus for mapping a chamber of a heart
US09/643,667 2000-08-18

Publications (2)

Publication Number Publication Date
CA2355788A1 true CA2355788A1 (en) 2002-02-18
CA2355788C CA2355788C (en) 2009-12-01

Family

ID=24581789

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002355788A Expired - Lifetime CA2355788C (en) 2000-08-18 2001-08-16 Method and apparatus for mapping a chamber of a heart

Country Status (8)

Country Link
US (1) US6368285B1 (en)
EP (1) EP1189175A1 (en)
JP (1) JP4746793B2 (en)
KR (1) KR100829405B1 (en)
AU (1) AU777116B2 (en)
CA (1) CA2355788C (en)
HK (1) HK1041957A1 (en)
IL (1) IL144908A (en)

Families Citing this family (177)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9572519B2 (en) 1999-05-18 2017-02-21 Mediguide Ltd. Method and apparatus for invasive device tracking using organ timing signal generated from MPS sensors
US9833167B2 (en) 1999-05-18 2017-12-05 Mediguide Ltd. Method and system for superimposing virtual anatomical landmarks on an image
DE10054814A1 (en) * 2000-11-04 2002-05-08 Philips Corp Intellectual Pty Images registration method e.g. for medical image matching, magnetic resonance tomography, involves transforming discrete images into registered images
US6702744B2 (en) * 2001-06-20 2004-03-09 Advanced Cardiovascular Systems, Inc. Agents that stimulate therapeutic angiogenesis and techniques and devices that enable their delivery
US8608661B1 (en) 2001-11-30 2013-12-17 Advanced Cardiovascular Systems, Inc. Method for intravascular delivery of a treatment agent beyond a blood vessel wall
US7361368B2 (en) 2002-06-28 2008-04-22 Advanced Cardiovascular Systems, Inc. Device and method for combining a treatment agent and a gel
US6978167B2 (en) * 2002-07-01 2005-12-20 Claron Technology Inc. Video pose tracking system and method
US6957101B2 (en) 2002-08-21 2005-10-18 Joshua Porath Transient event mapping in the heart
AU2002951762A0 (en) * 2002-10-01 2002-10-17 Spinemed Australia Pty Limited Intervertebral disc restoration
US7558402B2 (en) * 2003-03-07 2009-07-07 Siemens Medical Solutions Usa, Inc. System and method for tracking a global shape of an object in motion
US6733449B1 (en) * 2003-03-20 2004-05-11 Siemens Medical Solutions Usa, Inc. System and method for real-time streaming of ultrasound data to a diagnostic medical ultrasound streaming application
US8292811B2 (en) * 2003-03-20 2012-10-23 Siemens Medical Solutions Usa, Inc. Advanced application framework system and method for use with a diagnostic medical ultrasound streaming application
US6932767B2 (en) * 2003-03-20 2005-08-23 Siemens Medical Solutions Usa, Inc. Diagnostic medical ultrasound system having a pipes and filters architecture
US7883500B2 (en) * 2003-03-26 2011-02-08 G&L Consulting, Llc Method and system to treat and prevent myocardial infarct expansion
US8821473B2 (en) 2003-04-15 2014-09-02 Abbott Cardiovascular Systems Inc. Methods and compositions to treat myocardial conditions
US8038991B1 (en) 2003-04-15 2011-10-18 Abbott Cardiovascular Systems Inc. High-viscosity hyaluronic acid compositions to treat myocardial conditions
US8383158B2 (en) 2003-04-15 2013-02-26 Abbott Cardiovascular Systems Inc. Methods and compositions to treat myocardial conditions
DE602004030110D1 (en) * 2003-05-21 2010-12-30 Philips Intellectual Property DEVICE FOR NAVIGATING A CATHETER
US7613497B2 (en) * 2003-07-29 2009-11-03 Biosense Webster, Inc. Energy transfer amplification for intrabody devices
US20050143777A1 (en) * 2003-12-19 2005-06-30 Sra Jasbir S. Method and system of treatment of heart failure using 4D imaging
US20050137661A1 (en) * 2003-12-19 2005-06-23 Sra Jasbir S. Method and system of treatment of cardiac arrhythmias using 4D imaging
US20050154282A1 (en) * 2003-12-31 2005-07-14 Wenguang Li System and method for registering an image with a representation of a probe
US20050154279A1 (en) * 2003-12-31 2005-07-14 Wenguang Li System and method for registering an image with a representation of a probe
US7966058B2 (en) 2003-12-31 2011-06-21 General Electric Company System and method for registering an image with a representation of a probe
US20050154286A1 (en) * 2004-01-02 2005-07-14 Neason Curtis G. System and method for receiving and displaying information pertaining to a patient
US20050154285A1 (en) * 2004-01-02 2005-07-14 Neason Curtis G. System and method for receiving and displaying information pertaining to a patient
US20080051660A1 (en) * 2004-01-16 2008-02-28 The University Of Houston System Methods and apparatuses for medical imaging
US7907759B2 (en) * 2006-02-02 2011-03-15 Wake Forest University Health Sciences Cardiac visualization systems for displaying 3-D images of cardiac voxel intensity distributions with optional physician interactive boundary tracing tools
EP1725164A2 (en) 2004-02-06 2006-11-29 Wake Forest University Health Services Non-invasive imaging for determining global tissue characteristics
US8046049B2 (en) 2004-02-23 2011-10-25 Biosense Webster, Inc. Robotically guided catheter
DE102004011156A1 (en) * 2004-03-08 2005-10-06 Siemens Ag Method for endoluminal imaging with movement correction
US20050209524A1 (en) * 2004-03-10 2005-09-22 General Electric Company System and method for receiving and storing information pertaining to a patient
US7170972B2 (en) * 2004-03-16 2007-01-30 General Electric Company Methods and systems for multi-modality imaging
US20050228251A1 (en) * 2004-03-30 2005-10-13 General Electric Company System and method for displaying a three-dimensional image of an organ or structure inside the body
US20050228252A1 (en) * 2004-04-02 2005-10-13 General Electric Company Electrophysiology system and method
US20050222509A1 (en) * 2004-04-02 2005-10-06 General Electric Company Electrophysiology system and method
DE102004020587B4 (en) 2004-04-27 2016-02-18 Siemens Aktiengesellschaft Method and apparatus for visually assisting a catheter electrophysiology application with 2D fluoroscopic images
DE102004030836A1 (en) * 2004-06-25 2006-01-26 Siemens Ag Process for the image representation of a medical instrument, in particular a catheter, introduced into a region of examination of a patient that moves rhythmically or arrhythmically
US8515527B2 (en) * 2004-10-13 2013-08-20 General Electric Company Method and apparatus for registering 3D models of anatomical regions of a heart and a tracking system with projection images of an interventional fluoroscopic system
JP4939743B2 (en) * 2004-11-08 2012-05-30 株式会社東芝 X-ray imaging device
TWI235041B (en) * 2004-12-09 2005-07-01 Univ Tsinghua Characteristic points automatically identification method for three-dimensional space scanning data of human body
DE102005012696A1 (en) * 2005-03-18 2006-09-21 Siemens Ag Medical examination/treatment system e.g. electro-physiological mapping/ablation system, has computer for evaluating acquired parameter so that parameter is output as acoustic signal, whose property is adjusted based on evaluated parameter
US8828433B2 (en) 2005-04-19 2014-09-09 Advanced Cardiovascular Systems, Inc. Hydrogel bioscaffoldings and biomedical device coatings
US8187621B2 (en) 2005-04-19 2012-05-29 Advanced Cardiovascular Systems, Inc. Methods and compositions for treating post-myocardial infarction damage
US20080125745A1 (en) 2005-04-19 2008-05-29 Shubhayu Basu Methods and compositions for treating post-cardial infarction damage
US9539410B2 (en) 2005-04-19 2017-01-10 Abbott Cardiovascular Systems Inc. Methods and compositions for treating post-cardial infarction damage
US8303972B2 (en) * 2005-04-19 2012-11-06 Advanced Cardiovascular Systems, Inc. Hydrogel bioscaffoldings and biomedical device coatings
US20090118612A1 (en) 2005-05-06 2009-05-07 Sorin Grunwald Apparatus and Method for Vascular Access
US20080214931A1 (en) * 2005-06-28 2008-09-04 Timm Dickfeld Method and System for Guiding a Probe in a Patient for a Medical Procedure
US7877128B2 (en) * 2005-08-02 2011-01-25 Biosense Webster, Inc. Simulation of invasive procedures
US8583220B2 (en) * 2005-08-02 2013-11-12 Biosense Webster, Inc. Standardization of catheter-based treatment for atrial fibrillation
US8784336B2 (en) 2005-08-24 2014-07-22 C. R. Bard, Inc. Stylet apparatuses and methods of manufacture
DE102005042329A1 (en) * 2005-09-06 2007-03-08 Siemens Ag Electro-physiological catheter application assistance providing method, involves detecting contour of areas relevant for catheter application, and showing areas as simple line in representations of mapping and/or image data
DE102005045073B4 (en) * 2005-09-21 2012-03-22 Siemens Ag A method of visually assisting invasive examination or treatment of the heart using an invasive instrument
US7981038B2 (en) * 2005-10-11 2011-07-19 Carnegie Mellon University Sensor guided catheter navigation system
WO2007069168A2 (en) * 2005-12-15 2007-06-21 Koninklijke Philips Electronics, N.V. System and method for visualizing heart morphologyduring electrophysiology mapping and treatment
JP4626537B2 (en) * 2006-02-24 2011-02-09 株式会社島津製作所 Fluoroscopic equipment
WO2007103362A2 (en) * 2006-03-08 2007-09-13 Ascension Technology Corporation Lead tracking of implantable cardioverter-defibrillator (icd) and cardiac resynchronization therapy (crt) devices
US7725157B2 (en) * 2006-05-16 2010-05-25 General Electric Company System and method for interventional procedures using MRI
US9962098B2 (en) * 2006-06-02 2018-05-08 Global Cardiac Monitors, Inc. Heart monitor electrode system
US7505810B2 (en) * 2006-06-13 2009-03-17 Rhythmia Medical, Inc. Non-contact cardiac mapping, including preprocessing
US7729752B2 (en) 2006-06-13 2010-06-01 Rhythmia Medical, Inc. Non-contact cardiac mapping, including resolution map
US7515954B2 (en) * 2006-06-13 2009-04-07 Rhythmia Medical, Inc. Non-contact cardiac mapping, including moving catheter and multi-beat integration
US7732190B2 (en) * 2006-07-31 2010-06-08 Advanced Cardiovascular Systems, Inc. Modified two-component gelation systems, methods of use and methods of manufacture
US9242005B1 (en) 2006-08-21 2016-01-26 Abbott Cardiovascular Systems Inc. Pro-healing agent formulation compositions, methods and treatments
MX2009003918A (en) * 2006-10-10 2009-05-08 Biosense Webster Inc Esophageal mapping catheter.
US8388546B2 (en) 2006-10-23 2013-03-05 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US7794407B2 (en) 2006-10-23 2010-09-14 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US9005672B2 (en) 2006-11-17 2015-04-14 Abbott Cardiovascular Systems Inc. Methods of modifying myocardial infarction expansion
US8741326B2 (en) * 2006-11-17 2014-06-03 Abbott Cardiovascular Systems Inc. Modified two-component gelation systems, methods of use and methods of manufacture
US8192760B2 (en) * 2006-12-04 2012-06-05 Abbott Cardiovascular Systems Inc. Methods and compositions for treating tissue using silk proteins
US20080190438A1 (en) * 2007-02-08 2008-08-14 Doron Harlev Impedance registration and catheter tracking
EP2111163B1 (en) * 2007-02-14 2019-04-24 Koninklijke Philips N.V. System, a method and a computer program for determining a functional property of a moving object
US8195292B2 (en) * 2007-02-16 2012-06-05 Pacestter, Inc. Cardiac resynchronization therapy optimization using parameter estimation from realtime electrode motion tracking
EP2120768A1 (en) * 2007-03-07 2009-11-25 Koninklijke Philips Electronics N.V. Positioning device for positioning an object on a surface
US9549689B2 (en) 2007-03-09 2017-01-24 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for correction of inhomogeneous fields
US10433929B2 (en) 2007-03-09 2019-10-08 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for local deformable registration of a catheter navigation system to image data or a model
WO2008126074A2 (en) 2007-04-11 2008-10-23 Elcam Medical Agricultural Cooperative Association Ltd. System and method for accurate placement of a catheter tip in a patient
US8099158B2 (en) * 2007-05-07 2012-01-17 Siemens Medical Solutions Usa, Inc. System and method for selecting end of diastole and end of systole frames
US8213693B1 (en) * 2007-05-16 2012-07-03 General Electric Company System and method to track and navigate a tool through an imaged subject
FR2916957B1 (en) * 2007-06-05 2010-08-27 Gen Electric IMAGE RECOVERY METHOD AND SYSTEM
WO2009003138A1 (en) 2007-06-26 2008-12-31 Vasonova, Inc. Apparatus and method for endovascular device guiding and positioning using physiological parameters
US8346344B2 (en) * 2007-09-11 2013-01-01 Siemens Aktiengesellschaft Device localization and guidance
WO2009046360A2 (en) * 2007-10-03 2009-04-09 Medtronic, Inc. Selecting cardiac pacing sites
US8180428B2 (en) * 2007-10-03 2012-05-15 Medtronic, Inc. Methods and systems for use in selecting cardiac pacing sites
ES2832713T3 (en) 2007-11-26 2021-06-11 Bard Inc C R Integrated system for intravascular catheter placement
US8849382B2 (en) 2007-11-26 2014-09-30 C. R. Bard, Inc. Apparatus and display methods relating to intravascular placement of a catheter
US9521961B2 (en) 2007-11-26 2016-12-20 C. R. Bard, Inc. Systems and methods for guiding a medical instrument
US10751509B2 (en) 2007-11-26 2020-08-25 C. R. Bard, Inc. Iconic representations for guidance of an indwelling medical device
US10449330B2 (en) 2007-11-26 2019-10-22 C. R. Bard, Inc. Magnetic element-equipped needle assemblies
US8781555B2 (en) 2007-11-26 2014-07-15 C. R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US10524691B2 (en) 2007-11-26 2020-01-07 C. R. Bard, Inc. Needle assembly including an aligned magnetic element
US9649048B2 (en) 2007-11-26 2017-05-16 C. R. Bard, Inc. Systems and methods for breaching a sterile field for intravascular placement of a catheter
US8103327B2 (en) 2007-12-28 2012-01-24 Rhythmia Medical, Inc. Cardiac mapping catheter
US20090198124A1 (en) * 2008-01-31 2009-08-06 Ralf Adamus Workflow to enhance a transjugular intrahepatic portosystemic shunt procedure
US8478382B2 (en) 2008-02-11 2013-07-02 C. R. Bard, Inc. Systems and methods for positioning a catheter
CN101243975B (en) * 2008-03-28 2011-01-12 微创医疗器械(上海)有限公司 System for rapidly constructing human body organ inner bore three-dimensional geometric model
US8538509B2 (en) * 2008-04-02 2013-09-17 Rhythmia Medical, Inc. Intracardiac tracking system
US9901714B2 (en) 2008-08-22 2018-02-27 C. R. Bard, Inc. Catheter assembly including ECG sensor and magnetic assemblies
US8437833B2 (en) 2008-10-07 2013-05-07 Bard Access Systems, Inc. Percutaneous magnetic gastrostomy
US8167876B2 (en) 2008-10-27 2012-05-01 Rhythmia Medical, Inc. Tracking system using field mapping
US8725241B2 (en) * 2008-11-07 2014-05-13 Cardioinsight Technologies, Inc. Visualization of physiological data for virtual electrodes
EP2345024B1 (en) 2008-11-10 2017-11-08 Cardioinsight Technologies, Inc. Visualization of electrophysiology data
US9398862B2 (en) * 2009-04-23 2016-07-26 Rhythmia Medical, Inc. Multi-electrode mapping system
US8571647B2 (en) 2009-05-08 2013-10-29 Rhythmia Medical, Inc. Impedance based anatomy generation
US8103338B2 (en) 2009-05-08 2012-01-24 Rhythmia Medical, Inc. Impedance based anatomy generation
EP2440131B1 (en) 2009-06-08 2018-04-04 MRI Interventions, Inc. Mri-guided interventional systems that can track and generate dynamic visualizations of flexible intrabody devices in near real time
US9445734B2 (en) 2009-06-12 2016-09-20 Bard Access Systems, Inc. Devices and methods for endovascular electrography
US9532724B2 (en) 2009-06-12 2017-01-03 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
CN102802514B (en) 2009-06-12 2015-12-02 巴德阿克塞斯系统股份有限公司 Catheter tip positioning equipment
US8396532B2 (en) 2009-06-16 2013-03-12 MRI Interventions, Inc. MRI-guided devices and MRI-guided interventional systems that can track and generate dynamic visualizations of the devices in near real time
US8177835B2 (en) * 2009-08-21 2012-05-15 Siemens Aktiengesellschaft Method of imaging for heart valve implant procedure
AU2010300677B2 (en) 2009-09-29 2014-09-04 C.R. Bard, Inc. Stylets for use with apparatus for intravascular placement of a catheter
US11103213B2 (en) 2009-10-08 2021-08-31 C. R. Bard, Inc. Spacers for use with an ultrasound probe
US10639008B2 (en) 2009-10-08 2020-05-05 C. R. Bard, Inc. Support and cover structures for an ultrasound probe head
US8409098B2 (en) * 2009-10-14 2013-04-02 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and apparatus for collection of cardiac geometry based on optical or magnetic tracking
CN102821679B (en) 2010-02-02 2016-04-27 C·R·巴德股份有限公司 For the apparatus and method that catheter navigation and end are located
US20110213260A1 (en) * 2010-02-26 2011-09-01 Pacesetter, Inc. Crt lead placement based on optimal branch selection and optimal site selection
US9131869B2 (en) 2010-05-11 2015-09-15 Rhythmia Medical, Inc. Tracking using field mapping
EP2912999B1 (en) 2010-05-28 2022-06-29 C. R. Bard, Inc. Apparatus for use with needle insertion guidance system
EP4122385A1 (en) 2010-05-28 2023-01-25 C. R. Bard, Inc. Insertion guidance system for needles and medical components
US9014485B2 (en) * 2010-07-21 2015-04-21 Armin E. Moehrle Image reporting method
KR101856267B1 (en) 2010-08-20 2018-05-09 씨. 알. 바드, 인크. Reconfirmation of ecg-assisted catheter tip placement
US8655041B2 (en) * 2010-09-23 2014-02-18 Siemens Aktiengesellschaft Automatic detection of contrast injection
EP2618727B1 (en) * 2010-09-23 2022-06-22 C. R. Bard, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
WO2012058461A1 (en) 2010-10-29 2012-05-03 C.R.Bard, Inc. Bioimpedance-assisted placement of a medical device
US9002442B2 (en) 2011-01-13 2015-04-07 Rhythmia Medical, Inc. Beat alignment and selection for cardiac mapping
US8428700B2 (en) 2011-01-13 2013-04-23 Rhythmia Medical, Inc. Electroanatomical mapping
US9131853B2 (en) 2011-07-01 2015-09-15 Joseph Tiano Medical probe and method of using same
EP2729073A4 (en) 2011-07-06 2015-03-11 Bard Inc C R Needle length determination and calibration for insertion guidance system
USD699359S1 (en) 2011-08-09 2014-02-11 C. R. Bard, Inc. Ultrasound probe head
USD724745S1 (en) 2011-08-09 2015-03-17 C. R. Bard, Inc. Cap for an ultrasound probe
JP5342628B2 (en) * 2011-10-05 2013-11-13 株式会社東芝 X-ray imaging device
KR101296897B1 (en) 2011-10-19 2013-08-14 연세대학교 산학협력단 Heart diagnosis apparatus and method
US9211107B2 (en) 2011-11-07 2015-12-15 C. R. Bard, Inc. Ruggedized ultrasound hydrogel insert
WO2013106926A1 (en) * 2012-01-17 2013-07-25 Sunnybrook Health Sciences Centre Method for three-dimensional localization of an object from a two-dimensional medical image
US9384546B2 (en) * 2012-02-22 2016-07-05 Siemens Aktiengesellschaft Method and system for pericardium based model fusion of pre-operative and intra-operative image data for cardiac interventions
DE102012208389A1 (en) * 2012-05-18 2013-11-21 Fiagon Gmbh Registration method and apparatus for a position detection system
WO2013188833A2 (en) 2012-06-15 2013-12-19 C.R. Bard, Inc. Apparatus and methods for detection of a removable cap on an ultrasound probe
US9091628B2 (en) 2012-12-21 2015-07-28 L-3 Communications Security And Detection Systems, Inc. 3D mapping with two orthogonal imaging views
JP6887216B2 (en) * 2013-01-08 2021-06-16 バイオカーディア, インコーポレイテッドBiocardia, Inc. Target site selection, entries and updates with automatic remote image annotation
US9844324B2 (en) 2013-03-14 2017-12-19 X-Nav Technologies, LLC Image guided navigation system
US9440047B1 (en) 2013-03-14 2016-09-13 Angiodynamics, Inc. Systems and methods for catheter tip placement using ECG
US9445746B1 (en) 2013-03-14 2016-09-20 Angio Dynamics, Inc. Systems and methods for catheter tip placement using ECG
US10188831B2 (en) 2013-03-14 2019-01-29 Angiodynamics, Inc. Systems and methods for catheter tip placement using ECG
JP6240751B2 (en) 2013-05-06 2017-11-29 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Anatomic mapping system for continuous display of recent heart rate characteristics during real-time or playback electrophysiological data visualization
US9918649B2 (en) 2013-05-14 2018-03-20 Boston Scientific Scimed Inc. Representation and identification of activity patterns during electro-physiology mapping using vector fields
WO2014195934A1 (en) * 2013-06-05 2014-12-11 Check-Cap Ltd. Position estimation of imaging capsule in gastrointestinal tract
US20150057507A1 (en) * 2013-08-20 2015-02-26 St. Jude Medical, Atrial Fibrillation Division, Inc. System and Method for Generating Electrophysiology Maps
CN105592778B (en) 2013-10-14 2019-07-23 波士顿科学医学有限公司 High-resolution cardiac mapping electrod-array conduit
JP2016535658A (en) * 2013-11-06 2016-11-17 セント・ジュード・メディカル・インターナショナル・ホールディング・エスエーアールエルSt. Jude Medical International Holding S.a,r.l. Magnetic field generator that shields images to a minimum and minimally affects dimensions in a C-arm X-ray environment
EP3073910B1 (en) 2014-02-06 2020-07-15 C.R. Bard, Inc. Systems for guidance and placement of an intravascular device
US20150282734A1 (en) 2014-04-08 2015-10-08 Timothy Schweikert Medical device placement system and a method for its use
WO2015187386A1 (en) 2014-06-03 2015-12-10 Boston Scientific Scimed, Inc. Electrode assembly having an atraumatic distal tip
WO2015187430A2 (en) 2014-06-04 2015-12-10 Boston Scientific Scimed, Inc. Electrode assembly
EP3164048B1 (en) 2014-07-02 2022-11-16 Covidien LP Real-time automatic registration feedback
US9943374B2 (en) 2014-09-16 2018-04-17 X-Nav Technologies, LLC Image guidance system for detecting and tracking an image pose
US9402691B2 (en) 2014-09-16 2016-08-02 X-Nav Technologies, LLC System for determining and tracking movement during a medical procedure
WO2016061387A1 (en) 2014-10-15 2016-04-21 St. Jude Medical, Cardiology Division, Inc. Methods and systems for generating integrated substrate maps for cardiac arrhythmias
US10973584B2 (en) 2015-01-19 2021-04-13 Bard Access Systems, Inc. Device and method for vascular access
US10349890B2 (en) 2015-06-26 2019-07-16 C. R. Bard, Inc. Connector interface for ECG-based catheter positioning system
CN107920740B (en) 2015-08-20 2020-11-24 波士顿科学医学有限公司 Flexible electrodes for cardiac sensing and methods of making the same
US10405766B2 (en) 2015-09-26 2019-09-10 Boston Scientific Scimed, Inc. Method of exploring or mapping internal cardiac structures
US10271758B2 (en) 2015-09-26 2019-04-30 Boston Scientific Scimed, Inc. Intracardiac EGM signals for beat matching and acceptance
EP3353753A1 (en) 2015-09-26 2018-08-01 Boston Scientific Scimed Inc. Systems and methods for anatomical shell editing
EP3352648B1 (en) 2015-09-26 2022-10-26 Boston Scientific Scimed Inc. Multiple rhythm template monitoring
US10524695B2 (en) 2015-12-22 2020-01-07 Biosense Webster (Israel) Ltd. Registration between coordinate systems for visualizing a tool
US10244963B2 (en) 2015-12-22 2019-04-02 Biosense Webster (Israel) Ltd. Ascertaining a position and orientation for visualizing a tool
US20170202521A1 (en) * 2016-01-14 2017-07-20 Biosense Webster (Israel) Ltd. Overall system and method for detecting regions of interest
US11000207B2 (en) 2016-01-29 2021-05-11 C. R. Bard, Inc. Multiple coil system for tracking a medical device
WO2018092114A1 (en) 2016-11-21 2018-05-24 St. Jude Medical International Holding S.À R.L. Fluorolucent magnetic field generator
WO2019034944A1 (en) * 2017-08-17 2019-02-21 Navix International Limited Reconstruction of an anatomical structure from intrabody measurements
DE102017212398A1 (en) * 2017-07-19 2019-01-24 Siemens Healthcare Gmbh Reconstruction of MR images at different position from the detection position
US10470677B2 (en) * 2017-10-11 2019-11-12 Bay Labs, Inc. Artificially intelligent ejection fraction determination
JP2019082745A (en) * 2017-10-11 2019-05-30 ベイ ラブズ インク. Artificial intelligence ejection fraction determination method
EP3852622A1 (en) 2018-10-16 2021-07-28 Bard Access Systems, Inc. Safety-equipped connection systems and methods thereof for establishing electrical connections
CN117357250A (en) * 2022-06-28 2024-01-09 上海微创电生理医疗科技股份有限公司 Fusion method of X-ray image and three-dimensional mapping image and interventional operation system

Family Cites Families (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1344459A (en) 1962-10-18 1963-11-29 Method and apparatus for the electrical study of living organisms
US4173228A (en) * 1977-05-16 1979-11-06 Applied Medical Devices Catheter locating device
US4157572A (en) 1977-09-12 1979-06-05 University Of Pittsburgh Superimposition of television images
US4459990A (en) 1982-01-26 1984-07-17 Elscint, Incorporated Radiographic method and apparatus for the visualization of the interior of a body particularly useful for the visualization of a subject's circulatory system
US4522212A (en) 1983-11-14 1985-06-11 Mansfield Scientific, Inc. Endocardial electrode
US4630203A (en) 1983-12-27 1986-12-16 Thomas Szirtes Contour radiography: a system for determining 3-dimensional contours of an object from its 2-dimensional images
US4979510A (en) 1984-03-06 1990-12-25 Ep Technologies, Inc. Apparatus and method for recording monophasic action potentials from an in vivo heart
US4682603A (en) 1984-03-06 1987-07-28 Franz Michael R Apparatus and method for recording monophasic action potentials from an in vivo heart
US4955382A (en) 1984-03-06 1990-09-11 Ep Technologies Apparatus and method for recording monophasic action potentials from an in vivo heart
US4628937A (en) 1984-08-02 1986-12-16 Cordis Corporation Mapping electrode assembly
US4660571A (en) 1985-07-18 1987-04-28 Cordis Corporation Percutaneous lead having radially adjustable electrode
US4699147A (en) 1985-09-25 1987-10-13 Cordis Corporation Intraventricular multielectrode cardial mapping probe and method for using same
DE3536658A1 (en) 1985-10-15 1987-04-16 Kessler Manfred METHOD FOR REPRESENTING ELECTROCARDIOGRAPHIC VALUES
US4762124A (en) 1986-10-28 1988-08-09 Kimberly-Clark Corporation Liquid dispensing pouch
US5231995A (en) 1986-11-14 1993-08-03 Desai Jawahar M Method for catheter mapping and ablation
US5215103A (en) 1986-11-14 1993-06-01 Desai Jawahar M Catheter for mapping and ablation and method therefor
US4940064A (en) 1986-11-14 1990-07-10 Desai Jawahar M Catheter for mapping and ablation and method therefor
US4878115A (en) 1987-09-25 1989-10-31 University Of Kentucky Research Foundation Dynamic coronary roadmapping
US4922912A (en) 1987-10-21 1990-05-08 Hideto Watanabe MAP catheter
US4875165A (en) 1987-11-27 1989-10-17 University Of Chicago Method for determination of 3-D structure in biplane angiography
US5588432A (en) 1988-03-21 1996-12-31 Boston Scientific Corporation Catheters for imaging, sensing electrical potentials, and ablating tissue
US5127403A (en) 1988-07-05 1992-07-07 Cardiac Control Systems, Inc. Pacemaker catheter utilizing bipolar electrodes spaced in accordance to the length of a heart depolarization signal
US4962767A (en) 1988-07-05 1990-10-16 Cardiac Control Systems, Inc. Pacemaker catheter
US5227969A (en) 1988-08-01 1993-07-13 W. L. Systems, Inc. Manipulable three-dimensional projection imaging method
FR2636451A1 (en) 1988-09-13 1990-03-16 Gen Electric Cgr METHOD FOR RECONSTRUCTION OF THREE-DIMENSIONAL TREE BY LABELING
JPH02114776A (en) 1988-10-25 1990-04-26 Toshiba Corp X-ray diagnostic device
JPH0538723Y2 (en) 1988-12-19 1993-09-30
US4911174A (en) 1989-02-13 1990-03-27 Cardiac Pacemakers, Inc. Method for matching the sense length of an impedance measuring catheter to a ventricular chamber
US4905705A (en) 1989-03-03 1990-03-06 Research Triangle Institute Impedance cardiometer
EP0419729A1 (en) 1989-09-29 1991-04-03 Siemens Aktiengesellschaft Position finding of a catheter by means of non-ionising fields
CA2003497C (en) 1989-11-21 1999-04-06 Michael M. Greenberg Probe-correlated viewing of anatomical image data
US5038791A (en) 1990-06-11 1991-08-13 Battelle Memorial Institute Heart imaging method
US5156151A (en) 1991-02-15 1992-10-20 Cardiac Pathways Corporation Endocardial mapping and ablation system and catheter probe
US5345936A (en) 1991-02-15 1994-09-13 Cardiac Pathways Corporation Apparatus with basket assembly for endocardial mapping
US5228442A (en) 1991-02-15 1993-07-20 Cardiac Pathways Corporation Method for mapping, ablation, and stimulation using an endocardial catheter
US5255678A (en) 1991-06-21 1993-10-26 Ecole Polytechnique Mapping electrode balloon
US5383917A (en) 1991-07-05 1995-01-24 Jawahar M. Desai Device and method for multi-phase radio-frequency ablation
US5555883A (en) 1992-02-24 1996-09-17 Avitall; Boaz Loop electrode array mapping and ablation catheter for cardiac chambers
US5239999A (en) 1992-03-27 1993-08-31 Cardiac Pathways Corporation Helical endocardial catheter probe
US5255679A (en) 1992-06-02 1993-10-26 Cardiac Pathways Corporation Endocardial catheter for mapping and/or ablation with an expandable basket structure having means for providing selective reinforcement and pressure sensing mechanism for use therewith, and method
US5324284A (en) 1992-06-05 1994-06-28 Cardiac Pathways, Inc. Endocardial mapping and ablation system utilizing a separately controlled ablation catheter and method
US5341807A (en) 1992-06-30 1994-08-30 American Cardiac Ablation Co., Inc. Ablation catheter positioning system
US5243981A (en) 1992-07-13 1993-09-14 Medtronic, Inc. Myocardial conduction velocity rate responsive pacemaker
US5913820A (en) 1992-08-14 1999-06-22 British Telecommunications Public Limited Company Position location system
US5311866A (en) 1992-09-23 1994-05-17 Endocardial Therapeutics, Inc. Heart mapping catheter
US5297549A (en) 1992-09-23 1994-03-29 Endocardial Therapeutics, Inc. Endocardial mapping system
US5293869A (en) 1992-09-25 1994-03-15 Ep Technologies, Inc. Cardiac probe with dynamic support for maintaining constant surface contact during heart systole and diastole
US5313943A (en) 1992-09-25 1994-05-24 Ep Technologies, Inc. Catheters and methods for performing cardiac diagnosis and treatment
US5657755A (en) 1993-03-11 1997-08-19 Desai; Jawahar M. Apparatus and method for cardiac ablation
US5433198A (en) 1993-03-11 1995-07-18 Desai; Jawahar M. Apparatus and method for cardiac ablation
US5840031A (en) 1993-07-01 1998-11-24 Boston Scientific Corporation Catheters for imaging, sensing electrical potentials and ablating tissue
US5391199A (en) * 1993-07-20 1995-02-21 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias
US5738096A (en) 1993-07-20 1998-04-14 Biosense, Inc. Cardiac electromechanics
IL116699A (en) 1996-01-08 2001-09-13 Biosense Ltd Method of constructing cardiac map
US5409000A (en) 1993-09-14 1995-04-25 Cardiac Pathways Corporation Endocardial mapping and ablation system utilizing separately controlled steerable ablation catheter with ultrasonic imaging capabilities and method
DE69433383T2 (en) 1993-10-01 2004-10-07 Target Therapeutics Inc MULTIPOLE CATHETER AND MULTIPOLAR GUIDE WIRE FOR MEASURING THE ELECTRICAL HEART ACTIVITY
WO1995010225A1 (en) 1993-10-15 1995-04-20 Ep Technologies, Inc. Multiple electrode element for mapping and ablating
US5454370A (en) 1993-12-03 1995-10-03 Avitall; Boaz Mapping and ablation electrode configuration
US5730127A (en) 1993-12-03 1998-03-24 Avitall; Boaz Mapping and ablation catheter system
US5921924A (en) 1993-12-03 1999-07-13 Avitall; Boaz Mapping and ablation catheter system utilizing multiple control elements
US5487391A (en) 1994-01-28 1996-01-30 Ep Technologies, Inc. Systems and methods for deriving and displaying the propagation velocities of electrical events in the heart
US5485849A (en) 1994-01-31 1996-01-23 Ep Technologies, Inc. System and methods for matching electrical characteristics and propagation velocities in cardiac tissue
US5531227A (en) 1994-01-28 1996-07-02 Schneider Medical Technologies, Inc. Imaging device and method
CA2197986C (en) 1994-08-19 2008-03-18 Shlomo Ben-Haim Medical diagnosis, treatment and imaging systems
EP0951874A3 (en) * 1994-09-15 2000-06-14 Visualization Technology, Inc. Position tracking and imaging system for use in medical applications using a reference unit secured to a patients head
US5595183A (en) 1995-02-17 1997-01-21 Ep Technologies, Inc. Systems and methods for examining heart tissue employing multiple electrode structures and roving electrodes
US5718241A (en) 1995-06-07 1998-02-17 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias with no discrete target
US5889524A (en) 1995-09-11 1999-03-30 University Of Washington Reconstruction of three-dimensional objects using labeled piecewise smooth subdivision surfaces
US5697377A (en) 1995-11-22 1997-12-16 Medtronic, Inc. Catheter mapping system and method
US5837001A (en) 1995-12-08 1998-11-17 C. R. Bard Radio frequency energy delivery system for multipolar electrode catheters
US5755664A (en) 1996-07-11 1998-05-26 Arch Development Corporation Wavefront direction mapping catheter system
US5951571A (en) 1996-09-19 1999-09-14 Surgical Navigation Specialist Inc. Method and apparatus for correlating a body with an image of the body
US5871019A (en) * 1996-09-23 1999-02-16 Mayo Foundation For Medical Education And Research Fast cardiac boundary imaging
US5810008A (en) * 1996-12-03 1998-09-22 Isg Technologies Inc. Apparatus and method for visualizing ultrasonic images
EP0915675B1 (en) 1997-02-14 2008-10-29 Biosense Webster, Inc. X-ray guided surgical location system with extended mapping volume
US5999587A (en) 1997-07-03 1999-12-07 University Of Rochester Method of and system for cone-beam tomography reconstruction
SE9702678D0 (en) 1997-07-11 1997-07-11 Siemens Elema Ab Device for mapping electrical activity in the heart
US6490474B1 (en) 1997-08-01 2002-12-03 Cardiac Pathways Corporation System and method for electrode localization using ultrasound
US5964757A (en) * 1997-09-05 1999-10-12 Cordis Webster, Inc. Steerable direct myocardial revascularization catheter
US5931863A (en) 1997-12-22 1999-08-03 Procath Corporation Electrophysiology catheter
US6226542B1 (en) 1998-07-24 2001-05-01 Biosense, Inc. Three-dimensional reconstruction of intrabody organs

Also Published As

Publication number Publication date
EP1189175A1 (en) 2002-03-20
IL144908A (en) 2007-07-04
JP2002153443A (en) 2002-05-28
KR100829405B1 (en) 2008-05-15
HK1041957A1 (en) 2002-07-26
AU777116B2 (en) 2004-09-30
JP4746793B2 (en) 2011-08-10
KR20020014754A (en) 2002-02-25
US6368285B1 (en) 2002-04-09
IL144908A0 (en) 2002-06-30
CA2355788C (en) 2009-12-01
AU5987601A (en) 2002-02-21

Similar Documents

Publication Publication Date Title
CA2355788A1 (en) Method and apparatus for mapping a chamber of a heart
US20210153770A1 (en) Catheter navigation using impedance and magnetic field measurements
US10856769B2 (en) Method and system for superimposing virtual anatomical landmarks on an image
US10917281B2 (en) Compensation of motion in a moving organ using an internal position reference sensor
US9218687B2 (en) Display of medical device position information in a volumetric rendering
EP2204121B1 (en) Apparatus for the cancellation of motion artifacts in medical interventional navigation
AU782242B2 (en) Rendering of diagnostic imaging data on a three-dimensional map
US10546396B2 (en) System and method for registration of fluoroscopic images in a coordinate system of a medical system
US9307931B2 (en) Multiple shell construction to emulate chamber contraction with a mapping system
ES2302020T3 (en) PROCEDURE AND DEVICE FOR VISUAL ASSISTANCE OF AN ELECTROPHYSIOLOGICAL APPLICATION OF CATETER IN THE HEART.
US20060173287A1 (en) Method and arrangement for tracking a medical instrument
CN102999902A (en) Optical navigation positioning system based on CT (computed tomography) registration results and navigation method thereby
EP3367949A1 (en) Motion box visualization for electromagnetic sensor tracking system
EP2550914B1 (en) Cardiac mapping using non-gated MRI
CN101980663B (en) Object localization in x-ray images
WO2007066096A2 (en) Interventional device location method and apparatus
EP3430999A1 (en) Improving impedance-based position tracking performance using scattered interpolant
US20120155723A1 (en) Determination of cardiac geometry responsive to doppler based imaging of blood flow characteristics
EP3505061B1 (en) Improving impedance-based position tracking performance using principal component analysis
Fallavollita Monoplane 3D reconstruction of mapping ablation catheters: a feasibility study

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20210816