CA2364131A1 - Implantable stroke preventing device - Google Patents

Implantable stroke preventing device Download PDF

Info

Publication number
CA2364131A1
CA2364131A1 CA002364131A CA2364131A CA2364131A1 CA 2364131 A1 CA2364131 A1 CA 2364131A1 CA 002364131 A CA002364131 A CA 002364131A CA 2364131 A CA2364131 A CA 2364131A CA 2364131 A1 CA2364131 A1 CA 2364131A1
Authority
CA
Canada
Prior art keywords
deflecting
carotid artery
ica
eca
cca
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002364131A
Other languages
French (fr)
Inventor
Yuval Yassour
Ofer Yodfat
Ygael Grad
Moshe Rosenfeld
Daniel Levin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MindGuard Ltd
Original Assignee
Mindguard Ltd
Yuval Yassour
Ofer Yodfat
Ygael Grad
Moshe Rosenfeld
Daniel Levin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mindguard Ltd, Yuval Yassour, Ofer Yodfat, Ygael Grad, Moshe Rosenfeld, Daniel Levin filed Critical Mindguard Ltd
Publication of CA2364131A1 publication Critical patent/CA2364131A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/856Single tubular stent with a side portal passage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/954Instruments specially adapted for placement or removal of stents or stent-grafts for placing stents or stent-grafts in a bifurcation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/958Inflatable balloons for placing stents or stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • A61F2002/016Filters implantable into blood vessels made from wire-like elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • A61F2002/018Filters implantable into blood vessels made from tubes or sheets of material, e.g. by etching or laser-cutting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2002/061Blood vessels provided with means for allowing access to secondary lumens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2002/065Y-shaped blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2002/068Modifying the blood flow model, e.g. by diffuser or deflector
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0006Rounded shapes, e.g. with rounded corners circular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0069Three-dimensional shapes cylindrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0015Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in density or specific weight
    • A61F2250/0017Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in density or specific weight differing in yarn density
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0023Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in porosity
    • A61F2250/0024Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in porosity made from both porous and non-porous parts, e.g. adjacent parts

Abstract

An implantable device (20) for positioning in the vicinity of the bifurcatio n of the common carotid artery (CCA) (38) into the internal carotid artery (IC A) (40) and the external carotid artery (ECA) (42) comprises a deflecting eleme nt (24) suitable to deflect the flow (60) of embolic material flowing in the CC A (38) toward the ICA (40), into the ECA (42).

Description

IMPLANTABLE STROKE PREVENTING DEVICE
FIELD OF THE INVENTION
The present invention relates to implantable stroke treating devices, and more specifically is concerned with a device for reducing the risk of embolic material entering into the internal carotid artery of an individual and blood clots (collectively and interchangeably referred to as 'embolic material'.
BACKGROUND OF THE INVENTION
A major portion of blood supply to the brain hemispheres is by two arteries, referred to as common carotid arteries (CCA), each of which branches off, or bifurcates as the term is at times used, into a so-called internal carotid artery (ICA) and an external carotid artery (ECA). Blood to the brain stem is supplied by two vertebral arteries.
Cerebralvascular diseases are considered among the leading causes of mortality and morbidity in the modern age. Strokes denote an abrupt impairment of brain function caused by pathologic changes occurring in blood vessels. The main cause of strokes is insufficient blood ilow to the brain (referred to as '~zn ischemic strohe'~ which are about 80°/ of stroke cases.
Ischemic strokes are caused by sudden occlusion of an artery supplying blood to the brain. Occlusion or partial occlusion (stenosis) are the result of diseases of the arterial wall. Arterial atherosclerosis is by far the most common arterial disorder, and when complicated by
-2-thrombosis or embolism it is the most frequent cause of cerebral ischemia and infarction, eventually causing the cerebral stroke.
Cardioembolism causes about 15%-20% of all strokes. Stroke caused by heart disease is primarily due to embolism of thrombotic material forming on the atrial or ventricular wall or the left heart valves. These thrombi then detach and embolize into the arterial circulation. Emboli large enough can occlude large arteries in the brain territory and cause strokes.
Cardiogenetic cerebral embolism is presumed to have occurred when cardiac arrhythmia or structural abnormalities are found or known to be present. The most common causes of cardioembolic stroke are nonrheumatic (non-valvular) atrial fibrillation (A~, prothestic valves, rheumatic heart disease (R,HD), ischemic cardiomyopathy, congestive heart failure, myocardial infarction, post-operatory state and protruding aortic arch atheroma (A.A.A.).
Such disorders are currently treated in different ways such as by drug management, surgery (carotid endarterectomy) in case of occlusive disease, or carotid angioplasty and carotid stems.
While endarterectomy, angioplasty and carotid stenting are procedures targeting at opening the occluded artery, they do not prevent progression of new plaque. Even more so, the above treatment methods only provide a solution to localized problems and do not prevent proximal embolic sources, i.e. embolus formed at remote sites (heart and ascending aorta) to pass through the reopened stenosis in the carotid
-3-and occlude smaller arteries in the brain. This is a substantial problem, inasmuch as about one-third of patients suffering front carotid occlusion also have proximal embolic sources leading to stroke. It should be noted that only about 20% of the cases of stroke result from an occlusion of the carotid.
It will also be appreciated that endarterectomy is not suitable for intracarnial arteries or in the. vertebrobasilar system since these arteries are positioned within unacceptable environment (brain tissue, bone tissue) or are too small in diameter.
Introducing filtering means into blood vessels, in particular into veins, has been known for some time. However, filtering devices known in the art are generally of a complex design, which renders such devices unsuitable for implantation within carotid arteries, and unsuitable for handling fine embolic material. However, when considering the possible cerebral effects of even fine embolic material occluding an artery supplying blood to the brain, the consequences may be fatal or may cause irreversible brain damage.
However, in light of the short period of time during which brain tissue can survive without blood supply, there is significant importance to providing suitable means for preventing even small embolic material from entering the internal carotid artery, so as to avoid brain damage.
A drawback of prior art filtering means is their tendency to become clogged. On the one hand, in order to provide efficient filtering
-4-means, the filter should be of fine mesh. On the other hand, a fine mesh has a higher tendency toward, and risk of, occlusion.
It should also be noted that the flow ratio between the ICA and the ECA is about 4:1. This ratio also reflects the much higher risk of embolic material flowing into the ICA.
It is thus an object of the present invention to provide an implantable deflecting device suitable to be positioned within a blood vessel supplying blood to the brain, and further suitable to deflect embolic material that would have flown into the internal carotid artery, into the external carotid artery, thereby preventing the entry of said embolic material into the internal carotid artery, and thus preventing extracarnial embolus to occlude small intercarnial arteries in the brain.
It is another object of the invention to provide a method for treating a patient known to suffer from embolic diseases, by selectively occluding the passage of embolic material into the internal carotid artery.
It is yet another object of the invention to provide a method for preventing conditions associated with embolic material.
Other objects of the invention will become apparent as the description proceeds.

SUMMARY OF THE INVENTION
The present invention provides an implantable device for positioning in the vicinity of the bifurcation of the common carotid artery (CCA) into the internal carotid artery (ICA) and the external carotid artery (ECA), comprising a deflecting element suitable to deflect the flow of embolic material flowing in the CCA toward the ICA, into the ECA. Preferably, but non-limitatively, the deflecting element comprises filtering means.
Thus, in one aspect, the invention provides an implantable deflecting device comprising an anchoring member engageable with inner walls of a carotid artery, and one or more deflecting members for deflecting flow of embolic material into the ECA, substantially without obstructing blood flow into the ICA.
The anchoring member and the deflecting member may be integral with one another or attached or coupled to one another. In the present specification the anchoring member and the deflecting member may be referred to also as anchoring portion and deflecting portion, respectively.
In accordance with a particular preferred embodiment of the invention, the deflecting member is a screening element fitted at the inlet into the ICA and is adapted to prevent the passage into the ICA of embolic material above a predetermined size.
By a preferred embodiment, at least the anchoring member is a stmt adapted for insertion via the vasculature of an individual. The implantable deflecting device in accordance with any of the .6_ embodiments of the present invention may be permanently implanted or may be removed after a period of time, depending on the course of treatment and the medical procedure.
As will become evident from the description to follow, the deflecting member is preferably, but not compulsorily, positioned at the inlet into the internal carotid artery, whereas the anchoring member may be positioned in a variety of locations. The deflecting member, however, may be positioned at any location that fulfills two conditions:
firstly, it does not occlude the flow of blood into the ICA, and secondly, it causes a deflection of the flow of embolic material into the ECA. For instance, the deflecting member may be anchored in the ICA and protrude into the bifurcation zone, or may be positioned at the entrance to the ECA and extend toward the surrounding walls, for constructive and strength reasons.
In accordance with one specific embodiment of the invention, the anchoring member comprises a tubular portion for anchorage within the CCA with an upstream portion extending towards the bifurcation zone, said upstream portion accommodating the one or more deflecting member.
In accordance with still another preferred embodiment of the invention, the anchoring member comprises a tubular portion for anchoring within the ECA, with a downstream portion extending towards the bifurcation zone, said downstream portion accommodating the one or more deflecting member. Alternatively, the anchoring member comprises a tubular portion for anchorage within the ICA, with a downstream portion extending towards the bifurcation zone, said upstream portion accommodating the one or more deflecting member.
It will also be appreciated that the anchoring member may comprise a tubular portion for anchorage within a vascular portion extending along the CCA and .the ECA, wherein the one or more deflecting members is accommodated at the inlet to the ICA.
By one specific design the anchoring member comprises a tubular portion for anchorage at the bifurcation zone, wherein the one or more deflecting member is accommodated at or adjacent the inlet into the ICA.
The one or more deflecting member may be integrally formed with the anchoring member or may be attached or coupled thereto either during manufacture, or after implanting the anchoring member within the artery.
By another aspect of the present invention there is provided an implantable deflecting device for implanting at the vicinity of bifurcation of the common carotid artery (CCA) into the internal carotid artery (ICA) and the external carotid artery (ECA); the device comprising an anchoring member engageable with inner walls of a carotid artery, and one or more deflecting members, wherein the one or more deflecting member is so positioned and sized so that embolic material encountering it is deflected to flow into the ECA.

_$_ In another aspect the invention is directed to an arterial stent suitable to be positioned in the vicinity of the bifurcation of the common carotid artery (CCA) into the internal carotid artery (ICA) and the external carotid artery (ECA), comprising a deflecting device.
The invention is further directed to an arterial stmt suitable to be positioned in the vicinity of the bifurcation of the common carotid artery (CCA) into the internal carotid artery (ICA) and the external carotid artery (ECA), coupled to a deflecting device.
Preferably, but non-limitatively, the aforementioned stents employ as a deflecting device an element comprising filtering means of dimensions suitable to allow the flow of blood to proceed into the ICA, while preventing the access thereto of embolic material of a predetermined size.
In a further aspect, the invention is directed to the prevention of the occurrence, or the recurrence, of cerebralvascular diseases, particularly of stroke, comprising 'preventing the flow of embolic material flowing in the CCA from accessing the ICA, by deflecting the flow of said embolic material into the ECA. Prevention of the cerebralvascular disease is achieved by implanting, permanently or temporarily, in the vicinity of the bifurcation of the common carotid artery (CCA) into the internal carotid artery (ICA) and the external carotid artery (ECA), a deflecting device according to the invention.
It should be emphasized that while throughout this specification reference is made to the bifurcation of the CCA into the ICA, this is done for the sake of brevity only, but the invention is in no way limited _g_ to this specific location. The invention can be advantageously be exploited at any other suitable bifurcation of blood vessels as existing, for instance, in the leg.
All the above and other characteristics and advantages of the invention will be better understood through the following illustrative and non-limitative detailed description of preferred embodiments thereof.
BRIEF DESCRIPTION OF THE DRAWINGS
In order to better understand the invention and to illustrate it in practice, non-limiting examples of some preferred embodiments will now be described, with reference to the accompanying drawings, in which:
Fig. 1A is a perspective view of a deflecting member in accordance with a preferred embodiment of the present invention;
Fig. 1B is a perspective view of a deflecting member according to another preferred embodiment of the invention, which is a modification of the device of Fig. 1A;
Fig. 2 illustrates the insertion and positioning of a device according to a preferred embodiment of the invention:
Fig. 2A schematically shows the deflecting device of Fig. 1, in .
collapsed form (i.e., prior to expansion into the artery), on its way to reach the arterial bifurcation; Fig. 2B schematically shows the deflecting device of Fig. 2A, during its expansion and positioning at the arterial bifurcation;

Fig. 2C shows a situation in which the device of Fig. 1 has been positioned in the bifurcation, and the deploying equipment has been withdrawn (normal working position);
Fig. 3A schematically illustrates a deflecting device in accordance with another embodiment of the invention, located within the internal carotid artery;
Fig. 3B schematically illustrates the stages of insertion of the device of Fig, 3A;
Fig. 4 is a deflecting device wherein the anchoring portion mainly extends into the external carotid artery;
Fig. 5 is a deflecting device in which the anchoring portion extends mainly in the common carotid artery;
Fig. 6 is a deflecting device in which the anchoring portion is located at the bifurcation zone;
Fig. 7 schematically illustrates the insertion of a self expandable device; and Fig. 8 schematically shows how to deal with a bifurcation lesion, according to one preferred embodiment of the invention.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
A deflecting device in accordance with a preferred embodiment of the present invention, generally designated 20, is shown in Fig. 1A. The deflecting device is made of fine wire woven into a net-like device having a construction suitable for expanding from a contracted position in which it is deployed through the vasculator of an individual, and expanded by means well known in the art, as will be further explained hereinafter with reference to Figs. 2A and 2B.

The deflecting device 20 has an essentially cylindrical shape with its body 22 generally serving as an anchoring portion. An anchoring portion is a portion of the device that firmly contacts the walls of the artery. Such contact causes a growth of the wall into the net of the devices, and strongly anchors it to the artery thus preventing its accidental displacement. The physiological processes leading to such anchoring are well known in the art, and will therefore not be discussed herein in detail, for the sake of brevity.
A deflecting portion 24 is constructed by a plurality of fine wires 26, parallelly extending along the longitudinal axis of the device and supported by two support wires 28. The deflecting portion 24 is integral with or attached to the anchoring portion 22.
The size and shape of the deflecting member is adjusted to match the inlet of the internal carotid artery as will be further explained hereinafter.
The embodiment of Fig. 1B is similar to that of Fig. lA. However, the deflecting device 21, which is essentially cylindrical, comprises a deflecting portion 25 which is not limited to a part of the circumference of the device, as is the deflecting portion 24 of Fig. 1A, but rather covers the whole circumference of the device. This arrangement, of course, is easier to use, inasmuch as there is no need to exactly match the limited area of the deflecting portion with the opening of the ICA. Furthermore, two markers 27 (which in the particular embodiment of Fig. 1B are circular in shape) are provided, which are radio opaque and serve to aid a physician in the proper positioning of the device within the artery. The markers are visible under radiographic equipment, and therefore can be used to follow the advancement of the device that bears them. Other markers can also be provided, as will be apparent to the skilled person.
For instance, markers 27a are gold points which may be used to position the device also with respect of its rotation around its axis.
The structure of the anchoring portion 29 and of the deflecting portion 25 is essentially similar to the structure illustrated with reference to Fig. lA. The difference resides mainly in the design of the deflecting portion, and in the provision of the markers.
Figs. 2A through 2Cillustrates a carotid artery portion, generally designated 36, in which the common carotid artery (CCA) is designated 38, the internal carotid artery (ICA) is designated 40, and the external carotid artery (ECA) is designated 42. For placing the deflecting device 20 seen in Fig. 1, conventional stmt deployment equipment may be used, which equipment typically comprises an expandable balloon 46, fitted at an end of an inflating tube 48 carried by a guide wire (not seen). However, the device may also be self expandable, as known per se, and as readily understood by the skilled person.
The arrangement is such that by using suitable imaging equipment, the assembly seen in Fig. 2A is inserted through the vasculator of an individual, into the CCA, until the deflecting device 20 is positioned within the bifurcation zone 52, with the deflecting member 24 extending opposite inlet 54 of ICA 40. In this position, balloon 46 is inflated, as shown in Fig. 2B, whereby the anchoring walls 22 of deflecting device 20 anchor against respective inner walls of the common carotid artery 38 and the external carotid artery 42, respectively, with the deflecting member 24 extending across inlet 54 of the internal carotid artery 40. Then, balloon 46 is deflated and is removed via the vasculator of the individual, and the deployment of the deflecting member 20 is thus completed, as seen in Fig. 2C. In this position, embolic material, which is schematically illustrated as particles flowing along flow lines 60 in Fig. 2C, flow in the common carotid artery 38, and upon meeting the deflecting member 24 they are prevented from entering the ICA 40, because their size is larger than the mesh of deflecting portion 24, and they are thus deflected into the external carotid artery 42.
The corresponding operation, when effected with a self expandable stmt, is illustrated in Fig. 7. As will be apparent to the skilled person, using a self expandable device is more convenient in many cases, because of the great mobility of the neck of the patient. The self expandable device, of course, provides for a better anchoring of the device.
Fig. 7A shows the stmt in folded state, Fig. 7B shows it during the first stage of expansion, and Fig. 7C shows it in fully expanded state. The stmt 111 is supported on a guide wire 112, which is used to introduce and guide it to the desired location. In its folded position, stent 111 is covered with a covering envelope 113, which may be made of polymeric material, which keeps it in its folded state. Envelope 113 is connected to a retraction ring 114, which can be pulled away from stmt 111 by means not shown in the figure and well known to the skilled person. Looking now at Fig. 7B, when ring 114 is pulled away in the direction of the arrow, envelope 113 is pulled away with it, uncovering a portion of the stent, indicated at 115. Since the envelope no longer obliges this portion 115 to remain in the folded position, and since the normal position of the stent is expanded, this portion starts expanding to its natural, expanded state. This process is completed in Fig. 7C, when the envelope has been completely removed and the stent is in its fully expanded position. Because elastic forces operate to keep the stent expanded, its anchoring in its location is less susceptible of undesired displacement than balloon expanded stems. Of course, the guide wire is withdrawn from the patient after the positioning of the stent and its expansion is completed, as in any other similar procedure.
Looking now at Fig. 3A, a further preferred embodiment of the invention is illustrated, in which the same reference numerals are used to denote the artery parts. In this preferred embodiment of the invention, the deflecting device, generally indicated by numeral 70, is anchored within the internal carotid artery 40 with the deflecting member 72 extending downstream at the base of the substantially cylindrical deflecting member 70.
In accordance with this embodiment of the invention it is possible that the deflecting device 70 comprises a separate anchoring member 74 which is first deployed and anchored within the ICA 40 and then only the deflecting member 72 is attached thereto. According to a preferred embodiment of the invention, however, deflecting device 70 is inserted as schematically illustrated in Fig. 3B. In the first stage (Fig. 3B(1)), the device is folded so that the anchoring member 74 has a diameter of about 3 mm. The deflecting member 72 is protruding outside the tubular body of anchoring member 74. Fig. 3B(2) shows the second stage, in which partial expansion of anchoring body 74 has taken place, which leads to a partial retraction of deflecting member 72. Finally (Fig.
3B(3)), in the third stage the anchoring member 74 is fully expanded, to a diameter of about 7-9 mm, and deflecting member 72 has withdrawn to a plane substantially perpendicular to the axis of tubular anchoring member 74. According to this particular embodiment of the invention, deflecting member 72 has a net-like configuration.
Lines 78 schematically represent the flow of embolic material entering from the common carotid artery 38 and deflected into the ECA
42, rather than entering the ICA 40. Since the deflecting portion 72 is made of mesh material, on the other hand, blood is free to flow into the ICA 40. As will be appreciated by the skilled person, it is required that the mesh deflecting element be of a mesh size sufficient to allow passage of blood without hindrance, while occluding the passage of embolic material of predetermined size. Typically - but non-limitatively - the deflecting member is designed so as to prevent the passage of particles of a size in the range of 200 - 400 ~,m. This is a substantial improvement over the prior art that aims at excluding particles of about 1 cm diameter. This is made possible, according to the invention, by the fact that the device employed is a deflecting device, and thus clogging problems that are present in the prior art are of little concern when operating according to the invention.
In Fig. 4 there is illustrated another embodiment of a deflecting device, generally designated by numeral 80. This device differs from the embodiments of Figs. 1 and 2 in that its anchoring portion 82 mainly extends into the external carotid artery 42, with only a minor wall portion 84 thereof extending into the common carotid artery 38. It is noted that the deflecting member 86 is positioned across inlet 54 of the ICA 40.
Still another embodiment of a deflecting device 88 is illustrated in Fig. 5, which again is similar to the embodiments of Figs. 1, 2 and 4, the main difference being in the size and shape of the anchoring member 90. Different designs of deflecting members in accordance with the invention may be chosen by physicians for use in a given situation, depending on several physiological parameters of the patient. In the design of Fig. 5, the deflecting member 98 has its anchoring portion 90 extending within the common carotid artery 38, with a minor portion 94 bearing against a wall of the external carotid artery 42. Here again, it is noted that the deflecting member 98 extends across the inlet 54 of ICA
40.
It should be noted that the deflecting member in accordance with each of the embodiments of the invention is so sized and shaped as to facilitate correct positioning across the inlet of the internal carotid artery 40. For that purpose, it is required that the deflecting member be somewhat larger than the cross-sectional size of the inlet into the ICA.
Fig. 6 illustrates still a further embodiment of a deflecting device, according to another preferred embodiment of the invention, generally designated at 100, wherein the anchoring member 102 extends within the zone of bifurcation, with a wall portion 104 bearing against the common carotid artery 38 and a second portion 106 bearing against a _17_ wall portion of the external carotid artery 42. Deflecting surface 110 is similar to that of the previous embodiments, and extends across inlet 54 of the internal carotid artery 40.
The device of the invention can be constructed in a way very similar to cardiac stems, although the dimensions are different and, therefore, allow for greater constructive flexibility. However, the man of the art will easily recognize the materials and expandable shapes suitable to make the stmt of the invention. For instance, the stent and the deflecting device can be made of a material selected from nitinol, polymeric material, stainless steel, etc., and having a configuration selected fromzigzag shape and sinusoidal shape. The filtering means of the deflecting device, if used, should have the following dimensions, in order to effectively prevent the entrance of at least a major part of dangerous embolic material: >200-400 Vim. The diameter of the stent may somewhat vary for different individuals. However, the diameter in the closed state is Up to about 3 mm, while when expanded, the diameter may vary in the range of 5 mm to 10 mm. The diameter of the wire which makes up the body (or anchoring portion) of the device is preferably in the range 100 ~,m to 200 ~,m, while that of the wire used for the filtering device is preferably in the range of 1.0 ~,m to 200 ~,m. Of course, the entire device can also be constructed using the same dimensions, so that there is no difference in mesh size between the body of the device and its deflecting portion.
The device of the invention must fulfill certain predetermined conditions that will be detailed hereinafter. The skilled person will of course be able to devise various devices, of different shapes and properties, which fulfill said conditions. When testing a device of the invention under physiological conditions, namely:
Rea" = 200 - 500 BPM (beats per minute) = 40 - 180 Womersley = 2 - 7 wherein Rea" is the average Reynolds number, and Womersley is the dimensionless beat parameter;
the following conditions should preferably be met by the device of the invention:
1) RepmX between 0 and 4, preferably 1 or less (creeping or Stokes' slow) 2) 100 dyne/cm2> Shear Stress > 2 dyne/cm2 3) The generation of thrombin should not exceed 40 nmolelminute, as measured according to the thrombin acetylation test.
wherein Rep~X is the Reynolds number for the wire of which the deflecting element is made, and the shear stress is measured at the device. As will be appreciated by the skilled person, the smaller the RepmX number the better. However, devices attaining larger Rep~X
numbers than indicated above may also be provided, and the invention is by no means limited to any specific Rep~~ number.
The device of the invention can be utilized in a variety of ways. A
suitable procedure is illustrated in Fig. 8. In the figure, the ICA-ECA
bifurcation is shown, after treatment for a bifurcation lesion. The blood flows in the direction of the arrow. This lesion is treated as follows:

1. Firstly, the occlusions are opened using conventional angioplastic techniques;
2. Then, a normal stent 120 is introduced in the ICA;
3. The catheter used to introduce stent 120 is retracted, and the device of the invention, indicated by numeral 121, is then introduced. The resulting situation is seen in the figure.
Of course, the procedure and devices illustrated in Fig. 8 are only one option to treat a bifurcation lesion, and other alternative devices and methods exist, which are well known to the skilled person, and which are not described herein, for the sake of brevity.
The invention is useful in a variety of cases. Some illustrative indications are listed below:
I) Severe carotid stenosis with concomitant high risk proximal sources of emboli. These are, for instance:
- Protruding Aortic arch atheroma (more than 1/3 of symptomatic patients);
- Severe carotid stenosis with concomitant cardiac disease;
- Severe carotid stenosis in patients undergoing heart surgery (5% on the statistical basis of 600,000 coronary bypass surgery) 2) Embolic strokes from proximal sources (e.g., mechanical heart valves, Afib, LVT, protruding AAA). These are:
- Atrial fibrillation (2.5 million in the U.SA. in 1999);
- Mechanical heart valve (225,000 procedures performed annually in the U.S.A.);

- Patients at high risk for recurrent embolism for a certain period (S.B.E.);
- Patients at high risk for proximal emboli and absolute contraindications for anticoagulation;
- Patients at high risk for proximal emboli failing best medical treatment.
While some preferred embodiments of the invention have been illustrated and described in the specification, it will be understood by a skilled artisan that it is not intended thereby to limit the disclosure of the invention in any way, but rather it is intended to cover all modifications and arrangements falling within the scope and the spirit of the present invention. For example, the deflecting device may be a permanent device or may be removed from the vicinity of the carotid arteries at need. Furthermore, the deflecting member may be integrally formed with, or detachably connected to, the anchoring member, wherein in some instances it might be necessary first to position the anchoring member and then to attach the deflecting member.
Additionally, the deflecting member may be of different size, shape and pattern, depending on flow parameters and patient specific requirements.

Claims (18)

CLAIMS:
1. An implantable device for positioning in the vicinity of the bifurcation of the common carotid artery (CCA) into the internal carotid artery (ICA) and the external carotid artery (ECA), comprising a deflecting element suitable to deflect the flow of embolic material flowing in the CCA toward the ICA, into the ECA, said deflecting element comprising mesh material for deflecting flow of embolic material into the ECA, substantially without obstructing blood flow into the ICA, said device further comprising an anchoring member engageable with inner walls of a carotid artery.
2. An implantable deflecting device according to claim 1, wherein at least the anchoring member is a stent adapted for insertion via the vasculature of an individual.
3. An implantable deflecting device according to claim 1 or 2, wherein the deflecting member is positioned at the inlet into the ICA.
4. An implantable deflecting device according to any one of claims 1 to 3, wherein the anchoring member comprises a tubular portion comprising one or more deflecting member.
5. An implantable deflecting device according to any one of claims 1 to 4, wherein the one or more defecting member is integrally formed with the anchoring member.
6. An implantable deflecting device according to any one of claims 1 to 5, wherein the one or more deflecting member comprises an array of parallel wires extending at or adjacent the inlet into the ICA.
7. A device according to any one of claims 1 to 6, which comprises an arterial stent.
8. A method for preventing the flow of embolic material flowing in the CCA from accessing the ICA, comprising deflecting the flow of said embolic material into the ECA.
9. A method according to claim 8, comprising implanting in the vicinity of the bifurcation of the common carotid artery (CCA) into the internal carotid artery (ICA) and the external carotid artery (ECA), a deflecting device comprising a deflecting element suitable to deflect the flow of embolic material flowing in the CCA toward the ICA, into the ECA.
10. A method for treating a patient suffering from, or suspected of suffering from, the generation of embolic material, comprising deflecting the flow of said embolic material into the ECA.
11, A method for preventing cerebralvascular diseases or their recurrence, comprising implanting in the vicinity of the bifurcation of the common carotid artery (CCA) into the internal carotid artery (ICA) and the external carotid artery (ECA), a deflecting device comprising a deflecting element suitable to deflect the flow of embolic material flowing in the CCA toward the ICA, into the ECA.
12. A method according to claim 11, wherein the cerebralvascular disease is a stroke.
13. A method according to any one of claims 8 to 12, wherein the deflecting device is provided in, or coupled to, a stent.
14. An implantable device according to claim 1, wherein the mesh material is made of wires having a thickness comprised between 15 -200 µ.
15. An implantable device according claim 14, wherein the filtering means are such that the Reynolds number for the wire under physiological conditions is between 0 and 4, preferably 1 or less.
16. An implantable deflecting device for positioning in the vicinity of the bifurcation of the common carotid artery (CCA) into the internal carotid artery (ICA) and the external carotid artery (ECA), essentially as described and illustrated.
17. An implantable device for positioning in the vicinity of the bifurcation of the common carotid artery (CCA) into the internal carotid artery (ICA) and the external carotid artery (ECA), comprising a deflecting element suitable to deflect the flow of embolic material flowing in the CCA toward the ICA, into the ECA, said deflecting element comprising mesh material for deflecting flow of embolic material into the ECA, substantially without obstructing blood flow into the ICA, said device further comprising an anchoring member engageable with inner walls of a carotid artery wherein said mesh material is provided with openings having a shape suitable to prevent the passage of particles of diameter smaller than 400µm.
18. An implantable device for positioning in the vicinity of the bifurcation of the common carotid artery (CCA) into the internal carotid artery (ICA) and the external carotid artery (ECA), comprising a deflecting element suitable to deflect the flow of anabolic material flowing in the CCA toward the ICA, into the ECA, said deflecting element comprising mesh material having a pore size less than 400µm and for deflecting flow of embolic material into the ECA, substantially without obstructing blood flow into the ICA, said device further comprising an anchoring member engageable with inner walls of a carotid artery.
CA002364131A 1999-03-11 2000-03-09 Implantable stroke preventing device Abandoned CA2364131A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IL12893899A IL128938A0 (en) 1999-03-11 1999-03-11 Implantable stroke treating device
IL128938 1999-03-11
PCT/IL2000/000147 WO2000053119A1 (en) 1999-03-11 2000-03-09 Implantable stroke preventing device

Publications (1)

Publication Number Publication Date
CA2364131A1 true CA2364131A1 (en) 2000-09-14

Family

ID=11072587

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002364131A Abandoned CA2364131A1 (en) 1999-03-11 2000-03-09 Implantable stroke preventing device

Country Status (8)

Country Link
US (2) US6348063B1 (en)
EP (2) EP1158928A1 (en)
JP (1) JP2002537942A (en)
AU (2) AU3187600A (en)
CA (1) CA2364131A1 (en)
HK (1) HK1041805A1 (en)
IL (1) IL128938A0 (en)
WO (2) WO2000053118A1 (en)

Families Citing this family (281)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6006134A (en) * 1998-04-30 1999-12-21 Medtronic, Inc. Method and device for electronically controlling the beating of a heart using venous electrical stimulation of nerve fibers
US6676696B1 (en) * 1998-02-12 2004-01-13 Thomas R. Marotta Endovascular prosthesis
US6755856B2 (en) 1998-09-05 2004-06-29 Abbott Laboratories Vascular Enterprises Limited Methods and apparatus for stenting comprising enhanced embolic protection, coupled with improved protection against restenosis and thrombus formation
US6146370A (en) * 1999-04-07 2000-11-14 Coaxia, Inc. Devices and methods for preventing distal embolization from the internal carotid artery using flow reversal by partial occlusion of the external carotid artery
US7018406B2 (en) * 1999-11-17 2006-03-28 Corevalve Sa Prosthetic valve for transluminal delivery
US20070043435A1 (en) * 1999-11-17 2007-02-22 Jacques Seguin Non-cylindrical prosthetic valve system for transluminal delivery
US8579966B2 (en) 1999-11-17 2013-11-12 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US8016877B2 (en) * 1999-11-17 2011-09-13 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
IT1311589B1 (en) * 1999-11-22 2002-03-13 Alberto Cremonesi DEVICE FOR VASCULAR IMPLANTATION IN THE PERCUTANEOUS TREATMENT OF CAROTID INJURY.
EP1237487A4 (en) * 1999-12-06 2010-11-03 Simcha Milo Ultrasonic medical device
US20040010308A1 (en) * 2000-01-18 2004-01-15 Mindguard Ltd. Implantable composite device and corresponding method for deflecting embolic material in blood flowing at an arterial bifurcation
US20040010307A1 (en) * 2000-01-18 2004-01-15 Mindguard Ltd. Implantable integral device and corresponding method for deflecting embolic material in blood flowing at an arterial bifurcation
US8241274B2 (en) 2000-01-19 2012-08-14 Medtronic, Inc. Method for guiding a medical device
US7749245B2 (en) 2000-01-27 2010-07-06 Medtronic, Inc. Cardiac valve procedure methods and devices
US6692513B2 (en) 2000-06-30 2004-02-17 Viacor, Inc. Intravascular filter with debris entrapment mechanism
US6769434B2 (en) * 2000-06-30 2004-08-03 Viacor, Inc. Method and apparatus for performing a procedure on a cardiac valve
ATE396648T1 (en) * 2000-05-09 2008-06-15 Paieon Inc SYSTEM AND METHOD FOR THREE-DIMENTIONAL RECONSTRUCTION OF AN ARTERY
US6645221B1 (en) * 2000-05-30 2003-11-11 Zuli, Holdings Ltd. Active arterial embolization filter
AU2000260531A1 (en) * 2000-06-20 2002-01-02 Chf Solutions, Inc. Implantable flow diversion device
IL137326A0 (en) * 2000-07-17 2001-07-24 Mind Guard Ltd Implantable braided stroke preventing device and method of manufacturing
IL154433A0 (en) 2000-08-18 2003-09-17 Atritech Inc Expandable implant devices for filtering blood flow from atrial appendages
US20020186818A1 (en) * 2000-08-29 2002-12-12 Osteonet, Inc. System and method for building and manipulating a centralized measurement value database
WO2002039924A2 (en) * 2000-11-17 2002-05-23 Evysio Medical Devices Ulc Endovascular prosthesis
EP1337200A2 (en) * 2000-11-17 2003-08-27 Evysio Medical Devices Ulc Endovascular prosthesis
IL140870A0 (en) 2001-01-11 2002-02-10 Mind Guard Ltd Deployment system for implantable self-expandable intraluminal devices
EP1234554A1 (en) * 2001-02-21 2002-08-28 EndoArt SA Vascular graft with internal deflector
US7544206B2 (en) * 2001-06-29 2009-06-09 Medtronic, Inc. Method and apparatus for resecting and replacing an aortic valve
US8623077B2 (en) 2001-06-29 2014-01-07 Medtronic, Inc. Apparatus for replacing a cardiac valve
US8771302B2 (en) * 2001-06-29 2014-07-08 Medtronic, Inc. Method and apparatus for resecting and replacing an aortic valve
FR2826863B1 (en) * 2001-07-04 2003-09-26 Jacques Seguin ASSEMBLY FOR PLACING A PROSTHETIC VALVE IN A BODY CONDUIT
US20030100945A1 (en) * 2001-11-23 2003-05-29 Mindguard Ltd. Implantable intraluminal device and method of using same in treating aneurysms
IL144213A0 (en) * 2001-07-09 2002-05-23 Mind Guard Ltd Implantable filter
FR2828091B1 (en) 2001-07-31 2003-11-21 Seguin Jacques ASSEMBLY ALLOWING THE PLACEMENT OF A PROTHETIC VALVE IN A BODY DUCT
US7097659B2 (en) * 2001-09-07 2006-08-29 Medtronic, Inc. Fixation band for affixing a prosthetic heart valve to tissue
CA2759746C (en) * 2001-12-05 2018-05-22 Smt Research And Development Ltd. Endovascular device for entrapment of particulate matter and method for use
US7147661B2 (en) 2001-12-20 2006-12-12 Boston Scientific Santa Rosa Corp. Radially expandable stent
US8721713B2 (en) * 2002-04-23 2014-05-13 Medtronic, Inc. System for implanting a replacement valve
AU2003262938A1 (en) 2002-08-27 2004-03-19 Amir Belson Embolic protection device
CO5500017A1 (en) * 2002-09-23 2005-03-31 3F Therapeutics Inc MITRAL PROTESTIC VALVE
US6899729B1 (en) * 2002-12-18 2005-05-31 Advanced Cardiovascular Systems, Inc. Stent for treating vulnerable plaque
US7220271B2 (en) 2003-01-30 2007-05-22 Ev3 Inc. Embolic filters having multiple layers and controlled pore size
US7323001B2 (en) 2003-01-30 2008-01-29 Ev3 Inc. Embolic filters with controlled pore size
US20040153119A1 (en) 2003-01-30 2004-08-05 Kusleika Richard S. Embolic filters with a distal loop or no loop
US7393339B2 (en) * 2003-02-21 2008-07-01 C. R. Bard, Inc. Multi-lumen catheter with separate distal tips
US7951557B2 (en) * 2003-04-27 2011-05-31 Protalix Ltd. Human lysosomal proteins from plant cell culture
US20100196345A1 (en) * 2003-04-27 2010-08-05 Protalix Production of high mannose proteins in plant culture
WO2004103209A2 (en) * 2003-05-19 2004-12-02 Secant Medical Llc Tissue distention device and related methods for therapeutic intervention
US20040267281A1 (en) * 2003-06-25 2004-12-30 Eran Harari Delivery system for self-expandable diverter
US9579194B2 (en) * 2003-10-06 2017-02-28 Medtronic ATS Medical, Inc. Anchoring structure with concave landing zone
US7056286B2 (en) 2003-11-12 2006-06-06 Adrian Ravenscroft Medical device anchor and delivery system
US7186265B2 (en) * 2003-12-10 2007-03-06 Medtronic, Inc. Prosthetic cardiac valves and systems and methods for implanting thereof
US8603160B2 (en) 2003-12-23 2013-12-10 Sadra Medical, Inc. Method of using a retrievable heart valve anchor with a sheath
US8579962B2 (en) 2003-12-23 2013-11-12 Sadra Medical, Inc. Methods and apparatus for performing valvuloplasty
US7824443B2 (en) 2003-12-23 2010-11-02 Sadra Medical, Inc. Medical implant delivery and deployment tool
US8343213B2 (en) 2003-12-23 2013-01-01 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US20050137686A1 (en) * 2003-12-23 2005-06-23 Sadra Medical, A Delaware Corporation Externally expandable heart valve anchor and method
US7445631B2 (en) * 2003-12-23 2008-11-04 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US7329279B2 (en) * 2003-12-23 2008-02-12 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US8287584B2 (en) * 2005-11-14 2012-10-16 Sadra Medical, Inc. Medical implant deployment tool
US7824442B2 (en) 2003-12-23 2010-11-02 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US20050137691A1 (en) * 2003-12-23 2005-06-23 Sadra Medical Two piece heart valve and anchor
US7780725B2 (en) * 2004-06-16 2010-08-24 Sadra Medical, Inc. Everting heart valve
US7959666B2 (en) * 2003-12-23 2011-06-14 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US20120041550A1 (en) 2003-12-23 2012-02-16 Sadra Medical, Inc. Methods and Apparatus for Endovascular Heart Valve Replacement Comprising Tissue Grasping Elements
US7381219B2 (en) * 2003-12-23 2008-06-03 Sadra Medical, Inc. Low profile heart valve and delivery system
US20050137687A1 (en) 2003-12-23 2005-06-23 Sadra Medical Heart valve anchor and method
US9005273B2 (en) * 2003-12-23 2015-04-14 Sadra Medical, Inc. Assessing the location and performance of replacement heart valves
US8182528B2 (en) 2003-12-23 2012-05-22 Sadra Medical, Inc. Locking heart valve anchor
US8052749B2 (en) * 2003-12-23 2011-11-08 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US9526609B2 (en) * 2003-12-23 2016-12-27 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US11278398B2 (en) 2003-12-23 2022-03-22 Boston Scientific Scimed, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US20050137696A1 (en) * 2003-12-23 2005-06-23 Sadra Medical Apparatus and methods for protecting against embolization during endovascular heart valve replacement
EP2526895B1 (en) * 2003-12-23 2014-01-29 Sadra Medical, Inc. Repositionable heart valve
US20050137694A1 (en) 2003-12-23 2005-06-23 Haug Ulrich R. Methods and apparatus for endovascularly replacing a patient's heart valve
US8840663B2 (en) 2003-12-23 2014-09-23 Sadra Medical, Inc. Repositionable heart valve method
US7748389B2 (en) * 2003-12-23 2010-07-06 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US20050182436A1 (en) * 2004-02-18 2005-08-18 Scimed Life Systems, Inc. Apparatus and method for creating working channel through tissue
ITTO20040135A1 (en) 2004-03-03 2004-06-03 Sorin Biomedica Cardio Spa CARDIAC VALVE PROSTHESIS
JP5290573B2 (en) 2004-04-23 2013-09-18 メドトロニック スリーエフ セラピューティクス,インコーポレイティド Implantable prosthetic valve
US8267985B2 (en) 2005-05-25 2012-09-18 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
ES2607402T3 (en) 2004-05-25 2017-03-31 Covidien Lp Flexible vascular occlusion device
KR101300437B1 (en) 2004-05-25 2013-08-26 코비디엔 엘피 Vascular stenting for aneurysms
US8617234B2 (en) * 2004-05-25 2013-12-31 Covidien Lp Flexible vascular occluding device
US20060206200A1 (en) * 2004-05-25 2006-09-14 Chestnut Medical Technologies, Inc. Flexible vascular occluding device
US8628564B2 (en) * 2004-05-25 2014-01-14 Covidien Lp Methods and apparatus for luminal stenting
US20060052867A1 (en) 2004-09-07 2006-03-09 Medtronic, Inc Replacement prosthetic heart valve, system and method of implant
WO2006042114A1 (en) * 2004-10-06 2006-04-20 Cook, Inc. Emboli capturing device having a coil and method for capturing emboli
US8562672B2 (en) 2004-11-19 2013-10-22 Medtronic, Inc. Apparatus for treatment of cardiac valves and method of its manufacture
KR20070094888A (en) * 2004-11-19 2007-09-27 메드트로닉 인코포레이티드 Method and apparatus for treatment of cardiac valves
DE102005003632A1 (en) 2005-01-20 2006-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Catheter for the transvascular implantation of heart valve prostheses
ITTO20050074A1 (en) 2005-02-10 2006-08-11 Sorin Biomedica Cardio Srl CARDIAC VALVE PROSTHESIS
US7955351B2 (en) 2005-02-18 2011-06-07 Tyco Healthcare Group Lp Rapid exchange catheters and embolic protection devices
US8945169B2 (en) 2005-03-15 2015-02-03 Cook Medical Technologies Llc Embolic protection device
US8221446B2 (en) 2005-03-15 2012-07-17 Cook Medical Technologies Embolic protection device
US7962208B2 (en) 2005-04-25 2011-06-14 Cardiac Pacemakers, Inc. Method and apparatus for pacing during revascularization
US20060259132A1 (en) * 2005-05-02 2006-11-16 Cook Incorporated Vascular stent for embolic protection
US7914569B2 (en) 2005-05-13 2011-03-29 Medtronics Corevalve Llc Heart valve prosthesis and methods of manufacture and use
AU2005332044B2 (en) 2005-05-25 2012-01-19 Covidien Lp System and method for delivering and deploying and occluding device within a vessel
US8273101B2 (en) 2005-05-25 2012-09-25 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
EP1898836A2 (en) * 2005-06-10 2008-03-19 Sagax Inc. Implant device particularly useful for implantation in the intravascular system for diverting emboli
US8109962B2 (en) 2005-06-20 2012-02-07 Cook Medical Technologies Llc Retrievable device having a reticulation portion with staggered struts
US7850708B2 (en) * 2005-06-20 2010-12-14 Cook Incorporated Embolic protection device having a reticulated body with staggered struts
US7771452B2 (en) 2005-07-12 2010-08-10 Cook Incorporated Embolic protection device with a filter bag that disengages from a basket
US7766934B2 (en) * 2005-07-12 2010-08-03 Cook Incorporated Embolic protection device with an integral basket and bag
US20070021816A1 (en) * 2005-07-21 2007-01-25 The Research Foundation Of State University Of New York Stent vascular intervention device and methods for treating aneurysms
US8187298B2 (en) * 2005-08-04 2012-05-29 Cook Medical Technologies Llc Embolic protection device having inflatable frame
US7712606B2 (en) 2005-09-13 2010-05-11 Sadra Medical, Inc. Two-part package for medical implant
US8377092B2 (en) 2005-09-16 2013-02-19 Cook Medical Technologies Llc Embolic protection device
EP1945142B1 (en) 2005-09-26 2013-12-25 Medtronic, Inc. Prosthetic cardiac and venous valves
US8632562B2 (en) * 2005-10-03 2014-01-21 Cook Medical Technologies Llc Embolic protection device
US8182508B2 (en) * 2005-10-04 2012-05-22 Cook Medical Technologies Llc Embolic protection device
US8252017B2 (en) * 2005-10-18 2012-08-28 Cook Medical Technologies Llc Invertible filter for embolic protection
US8216269B2 (en) 2005-11-02 2012-07-10 Cook Medical Technologies Llc Embolic protection device having reduced profile
US20070100372A1 (en) * 2005-11-02 2007-05-03 Cook Incorporated Embolic protection device having a filter
US20070112372A1 (en) * 2005-11-17 2007-05-17 Stephen Sosnowski Biodegradable vascular filter
US8152831B2 (en) * 2005-11-17 2012-04-10 Cook Medical Technologies Llc Foam embolic protection device
US20070213813A1 (en) 2005-12-22 2007-09-13 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US9078781B2 (en) * 2006-01-11 2015-07-14 Medtronic, Inc. Sterile cover for compressible stents used in percutaneous device delivery systems
EP1988851A2 (en) 2006-02-14 2008-11-12 Sadra Medical, Inc. Systems and methods for delivering a medical implant
US8152833B2 (en) 2006-02-22 2012-04-10 Tyco Healthcare Group Lp Embolic protection systems having radiopaque filter mesh
EP2004095B1 (en) 2006-03-28 2019-06-12 Medtronic, Inc. Prosthetic cardiac valve formed from pericardium material and methods of making same
US7625403B2 (en) 2006-04-04 2009-12-01 Medtronic Vascular, Inc. Valved conduit designed for subsequent catheter delivered valve therapy
US7740655B2 (en) * 2006-04-06 2010-06-22 Medtronic Vascular, Inc. Reinforced surgical conduit for implantation of a stented valve therein
US7524331B2 (en) * 2006-04-06 2009-04-28 Medtronic Vascular, Inc. Catheter delivered valve having a barrier to provide an enhanced seal
US7591848B2 (en) 2006-04-06 2009-09-22 Medtronic Vascular, Inc. Riveted stent valve for percutaneous use
US20070239269A1 (en) * 2006-04-07 2007-10-11 Medtronic Vascular, Inc. Stented Valve Having Dull Struts
US20070239271A1 (en) * 2006-04-10 2007-10-11 Than Nguyen Systems and methods for loading a prosthesis onto a minimally invasive delivery system
US20070244545A1 (en) * 2006-04-14 2007-10-18 Medtronic Vascular, Inc. Prosthetic Conduit With Radiopaque Symmetry Indicators
US20070244544A1 (en) * 2006-04-14 2007-10-18 Medtronic Vascular, Inc. Seal for Enhanced Stented Valve Fixation
US20070244546A1 (en) * 2006-04-18 2007-10-18 Medtronic Vascular, Inc. Stent Foundation for Placement of a Stented Valve
US8062324B2 (en) * 2006-05-08 2011-11-22 S.M.T. Research And Development Ltd. Device and method for vascular filter
WO2008031033A2 (en) * 2006-09-07 2008-03-13 Spence Paul A Ultrasonic implant, systems and methods related to diverting material in blood flow away from the head
US20100179647A1 (en) * 2006-09-11 2010-07-15 Carpenter Judith T Methods of reducing embolism to cerebral circulation as a consequence of an index cardiac procedure
US9480548B2 (en) * 2006-09-11 2016-11-01 Edwards Lifesciences Ag Embolic protection device and method of use
US9339367B2 (en) * 2006-09-11 2016-05-17 Edwards Lifesciences Ag Embolic deflection device
US20100179583A1 (en) * 2006-09-11 2010-07-15 Carpenter Judith T Methods of deploying and retrieving an embolic diversion device
US8460335B2 (en) * 2006-09-11 2013-06-11 Embrella Cardiovascular, Inc. Method of deflecting emboli from the cerebral circulation
US11304800B2 (en) 2006-09-19 2022-04-19 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
US8876895B2 (en) 2006-09-19 2014-11-04 Medtronic Ventor Technologies Ltd. Valve fixation member having engagement arms
US8834564B2 (en) * 2006-09-19 2014-09-16 Medtronic, Inc. Sinus-engaging valve fixation member
US20080071307A1 (en) * 2006-09-19 2008-03-20 Cook Incorporated Apparatus and methods for in situ embolic protection
WO2008047354A2 (en) 2006-10-16 2008-04-24 Ventor Technologies Ltd. Transapical delivery system with ventriculo-arterial overflow bypass
US20080161825A1 (en) * 2006-11-20 2008-07-03 Stout Medical Group, L.P. Anatomical measurement tool
US9107734B2 (en) 2006-11-29 2015-08-18 Emboline, Inc. Embolic protection device
WO2008070797A2 (en) 2006-12-06 2008-06-12 Medtronic Corevalve, Inc. System and method for transapical delivery of an annulus anchored self-expanding valve
JP2010512231A (en) * 2006-12-12 2010-04-22 スペンス、ポール・エー Implant, system and method for physically diverting substances in blood to avoid head
US20080262593A1 (en) * 2007-02-15 2008-10-23 Ryan Timothy R Multi-layered stents and methods of implanting
WO2008103295A2 (en) * 2007-02-16 2008-08-28 Medtronic, Inc. Replacement prosthetic heart valves and methods of implantation
US9901434B2 (en) 2007-02-27 2018-02-27 Cook Medical Technologies Llc Embolic protection device including a Z-stent waist band
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
FR2915087B1 (en) 2007-04-20 2021-11-26 Corevalve Inc IMPLANT FOR TREATMENT OF A HEART VALVE, IN PARTICULAR OF A MITRAL VALVE, EQUIPMENT INCLUDING THIS IMPLANT AND MATERIAL FOR PLACING THIS IMPLANT.
EP3366762B1 (en) * 2007-05-07 2020-07-08 Protalix Ltd. Large scale disposable bioreactor
US8128679B2 (en) 2007-05-23 2012-03-06 Abbott Laboratories Vascular Enterprises Limited Flexible stent with torque-absorbing connectors
US8747458B2 (en) * 2007-08-20 2014-06-10 Medtronic Ventor Technologies Ltd. Stent loading tool and method for use thereof
US9138307B2 (en) 2007-09-14 2015-09-22 Cook Medical Technologies Llc Expandable device for treatment of a stricture in a body vessel
US8419748B2 (en) * 2007-09-14 2013-04-16 Cook Medical Technologies Llc Helical thrombus removal device
US8252018B2 (en) * 2007-09-14 2012-08-28 Cook Medical Technologies Llc Helical embolic protection device
US9034007B2 (en) * 2007-09-21 2015-05-19 Insera Therapeutics, Inc. Distal embolic protection devices with a variable thickness microguidewire and methods for their use
US10856970B2 (en) 2007-10-10 2020-12-08 Medtronic Ventor Technologies Ltd. Prosthetic heart valve for transfemoral delivery
US20090138079A1 (en) * 2007-10-10 2009-05-28 Vector Technologies Ltd. Prosthetic heart valve for transfemoral delivery
US9848981B2 (en) 2007-10-12 2017-12-26 Mayo Foundation For Medical Education And Research Expandable valve prosthesis with sealing mechanism
US8920488B2 (en) 2007-12-20 2014-12-30 Abbott Laboratories Vascular Enterprises Limited Endoprosthesis having a stable architecture
EP3572045B1 (en) 2008-01-24 2022-12-21 Medtronic, Inc. Stents for prosthetic heart valves
US20090287290A1 (en) * 2008-01-24 2009-11-19 Medtronic, Inc. Delivery Systems and Methods of Implantation for Prosthetic Heart Valves
US8157853B2 (en) * 2008-01-24 2012-04-17 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US9149358B2 (en) * 2008-01-24 2015-10-06 Medtronic, Inc. Delivery systems for prosthetic heart valves
WO2009094501A1 (en) * 2008-01-24 2009-07-30 Medtronic, Inc. Markers for prosthetic heart valves
EP2254513B1 (en) * 2008-01-24 2015-10-28 Medtronic, Inc. Stents for prosthetic heart valves
US9393115B2 (en) 2008-01-24 2016-07-19 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
ES2903231T3 (en) 2008-02-26 2022-03-31 Jenavalve Tech Inc Stent for positioning and anchoring a valve prosthesis at an implantation site in a patient's heart
US9044318B2 (en) 2008-02-26 2015-06-02 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis
US20090264989A1 (en) * 2008-02-28 2009-10-22 Philipp Bonhoeffer Prosthetic heart valve systems
US8313525B2 (en) 2008-03-18 2012-11-20 Medtronic Ventor Technologies, Ltd. Valve suturing and implantation procedures
AU2009232400B2 (en) 2008-04-03 2013-09-12 Cook Medical Technologies Llc Self cleaning devices, systems and methods of use
US8430927B2 (en) * 2008-04-08 2013-04-30 Medtronic, Inc. Multiple orifice implantable heart valve and methods of implantation
US8312825B2 (en) * 2008-04-23 2012-11-20 Medtronic, Inc. Methods and apparatuses for assembly of a pericardial prosthetic heart valve
US8696743B2 (en) * 2008-04-23 2014-04-15 Medtronic, Inc. Tissue attachment devices and methods for prosthetic heart valves
US9675482B2 (en) 2008-05-13 2017-06-13 Covidien Lp Braid implant delivery systems
EP2119417B2 (en) 2008-05-16 2020-04-29 Sorin Group Italia S.r.l. Atraumatic prosthetic heart valve prosthesis
BRPI0918573A2 (en) 2008-09-04 2015-12-01 Anders Jönsson temporary embolic protection device and medical procedure for its distribution
US8998981B2 (en) * 2008-09-15 2015-04-07 Medtronic, Inc. Prosthetic heart valve having identifiers for aiding in radiographic positioning
US8721714B2 (en) 2008-09-17 2014-05-13 Medtronic Corevalve Llc Delivery system for deployment of medical devices
US8852225B2 (en) * 2008-09-25 2014-10-07 Medtronic, Inc. Emboli guarding device
CA2739961A1 (en) 2008-10-10 2010-04-15 Sadra Medical, Inc. Medical devices and delivery systems for delivering medical devices
US8137398B2 (en) * 2008-10-13 2012-03-20 Medtronic Ventor Technologies Ltd Prosthetic valve having tapered tip when compressed for delivery
US8986361B2 (en) 2008-10-17 2015-03-24 Medtronic Corevalve, Inc. Delivery system for deployment of medical devices
ES2551694T3 (en) 2008-12-23 2015-11-23 Sorin Group Italia S.R.L. Expandable prosthetic valve with anchoring appendages
US8388644B2 (en) 2008-12-29 2013-03-05 Cook Medical Technologies Llc Embolic protection device and method of use
US8641753B2 (en) * 2009-01-31 2014-02-04 Cook Medical Technologies Llc Preform for and an endoluminal prosthesis
US8361095B2 (en) * 2009-02-17 2013-01-29 Cook Medical Technologies Llc Loop thrombectomy device
US20100211094A1 (en) * 2009-02-18 2010-08-19 Cook Incorporated Umbrella distal embolic protection device
US20100274277A1 (en) * 2009-04-27 2010-10-28 Cook Incorporated Embolic protection device with maximized flow-through
EP2246011B1 (en) 2009-04-27 2014-09-03 Sorin Group Italia S.r.l. Prosthetic vascular conduit
US20100318180A1 (en) * 2009-06-15 2010-12-16 Boston Scientific Scimed, Inc. Multi-layer stent assembly
US8808369B2 (en) * 2009-10-05 2014-08-19 Mayo Foundation For Medical Education And Research Minimally invasive aortic valve replacement
EP2496189A4 (en) 2009-11-04 2016-05-11 Nitinol Devices And Components Inc Alternating circumferential bridge stent design and methods for use thereof
WO2011081814A1 (en) 2009-12-28 2011-07-07 Cook Medical Technologies Llc Endoluminal device with kink-resistant regions
US9226826B2 (en) * 2010-02-24 2016-01-05 Medtronic, Inc. Transcatheter valve structure and methods for valve delivery
US8652204B2 (en) 2010-04-01 2014-02-18 Medtronic, Inc. Transcatheter valve with torsion spring fixation and related systems and methods
IT1400327B1 (en) 2010-05-21 2013-05-24 Sorin Biomedica Cardio Srl SUPPORT DEVICE FOR VALVULAR PROSTHESIS AND CORRESPONDING CORRESPONDENT.
BR112012029896A2 (en) 2010-05-25 2017-06-20 Jenavalve Tech Inc prosthetic heart valve for stent graft and stent graft
US9918833B2 (en) 2010-09-01 2018-03-20 Medtronic Vascular Galway Prosthetic valve support structure
EP4119107A3 (en) 2010-09-10 2023-02-15 Boston Scientific Limited Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device
EP2624791B1 (en) 2010-10-08 2017-06-21 Confluent Medical Technologies, Inc. Alternating circumferential bridge stent design
EP2486893B1 (en) 2011-02-14 2017-07-05 Sorin Group Italia S.r.l. Sutureless anchoring device for cardiac valve prostheses
EP2486894B1 (en) 2011-02-14 2021-06-09 Sorin Group Italia S.r.l. Sutureless anchoring device for cardiac valve prostheses
WO2012127309A1 (en) 2011-03-21 2012-09-27 Ontorfano Matteo Disk-based valve apparatus and method for the treatment of valve dysfunction
EP2520251A1 (en) 2011-05-05 2012-11-07 Symetis SA Method and Apparatus for Compressing Stent-Valves
AU2012203620B9 (en) 2011-06-24 2014-10-02 Cook Medical Technologies Llc Helical Stent
WO2013009975A1 (en) 2011-07-12 2013-01-17 Boston Scientific Scimed, Inc. Coupling system for medical devices
US9131926B2 (en) 2011-11-10 2015-09-15 Boston Scientific Scimed, Inc. Direct connect flush system
US8940014B2 (en) 2011-11-15 2015-01-27 Boston Scientific Scimed, Inc. Bond between components of a medical device
US8951243B2 (en) 2011-12-03 2015-02-10 Boston Scientific Scimed, Inc. Medical device handle
US9510945B2 (en) 2011-12-20 2016-12-06 Boston Scientific Scimed Inc. Medical device handle
US9277993B2 (en) 2011-12-20 2016-03-08 Boston Scientific Scimed, Inc. Medical device delivery systems
EP2842517A1 (en) 2011-12-29 2015-03-04 Sorin Group Italia S.r.l. A kit for implanting prosthetic vascular conduits
EP2800602B1 (en) 2012-01-06 2017-08-02 Emboline, Inc. Integrated embolic protection devices
US10172708B2 (en) 2012-01-25 2019-01-08 Boston Scientific Scimed, Inc. Valve assembly with a bioabsorbable gasket and a replaceable valve implant
US9861464B2 (en) * 2012-04-13 2018-01-09 Regents Of The University Of Minnesota Cardio-embolic stroke prevention
US9883941B2 (en) 2012-06-19 2018-02-06 Boston Scientific Scimed, Inc. Replacement heart valve
US9155647B2 (en) 2012-07-18 2015-10-13 Covidien Lp Methods and apparatus for luminal stenting
US9114001B2 (en) 2012-10-30 2015-08-25 Covidien Lp Systems for attaining a predetermined porosity of a vascular device
US9452070B2 (en) 2012-10-31 2016-09-27 Covidien Lp Methods and systems for increasing a density of a region of a vascular device
US9943427B2 (en) 2012-11-06 2018-04-17 Covidien Lp Shaped occluding devices and methods of using the same
US9414752B2 (en) 2012-11-09 2016-08-16 Elwha Llc Embolism deflector
US10219924B2 (en) 2012-12-26 2019-03-05 Stryker Corporation Multilayer stent
US9157174B2 (en) 2013-02-05 2015-10-13 Covidien Lp Vascular device for aneurysm treatment and providing blood flow into a perforator vessel
US9968433B2 (en) 2013-03-01 2018-05-15 St. Jude Medical, Cardiology Division, Inc. Embolic protection pass through tube
US10973618B2 (en) * 2013-03-01 2021-04-13 St. Jude Medical, Cardiology Division, Inc. Embolic protection device
US9888993B2 (en) 2013-03-01 2018-02-13 St. Jude Medical, Cardiology Division, Inc. Embolic protection device
US8690907B1 (en) 2013-03-15 2014-04-08 Insera Therapeutics, Inc. Vascular treatment methods
CN105228688B (en) 2013-03-15 2019-02-19 伊瑟拉医疗公司 Vascular treatment device and method
US8679150B1 (en) 2013-03-15 2014-03-25 Insera Therapeutics, Inc. Shape-set textile structure based mechanical thrombectomy methods
US8715314B1 (en) 2013-03-15 2014-05-06 Insera Therapeutics, Inc. Vascular treatment measurement methods
US9629718B2 (en) 2013-05-03 2017-04-25 Medtronic, Inc. Valve delivery tool
US8870948B1 (en) 2013-07-17 2014-10-28 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
WO2015028209A1 (en) 2013-08-30 2015-03-05 Jenavalve Technology Gmbh Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
WO2015173646A1 (en) * 2014-05-16 2015-11-19 Veosource Sa Implantable self-cleaning blood filters
US9901445B2 (en) 2014-11-21 2018-02-27 Boston Scientific Scimed, Inc. Valve locking mechanism
US9492273B2 (en) 2014-12-09 2016-11-15 Cephea Valve Technologies, Inc. Replacement cardiac valves and methods of use and manufacture
US10449043B2 (en) 2015-01-16 2019-10-22 Boston Scientific Scimed, Inc. Displacement based lock and release mechanism
US9861477B2 (en) 2015-01-26 2018-01-09 Boston Scientific Scimed Inc. Prosthetic heart valve square leaflet-leaflet stitch
US10201417B2 (en) 2015-02-03 2019-02-12 Boston Scientific Scimed Inc. Prosthetic heart valve having tubular seal
US9788942B2 (en) 2015-02-03 2017-10-17 Boston Scientific Scimed Inc. Prosthetic heart valve having tubular seal
US10426617B2 (en) 2015-03-06 2019-10-01 Boston Scientific Scimed, Inc. Low profile valve locking mechanism and commissure assembly
US10285809B2 (en) 2015-03-06 2019-05-14 Boston Scientific Scimed Inc. TAVI anchoring assist device
US10080652B2 (en) 2015-03-13 2018-09-25 Boston Scientific Scimed, Inc. Prosthetic heart valve having an improved tubular seal
US10709555B2 (en) 2015-05-01 2020-07-14 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
RU2597408C1 (en) * 2015-05-08 2016-09-10 Валерий Вильгельмович Петрашкевич Intravascular expansion implant
AU2016262564B2 (en) 2015-05-14 2020-11-05 Cephea Valve Technologies, Inc. Replacement mitral valves
WO2018136959A1 (en) 2017-01-23 2018-07-26 Cephea Valve Technologies, Inc. Replacement mitral valves
EP3294220B1 (en) 2015-05-14 2023-12-06 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
US10195392B2 (en) 2015-07-02 2019-02-05 Boston Scientific Scimed, Inc. Clip-on catheter
US10335277B2 (en) 2015-07-02 2019-07-02 Boston Scientific Scimed Inc. Adjustable nosecone
US10136991B2 (en) 2015-08-12 2018-11-27 Boston Scientific Scimed Inc. Replacement heart valve implant
US10179041B2 (en) 2015-08-12 2019-01-15 Boston Scientific Scimed Icn. Pinless release mechanism
US10779940B2 (en) 2015-09-03 2020-09-22 Boston Scientific Scimed, Inc. Medical device handle
US10342660B2 (en) 2016-02-02 2019-07-09 Boston Scientific Inc. Tensioned sheathing aids
EP3416568A4 (en) 2016-02-16 2019-10-16 Insera Therapeutics, Inc. Aspiration devices and anchored flow diverting devices
US10583005B2 (en) 2016-05-13 2020-03-10 Boston Scientific Scimed, Inc. Medical device handle
CN109475419B (en) 2016-05-13 2021-11-09 耶拿阀门科技股份有限公司 Heart valve prosthesis delivery systems and methods for delivering heart valve prostheses through guide sheaths and loading systems
US10245136B2 (en) 2016-05-13 2019-04-02 Boston Scientific Scimed Inc. Containment vessel with implant sheathing guide
US10201416B2 (en) 2016-05-16 2019-02-12 Boston Scientific Scimed, Inc. Replacement heart valve implant with invertible leaflets
WO2017218877A1 (en) 2016-06-17 2017-12-21 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
EP4209196A1 (en) 2017-01-23 2023-07-12 Cephea Valve Technologies, Inc. Replacement mitral valves
CN110392557A (en) 2017-01-27 2019-10-29 耶拿阀门科技股份有限公司 Heart valve simulation
EP3634311A1 (en) 2017-06-08 2020-04-15 Boston Scientific Scimed, Inc. Heart valve implant commissure support structure
EP3661458A1 (en) 2017-08-01 2020-06-10 Boston Scientific Scimed, Inc. Medical implant locking mechanism
CN111225633B (en) 2017-08-16 2022-05-31 波士顿科学国际有限公司 Replacement heart valve coaptation assembly
JP7047106B2 (en) 2018-01-19 2022-04-04 ボストン サイエンティフィック サイムド,インコーポレイテッド Medical device delivery system with feedback loop
WO2019144069A2 (en) 2018-01-19 2019-07-25 Boston Scientific Scimed, Inc. Inductance mode deployment sensors for transcatheter valve system
EP3749252A1 (en) 2018-02-07 2020-12-16 Boston Scientific Scimed, Inc. Medical device delivery system with alignment feature
WO2019165394A1 (en) 2018-02-26 2019-08-29 Boston Scientific Scimed, Inc. Embedded radiopaque marker in adaptive seal
EP3793478A1 (en) 2018-05-15 2021-03-24 Boston Scientific Scimed, Inc. Replacement heart valve commissure assembly
CN112437649A (en) 2018-05-23 2021-03-02 索林集团意大利有限责任公司 Heart valve prosthesis
US11241310B2 (en) 2018-06-13 2022-02-08 Boston Scientific Scimed, Inc. Replacement heart valve delivery device
US11241312B2 (en) 2018-12-10 2022-02-08 Boston Scientific Scimed, Inc. Medical device delivery system including a resistance member
WO2020168091A1 (en) 2019-02-13 2020-08-20 Emboline, Inc. Catheter with integrated embolic protection device
US11439504B2 (en) 2019-05-10 2022-09-13 Boston Scientific Scimed, Inc. Replacement heart valve with improved cusp washout and reduced loading
CN114650788A (en) * 2019-09-11 2022-06-21 英华腾科技有限公司 Apparatus and method for controlling flow of embolic material
WO2023239784A1 (en) * 2022-06-07 2023-12-14 Edwards Lifesciences Corporation Cardiovascular implant devices with flow conditioners to minimize disruption to and enhance cardiovascular hemodynamics

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2517194B1 (en) * 1981-12-02 1985-08-09 Esswein Sa DISHWASHER USING A LIMITED QUANTITY OF WATER
SE450809B (en) * 1985-04-10 1987-08-03 Medinvent Sa PLANT TOPIC PROVIDED FOR MANUFACTURING A SPIRAL SPRING SUITABLE FOR TRANSLUMINAL IMPLANTATION AND MANUFACTURED SPIRAL SPRINGS
US5876367A (en) * 1996-12-05 1999-03-02 Embol-X, Inc. Cerebral protection during carotid endarterectomy and downstream vascular protection during other surgeries
US5807330A (en) * 1996-12-16 1998-09-15 University Of Southern California Angioplasty catheter
JP4083241B2 (en) * 1997-04-23 2008-04-30 アーテミス・メディカル・インコーポレイテッド Bifurcated stent and distal protection system
US6087322A (en) 1997-04-24 2000-07-11 The Procter & Gamble Company Fragrance pro-accords
US6258120B1 (en) * 1997-12-23 2001-07-10 Embol-X, Inc. Implantable cerebral protection device and methods of use
CA2235911C (en) 1997-05-27 2003-07-29 Schneider (Usa) Inc. Stent and stent-graft for treating branched vessels
CH691846A5 (en) 1997-06-20 2001-11-15 Ecole Polytech intravascular implant expansion deflector.
US5951599A (en) * 1997-07-09 1999-09-14 Scimed Life Systems, Inc. Occlusion system for endovascular treatment of an aneurysm
US5941896A (en) * 1997-09-08 1999-08-24 Montefiore Hospital And Medical Center Filter and method for trapping emboli during endovascular procedures
US6146370A (en) * 1999-04-07 2000-11-14 Coaxia, Inc. Devices and methods for preventing distal embolization from the internal carotid artery using flow reversal by partial occlusion of the external carotid artery
US6312463B1 (en) * 2000-02-01 2001-11-06 Endotex Interventional Systems, Inc. Micro-porous mesh stent with hybrid structure

Also Published As

Publication number Publication date
JP2002537942A (en) 2002-11-12
US6866680B2 (en) 2005-03-15
AU766582B2 (en) 2003-10-16
US20020049491A1 (en) 2002-04-25
HK1041805A1 (en) 2002-07-26
WO2000053119A8 (en) 2001-06-07
EP1162926A1 (en) 2001-12-19
AU3187800A (en) 2000-09-28
US6348063B1 (en) 2002-02-19
IL128938A0 (en) 2000-02-17
WO2000053119A1 (en) 2000-09-14
AU3187600A (en) 2000-09-28
WO2000053118A1 (en) 2000-09-14
EP1158928A1 (en) 2001-12-05

Similar Documents

Publication Publication Date Title
US6348063B1 (en) Implantable stroke treating device
US6673089B1 (en) Implantable stroke treating device
US20040167613A1 (en) Implantable stroke prevention device
US11819431B2 (en) Apparatus and method for deploying an implantable device within the body
US11510795B2 (en) Apparatus and method for deploying an implantable device within the body
US20040010308A1 (en) Implantable composite device and corresponding method for deflecting embolic material in blood flowing at an arterial bifurcation
JP4801655B2 (en) Stent capable of intravascular supply for strengthening abnormal parts of blood vessels
ES2573843T3 (en) Braided stent intended to be implanted in a blood vessel
JP4901872B2 (en) Method and apparatus for treating thoracic aortic aneurysm
CA2033195C (en) Aortic graft and method for repairing aneurysm
US20040010307A1 (en) Implantable integral device and corresponding method for deflecting embolic material in blood flowing at an arterial bifurcation
US20070055365A1 (en) Stent with integrated filter
US20040024416A1 (en) Implantable braided stroke preventing device and method of manufacturing
EP2522313A1 (en) Vascular implants and methods of fabricating the same
US20080065191A1 (en) Prosthesis systems and methods
JP2003245359A (en) Coated segment type stent
JP2010512231A (en) Implant, system and method for physically diverting substances in blood to avoid head
US20230149192A1 (en) Expandable stent and a method for promoting a natural intracranial angiogenesis process, and use of the expandable stent in the method for promoting a natural intracranial angiogenesis process
EP1399214A2 (en) Implantable composite device and corresponding method for deflecting embolic material in blood flowing at an arterial bifurcation
US7815656B2 (en) Method for endovascular bypass stent graft delivery
WO2002055123A2 (en) Implantable integral device and corresponding method for deflecting embolic material in blood flowing at an arterial bifurcation

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued