CA2381811C - Coordinated satellite-terrestrial frequency reuse - Google Patents

Coordinated satellite-terrestrial frequency reuse Download PDF

Info

Publication number
CA2381811C
CA2381811C CA002381811A CA2381811A CA2381811C CA 2381811 C CA2381811 C CA 2381811C CA 002381811 A CA002381811 A CA 002381811A CA 2381811 A CA2381811 A CA 2381811A CA 2381811 C CA2381811 C CA 2381811C
Authority
CA
Canada
Prior art keywords
satellite
terrestrial
coverage area
adjoining
satellite coverage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002381811A
Other languages
French (fr)
Other versions
CA2381811A1 (en
Inventor
Peter D. Karabinis
Rajendra Singh
Ronald Olexa
Bahman Badipour
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ATC Technologies LLC
Original Assignee
ATC Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ATC Technologies LLC filed Critical ATC Technologies LLC
Publication of CA2381811A1 publication Critical patent/CA2381811A1/en
Application granted granted Critical
Publication of CA2381811C publication Critical patent/CA2381811C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18539Arrangements for managing radio, resources, i.e. for establishing or releasing a connection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18563Arrangements for interconnecting multiple systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/204Multiple access
    • H04B7/2041Spot beam multiple access

Abstract

A system and method of operation for efficiently reusing and/or sharing at least a portion of the frequency spectrum between a first satellite spot beam and a second satellite spot beam, and/or an underlay terrestrial network associated with a second satellite spot beam. The spectrum is efficiently reused and/or shared between respective spot beams and/or associated underlay terrestrial systems in a manner minimizes interference between the respective satellite and terrestrial systems.

Description

2 PCT/USO1/24046 COORDINATED SATELLITE-TERRESTRIAL
FREQUENCY REUSE
RELATED APPLICATIONS
This application claims priority from U.S. provisional application serial number 60/222,605 filed on August 2, 2000 and entitled "System and Method of Satellite-Terrestrial Frequency Reuse", from U.S. provisional application serial number U.S. Patent Application No.
60/245,194 filed November 3, 2000 and entitled "Coordinated Satellite-Terrestrial Frequency Reuse", and from U.S.
provisional application serial number 60/250,461 filed on December 4, 2000 and entitled "System And Method Of Satellite-Terrestrial Frequency Reuse", each of which are hereby incorporated by reference.
DESCRIPTION
BACKGROUND OF THE INVENTION
Field of the Irzvehtion The present invention generally relates to frequency assignment, reuse and/or sharing among communications systems having both a terrestrial and a satellite component (dual-mode) and, more particularly, to a satellite-terrestrial communications system and method of operation thereof that provides frequency assignment, reuse and/or sharing between the respective portions of the satellite system andlor terrestrial underlay systems associated therewith, while substantially reducing 2 0 interference therebetween.
Backgroutzd Descriptioyz In satellite-terrestrial systems that reuse the same spectrum, there is a need to efficiently allocate at least a portion of the frequency spectrum of, for example, a first satellite coverage area to, 2 5 for example, a terrestrial network associated with a terrestrial coverage area. The present invention provides a system and method for efficiently assigning, reusing and/or sharing the spectrum between satellite and/or terrestrial systems in a manner that facilitates efficient frequency spectrum usage, while minimizing interference between the respective satellite and terrestrial systems. The present invention can also be applied to multiple satellite systems as well, in addition to, or instead of, terrestrial systems.
3 0 FIG. 1 shows a prior art satellite radiotelephone system, as shown in U.S.
Patent No.
6,052,586, incorporated herein by reference. As shown in FIG. 1, a satellite radiotelephone system includes a fixed satellite radiotelephone system 110 and a mobile satellite radiotelephone system 130.
The fixed satellite radiotelephone system 110 uses a first satellite 112 to communicate with a plurality of fixed radiotelephones 114a, 114b and 114c in a first communication area 116.

Fixed satellite radiotelephone communication system 110 communicates with the plurality of fixed radiotelephones 114a-114c using a first air interface 118 (e.g., at C-band). Control of the fixed satellite system 110 may be implemented by a feeder link 122 which communicates with a gateway 124 and the public switched (wire) telephone network (PSTN) 126.
The feeder link 122 may include communication channels for voice and data communications, and control channels. The control channels are indicated by dashed lines in FIG. 1. The control channels may be used to implement direct communications between fixed radiotelephones, as shown for example between radiotelephones 114a and 114b. The control channels may also be used to effect communications between a fixed satellite radiotelephone 114c and a mobile radiotelephone or a wire telephone via gateway 124 and PSTN 126. The feeder link 122 may use the same air interface or a different air interface from the first air interface 118.
Still referring to FIG. 1, mobile satellite radiotelephone system 130 includes a second satellite 132 that communicates with a plurality of mobile radiotelephones 134a-134d which are located in a second communication area 136. Mobile satellite radiotelephone system 130 communicates with mobile radiotelephones 134 using a second air interface 138 (e.g., at L-band or S-band). Alternatively, the second air interface 138 may be the same as the first air interface 118.
However, the frequency bands associated with the two air interfaces will-generally be different.
A feeder link 142 may be used to communicate with other satellite, cellular or wire telephone systems via gateway 144 and PSTN 126. As with fixed satellite system 110, the feeder link 142 may 2 0 include communication channels shown in solid lines and control channels shown in dashed lines. The control channels may be used to establish direct mobile-to-mobile communications, for example, between mobile radiotelephones 134b and 134c. The control channels may also be used to establish communications between mobile phones 134a and 134d and other satellite, mobile or wire telephone systems.
2 5 As with the fixed satellite radiotelephone system 110, the mobile satellite radiotelephone system 130 may employ more than one satellite 132 and will generally communicate with large numbers of mobile radiotelephones 134. The fixed and mobile satellite radiotelephone system may also use a common satellite.
Still referring to FIG. 1, a congested area may be present in the mobile satellite radiotelephone 3 0 system 130 where a large number of mobile radiotelephones 134e-1341 are present. As is also shown in FIG. 1, this congested area may be in an overlapping area 128 between first communication area 116 and second communication area 136. If this is the case, excess capacity from fixed satellite radiotelephone system 110 may be offloaded to mobile satellite radiotelephone system 130.
Capacity offload may be provided by at~least one fixed retransmitting station 150a, 150b, that 3 5 retransmits communications between the fixed satellite radiotelephone system 110 and at least one of the mobile radiotelephones. For example, as shown in FIG. 1, first fixed retransmitting station 150a retransmits communications between satellite 112 and mobile radiotelephones 134e and 134f. Second fixed transmitting station 150b retransmits communications between the satellite 112 and mobile radiotelephones 134g, 134h and 1341. The fixed retransmitting station need not be located in an overlapping area as long as it can retransmit communications between the fixed satellite radiotelephone system in the first area, and the mobile radiotelephones.
The fixed retransmitting stations communicate with the satellite 112 using first air interface 118. However they communicate with the mobile radiotelephones using the second air interface 138.
Accordingly, from the standpoint of the mobile radiotelephones 134e-1341, communication is transparent. In other words, it is not apparent to the mobile radiotelephones 134e-134i, or the users thereof, that communications axe occurring with the fixed satellite radiotelephone system 110 rather than with the mobile satellite radiotelephone system 130. However, additional capacity for the mobile satellite radiotelephone system 130 in the congested areas adjacent the fixed retransmitting stations 150 may be provided.
As shown in FIG. 1, a mobile radiotelephone can establish a communications link via the facilities of the fixed satellite radiotelephone system, even though the mobile radiotelephone is designed, manufactured and sold as a terminal intended for use with the mobile satellite radiotelephone system. One or more operators may offer both mobile and fixed telecommunications services over an overlapping geographic area using two separate transponders in separate satellites or within the same "hybrid" satellite, with one transponder supporting mobile satellite radiotelephones and the other 2 0 supporting fixed satellite radiotelephones. As capacity "hot spots" or congestion develops within certain spot beams of the mobile radiotelephone system, the fixed system, with its much higher capacity, can deploy fixed retransmitting stations to relieve the capacity load of the mobile system.
FIG. 2A shows a seven-cell frequency reuse pattern which may be used by the mobile satellite radiotelephone system 130. Within each of the relatively large mobile system cells, each typically 2 5 being on the order of 400-600 kilometers in diameter, frequencies used by adjacent cells may be locally retransmitted by the retransmitting station at reduced, non-interfering power levels, and reused as shown in FIGS. 2B and 2C, thus substantially increasing the effective local capacity.
Accordingly, fixed retransmitting stations, located within the fixed system's footprint or coverage area, receive signals from the fixed satellite and retransmit these signals locally. Frequency 3 0 translation to bring the signals within the mobile system's frequency band will generally be provided.
In the reverse direction, the fixed retransmitting stations receive signals from mobile radiotelephones and retransmit signals from the mobile radiotelephones to the fixed satellite system. Again, frequency translation to bring the signals within the fixed system's frequency band will generally be provided.
The mobile radiotelephones are ordinarily used with the mobile satellite system. Accordingly, 3 5 the fixed satellite system may need to be configured to support the air interface used by the mobile satellite radiotelephone system.
4 Alternatively, if different air interfaces are used by the fixed and mobile satellite radiotelephone systems, the fixed retransmitting station can perform a translation from one air interface to the other, for example, by demodulation and remodulation. The fixed retransmitting station then becomes a regenerative repeater which reformats communications channels as well as control channels.
However, if the mobile and fixed systems both use substantially the same air interface, then the fixed retransmitting station can function as a non-regenerative repeater.
One embodiment may use the simplest fixed retransmitting station by having the fixed and mobile systems both utilize the same air interface standard. Alternatively, the fixed system is configured to support the mobile system air interface even though the fixed system may be using another air interface for fixed radiotelephone service.
FIG. 3 is another prior art system as shown in U.S. Patent No. 5,995,832. FIG.
3 provides an overview of a communications system 310 showing the functional inter-relationships of the major elements. The system network control center 312 directs the top level allocation of calls to satellite and ground regional resources throughout the system. It also is used to coordinate system-wide operations, to keep track of user locations, to perform optimum allocation of system resources to each call, dispatch facility command codes, and monitor and supervise overall system health. The regional node control centers 314, one of which is shown, are connected to the system network control center 312 and direct the allocation of calls to ground nodes within a major metropolitan region. The regional node control center 314 provides access to and from fixed land communication lines, such as commercial 2 0 telephone systems known as the public switched telephone network (PSTN).
The ground nodes 316 under direction of the respective regional node control center 314 receive calls over the fixed land line network, encode them, spread them according to the unique spreading code assigned to each designated user, combine them into a composite signal, modulate that composite signal onto the transmission carrier, and broadcast them over the cellular region covered.
2 5 Satellite node control centers 318 are also connected to the system network control center 312 via status and control land lines and similarly handle calls designated for satellite links such as from PSTN, encode them, spread them according to the unique spreading codes assigned to the designated users, and multiplex them with other similarly directed calls into an uplink trunk, which is beamed up to the designated satellite 320. Satellite nodes 320 receive the uplink trunks, frequency demultiplex the 3 0 calls intended for different satellite cells, frequency translate and direct each to its appropriate cell transmitter and cell beam, and broadcast the composite of all such similarly directed calls down to the intended'satellite cellular area. As used herein, "backhaul" means the link between a satellite 320 and a satellite node control center 318. In one embodiment, it is a I~-band frequency while the link between the satellite 320 and the user unit 322 uses an L-band or an S-band frequency.

A "node" is a communication site or a communication relay site capable of direct one or two-way radio communication with users. Nodes may include moving or stationary surface sites or airborne or satellite sites.
User units 322 respond to signals of either satellite or ground node origin, receive the outbound composite signal, separate out the signal intended for that user by despreading using the user's assigned unique spreading code, de-modulate, and decode the information and deliver the call to the user. Such user units 322 may be mobile or may be fixed in position. Gateways 324 provide direct trunks that is, groups of channels, between satellite and the ground public switched telephone system or private trunk users. For example, a gateway may comprise a dedicated satellite terminal for use by a large company or other entity. In the embodiment of FIG. 3, the gateway 324 is also connected to that system network controller 312.
All of the above-discussed centers, nodes, units and gateways are full duplex transmit/receive performing the corresponding inbound (user to system) link functions as well in the inverse manner to the outbound (system to user) link functions just described.
Referring now to FIG. 4, which is another embodiment as shown in U.S.
5,995,832, a block diagram of a communications system 440 which does not include a system network control center 312 is presented. In this system, the satellite node control centers 442 are connected directly into the land line network as are also the regional node control centers 444. Gateway systems 446 are also available as in the system of FIG. 3, and connect the satellite communications to the appropriate land line or 2 0 other communications systems. The user unit 322 designates satellite node 442 communication or ground node 450 communication by sending a predetermined code. Alternatively, the user unit could first search for one type of link (either ground or satellite) and, if that link is present, use it. If that link is not present, use the alternate type of link.
The specification of U.S. 5,995,832 states that "[m]easures incorporated in the invention to 2 5 maximize bandwidth utilization efficiency include the use of code division multiple access (CDMA) technology which provides an important spectral utilization efficiency gain and higher spatial frequency reuse factor made possible by the user of smaller satellite antenna beams. In regard to power efficiency, which is a major factor for the satellite-mobile links, the satellite transmitter source power per user is minimized by the use of forward-error-correcting coding, which in turn is enabled by the 3 0 above use of spread spectrum code division multiple access (SS/CDMA) technology and by the use of relatively high antenna gain on the satellite."
The specification of U.S. 5,995,832 also states that "[i]n a system in accordance with the invention, the cluster size is one. That is, each cell uses the same, full allocated frequency band. This is possible because of the strong interference rejection properties of spread spectrum code division 3 5 multiple access technology (SS/CDMA)." With regard to determining the position of user units 322, the specification of U.S. 5,995,832 states that "[a]ccurate position determination can be obtained
6 through two-dimensional multi-lateration. Each CDMA mobile user unit's transmitted spreading code is synchronized to the epoch of reception of the pilot signal from its current control site, whether ground or satellite node."
However, in contrast to the prior art systems described, for example, in FIGS.
1-4, the present invention does not utilize in one embodiment frequency translation between fixed and mobile systems.
In addition, the present invention provides, for example, a robust satellite-terrestrial frequency assignment and/or reuse scheme in another embodiment. Further, the present invention optionally utilizes a first frequency as a downlink frequency between a satellite and a first fixed and/or mobile user terminal and as an uplink frequency between a second fixed and/or mobile user terminal and a base station, and a second frequency as an uplink between the first fixed and/or mobile user terminal and the satellite and as a downlink between the base station and the second fixed and/or mobile user terminal. Finally, the present invention is not limited, for example, to the use of CDMA technology.
Other advantages and features of the invention are described below, that may be provided independently and/or in one or more combinations.
SUMMARY OF THE INVENTION
It is a feature and advantage of the present invention to provide, for example, a satellite-terrestrial communication system and method of operation thereof that facilitates efficient spectrum assignment, usage, sharing, and/or reuse.
2 0 It is another feature and advantage of the present invention to provide, for example, a satellite-terrestrial communications system and method of operation thereof that minimizes interference between the satellite and terrestrial systems.
It is still another feature and advantage of the present invention to provide, for example, a satellite-terrestrial communication system and method of operation thereof that enables at least a 2 5 portion of the frequencies associated with an area of coverage to be utilized by a terrestrial system having overlapping coverage with a second area of coverage.
It is yet another feature and advantage of the present invention to provide, for example, a satellite-terrestrial communications system and method of operation thereof that enables a terrestrial underlay system associated with a first area of coverage to reuse andlor share in a substantially central 3 0 portion thereof at least a portion of the frequency spectrum of one or more adjacent areas of coverage of the satellite system.
It is another feature and advantage of the present invention to provide, for example, a two system communication system wherein frequencies associated with a central portion of a first area of coverage for a first communication system are assigned, reused and/or shared in a second area of 3 5 coverage associated with a second communication system.

,~PC1~US~1~~4~46 iP~vus ~ $ sEP zooz It is another feature and advantage of the present invention to enable, for example, assignment, reuse and/or reassignment of satellite uplink and downlink channels in a non-paired manner.
It is another feature and advantage of the present invention to provide, for example, a method by which the size of satellite spot beams and/or terrestrial cell sizes can be determined.
It is another feature and advantage of the present invention to, for example, invert the frequencies between the satellite system and an underlay terrestrial system, whereby a first frequency is used, for example, as a downlink frequency between a satellite and a first fixed and/or mobile user terminal, and as an uplink frequency between a second fixed and/or mobile user terminal and a base station. In addition, a second frequency is used, for example, as an uplink between the first fixed andlor mobile user terminal and the satellite and as a ,.
downlink between the base station and the second fixed and/or mobile user terminal.
According to some embodiments of the present invention, a terrestrially-based wireless communications system has a terrestrial coverage area overlaid on a first satellite coverage area of a satellite-based wireless communications system having a plurality of satellite coverage areas. Frequencies assigned to satellite coverage areas adjoining the first satellite coverage area are reused in the terrestrial coverage area based on geographical separation between the terrestrial coverage area and the adjoining satellite coverage areas. In particular, frequencies from those of the adjoining satellite coverage areas having greater geographical separation from the terrestrial coverage area may be preferentially reused in the terrestrial coverage area.
For example, in some embodiments, the terrestrial coverage area is confined to a ~"I
central portion of the first satellite coverage area. Reusing frequencies assigned to satellite coverage areas adjoining the first satellite coverage area in the terrestrial coverage area based on geographical separation between the terrestrial coverage area and the adjoining satellite coverage areas may comprise enabling reuse of all of the frequencies of the adjoining satellite coverage areas in the terrestrial coverage area. The terrestrial coverage area may comprise about ?5% or less of the first satellite coverage area.
In further embodiments, the terrestrial coverage area is nearest a first one of the adjoining satellite coverage areas, and reusing frequencies assigned to satellite coverage areas adjoining the first satellite coverage area in the terrestrial coverage area based on geographical separation between the terrestrial coverage area and the adjoining satellite coverage areas comprises preferentially reusing frequencies from the adjoining satellite coverage areas other than the first one of the adjoining satellite coverage areas. For example, the terrestrial coverage area may comprise a first terrestrial coverage area disposed on a peripheral portion of the first satellite coverage area nearest the first one of the adjoining REPLACEMENT PAGE AMENpED SHEET

CA 02381811 2002-02-07 pCT/US Q 1 / 2 ~ Q ~ 6 ~/ 1 tr IPEq/US 18 SEN ~Q~Z
coverage areas and a second terrestrial coverage area confined to a central portion of the first satellite coverage area. Reusing frequencies assigned to satellite coverage areas adjoining the first satellite coverage area in the terrestrial coverage area based on geographical separation between the terrestrial coverage area and the adjoining satellite coverage areas may comprise preferentially reusing frequencies from adjoining satellite coverage areas other than the first one of the adjoining satellite coverage areas in the first terrestrial coverage area, and enabling reuse of all of the frequencies of the adjoining satellite coverage areas in the second terrestrial coverage area.
According to still further embodiments of the invention, the first satellite coverage area comprises a plurality of peripheral areas adjoining respective ones of the adjoining satellite coverage areas and disposed around the central portion. The first terrestrial coverage area is disposed in a first peripheral area of the plurality of peripheral areas. For example, frequencies from the adjoining satellite coverage areas that do not adjoin the first peripheral area may be preferentially reused in the first satellite coverage area.
In other embodiments, the first satellite coverage area comprises a plurality of sectors adjoining respective ones of the adjoining satellite coverage areas. The terrestrial coverage area is located in a first sector of the plurality of sectors of the first satellite coverage area.
Reusing frequencies assigned to satellite coverage areas adjoining the first satellite coverage area in the terrestrial coverage area based on geographical separation between the terrestrial coverage area and the adjoining satellite coverage areas comprises preferentially reusing frequencies from the adjoining satellite coverage areas that do not adjoin the first sector.
In additional embodiments of the invention, a communications system includes a satellite-based wireless communications system having a plurality of satellite coverage areas, -'' and a terrestrially-based wireless communications system having a terrestrial coverage area overlaid on a first satellite coverage area of the plurality of satellite coverage areas and configured to reuse frequencies assigned to satellite coverage areas adjoining the first satellite coverage area in the terrestrial coverage area based on geographical separation between the terrestrial coverage area and the adjoining satellite coverage areas. A
network operations center may be operative to assign frequencies to the satellite-based wireless communications system and the terrestrially-based wireless communications system such that the terrestrially-based wireless communications system is configured to reuse frequencies assigned to satellite coverage areas adjoining the first satellite coverage area in the terrestrial coverage area based on geographical separation between the terrestrial coverage area and the adjoining satellite coverage areas.
The present invention optionally provides both a, terrestrial frequency assignment and/or reuse plan, and a satellite frequency assignment and/or reuse plan.
REPLACEMENT PAGE ~1ENDED SHEET

_PCT/U~~i~,~4046 IPEAfUS 1 ~ J t N ~U02 In one embodiment of the present invention, a first spot beam or set of spot beams can reuse in a substantially central portion or pre-designated portion thereof, at least a portion of the frequency spectrum of one or more adjacent or nearby spot beams. The remaining portion of the spot beam is partitioned into, for example, a number of substantially equal sized subareas/subcells (hereinafter "subareas") extending radially from approximately the periphery of the central portion to or substantially to the spot beam boundary. Each of the central portions and the subareas will generally, although not necessarily, comprise one or more terrestrial cells. In addition, the terrestrial cells may cover at least a portion of one or more subareas and/or spot beams. Other configurations of subareas may also be used. The number of subareas is optionally equal to the number of adjacent cells or spot beams. For example, in a cluster size of seven, the center cell or spot beam will comprise a substantially central portion and six substantially equal size subareas, whereas in a cluster size of four, the cells or spot beams will comprise a substantially central portion and three substantially equal :_~ r~
sized subareas. Any number of subareas, however, may alternatively be used.
In another embodiment, the spot beam channels selected for terrestrial assignment and/or reuse are optionally selected beginning with the spot beams(s) farthest or substantially farthest away from the subarea of the spot beam under consideration, and proceeding to the spot beams closest (e.g., adjacent to) the spot beam subarea under consideration. The system and method of the present invention in this embodiment therefore generally maximizes the separation between the satellite frequencies that are reused terrestrially within the terrestrial cells.
In accordance with another embodiment of the invention, satellite-terrestrial frequency assignment and/or reuse utilizes the inter-spot beam isolation (e.g., the isolation -~~ between the various spot beams). Thus, the terrestrial system associated with a particular spot beam and/or one or more subareas within a spot beam and/or one or more terrestrial cells preferably use satellite channels that AMENDED SHEET
REPLACEMENT PAGE

are not utilized by the spot beam since the spot beam provides an isolation that can be utilized in reducing interference. In other words, one aspect of the present invention takes the co-channel, co-beam interference and "transfers" it to co-channel, adjacent beam interference.
This feature of the present invention advantageously minimizes interference between adjacent satellites/spot beams and adjacent cells. The transmissions by the terrestrial networks) will generally, to a certain extent and depending on the local attenuation, be "heard" by the associated satellite.
It should be understood that the present invention can utilize and/or be deployed with all satellite (e.g., low-Earth orbit (LEO), mid-Eaxth orbit (MEO), geosynchronous orbit (GEO), etc.) and cellular terrestrial technologies (e.g., time division multiple access (TDMA), code division multiple access (CDMA), Global System for Mobile Communications (GSM), etc.). The present system may also assign, share and/or reuse frequencies of other domestic, foreign, and/or international satellite and/or terrestrial systems, subject to, for example, national, foreign, and/or international government regulatory approval.
Additional aspects of the present invention relate to determining the size of the satellite spot beam cells and/or terrestrial cells. In accordance with the present invention, satellite spot beams are optionally sized by a 3 dB loss rule. Specifically, spot beam size is optionally determined by locating points that are substantially equidistant from and have approximately a 3 dB
loss vis-a-vis a substantially or effective central portion of the spot beam having maximum gain (e.g., where received satellite signal strength is maximum). Spot beams and/or terrestrial cells can also be sized by using for 2 0 example, a bit error rate. For example, with voice communication, spot beams and/or terrestrial cells can be sized in accordance with a bit error rate in the range of, for example, 10-z to 10-3. For data communications, spot beams and/or terrestrial cells can be sized in accordance with a bit error rate in the range of, for example, 10-2 to 10-3. This approach may result, for example, in systems using different protocols and/or air interfaces (e.g., CDMA, GSM) having different sized spot beams and/or 2 5 terrestrial cells.
In accordance with the present invention, the size of the substantially central portion of the spot beam where any/all channels of adjacent spot beams can be reused is preferably equal to an area comprising approximately 25% of the spot beam. For example, if circle having radius r is used to approximate the area associated with, for example, a hexagonal shaped spot beam in a seven cell 3 0 configuration, the central portion will be approximately equal to O.Sr (of the circle), which corresponds to an area equal to 25% of the circle. Other percentages of the central portion and/or shapes of the cells may alternatively be used.
In another embodiment of the present invention, the central portion of the first cell is optionally omitted. The spot beams are instead partitioned into a number of substantially equal sized 3 5 subareas, whereby each subarea can terrestrially reuse adjacent spot beam channels, except for those channels associated with a spot beam adjacent to the subarea.

Specifically, within any given satellite spot beam, satellite spot beam channels are used for satellite transmissions, whereas the terrestrial transmissions within that spot beam preferably use all satellite channels except those allocated to the present spot beam. That is, within any given satellite spot beam, the frequency channels used in a first spot beam are preferably not used in the underlay terrestrial system associated with the first spot beam.
For example, an area of coverage by a satellite system may comprise seven spot beams, with each spot beam having nine channels. Thus, the system would have sixty three channels that could potentially be assigned, shared and/or reused between the satellite and the respective underlay terrestrial systems or between satellite systems. The satellite may use, for example, nine (9) of the channels, and the remaining fifty four (54) channels can therefore be allocated to one or more respective underlay terrestrial systems associated with each respective spot beam. In such a system, the nine channels associated with, for example, a first spot beam are preferably not utilized by the underlay terrestrial system associated with the first spot beam. The general concept is to efficiently allocate (e.g., based on demand) the total frequency band (e.g., sixty three channels) between the terrestrial and satellite systems within each of the seven spot beams and each of the respective terrestrial underlay systems associated therewith, while minimizing interference therebetween.
The system in accordance with the present invention enhances spectrum usage by allocating and/or reusing at least a portion of the spectrum of, for example, at least a first satellite spot beam to an underlay terrestrial system preferably associated with or having overlapping coverage with, for 2 0 example, at least a second satellite spot beam, a subarea thereof, and/or a terrestrial cell associated therewith. The satellite-terrestrial communications system of the present invention also minimizes interference between each of the respective satellite and terrestrial systems that assign, reuse or share a portion of the spectrum.
The present invention also provides a system and method for coordinating an assignment 2 5 and/or reuse plan between satellite spot beams. If one spot beam gets too congested, it can borrow frequency spectrum from one or more other spot beams that have available capacity. The present invention thus provides different ways of assigning and/or reusing the same frequencies, and uses that fact to allow one or more satellite channel sets to be selected for terrestrial reuse within a terrestrial network on a substantially non-interfering basis with the satellite system.
3 0 In general, in accordance with one embodiment of the invention, each satellite channel is subdivided into uplink and downlink portions, and therefore, has respective uplink frequencies and downlink frequencies associated therewith. In a further aspect of the present invention, the uplink frequencies and downlink frequencies associated with a given channel do not have to be assigned pairwise. For example, the uplink frequencies of a first channel associated with spot beam A can be 3 5 assigned or reused terrestrially in spot beam B, whereas and the downlink frequencies of the first channel associated with spot beam A can be assigned or reused terrestrially in spot beam C. Similarly, channels can also be assigned or reassigned for use in other spot beams and/or other satellite systems.
Similarly, the uplink frequencies of a first channel associated with spot beam A can be assigned or reused terrestrially in a first subarea and/or terrestrial cell, for example, of spot beam B. In addition, the downlink frequencies of the first channel associated with spot beam A can be assigned or reused, for 5 example, terrestrially in a second subarea and/or terrestrial cell of, for example, spot beam B.
Similarly, channels can also be assigned or reassigned for user in other spot beams.
It should be understood that the present invention generally works regardless of cluster size, how many spot beams there are, or how many channels there are per spot beam.
For example, a fourteen cell repeat pattern or other cell pattern for satellite and/or terrestrial systems could provide 10 additional separation between the terrestrial networks and the satellite networks. However, the allocation of frequencies between the terrestrial network and the satellite network should be managed efficiently. For example, a large repeat pattern satellite and a small repeat pattern terrestrial network may give rise to inefficient use of spectrum on the satellite (unless, for example, there is sufficient excess spectrum), which could render the satellite spectrally limited rather than power limited.
In this regard, it will be realized that one optional technique that may be practiced with the present invention is increasing the terrestrial frequency reuse cluster size, which generally minimizes the interference between the satellite and terrestrial systems. For example, a traditional GSM type of pattern utilizes four cells with three sectors each. If instead, twenty-four channels, for example, are assigned across the cells, then one site in eight would have the same frequency, as opposed to one site 2 0 in four having the same frequency (as with the traditional GSM pattern).
Thus, the number of instances where the same frequency exists has been halved, and the amount of energy on an individual channel has also been reduced by half. In this example, the interference between the satellite and terrestrial systems would therefore be reduced by approximately 3 dB vis-a-vis the traditional GSM system.
Finally, an additional aspect of the present invention concerns inverting frequencies to 2 5 minimize interference between the satellite and terrestrial systems. The frequency inversion technique involves reversing the satellite down-link and satellite up-link frequencies to become the terrestrial up-link ("return-link") and terrestrial down-link ("forward-link") frequencies, respectively, as described below in detail.
In particular, one embodiment of the present invention provides a method and system for at least 3 0 one of assigning and reusing frequencies between one or more communication systems. The method preferably comprises the steps of configuring a first satellite spot beam having a first set of frequencies associated therewith. The first spot beam comprises a first substantially central portion and a first plurality of subareas, where each of the first plurality of subareas extend substantially from a periphery of the first substantially central portion to or near a circumference of the first satellite spot beam. Each 3 5 subarea generally comprises one or more terrestrial cells, although not all subareas are necessarily required to have terrestrial cells associated therewith. A second satellite spot beam is preferably similarly configured. A terrestrial cell is configured within the first satellite spot beam having a third set of frequencies associated therewith. Finally, the method includes the step of at least one of assigning, reusing and borrowing, by the terrestrial system, at least one of a portion of the second set of frequencies and a portion of the first set of fiequencies used in the first central portion, responsive to predetermined criteria associated with the third set of frequencies, including at least one of assigning, reusing and borrowing at least one of the second set of frequencies when the second set of frequencies are at least substantially geographically distant from the first satellite spot beam.
Another embodiment of the present invention provides a method and system for making a telephone call using a satellite-terrestrial communications system that at least one of assigns and reuses frequencies between a first satellite spot beam or spot beams and a second satellite spot beam or spot beams. A user utilizes a mobile terminal to dial a telephone number within an area of a first terrestrial cell located within or associated with a first satellite spot beam. The terrestrial cell has a first set of frequencies associated therewith. The first satellite spot beam comprises a first substantially central or predesignated portion, and a first plurality of subareas, wherein each of the first plurality of subareas extend substantially from a periphery of the first substantially central or predesignated portion to substantially near a circumference of the first satellite spot beam. Each of the subareas may comprise one or more terrestrial cells, which may at least partially overlap with one or more spot beams and/or subareas. A second spot beam is configured, which can optionally be configured differently than the first spot beam. If the first set of frequencies can not be utilized to establish a connection, then a 2 0 connection is established between the first mobile terminal and the second terminal by at least one of assigning, reusing and borrowing, by the first spot beam, at least one of the second set of frequencies, responsive to predetermined criteria including at least one of assigning, reusing and borrowing at least one of the second set of frequencies when the mobile terminal is substantially geographically distant from the second satellite spot beam.
2 5 A third embodiment of the present invention provides a method and system for at least one of assigning and reusing frequencies. The method comprises the steps of configuring a first communications area having a first set of frequencies associated therewith.
The first communication area preferably comprises a first substantially central or predesignated portion, and a first plurality of subareas, wherein each of the first plurality of subareas extend substantially from a periphery of the 3 0 first substantially central portion or predesignated area to or substantially near a circumference of the first communications area. Each of the subareas may comprise one or more terrestrial cells, which may overlap with at least a portion of other spot beams and/or subareas. A second communications area is preferably similarly configured. A third communications area, having a third set of frequencies associated therewith, is preferably configured within the first communications area. Finally, the 3 5 method includes the step of at least one of assigning, reusing and borrowing, by the third communications area, at least one of a portion of the second set of frequencies and a portion of the first set of frequencies used in the first central portion, responsive to predetermined criteria associated with the third set of frequencies, including at least one of assigning, reusing and borrowing at least one of the second set of frequencies when the second set of frequencies are at least substantially geographically distant from the first satellite spot beam.
A fourth embodiment of the present invention provides a system and method that involves assigning and reusing frequencies between one or more communication systems. A
first satellite spot beam is configured having a first set of frequencies associated therewith. The first spot beam preferably comprises a first substantially central portion and a first plurality of subareas, wherein each of the first plurality of subareas extend substantially from a periphery of the first substantially central portion to substantially near a circumference of the first satellite spot beam. A second satellite spot beam is similarly configured. A terrestrial cell, having a third set of frequencies associated therewith, is configured within the first satellite spot beam. Finally, the method involves the step of at least one of assigning, reusing and borrowing, by the second satellite spot beam, at least one of a portion of the third set of frequencies responsive to predetermined criteria, including at least one of assigning, reusing and borrowing at least one of the third set of frequencies associated with the at least one terrestrial cell when the portion is at least substantially geographically distant from the second set of frequencies.
A fifth embodiment of the present invention also provides a system and method that involves assigning and reusing frequencies between one or more communication systems. A
first satellite spot 2 0 beam is preferably configured having a first set of frequencies associated therewith. The first spot beam comprises a first substantially central portion and a first plurality of subareas. Each of the first plurality of subareas preferably extend substantially from a periphery of the first substantially central portion to or near a circumference of the first satellite spot beam. A second satellite spot beam, having a second set of frequencies associated therewith, is configured. The second spot beam can optionally 2 5 have a different configuration than the first satellite spot beam. A
terrestrial cell, having a third set of frequencies associated therewith, is configured within the first satellite spot beam. Finally, the method involves the step of at least one of assigning, reusing and borrowing, by the terrestrial system, at least one of a portion of the second set of frequencies and a portion of the first set of frequencies used in the first central portion, responsive to predetermined criteria associated with the third set of frequencies, 3 0 including at least one of assigning, reusing and borrowing at least one of the second set of frequencies when the second set of frequencies are at least substantially distant from the first satellite spot beam.
A sixth embodiment of the present invention also provides a system and method of at least one of assigning and reusing frequencies between one or more communication systems. A first satellite spot beam is configured having a first set of frequencies associated therewith. The first spot beam 3 5 preferably comprises a first plurality of subareas, wherein each of the first plurality of subareas extend from a substantially center area of the first satellite spot beam to substantially near a circumference of the first satellite spot beam in a fan-like manner to form the first plurality of subareas. A second satellite spot beam, having a second set of frequencies associated therewith, is configured. The second spot beam can optionally have a different configuration than the first satellite spot beam. At least one terrestrial cell having a third set of frequencies associated therewith is configured within the first satellite spot beam. Finally the method involves the step of at least one of assigning, reusing and borrowing, by the terrestrial system, at least one of a portion of the second set of frequencies and a portion of the first set of frequencies used in the first central portion, responsive to predetermined criteria associated with the third set of frequencies, including at least one of assigning, reusing and borrowing at least one of the second set of frequencies when the second set of frequencies are at least substantially geographically distant from the first satellite spot beam.
In at least some of the above-described embodiments, the first plurality of subareas are substantially equal sized cells having a first size, and the second plurality of subareas are substantially equal sized cells having a second size. The first and second size may be substantially equal, or different.
The second set of frequencies, in accordance with at least some of the above-described embodiments, are substantially distant from the first satellite spot beam when they are at least one of assigned, reused and borrowed for use in those first plurality of subareas not sharing a common boundary with the second satellite spot beam. The first set of frequencies, in accordance with at least some of the above-described embodiments, that are used in the first central portion comprise at least 2 0 one of those frequency sets respectively associated with satellite spot beams adjacent to or near the first satellite spot beam.
Further, at least some of the above-described embodiments, optionally assign, reuse and/or borrow frequencies based on prioritization rules such as, for example, the dynamic load and capacity constraints of cells that frequencies are taken from.
2 5 At least some embodiments of the above-described invention utilize a subscriber terminal positioned within the first central portion that can be assigned, reuse and/or borrow use any of the respective set of frequencies associated with the at least one second satellite spot beam. For example, a subscriber terminal positioned within or near the first central portion can be assigned, reuse and/or borrow use any of the respective set of frequencies associated with any spot beams adjacent and/or 3 0 near the first satellite spot beam.
Further, at least some embodiments of the present invention include a subscriber terminal positioned within or near a subarea not sharing at least a portion of a common boundary with the second satellite spot beam. Such a subscriber unit can be assigned, reuse and/or borrow any of the second set of frequencies associated with the second satellite spot beam.

In addition, at least some embodiments of the present invention optionally assign, reuse and/or borrow frequencies based on predetermined criteria such as load balancing, maintaining a reserve of frequencies, and received signal strength interference.
At least some of the embodiments of the above-described invention optionally include a second terrestrial cell within the second satellite spot beam. The second terrestrial cell optionally has a fourth set of frequencies associated therewith. The second terrestrial cell at least one of assigns, reuses and borrows at least one of the first set of frequencies and the frequencies used in the second central portion, responsive to predetermined criteria associated with the fourth set of frequencies. The predetermined criteria optionally include at least one of assigning, reusing and borrowing at least one of the first set of frequencies when the first set of frequencies are at least substantially geographically distant from the second satellite spot beam.
The first central portion and the second central portion of at least some of the above-described embodiments optionally comprise approximately twenty five percent of the area covered by the. first satellite spot beam and the second satellite spot beam, respectively.
Further, the first set of frequencies and the second set of frequencies optionally comprise a plurality of paired uplink and downlink frequencies. A downlink frequency of a frequency set can optionally be used in a first subarea of the first spot beam, and a corresponding one of the uplink frequencies can optionally be reused in a second subarea of the first or second spot beam.
In accordance with at least some of the above-described embodiments, the area of coverage of 2 0 a spot beam comprises an area having a radius substantially equal to a distance from a center of the spot beam having a substantially maximum signal strength to a distance from the center of the spot beam where the signal strength of the spot beam is attenuated by approximately 3 dB. Further, the number of subareas is optionally equal to a number of spot beams comprising a cluster minus one.
Other numbers of subareas can also be utilized.
~ 5 Finally, one or more satellites can be used to configure the first and second spot beams. In communicating between a first subscriber terminal and a second subscriber terminal and/or other communication device, a network operations controller is preferably used to facilitate assignment, borrowing and/or reuse of frequencies between spot beams, communication areas, and/or terrestrial cells, central portions of spot beams and/or communication areas, subareas associated with spot beams, 3 0 communication areas and/or terrestrial cells, and/or terrestrial cells within subareas.
Finally, an embodiment of the present invention provides a terrestrial communication system that uses satellite uplink and downlink frequencies, where a terrestrial cell site produces a signal at a satellite uplink frequency that is transmitted to a terrestrial terminal unit.
The terminal cell site receives a signal at a satellite downlink frequency that was transmitted by the terrestrial terminal unit.
3 5 There has thus been outlined, rather broadly, the more important features of the invention in order that the detailed description thereof that follows may be better understood, and in order that the present contribution to the art may be better appreciated. There are, of course, additional features of the invention that will be described hereinafter and which will form the subject matter of the claims appended hereto.
W this respect, before explaining at least one embodiment of the invention in detail, it is to be 5 understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings.
The invention is capable of other embodiments and of being practiced and carried out in various ways.
Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting.
10 As such, those skilled in the art will appreciate that the conception, upon which this disclosure is based, may readily be utilized as a basis fox the designing of other structures, methods and systems for carrying out the several purposes of the present invention. It is important, therefore, that the claims be regaxded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present invention.
15 Further, the purpose of the foregoing abstract is to enable the U.S. Patent and Trademark Office and the public generally, and especially the scientists, engineers and practitioners in the art who are not familiar with patent or legal terms or phraseology, to determine quickly from a cursory inspection the nature and essence of the technical disclosure of the application. The abstract is neither intended to define the invention of the application, which is measured by the claims, nor is it intended 2 0 to be limiting as to the scope of the invention in any way.
These together with other objects of the invention, along with the various features of novelty which characterize the invention, are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and the specific objects attained by its uses, reference should be made to the accompanying drawings 2 5 and descriptive matter in which there is illustrated preferred embodiments of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a prior art diagram of a satellite radiotelephone system;
FIGS. 2A, 2B and 2C are prior art schematic diagrams of frequency reuse in the satellite 3 0 radiotelephone systems shown in FIG. 1;
FIG. 3 is a diagram showing an overview of the principal elements of prior art communications system;
FIG. 4 is an overview block diagram of another embodiment of the prior art communications system shown in FIG. 3;
3 5 FIG. 5 is an exemplary high level block diagram of a system that can use and/or be used to produce the frequency reuse schemes in accordance with the present invention;

FIG. 6 is an exemplary illustration of how a base station can enhance network coverage, particularly in an area having no line of sight path (or reduced line of sight path) with a satellite;
FIG. 7 is an exemplary high level block diagram illustrating an integrated satellite-terrestrial system that can use and/or be used to produce the frequency reuse schemes in accordance with the presentinvention;
FIG. 8a shows a first exemplary embodiment of frequency reuse within a spot beam where frequencies from any or all surrounding spot beams can be reused in a substantially central portion thereof;
FIG. 8b shows a first exemplary embodiment of frequency reuse in a seven cell pattern;
FIG. 8c shows a variation of the first exemplary embodiment wherein the spot beams are depicted as being circular;
FIG. 9 illustrates an exemplary method by which spot beam size can be determined in accordance with the present invention;
FIG. 10 shows an exemplary way of determining the size of a center area of a spot beam where frequencies from any of one or more adjacent spot beams can be reused;
FIG. 11a shows a second exemplary embodiment of terrestrial frequency reuse within a satellite spot beam;
FIG. 1 lb shows a variation of the second exemplary embodiment wherein the spot beams are depicted as being circular;
2 0 FIG. 12 shows an exemplary method by which frequencies can be allocated in an area that does not have a full complement of spot beams;
FIG. 13 is an exemplary flowchart illustrating a preferred method of reusing frequencies;
FIG. 14 is an exemplary flowchart illustrating a method by which frequencies can be assigned when they are equidistant from a cell or subarea to which they are assigned;
2 5 FIG. 15 is an exemplary flowchart illustrating a method by which frequencies can be dynamically assigned;
FIG. 16 is an exemplary flowchart illustrating a method by which frequencies can be preemptively reassigned based on, for example, load balancing and/or capacity issues;
FIGS. 17a and 17b illustrate different exemplary cluster size and channel number combinations 3 0 that can be used in accordance with the present invention;
FIGS. 18a and 18b shows an exemplary aspect of the present invention pertaining to how uplink and downlink frequencies can be inverted;
FIG. 19 shows the interference paths between the satellite, base station, and user terminals;
FIG. 20 shows the user of a base station antenna having a null in the geostationary arc;
3 5 FIG. 21 shows an exemplary method of call initialization;
FIG. 22 shows the use of transition channels;

FIG. 23 shows an exemplary method of satellite to base-station proximity-initiated hand-off;
and FIG. 24 shows an exemplary method of base station-to-satellite and base station-to-base station proximity-initiated hand-off.
DETAILED DESCRIPTION OF A PREFERRED
EMBODIMENT OF THE INVENTION
Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting.
As such, those skilled in the art will appreciate that the conception, upon which this disclosure is based, may readily be utilized as a basis for the designing of other structures, methods and systems for carrying out the several purposes of the present invention. It is important, therefore, that the invention be regarded as including equivalent constructions to those described herein insofar as they do not depart from the spirit and scope of the present invention.
FIG. 5 shows an exemplary high level block diagram of a standard system 500 that can be used 2 0 to implement the frequency assignment, reuse and/or reassignment, and other features of the present invention. The telemetry, tracking and command (TT&C) facility 502 is used to control and monitor the one or more satellites 516 of the system 500.
The terrestrial segment can optionally use, for example, digital cellular technology, consisting of one or more Gateway Station Systems (GSS) 504; a Network Operations Center (NOC) 506, one or 2 5 more Mobile Switching Centers (MSC) 508, one or more Base Transceiver Stations (BTS) 514, and a variety of mobile, portable, and/or fixed subscriber terminals 512. The subscriber terminals 512 can be equipped with a Subscriber Identity Module (BIM) (not shown) or similar module that identifies the individual subscriber terminal 512. The subscriber terminals 512 are generally handheld devices that provide voice and/or data communication capability. Subscriber terminals 512 may also have 3 0 additional capabilities and functionality such as, for example, paging.
Equipping the subscriber terminals 512 with a BIM module can allow the user to have access to the system 500 by using any subscriber terminals 512 having a S1M.
The MSC 508 preferably performs the switching functions of the system 500, and also optionally provides connection to other networks (e.g., Public Data Network (PDN) 516, and/or Public 3 5 Switched Telephone Network (PSTN) 518). BTSs 514 can be used in those areas where the satellite signal is attenuated by, for example, terrain and/or morphological features, and/or to provide in-building coverage. The BTSs 514 and BSCs 510 generally provide and control the air interface to the mobile terminals 512. It is preferred that the BTSs 514 use a wireless proprietary or standard wireless protocol that is very similar to that of the satellites 516. The BSC 510 generally controls one or more BTSs 514 and manages their radio resources. BSC 510 is principally in charge of handovers, frequency hopping, exchange functions and control of the radio frequency power levels of the BTSs 514.
NOC 506 can provide functions such as monitoring of system power levels to ensure that transmission levels remain within tolerances, and line monitoring to ensure the continuity of the transmission lines that interconnect the BSC 510 to the BTS 514, the MSC 508 to the PDN 516 and the PSTN 518, and the NOC 506 to other network components. The NOC 506 can also monitor the satellite 516 transponders to ensure that they are maintained within frequency assignment and power allocation tolerances. The NOC also optionally performs priority and preemption to ensure that communication resources are available and/or assigned, reused and/or borrowed in a timely manner to, for example, facilitate calls originating and/or transmitted to a subscriber terminal 512. To effectuate the dynamic channel assignment and priority and preemption features of the present invention, the NOC generally maintains cognizance of the availability of satellite and/or terrestrial resources and arranges for any necessary satellite reconfiguration and/ox assignment and or reuse of frequencies to meet changed traffic patterns. U.S. Patent Nos. 5,926,745, 5,815,809, 6,112,085, and 6,058,307 are incorporated herein by reference.
The system 500 will also have one or more satellites 516 that communicate with the satellite 2 0 GSS 504 and the subscriber terminals S I2. A typical GSS 504 will have an antenna to access the satellite. On the uplink transmission path, the GSS 504 will generally have upconverters that can translate the GSS 504 IF frequency to the feeder link frequency. On the downlink transmission path, the received signal is preferably amplified, and feeder link frequencies are translated to the common IF
frequency.
2 5 FIG. 6 is an exemplary BTS 5I4 frequency plan. The nomenclature is pxovided as follows:
f°la and fDta superscripts U and D indicate uplink and downlink, respectively;
the numeric subscript (e.g., 1) indicates the frequency band; and the letter subscript (e.g., a) indicates the frequency channel within the frequency band, The satellite frequency band generally comprises uplink and downlink frequencies, each of which in turn generally comprise a range of separated frequencies (e.g., 1626.5-1660.5 MHz for uplink, and 1525-1559 MHz for downlink). The present invention is not limited, however, to sharing frequencies within a single frequency band assigned and/or designated by, for example, a government 3 5 regulatory agency. The present system may also therefore, share and/or reuse frequencies of other domestic, foreign, and/or international satellite and/or terrestrial systems, subject to, for example, national, foreign, and/or international government regulatory approval. In addition, as defined in connection with the present invention, a frequency comprises any set of frequencies that have been associated with a particular frequency band, and is not limited to a consecutive set or series of frequencies within a band. Further, a frequency band in alternative embodiments may comprise a logical set of frequencies that may be assigned to different communication systems, carriers, or in other predesignated frequency bands. That is, for example, a frequency band in the present invention may include frequencies that are assigned to other frequency bands, for example, for different purposes.
Conventionally, users communicating on uplink 604 and downlink 602 would use, for example, paired uplink and downlink channels fUia and fDta, f°za and fD2a, fU3a and fD~~, etc.
Advantageously, in the present invention, different channels within the same frequency band are optionally assigned, reused and/or reassigned in a non-pairwise manner. For example, downlink 602 could be using fDla, whereas uplink 604 could be using f°lb. Similarly, downlink 602 could be using fol~
whereas uplink 604 could be using fUia. These pairings are illustrative only, insofar as numerous other non-pairwise uplink 604 and downlink 602 combinations are available that can be used, for example, within different terrestrial cells within subareas, within different subareas of a spot beam, and/or between different spot beams.
Further, suppose that f°za and fD2a are the uplink and downlink frequency bands associated with a second domestic or foreign satellite system. Users of system 500 communicating on downlink 602 and uplink 604 could use, for example, uplink and downlink frequencies fUia and fDZa, f°l~ and fD2b, f°lb 2 0 and fD2~, etc. In general, the present invention optionally uses one or more uplink and downlink channels that are from different frequency bands and/or associated with a different domestic and/or foreign satellite system.
FIG. 7 is an exemplary high level block diagram of a GSM system that can use the frequency reuse schemes in accordance with the present invention. As previously noted, the present invention is 2 5 not limited to use with a GSM system, and can be deployed with all satellite (e.g., LEO, MEO, GEO, etc.) and cellular terrestrial technologies (e.g., TDMA, CDMA, GSM, etc.).
An exemplary Home Location Register (HLR) 706 comprises a database that stores information pertaining to the subscribers belonging to the coverage area of a MSC 508. The HLR 706 also stores the current location of these subscribers and the services to which they have access. In an 3 0 exemplary embodiment, the location of the subscriber corresponds to the SS7 704 address of the Visitor Location Register (VLR) 702 associated to the subscriber terminal 512.
An exemplary VLR 702 contains information from a subscriber's HLR 706 in order to provide the subscribed services to visiting users. When a subscriber enters the covering area of a new MSC
508, the VLR 702 associated with this MSC 508 will request information about the new subscriber to 3 5 its corresponding HLR 706. The VLR 702 will then have enough information in order to ensure the subscribed services without needing to ask the HLR 706 each time a communication is established. The VLR 702 is optionally implemented together with a MSC 508, so the area under control of the MSC
508 is also the area under control of the VLR 702.
The Authentication Center (AUC) 708 register is used for security purposes, and generally provides the parameters needed for authentication and encryption functions.
These parameters help to 5 verify the user's identity. Terrestrial cells 816 can also be positioned so that they cover at least a portion of two or more spot beams (e.g., 802, 804) and/or two or more subareas (e.g., 820, 822) FIG. 8a shows a first exemplary embodiment of a frequency sharing and/or reuse scheme in accordance with the present invention. Generally, the capacity of a satellite network utilizing spot beams is directly proportional to the number of times a cluster of spot beams is replicated. Although 10 FIG. 8a shows a cluster size N of seven (7) (i.e., seven spot beams) (802, 804, 806, 808, 810, 812, 814), the present invention can equally be practiced with other cluster sizes or numbers. FIG. 8a does not show the terrestrial system underlaying each of the respective spot beams (802-812), each of which will typically include at least one terrestrial cell 816.
The FIG. 8a embodiment advantageously enhances spectrum usage by allocating at least a 15 portion of the spectrum of, for example, at least a first satellite spot beam (e.g., 802-812) to an underlay terrestrial system associated with or having overlapping coverage with, for example, at least a second satellite spot beam (e.g., 814), while minimizing interference between each of the respective satellite and terrestrial systems that reuse and/or share a portion of the spectrum. The present invention may optionally apply to any combination of systems having overlapping coverage, including terrestrial-2 0 terrestrial systems and/or satellite-satellite systems.
With regard to spot beams 802-814, a superscript T represents a terrestrial system, and the frequencies without a superscript T represent satellite systems. As shown, the terrestrial frequency sets (designated by ( f3, f2, fø, fl ~ f5)T ~ etc.) associated with the spot beam 814 use, are assigned, or reuse in various combinations, f1, fz, f3, fa~.fs~ and/or f6. For purposes of explaining at least one aspect of the 2 5 present invention, it is assumed that each spot beam has a frequency set containing nine (9) 200 kHz channels f~ _ ~q~,l , q;,z , Rr,s , .. . , qa,~ ~ for i =1...7 ), as discussed with reference to FIG. 5. Other quantities of channels and/or associated bandwidths thereof may optionally be used. It is also assumed that there is a spot beam to adjacent spot beam average isolation of, for example, 10 dB, although the present invention is also compatible with, or applies to, different spot beam isolations.
3 0 In this configuration, each spot beam (802-814) is assigned a set of frequencies that will be used exclusively by, or substantially used by or assigned to, the satellite network f~ . Likewise, the terrestrial network in each spot beam uses a set of frequencies exclusive to, or substantially used by or assigned to, the terrestrial network (f; ~T . For example, the satellite frequencies used in the center spot beam 814 is f~ , and the terrestrial frequencies in this spot beam can include all other frequency sets l.fi , .fa , .fs ,..., fs ~_ (f~ )T . That is, the channels used by center spot beam 814 are preferably not used by the underlay terrestrial system associated with the spot beam 814. In this manner, the different channels are preferably allocated among the various spot beams (802-814) and associated underlay terrestrial systems such that any interference between them is minimized. Note that in this configuration the entire spectral allocation is shared or substantially shared between the satellite network and the terrestrial network in each of the seven spot beams 802-814, although other sharing or overlapping coverages are optionally used. Further, while center spot beam 814 has been designated in this embodiment, other spot beams that are not directly center to the spot beam/terrestrial coverage may be selected alternatively.
Spot beam 814 generally comprises two areas. The first is an area 818 generally central to spot beam 814, where channels from any or all of.spot beams adjacent to spot beam 814 (i.e., spot beams 802, 804, 806, 808, 810 and/or 812) can be assigned, borrowed, andlor reused terrestrially. The second area comprises subareas 820, 822, 824, 826, 828, and 830. As shown in FIG. 8a, in areas 820-830, all frequencies can be assigned, borrowed, andlor reused terrestrially, but preferably not those frequencies used in an adjacent spot beam. For example, in subarea 822, channels associated with spot beams 810, 808, 812, 806, and 802 can be reused terrestrially. However, as previously noted, channels associated with spot beam 804 are preferably not used in subarea 822, or any terrestrial cells within subarea 822.
If, as previously assumed, each spot beam 802-814 has, for example, nine (200 kHz) channels associated therewith, there would be sixty three channels that could potentially be assigned, reallocated 2 0 and/or reused between the satellite and/or the respective underlay terrestrial systems. The satellite 516 may use, for example, nine (9) of the channels per spot beam of the 7 cell reuse pattern, and the remaining fifty four (54) channels could therefore be allocated to the respective underlay terrestrial systems associated with the spot beams (802-814). Therefore, each spot beam subarea (820-830), excluding central area 818, will have 45 terrestrial channels available. Other division of channels may 2 5 also be used.
For example, consider subarea 820. Since each of f2, f3, fa,.fs and fs has 9 channels, 45 terrestrial channels are thus available in subarea 820. Similarly, 45 channels are also available within subareas 822-830. It should be understood that this example is illustrative, and not limiting, insofar as the present invention generally works regardless of how many spot beams there are or how many 3 0 channels there are per satellite coverage area and/or terrestrial coverage area.
Careful frequency planning can help to reduce interference through maximizing satellite-terrestrial frequency reuse distance. To demonstrate this concept, again consider a terrestrial network in the center spot beam in FIG. 8a. Suppose again that the terrestrial network has 45 available RF
channels for reuse. Any satellite frequency sets that do not include channels associated with spot beam 3 5 814 can be used in the terrestrial network to provide adjacent beam isolation.

However, a random selection from the pool of 54 frequencies available for terrestrial use may result in areas where the distance between the terrestrial frequencies and satellite frequencies used in the adjacent spot beams is not substantially maximized. Selective assignment of terrestrial frequencies to the immediate area adjacent to each spot beam in accordance with the present invention can result in increased satellite-terrestrial channel reuse distance.
FIG. 8a shows an exemplary terrestrial frequency allocation that results in increased and possible substantially maximum terrestrial-satellite frequency distance. As shown, in each subarea (820, 822, 824, 826, 828, 830), the terrestrial frequency sets have been selected in order to maximize the frequency reuse distance from the satellite frequency sets in adjacent spot beams.
For example, with regard to subarea 820, spot beam 808, having assigned frequency set fø, is the farthest away. The spot beams with next largest distance are 810 and 806, having the assigned satellite frequency sets f3, and fs, respectively. Finally, spot beams 802 and 804 have the assigned frequency sets f2 and f6, respectively. In general, the terrestrial network within each spot beam is preferably sectioned in the same way that has been done for spot beam 814.
With regard to frequency channels associated with spot beams 812 and 808 (and spot beams 802 and 806), frequency channels from spot beam 812 and 808 can be reused in subarea 822 in either order, or even randomly, since they are each substantially equidistant from subarea 822. Similarly, frequency channels from spot beams 812 and 808 can be used alternately (e.g., reusing a channel from spot beam 808, reusing a spot beam from channel 812, and repeating), or even randomly. The order in 2 0 which frequency channels can be reused andlor reassigned, therefore, is virtually infinite.
Spot beams 802-814 can be positioned to cover predetermined areas. One or more spot beams 802-814 can also be dynamically configured/reconfigured to cover an area based on, for example, current and/or anticipated loading considerations.
As will be discussed with regard to FIGS. 14a and 14b, increasing terrestrial cluster size within 2 5 a satellite spot beam can also be utilized to decrease co-channel interference.
In general, it is therefore preferred that the separation between the terrestrial channels and the satellite channels be maximized which, in turn, generally, tends to minimize the interference between adjacent spot beams (e.g., 802 and 804) and adjacent subareas (e.g., 820 and 822). However, even when these objectives are accomplished, the transmissions by the terrestrial networks) will generally, 3 0 to a certain extent and depending on the local attenuation, be "heard" by the associated satellite.
Therefore, as shown in FIG. 8a, frequency reuse planning must be carefully done preferably along adjacent spot beam boundaries (e.g., 802 and 804) to ensure that interferences are minimized.
As described above, the present invention generally utilizes the inter-spot beam isolation (e.g., the isolation between the various spot beams), to reduce interference. In other words, an exemplary 3 5 embodiment of the present invention takes the co-channel, co-beam and "transfers" it to co-channel, adj acent beam interference.

Within each spot beam (e.g., 802-814), the use of satellite frequencies by the terrestrial network results in co-channelladjacent-beam interference. To utilize the isolation rendered by the availability of the spot beams, satellite terrestrial frequency reuse should preferably be implemented on adjacent spot beams. The resulting co-channel/adjacent beam interference will generally be approximately reduced by the spot beam to adjacent spot beam isolation factor.
It should be noted, however, that in a cluster of, for example, seven spot beams, as shown in FIG.
8a, each spot beam 802-812 has six adjacent spot beams that can contribute to the interference received. The advantage of co-channel/adjacent beam technique over co-channel/co-beam technique lay with the fact that not all spot beams have equal service demand. Consequently, the distribution of interference between adjacent spot beams can reduce the average interference in a high service demand beam. Any energy that is being generated by the spot beam channels within a 814 spot beam (e.g., 814) can be attenuated by the antenna pattern of the spot beam 814 satellite.
The frequency reuse scheme in accordance with the present invention therefore enables the total frequency band to be efficiently allocated (e.g., based on demand) between the terrestrial and satellite systems within each of the seven spot beams (802-814) and each of the respective terrestrial underlay systems associated therewith, while minimizing interference therebetween.
Consider FIG. 8a from a geographic perspective. As shown, New York city falls within spot beam 802, as well as terrestrial cell 816, Philadelphia falls within spot beam 814 and subarea 826, and Washington, D.C. falls within spot beam 808. Although terrestrial cells 816 can be located anywhere 2 0 within the satellite spot beams (802-814), they will generally be located in, for example, metropolitan areas (e.g., New York, NY) where satellite coverage may be limited due to, for example, capacity constraints or no line of sight or reduced line of sight between a subscriber terminal 512 and a satellite 516. This is one illustrative configuration, and is not intended to limit the invention in any way. If desired, spot beams 802-814, subareas 820-830, and/or terrestrial cells 816 can optionally be increased, 2 5 decreased, and/or varied in number, size, and/or arrangement to yield a virtually infinite number of configurations that may be tailored to suit one or more geographic areas.
In general, the channels associated with one particular spot beam or area of coverage can be reassigned for satellite andlor terrestrial reuse in conjunction with any other spot beam or area of coverage. If one spot beam (e.g., 814) gets too congested, it can borrow and/or reuse frequency 3 0 spectrum from other spot beams (e.g., 802, 804, 806, 808, 810 and/or 812) that have available capacity.
The frequencies being assigned are thus preferably location dependent upon, for example, the location of the spot beam. Thus, if spot beam 802 has nine frequencies and only three of the nine frequencies are needed for satellite transmission, the remaining six frequencies can dynamically be reassigned to either another system, such as a terrestrial system or other satellite system, or to increase capacity in, 3 5 for example, an adjacent (i.e., 804, 812, andlor 814) or non-adjacent (i.e., 806, 808, andlor 810) satellite spot beam.

At some point, the spot beam 808 channels that are reused terrestrially within spot beam 814 will interfere with the spot beam 808 satellite transmissions. However, any potential interference can be minimized by managing the frequency reuse and the size of these networks.
As discussed above, it is preferred that those frequencies associated with a spot beam furthest away be reused first, and that those frequencies associated with a spot beam closest (i.e., adjacent) to the spot beam which will reuse the frequency be used last. Again referring to subarea 822 andlor any terrestrial cells having at least partially overlapping coverage therewith, it is therefore preferred that channels from spot beam 810 be reused first, then channels from spot beams 808 and 812 be reused, and then channels from spot beams 802 and 806 be reused. An alternative or in addition, frequencies may be reassigned responsive to the congestion load in adjacent or nearby cells such that substantially equidistant cells are selected based on lower congestion or capacity rate, and even cells that are closer may alternatively be selected over cells that are further away based on congestion, load andlor capacity constraints.
In highly populated areas where terrestrial coverage can present great spectral efficiency over the satellite coverage, the terrestrial cell site density will be high.
Accordingly, the interference generated in these cell sites will also be high. In such circumstances, it is advantageous to trade part of the satellite frequency spectrum of the spot beam (and even part of adjacent spot beams) to the terrestrial network. Such a trade off results in lower co-channel interference levels. As an example of a frequency borrowing technique, consider the example discussed in the previous section where each of 2 0 the terrestrial networks have been configured with 45 RF channels and the satellite network in the corresponding spot beam has been configured with nine (9) RF channels. To reduce the interference by increasing the cluster size, three (3) channels from the satellite network can be reassigned to the terrestrial network resulting in 48 channels for reuse terrestrially and six (6) channels for the corresponding satellite spot beam.
2 5 The channels within spot beam 808, for example, can also be used as a terrestrial frequency in, for example, spot beam 814. It is preferred that the channels in spot beam 808 are used in five of the six subareas, andJor respective terrestrial cells associated therewith, of spot beam 814 (i.e., subareas 820, 822, 824, 828 and 830). As shown in FIG. 8a, it is also preferred that the channels of spot beam 808 not be used in subarea 826 (i.e., in the subarea that is contiguous with and directly adjacent to the 3 0 spot beam 808). However, in alternate embodiments, depending on load and/or capacity issues, directly adjacent cells may also be utilized for frequency assignment and/or reuse.
FIG. 8b shows a first exemplary embodiment of frequency reuse in a seven cell pattern. As discussed with regard to FIG. 8a, the frequencies assigned, borrowed andlor reused are preferably taken from the spot beam furthest away from the assigned, reusing, or borrowing subarea andlor 3 5 terrestrial cells) associated therewith.

FIG. 8c shows a variation of the first exemplary embodiment shown in FIG. 8a.
In FIG. 8c, spot beams 803, 805, 807, 809, 811, 813, and 815 are depicted as being circular, and respectively correspond to spot beams 802, 804, 806, 808, 810, 812, and 814 shown in FIG.
8a. Similarly, subareas 850, 852, 854, 856, 858, and 860 respectively correspond to subareas 820, 822, 824, 826, 828, and 830 5 shown in FIG. 8a. In FIG. 8c, subareas 850-860 have a different shape than subareas 820-830 shown in FIG. 8a, and generally extend from the center portion 818 to the dashed line of the respective adjacent subcell that partially overlaps with the area of coverage of spot beam 815.
Aspects of the present invention discussed in connection with FIG. 8a pertaining to frequency borrowing, assignment and reuse are also generally applicable to FIG. 8c.
10 FIG. 9. shows an exemplary method by which the size of satellite spot beams (802-814) can be determined. Specifically, as shown in FIG. 9, cell size (e.g., cell diameter) can be determined as being approximate to the distance corresponding to a 3 dB loss. That is, an exemplary radius of a satellite spot beam (802-814) in accordance with the present invention is preferably determined as being approximately equal to the distance over which maximum signal strength decreases by approximately 15 50%. Therefore, assuming that satellite 516 can generate, for example, seven spot beams having substantially equal power, the radius of each spot beam (802-814) is determined from a point of maximum gain to the points having approximately a 3 dB loss. Other signal strength decrease percentages and/or techniques for determining the size and shape of the satellite cells, and/or center areas may optionally be used.
2 0 FIG. 10 shows an exemplary method by which a substantially central area 818 is determined.
Specifically, in accordance with the present invention, we have determined that channels from all adjacent spot beams (802-814) can be reused in an area 818 that is equal to approximately 25% of the area of spot beam 814. Insofar as an infinite number of line segments, each having a different distance and radius, can be drawn from center 819 of spot beam 814 to one of its adjacent sides (e.g., segment 2 5 850, 854), there can be an infinite number of substantially equal areas within a spot beam (802-812) where channels from all adjacent spot beams can be reused. In accordance with one embodiment, we have determined that the maximum radius will correspond to a radius extending from the center or substantially the center of spot beam 814 (at 819) to point 850 (or 854), and a minimum area will correspond to a radius extending from the center of spot beam 815 (at 819) to point 852, which bisects 3 0 segment 850, 854. Other methods of determining the size and/or shape of area 818 may also be used, and area 818 may be of any shape including, for example, rectangular, hexagonal, and the like.
FIG. 11a shows a second exemplary embodiment of frequency reuse within a satellite spot beam. Although FIG, l la differs from FIG. 8a in that FIG. l la does not have a central area 818 as shown in FIG. 8a, terrestrial cells along the interior boundaries of spot beam 814 may nevertheless 3 5 utilize all frequencies (fl - f6). Other aspects of the invention pertaining to, for example, frequency assignment, reuse andlor borrowing discussed in connection with the FIG. 8a embodiment are generally applicable to the embodiment shown in FIG. l la. That is, the embodiment shown in FIG. 11a advantageously enhances spectrum usage by allocating at least a portion of the spectrum of, for example, at least a first satellite spot beam (e.g., 1102-1112) to an underlay terrestrial system preferably associated with or having overlapping coverage with, for example, at least a second satellite spot beam (e.g., 1114), while minimizing interference between each of the respective satellite and terrestrial systems that reuse and/or share a portion of the spectrum. FIG. l la may also optionally apply to any combination of systems having overlapping coverage, including terrestrial-terrestrial systems andlor satellite-satellite systems. In addition, frequencies may be reassigned responsive to the congestion load in adjacent or nearby spot beams, subareas, and/or terrestrial cells such that, for example, substantially equidistant spot beams and/or subareas are selected based on lower congestion or capacity rate, and even subareas that are closer may alternatively be selected over subareas that are further away based on congestion, load and/or capacity constraints.
FIG. 11b shows a variation of the second exemplary embodiment shown in FIG.
11a. Spot beams 1103, 1105, 1107, 1109, 1111, 1113, and 1115 are depicted as being circular, and respectively correspond to spot beams 1102, 1104, 1106, 1108, 1110, 1112, and 1114 shown in FIG, l la. Similarly, subareas 1150, 1152, 1154, 1156, 1158, and 1160 respectively correspond to subareas 1120, 1122, 1124, 1126, 1128, and 1130 shown in FIG. l la. In FIG. l lb, subareas 1150-1160 have a different shape than subareas 1120-1130 shown in FIG. l la. Iii FIG, l lb, subareas generally extend from the center or substantially the center of spot beam 1115 to the dashed line of the respective adjacent 2 0 subcell having partially overlapping coverage with spot beam 1115.
Further, in areas where spot beams overlap (e.g., 1170, 1172, 1174, 1176, 1178, and 1180), there may be increased interference due to the overlapping coverage of the respective spot beams. In subareas 1150-1160, all frequencies associated with adjacent spot beams 1103-1113 could be used.
This could depend, for example, on the need for spectrum terrestrially and frequency separation 2 5 distance. For example, in subarea 1150, although frequencies f4, f3, fs, f2 and f6 are first preferably borrowed, assigned and/or reused terrestrially, fl may also be borrowed, assigned and/or reused terrestrially. If any of the fl frequencies are borrowed, assigned or reused terrestrially in subarea 1150, it is preferred that, in order to reduce interference, they be borrowed, assigned or reused in one or more terrestrial cells near the center of spot beam 1115. However, the fl frequencies can also be used in a 3 0 terrestrial cell 1132 near area 1170 but within subcell 1152. Other aspects of the present invention discussed in connection with FIG. l la pertaining to frequency borrowing, assignment and reuse are also generally applicable to FIG. l lb.
As shown in FIG. 12, satellite spot beams at the edge of the service area (1202, 1204, 1206, 1208, 1210) do not have the full complement of six neighbors. As such, the terrestrial network within 3 5 the areas covered by this type of spot beams will have slightly different configuration. FIG. 12 shows an exemplary terrestrial network frequency plan for such a spot beam.

Spot beam 12,10, having assigned frequency channels f~, has only three adjacent spot beams 1202, 1204, 1206. Spot beams with frequency channels f2, f3, and f~ are missing from the cluster. As a result, the f2, f3, and f4 frequency channels can be assigned to all subareas (1212, 1214, 1216, 1218, 1220, 1222) of spot beam 1210. The remaining terrestrial frequency assignments for subareas 1212-1222 follow the procedure described above with regard to FIG. 8a, with the exception of subarea 1220.
In subarea 1220, there are two choices for one frequency channel assignment, fs and f1, either of which can be assigned to subarea 1220. This is because both fl, and fs are equidistant from subarea 1220.
Accordingly, assignment of frequencies can be based on load and/or capacity issues in the spot beams with frequencies fl and f5, as well as other methods of determining which of the spot beams with frequencies fl and fs are preferred.
FIG. 13 is an exemplary flowchart illustrating a process of assigning and/or reusing frequencies. In step 1302, spot beams are divided into a number of subareas.
Different sized and/or different shaped cells may alternatively be used. In accordance with one embodiment of the present invention, the spot beam may also have an optional central portion 818 as shown in FIG. 8a. A
determination is then made at step 1304 as to whether underlay terrestrial frequencies are required in the spot beam. If not, the process ends at step 1306.
If terrestrial frequencies are required, then a determination is made at step 1308 as to whether frequencies are required in a central portion of the spot beam. If yes, then frequencies of other spot beams can be used in the central portion of the spot beam at step 1310, whereafter the method proceeds 2 0 to decision step 1312. If frequencies are not required in a central portion of the spot beam, then at decision step 1312 a determination is made as to whether terrestrial frequencies are required in any of the subareas. If yes, then at step 1314 frequencies are reused from the most distant spot beams relative to each required subarea (as previously discussed with regard to and indicated in FIG. 8a). At decision step 1316, a determination is made whether additional frequencies are required. If so, the process returns to decision step 1308. If not, the process ends at step 1306. , FIG. 14 is an exemplary flowchart illustrating a method by which frequencies can be assigned when they are equidistant from a cell or subarea to which they are assigned.
At decision step 1402, a determination is made whether the cell or coverage area to which the frequencies are to be assigned, reused and/or shared is substantially equidistant from the cell or coverage area from which they are 3 0 taken. If not, the frequencies associated with a cell or coverage area furthest away fiom the coverage area to which the frequencies are to be assigned, reused and/or shared are preferably used, as discussed with regard to FIG. 13. the process then ends at step 1406.
If the cell or coverage area to which the frequencies are to be assigned, reused and/or shared is substantially equidistant from the cell or coverage area from which they are taken, at decision step 3 5 1408 a time interval for which the frequencies can be borrowed can optionally be utilized. If a time interval is selected at decision step 1408, the time interval may consider, for example, historical usage patterns when evaluating excess capacity of equidistant cells at step 1412.
For example, with regard to FIG. 12, spot beams 1202 and 1208 are equidistant from subarea 1220. If, for the time period under consideration, spot beam 1208 has a historically higher usage than spot beam 1202, frequencies can first be borrowed from spot beam 1202. Other factors such as signal to interference ratio, and signal strength can also be used in determining the order in which frequencies are assigned, reused and/or shared. If a time interval is not used, then, at step 1412, the assignment, reuse and/or sharing determination is preferably based on, for example, current loading considerations. As discussed with regard to step 1412, other factors such as signal to interference ratio, and signal strength can also be used in determining the order in which frequencies are assigned, reused and/or shared. At step 1414, frequencies are assigned, reused or borrowed such that the probability that each cell from which frequencies are taken has substantially the same probability that frequencies will not be exhausted therein. When a time interval is selected at step 1410, step 1414 will generally take into consideration historical usage, as discussed above. When a time interval is not chosen, probabilities will generally be evaluated based upon, for example, current usage.
FIG. 15 is an exemplary flowchart illustrating a method by which frequencies can be dynamically assigned. At step 1502, frequency usage,is monitored within each spot beam and/or subarea. When, as determined at decision step 1504 that there are incoming calls, a determination is made at decision step 1506 whether sufficient channels are available. If so, then frequencies are allocated in accordance with existing channel assignments. If sufficient channels are not available, 2 0 then, at step 1510, frequencies are assigned, reused andlor shared to provide sufficient bandwidth. As discussed with regard to FIG. 14, one criteria by which frequencies can be assigned, reused and/or shared can be based on substantially equalizing the probability that each cell from which frequencies are borrowed frequencies will not be exhausted. As indicated at decision step 1512, channels can again be reassigned if, for example, interference levels are not acceptable. At step 1514, calls are allocated to 2 5 channels in accordance with updated channel assignments, after which the process either returns to step 1502 or terminates, as determined at decision step 1516.
FIG. 16 is an exemplary flowchart illustrating a method by which frequencies can be preemptively reassigned based on, for example, load balancing and/or capacity issues. At step 1602, frequency usage is monitored within each spot beam and/or subarea. When, as determined at decision 3 0 step 1604 that there are incoming calls, a determination is made at decision step 1606 whether sufficient channels are available. If so, then at step 1608 frequencies are allocated in accordance with existing channel assignments. If sufficient channels are not available, then, at step 1610, a time interval is selected. At step 1612, and based upon the time interval selected at step 1610, frequencies are assigned, reused and/or shared to provide sufficient bandwidth. As discussed with regard to FIG. 14, 3 5 one criteria by which frequencies can be assigned, reused andlor shared, based on a selected time interval, can be that of substantially equalizing the probability that each cell from which frequencies are borrowed frequencies will not be exhausted. This, in turn, can be based, for example, on historical usage patterns for the affected areas) and/or selected time interval. As indicated at decision step 1614, channels can again be reassigned at step 1612 if, for example, interference levels are not acceptable. At step 1616, calls axe allocated to channels in accordance with updated channel assignments, after which the process either returns to step 1602 or terminates, as determined at decision step 1618.
As shown in FIGs. 17a and 17b, one technique and alternative embodiment that may be practiced with the present invention is increasing the cluster size. This will generally minimize the interference between the satellite and terrestrial systems.
FIG. 17a shows a traditional GSM type of pattern of four cells with three sectors each. If instead, as shown in FIG. 17b, twenty-four channels are assigned across the cells, then one site in eight has the same frequency, as opposed to one site in four having the same frequency as with the traditional GSM pattern of FIG. 17a. Thus, the number of instances where the same frequency exists has been halved, and the amount of energy on an individual channel has also been reduced by approximately half. In this example, the interference between the satellite and terrestrial systems would be reduced by approximately 3 dB vis-a-vis the traditional GSM system.
Cross network interference occurs when a channel is utilized both in the terrestrial network and in the satellite network, either in the co-beam configuration or in the adjacent-beam configuration. The severity of such interference depends on the power received by the competing network. In particular, the terrestrial networks use or reuse an RF channel or channels many times in an area covered by a 2 0 given satellite spot beam or beams. Each occurrence of this channel gives rise to increased co-channel interference for the satellite network.
In the case of the co-beam configuration, the co-channel interference can be approximated by MI , where M is the number of times a channel is reused and 1 is the interference power of one source. For the adjacent-beam configuration the co-channel interference from one adjacent beam can 2 5 be approximated by aMl , where a accounts for the fraction of power leaked from the adjacent beam.
Thus, in both co-beam and adjacent beam configuration, the co-channel interference is directly proportional to the number of times a particular frequency is reused terrestrially.
Again with regard to FIGs. 17a and 17b, by increasing the cluster size for the terrestrial network, the reuse of a particular frequency is reduced. To illustrate the point, consider a terrestrial 3 0 network as shown in FIG. 17a that has 12 available RF channels for reuse with a cluster size of four and three sectors per cell site. In each terrestrial cluster, the skyward energy from one sector will or may interfere with all satellite co-channels in the adjacent spot beams (in the same spot beam for co-beam configuration). FIG. 17b shows a terrestrial network with 16 cell sites (48 sectors), each RF
channel is repeated four times in this network. In this same 16 site network, if twenty-four RF channels 3 5 are used, for example, in a cluster of 8, then the number of co-channel sectors is reduced from 4 to 2. In general, this type of tradeoff between bandwidth and interference can be employed with the present invention to reduce co-channel interference.
The frequency inversion technique, as shown in FIGs. 18a and 18b, involves reversing the satellite down-link (Fl) and satellite up-link (FZ) frequencies to become the terrestrial up-link ("return-5 link") and terrestrial down-link ("forward-link") frequencies, respectively.
As a result, there will be two possible interference paths, as shown in FIG. 19: (1) between the satellite 516 and base stations 1802, as return-link to down-link interference on Fl, and as up-link to forward-link interference on FZ;
and (2) between the satellite user terminals 1804 and terrestrial user terminals 1806, as down-link to return-link interference on Fl, and as forward-link to up-link interference on FZ. The system and 10 method according to the present invention eliminates or substantially reduces both of these possible interferences, as will be described herein. It should be understood that the system may comprise one or more base station antennas (and associated base stations) and one or more satellites, although only one of each are shown in FIG. 19. It should also be understood that the system may comprise one or more satellite handsets and one or more base station handsets, although only one of each are shown in FIG.
15 19.
As shown in FIG. 20, interference between the satellite 516 and base stations 1802 (i.e., return-link to down-link and up-link to forward-link interference) is substantially reduced or eliminated, preferably by using a base station antenna having a substantially reduced gain in the geostationary arc (i.e., the elevation angle above the horizon from a base station to the satellite). Unlike a user terminal 2 0 1804, 1806, which is mobile and may be oriented differently from user to user, a base station 1802 does not move and therefore forms a substantially fixed angular relationship with respect to the satellite. Within North America, the geostationary arc typically varies from approximately 30° to 70°, depending, for example, on the latitude of the base station. To fully~take advantage of this fact, it is preferred that the base station antenna pattern have a null, and therefore significantly reduced gain, in 2 5 the geostationaxy arc portion of its vertical pattern. As an analogy, one could consider the satellite to be in a "blind spot" with respect to the base station. The additional signal attenuation achieved from this technique substantially reduces or eliminates interference between the satellite and terrestrial base stations. This technique will facilitate terrestrial coverage and at the same time substantially reduce or eliminate interference to the satellite system.
3 0 To further enhance the performance of the system, a technique for optimally or substantially optimally locating and orienting base stations will preferably be used, to advantageously utilize the horizontal gain pattern of the antenna. The benefits of using this technique, for example, are that frequency reuse will be maximized or substantially maximized, thereby enhancing the overall capacity of the system, and further reducing or eliminating interference.
3 5 In addition to the increased isolation provided by the vertical antenna pattern, additional isolation can be obtained from the horizontal antenna pattern. For example, preferably by configuring base stations such that the azimuth to the satellite is off bore or between sectors, several additional dB
of isolation can typically be achieved. By keeping this configuration standard for, say, a cluster of base stations, frequency reuse for the terrestrial system can generally be increased.
Interference between satellite user terminals 1804 and terrestrial user terminals 1806 is typically a problem when the units are in relatively close proximity to one another. It is preferred that such interference be substantially reduced or eliminated by, for example, first detecting close proximity before the assignment of a radio channel (i.e., during call initialization), and secondly by providing a hand-off to a non-interfering channel if close proximity occurs after the assignment of a radio channel.
The call initialization method shown in FIG. 21 allows for real-time or near real-time operation of this technique.
The technique provides optimum or substantially optimum radio resource allocation so that the coexistence of single-mode terminals (satellite mode) and dual-mode terminals can be accomplished. In order for this to work, it is preferred that a relatively small group of channels, called "transition channels", as shown in FIG. 22, be reserved for single-mode terminals. The single-mode terminals preferably use transition channels while inside base station coverage. It is also preferred that dual-mode terminals also use the transition channels under certain circumstances, as will be described in detail herein.
As shown in FIG. 21, when a user places a call at step 2102, the user terminal will request a traffic channel from the network. It is preferred that, at step 2104, the network instruct the terminal to 2 0 make a series of measurements. If the terminal is single-mode, as determined at decision step 2106, it will, at step 2118, preferably scan satellite channels for signal strength and interference. If interference levels are acceptable, as determined at decision step 2116, and if a satellite channel is available, as determined at decision step 2126, then the terminal will preferably be assigned that channel at step 2124. If a satellite channel is not available, the terminal will preferably retry a fixed number of times, 2 5 as determined at decision step 2128, starting from the measurements, before the call is determined to be unsuccessful at step 2136. If interference levels are unacceptable, the terminal will preferably request a transition channel at step 2114. If a transition channel is available, as determined at decision step 2112, then the terminal will preferably be assigned that channel at step 2110. If a transition channel is not available, the terminal will preferably retry a fixed number of times starting from the 3 0 measurements, before the call is determined to be unsuccessful at step 2136.
If, as determined at decision step 2106, the terminal is dual-mode, it will preferably scan both satellite and base station channels for signal strength and interference at step 2108. If interference levels are unacceptable as determined at decision step 2122, the terminal will preferably request a transition channel at step 2120. If a transition channel is available as determined at decision step 2132, 3 5 then the terminal will preferably be assigned that channel at step 2134.
If a transition channel is not available, the terminal will preferably retry a predetermined number of times, as determined at decision step 2130, starting from the measurements, before the call is determined to be unsuccessful at step 2136. If interference is acceptable, the terminal will preferably request the system (i.e., satellite or base station) with the dominant signal, as determined at decision step 2140. If the terminal requests a satellite channel at step 2138, and one is available as determined at decision step 2142, then the terminal will preferably be assigned that channel at step 2144. If a satellite channel is not available, the terminal will preferably retry a fixed number of times starting from the measurements, as determined at decision step 2130, before the call is determined to be unsuccessful at step 2136. If the terminal requests a base station channel at step 2148, and one is available as determined at decision step 2146, then the terminal will preferably be assigned that channel at step 2150. If a base station channel is not available, the terminal will preferably retry a fixed number of times starting from the measurements, as determined at decision step 2130, before the call is determined to be unsuccessful at step 2136. It should be obvious to those skilled in the art that~many variations of the FIG.
21 are available that would accomplish the call initialization objective. For example, the specific sequence of steps may be altered or re-ordered, such that the overall functionality is substantially the same or similar. For example, the determination whether the user is in dual-mode may be juxtaposed after measuring satellite and base station channels.
FIG. 23 shows an exemplary method of satellite to base-station proximity-initiated hand-off.
As shown in FIG. 23, as a user terminal approaches a base station at step 2302, it will preferably alert the network of its proximity. If, as determined at decision step 2304, the terminal is single-mode, then 2 0 one of two things can generally happen. If, for example, the single-mode terminal is being served by a transition channel, as determined at decision step 2312, then hand-off is not required 2310. If, for example, the single-mode terminal is being served by a satellite channel, then a request to hand-off to a transition channel is preferably made at step 2318. If a transition channel is available as determined at decision step 2318, then the hand-off procedure preferably takes place at step 2326. If a transition 2 5 channel is not available, then the terminal preferably checks if its current interference level is acceptable at decision step 2334. If interference is acceptable, then the terminal preferably camps on the satellite at step 2336, preferably for a pre-specified period of time before another request to hand-off to a transition channel is made. If interference is not acceptable, the terminal preferably determines if another satellite channel is available for use at decision step 2346. If not, then the terminal preferably 3 0 camps on the channel at step 2336. If so, the terminal is preferably re-assigned to a new satellite channel at step 2348, which it camps on at step 2336, preferably for a pre-specified period of time before another request to hand-off to a transition channel is made at step 2318.
If the terminal is dual-mode, then a request to hand-off to a base station channel is preferably made at step 2306. If, as determined at decision step 2314, a base station channel is available, then the 3 5 hand-off procedure preferably takes place at step 2308. If a base station channel is not available, then a request to hand-off to a transition channel is preferably made at step 2320.
If, as determined at decision step 2330, a transition channel is not available, then the terminal preferably checks, at decision step 2340, if its current interference level is acceptable. If interference is acceptable, then the terminal preferably camps on the channel at step 2338, preferably for a pre-specified period of time before another request to hand-off to a base station channel.is made at step 2306. If interference is not acceptable, the terminal preferably determines at decision step 2352, if another satellite channel is available for use. If not, then the terminal preferably camps on the satellite at step 2338. If so, the terminal is preferably re-assigned to a new satellite channel at step 2350, which it preferably camps on for a pre-specified period of time at step 2338 before another request to hand-off to a base station channel is made at step 2306.
If the first attempt to hand-off to a transition channel was successful, then the terminal preferably camps on this channel at step 2316, preferably for a pre-specified period of time before comparing the signal levels of the transition channel and base station at decision step 2324. If the base station is not stronger by a pre-specified margin, then the terminal preferably camps on the transition channel at step 2316, preferably until the base station channel becomes the stronger channel. If the base station is stronger by a pre-specified margin, then a request to hand-off to a base station channel is preferably made at step 2332. If, as determined at decision step 2342, a base station channel is available, then the hand-off procedure preferably takes place at step 2356. If a base station channel is not available, then the terminal preferably camps on the transition channel at step 2316, preferably for a pre-specified period of time before comparing the signal levels of the transition channel and base 2 0 station again. It should be obvious to those skilled in the art that many variations of the FIG. 23 are available that would accomplish the satellite to base station hand-off objective. For example, the specific sequence of steps may be altered or re-ordered, such that the overall functionality is substantially the same or similar.
FIG. 24 shows an exemplary method of base station-to-satellite and base station-to-base station 2 5 proximity-initiated hand-off. As shown in FIG. 24 at step 2402, as a dual-mode terminal moves away from the base station it is served by, it will eventually take appropriate measures upon sensing a stronger channel, either from the satellite, another base station, or a system or device associated therewith. If, as determined at decision step 2404, a satellite channel is stronger than a neighboring base station channel, then a request to hand-off to a satellite channel is preferably made at step 2406.
3 0 If, as determined at decision step 2408, a satellite channel is available, then the hand-off procedure preferably takes place at step 2410. If a satellite channel is not available or if a neighboring base station channel is stronger than a satellite channel, then a request to hand-off to a base station channel is preferably made at step 2406. If, as determined at decision step 2414, a base station channel is available, then the hand-off procedure preferably takes place at step 2410. If a base station channel is 3 5 not available, then the terminal preferably camps on its current channel at step 2416, preferably for a pre-specified period of time before making measurement comparisons again at decision step 2404. It should be obvious to those skilled in the art that many variations of FIG. 24 are available that would accomplish the base station-to-satellite and base station-to-base station hand-off objectives. For example, the specific sequence of steps may be altered or re-ordered, such that the overall functionality is substantially the same or similar.
The many features and advantages of the invention are apparent from the detailed specification, and thus, it is intended by the appended claims to cover all such features and advantages of the invention which fall within the true spirit and scope of the invention.
Further, since numerous modifications and variations will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation illustrated and described, and accordingly, all suitable modifications and equivalents may be resorted to, falling within the scope of the invention. While the foregoing invention has been described in detail by way.of illustration and example of preferred embodiments, numerous modifications, substitutions, and alterations are possible without departing from the scope of the invention defined in the following claims.

Claims (27)

35
1. A method of operating a terrestrially-based wireless communications system having a terrestrial coverage area overlaid on a first satellite coverage area of a satellite-based wireless communications system having a plurality of satellite coverage areas, the method comprising:
reusing frequencies assigned to satellite coverage areas adjoining the first satellite coverage area in the terrestrial coverage area based on geographical separation between the terrestrial coverage area and the adjoining satellite coverage areas.
2. A method according to Claim 1, wherein reusing frequencies assigned to satellite coverage areas adjoining the first satellite coverage area in the terrestrial coverage area based on geographical separation between the terrestrial coverage area and the adjoining satellite coverage areas comprises preferentially reusing frequencies from those of the adjoining satellite coverage areas having greater geographical separation from the terrestrial coverage area in the terrestrial coverage area.
3. A method according to Claim 1, wherein the terrestrial coverage area is confined to a central portion of the first satellite coverage area, and wherein reusing frequencies assigned to satellite coverage areas adjoining the first satellite coverage area in the terrestrial coverage area based on geographical separation between the terrestrial coverage area and the adjoining satellite coverage areas comprises enabling reuse of all of the frequencies of the adjoining satellite coverage areas in the terrestrial coverage area.
4. A method according to Claim 3, wherein the terrestrial coverage area comprises about 25% or less of the first satellite coverage area.
5. A method according to Claim 1, wherein the terrestrial coverage area is nearest a first one of the adjoining satellite coverage areas, and wherein reusing frequencies assigned to satellite coverage areas adjoining the first satellite coverage area in the terrestrial coverage area based on geographical separation between the terrestrial coverage area and the adjoining satellite coverage areas comprises preferentially reusing frequencies from the adjoining satellite coverage areas other than the first one of the adjoining satellite coverage areas.
6. A method according to Claim 5, wherein the terrestrial coverage area comprises a first terrestrial coverage area disposed on a peripheral portion of the first satellite coverage area nearest the first one of the adjoining coverage areas and a second terrestrial coverage area confined to a central portion of the first satellite coverage area, and wherein reusing frequencies assigned to satellite coverage areas adjoining the first satellite coverage area in the terrestrial coverage area based on geographical separation between the terrestrial coverage area and the adjoining satellite coverage areas comprises:
preferentially reusing frequencies from adjoining satellite coverage areas other than the first one of the adjoining satellite coverage areas in the first terrestrial coverage area; and enabling reuse of all of the frequencies of the adjoining satellite coverage areas in the second terrestrial coverage area.
7. A method according to Claim 6, wherein the second terrestrial coverage area comprises about 25% or less of the first satellite coverage area.
8. A method according to Claim 6, wherein the first satellite coverage area comprises a plurality of peripheral areas adjoining respective ones of the adjoining satellite coverage areas and disposed around the central portion, wherein the first terrestrial coverage area is disposed in a first peripheral area of the plurality of peripheral areas, and wherein preferentially reusing frequencies from the adjoining satellite coverage other than the first one of the adjoining satellite coverage areas in the first terrestrial coverage area comprises preferentially reusing frequencies from the adjoining satellite coverage areas that do not adjoin the first peripheral area.
9. A method according to Claim 1, wherein the first satellite coverage area comprises a plurality of sectors adjoining respective ones of the adjoining satellite coverage areas, wherein the terrestrial coverage area is located in a first sector of the plurality of sectors of the first satellite coverage area, and wherein reusing frequencies assigned to satellite coverage areas adjoining the first satellite coverage area in the terrestrial coverage area based on geographical separation between the terrestrial coverage area and the adjoining satellite coverage areas comprises preferentially reusing frequencies from the adjoining satellite coverage areas that do not adjoin the first sector.
10. A method according to Claim 1, wherein reusing frequencies assigned to satellite coverage areas adjoining the first satellite coverage area in the terrestrial coverage area based on geographical separation between the terrestrial coverage area and the adjoining satellite coverage areas comprises reusing downlink and uplink frequencies of frequency pairs used in one of the adjoining satellite coverage areas in respective first and second terrestrial coverage areas overlaid on the first satellite coverage area.
11. ~A method according to Claim 1, wherein reusing frequencies assigned to satellite coverage areas adjoining the first satellite coverage area in the terrestrial coverage area based on geographical separation between the terrestrial coverage area and the adjoining satellite coverage areas comprises reusing frequencies assigned to satellite coverage areas adjoining the first satellite coverage area in the terrestrial coverage area based on geographical separation between the terrestrial coverage area and the adjoining satellite coverage areas and on at least one of a loading and a capacity constraint of the adjoining satellite coverage areas.
12. ~A method according to Claim 1, wherein reusing frequencies assigned to satellite coverage areas adjoining the first satellite coverage area in the terrestrial coverage area based on geographical separation between the terrestrial coverage area and the adjoining satellite coverage areas comprises reusing frequencies assigned to satellite coverage areas adjoining the first satellite coverage area in the terrestrial coverage area based on geographical separation between the terrestrial coverage area and the adjoining satellite coverage areas and on at least one of a load balancing criterion, a frequency reserve criterion and a signal interference criterion.
13. ~A method according to Claim 1, wherein the terrestrially-based wireless communications system comprises a terrestrial base station that serves the terrestrial coverage area.
14. ~A communications system, comprising:
a satellite-based wireless communications system having a plurality of satellite coverage areas; and a terrestrially-based wireless communications system having a terrestrial coverage area overlaid on a first satellite coverage area of the plurality of satellite coverage areas and that is configured to reuse frequencies assigned to satellite coverage areas adjoining the first satellite coverage area in the terrestrial coverage area based on geographical separation between the terrestrial coverage area and the adjoining satellite coverage areas.
15. ~A system according to Claim 14, wherein the terrestrially-based wireless communications system is configured to preferentially reuse frequencies from those of the adjoining satellite coverage areas having greater geographical separation from the terrestrial coverage area in the terrestrial coverage area.
16. A system according to Claim 14, wherein the terrestrial coverage area is confined to a central portion of the first satellite coverage area, and wherein the terrestrially-based wireless communications system is configured to enable reuse of all of the frequencies of the adjoining satellite coverage areas in the terrestrial coverage area.
17. A system according to Claim 16, wherein the terrestrial coverage area comprises about 25% or less of the first satellite coverage area.
18. A system according to Claim 14, wherein the terrestrial coverage area is nearest a first one of the adjoining satellite coverage areas, and wherein the terrestrially-based wireless communications system is configured to preferentially reuse frequencies from the adjoining satellite coverage areas other than the first one of the adjoining satellite coverage areas.
19. A system according to Claim 18, wherein the terrestrial coverage area comprises a first terrestrial coverage area disposed on a peripheral portion of the first satellite coverage area nearest the first one of the adjoining coverage areas and a second terrestrial coverage area confined to a central portion of the first satellite coverage area, and wherein the terrestrially-based wireless communications system is configured to preferentially reusing frequencies from adjoining satellite coverage areas other than the first one of the adjoining satellite coverage areas in the first terrestrial coverage area and to enable reuse of all of the frequencies of the adjoining satellite coverage areas in the second terrestrial coverage area.
20. A system according to Claim 19, wherein the second terrestrial coverage area comprises about 25% or less of the first satellite coverage area.
21. A system according to Claim 19, wherein the first satellite coverage area comprises a plurality of peripheral areas adjoining respective ones of the adjoining satellite coverage areas and disposed around the central portion, wherein the first terrestrial coverage area is disposed in a first peripheral area of the plurality of peripheral areas, and wherein the terrestrially-based wireless communications system is configured to preferentially reuse frequencies from the adjoining satellite coverage areas that do not adjoin the first peripheral area.
22. A system according to Claim 14, wherein the first satellite coverage area comprises a plurality of sectors adjoining respective ones of the adjoining satellite coverage areas, wherein the terrestrial coverage area is located in a first sector of the plurality of sectors of the first satellite coverage area, and wherein the terrestrially-based wireless communications system is configured to preferentially reuse frequencies from the adjoining satellite coverage areas that do not adjoin the first sector.
23. ~A system according to Claim 14, wherein the terrestrially-based wireless communications system is configured to reuse downlink and uplink frequencies of a frequency pair used in one of the adjoining satellite coverage areas in respective first and second terrestrial coverage areas overlaid on the first satellite coverage area.
24. ~A system according to Claim 14, wherein the terrestrially-based wireless communications system is configured to reuse frequencies assigned to satellite coverage areas adjoining the first satellite coverage area in the terrestrial coverage area based on geographical separation between the terrestrial coverage area and the adjoining satellite coverage areas on at least one of a loading and a capacity constraint of the adjoining satellite coverage areas.
25. ~A system according to Claim 14, wherein the terrestrially-based wireless communications system is configured to reuse frequencies assigned to satellite coverage areas adjoining the first satellite coverage area in the terrestrial coverage area based on geographical separation between the terrestrial coverage area and the adjoining satellite coverage areas and on at least one of a load balancing criterion, a frequency reserve criterion and a signal interference criterion.
26. ~A system according to Claim 14, wherein the terrestrially-based wireless communications system comprises a terrestrial base station that serves the terrestrial coverage area.
27. ~A system according to Claim 14, further comprising a network operations center operative to assign frequencies to the satellite-based wireless communications system and the terrestrially-based wireless communications system such that the terrestrially-based wireless communications system is configured to reuse frequencies assigned to satellite coverage areas adjoining the first satellite coverage area in the terrestrial coverage area based on geographical separation between the terrestrial coverage area and the adjoining satellite coverage areas.
CA002381811A 2000-08-02 2001-08-01 Coordinated satellite-terrestrial frequency reuse Expired - Lifetime CA2381811C (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US22260500P 2000-08-02 2000-08-02
US60/222,605 2000-08-02
US24519400P 2000-11-03 2000-11-03
US60/245,194 2000-11-03
US25046100P 2000-12-04 2000-12-04
US60/250,461 2000-12-04
PCT/US2001/024046 WO2002011302A2 (en) 2000-08-02 2001-08-01 Coordinated satellite-terrestrial frequency reuse

Publications (2)

Publication Number Publication Date
CA2381811A1 CA2381811A1 (en) 2002-02-07
CA2381811C true CA2381811C (en) 2007-01-30

Family

ID=27397115

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002381811A Expired - Lifetime CA2381811C (en) 2000-08-02 2001-08-01 Coordinated satellite-terrestrial frequency reuse

Country Status (7)

Country Link
US (7) US7149526B2 (en)
EP (1) EP1316233B1 (en)
AT (1) ATE527764T1 (en)
AU (2) AU8468801A (en)
CA (1) CA2381811C (en)
MX (1) MXPA02001964A (en)
WO (1) WO2002011302A2 (en)

Families Citing this family (229)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8914022B2 (en) 1992-03-06 2014-12-16 Gogo Llc System for providing high speed communications service in an airborne wireless cellular network
US7174127B2 (en) 1999-08-10 2007-02-06 Atc Technologies, Llc Data communications systems and methods using different wireless links for inbound and outbound data
US20030149986A1 (en) * 1999-08-10 2003-08-07 Mayfield William W. Security system for defeating satellite television piracy
US20070127553A1 (en) * 1999-08-13 2007-06-07 Viasat, Inc. Code Reuse Multiple Access For Satellite Return Link
US7027769B1 (en) 2000-03-31 2006-04-11 The Directv Group, Inc. GEO stationary communications system with minimal delay
US6388615B1 (en) * 2000-06-06 2002-05-14 Hughes Electronics Corporation Micro cell architecture for mobile user tracking communication system
US6756937B1 (en) 2000-06-06 2004-06-29 The Directv Group, Inc. Stratospheric platforms based mobile communications architecture
US7200360B1 (en) 2000-06-15 2007-04-03 The Directv Group, Inc. Communication system as a secondary platform with frequency reuse
US6725013B1 (en) 2000-06-15 2004-04-20 Hughes Electronics Corporation Communication system having frequency reuse in non-blocking manner
US6829479B1 (en) * 2000-07-14 2004-12-07 The Directv Group. Inc. Fixed wireless back haul for mobile communications using stratospheric platforms
US8265637B2 (en) * 2000-08-02 2012-09-11 Atc Technologies, Llc Systems and methods for modifying antenna radiation patterns of peripheral base stations of a terrestrial network to allow reduced interference
US7558568B2 (en) * 2003-07-28 2009-07-07 Atc Technologies, Llc Systems and methods for modifying antenna radiation patterns of peripheral base stations of a terrestrial network to allow reduced interference
US6859652B2 (en) 2000-08-02 2005-02-22 Mobile Satellite Ventures, Lp Integrated or autonomous system and method of satellite-terrestrial frequency reuse using signal attenuation and/or blockage, dynamic assignment of frequencies and/or hysteresis
CA2381811C (en) * 2000-08-02 2007-01-30 Mobile Satellite Ventures Lp Coordinated satellite-terrestrial frequency reuse
US6868269B1 (en) 2000-08-28 2005-03-15 The Directv Group, Inc. Integrating coverage areas of multiple transponder platforms
US6763242B1 (en) * 2000-09-14 2004-07-13 The Directv Group, Inc. Resource assignment system and method for determining the same
EP1321007A1 (en) * 2000-09-26 2003-06-25 Siemens Aktiengesellschaft Device and method for generating a co-existent communication systems
US7792488B2 (en) 2000-12-04 2010-09-07 Atc Technologies, Llc Systems and methods for transmitting electromagnetic energy over a wireless channel having sufficiently weak measured signal strength
US6891813B2 (en) * 2000-12-12 2005-05-10 The Directv Group, Inc. Dynamic cell CDMA code assignment system and method
GB2370452B (en) * 2000-12-19 2004-10-20 Inmarsat Ltd Communication method and apparatus
US7995989B2 (en) * 2000-12-29 2011-08-09 Globalstar, Inc. Method and apparatus providing suppression of system access by use of confidence polygons, volumes and surfaces in a mobile satellite system
US8396513B2 (en) * 2001-01-19 2013-03-12 The Directv Group, Inc. Communication system for mobile users using adaptive antenna
US7187949B2 (en) 2001-01-19 2007-03-06 The Directv Group, Inc. Multiple basestation communication system having adaptive antennas
US7308229B2 (en) * 2001-02-23 2007-12-11 Xanadoo Company System, apparatus and method for single-channel or multi-channel terrestrial communication
US7227850B2 (en) * 2001-04-04 2007-06-05 Telefonaktiebolaget Lm Ericsson (Publ) Cellular radio communication system with frequency reuse
US7209524B2 (en) * 2001-04-27 2007-04-24 The Directv Group, Inc. Layered modulation for digital signals
US20020159399A1 (en) * 2001-04-27 2002-10-31 Stephenson Gary V. Combined fixed satellite service and mobile platform satellite service communication system
US7173981B1 (en) * 2001-04-27 2007-02-06 The Directv Group, Inc. Dual layer signal processing in a layered modulation digital signal system
US7423987B2 (en) * 2001-04-27 2008-09-09 The Directv Group, Inc. Feeder link configurations to support layered modulation for digital signals
US7822154B2 (en) * 2001-04-27 2010-10-26 The Directv Group, Inc. Signal, interference and noise power measurement
US8005035B2 (en) * 2001-04-27 2011-08-23 The Directv Group, Inc. Online output multiplexer filter measurement
WO2004040820A2 (en) * 2001-04-27 2004-05-13 The Directv Group, Inc. Feeder link configurations to support layered modulation
US7245671B1 (en) * 2001-04-27 2007-07-17 The Directv Group, Inc. Preprocessing signal layers in a layered modulation digital signal system to use legacy receivers
US7583728B2 (en) * 2002-10-25 2009-09-01 The Directv Group, Inc. Equalizers for layered modulated and other signals
US7483505B2 (en) * 2001-04-27 2009-01-27 The Directv Group, Inc. Unblind equalizer architecture for digital communication systems
US7184489B2 (en) * 2001-04-27 2007-02-27 The Directv Group, Inc. Optimization technique for layered modulation
US7471735B2 (en) * 2001-04-27 2008-12-30 The Directv Group, Inc. Maximizing power and spectral efficiencies for layered and conventional modulations
US7639759B2 (en) * 2001-04-27 2009-12-29 The Directv Group, Inc. Carrier to noise ratio estimations from a received signal
US7502430B2 (en) * 2001-04-27 2009-03-10 The Directv Group, Inc. Coherent averaging for measuring traveling wave tube amplifier nonlinearity
US7151807B2 (en) * 2001-04-27 2006-12-19 The Directv Group, Inc. Fast acquisition of timing and carrier frequency from received signal
US6999720B2 (en) * 2001-09-14 2006-02-14 Atc Technologies, Llc Spatial guardbands for terrestrial reuse of satellite frequencies
US8270898B2 (en) * 2001-09-14 2012-09-18 Atc Technologies, Llc Satellite-band spectrum utilization for reduced or minimum interference
US7603081B2 (en) * 2001-09-14 2009-10-13 Atc Technologies, Llc Radiotelephones and operating methods that use a single radio frequency chain and a single baseband processor for space-based and terrestrial communications
US7593724B2 (en) * 2001-09-14 2009-09-22 Atc Technologies, Llc Systems and methods for terrestrial reuse of cellular satellite frequency spectrum in a time-division duplex mode
US7218931B2 (en) * 2001-09-14 2007-05-15 Atc Technologies, Llc Satellite radiotelephone systems providing staggered sectorization for terrestrial reuse of satellite frequencies and related methods and radiotelephone systems
US7603117B2 (en) 2001-09-14 2009-10-13 Atc Technologies, Llc Systems and methods for terrestrial use of cellular satellite frequency spectrum
US7181161B2 (en) * 2001-09-14 2007-02-20 Atc Technologies, Llc Multi-band/multi-mode satellite radiotelephone communications systems and methods
US7006789B2 (en) * 2001-09-14 2006-02-28 Atc Technologies, Llc Space-based network architectures for satellite radiotelephone systems
US7792069B2 (en) * 2001-09-14 2010-09-07 Atc Technologies, Llc Systems and methods for terrestrial reuse of cellular satellite frequency spectrum using different channel separation technologies in forward and reverse links
US7113778B2 (en) * 2001-09-14 2006-09-26 Atc Technologies, Llc Aggregate radiated power control for multi-band/multi-mode satellite radiotelephone communications systems and methods
US7890098B2 (en) * 2001-09-14 2011-02-15 Atc Technologies, Llc Staggered sectorization for terrestrial reuse of satellite frequencies
US7623859B2 (en) * 2001-09-14 2009-11-24 Atc Technologies, Llc Additional aggregate radiated power control for multi-band/multi-mode satellite radiotelephone communications systems and methods
US7664460B2 (en) 2001-09-14 2010-02-16 Atc Technologies, Llc Systems and methods for terrestrial reuse of cellular satellite frequency spectrum in a time-division duplex and/or frequency-division duplex mode
US7062267B2 (en) * 2001-09-14 2006-06-13 Atc Technologies, Llc Methods and systems for modifying satellite antenna cell patterns in response to terrestrial reuse of satellite frequencies
US7155340B2 (en) * 2001-09-14 2006-12-26 Atc Technologies, Llc Network-assisted global positioning systems, methods and terminals including doppler shift and code phase estimates
US7447501B2 (en) * 2001-09-14 2008-11-04 Atc Technologies, Llc Systems and methods for monitoring selected terrestrially used satellite frequency signals to reduce potential interference
US6785543B2 (en) 2001-09-14 2004-08-31 Mobile Satellite Ventures, Lp Filters for combined radiotelephone/GPS terminals
US7512094B1 (en) * 2001-10-30 2009-03-31 Sprint Communications Company L.P. System and method for selecting spectrum
US6907246B2 (en) * 2001-11-20 2005-06-14 Navini Networks, Inc. Method and system for reducing wireless multi-cell interferences through segregated channel assignments and segregated antenna beams
AUPR910301A0 (en) * 2001-11-26 2001-12-20 Marine-Watch Limited Satellite system for vessel identification
US7593691B2 (en) * 2002-02-12 2009-09-22 Atc Technologies, Llc Systems and methods for controlling a level of interference to a wireless receiver responsive to a power level associated with a wireless transmitter
US6856787B2 (en) 2002-02-12 2005-02-15 Mobile Satellite Ventures, Lp Wireless communications systems and methods using satellite-linked remote terminal interface subsystems
GB2385491B (en) 2002-02-15 2006-06-21 Inmarsat Ltd Carrier allocation
US6917344B2 (en) 2002-04-12 2005-07-12 Andrew Corporation System for isolating an auxiliary antenna from a main antenna mounted in a common antenna assembly
US7555028B2 (en) * 2002-05-03 2009-06-30 Sprint Spectrum L.P. Method and system for defining additional spread spectrum channels within a coverage area of an existing wireless network
US7769073B2 (en) * 2002-05-03 2010-08-03 Sprint Spectrum L.P. Method and system using overlapping frequency bands in a hybrid frequency reuse plan
US6937857B2 (en) * 2002-05-28 2005-08-30 Mobile Satellite Ventures, Lp Systems and methods for reducing satellite feeder link bandwidth/carriers in cellular satellite systems
US9125061B2 (en) * 2002-06-07 2015-09-01 Apple Inc. Systems and methods for channel allocation for forward-link multi-user systems
US8121605B2 (en) * 2002-06-27 2012-02-21 Globalstar, Inc. Resource allocation to terrestrial and satellite services
US7418060B2 (en) * 2002-07-01 2008-08-26 The Directv Group, Inc. Improving hierarchical 8PSK performance
ES2604453T3 (en) * 2002-07-03 2017-03-07 The Directv Group, Inc. Method and apparatus for layered modulation
AU2003282854A1 (en) * 2002-10-25 2004-05-25 The Directv Group, Inc. Method and apparatus for tailoring carrier power requirements according to availability in layered modulation systems
US7529312B2 (en) * 2002-10-25 2009-05-05 The Directv Group, Inc. Layered modulation for terrestrial ATSC applications
CA2503530C (en) * 2002-10-25 2009-12-22 The Directv Group, Inc. Lower complexity layered modulation signal processor
US7474710B2 (en) * 2002-10-25 2009-01-06 The Directv Group, Inc. Amplitude and phase matching for layered modulation reception
US7230480B2 (en) * 2002-10-25 2007-06-12 The Directv Group, Inc. Estimating the operating point on a non-linear traveling wave tube amplifier
US7463676B2 (en) * 2002-10-25 2008-12-09 The Directv Group, Inc. On-line phase noise measurement for layered modulation
US7420952B2 (en) 2002-10-28 2008-09-02 Mesh Dynamics, Inc. High performance wireless networks using distributed control
US7068975B2 (en) * 2002-11-26 2006-06-27 The Directv Group, Inc. Systems and methods for sharing uplink bandwidth among satellites in a common orbital slot
US7092708B2 (en) * 2002-12-12 2006-08-15 Atc Technologies, Llc Systems and methods for increasing capacity and/or quality of service of terrestrial cellular and satellite systems using terrestrial reception of satellite band frequencies
US7421342B2 (en) * 2003-01-09 2008-09-02 Atc Technologies, Llc Network-assisted global positioning systems, methods and terminals including doppler shift and code phase estimates
US7203490B2 (en) 2003-03-24 2007-04-10 Atc Technologies, Llc Satellite assisted push-to-send radioterminal systems and methods
US7444170B2 (en) * 2003-03-24 2008-10-28 Atc Technologies, Llc Co-channel wireless communication methods and systems using nonsymmetrical alphabets
KR20060014365A (en) * 2003-05-01 2006-02-15 모바일 새틀라이트 벤쳐스, 엘.피. Aggregate radiated power control for multi-band/multi-mode satellite radiotelephone communications systems and methods
US6879829B2 (en) * 2003-05-16 2005-04-12 Mobile Satellite Ventures, Lp Systems and methods for handover between space based and terrestrial radioterminal communications, and for monitoring terrestrially reused satellite frequencies at a radioterminal to reduce potential interference
US20040240525A1 (en) * 2003-05-29 2004-12-02 Karabinis Peter D. Wireless communications methods and apparatus using licensed-use system protocols with unlicensed-use access points
US8670705B2 (en) * 2003-07-30 2014-03-11 Atc Technologies, Llc Additional intra-and/or inter-system interference reducing systems and methods for satellite communications systems
US7340213B2 (en) * 2003-07-30 2008-03-04 Atc Technologies, Llc Intra- and/or inter-system interference reducing systems and methods for satellite communications systems
KR100532279B1 (en) * 2003-08-14 2005-11-29 삼성전자주식회사 System and method for assigning pseudo random noise code to pseudo satellite
US20050041619A1 (en) * 2003-08-22 2005-02-24 Karabinis Peter D. Wireless systems, methods and devices employing forward- and/or return-link carriers having different numbers of sub-band carriers
US7113743B2 (en) 2003-09-11 2006-09-26 Atc Technologies, Llc Systems and methods for inter-system sharing of satellite communications frequencies within a common footprint
JP2007507184A (en) 2003-09-23 2007-03-22 エイティーシー・テクノロジーズ,リミテッド・ライアビリティ・カンパニー Mobility management system and method in an overlaid mobile communication system
US7502429B2 (en) * 2003-10-10 2009-03-10 The Directv Group, Inc. Equalization for traveling wave tube amplifier nonlinearity measurements
US8442519B2 (en) * 2003-12-07 2013-05-14 Gogo Llc Spectrum sharing between an aircraft-based air-to-ground communication system and existing geostationary satellite services
US7650379B2 (en) * 2003-12-09 2010-01-19 Viasat, Inc. Method for channel congestion management
US8380186B2 (en) * 2004-01-22 2013-02-19 Atc Technologies, Llc Satellite with different size service link antennas and radioterminal communication methods using same
WO2005086516A1 (en) * 2004-03-05 2005-09-15 Ntt Docomo, Inc. Frequency channel assigning system, base station, control station, inter-system common control apparatus, frequency channel assigning method and control method
US8655398B2 (en) * 2004-03-08 2014-02-18 Atc Technologies, Llc Communications systems and methods including emission detection
US7418236B2 (en) * 2004-04-20 2008-08-26 Mobile Satellite Ventures, Lp Extraterrestrial communications systems and methods including ancillary extraterrestrial components
US7453920B2 (en) 2004-03-09 2008-11-18 Atc Technologies, Llc Code synchronization in CDMA satellite wireless communications system using uplink channel detection
US7933552B2 (en) * 2004-03-22 2011-04-26 Atc Technologies, Llc Multi-band satellite and/or ancillary terrestrial component radioterminal communications systems and methods with combining operation
JP2005286943A (en) * 2004-03-31 2005-10-13 Nec Corp Cellular phone base station rental service system, method, program, recording medium and cellular phone base station device
US11451275B2 (en) 2004-04-02 2022-09-20 Rearden, Llc System and method for distributed antenna wireless communications
US7606590B2 (en) 2004-04-07 2009-10-20 Atc Technologies, Llc Satellite/hands-free interlock systems and/or companion devices for radioterminals and related methods
US7636566B2 (en) 2004-04-12 2009-12-22 Atc Technologies, Llc Systems and method with different utilization of satellite frequency bands by a space-based network and an ancillary terrestrial network
US20050239399A1 (en) * 2004-04-21 2005-10-27 Karabinis Peter D Mobile terminals and set top boxes including multiple satellite band service links, and related systems and methods
US8265549B2 (en) * 2004-05-18 2012-09-11 Atc Technologies, Llc Satellite communications systems and methods using radiotelephone
US20050260984A1 (en) * 2004-05-21 2005-11-24 Mobile Satellite Ventures, Lp Systems and methods for space-based use of terrestrial cellular frequency spectrum
US7508840B2 (en) 2004-05-28 2009-03-24 Bae Systems Information And Electronic Systems Integration Inc. Mobile temporary incident area network for local communications interoperability
WO2006012348A2 (en) * 2004-06-25 2006-02-02 Atc Technologies, Llc Method and system for frequency translation on-board a communications satellite
BRPI0514246A (en) 2004-08-11 2008-06-03 Atc Tech Llc method of operating a first and / or second communication system, radiotherapy, communications system, and method for operating a radiotherapy
US20060094420A1 (en) * 2004-11-02 2006-05-04 Karabinis Peter D Multi frequency band/multi air interface/multi spectrum reuse cluster size/multi cell size satellite radioterminal communicaitons systems and methods
US7639981B2 (en) * 2004-11-02 2009-12-29 Atc Technologies, Llc Apparatus and methods for power control in satellite communications systems with satellite-linked terrestrial stations
AU2005307841B2 (en) 2004-11-16 2010-03-25 Atc Technologies, Llc Satellite communications systems, components and methods for operating shared satellite gateways
US7747229B2 (en) * 2004-11-19 2010-06-29 Atc Technologies, Llc Electronic antenna beam steering using ancillary receivers and related methods
US7454175B2 (en) * 2004-12-07 2008-11-18 Atc Technologies, Llc Broadband wireless communications systems and methods using multiple non-contiguous frequency bands/segments
US8594704B2 (en) 2004-12-16 2013-11-26 Atc Technologies, Llc Location-based broadcast messaging for radioterminal users
BRPI0514916A (en) 2005-01-05 2008-06-24 Atc Tech Llc communication method, system, interference reducer detector for a satellite communication system, portal for a wireless satellite terminal system, interference reducer, one-component transmitter, radiotherminal, and, interference reduction method
US7596111B2 (en) * 2005-01-27 2009-09-29 Atc Technologies, Llc Satellite/terrestrial wireless communications systems and methods using disparate channel separation codes
US7738837B2 (en) * 2005-02-22 2010-06-15 Atc Technologies, Llc Satellites using inter-satellite links to create indirect feeder link paths
US7636546B2 (en) * 2005-02-22 2009-12-22 Atc Technologies, Llc Satellite communications systems and methods using diverse polarizations
EP1851877A2 (en) * 2005-02-22 2007-11-07 ATC Technologies, LLC Reusing frequencies of a fixed and/or mobile communications system
US7756490B2 (en) * 2005-03-08 2010-07-13 Atc Technologies, Llc Methods, radioterminals, and ancillary terrestrial components for communicating using spectrum allocated to another satellite operator
US7796986B2 (en) * 2005-03-11 2010-09-14 Atc Technologies, Llc Modification of transmission values to compensate for interference in a satellite down-link communications
US7627285B2 (en) * 2005-03-14 2009-12-01 Atc Technologies, Llc Satellite communications systems and methods with distributed and/or centralized architecture including ground-based beam forming
WO2006099501A1 (en) * 2005-03-15 2006-09-21 Atc Technologies, Llc Methods and systems providing adaptive feeder links for ground based beam forming and related systems and satellites
US7634229B2 (en) * 2005-03-15 2009-12-15 Atc Technologies, Llc Intra-system and/or inter-system reuse of feeder link frequencies including interference suppression systems and methods
US7453396B2 (en) * 2005-04-04 2008-11-18 Atc Technologies, Llc Radioterminals and associated operating methods that alternate transmission of wireless communications and processing of global positioning system signals
US7634277B2 (en) 2005-04-28 2009-12-15 Cisco Technology, Inc. Method for allocating channel resources for improving frequency utilization efficiency of wireless communication systems
US7817967B2 (en) * 2005-06-21 2010-10-19 Atc Technologies, Llc Communications systems including adaptive antenna systems and methods for inter-system and intra-system interference reduction
US7970345B2 (en) 2005-06-22 2011-06-28 Atc Technologies, Llc Systems and methods of waveform and/or information splitting for wireless transmission of information to one or more radioterminals over a plurality of transmission paths and/or system elements
US7907944B2 (en) * 2005-07-05 2011-03-15 Atc Technologies, Llc Methods, apparatus and computer program products for joint decoding of access probes in a CDMA communications system
US7583935B2 (en) * 2005-07-08 2009-09-01 Telcom Ventures, Llc Method and system for mitigating co-channel interference
US8190114B2 (en) * 2005-07-20 2012-05-29 Atc Technologies, Llc Frequency-dependent filtering for wireless communications transmitters
US7623867B2 (en) * 2005-07-29 2009-11-24 Atc Technologies, Llc Satellite communications apparatus and methods using asymmetrical forward and return link frequency reuse
US7461756B2 (en) * 2005-08-08 2008-12-09 Plastipak Packaging, Inc. Plastic container having a freestanding, self-supporting base
US7831202B2 (en) 2005-08-09 2010-11-09 Atc Technologies, Llc Satellite communications systems and methods using substantially co-located feeder link antennas
DE102005037867A1 (en) * 2005-08-10 2007-02-15 Siemens Ag Mobile radio communication method for e.g. 3G plus system, involves allocating radio zones to radio resources according to which radio station uses entire frequency band for central zone and parts of frequency bands for other zones
US20070123252A1 (en) * 2005-10-12 2007-05-31 Atc Technologies, Llc Systems, methods and computer program products for mobility management in hybrid satellite/terrestrial wireless communications systems
EP1969745A2 (en) * 2006-01-03 2008-09-17 Telcom Ventures, L.L.C. Use of timing and synchronization of an orthogonal frequency division multiplex in combined satellite-terrestrial network
WO2007084681A1 (en) * 2006-01-20 2007-07-26 Atc Technologies, Llc Systems and methods for satellite forward link transmit diversity using orthogonal space coding
US7949344B1 (en) 2006-02-13 2011-05-24 Wireless Strategies, Inc. Uncoordinated microwave paths in coordinated frequency bands
US8705436B2 (en) * 2006-02-15 2014-04-22 Atc Technologies, Llc Adaptive spotbeam broadcasting, systems, methods and devices for high bandwidth content distribution over satellite
US7751823B2 (en) * 2006-04-13 2010-07-06 Atc Technologies, Llc Systems and methods for controlling a level of interference to a wireless receiver responsive to an activity factor associated with a wireless transmitter
US8923850B2 (en) 2006-04-13 2014-12-30 Atc Technologies, Llc Systems and methods for controlling base station sectors to reduce potential interference with low elevation satellites
FI20065269A0 (en) * 2006-04-26 2006-04-26 Nokia Corp Spectrum utilization in a radio system
US9014619B2 (en) 2006-05-30 2015-04-21 Atc Technologies, Llc Methods and systems for satellite communications employing ground-based beam forming with spatially distributed hybrid matrix amplifiers
US8169955B2 (en) 2006-06-19 2012-05-01 Atc Technologies, Llc Systems and methods for orthogonal frequency division multiple access (OFDMA) communications over satellite links
WO2008027109A2 (en) * 2006-06-29 2008-03-06 Atc Technologies, Llc Apparatus and methods for mobility management in hybrid terrestrial-satellite mobile communications systems
US8538323B2 (en) * 2006-09-26 2013-09-17 Viasat, Inc. Satellite architecture
US8208422B2 (en) * 2006-09-26 2012-06-26 Viasat, Inc. Intra-domain load balancing
US8107875B2 (en) * 2006-09-26 2012-01-31 Viasat, Inc. Placement of gateways near service beams
US8230464B2 (en) * 2006-09-26 2012-07-24 Viasat, Inc. DOCSIS MAC chip adapted
US8189501B2 (en) * 2006-09-26 2012-05-29 Viasat, Inc. Multiple MAC domains
WO2008108885A2 (en) 2006-09-26 2008-09-12 Viasat, Inc. Improved spot beam satellite systems
US8077652B2 (en) * 2006-10-03 2011-12-13 Viasat, Inc. MF-TDMA frequency hopping
US20090298423A1 (en) * 2006-10-03 2009-12-03 Viasat, Inc. Piggy-Back Satellite Payload
WO2008097367A2 (en) * 2006-10-03 2008-08-14 Viasat, Inc. Forward satellite link with sub-channels
CN101237278A (en) * 2007-01-30 2008-08-06 西门子通信技术(北京)有限公司 Method, system, relay station and base station for transmitting data in mobile communication
CN101663834B (en) 2007-03-27 2017-08-04 Telcom投资有限责任公司 For the method and system for the spectrum efficiency for improving data link
US8095145B2 (en) * 2007-03-27 2012-01-10 Telcom Ventures, Llc Method and system of distributing transmissions in a wireless data transmission system
US7792070B1 (en) 2007-04-13 2010-09-07 Douglas Burr Multi-beam satellite network to maximize bandwidth utilization
US8031646B2 (en) * 2007-05-15 2011-10-04 Atc Technologies, Llc Systems, methods and devices for reusing spectrum of another operator
US8064824B2 (en) * 2007-07-03 2011-11-22 Atc Technologies, Llc Systems and methods for reducing power robbing impact of interference to a satellite
US8010043B2 (en) 2007-07-20 2011-08-30 Viasat, Inc. Capacity maximization for a unicast spot beam satellite system
US20090289839A1 (en) * 2007-09-26 2009-11-26 Viasat, Inc Dynamic Sub-Channel Sizing
GB0721307D0 (en) * 2007-10-30 2007-12-12 Nokia Siemens Networks Oy Measuring apparatus
WO2009076994A1 (en) * 2007-12-14 2009-06-25 Telefonaktiebolaget Lm Ericsson (Publ) Adaptive radio repeaters
US7978135B2 (en) * 2008-02-15 2011-07-12 Atc Technologies, Llc Antenna beam forming systems/methods using unconstrained phase response
US8433241B2 (en) 2008-08-06 2013-04-30 Atc Technologies, Llc Systems, methods and devices for overlaid operations of satellite and terrestrial wireless communications systems
US8411798B2 (en) * 2008-11-05 2013-04-02 Viasat, Inc. Reducing receiver power dissipation
US8193975B2 (en) 2008-11-12 2012-06-05 Atc Technologies Iterative antenna beam forming systems/methods
US7969923B2 (en) 2008-11-14 2011-06-28 Dbsd Satellite Services G.P. Asymmetric TDD in flexible use spectrum
US8339308B2 (en) * 2009-03-16 2012-12-25 Atc Technologies Llc Antenna beam forming systems, methods and devices using phase adjusted least squares beam forming
US9276663B2 (en) * 2009-04-17 2016-03-01 Viasat, Inc. Layer-2 connectivity from switch to access node/gateway
JP5526803B2 (en) * 2009-05-29 2014-06-18 ソニー株式会社 COMMUNICATION DEVICE, COMMUNICATION CONTROL METHOD, AND PROGRAM
JP5396637B2 (en) * 2009-05-29 2014-01-22 独立行政法人情報通信研究機構 Terrestrial / satellite mobile phone system
US8520561B2 (en) 2009-06-09 2013-08-27 Atc Technologies, Llc Systems, methods and network components that provide different satellite spot beam return carrier groupings and reuse patterns
MX2012002210A (en) 2009-09-28 2012-03-19 Atc Tech Llc Systems and methods for adaptive interference cancellation beamforming.
US9236934B1 (en) 2009-10-16 2016-01-12 Viasat, Inc. Satellite system architecture for coverage areas of disparate demand
US10110288B2 (en) * 2009-11-04 2018-10-23 Atc Technologies, Llc Frequency division duplex (FDD) return link transmit diversity systems, methods and devices using forward link side information
EP2522087B8 (en) * 2010-01-04 2016-08-03 Thrane & Thrane A/S A terminal and a method for communicating simultaneously on two frequencies
US8274925B2 (en) 2010-01-05 2012-09-25 Atc Technologies, Llc Retaining traffic channel assignments for satellite terminals to provide lower latency communication services
US8745091B2 (en) * 2010-05-18 2014-06-03 Integro, Inc. Electronic document classification
US8577330B2 (en) * 2010-09-14 2013-11-05 Empire Technology Development Llc Prediction of mobile bandwidth and usage requirements
US9204316B2 (en) 2011-09-30 2015-12-01 Blackberry Limited Enhancement and improvement for hetnet deployments
US8964672B2 (en) * 2011-11-04 2015-02-24 Blackberry Limited Paging in heterogeneous networks with discontinuous reception
US8885509B2 (en) 2011-11-04 2014-11-11 Blackberry Limited Paging in heterogeneous networks using restricted subframe patterns
US8976764B2 (en) 2011-11-04 2015-03-10 Blackberry Limited Accommodating semi-persistent scheduling in heterogeneous networks with restricted subframe patterns
JP6064154B2 (en) 2011-12-08 2017-01-25 ヴィアサット, インコーポレイテッドViaSat, Inc. Interference management in hub-and-spoke spot beam satellite communication systems
US9577704B2 (en) * 2012-03-01 2017-02-21 The Boeing Company Satellite communications management system
US9042295B1 (en) 2012-03-01 2015-05-26 The Boeing Company Transponded anti-jam satellite communications
US8805275B2 (en) 2012-06-11 2014-08-12 Viasat Inc. Robust beam switch scheduling
CN104380782B (en) * 2012-07-02 2018-06-29 罗克韦尔柯林斯公司 Suitable for providing the terrestrial communication networks of air to surface connection
FR2997255B1 (en) * 2012-10-18 2014-12-26 Thales Sa SATELLITE TELECOMMUNICATION SYSTEM FOR ENSURING STAR TRAFFIC AND MESH TRAFFIC
US11050468B2 (en) * 2014-04-16 2021-06-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US10194346B2 (en) 2012-11-26 2019-01-29 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10164698B2 (en) 2013-03-12 2018-12-25 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US20150079977A1 (en) * 2013-09-16 2015-03-19 Electronics And Telecommunications Research Institute Apparatus and method of dynamically managing resources for interference control of satellite and terrestrial integrated communication system
USD748037S1 (en) * 2013-12-22 2016-01-26 Andrew Simon Filo Self-propelled and spin stabilized fempto satellite with a dual asymmetrical bifurcated dipole antennae kicker
KR20150078189A (en) * 2013-12-30 2015-07-08 한국전자통신연구원 Method and apparatus for mitigating satellite downlink interference of satellite and terrestrial integrated system
GB2523791B (en) 2014-03-05 2018-12-26 Inmarsat Global Ltd Combined satellite and terrestrial communication system
US9813151B2 (en) 2014-08-05 2017-11-07 Massachusetts Institute Of Technology Free-space optical communication module for small satellites
US9520045B2 (en) * 2014-09-02 2016-12-13 Apple Inc. Establishment and detection of breakage of wireless leash between devices
WO2016112286A1 (en) 2015-01-09 2016-07-14 Massachusetts Institute Of Technology Link architecture and spacecraft terminal for high rate direct to earth optical communications
KR102212412B1 (en) 2015-02-17 2021-02-04 한국전자통신연구원 Appratus and method for uplink power control of satellite and terrestrial integrated communication system
US10128949B2 (en) 2015-02-27 2018-11-13 Massachusetts Institute Of Technology Methods, systems, and apparatus for global multiple-access optical communications
US10397920B2 (en) * 2016-01-22 2019-08-27 Space Systems/Loral, Llc Satellite diversity
US10136438B2 (en) 2016-01-22 2018-11-20 Space Systems/Loral, Inc. Flexible bandwidth assignment to spot beams
CA3017923C (en) * 2016-03-04 2022-04-26 Hughes Network Systems, Llc Approaches for achieving improved capacity plans for a satellite communications system via interleaved beams from multiple satellites
US9800376B1 (en) * 2016-04-12 2017-10-24 Hughes Network Systems, L.L.C. Frequency reuse efficiency via interference avoidance for multi-beam satellite communications network
US10149200B2 (en) * 2016-06-07 2018-12-04 Iridium Satellite Llc Interference mitigation for a satellite network
WO2018160842A1 (en) 2017-03-02 2018-09-07 Viasat, Inc. Dynamic satellite beam assignment
EP3688887B1 (en) 2017-11-02 2022-01-19 Intelsat US LLC Methods and systems for increasing bandwidth efficiency in satellite communications
US11272373B2 (en) * 2018-01-26 2022-03-08 Hughes Network Systems, Llc System and methods for spectrum sharing between satellite and terrestrial communication systems
EP3518437A1 (en) * 2018-01-29 2019-07-31 Ses S.A. Satellite communications method and system with multi-beam precoding
WO2019152231A1 (en) * 2018-02-05 2019-08-08 Telcom Ventures, Llc Interference mitigation technique for a mss system from an inverted terrestrial frequency bwa reuse
USD925433S1 (en) * 2018-02-11 2021-07-20 Andrew Simon Filo Fempto satellite
WO2019166686A1 (en) * 2018-03-02 2019-09-06 Nokia Technologies Oy Radio link setup signaling in cellular system
US10560562B1 (en) 2018-05-09 2020-02-11 Darpan Tandon Multi-mode smartphone or mobile computing device
USD910608S1 (en) 2018-05-09 2021-02-16 Darpan Tandon Smartphone
WO2021038012A1 (en) * 2019-08-29 2021-03-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for controlling resources of at least two different radio access technology networks and controller
WO2022023507A1 (en) * 2020-07-31 2022-02-03 Sony Group Corporation Methods, communictions devices, and non-terrestrial infrastructure equipment
US11304253B1 (en) 2021-01-16 2022-04-12 Skylo Technologies, Inc. Coordinated transmissions over a transient roving wireless communication channel
US11277201B1 (en) * 2021-03-14 2022-03-15 Skylo Technologies, Inc. Coordinated satellite and terrestrial channel utilization
CN113242088B (en) * 2021-06-22 2022-12-09 上海航天电子通讯设备研究所 Dynamic configuration method for VDE-SAT system communication coverage
US11799544B1 (en) 2022-06-02 2023-10-24 Skylo Technologies, Inc. Assignment of satellite beam allocations for the scheduled wireless communication between wireless devices and a base station
IL296107B1 (en) * 2022-08-31 2024-01-01 Commcrete Ltd System and method of augmenting terrestrial communication
CN116318353A (en) * 2023-03-10 2023-06-23 中国电信股份有限公司卫星通信分公司 Communication method of communication satellite terminal and storage medium

Family Cites Families (245)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3963990A (en) * 1974-02-27 1976-06-15 Communications Satellite Corporation (Comsat) Interference reduction circuit
US4144496A (en) * 1976-03-17 1979-03-13 Harris Corporation Mobile communication system and method employing frequency reuse within a geographical service area
US4119964A (en) 1976-10-28 1978-10-10 Nasa Systems and methods for determining radio frequency interference
US4108561A (en) * 1977-05-05 1978-08-22 Caterpillar Tractor Co. Apparatus for forcibly engaging machine assemblies
US4168496A (en) 1977-10-05 1979-09-18 Lichtblau G J Quasi-stationary noise cancellation system
US4292685A (en) 1978-05-31 1981-09-29 Lee Lin Shan Apparatus and method for controlling crosspolarization of signals in a frequency reuse system
US4506383A (en) * 1980-01-04 1985-03-19 Harris Corporation Method and apparatus for relaying signals between a ground station and a satellite using a ground relay station
US4425639A (en) * 1981-01-12 1984-01-10 Bell Telephone Laboratories, Incorporated Satellite communications system with frequency channelized beams
US4396948A (en) 1981-02-11 1983-08-02 Rca Corporation Dual mode horizontal deflection circuit
EP0144665B1 (en) * 1983-12-08 1988-05-25 ANT Nachrichtentechnik GmbH Method and system for establishing a telephone connection with a mobile suscriber
US5303286A (en) * 1991-03-29 1994-04-12 Space Systems/Loral, Inc. Wireless telephone/satellite roaming system
US4823341A (en) * 1986-08-14 1989-04-18 Hughes Aircraft Company Satellite communications system having frequency addressable high gain downlink beams
US4879711A (en) 1986-08-14 1989-11-07 Hughes Aircraft Company Satellite communications system employing frequency reuse
US4819227A (en) * 1986-08-14 1989-04-04 Hughes Aircraft Company Satellite communications system employing frequency reuse
US4901307A (en) * 1986-10-17 1990-02-13 Qualcomm, Inc. Spread spectrum multiple access communication system using satellite or terrestrial repeaters
DE3644176A1 (en) * 1986-12-23 1988-07-14 Messerschmitt Boelkow Blohm METHOD FOR TRANSMITTING DATA BY MEANS OF A GEOSTATIONAL SATELLITE AND AT LEAST A SUBSATELLITE
US4870408A (en) 1987-04-30 1989-09-26 Motorola, Inc. Method for dynamically allocating data channels on a trunked communication system
US4979170A (en) 1988-01-19 1990-12-18 Qualcomm, Inc. Alternating sequential half duplex communication system
US4956875A (en) 1988-07-05 1990-09-11 Com-Ser Laboratories, Inc. Emergency radio alerting and message transmitting system directable to selected classes and numbers of receivers
IL91529A0 (en) * 1988-10-28 1990-04-29 Motorola Inc Satellite cellular telephone and data communication system
US5073971A (en) 1989-09-05 1991-12-17 Motorola, Inc. Cellular radiotelephone communications system
US5010317A (en) * 1989-11-30 1991-04-23 Motorola, Inc. Satellite based simulcast paging system
JP2724914B2 (en) * 1990-02-27 1998-03-09 モトローラ・インコーポレーテッド Shared carrier frequency hopping
US5257398A (en) 1990-02-27 1993-10-26 Motorola, Inc. Hopped-carrier dynamic frequency reuse
US5327572A (en) * 1990-03-06 1994-07-05 Motorola, Inc. Networked satellite and terrestrial cellular radiotelephone systems
US5835857A (en) 1990-03-19 1998-11-10 Celsat America, Inc. Position determination for reducing unauthorized use of a communication system
US5446756A (en) * 1990-03-19 1995-08-29 Celsat America, Inc. Integrated cellular communications system
US5073900A (en) * 1990-03-19 1991-12-17 Mallinckrodt Albert J Integrated cellular communications system
US5878329A (en) * 1990-03-19 1999-03-02 Celsat America, Inc. Power control of an integrated cellular communications system
US5247699A (en) 1990-04-12 1993-09-21 Telefonaktiebolaget L M Ericsson Cellular frequency reuse cell plan
US5093925A (en) * 1990-04-25 1992-03-03 Motorola, Inc. Three dimensional cellular communication system with coordinate offset and frequency reuse
US5044006A (en) 1990-04-27 1991-08-27 Cyrulnik Reuven A Microwave frequency modulation of x-ray beam for radio therapy treatment system
US5081703A (en) * 1990-06-27 1992-01-14 Pactel Corporation Satellite mobile communication system for rural service areas
CA2023053C (en) * 1990-08-10 1994-06-28 Frank D. Benner Method for assigning telecommunications channels in a cellular telephone system
US5555550A (en) * 1990-10-01 1996-09-10 Motorola, Inc. Keypad apparatus with integral display indicators
US5276908A (en) * 1990-10-25 1994-01-04 Northern Telecom Limited Call set-up and spectrum sharing in radio communication on systems with dynamic channel allocation
US5216427A (en) * 1990-11-01 1993-06-01 California Institute Of Technology Land-mobile satellite communication system
JP2809872B2 (en) * 1990-11-29 1998-10-15 松下電器産業株式会社 Mobile communication device
US5355520A (en) 1990-11-30 1994-10-11 Motorola, Inc. In-building microwave communication system permits frequency refuse with external point-to-point microwave systems
US5703874A (en) 1990-12-05 1997-12-30 Interdigital Technology Corporation Broadband CDMA overlay system and method
US5351269A (en) 1990-12-05 1994-09-27 Scs Mobilecom, Inc. Overlaying spread spectrum CDMA personal communications system
US5193101A (en) * 1991-02-04 1993-03-09 Motorola, Inc. On-site system frequency sharing with trunking systems using spread spectrum
US5208829A (en) * 1991-03-26 1993-05-04 Hughes Aircraft Company Communication satellite system having an increased power output density per unit of bandwidth
US5142691A (en) 1991-04-05 1992-08-25 Motorola, Inc. Frequency management system
CA2078932C (en) 1991-10-10 2003-12-02 Robert A. Wiedeman Satellite telecommunications system using network coordinating gateways operative with a terrestrial communication system
US5526404A (en) * 1991-10-10 1996-06-11 Space Systems/Loral, Inc. Worldwide satellite telephone system and a network coordinating gateway for allocating satellite and terrestrial gateway resources
US6067442A (en) * 1991-10-10 2000-05-23 Globalstar L.P. Satellite communications system having distributed user assignment and resource assignment with terrestrial gateways
JP2643689B2 (en) * 1991-10-21 1997-08-20 松下電器産業株式会社 Channel allocation method in microcellular system
US5625878A (en) * 1991-11-11 1997-04-29 Nokia Telecommunications Oy Method of allocating radio channels
IL100029A (en) * 1991-11-11 1994-02-27 Motorola Inc Method and apparatus for improving detection of data bits in a slow frequency hopping communication system
CA2098580C (en) * 1991-11-11 1999-05-11 Reuven Meidan Method and apparatus for reducing interference in a radio communication link of a cellular communication system
US5198730A (en) * 1992-01-29 1993-03-30 Vancil Bernard K Color display tube
GB2270239B (en) * 1992-02-06 1996-09-04 Motorola Inc Frequency sharing in multiple radiotelephone systems
US5878346A (en) * 1992-03-06 1999-03-02 Aircell Incorporated Nonterrestrial cellular mobile telecommunication network
IL103620A0 (en) * 1992-11-03 1993-04-04 Rafael Armament Dev Authority Spread-spectrum,frequency-hopping radiotelephone system
US5887261A (en) * 1992-03-31 1999-03-23 Motorola, Inc. Method and apparatus for a radio remote repeater in a digital cellular radio communication system
US5455961A (en) 1992-04-01 1995-10-03 Nec Corporation Telecommunication system with increased channels by use of orbiting communication satellites
US5752164A (en) * 1992-04-27 1998-05-12 American Pcs L.P. Autonomous remote measurement unit for a personal communications service system
US5423084A (en) * 1992-05-11 1995-06-06 Motorola, Inc. Spectrum recovery apparatus and method therefor
US5559866A (en) 1992-06-01 1996-09-24 Motorola, Inc. Method of reuse through remote antenna and same channel cell division
US5268694A (en) 1992-07-06 1993-12-07 Motorola, Inc. Communication system employing spectrum reuse on a spherical surface
US5367304A (en) 1992-07-06 1994-11-22 Motorola, Inc. Communication system employing spectrum reuse on a spherical surface
US5303287A (en) * 1992-08-13 1994-04-12 Hughes Aircraft Company Integrated personal/cellular communications system architecture
CA2105710A1 (en) * 1992-11-12 1994-05-13 Raymond Joseph Leopold Network of hierarchical communication systems and method therefor
US5722043A (en) * 1993-02-05 1998-02-24 The Research Foundation Of State University Of New York Method and apparatus of assigning and sharing channels in a cellular communication system
US5317593A (en) * 1993-03-03 1994-05-31 Motorola, Inc. Communication device with code sequence and frequency selection system
JP2990992B2 (en) * 1993-03-18 1999-12-13 三菱電機株式会社 Satellite communication terminal
US5422930A (en) 1993-05-20 1995-06-06 Motorola, Inc. Method and apparatus for sharing radio frequency spectrum in a radio frequency communication system
JP2901170B2 (en) * 1993-05-27 1999-06-07 ケイディディ株式会社 Satellite / land mobile communication system integration method
FR2707063B1 (en) 1993-06-25 1995-09-22 Alcatel Mobile Comm France
US5625624A (en) * 1993-10-21 1997-04-29 Hughes Aircraft Company High data rate satellite communication system
US5473601A (en) 1993-10-21 1995-12-05 Hughes Aircraft Company Frequency reuse technique for a high data rate satellite communication system
US5666648A (en) 1993-11-09 1997-09-09 Leo One Ip, L.L.C. Polar relay system for satellite communication
US5594720A (en) * 1993-11-24 1997-01-14 Lucent Technologies Inc. Multiple access cellular communication with dynamic slot allocation and reduced co-channel interferences
US5444449A (en) 1993-12-15 1995-08-22 International Mobile Satellite Organization System and method for reducing interference between satellites
US5907809A (en) * 1994-01-11 1999-05-25 Ericsson Inc. Position determination using multiple base station signals
US5619503A (en) * 1994-01-11 1997-04-08 Ericsson Inc. Cellular/satellite communications system with improved frequency re-use
US6157811A (en) 1994-01-11 2000-12-05 Ericsson Inc. Cellular/satellite communications system with improved frequency re-use
US5774805A (en) * 1994-02-24 1998-06-30 Gte Mobile Communications Service Corporation Multi-mode communication network with handset-selected channel assignments
FR2717329B1 (en) 1994-03-08 1996-07-05 Alcatel Mobile Comm France Cellular mobile radio system.
AUPM448194A0 (en) * 1994-03-15 1994-04-14 Telstra Corporation Limited A method and apparatus for frequency allocation in a cellular telecommunications network
US5511233A (en) * 1994-04-05 1996-04-23 Celsat America, Inc. System and method for mobile communications in coexistence with established communications systems
US5535438A (en) * 1994-05-10 1996-07-09 Panasonic Technologies, Inc. Phase linear class E amplifier for a satellite communication terminal which communicates with a low earth orbiting satellite
US5732359A (en) * 1994-05-13 1998-03-24 Westinghouse Electric Corporation Mobile terminal apparatus and method having network inter-operability
US5548800A (en) 1994-06-03 1996-08-20 Motorola, Inc. Satellite telecommunication system with apparatus for protecting radio astronomy and method of using same
WO1995034153A1 (en) 1994-06-08 1995-12-14 Hughes Aircraft Company Apparatus and method for hybrid network access
US5745084A (en) 1994-06-17 1998-04-28 Lusignan; Bruce B. Very small aperture terminal & antenna for use therein
US5535432A (en) * 1994-09-14 1996-07-09 Ericsson Ge Mobile Communications Inc. Dual-mode satellite/cellular phone with a frequency synthesizer
GB2300091B (en) 1994-10-27 1999-04-14 Motorola Inc Methods of demand-based adaptive channel reuse for telecommunication systems
US5649292A (en) * 1994-10-31 1997-07-15 Airnet Communications Corporation Obtaining improved frequency reuse in wireless communication systems
US5524280A (en) * 1994-10-31 1996-06-04 Motorola, Inc. Method of acquiring a channel in a general frequency reuse system
US5584046A (en) 1994-11-04 1996-12-10 Cornell Research Foundation, Inc. Method and apparatus for spectrum sharing between satellite and terrestrial communication services using temporal and spatial synchronization
US5574969A (en) 1994-11-08 1996-11-12 Motorola, Inc. Method and apparatus for regional cell management in a satellite communication system
US5630757A (en) * 1994-11-29 1997-05-20 Net Game Limited Real-time multi-user game communication system using existing cable television infrastructure
US5774787A (en) * 1994-12-05 1998-06-30 Motorola, Inc. Interference mitigation system for protecting radio astronomy and method of using same
US5641134A (en) * 1994-12-27 1997-06-24 Motorola, Inc. Satellite cellular telephone and data communication system at an inclined orbit
FR2729025B1 (en) * 1995-01-02 1997-03-21 Europ Agence Spatiale METHOD AND SYSTEM FOR TRANSMITTING RADIO SIGNALS VIA A SATELLITE NETWORK BETWEEN A FIXED EARTH STATION AND MOBILE USER TERMINALS
FR2730369B1 (en) * 1995-02-02 1997-04-25 Bruno Louis Blachier PERSONAL COMMUNICATIONS USING GEOSTATIONARY SATELLITES AND LOW ORBIT RUNNERS
US5694416A (en) 1995-02-24 1997-12-02 Radix Technologies, Inc. Direct sequence spread spectrum receiver and antenna array for the simultaneous formation of a beam on a signal source and a null on an interfering jammer
US5594718A (en) * 1995-03-30 1997-01-14 Qualcomm Incorporated Method and apparatus for providing mobile unit assisted hard handoff from a CDMA communication system to an alternative access communication system
US5867765A (en) * 1995-03-31 1999-02-02 Telefonaktiebolaget Lm Ericsson Non-geostationary satellite mobile communication system integration with network principles for terrestrial cellular
US5757767A (en) * 1995-04-18 1998-05-26 Qualcomm Incorporated Method and apparatus for joint transmission of multiple data signals in spread spectrum communication systems
US5739874A (en) * 1995-06-06 1998-04-14 Thomson Consumer Electronics, Inc. Tuning system for a digital satellite receiver with fine tuning provisions
US5619525A (en) * 1995-06-06 1997-04-08 Globalstar L.P. Closed loop power control for low earth orbit satellite communications system
US5634190A (en) * 1995-06-06 1997-05-27 Globalstar L.P. Low earth orbit communication satellite gateway-to-gateway relay system
US6240124B1 (en) * 1995-06-06 2001-05-29 Globalstar L.P. Closed loop power control for low earth orbit satellite communications system
US5552920A (en) 1995-06-07 1996-09-03 Glynn; Thomas W. Optically crosslinked communication system (OCCS)
US5862721A (en) * 1995-06-12 1999-01-26 Kowats; Henry A. Faucet handle tool
US5663957A (en) * 1995-07-12 1997-09-02 Ericsson Inc. Dual mode satellite/cellular terminal
US5894590A (en) * 1995-07-31 1999-04-13 Motorola, Inc. Independent satellite-based communications systems sharing common frequency spectrum and method of operation thereof
US5911120A (en) * 1995-09-08 1999-06-08 At&T Wireless Services Wireless communication system having mobile stations establish a communication link through the base station without using a landline or regional cellular network and without a call in progress
US5848359A (en) * 1995-09-08 1998-12-08 Motorola, Inc. Hierarchical set of frequency reuse patterns allowing cellular air and land communication
US5675629A (en) 1995-09-08 1997-10-07 At&T Cordless cellular system base station
US5991345A (en) 1995-09-22 1999-11-23 Qualcomm Incorporated Method and apparatus for diversity enhancement using pseudo-multipath signals
US5758090A (en) * 1995-09-22 1998-05-26 Airnet Communications, Inc. Frequency reuse planning for CDMA cellular communication system by grouping of available carrier frequencies and power control based on the distance from base station
US6038455A (en) * 1995-09-25 2000-03-14 Cirrus Logic, Inc. Reverse channel reuse scheme in a time shared cellular communication system
US5926745A (en) * 1995-11-30 1999-07-20 Amsc Subsidiary Corporation Network operations center for mobile earth terminal satellite communications system
US5884181A (en) * 1996-01-19 1999-03-16 Bell Communications Research, Inc. Interference reduction in shared-frequency wireless communication systems
US5915207A (en) * 1996-01-22 1999-06-22 Hughes Electronics Corporation Mobile and wireless information dissemination architecture and protocols
US5721500A (en) * 1996-02-07 1998-02-24 Lucent Technologies Inc. Efficient CMOS amplifier with increased transconductance
JP3241261B2 (en) * 1996-03-01 2001-12-25 株式会社東芝 Mobile communication system and its wireless communication device
US5920804A (en) * 1996-04-02 1999-07-06 Motorola, Inc. Method and apparatus for communications hand-off between multiple satellite systems
US6035178A (en) * 1996-05-09 2000-03-07 Ericsson Inc. Satellite communication system for local-area coverage
US6449461B1 (en) * 1996-07-15 2002-09-10 Celsat America, Inc. System for mobile communications in coexistence with communication systems having priority
US5864579A (en) * 1996-07-25 1999-01-26 Cd Radio Inc. Digital radio satellite and terrestrial ubiquitous broadcasting system using spread spectrum modulation
US5859838A (en) * 1996-07-30 1999-01-12 Qualcomm Incorporated Load monitoring and management in a CDMA wireless communication system
US6075777A (en) * 1996-08-21 2000-06-13 Lucent Technologies Inc. Network flow framework for online dynamic channel allocation
US5926758A (en) * 1996-08-26 1999-07-20 Leo One Ip, L.L.C. Radio frequency sharing methods for satellite systems
US6072768A (en) * 1996-09-04 2000-06-06 Globalstar L.P. Automatic satellite/terrestrial mobile terminal roaming system and method
GB2317074B (en) 1996-09-09 1998-10-28 I Co Global Communications Communications apparatus and method
GB2317303B (en) * 1996-09-09 1998-08-26 I Co Global Communications Communications apparatus and method
US5761605A (en) * 1996-10-11 1998-06-02 Northpoint Technology, Ltd. Apparatus and method for reusing satellite broadcast spectrum for terrestrially broadcast signals
US6067453A (en) * 1996-10-25 2000-05-23 Pt Pasifik Satelit Nusantara Satellite-based direct access telecommunications systems
US6049548A (en) * 1996-11-22 2000-04-11 Stanford Telecommunications, Inc. Multi-access CS-P/CD-E system and protocols on satellite channels applicable to a group of mobile users in close proximity
US5896558A (en) 1996-12-19 1999-04-20 Globalstar L.P. Interactive fixed and mobile satellite network
US5867789A (en) * 1996-12-30 1999-02-02 Motorola, Inc. Method and system for real-time channel management in a radio telecommunications system
US5864316A (en) * 1996-12-30 1999-01-26 At&T Corporation Fixed communication terminal having proximity detector method and apparatus for safe wireless communication
US5924037A (en) * 1996-12-31 1999-07-13 Ericsson, Inc. Frequency assigning method in a seven cell frequency plan for a cellular communications system without adjacent frequencies
US6091933A (en) * 1997-01-03 2000-07-18 Globalstar L.P. Multiple satellite system power allocation by communication link optimization
US5912641A (en) * 1997-01-21 1999-06-15 Globalstar L.P. Indoor satellite cellular repeater system
US6018663A (en) * 1997-01-28 2000-01-25 Telefonaktiebolaget Lm Ericsson Frequency packing for dynamic frequency allocation in a radiocommunication system
US5875180A (en) * 1997-02-06 1999-02-23 Globalstar L.P. Satellite telephone interference avoidance system
JPH10261987A (en) * 1997-03-19 1998-09-29 Fujitsu Ltd Two-layer constitution satellite communication system and its geostationary satellite
US5937332A (en) * 1997-03-21 1999-08-10 Ericsson, Inc. Satellite telecommunications repeaters and retransmission methods
EP0869628A1 (en) * 1997-04-01 1998-10-07 ICO Services Ltd. Interworking between telecommunications networks
GB2324218A (en) * 1997-04-09 1998-10-14 Ico Services Ltd Satellite acquisition in navigation system
US5884142A (en) * 1997-04-15 1999-03-16 Globalstar L.P. Low earth orbit distributed gateway communication system
US6052558A (en) * 1997-04-28 2000-04-18 Motorola, Inc. Networked repeater
US6021309A (en) * 1997-05-22 2000-02-01 Globalstar L.P. Channel frequency allocation for multiple-satellite communication network
US6032041A (en) * 1997-06-02 2000-02-29 Hughes Electronics Corporation Method and system for providing wideband communications to mobile users in a satellite-based network
US6134437A (en) * 1997-06-13 2000-10-17 Ericsson Inc. Dual-mode satellite/cellular phone architecture with physically separable mode
US6019318A (en) * 1997-06-16 2000-02-01 Hugehs Electronics Corporation Coordinatable system of inclined geosynchronous satellite orbits
US6223041B1 (en) * 1997-08-06 2001-04-24 Nortel Networks Ltd Dynamic radio resource allocation in a wireless communication system
US6011951A (en) * 1997-08-22 2000-01-04 Teledesic Llc Technique for sharing radio frequency spectrum in multiple satellite communication systems
US6052586A (en) * 1997-08-29 2000-04-18 Ericsson Inc. Fixed and mobile satellite radiotelephone systems and methods with capacity sharing
GB2328840A (en) * 1997-08-29 1999-03-03 Northern Telecom Ltd Means of increasing capacity in cellular radio (mobile and fixed) systems
US6085094A (en) * 1997-08-29 2000-07-04 Nortel Networks Corporation Method for optimizing spectral re-use
US5907541A (en) * 1997-09-17 1999-05-25 Lockheed Martin Corp. Architecture for an integrated mobile and fixed telecommunications system including a spacecraft
US6101385A (en) * 1997-10-09 2000-08-08 Globalstar L.P. Satellite communication service with non-congruent sub-beam coverage
US6052560A (en) * 1997-10-15 2000-04-18 Ericsson Inc Satellite system utilizing a plurality of air interface standards and method employing same
US6061562A (en) * 1997-10-30 2000-05-09 Raytheon Company Wireless communication using an airborne switching node
US6157834A (en) 1997-12-29 2000-12-05 Motorola, Inc. Terrestrial and satellite cellular network interoperability
US6418147B1 (en) * 1998-01-21 2002-07-09 Globalstar Lp Multiple vocoder mobile satellite telephone system
US6735437B2 (en) * 1998-06-26 2004-05-11 Hughes Electronics Corporation Communication system employing reuse of satellite spectrum for terrestrial communication
US6775251B1 (en) * 1998-09-17 2004-08-10 Globalstar L.P. Satellite communication system providing multi-gateway diversity and improved satellite loading
US6198730B1 (en) * 1998-10-13 2001-03-06 Motorola, Inc. Systems and method for use in a dual mode satellite communications system
US6198921B1 (en) * 1998-11-16 2001-03-06 Emil Youssefzadeh Method and system for providing rural subscriber telephony service using an integrated satellite/cell system
US6615040B1 (en) * 1999-01-22 2003-09-02 At&T Corp. Self-configurable wireless systems: spectrum monitoring in a layered configuration
US6253080B1 (en) * 1999-07-08 2001-06-26 Globalstar L.P. Low earth orbit distributed gateway communication system
US20030149986A1 (en) * 1999-08-10 2003-08-07 Mayfield William W. Security system for defeating satellite television piracy
US6522865B1 (en) * 1999-08-10 2003-02-18 David D. Otten Hybrid satellite communications system
US7174127B2 (en) * 1999-08-10 2007-02-06 Atc Technologies, Llc Data communications systems and methods using different wireless links for inbound and outbound data
GB2365677A (en) * 2000-02-29 2002-02-20 Ico Services Ltd Satellite communications with satellite routing according to channels assignment
US20040203393A1 (en) * 2002-03-13 2004-10-14 Xiang Chen System and method for offsetting channel spectrum to reduce interference between two communication networks
CA2381811C (en) * 2000-08-02 2007-01-30 Mobile Satellite Ventures Lp Coordinated satellite-terrestrial frequency reuse
US7558568B2 (en) * 2003-07-28 2009-07-07 Atc Technologies, Llc Systems and methods for modifying antenna radiation patterns of peripheral base stations of a terrestrial network to allow reduced interference
US6859652B2 (en) * 2000-08-02 2005-02-22 Mobile Satellite Ventures, Lp Integrated or autonomous system and method of satellite-terrestrial frequency reuse using signal attenuation and/or blockage, dynamic assignment of frequencies and/or hysteresis
US6628919B1 (en) * 2000-08-09 2003-09-30 Hughes Electronics Corporation Low-cost multi-mission broadband communications payload
US6859552B2 (en) * 2000-11-07 2005-02-22 Minolta Co., Ltd. Image retrieving apparatus
US7792488B2 (en) * 2000-12-04 2010-09-07 Atc Technologies, Llc Systems and methods for transmitting electromagnetic energy over a wireless channel having sufficiently weak measured signal strength
US20030003815A1 (en) * 2000-12-20 2003-01-02 Yoshiko Yamada Communication satellite/land circuits selection communications system
US6950625B2 (en) * 2001-02-12 2005-09-27 Ico Services Limited Communications apparatus and method
US6714760B2 (en) 2001-05-10 2004-03-30 Qualcomm Incorporated Multi-mode satellite and terrestrial communication device
US6684057B2 (en) * 2001-09-14 2004-01-27 Mobile Satellite Ventures, Lp Systems and methods for terrestrial reuse of cellular satellite frequency spectrum
US7031702B2 (en) * 2001-09-14 2006-04-18 Atc Technologies, Llc Additional systems and methods for monitoring terrestrially reused satellite frequencies to reduce potential interference
US7181161B2 (en) * 2001-09-14 2007-02-20 Atc Technologies, Llc Multi-band/multi-mode satellite radiotelephone communications systems and methods
US7039400B2 (en) * 2001-09-14 2006-05-02 Atc Technologies, Llc Systems and methods for monitoring terrestrially reused satellite frequencies to reduce potential interference
US6785543B2 (en) * 2001-09-14 2004-08-31 Mobile Satellite Ventures, Lp Filters for combined radiotelephone/GPS terminals
US8270898B2 (en) * 2001-09-14 2012-09-18 Atc Technologies, Llc Satellite-band spectrum utilization for reduced or minimum interference
US7664460B2 (en) * 2001-09-14 2010-02-16 Atc Technologies, Llc Systems and methods for terrestrial reuse of cellular satellite frequency spectrum in a time-division duplex and/or frequency-division duplex mode
US7603117B2 (en) * 2001-09-14 2009-10-13 Atc Technologies, Llc Systems and methods for terrestrial use of cellular satellite frequency spectrum
US7447501B2 (en) * 2001-09-14 2008-11-04 Atc Technologies, Llc Systems and methods for monitoring selected terrestrially used satellite frequency signals to reduce potential interference
US6999720B2 (en) * 2001-09-14 2006-02-14 Atc Technologies, Llc Spatial guardbands for terrestrial reuse of satellite frequencies
US7218931B2 (en) * 2001-09-14 2007-05-15 Atc Technologies, Llc Satellite radiotelephone systems providing staggered sectorization for terrestrial reuse of satellite frequencies and related methods and radiotelephone systems
US7006789B2 (en) * 2001-09-14 2006-02-28 Atc Technologies, Llc Space-based network architectures for satellite radiotelephone systems
US7155340B2 (en) * 2001-09-14 2006-12-26 Atc Technologies, Llc Network-assisted global positioning systems, methods and terminals including doppler shift and code phase estimates
US7062267B2 (en) * 2001-09-14 2006-06-13 Atc Technologies, Llc Methods and systems for modifying satellite antenna cell patterns in response to terrestrial reuse of satellite frequencies
US7623859B2 (en) * 2001-09-14 2009-11-24 Atc Technologies, Llc Additional aggregate radiated power control for multi-band/multi-mode satellite radiotelephone communications systems and methods
US7113778B2 (en) * 2001-09-14 2006-09-26 Atc Technologies, Llc Aggregate radiated power control for multi-band/multi-mode satellite radiotelephone communications systems and methods
US7593724B2 (en) * 2001-09-14 2009-09-22 Atc Technologies, Llc Systems and methods for terrestrial reuse of cellular satellite frequency spectrum in a time-division duplex mode
US6856787B2 (en) * 2002-02-12 2005-02-15 Mobile Satellite Ventures, Lp Wireless communications systems and methods using satellite-linked remote terminal interface subsystems
US6937857B2 (en) * 2002-05-28 2005-08-30 Mobile Satellite Ventures, Lp Systems and methods for reducing satellite feeder link bandwidth/carriers in cellular satellite systems
US8121605B2 (en) * 2002-06-27 2012-02-21 Globalstar, Inc. Resource allocation to terrestrial and satellite services
US7068975B2 (en) * 2002-11-26 2006-06-27 The Directv Group, Inc. Systems and methods for sharing uplink bandwidth among satellites in a common orbital slot
US7092708B2 (en) * 2002-12-12 2006-08-15 Atc Technologies, Llc Systems and methods for increasing capacity and/or quality of service of terrestrial cellular and satellite systems using terrestrial reception of satellite band frequencies
US6975837B1 (en) 2003-01-21 2005-12-13 The Directv Group, Inc. Method and apparatus for reducing interference between terrestrially-based and space-based broadcast systems
US7203490B2 (en) * 2003-03-24 2007-04-10 Atc Technologies, Llc Satellite assisted push-to-send radioterminal systems and methods
US7444170B2 (en) * 2003-03-24 2008-10-28 Atc Technologies, Llc Co-channel wireless communication methods and systems using nonsymmetrical alphabets
US6879829B2 (en) * 2003-05-16 2005-04-12 Mobile Satellite Ventures, Lp Systems and methods for handover between space based and terrestrial radioterminal communications, and for monitoring terrestrially reused satellite frequencies at a radioterminal to reduce potential interference
US20040240525A1 (en) 2003-05-29 2004-12-02 Karabinis Peter D. Wireless communications methods and apparatus using licensed-use system protocols with unlicensed-use access points
US8670705B2 (en) * 2003-07-30 2014-03-11 Atc Technologies, Llc Additional intra-and/or inter-system interference reducing systems and methods for satellite communications systems
US7340213B2 (en) * 2003-07-30 2008-03-04 Atc Technologies, Llc Intra- and/or inter-system interference reducing systems and methods for satellite communications systems
US20050041619A1 (en) * 2003-08-22 2005-02-24 Karabinis Peter D. Wireless systems, methods and devices employing forward- and/or return-link carriers having different numbers of sub-band carriers
US7113743B2 (en) * 2003-09-11 2006-09-26 Atc Technologies, Llc Systems and methods for inter-system sharing of satellite communications frequencies within a common footprint
JP2007507184A (en) * 2003-09-23 2007-03-22 エイティーシー・テクノロジーズ,リミテッド・ライアビリティ・カンパニー Mobility management system and method in an overlaid mobile communication system
US8380186B2 (en) * 2004-01-22 2013-02-19 Atc Technologies, Llc Satellite with different size service link antennas and radioterminal communication methods using same
US7418236B2 (en) * 2004-04-20 2008-08-26 Mobile Satellite Ventures, Lp Extraterrestrial communications systems and methods including ancillary extraterrestrial components
US7453920B2 (en) * 2004-03-09 2008-11-18 Atc Technologies, Llc Code synchronization in CDMA satellite wireless communications system using uplink channel detection
US7933552B2 (en) * 2004-03-22 2011-04-26 Atc Technologies, Llc Multi-band satellite and/or ancillary terrestrial component radioterminal communications systems and methods with combining operation
US7606590B2 (en) * 2004-04-07 2009-10-20 Atc Technologies, Llc Satellite/hands-free interlock systems and/or companion devices for radioterminals and related methods
US7636566B2 (en) * 2004-04-12 2009-12-22 Atc Technologies, Llc Systems and method with different utilization of satellite frequency bands by a space-based network and an ancillary terrestrial network
US20050239399A1 (en) * 2004-04-21 2005-10-27 Karabinis Peter D Mobile terminals and set top boxes including multiple satellite band service links, and related systems and methods
US8265549B2 (en) * 2004-05-18 2012-09-11 Atc Technologies, Llc Satellite communications systems and methods using radiotelephone
BRPI0514246A (en) * 2004-08-11 2008-06-03 Atc Tech Llc method of operating a first and / or second communication system, radiotherapy, communications system, and method for operating a radiotherapy
US20060094420A1 (en) * 2004-11-02 2006-05-04 Karabinis Peter D Multi frequency band/multi air interface/multi spectrum reuse cluster size/multi cell size satellite radioterminal communicaitons systems and methods
US7639981B2 (en) * 2004-11-02 2009-12-29 Atc Technologies, Llc Apparatus and methods for power control in satellite communications systems with satellite-linked terrestrial stations
AU2005307841B2 (en) * 2004-11-16 2010-03-25 Atc Technologies, Llc Satellite communications systems, components and methods for operating shared satellite gateways
US7747229B2 (en) * 2004-11-19 2010-06-29 Atc Technologies, Llc Electronic antenna beam steering using ancillary receivers and related methods
US7454175B2 (en) * 2004-12-07 2008-11-18 Atc Technologies, Llc Broadband wireless communications systems and methods using multiple non-contiguous frequency bands/segments
US8594704B2 (en) * 2004-12-16 2013-11-26 Atc Technologies, Llc Location-based broadcast messaging for radioterminal users
BRPI0514916A (en) * 2005-01-05 2008-06-24 Atc Tech Llc communication method, system, interference reducer detector for a satellite communication system, portal for a wireless satellite terminal system, interference reducer, one-component transmitter, radiotherminal, and, interference reduction method
US7596111B2 (en) * 2005-01-27 2009-09-29 Atc Technologies, Llc Satellite/terrestrial wireless communications systems and methods using disparate channel separation codes
US7634229B2 (en) * 2005-03-15 2009-12-15 Atc Technologies, Llc Intra-system and/or inter-system reuse of feeder link frequencies including interference suppression systems and methods
US7453396B2 (en) * 2005-04-04 2008-11-18 Atc Technologies, Llc Radioterminals and associated operating methods that alternate transmission of wireless communications and processing of global positioning system signals
US7970345B2 (en) * 2005-06-22 2011-06-28 Atc Technologies, Llc Systems and methods of waveform and/or information splitting for wireless transmission of information to one or more radioterminals over a plurality of transmission paths and/or system elements
US7907944B2 (en) * 2005-07-05 2011-03-15 Atc Technologies, Llc Methods, apparatus and computer program products for joint decoding of access probes in a CDMA communications system
US8190114B2 (en) * 2005-07-20 2012-05-29 Atc Technologies, Llc Frequency-dependent filtering for wireless communications transmitters
US7623867B2 (en) * 2005-07-29 2009-11-24 Atc Technologies, Llc Satellite communications apparatus and methods using asymmetrical forward and return link frequency reuse
US7831202B2 (en) * 2005-08-09 2010-11-09 Atc Technologies, Llc Satellite communications systems and methods using substantially co-located feeder link antennas
US20070123252A1 (en) * 2005-10-12 2007-05-31 Atc Technologies, Llc Systems, methods and computer program products for mobility management in hybrid satellite/terrestrial wireless communications systems
WO2007084681A1 (en) * 2006-01-20 2007-07-26 Atc Technologies, Llc Systems and methods for satellite forward link transmit diversity using orthogonal space coding
US7751823B2 (en) * 2006-04-13 2010-07-06 Atc Technologies, Llc Systems and methods for controlling a level of interference to a wireless receiver responsive to an activity factor associated with a wireless transmitter
WO2008027109A2 (en) * 2006-06-29 2008-03-06 Atc Technologies, Llc Apparatus and methods for mobility management in hybrid terrestrial-satellite mobile communications systems
US8060082B2 (en) * 2006-11-14 2011-11-15 Globalstar, Inc. Ancillary terrestrial component services using multiple frequency bands
US8064824B2 (en) * 2007-07-03 2011-11-22 Atc Technologies, Llc Systems and methods for reducing power robbing impact of interference to a satellite

Also Published As

Publication number Publication date
AU8468801A (en) 2002-02-13
US20050181786A1 (en) 2005-08-18
EP1316233A4 (en) 2004-03-03
US20040023658A1 (en) 2004-02-05
US7636567B2 (en) 2009-12-22
US20090305697A1 (en) 2009-12-10
US7593726B2 (en) 2009-09-22
EP1316233B1 (en) 2011-10-05
US20060194576A1 (en) 2006-08-31
WO2002011302A3 (en) 2002-04-25
WO2002011302B1 (en) 2002-07-04
EP1316233A2 (en) 2003-06-04
CA2381811A1 (en) 2002-02-07
ATE527764T1 (en) 2011-10-15
MXPA02001964A (en) 2003-07-21
US20060211371A1 (en) 2006-09-21
US7149526B2 (en) 2006-12-12
US6892068B2 (en) 2005-05-10
US20050272369A1 (en) 2005-12-08
US20020041575A1 (en) 2002-04-11
AU2001284688B2 (en) 2006-07-06
WO2002011302A2 (en) 2002-02-07

Similar Documents

Publication Publication Date Title
CA2381811C (en) Coordinated satellite-terrestrial frequency reuse
AU2001284688A1 (en) Coordinated satellite-terrestrial frequency reuse
US7831251B2 (en) Integrated or autonomous system and method of satellite-terrestrial frequency reuse using signal attenuation and/or blockage, dynamic assignment of frequencies and/or hysteresis
US7792488B2 (en) Systems and methods for transmitting electromagnetic energy over a wireless channel having sufficiently weak measured signal strength
US5625868A (en) Method and apparatus for load sharing in a satellite communication system
US6052586A (en) Fixed and mobile satellite radiotelephone systems and methods with capacity sharing
US6088341A (en) Method for reducing co-channel of cross-polarization interference in a satellite data communication system by offsetting channel frequencies
AU2002225801B2 (en) System and method of terrestrial frequency reuse using signal attenuation and dynamic
AU2002225801A1 (en) System and method of terrestrial frequency reuse using signal attenuation and dynamic
CA2334447C (en) Coordinated satellite-terrestrial frequency reuse
Lutz et al. Cellular Satellite Systems

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20210803

MKEX Expiry

Effective date: 20210803