CA2394155C - Process for producing methylcobalamin - Google Patents

Process for producing methylcobalamin Download PDF

Info

Publication number
CA2394155C
CA2394155C CA002394155A CA2394155A CA2394155C CA 2394155 C CA2394155 C CA 2394155C CA 002394155 A CA002394155 A CA 002394155A CA 2394155 A CA2394155 A CA 2394155A CA 2394155 C CA2394155 C CA 2394155C
Authority
CA
Canada
Prior art keywords
trimethylsulfoxonium
trimethylsulfonium
cyanocobalamin
chloride
hydroxocobalamin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002394155A
Other languages
French (fr)
Other versions
CA2394155A1 (en
Inventor
Yoshihiko Hisatake
Hiroshi Kuroda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eisai R&D Management Co Ltd
Original Assignee
Eisai R&D Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eisai R&D Management Co Ltd filed Critical Eisai R&D Management Co Ltd
Publication of CA2394155A1 publication Critical patent/CA2394155A1/en
Application granted granted Critical
Publication of CA2394155C publication Critical patent/CA2394155C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H23/00Compounds containing boron, silicon, or a metal, e.g. chelates, vitamin B12

Abstract

The present invention provides an industrially excellent and novel process for producing methylcobalamin useful as medicines. Namely, it provides a process for producing methylcobalamin, which comprises the step of methylating cyanocobalamin or hydroxocobalamin in the presence of a reducing agent and a water-soluble methylating agent.

Description

Description Process for producing methylcobalamin Field of the Invention Methylcobalamin is a coenzyme-type vitamin Bla existing in blood and cerebrospinal fluid and is excellent in migrating ability to nervous tissues as compared with other BlZ homologs. Biochemically, it exhibits a pharmacological action of accelerating metabolism of nucleic acids, proteins and lipids by methyl group rearrangement and thereby restoring damaged nervous tissues. Based on these properties, it has been clinically employed for preventing, treating or improving peripheral neuropathy such as diabetic neuropathy and polyneuritis, particularly numbness, pain and paralysis, and is also effective in megaloblastic anemia owing to vitamin B12 deficiency, and thus, it is an important vitamin.

Accordingly, the present invention relates to an industrially excellent and novel process for producing methylcobalamin useful as medicines.

Prior Art Methylcobalamin has been hitherto produced mainly by the following synthetic methods:

(1) a method of reacting hydroxocobalamin with a dicarboxylic acid monomethyl ester in the presence of a metal powder (JP-A 49-47899);
(2) a method of reacting cyanocobalamin with monomethyl oxalate in the presence of a metal powder in hydrous methanol (JP-A 50-41900);
(3) a method of reacting hydroxocobalamin with methylmercury iodide or ammonium methylhexafluorosilicate (JP-B 50-38120); and (4) a method of reacting cyanocobalamin with methyl iodide in the presence of sodium borohydride (JP-B 45-38059).

However, dicarboxylic acid monomethyl esters such as monomethyl oxalate to be used in the methods (1) and (2) are not commercially available and hence are necessary to prepare in use, so that it is impossible to utilize them industrially. Furthermore, zinc powder to be used as the metal powder is a heavy metal and hence it is inevitable to take measures for preventing its contamination into products and for protecting the environment, so that the powder is industrially not preferable.

Moreover, methylmercury iodide to be used in (3) is a pollutant and hence cannot be employed industrially.
Furthermore, ammonium methylhexafluorosilicate is also not commercially available and hence is necessary to prepare in use, so that it is impossible to utilize it industrially.

On the other hand, the synthetic method (4) is a very excellent method in view of yield and product purity, but is not satisfactory as an industrial process because methyl iodide has an extremely low boiling point (41 to 430C) and is difficult to handle. Furthermore, from the viewpoint of protecting working environment or natural environment, the use of methyl iodide assigned as a specified chemical substance and having toxicity such as possibility of carcinogenicity is by no means preferable in view of industrial health of factory workers. Moreover, in order to obtain highly pure methylcobalamin by the method of using methyl iodide, operation for purification by one or more kinds of column chromatography is usually necessary, which is a serious problem from operational viewpoint and viewpoint of production cost. In addition, the quantity of organic solvents for use in the column purification is large and also waste liquid quantity tends to be enormous.

Thus, an industrially excellent process for producing methylcobalamin is not completely established yet and hence a novel excellent method has been desired.

Disclosure of the Invention The present inventors have extensively studied for the purpose of improving the above problems. As a result, surprisingly, they have found that aimed methylcobalamin can be conveniently, safely, and inexpensively obtained in high yields by the below-mentioned method, and thus accomplished the present invention.

Accordingly, the present invention provides an industrially excellent process for producing methylcobalamin, particularly a novel process using no methyl iodide and no purification by column chromatography.

The following will explain the present invention in detail.

The present invention relates to a process for producing methylcobalamin (V), which is represented by the following chemical reaction formula:

Cobalamin-CN or Cobalamin-OH --4 Cobalamin-CH3 Cyanocobalamin (I), hydroxocobalamin (II), and methylcobalamin (V) according to the present invention are known natural compounds and are represented by the following chemical formula:

Cyanocobalamin, CAS Res. No.: 68-19-9 Hydroxocobalamin, CAS Res. No.: 13422-51-0 Methylcobalamin, CAS Res. No.: 13422-55-4 NH2COCH2CH2 CHaCH3 CHzCONHz NH:COCHx -- . --CH2CH2CONH2 + N
' CHa H
N N
NHzCOCHz I CH3 N CH3 H3C H3 CH,CHzCONH: ...-H
H O- HO H
CHaCH:CONHCHz C--O-P-O ~~-~H
CHg p H -~~-CHZOH

RZ. CN: Cyanocobalamin (I) R2=OH: Hydroxocobalamin (II) R2=CH, : Methylcobalamin (V) The characteristic feature of the present invention is that a highly pure methylcobalamin equal to or superior to the product purified by column chromatography can be conveniently obtained in high yields only by methylating cyanocobalamin (I) or hydroxocobalamin (II) in the presence of a reducing agent (III) and a water-soluble methylating agent (IV) usually in an aqueous solution or a hydrous organic solvent, if necessary, precipitating the reaction product which is hardly soluble in water as crystals or precipitates, and then separating and treating it.

The water-soluble methylating agent (IV) in the present invention is not limited as far as it's solubility in water is 2% or more, and specifically includes trimethylsulfur derivatives (VI) represented by the following formula, for example.

!I1 _ n H3C ji + X (~) wherein X represents a halogen atom or methoxysulfonyloxy group; and n represents 0 or 1.

Examples of the trimethylsulfur derivatives (VI) include the following compounds but they are not limited thereto.

(1) Trimethylsulfoxonium iodide, CAS Res. No.: 1774-47-6 (2) Trimethylsulfonium iodide, CAS Res. No.: 2181-42-2 (3) Trimethylsulfoxonium chloride, CAS Res. No.: 5034-06-0 (4) Trimethylsulfonium chloride, CAS Res. No.: 3086-29-1 (5) Trimethylsulfoxonium bromide, CAS Res. No.: 3084-53-5 (6) Trimethylsulfoxonium bromide, CAS Res. No.: 25596-24-1 (7) Trimethylsulfonium methyl sulfate, CAS Res. No.: 2181-All these compounds are known products and, in particular, trimethylsulfoxonium iodide, trimethylsulfonium iodide, trimethylsulfoxonium chloride, trimethylsulfoxonium bromide and trimethylsulfonium bromide are inexpensive and available as industrial starting materials. Moreover, trimethylsulfonium chloride can be easily synthesized and available by the method described in Tetrahedron Lett., 27, 1233 (1986) (B. Byrne et al.).

Among the trimethylsulfur derivatives (VI), trimethylsulfoxonium bromide, trimethylsulfonium bromide, trimethylsulfoxonium chloride and trimethylsulfonium chloride particularly exhibit a high solubility in water and have a characteristic that the use in a smaller amount affords highly pure methylcobalamin in high yields.

The amount of the trimethylsulfur derivative (VI) to be used is not particularly limited, but it is used in an amount of usually 1.0 to 5 equivalents, preferably 1.1 to 4.5 equivalents and more preferably 1.2 to 4 equivalents to cyanocobalamin (I) or hydroxocobalamin (II).

The reducing agent (III) according to the present invention is not particularly limited as far as it is a reducing agent employable in the synthesis of cyanocobalamin (I) or hydroxocobalamin (II). More specifically, examples thereof include sodium borohydride.

The amount of the reducing agent (III) to be used is not particularly limited, but it is used in an amount of usually 5 to 30 equivalents, preferably 8 to 25 equivalents and more preferably 10 to 20 equivalents to cyanocobalamin (I) or hydroxocobalamin (II).

The process according to the present invention enables the production of highly pure methylcobalamin in high yields using no metal ion or using only a small amount thereof as a cyan ion-trapping agent, and the process exhibits an extremely excellent effect in view that no problem arises at removal of metal ion products, which is difficult to filter, from the system.

Generally, when and methyl iodide is used as a methylating agent, ferrous sulfate is used as a cyan ion-trapping agent in combination with those agents in most cases, and it is necessary to use ferrous sulfate in an amount of at least 30% by weight or more relative to cyanocobalamin (I) or hydroxocobalamin (II).

However, in the present invention, it is possible to obtain highly pure methylcobalamin in high yields because methylation proceeds even when no ferrous sulfate is used as a cyan ion-trapping agent.

Furthermore, in the case that ferrous sulfate is used in a small amount as a cyan ion-trapping agent, the reaction proceeds more rapidly and highly pure methylcobalamin can be obtained in high yields by the same post-treatment as in the case that no ferrous sulfate is used. Moreover, in the case that cobalt chloride is used in a small amount, highly pure methylcobalamin can be also obtained in high yields because the methylation proceeds highly selectively and hence the production of impurities is inhibited.

Therefore, the present invention also relates to a process for producing methylcobalamin (V), which comprises the steps of methylating cyanocobalamin (I) or hydroxocobalamin (II) in the presence of a cyan ion-trapping agent, a reducing agent (III) and a water-soluble methylating agent (IV) in an aqueous solution or a hydrous organic solvent; and then precipitating the reaction product as crystals or precipitates.

In the present invention, in the case that a cyan ion-trapping agent is used, examples of the cyan ion-trapping agent include metals or metal salts such as ferrous sulfate, iron powder, Mohr's salt, ferrous chloride, cobalt chloride, nickel chloride and zinc chloride, and particularly preferred are ferrous sulfate and/or cobalt chloride.
These metals or metal salts may be used solely or in combination.

The cyan ion-trapping agent may be used in a small amount, and the amount is usually from 1 to 30% by weight and more preferably from 1 to 10% by weight to cyanocobalamin (I) or hydroxocobalamin (II).

Finally, the use of a reaction solvent is not particularly limited, and in the case of using a solvent, it is not particularly limited as far as it is inert to cyanocobalamin (I), hydroxocobalamin (II), trimethylsulfur derivative (VI) or methylcobalamin (V). The reaction solvent is usually an aqueous solution or a hydrous organic solvent. As the organic solvent, preferred is usually a water-soluble one, and examples thereof include lower alcohols such as methanol, ethanol, propanol, isopropanol, butanol, isobutanol, sec-butanol and t-butanol; various esters such as methyl formate, ethyl formate, methyl acetate, ethyl acetate and isopropyl acetate; various ketones such as acetone, 2-butanone and 3-methyl-2-butanone; cyclic ethers such as THF and dioxane;
acetonitrile, DMF, DMSO, pyridine etc.; and mixtures containing one or more of them.

The reaction temperature in the present invention is also not particularly limited, but the reaction is conducted at a temperature of usually 0 to 900C, preferably to 700C and more preferably 15 to 500 C.

A more preferred result is obtained by conducting the reaction under a stream of an inert gas such as nitrogen and/or in the dark place (under infrared ray).

In order to explain the present invention specifically, Examples will be described in the following, but the invention is by no means limited thereto.

Examples F.xam= l P 1 Syn heGi G nf MPrhyl rohal amin The present Example was conducted in the dark place (under infrared ray).

To 260 ml of ion-exchanged water were added 20 g of cyanocobalamin, 6.02 g of trimethylsulfonium iodide and 800 mg of iron(II) sulfate heptahydrate. The mixture was heated in a water bath and, after replacing the atmosphere of the system by nitrogen, a solution of sodium borohydride (8 g)/2N sodium hydroxide (0.2 ml)/water (40 ml) and 15 ml of 2-butanone were added dropwise thereto under stirring at an inner temperature of 400C over 20 minutes, respectively.
After stirring for 15 minutes as it was, the mixture was cooled to 150C. Further, 15 ml of 2-butanone was added thereto, followed by stirring overnight. The precipitates were collected by filtration and dried, to give 21.4 g of a crude product of the title compound. Thereto was added 200 ml of a 50% acetone aqueous solution, and the mixture was heated, adjusted to pH 6.5 with concentrated hydrochloric acid and then filtered. After washing with 40 ml of a 50%
acetone aqueous solution, 630 ml of acetone was added dropwise to the filtrate, followed by stirring at 150C
overnight. Precipitated crystals were collected by filtration and dried, to give 17 g of the title compound (yield 86%).

Physical properties of mecobalamin obtained The hydrochloride buffer (pH 2.0): UVmax was detected at 264-266, 303-307 and 459-462 nm.

The phosphate buffer (pH 7.0): UVmax was detected at 266-269, 341-344 and 520-524 nm.

Referential values of UVmaX (Merck Index, 12th edition) Fxa mp1P 2 Syn hAaiG of MP_nhalamin The present example was conducted in the dark place (under infrared ray).

To 1.3 1 of ion-exchanged water were added 100 g of cyanocobalamin and 32.46 g of trimethylsulfoxonium iodide.
After replacing the atmosphere of the system by nitrogen, the mixture was heated in a water bath and a solution of sodium borohydride (40 g)/2N sodium hydroxide (2 ml)/water (200 ml) was added dropwise thereto under stirring at an inner temperature of 400C over 30 minutes. After stirring for 1 hour as it was, the mixture was cooled to room temperature and then stirred overnight. The precipitates were collected by filtration and dried, to give a crude product of the title compound. Thereto was added 1 1 of a 50% acetone aqueous solution, and the mixture was heated, adjusted to pH 6.5 with concentrated hydrochloric acid and then filtered. After washing with 400 ml of a 50% acetone aqueous solution, 2.8 1 of acetone was added dropwise thereto and the mixture was stirred at 170C overnight.
Precipitated crystals were collected by filtration and dried, to give 90 g of the title compound (yield 91%).
F.xamg] P3 iyn hPai G nf MP _ohal ami n The present Example was conducted in the dark place (under infrared ray).

To 1.3 1 of ion-exchanged water were added 100 g of cyanocobalamin and 32.46 g of trimethylsulfoxonium iodide, 4 g of iron(II) sulfate heptahydrate and 100 ml of 2-butanone. Under a nitrogen stream, the mixture was heated in a water bath and a solution of sodium borohydride (40 g)/2N sodium hydroxide (1 ml)/water (200 ml) was added dropwise thereto under stirring at an inner temperature of 400 C over 30 minutes. After stirring for 30 minutes as it was, the mixture was returned to room temperature and further stirred overnight. The precipitates were collected by filtration and dried, to give 123 g of a crude product of the title compound. Thereto was added 1 1 of a 50%
acetone aqueous solution, and the mixture was heated at 350 C, adjusted to pH 7.0 with concentrated hydrochloric acid and then filtered. 2.8 1 of acetone was added dropwise thereto, followed by stirring overnight.
Precipitated crystals were collected by filtration and dried, to give 93.2 g of the title compound (yield 94%).
F.xa 1p P 4 SynthGis nf MPcobalamin The present example was conducted in the dark place (under infrared ray).

To 390 ml of ion-exchanged water were added 30 g of cyanocobalamin, 14.61 g of trimethylsulfoxonium iodide, 900 mg of iron (II) sulfate heptahydrate, 900 mg of cobalt chloride hexahydrate and 22.5 ml of 2-butanone. After replacing the atmosphere of the system by nitrogen, the mixture was heated in a water bath and a solution of sodium borohydride (12 g)/2N sodium hydroxide (1 ml)/water (60 ml) was added dropwise thereto under stirring at an inner temperature of 200C. After stirring for 3 hours as it was, the mixture was cooled to 10OC and then stirred overnight.
Thereto was added 24 ml of 3-methyl-2-butanone, followed by stirring for 2 hours. Then, the precipitates were collected by filtration and dried, to give 35 g of a crude product of the title compound. Thereto was added 300 ml of a 50% methanol aqueous solution and the mixture was heated at 350C, filtered and washed with 120 ml of a 50% methanol aqueous solution. After the mixture was adjusted to pH 7.0 with concentrated hydrochloric acid, 1365 ml of acetone was added dropwise thereto and the mixture was stirred at 10OC
overnight. Precipitated crystals were collected by filtration and dried, to give 25.9 g of the title compound (yield 86.3%).

Rxa plP a gynthPCiG of MP.ohalamin The present example was conducted in the dark place (under infrared ray).

To 130 ml of ion-exchanged water were added 10 g of cyanocobalamin, 3.83 g of trimethylsulfoxonium bromide, 700 mg of iron (II) sulfate.heptahydrate and 7.5 ml of 2-butanone. After replacing the atmosphere of the system by nitrogen, the mixture was heated in a water bath and a solution of sodium borohydride (4 g)/2N sodium hydroxide (0.2 ml)/water (20 ml) was added dropwise thereto under stirring at an inner temperature of 350C. After stirring for 3 hours as it was, the mixture was cooled to 150 C and then stirred overnight. Thereto was added 7.5 ml of 2-butanone, followed by stirring for 2 hours. Then, the precipitates were collected by filtration and dried, to give a crude product of the title compound. Thereto was added 140 ml of a 50% acetone aqueous solution, and the mixture was heated at 450C, filtered and washed with 60 ml of a 50% acetone aqueous solution. After the mixture was adjusted to pH 6.5 with concentrated hydrochloric acid, 475 ml of acetone was added dropwise thereto and the mixture was stirred at 200C overnight. Precipitated crystals were collected by filtration and dried, to give 8.86 g of the title compound (yield 89.3%).

F.xamnl P 6$ynrhPGi G of M-cobal ami n The present example was conducted in the dark place (under infrared ray).

To 650 ml of ion-exchanged water were added 50 g of cyanocobalamin, 19.51 g of trimethylsulfoxonium bromide, 3.5 g of cobalt chloride hexahydrate and 37.5 ml of 2-butanone. After replacing the atmosphere of the system by nitrogen, the mixture was heated in a water bath and a solution of sodium borohydride (20 g)/2N sodium hydroxide (1 ml)/water (100 ml) was added dropwise thereto under stirring at an inner temperature of 350C. After stirring for 2 hours as it was, the mixture was cooled to 150 C and then stirred overnight. Thereto was added 37.5 ml of 2-butanone, followed by stirring for 1 hour. Then, the precipitates were collected by filtration and dried, to give a crude product of the title compound. Thereto was added 700 ml of a 50% methanol aqueous solution, and the mixture was heated at 400C, filtered and washed with 300 ml of a 50% acetone aqueous solution. After the mixture was adjusted to pH 6.5 with concentrated hydrochloric acid, methanol was evaporated. To the residue was added dropwise 2250 ml of acetone, followed by stirring at 200C overnight.
Precipitated crystals were collected by filtration and dried, to give 45.0 g of the title compound (yield 90.7%).
P.xam in A 7SynthPGiG of MPcohalamin The present example was conducted in the dark place (under infrared ray).

To 130 ml of ion-exchanged water were added 10 g of cyanocobalamin, 3.48 g of trimethylsulfonium bromide, 700 mg of cobalt chloride hexahydrate, and 7.5 ml of 2-butanone.
After replacing the atmosphere of the system by nitrogen, the whole was warmed on a water bath and a solution of sodium borohydride (4 g)/2N sodium hydroxide (0.2 ml)/water (20 ml) was added dropwise thereto under stirring at an inner temperature of 350C. After stirring for 3 hours as it was, the mixture was cooled to 150C and then stirred overnight. Thereto was added 7.5 ml of butanone, followed by stirring for 2 hours. Then, the precipitates were collected by filtration and dried, to give a crude product of the title compound. Thereto was added 140 ml of a 50%
acetone aqueous solution and the mixture was heated at 450C, filtered and washed with 60 ml of a 50% acetone aqueous solution. After the mixture was adjusted to pH 6.5 with concentrated hydrochloric acid, 475 ml of acetone was added dropwise thereto and the mixture was stirred at 200C
overnight. Precipitated crystals were collected by filtration and dried, to give 8.94 g of the title compound (yield 90.1%).

F.xa ln P 8 GXnth Gis of MPcnbalamin The present Example was conducted in the dark place (under infrared ray).

To 130 ml of ion-exchanged water were added 10 g of cyanocobalamin, 2.85 g of trimethylsulfoxonium chloride, 700 mg of iron (II) sulfate heptahydrate and 7.5 ml of 2-butanone. After replacing the atmosphere of the system by nitrogen, the mixture was heated in a water bath. A
solution of sodium borohydride (4 g)/2N sodium hydroxide (0.5 ml)/water (20 ml) was added dropwise thereto under stirring at an inner temperature of 350C. After stirring for 3 hours as it was, the mixture was cooled to 150C and then stirred overnight. Thereto was added 7.5 ml of butanone, followed by stirring for 2 hours. Then, the precipitates were collected by filtration and dried, to give 35 g of a crude product of the title compound.
Thereto was added 140 ml of a 50% acetone aqueous solution.
The mixture was heated at 450C, filtered and washed with 60 ml of a 50% acetone aqueous solution. After the mixture was adjusted to pH 6.5 with concentrated hydrochloric acid, 475 ml of acetone was added dropwise thereto and the mixture was stirred at 200C overnight. Precipitated crystals were collected by filtration and dried, to give 8.92 g of the title compound (yield 89.9%).

Claims (16)

CLAIMS:
1. A process for producing methylcobalamin of formula (V), which comprises the step of methylating cyanocobalamin of formula (I) or hydroxocobalamin of formula (II), the formulae (V), (I) and (II) being as follows:

R2 = CN: Cyanocobalamin (I) R2 = OH: Hydroxocobalamin (II) R2 = CH3: Methylcobalamin (V) in the presence of a reducing agent and a water-soluble methylating agent being a trimethylsulfur derivative represented by the following formula:

wherein X means a halogen atom or a methoxysulfonyloxy group; and n means 0 or 1.
2. The process of claim 1, wherein the methylating step is conducted in an aqueous solution or a hydrous organic solvent.
3. The process of claim 1, in which the methylating step is conducted in an aqueous solution or a hydrous organic solvent and which further comprises precipitating the resulting methylcobalamin as crystals or precipitates.
4. The process of claim 1, in which the methylating step is conducted in the further presence of a cyan ion-trapping agent in an aqueous solution or a hydrous organic solvent and which further comprises precipitating the resulting methylcobalamin as crystals or precipitates.
5. The process of any one of claims 1 to 4, wherein the trimethylsulfur derivative is at least one member selected from the group consisting of trimethylsulfoxonium iodide, trimethylsulfonium iodide, trimethylsulfoxonium bromide, trimethylsulfonium bromide, trimethylsulfoxonium chloride and trimethylsulfonium chloride.
6. The process of any one of claims 1 to 4, wherein the reducing agent is sodium borohydride.
7. The process of claim 4, wherein the cyan ion-trapping agent is at least one member selected from the group consisting of ferrous sulfate and cobalt chloride.
8. The process of claim 4 or 7, wherein the cyan ion-trapping agent is employed in an amount of from 1 to 30% by weight relative to cyanocobalamin (I) or hydroxocobalamin (II).
9. The process of any one of claims 1 to 4, wherein the trimethylsulfur derivative (VI) is at least one member selected from the group consisting of trimethylsulfoxonium iodide, trimethylsulfonium iodide, trimethylsulfoxonium bromide, trimethylsulfonium bromide, trimethylsulfoxonium chloride and trimethylsulfonium chloride and the reducing agent is sodium borohydride.
10. The process of claim 4, wherein the trimethylsulfur derivative (VI) is at least one member selected from the group consisting of trimethylsulfoxonium iodide, trimethylsulfonium iodide, trimethylsulfoxonium bromide, trimethylsulfonium bromide, trimethylsulfoxonium chloride and trimethylsulfonium chloride; the reducing agent is sodium borohydride; and the cyan ion-trapping agent is at least one member selected from the group consisting of ferrous sulfate and cobalt chloride.
11. The process of any one of claims 1 to 10, wherein the trimethylsulfur derivative is employed in an amount of 1.0 to 5 equivalents relative to cyanocobalamin (I) or hydroxocobalamin (II).
12. The process of any one of claims 1 to 11, wherein the reducing agent is employed in an amount of to 30 equivalents relative to cyanocobalamin (I) or hydroxocobalamin (II).
13. The process of any one of claims 1 to 12, wherein cyanocobalamin (I) is methylated.
14. The process of any one of claims 1 to 12, wherein hydroxocobalamin (II) is methylated.
15. The process of any one of claims 1 to 14, wherein the methylating step is conducted at a temperature of to 70°C in an inert gas stream or in a dark place under infrared ray.
16. The process of any one of claims 1 to 15, wherein the methylating step is conducted in water or a mixture of water and 2-butanone.
CA002394155A 1999-12-09 2000-12-07 Process for producing methylcobalamin Expired - Fee Related CA2394155C (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP11/350683 1999-12-09
JP35068399 1999-12-09
JP2000188619 2000-06-23
JP2000-188619 2000-06-23
PCT/JP2000/008675 WO2001042271A1 (en) 1999-12-09 2000-12-07 Process for production of methylcobalamin

Publications (2)

Publication Number Publication Date
CA2394155A1 CA2394155A1 (en) 2001-06-14
CA2394155C true CA2394155C (en) 2008-01-15

Family

ID=26579251

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002394155A Expired - Fee Related CA2394155C (en) 1999-12-09 2000-12-07 Process for producing methylcobalamin

Country Status (12)

Country Link
US (1) US6657057B2 (en)
EP (1) EP1236737B1 (en)
JP (1) JP3948958B2 (en)
KR (1) KR100694688B1 (en)
CN (1) CN1170841C (en)
AT (1) ATE318833T1 (en)
CA (1) CA2394155C (en)
DE (1) DE60026354T2 (en)
DK (1) DK1236737T3 (en)
ES (1) ES2257339T3 (en)
TW (1) TW581770B (en)
WO (1) WO2001042271A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7220855B2 (en) 2001-06-05 2007-05-22 Eisai Co., Ltd. Process for producing methylcobalamin
AU2003258100A1 (en) * 2002-08-06 2004-02-23 Intradigm Corporation Methods of down regulating target gene expression in vivo by introduction of interfering rna
ES2264374B1 (en) * 2005-03-23 2007-11-01 Ferrer Internacional, S.A. METHODCOBALAMINE MANUFACTURING PROCEDURE.
CN100348201C (en) * 2005-09-29 2007-11-14 周卓和 Methy cobalamine dispersion tablet and preparing method
JP5779710B2 (en) * 2011-05-30 2015-09-16 インターキム ソシエダッド アノニマ デ キャピタル バリアブレInterquim, S.A. De C.V. Synthesis process of methylcobalamin
CN102391340A (en) * 2011-10-31 2012-03-28 河北玉星生物工程有限公司 Preparation method of mecobalamin
CN105218608A (en) * 2015-10-29 2016-01-06 无锡福祈制药有限公司 A kind of preparation method of mecobalamin
PL3481839T3 (en) 2016-07-08 2023-10-02 HealthTech Bio Actives, S.L.U. Process for the purification of methylcobalamin
CN106349313B (en) * 2016-08-23 2019-05-14 宁夏泰瑞制药股份有限公司 A method of Mecobalamin crude product is synthesized using cyanocobalamin
CN108546278A (en) * 2018-03-17 2018-09-18 山东辰龙药业有限公司 The process for purification of Mecobalamin
DE102018005078A1 (en) 2018-06-26 2020-01-02 Ilma biochem GmbH Process for the preparation and composition of stabilized cob (II) alamine and cob (II) inamide solutions as starting preparations for the production of medicaments, medical products, food supplements and cosmetics
CN108948116A (en) * 2018-08-30 2018-12-07 上海应用技术大学 A kind of green synthesis process of Mecobalamin
CN111808158B (en) * 2020-07-23 2022-12-06 宁夏金维制药股份有限公司 Preparation method of vitamin B12 crude product
CN114874274A (en) * 2022-04-21 2022-08-09 南京工业大学 Improved method for synthesizing mecobalamin
CN114874276A (en) * 2022-04-21 2022-08-09 南京工业大学 Improved method for synthesizing mecobalamin

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4538059B1 (en) * 1967-07-27 1970-12-02
BE759614A (en) * 1969-12-01 1971-06-01 Glaxo Lab Ltd CYANIDE ION REMOVAL FROM CORRINOID SOLUTIONS
GB1306958A (en) * 1970-09-30 1973-02-14 Pierrel Spa Process for the preparation of substituted cobamides
FR2108794B1 (en) 1970-10-06 1974-04-12 Roussel Uclaf
US3928320A (en) * 1971-11-10 1975-12-23 Jean Boige Process for the preparation of methylcobalamine
BE789252A (en) * 1971-11-10 1973-03-26 Boige Jean METHOD FOR MANUFACTURING METHYLCOBALAMINE
FR2240232A1 (en) * 1973-08-08 1975-03-07 Boige Jean Methylcobalamine prepn from cyanocobalamine - by reduction and methylation using methyl acid oxalate and a metal
US3789211A (en) 1972-07-14 1974-01-29 Marvin Glass & Associates Decorative lighting system
JPS4947899A (en) 1972-09-18 1974-05-09
JPS5729587B2 (en) 1973-06-14 1982-06-23
JPS5038120A (en) 1973-08-09 1975-04-09
JPH08143590A (en) * 1994-11-24 1996-06-04 Meiji Seika Kaisha Ltd Production of high-purity methylcobalamin

Also Published As

Publication number Publication date
KR100694688B1 (en) 2007-03-13
US6657057B2 (en) 2003-12-02
DE60026354T2 (en) 2006-11-09
TW581770B (en) 2004-04-01
CA2394155A1 (en) 2001-06-14
DE60026354D1 (en) 2006-04-27
US20020183511A1 (en) 2002-12-05
WO2001042271A1 (en) 2001-06-14
ATE318833T1 (en) 2006-03-15
CN1409723A (en) 2003-04-09
ES2257339T3 (en) 2006-08-01
CN1170841C (en) 2004-10-13
KR20030022767A (en) 2003-03-17
EP1236737A1 (en) 2002-09-04
EP1236737A4 (en) 2003-02-26
JP3948958B2 (en) 2007-07-25
EP1236737B1 (en) 2006-03-01
DK1236737T3 (en) 2006-06-19

Similar Documents

Publication Publication Date Title
CA2394155C (en) Process for producing methylcobalamin
SU1535379A3 (en) Method of producing 5-substituted 2,4-diaminopyrimidines or their acid-additive salts
CN109096346B (en) Process for preparing dinucleoside polyphosphate compounds
CA2449480C (en) Process for producing methylcobalamin
GB2125401A (en) Desoxyuridine derivatives and their use as pharmaceuticals
EP0080818A1 (en) Erythromycin B derivatives
FI67082C (en) FOERFARANDE FOER FRAMSTAELLNING AV D, 1-5-METHYLETETRAHYDROFOLSYRA OCH SALTER DAERAV
EP2102172B1 (en) Synthesis of 4-amino-pyrimidines
CA1088080A (en) Fortimicin derivatives and method for production thereof
EP1394161A1 (en) L−ASCORBIC ACID−2−O−MALEIC ACID−A−TOCOPHEROL DIESTER 1−PROPANOL ADDUCT AND PROCESS FOR PRODUCING THE SAME
KR0157422B1 (en) Process for production of 6-(3-dimethylamino-propionyl)forskolin
CA2399209C (en) Process for preparation of indolopyrrolocarbazole derivative, intermediates in the preparation and process for preparation of the intermediates
US20020025938A1 (en) Macrolide intermediates in the preparation of clarithromycin
HUT71240A (en) Process for the preparation of 9-amino camptothecin
KR0176013B1 (en) Process for preparation of cephem derivative
SK121294A3 (en) Method of preparation of pure oxytetracyclin and semifinished product for this preparation
EP1836153A2 (en) Reducing carbohydrate derivatives of adamantane amines, and synthesis and methods of use thereof
IL26599A (en) 1-arabinofuranosyl-3-hydrocarbylcytosines and acid addition salts thereof
GB1582483A (en) 6'-n-methyl-xk-88-5 and process for the production thereof
JPH03135995A (en) Separation and purification of 8-alkoxyadenosine-3',5'-cyclic phosphate
KR940009172A (en) Quinoline derivatives and preparation method thereof

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20121207