CA2414543A1 - Electronic ballast system having emergency lighting provisions - Google Patents

Electronic ballast system having emergency lighting provisions Download PDF

Info

Publication number
CA2414543A1
CA2414543A1 CA002414543A CA2414543A CA2414543A1 CA 2414543 A1 CA2414543 A1 CA 2414543A1 CA 002414543 A CA002414543 A CA 002414543A CA 2414543 A CA2414543 A CA 2414543A CA 2414543 A1 CA2414543 A1 CA 2414543A1
Authority
CA
Canada
Prior art keywords
output
voltage
circuit
input
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002414543A
Other languages
French (fr)
Inventor
Nicholas Buonocunto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2414543A1 publication Critical patent/CA2414543A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • H02J9/065Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads for lighting purposes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/285Arrangements for protecting lamps or circuits against abnormal operating conditions
    • H05B41/2851Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions
    • H05B41/2853Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions against abnormal power supply conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Abstract

An electronic ballast system is disclosed for operating one or more fluorescent lamps with and having a subsystem with universal input from 108V to 305V, a battery, along with a battery charger and associated logic, that provides for emergency lighting, as well as for operating at least one of the fluorescent lamps. The electronic ballast system includes a circuit that allows for a fluorescent lamp to be energized without the preheating of its cathodes, as well as includes a circuit for power factor correction that uses of an average current mode implemented by a pulse-width modulator to derive a power factor for the electronic power circuit that approaches unity.

Description

7.168P20CA01 ELECTRONIC BALLAST SYSTEM HAVING EMERGENCY LIGHTING PROVISIONS
BACKGROUND OF THE INVENTION
1.0 Field of the Invention This invention relates to electronic ballast systems, and, more particularly, to an electronic ballast system for operating fluorescent lamps with universal input (from 108V
to 305V) and having a subsystem with a battery, along with a battery charger, and associated logic that provides for emergency lighting.
Z.0 Description of Related Art Electronic ballast systems for operating fluorescent Iamps are well known and some of which are disclosed in U.S. Patents 5,808,421 and 6,031,342.
Electronic ballast systems typically convert a low frequency alternating current source having a relatively low frequency in the range from 50 to 60Hz to a higher frequency typically in the range of 30-40 kHz. The conversion commonly involves a two stage process, wherein the ac oscillation having a frequency of SO to 60Hz is first rectified to a do voltage and then this do voltage is chopped at a higher frequency to produce alternating current in the frequency range of 30-40 kHz, which is used to excite the fluorescent lamp.
The electronic ballast circuits advantageously perform the desired function for operating fluorescent lamps and reduce the energy consumption, compared to non-electronic ballast circuits, and especially compared to incandescent lamps. However, the conventional electronic ballast circuits typically employ a preheat operating mode that needs to be completed before the fluorescent lamp is excited so as to sequence it into its continuous and efficient running mode. It is desired that an electronic ballast circuit be provided that eliminates the need for preheating the fluorescent lamp before the fluorescent lamp is rendered operative into its continuous operating and efficient running mode.
Electronic ballast circuits are typically selected to have parameters that operate for particular input frequency oscillation. For example, the electronic ballast circuit may have parameters selected so as to operate with the 110 volt, 60 Hz typically found in the United States, whereas other ballast circuits may have parameters selected to operate with 220 volts, SO Hz typically found in European countries. It is desired to provide a ballast circuit that operates with the universal input covering the range from between 108 to 305 volts at a frequency range between 50-60 Hz.
Further, it is desired to provide an electronic ballast circuit that handles various types of fluorescent lamps such as, T5, T8, T12, 20W, 32W, 40W, ~6W, 70W, linear, circular, or U-shaped type fluorescent lamps.
Because fluorescent lamps have a lower energy consumption compared to incandescent lamps, they are extensively used in industrial and commercial environments, which commonly require emergency lighting. It is desired to provide for electronic ballast system for operating one or more fluorescent lamps and having a subsystem with a battery, along with a battery charger, and associated logic to provide for emergency lighting.

Electronic ballast systems that operate fluorescent lamps are commonly plagued by the disadvantage that they produce electro-magnetic interference (EMI) and radio frequency interference (RFI). It is desirable to provide for an electronic ballast system that reduces or even eliminates the EMI/RFI noise commonly produced by the electronic ballast systems.
Electronic ballast circuits commonly employ inductive loads, which act to lower the power factor, which, in turn, increases the consumption of current and, thereby, reduces the efficiency related to fluorescent lamps. It is desirable that an electronic ballast circuit be provided with a power factor correction circuit that allows for the creation of a power factor that approaches unity, thereby furthering the efficiency of the electronic ballast system.
SUMMARY OF THE INVENTION
The invention is direct to an electronic ballast system for operating one or more fluorescent lamps with universal input (from 108V to 305V) and having a subsystem with a battery, along with a battery charger and associated logic, that provides for emergency lighting. The electronic ballast system allows for the operation of fluorescent lamps without preheating their cathodes, as well as a circuit for power factor correction that allows electronic circuit to have a power factor that approaches unity.
The electronic ballast system comprises: (a) an EMI filter having an input connected to an electric surge and providing a filtered output; (b) a full-wave rectifier having an input connected to the output of said EMI filter and providing a first d.c.
voltage; (c) a power factor correction circuit having an input connected to the output of the full-wave rectifier and providing a power factor regulated output; and (d) a first inverter ballast circuit having an input connected to the output of the power factor converter. The inverter ballast circuit has a sweep frequency circuit for supplying an oscillating current to power a first fluorescent lamp without the need of preheating its cathode.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a block diagram of the electronic ballast system of the present invention.
Fig. 2 is a schematic illustrating the EMI filter, rectifier, and power factor correction (PFC) circuit of all of Fig. 1.
Fig. 3 is a schematic of the inverter ballast of Fig. 1.
Fig. 4 is a schematic of the switching power and battery charger of Fig. 1.
Fig. 5 is a schematic of the emergency section of Fig. 1.
DESCRIPTION OF THE PREFERRED EMBODTiI~ZENTS
With reference to the drawings, wherein the same reference number indicates the same element throughout, there is shown in Fig. 1 an electronic ballast system 10 for operating one or more fluorescent lamps and having the capability of providing for emergency lighting.
a The electronic ballast system 10 comprises an electromagnetic interference (EMI) filter 12 having input terminals L 1 and N, connected to a source of current, and providing a filtered output on signal paths 14 and 16. The electronic ballast system 10 further comprises a full-wave rectifier V 1 having its inputs connected to signal paths 14 and l6of the EMI filter 12 and providing a first rectified d.c. voltage on signal paths 18 and 20 . A
power factor correction circuit 22 has its inputs connected to signal paths 18 and 20 of the full-wave rectifier V 1 and provides a power factor regulated output on signal paths 24 and 26.
The electronic power system further comprises a first inverter ballast 28A and preferably further comprises three additional inverter ballast circuits 28B, 28C, and 28D.
Each of the inverter ballast circuits 28B, 28C, and 28D has their inputs connected to the signal paths 24 and 26 of the power factor correction circuit 22. Further, each of the ballast circuits 28A, 28B, 28C, and 28D has a sweep frequency circuit supplying an oscillating current to provide power to a fluorescent lamp into its operating or running mode without the need of first preheating the fluorescent lamp.
The electronic ballast system 10 has a capability of providing for emergency lighting from a subsystem comprised of a switching power and battery charger 30 and an emergency section 32.

The switching and battery charger 30 has a power supply having its inputs connected across hot and ground terminals of the ENLI filter 12 and provides a second d.c.
voltage having positive and negative potentials applied to signal paths 34 and 36, respectively.
The emergency section 32 has a switch Kl allowing connection to the signal paths 34 and 36 and has a plurality of contacts SC 1 and SC2. The emergency section 30 further comprises a diode D16 having an anode and cathode with the anode connected to the positive potential on signal path 34. The emergency section 30 still further comprises a battery having positive and negative terminals with a negative terminal connected, by way of signal path 38, to the negative potential on signal path 36 and the positive terminal thereof connected to the cathode of the diode D 16.
The emergency section further includes a second ballast inverter comprised of a half bridve driver U4A, a half bridge arrangement 40, and a high voltage transformer T2.
The second inverter circuit has an input and output arranged by means of the plurality of the sW tch contacts SC 1 and SC2 so as to interconnect the positive and negative terminals of the batter<~ when the second d.c. voltage normally applied across terminal 34 and 36 is absent. The second inverter circuit has a sweep frequency circuit for supplying an oscillating current to a :first iluorescent'amp without the need of first preheating the arse ~l~.:n~.: . =~: ...- :~ in a manner similar to that of inverter ballast circuits 28A, 28B, 28C, and 28D. The second inverter ballast circuit further comprises means, to be discussed with reference to Fig. 5, for energizing signal paths 42 and 44 so as to excite the --fluorescent lamp of the inverter ballast circuit 2~A.
The electronic ballast system 10, more particularly, the EMI filter 12 is comprised of a plurality of elements as listed in Table 1, and may be further described with reference to Fig. 2.

Element Typical ValueJType S 11 Conventional fuse R 1 Varistor C1 Film Capacitor (Interference Suppressor) C2 Film Capacitor (Interference Suppressor) C3 Film Capacitor (Interference i Suppressor L Common mode inductor l and LZ

The purpose of the EMI filter 12 is to reduce or even eliminate the electromagnetic interference (EMI) and radio interference (RFI) serving as sources of noise that would otherwise most likely be produced by the electronic ballast system 10.
This electrical noise can interfere with the operation of televisions, radios, telephones, and similar equipment. Further, this electrical noise can be conducted through power lines which radiate and create disturbances in external equipment.

The EMI filter 12 is connected across the source of voltage which, because of-benefits of the present invention, may vary from about 100 to 305 volts a.c.
with a frequency variation between 50-60 Hz. The EMI filter 12 is comprised of the common mode inductors L 1 and L2, wound around the same core and operatively connected to capacitors C1, C2, and C3 arranged as shown in Fig. 1, and provides RFI/EMI
filtering of common mode noise. Additionally, the EMI filter 12 includes a fuse SI1 that provides for over current protection and a varistor Rl that provides protection against high voltage spikes. The EMI filter 12 provides a filtered output on signal paths 14 and 16, which is applied across a full-wave bridge rectifier V 1 comprised of conventional diodes arranged as shown in Fig. 2.
The full-wave bridge V 1 operates in a usual way to convert the filtered output of the EMI filter 12 into a d.c. voltage which is applied, via signal paths 18 and 20, across a leveling capacitor C4, which is part of the power factor correction (PFC) circuit 22 comprised of the plurality of elements given in Table ? and arranged as shown in Fig. 2.

TABLE Z .-Element Typical Value/T'ype C4 Electrolytic Capacitor (Smoothing Capacitor) CS Film Capacitor C6 Film Capacitor C7 Electrolytic Capacitor C8 Electrolytic Capacitor C9 Electrolytic Capacitor R2 Resistor R3 Resistor R4 Resistor RS Resistor R6 Resistor R7 Resistor R8 Resistor R9 Resistor R10 ~ Resistor D 1 Diode Fast Recovery D2 Diode Fast Recovery D3 Boost diode Q 1 Controlled power switch T1 having winding T1A and T2A High Frequency Transformer UlA ~ Power Factor Control The purpose of the power factor correction circuit 22 is to derive a power factor for the electronic power system 10 that approaches unity. The power factor correction circuit 22 is preferred to be implemented into the electronic ballast system 10 because the electronic ballast system 10, as well as all known ballast circuits, uses inductors whicl3 tend to reduce the power factor as seen by the source of a.c. excitation supplying the electronic ballast system 10. This lowering of the power factor disadvantageously increases the consumption of power related to the fluorescent lamps and the magnetic ballast components. Typically this reduction in the power factor and related inductive disturbances creates a 40% increase in power consumption. The power factor correction circuit 22 of the present invention performs an active correction of the power factor typically bringing it almost to unity (.98%) and accomplishes this correction by forcing present its output signal paths 24 and 26 to follow the average primary current of the ac supplying the electronic ballast system 10. Further, the power factor correction circuit 22 maintains a do voltage of approximately 450 volts that is stabilized regardless of the fluctuation of the a.c. that may vary from 108 to 305 volts.
In general, and with simultaneous reference to Figs. I and ?, the power factor correction circuit 22 comprises an inductor T1 having a first winding TIA
having input and output terminals with the input terminal connected to the positive terminal 18 of the full-wave rectifier VI. The power factor correction circuit 22 further comprises a power switch Q 1 having first ( 1 ) second (2) and third (3) electrodes with the first electrode ( 1 ) connected to the output terminal of the winding T1A. The power factor correction circuit 22 further comprises a diode D3 having an anode and a cathode with the anode connected to the output of the first winding T1A and a cathode connected to the positive terminal 24 of the second do output generated by the power factor correction circuit 22.

Capacitive means comprised of capacitor C8 and C9, is arranged across the --positive and negative terminals connected to signal paths 24 and 26. A P.F.C.
controller UlA having an input and an output with the input (pin 3) connected across the positive and negative terminals present on signal paths 18 and 20 and is connected there to by means of a network comprised of capacitors C4 and CS and resistors R2 and R3 arranged as shown in Fig. 2. The P.F.C. controller UlA has circuitry, including a pulse width modulation control, so that the controller UlA provides an output that varies in accordance with the primary current created by the full-wave rectifer V1. The controller UlA is connected to the second (2) electrode of the power switch Q1 and the P.F.C.
controller U 1A is also connected to the third electrode (3) of the power switch Ql.
The P.F.C. controller UlA contains a wideband voltage amplifier used in an internal feedback loop, an overvoltage regulator, a quadrant multiplier having a wide linear operating range, a current sense capacitor, a zero current detector, a pulse width modulator (PWM) having associated logic circuitry, a totem-pole arranged MOSFET
driver, an internal voltage reference, a restart timer, and an under voltage lockout circuit.
The controller UlA is interconnected into the circuitry shown in Fig. 2 by means of its pins 1-8.
Pin 1 (IN) of the P.F.C. controller UlA serves as a voltage amplifier inverting input. This pin 1 is connected, via a resistive divider R9, R10, and R8, to the signal path 24. Pin 2 (COMP) of P.F.C. controller UlA serves as a voltage amplifier output and is the output of the error amplifier (and one of the two inputs to the internal quadrant --multiplier). A feedback compensation network, contained in the P.F.C.
controller UIA, reduces the frequency block gain to advantageously avoid an attempt by the P.F.C.
controller UlA to control the output voltage ripple (120Hz) carried on signal paths 24 and 26. This pin 2 is connected, via capacitor Cfi, to the ground connection.
Pin 3 (MULT) of the P.F.C. controller UrA serves as the second input to quadrant multiplier. Pin 3 is connected, through a resistive divider R2, R3, to signal paths 18 and 20. Pin 4 (CS) of the P.F.C. controller UlA serves as an input to the current sense comparator. This input (Pin 4) provides the instantaneous MOSFET current derived from power switch Ql and which current is represented by a proportional voltage signal created across an external sense resistor R7. This proportional voltage signal is compared with the threshold set by the quadrant multiplier output, and when the resulting current therefrom exceeds the set value, the power MOSFET Q I w111 be turned off by a reset signal provided by the quadrant multiplier and remains off until the next set pulse generated by the PWM latch of the quadrant multiplier.
Pin 5(TM) of the P.F.C. controller UlA serves as the input zero current detector.
Pin 5 is connected, through a limiting resistor R5, to the au.~ciliary winding T I B of the inductor T having the primary winding TIA. Pin 5 provides a zero coil current and voltage function for the P.F.C. controller UlA which processes the inductor signal derived from auxiliary winding Tl B and turns on the external MOSFET Ql as the voltage at pin 5 crosses the threshold level set by the quadrant multiplier.
Pin 6 (GND) of the P.F.C. controller UlA is the common reference of the circuitry of Fig. 2.
Pin 7 --(OUT) of the P.F.C. controller UlA is output of the totem-pole arranged MOSFET
driver. This pin 7 serves to drive the external MOSFET Q1. Pin 8 (Vcc) of the controller UlA carries the supply voltage. This pin 8 is externally connected to a rectified diode D1 and a filter capacitor C7 as shown in Fig. 2.
The P.F.C. controller UlA operates within a voltage range of 108V to 305V and uses average current mode PWM control to provide line and load compensations.
The P.F.C. controller UlA uses an optimum current control method More particularly, the controller UlA uses an average current control implemented by using feed forward line regulation and a variable switching frequency. An oscillator, within the P.F.C. controller UIA, simultaneously turns on the MOSFET power switch Q1 and starts the ramp ofthe PWM current control to regulate the output present on signal paths 24 and 26.
The average inductor current present on pin 4 of the P.F.C. controller U1, is compared with a current reference generated by means of a current error amplifier of the quadrant multiplier. The P.F.C. controller UlA operates as an integrator, allowing the P.F.C. controller UlA to accurately provide an output that follows the current reference generated by the quadrant multiplier.
m A so called "feed forward compensation" of the voltage present on signal paths and 20 has been added to the quadrant multiplier of the P.F.C. controller UlA
in order to provide a constant voltage control loop bandwidth of the P.F.C. controller UlA
in spite of fluctuations that may be present on signal paths 18 and 20. A quadrant multiplier input allows external compensation to be applied to the current modulation quadrant.
The oscillator within the P.F.C. controller UlA operates at a modulated switching frequency. Thus, the frequency of the PWM control signal output has its minimum, nominal value of approximately 20KHz when the input voltage from rectifier V 1 is at its minimum, zero value, and the frequency of the P'WM control signal output has its maximum value of approximately 40KHz when the input voltage from rectifier V 1 is at its peak value.
The frequency of the pulse-width modulated control signal produced by the P.F.C.
controller UIA, determines the current drawn from the full-wave rectifier Vl and hence from the AC supply line. By forcing the current produced by the P.F.C.
controller UlA
present on signal paths 24 and 26 to vary in accordance with the applied line voltage, the line current is forced to become sinusoidal, endowing the power factor correction circuit 22 with a near-unity power factor and low harmonic distortion. The output voltage value of the power factor correction circuit 22 can be adjusted by means of the resistor divider R9, R10, R8, and is typically set at 450V d.c. The output of the power factor correction circuit is routed, via signal paths 24 and 26 to the plurality of inverter power circuits 28A, 28B, 28C, and 28D, each comprised of a plurality of elements shown in Table 3 and each of which may be further described with reference to Fig. 3.
1 ~?

TABLE 3 ..
Element Typical Value/Type C l0 Electrolytic Capacitor C 11 Film Capacitor C 12 Film Capacitor C 13 Film Capacitor J

I C 14 Film Capacitor i C 15 Film Capacitor C 16 Electrolytic Capacitor C 17 Filin Capacitor R I 1 Resistor R12 Resistor R13 Resistor R 14 Resistor i R15 Resistor R 16 Resistor D4 Diode Rectifier D5 Diode Rectifier D6 Diode Rectifier D7 Diode Zener I D8 Diode Fast Recovery D9 Diode Fast Recovery Q2 Power Mosfet Q3 Power Mosfet I Q4 I Diode SCR

t5 L6 High Frequency U2A Integrated Circuit type IR21531D

52 Fluorescent lamp Each of the inverter power circuits 28A, 28B, 28C, and 28D comprises a half bridge arrangement 46 made up of MOSFET devices Q2 and Q3, a half bridge driver U2A, a resonant circuit 48 made up of capacitor C 13 and inductor L6, and a pair of diodes D4 and DS Met ~i the synchronism j connected in bi-directional mode, all as shown in Fig. 3, as well as in Fig. 1.
The MOSFET devices Q2 and Q3 each have first (1) second (2) and third (3) electrodes. The MOSFET Q2 has its first (1) electrode connected to the positive d.c.
voltage present on signal path 24, its third (3) electrode connected to the first end of the resonant circuit 48, whereas the first ( 1 ) electrode of the MOSFET Q3 is also connected to the first and to the resonant circuit 48, and the third (3) electrode ofthe is connected to a ground connection.
The half bridge U2A provides first and second outputs that control the operation of a half bridge arrangement 48, which operatively provides an oscillating current to energize the fluorescent lamp 52. The resonant circuit 48 has a second end connected to a first cathode of the fluorescent lamp 52, which, in turn, has a second cathode connected to the ground connection.
m The pair of diodes D4 and D5 are arranged in a bi-directional manner with respect to ground and are interposed between first cathode of the fluorescent lamp and a second output of the half bridge driver U2A.
The half bridge driver U2A has its pin 1 directly connected to a positive source of voltage 13.5, to be later described with reference to Fig. 5, and serves as the controller for providing the circuit arrangement of Fig. 3 to serve as a self oscillating half wave.
Each of the inverter ballast circuits 28A, 28B, 28C, and 28D is set to oscillate at a fixed frequency of around 40 kHz determined by the net resistance-capacitance made up by the resistor R11 and the capacitor C 14. In operation, when pin 1 of the half wave driver U2A receives a positive voltage of +13.5V, and on the drain of the receives a positive voltage of +450V, the inverter ballast circuits 28A, 28B, 28C, or 28D
begins to oscillate and initially performs a frequency sweep to automatically look for the correct frequency of resonance (corresponding to that which energizes the fluorescent lamp into its running mode) determined by the values selected for the inductor L6, the capacitor C 15 and the type of fluorescent lamp 52.
Unlike prior electronic ballast circuits, the inverter ballast circuits 28A, 28B, 28C, and 28D cause the fluorescent lamp 52 to rapidly seek its operating mode without having the cathodes of fluorescent lamp 52 preheated. This rapid ignition is provided by the bi-directional arrangement of the diodes D4 and D5 operatively cooperating with capacitor C 14 and C 15, arranged as shown in Fig. 3, and with the half bridge driver U2A providing m an oscillating current on its pin 3 (CT). The parameters of the inverter ballast circuits 28A, 28B, 28C, and 28D may be selected to provide the desired power to operate any of the different types of fluorescent lamps, such as T5, T8, T12, 20W, 32W, 40W, 56W, 70W, linear, circular, or U shaped fluorescent lamps.
Since the fluorescent lamp 52 is turned on with a direct ignition (without being preheated), it is possible to operate the fluorescent lamp 52 by means of only two wires.
In fact, from Fig. 3 it should be noted that the fluorescent lamp 52 is connected from one side to the 100V connection and from the other side to the fluorescent lamp 52 common ground. The half bridge oscillator provided by each of the inverter ballast circuits 28A, 28B, 28C, and 28D feeds the fluorescent lamp in a series resonant arrangement, such particular configuration offers advantages of being adequately protected against possible damage owed to conditions of an absent lamp 52, broken cathodes in lamp 52, lighting failure of lamp 52, and interruption of connection of the lamp 52.
In the case wherein one of the above anomalies, for example, the half bridge driver U2A finds itself without a load and instantly, in response to errors signals, performs a very rapid frequency sweep to find the new resonant condition, but being there is no load, the error signals related to the half bridge driver U2A rise and accordingly the current produced by the half bridge driver U2A for a brief time manifests excessive values, thereby jeopardizing the integrity of the inductor L6 and of the MOSFETS Q2, and Q3 that inevitably will destroy some component. This possible ~8 damage is prevented by the fault control logic 50 shown in Fig. l, but more clearly in Fig.
3 as being comprised of components C17, D9, D8, C16, R16, D7, R15, Q4, D6, and R14.
In operation, if, as we mentioned before, lamp 52 is absent, and if the half bridge driver U2A fails to find the correct resonant frequency related to the particular fluorescent lamp 52, causing an increase in the disturbance values of current and voltage delivered to~ 100V line and that are present at capacitor C17, these disturbances will be passed on to diodes D8 and D9. The diodes D8 and D9 rectify the disturbances and deliver the rectified quantities to an electrolytic capacitor C16 and resistor R16 which, in turn, filter the rectified disturbances. The capacitor C 16, in cooperation with zener diode D7, develops a voltage that renders the SCR Q4 conductive which, in turn, causes pin 3 of the half bridge driver U2A to be brought to ground, by way of diode D6 and SCR Q4, which, in turn, causes the half bridge driver U2A to be shutdown which, in turn, immediately e~ctinguishes the oscillation of the inverter ballast circuit 28A, 28B, 28C, or 28D, thereby, eliminating any condition of danger that would damage the inductor 26 and the MOSFETS Q2 and Q3.
Once activated by the shutdown of half bridge driver U2A, the 100V line is not subjected to any disturbance voltage and/or current and, therefore, the SCR Q4 is rendered inoperative and its anode is connected to a positive voltage through the resistor R14.

To restore the condition of operation of the half bridge driver U2A, it is only necessary to remove the cause that provoked the shutdown on half bridge driver U2A, by for example, inserting a fluorescent lamp 52 or replacing a defective fluorescent lamp 52.
The automatic reactivation of operation of the driver has not been inserted only for safety reasons intrinsic of the personnel employed to the maintenance.
Obviously, the shutdown of the half bridge driver U2A is separately activated for the inverter ballast circuits 28A, 28B, 28C, and 28D. Accordingly, if an inverter ballast circuit, such as 28A, is deactivated, the remaining inverter ballast circuits 28B, 28C, and 28D remain fully operative.
It should now be appreciated that the practice of the present invention provides for an electronic ballast system that operates with the universal input having a voltage range of between 108 to 305 volts ac, and a frequency range of between 50-60 Hz. The electronic ballast system of the present invention allows for the direct lighting of fluorescent lamps without any preheating of the cathodes thereof, thereby, allowing the electronic ballast to service the fluorescent lamps by the provisions of only two separate wires. Further, the electronic ballast system of the present invention having individual ballast circuits 28A, 28B, 28C, and 28D, allows for individual control of every fluorescent lamp whereas each of the individual ballast circuits 28A, 28B, 28C, and 28D
provides for a selected power to a variety of fluorescent lamps, such as T5, T8, T12, 20W, 32W, 40W, 56W, 70W, linear, circular, or U shape fluorescent lamps.
~o In the planning of the building, the integration of illumination for emergency purposes needs to be provided and such illumination must conform to various building codes and also to various legislative requirements. Particularly, these legislative requirements demand that when a building, that is frequented by the public, loses its primary source of power causing the loss of its ordinary lighting, then an auxiliary system is immediately provided for emergency purposes. Lighting for emergency purposes must clearly take into account the need to point out the exits through customized signaling, the routes of emergency egress along hallways to allow a steady flow of people out of the related building, and to ensure that alarms and fire retarding equipment are clearly identified by the emergency lighting.
Typically, emergency lighting is divided into safety and backup components.
The purpose of the safety light is to ensure the proper evacuation of the building and to make sure that evacuation will be accomplished in a safe manner. The backup lighting commonly requires lighting to be provided on a continuous basis, so that various jobs may be performed by those employed in the related buildings.
Safety lighting is supplied, in the case of mains failure, within the extremely brief time of 0.5 seconds and this operation is accomplished automatically. So too is the return to normal power when the cause of failure has been corrected.
m Commonly devices used in emergency illumination include nickel cadmium (Ni-Cd) that may be operated autonomously for at least an hour and have an operation life of at least four (4) years.
The electronic ballast system 10 of the present invention includes a switching power and battery charger 30 and an emergency section 32 that allows the fluorescent lamp of the emergency section to be energized by its battery.
System 10, the emergency system of this invention, provides that when the main fails, one ( 1 ) fluorescent lamp will be kept alight by the automatic operation of the system.
So that if the established configuration of the lighting has four (4) lamps, one (1) lamp will remain alight. if three (3) lamps, one ( 1 ) will remain on, if two (2) lamps, one ( 1 ) will take over.
The emergency section 32 of the present invention provides power for fluorescent lamps, which can be of the 18W to 70W type. 'The emergency illumination of the present invention may be further described with reference to Fig. 4, showing the switching power and battery charger 30, which is comprised of a plurality of elements given in Table 4.

Element Typical Value/Type C18A Electrolytic Capacitor C 18B Electrolytic Capacitor C 19 Film Capacitor C20 Film Capacitor C21 ~ Electrolytic Capacitor R17 ~ Resistor R 18 Resistor D 10 Diode Fast Recovery D 11 Diode Fast Recovery D 12 Diode Zener T1 High Frequency Transformer OC 1 Optocoupler U3A Integrated Circuit ~3 Fig. 4 shows the switching power and battery charger 30 as having its inputs connected to the hot and ground terminals of the EMI filter 12 of Fig. 2. It is of particular importance that the hot connection of the switching power and battery charger 30 be maintained so as to not interrupt the function of the emergency lighting supply.
An essential element of the switching power and battery charger 30 is the fly-back controller U3A, which in an integrated circuit and operatively cooperates with other components shown in Fig. 4, as well as components shown in Fig. 5 to be described, to produce a stabilized do voltage having a value of about +13.5 volts derived from an ac source having a voltage variation of between 108 to 305 volts ac, which is essentially the same ac source of voltage feeding the EMI filter 12. The fly-back controller U3A
includes a high voltage (700 power MOSFET switch with an internal power ballast controller. Unlike the P.F.C. controller UlA of Fig. 2, employing a conventional pulse-width modulator, the fly-back controller U3A uses a simple ON/OFF control to regulate the voltage output provided on its signal paths 34 and 36. The fly-back controller U3A
consists of an oscillator, an enabler circuit, an under-voltage circuit, an over-temperature protection arrangement, a current limit circuit, and the 700 volt power MOSFET. The fly-back controller U3A is interconnected to the circuit elements of Fig.
4 by way of pins 1-4.
Pin 1 (D) of the fly-back controller U3A serves as its MOSFET drain connection and provides a signal for creating internal operating current for both start-up and ?4 steady-state operation. Pin 2 (EN/LJV) of the fly-back controller U3A provides an under-voltage and enable function. The under-voltage internal circuitry disables the power MOSFET when the bypass pin (pin 3) voltage drops below a prefixed voltage value. The enable function of pin 2 determines whether or not to proceed with a next switch cycle. In operation, once a cycle is started the fly-back controller U3A always completes the cycle (even when enable pin 2 changes state halfway through the cycle).
The enabler signal of pin 2 is generated on the secondary of the transformer T2 (by way of pin 2 of the fly-back controller U3A) by comparing the power supply output voltage present on signal paths 34 and 36 with an internal reference voltage. The enabler signal is high when the power supply output voltage is less than the reference voltage. This pin (2) is driven by an optocoupler (0C 1 ) having a transistor. The collector of the optocoupler :ransistor is connected to the enabler pin (2) and the emitter of the optocoupler ;ransistor is connected to the source pin (5). The optocoupler has an LED
which is connected in series with a zener diode (D12) across the DC output voltage present on signal paths 34 and 36 when the DC output voltage exceeds a target or predetermined regulation voltage level (optocoupler LED diode voltage drop plus zener voltage). For such conditions the optocoupler LED will start to conduct, pulling the enabler pin ( 1 ) low.
Pin 3 (BP) of the fly-back controller U3A serves as a BYPASS PIN, which is connected to a bypass capacitor C20. Pin 4 (S) of the fly-back controller serves as a SOURCE PIN for the internal power MOSFET.
2s The switching power and battery charger 30 operates from a full-wave rectifier V2 that receives the ac source ( 108-305 Vac). Capacitor C 18 filters the rectified do output from V2 and provides a delaying function to compensate for delays in the standby power provided by the switching power and battery charger 30 involved in the loss of the primary power. The rectified d.c. voltage is also applied to the primary winding of transformer Tl arranged in series with an integrated high voltage MOSFET
inside of the fly-back controller U3A. A diode D 10, a capacitor C 19 and a resistor R 17 comprise a clamping circuit that limits the turn-off voltage spikes presented to the fly-back controller U3A (drain pin) to a safe value. The voltage at the secondary winding of transformer T 1 is rectified and filtered by D 1 l and C21 to provide a 14.5 V do output. The output voltage is determined by the sum of the optocoupler OC 1 LED
forward drop voltage and zener diode D 12 voltage drop. The resistor R 18, maintains a bias current through the zener diode 12 so as to improve its voltage response.
The fly-back controller U3A is intended to operate in a current :~rnit mode.
When enabled, the oscillator within the fly-back controller U3A turns the internal power MOSFET on at the beginning of each cycle. The internal MOSFET is turned off when the current ramps up to a predetermined current limit. The maximum on-time of the MOSFET is limited to a DC maximum voltage associated with the oscillator.
Since the current :~ i c and frequency response of a given fly-back controller U3A
are constant, the power delivered is proportional to the primary inductance of the transformer Tl and this power is relatively independent of the input voltage (108-305 ac). This primary inductance of the transformer T1 is calculated for the maximum -,h power required and is supplied to the oscillator within the fly-back controller U3A,- As long as the fly-back controller U3A is chosen to be rated for the power level at the lowest input voltage, the primary inductance will ramp up the current to the current limit before the voltage DC maximum limit of the associated oscillator is reached. The emergency section 32 of the electronic ballast circuit 10, may be further described with reference to Fig. 5 showing a plurality of elements given in Table 5.
?7 Element Typical Value/Type R19 Resistor R20 Resistor R21 Resistor R22 Resistor R23 Resistor C~Z Electrolytic Capacitor C23 Electrolytic Capacitor C24 Film Capacitor C25 Film Capacitor C26 Film Capacitor D16 Diode Rectifier D 17 Diode LED

KI Relay Double-Pole, Double-Throw T2 High Frequency Transformer QIO Power Mosfet Q I I Power Mosfet LP 1 i Fluorescent Lamp I

Battery i Nickel-cadmium Type ( 12 volts) I

?$

In general, an essential feature of the emergency section 32 is to act as a high frequency inverter that converts the do output of the battery into an alternating voltage having a typical value of 150 volts and a typical frequency of 33 Hz having a relatively low value of current. The high frequency inverter is used to turn on the fluorescent lamp LP 1 being of a typical low-power (8V~ type. The enablement of the ;usage of the battery is determined by the commutation provided by the switch control K1. The energizing of the switch control K 1 causes the normally open contact SC 1 to connect node 110, carrying a do voltage of approximately 14.5, to node 120. This 14.5 volts is reduced to 13.5 by the operation of a resistor R20 and a capacitor C22 arranged as shown in Fig. 5.
The 13.5 volts is applied to signal path 42 that i.s routed at least one inverter ballast 28A, 28B, 28C, or 28D, but shown in Fig. 1 as being routed to inverter ballast circuit 28A.
The normally closed contact SC1 related to the switch control K1 connects to the node 110 to node 140. Further, the switch control K1 as shown in Fig. 1 has a second set of contacts, in particular normally closed contact SC2, which connects junction 200 to the lamp LP 1, as well as to the fluorescent lamp 52 of Fig. 3 by way of signal path 44. The high frequency inverter of the emergency section 32 utilizes a half bridge driver U4A
whose operation and internal components are the same as previously discussed for the controller U2A(see circuit 28A, 28B, 28C, 28D). The half bridge driver U4A is operatively connected to MOSFETS Q10 and Q11 arranged in a half bridge configuration 46 controlled, in part, by a capacitor C25 that is interconnected to the primary of the transformer T2 by way of capacitor C26. The capacitance of the capacitor C26 and the inductance of transformer T2 comprise a resonant circuit. The half bridge driver U4A is interconnected to the circuit of Fig. 5 by way of its pins 1-8.

Pin 1 ( Vcc) of the half bridge driver U4A serves as the supply sowce for logic and a gate driver all within the half bridge driver U4A. This pin 1 is connected to the positive I50 and to the capacitor C23. Pin 2 (RT) of the half bridge driver U4A serves as an oscillator timing resistor input. This pin 2 is connected to the resistor R2I.
Pin 3 (CT) of the half bridge driver U4A serves as an oscillator timing capacitor input.
This pin 3 is connected to capacitor C24. Pin 4 (COM) of the half bridge driver U4A serves as an IC
power and signal ground. This pin 4 is directly connected to the common ground of the circuit of Fig. 5. Pin 5 (LO) of the half bridge driver U4A serves as a low side to gate the output which drives MOSFET Q 11. This pin 5 is connected to the gate of the MOSFET
QI 1 by resistor R23.
Pin 6 (VS) of the half bridge driver serves a high voltage floating supply retwn.
This pin 6 is connected to the junction between the drain of the MOSFET Ql I
and the source of the MOSFET Q 10, as well as to capacitor C25. Pin 7 (HO) of the half bridge driver U4A serves as a high side to gate the MOSFET Q10. This pin 7 is connected to the gate of the MOSFET QIO by resistor R22. Pin 8 (VB) of the half bridge driver U4A
serves as a high side to gate the MOSFET QI I with a floating supply. This pin 8 is also connected to the capacitor C25.
In operation, that is, in case of a primary power failure, when the half bridge driver U4A receives a positive voltage of about I3.6 volts coming from a battery, it begins to alternately oscillate at a fixed frequency of about 33kHz determined by the :4 value of capacitor C22 and resistor R20. This oscillation drives the two and Q 11 arranged in a half bridge configuration 40. The application of the voltage of 13.5 applied to the drain of Q 10 (positive) and to the source of Q 11 (negative) causes the half bridge driver U4A to convert an alternating voltage to a square type form having the high frequency 33kHz. The high frequency is established by the resonant circuit formed by the capacitor C25 and the primary inductance of transformer T2. The capacitor C25 serves to limit the current flowing in the transformer T2. The high frequency voltage present at the capacitor C25 is transferred to the secondary of transformer T2 by an appropriate selection of the ratio of the windings between the primary and secondary of transformer T2. This voltage appearing across the secondary winding of transformer T2 is raised to a value sufficient to render the fluorescent lamp LP1 into its operating state again without first sequencing the fluorescent through its preheat mode.
The emergency section 32 of Fig. 3 allows the fluorescent lamp LP1 be placed into its running mode and eliminates any annoying negative effects created by flickering typically e;cperienced in low power fluorescent lamps, such as LP1, especially occurring during the preheat mode which is not applicable to the practice of the present invention.
Conversely, the operation of the present invention causes the fluorescent lamp LPl, to provide a constant homogenous brightness.
The battery, shown in Fig. 5, has positive and negative terminals and may be of a nickel-cadmium type having twelve cells, each being 1.2 volts connected in series so as to provide a total current capability of 1.5 amps at 12 volts dc. The typical consumption 3~

of current by the circuit arrangement of Fig. 5 varies from a minimum of 0.4 amps (a lamp LP1 of 18W) to a maximum of 0.7 amps (a lamp LP1 of 60W). The battery for such variations can operate autonomously for at least one hour.
The current to charge the battery is approximately and preferably regulated to about 1/8 of an amp and provides an output of approximately 13.6 volts in response to a trickle charge of about twelve (12) hours. It is possible to increase the autonomy of the battery by selecting a battery having a maximum of six (6) amp hours and allowing for a charge to last for about four (4) hours.
In the overall operation of the present invention, when the primary power source is available, the switching power and battery charger 30 of Fig. 4 provides an input of 14.5 volts to the emergency section shown in Fig. 5. This input causes the indicator (ON) of the status of the battery charger to be display by LED D I 7 and the resistor R 19. The presence of this 14.5 volts excites the relay Kl thereby commutating the contacts SC1 and SC2 causing normally opened contact SC1 to deliver the 13.5V (reduced from 14.5V
by R20 and C22) to the inverter ballast circuits 28A, 28B, 28C, and 28D, by way of signal path 42. Conversely, the presence of the energized coil of switch control K1 causes the normally closed contact to open up, thereby removing the 14.5 volts to the half-bridge driver U4A. Further, the energizing of the switch control K1 causes the normally closed contact SC2 to open up, thereby removing the power from node 200 to the lamp LP1 and also to the lamp 52 of Fig. 3, otherwise energized by way of signal path 44.

Conversely, when the primary supply voltage is absent, the switch power and battery charger 30 does not produce the 14.5 volts otherwise applied to the emergency section 32 shown in Fig. 5. This absence causes the LED D17 to extinguish.
Further, the absence of the 14.5 volts from the switch power and battery charger 30 removes the excitation to the coil of relay Kl, thereby allowing its normally closed contact SC1 and SC2 to be functional. The normally closed contact SC 1, as shown in Fig. 5, causes the voltage from the battery to be delivered to node x40, which, in turn, is passed to the half bridge driver U4A causing it to operate and supplying a oscillating current present on node 200 to the fluorescent lamp LP 1 rendering it into its operating condition. Further, the oscillating current present on node 200 is delivered, via signal path 44 to lamp 52 of the selected inverter ballast circuit 28A, 28B, 28C, or 28D.
The transition of the emergency section 32 of Fig. 5 from its dormant condition, that is, the primary power being present, to its active condition, that is, when the primary power is lost, is dependent upon commutation time, which is typically 20 milliseconds for the relay K 1. During the operation that provides for the emergency lighting, to avoid the battery from completely discharging so as to provide for a prolonged blackout, the emergency section of Fig. 5 utilizes a battery sensor circuit integrated in the half bridge driver U4A. More particularly, pin 1 of the half bridge driver U4A is internally connected and constantly monitors the d.c. voltage feeding the half bridge driver U4A, and when this d.c. voltage drops below a particular value, such as 8.2 volts, the battery sensor immediately extinguishes the oscillator within the half bridge driver U4A, thereby, setting the half bridge driver U4A into its standby condition not energizing._the fluorescent lamp LP1. The functionality or operational condition of the half bridge driver U4A is restored when the voltage present on pin 1 again rises to a value of approximately 11 volts and then the battery belrins its charge. Such a mechanism provides for the advantages in that it avoids damage to the cells of the battery, otherwise created by a complete discharge thereof, increases in the time for recharge, decreases in the value of current necessary for the recharge of the battery and correspondingly increases the operational life of the battery.
It should now be appreciated that the practice of the present invention provides for an electronic ballast system 10 having a subsystem with a battery, along with a battery charger and associated logic, that provides for emergency lighting, as well as for operating at least one of the fluorescent lamps of the inverter ballast circuits 28A, 28B, 28C, and 28D.
It is understood that the invention is not limited to the specific embodiments herein illustrated and described, but may be otherwise without departing from the spirit and scope of the invention.

Claims (11)

What I claim is:
1. An electronic ballast system comprising:
a) an EMI filter having an input connected to a source of excitation and providing a filtered output;
b) a full-wave rectifier having an input connected to said output of said EMI
filter and providing a rectified do voltage;
c) a power factor correction circuit having an input connected to said output of said full-wave rectifier and providing a power factor regulated output; and d) a first inverter ballast circuit having an input connected to said output of said power factor converter, said first inverter ballast circuit having a sweep frequency circuit for supplying an oscillating current to power a first fluorescent lamp, without the need for preheating said lamp.
2. The electronic ballast system according to claim 1, wherein said EMI filter has hot and neutral terminals and wherein said electronic ballast system further comprises:
a) a power supply having an input connected across said hot and neutral terminals and providing a second do voltage having a positive and negative potential;
b) switching means having an input connected to said output of said power supply and having a plurality of switch contacts;
c) a diode having an anode and a cathode with the anode thereof connected to said positive potential of said second do voltage;

d) a battery having positive and negative terminals with the negative terminal connected to said negative potential of said second do voltage and the positive terminal connected to said cathode of said diode; and e) a second inverter ballast circuit having an input arranged by means of said plurality of said switch contacts to be interconnected to said positive and negative terminals of said battery when said second do voltage of said power supply is absent, said second inverter ballast circuit having a sweep frequency circuit for supplying an oscillating current to a second fluorescent lamp without the need of preheating said second fluorescent lamp.
3. The electronic ballast system according to claim 2, wherein said second inverter ballast circuit further comprises means for supplying said oscillating current of said second inverter to said first fluorescent lamp.
4. The electronic ballast system according to claim 2, wherein said first inverter ballast circuit further comprises fault control logic arranged in parallel with said first fluorescent lamp and connected to an output and an input of said sweep frequency circuit and having means for disabling said sweep frequency circuit when said first fluorescent lamp becomes inoperable.
5. An inverter ballast circuit comprising:

a) a half bridge arrangement having an input terminal connected to a positive do voltage, a control terminal connected to a first end of a resonant circuit, and a grounded terminal connected to ground;
b) a driver providing first and second outputs with the first output connected to said control of said half bridge arrangement, said first and second outputs each supplying an oscillating current;
c) said resonant circuit having a second end connected to a first cathode of a fluorescent lamp having a second cathode connected to ground; and d) a pair of diodes arranged in parallel but opposite directions with respect to said ground and interposed between said first cathode of said fluorescent lamp and said second output of said driver.
6. The inverter ballast circuit according to claim 5, wherein said half bridge arrangement comprises first and second MOSFET gated power transistors.
7. The inverter ballast circuit according to claim 5, wherein said positive d.c. voltage has a value of about 450 volts.
8. The inverter ballast circuit according to claim 5, wherein said resonant circuit comprises an inductor and a capacitor arranged in series between said control terminal of said half bridge arrangement and said first cathode of said fluorescent lamp.
9. A power factor correction circuit having an input and an output with the input connected to first do voltage having positive and negative terminals and the output providing a second do output voltage having positive and negative terminals and a predetermined power factor; said power factor correction circuit comprising:
a) an inductor having a first winding with said first winding having an input and an output terminal, said input of said first winding connected to said positive terminal of said second do voltage;
b) power switch having first, second and third electrodes with the first electrode connected to said output of said first winding;
c) a diode having an anode and a cathode with the anode connected to said output of said first winding and the cathode connected to said positive terminal of said second do output voltage;
d) capacitive means arranged across said positive and negative terminals of said second do output voltage: and e) a controller having an input and an output with said input connected across said positive and negative terminals of said first do voltage by a network comprising a capacitor, said controller having means including pulse width modulation control so that the controller provides an output that varies in accordance with the average primary current created by said first rectified do voltage, said output of said controller being provided on first and second terminals with the first terminal connected to said second electrode of said power switch and the second terminal connected to said third electrode of said power switch.
10. An electronic ballast system as in claim 1 further comprising an emergency inverter ballast circuit for supplying power to said fluorescent lamp when said first inverter system is disabled, without the need for preheating said lamp.
11. An electronic ballast system comprising:
a) an EMI filter having an input connected to an electrical source and providing a filtered output;
b) a full-wave rectifier having an input connected to said output of said EMI
filter and providing a rectified do voltage;
c) a power factor correction circuit having an input connected to said output of said full-wave rectifier and providing a power factor regulated output; and d) an inverter ballast circuit having an input connected to said output of said power factor converter, said first inverter ballast circuit having a sweep frequency circuit for supplying an oscillating current to power a fluorescent lamp operatively associated with said inverter ballast circuit without the need for preheating said lamp.
CA002414543A 2001-12-19 2002-12-13 Electronic ballast system having emergency lighting provisions Abandoned CA2414543A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/025,318 US6784624B2 (en) 2001-12-19 2001-12-19 Electronic ballast system having emergency lighting provisions
US10/025,318 2001-12-19

Publications (1)

Publication Number Publication Date
CA2414543A1 true CA2414543A1 (en) 2003-06-19

Family

ID=21825330

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002414543A Abandoned CA2414543A1 (en) 2001-12-19 2002-12-13 Electronic ballast system having emergency lighting provisions

Country Status (8)

Country Link
US (2) US6784624B2 (en)
JP (1) JP2003197389A (en)
KR (1) KR20030051377A (en)
CN (1) CN1430458A (en)
CA (1) CA2414543A1 (en)
DE (1) DE10259585A1 (en)
MX (1) MXPA02012701A (en)
TW (1) TWI292517B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1496594A1 (en) * 2003-07-10 2005-01-12 E.R.C. Elettro Radio Costruzioni S.p.A. Electronic power supply for an emergency lighting with fluorescent lamp

Families Citing this family (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10228742A1 (en) * 2002-06-27 2004-01-15 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Supply circuit, in particular for discharge lamps
US20040232775A1 (en) * 2003-05-19 2004-11-25 Nilssen Ole K. Lighting system comprised of a unique direct current power supply and a plurality of gas discharge luminaires
CN1833471A (en) * 2003-08-05 2006-09-13 皇家飞利浦电子股份有限公司 Total harmonic distortion reduction for electronic dimming ballast
DE10337148A1 (en) * 2003-08-13 2005-03-17 Sander Elektronik Ag emergency lighting
US20050242751A1 (en) * 2004-04-28 2005-11-03 Zippy Technology Corp. Inverter circuit with a power factor corrector
US7139680B2 (en) * 2004-07-15 2006-11-21 Crydom Limited Apparatus and method for standby lighting
US20070194721A1 (en) * 2004-08-20 2007-08-23 Vatche Vorperian Electronic lighting ballast with multiple outputs to drive electric discharge lamps of different wattage
US7256556B2 (en) * 2004-09-28 2007-08-14 Acuity Brands, Inc. Equipment and methods for emergency lighting that provides brownout detection and protection
CN101065994B (en) * 2004-11-29 2014-04-02 皇家飞利浦电子股份有限公司 Method and a driver circuit for LED operation
JP4956019B2 (en) * 2005-03-02 2012-06-20 パナソニック株式会社 Lighting unit and lamp
TW200635187A (en) * 2005-03-24 2006-10-01 Delta Electronics Inc Converter with power factor correction and DC-DC conversion function
US20060220460A1 (en) * 2005-03-31 2006-10-05 Grolmes James M Low voltage control module
DE102005025626A1 (en) * 2005-06-03 2006-12-07 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Electronic ballast for at least one lamp
JP2007109661A (en) 2005-10-12 2007-04-26 Internatl Rectifier Corp Integrated circuit for improving power factor with eight pins and controlling ballast
CN2907170Y (en) * 2006-05-16 2007-05-30 彭俊忠 Power-saving voltage regulation and ballasting device
JP5014418B2 (en) * 2006-04-27 2012-08-29 フエン、ワイケイ Electronic driver for fluorescent lamp
WO2007130954A2 (en) * 2006-05-01 2007-11-15 Rosemount Aerospace Inc. Universal ac or dc aircraft device power supply having power factor correction
US7710702B2 (en) * 2006-05-18 2010-05-04 Global Power Technologies, Inc. Primary side control module and method for protection of MOSFET against burnout
JP2007317569A (en) * 2006-05-26 2007-12-06 Matsushita Electric Works Ltd Filter device, and discharge lamp lighting device and luminair using it
KR100742248B1 (en) 2006-06-29 2007-07-26 주식회사 애버드 Ballast and power factor correction circuit therefor
WO2008014632A1 (en) * 2006-06-29 2008-02-07 Fulham Electronic Company Limited Ballast and ballast control method and apparatus, for example anti-arcing control for electronic ballast
US7312588B1 (en) * 2006-09-15 2007-12-25 Osram Sylvania, Inc. Ballast with frequency-diagnostic lamp fault protection circuit
CN101346027A (en) * 2007-07-13 2009-01-14 马士科技有限公司 Non-magnet ring electric ballast and fluorescent lamp using the same
US7813093B2 (en) * 2008-02-15 2010-10-12 Analog Devices, Inc. Output driver with overvoltage protection
US7957111B2 (en) * 2008-02-15 2011-06-07 Analog Devices, Inc. Differential current output driver with overvoltage protection
CN101257764B (en) * 2008-04-10 2011-06-15 上海靖耕照明电器有限公司 Method for enhancing fluorescent illumination efficiency and energy conservation effect
CN101568219B (en) * 2008-04-23 2013-01-09 鸿富锦精密工业(深圳)有限公司 Light source driving device
JP2009289684A (en) * 2008-05-30 2009-12-10 Toshiba Lighting & Technology Corp High pressure discharge lamp lighting device
US9231438B2 (en) 2008-10-01 2016-01-05 Aspen Avionics, Inc. Airborne power system disconnect system and method
US9253843B2 (en) 2008-12-12 2016-02-02 02Micro Inc Driving circuit with dimming controller for driving light sources
US8044608B2 (en) 2008-12-12 2011-10-25 O2Micro, Inc Driving circuit with dimming controller for driving light sources
US9386653B2 (en) 2008-12-12 2016-07-05 O2Micro Inc Circuits and methods for driving light sources
CN102014540B (en) * 2010-03-04 2011-12-28 凹凸电子(武汉)有限公司 Drive circuit and controller for controlling electric power of light source
US8508150B2 (en) * 2008-12-12 2013-08-13 O2Micro, Inc. Controllers, systems and methods for controlling dimming of light sources
US8076867B2 (en) 2008-12-12 2011-12-13 O2Micro, Inc. Driving circuit with continuous dimming function for driving light sources
US8378588B2 (en) 2008-12-12 2013-02-19 O2Micro Inc Circuits and methods for driving light sources
US9030122B2 (en) 2008-12-12 2015-05-12 O2Micro, Inc. Circuits and methods for driving LED light sources
US9232591B2 (en) 2008-12-12 2016-01-05 O2Micro Inc. Circuits and methods for driving light sources
DE112010001814A5 (en) * 2009-04-30 2012-05-31 Tridonic Gmbh & Co Kg EMERGENCY OPERATING DEVICE WITH POTENTIAL-DISCONNECTED PFC UNIT
DE102009033280A1 (en) * 2009-07-15 2011-03-24 Tridonic Gmbh & Co Kg Low voltage supply circuit for operating integrated circuit of operating device, has integrated circuit supplied with electric current when voltage level at current supply connection of integrated circuit is lower than reference voltage
DE102009046422A1 (en) * 2009-11-05 2011-05-12 Daniel Schneider Charging system for electric vehicles
WO2011063302A2 (en) * 2009-11-19 2011-05-26 ElectraLED Inc. Fluorescent light fixture assembly with led lighting element and converter modules
DE102009044593B4 (en) 2009-11-19 2018-07-12 Vossloh-Schwabe Deutschland Gmbh Operating control device for operating a light source
US8164275B2 (en) * 2009-12-15 2012-04-24 Tdk-Lambda Americas Inc. Drive circuit for high-brightness light emitting diodes
CN201623643U (en) * 2010-01-19 2010-11-03 广东斯泰克电子科技有限公司 Power adapter with self-induction and adjustment for output voltage
CN101772250B (en) * 2010-02-08 2013-08-28 海洋王照明科技股份有限公司 Dimmable electronic ballast
CN103391006A (en) 2012-05-11 2013-11-13 凹凸电子(武汉)有限公司 Light source driving circuit and controller and method for controlling power converter
US8698419B2 (en) 2010-03-04 2014-04-15 O2Micro, Inc. Circuits and methods for driving light sources
EP2387137B1 (en) * 2010-05-13 2013-07-17 Nxp B.V. An SMPS having a saftey arrangement, a method of operating a SMPS, and a controller therefor
CN101861040B (en) * 2010-05-14 2012-03-21 苏州市昆士莱照明科技有限公司 Emergency electronic ballast
CN102480226B (en) * 2010-11-22 2015-04-08 中山市云创知识产权服务有限公司 Step-down type conversion circuit
CN102573187B (en) * 2010-12-27 2015-09-02 中航贵州飞机有限责任公司 Airplane anti-collision lamp control device
CN102097850B (en) * 2010-12-31 2014-01-15 东莞市奇立电源有限公司 Method and device for controlling multiple safety protection and energy-saving charging
CN102695347B (en) * 2011-03-22 2014-05-21 海洋王照明科技股份有限公司 Power supply circuit for electronic ballast control chip
CN103460802B (en) * 2011-04-08 2016-08-17 皇家飞利浦有限公司 For driving the actuator device and driving method loading particularly LED component
US8441207B2 (en) * 2011-04-27 2013-05-14 Shenzhen Lvsun Electronics Technology Co., Ltd LED streetlight circuit
CN102769986B (en) * 2011-05-06 2014-10-15 海洋王照明科技股份有限公司 Electronic ballast
JP5830986B2 (en) * 2011-07-06 2015-12-09 株式会社リコー Lighting control circuit, illumination lamp using the lighting control circuit, and luminaire using the illumination lamp
US9137866B2 (en) * 2011-12-12 2015-09-15 Cree, Inc. Emergency lighting conversion for LED strings
US9871404B2 (en) 2011-12-12 2018-01-16 Cree, Inc. Emergency lighting devices with LED strings
US10117295B2 (en) 2013-01-24 2018-10-30 Cree, Inc. LED lighting apparatus for use with AC-output lighting ballasts
US9835691B2 (en) 2011-12-12 2017-12-05 Cree, Inc. Emergency lighting systems and methods for solid state lighting apparatus
TWI450480B (en) * 2012-03-02 2014-08-21 Holtek Semiconductor Inc Half bridge driving apparatus
US10098202B1 (en) * 2012-03-19 2018-10-09 Universal Lighting Technologies Constant current source with output voltage range and self-clamping output voltage
IN2014DN10786A (en) 2012-05-30 2015-09-04 Fulham Co Ltd
US9324625B2 (en) 2012-05-31 2016-04-26 Infineon Technologies Ag Gated diode, battery charging assembly and generator assembly
DE102012214832A1 (en) 2012-08-21 2014-02-27 Tridonic Uk Ltd. Emergency lighting device with potential separation between light source and energy storage
US9439249B2 (en) 2013-01-24 2016-09-06 Cree, Inc. LED lighting apparatus for use with AC-output lighting ballasts
US10045406B2 (en) 2013-01-24 2018-08-07 Cree, Inc. Solid-state lighting apparatus for use with fluorescent ballasts
US9338843B2 (en) * 2013-03-19 2016-05-10 Praveen K. Jain High power factor, electrolytic capacitor-less driver circuit for light-emitting diode lamps
CN104105296A (en) * 2013-04-15 2014-10-15 梅玉刚 Double-full-bridge injection phase-locking power synthesis electrodeless lamp group
CN104105312B (en) * 2013-04-15 2016-08-31 阮雪芬 Dual-half-bridge injection phase-locking power synthesis high-pressure mercury lamp
CN104105298B (en) * 2013-04-15 2016-12-07 阮雪芬 Dual-half-bridge injection phase-locking power synthesis neon light
CN104105277A (en) * 2013-04-15 2014-10-15 梅玉刚 Double-full-bridge injection phase-locking power synthesis halogen lamp group
CN103237395B (en) * 2013-04-18 2015-05-27 黄燕耀 High-frequency electronic direct-current ballast circuit and fluorescent lamp
CN104184200A (en) * 2013-05-24 2014-12-03 台达电子工业股份有限公司 Power supply adapter, power supply adapter control method and notebook
DE102013106425B4 (en) * 2013-06-19 2015-07-09 Exscitron Gmbh Switching power supply device and use of such
CN103391676B (en) * 2013-07-01 2016-01-06 广州纽威光电科技有限公司 Hot exposure metal halogen lamp electric ballast
JP6233567B2 (en) * 2013-09-27 2017-11-22 東芝ライテック株式会社 Power supply circuit and lighting device
US9906013B2 (en) 2014-03-25 2018-02-27 Appalachian Lighting Systems, Inc. Over voltage disconnect
AT515848B1 (en) * 2014-05-15 2020-09-15 Fronius Int Gmbh Circuit arrangement and method for controlling a semiconductor switching element
US10361637B2 (en) 2015-03-20 2019-07-23 Hubbell Incorporated Universal input electronic transformer
CN105591448B (en) * 2016-01-07 2019-05-24 明华电子科技(惠州)有限公司 A kind of emergency light Lighting control detection system
WO2020116338A1 (en) * 2018-12-06 2020-06-11 ローム株式会社 Electric power conversion device and control device therefor
GB2602801A (en) * 2021-01-13 2022-07-20 Guang Zhou Ting Shen Electric Co Ltd Power adapter of light string assembly having power factor correction circuit

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5363020A (en) * 1993-02-05 1994-11-08 Systems And Service International, Inc. Electronic power controller
US5583402A (en) * 1994-01-31 1996-12-10 Magnetek, Inc. Symmetry control circuit and method
US5808421A (en) * 1994-03-28 1998-09-15 Buonocunto; Nicholas Ballast circuit having dual voltage source and emergency battery
US5515261A (en) * 1994-12-21 1996-05-07 Lumion Corporation Power factor correction circuitry
US5623187A (en) * 1994-12-28 1997-04-22 Philips Electronics North America Corporation Controller for a gas discharge lamp with variable inverter frequency and with lamp power and bus voltage control
US5612597A (en) * 1994-12-29 1997-03-18 International Rectifier Corporation Oscillating driver circuit with power factor correction, electronic lamp ballast employing same and driver method
US5568041A (en) * 1995-02-09 1996-10-22 Magnetek, Inc. Low-cost power factor correction circuit and method for electronic ballasts
JPH11500861A (en) * 1995-12-08 1999-01-19 フィリップス、エレクトロニクス、ネムローゼ、フェンノートシャップ Ballast system
US6031342A (en) * 1997-02-12 2000-02-29 International Rectifier Corporation Universal input warm-start linear ballast
US6034489A (en) * 1997-12-04 2000-03-07 Matsushita Electric Works R&D Laboratory, Inc. Electronic ballast circuit
US6486616B1 (en) * 2000-02-25 2002-11-26 Osram Sylvania Inc. Dual control dimming ballast
US6291944B1 (en) * 2000-05-05 2001-09-18 Universal Lighting Technologies, Inc. System and method for limiting through-lamp ground fault currents in non-isolated electronic ballasts
EP1227706B1 (en) * 2001-01-24 2012-11-28 City University of Hong Kong Novel circuit designs and control techniques for high frequency electronic ballasts for high intensity discharge lamps
US6680585B2 (en) * 2001-12-17 2004-01-20 Osram Sylvania Inc. Method and apparatus for modulating HID ballast operating frequency using DC bus ripple voltage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1496594A1 (en) * 2003-07-10 2005-01-12 E.R.C. Elettro Radio Costruzioni S.p.A. Electronic power supply for an emergency lighting with fluorescent lamp

Also Published As

Publication number Publication date
US6784624B2 (en) 2004-08-31
US20050029966A1 (en) 2005-02-10
KR20030051377A (en) 2003-06-25
US20030146714A1 (en) 2003-08-07
JP2003197389A (en) 2003-07-11
MXPA02012701A (en) 2004-09-03
TWI292517B (en) 2008-01-11
CN1430458A (en) 2003-07-16
DE10259585A1 (en) 2003-07-10
TW200301415A (en) 2003-07-01
US7084582B2 (en) 2006-08-01

Similar Documents

Publication Publication Date Title
US6784624B2 (en) Electronic ballast system having emergency lighting provisions
US4751398A (en) Lighting system for normal and emergency operation of high intensity discharge lamps
EP0763311B1 (en) Discharge lamp ballast
US6281636B1 (en) Neutral-point inverter
US6259215B1 (en) Electronic high intensity discharge ballast
US20130015768A1 (en) High voltage led and driver
US20060244395A1 (en) Electronic ballast having missing lamp detection
KR101274110B1 (en) Led lamp apparatus using driver circuit for power factor correction and current control
WO1998034438A1 (en) Electronic ballast with lamp current valley-fill power factor correction
US7423386B2 (en) Power supply circuits and methods for supplying stable power to control circuitry in an electronic ballast
US4939427A (en) Ground-fault-protected series-resonant ballast
US4983887A (en) Controlled series-resonance-loaded ballast
EP1507327A1 (en) Emergency lighting unit with integrated electronic ballast
JP3521687B2 (en) Discharge lamp lighting device
JP4131102B2 (en) Emergency lighting system
KR102490634B1 (en) A Converter Circuit for LED Lamps Having Power Factor Correction Function with Dimming and Overheat-Preventng Function
JP3584678B2 (en) Inverter device
KR101905305B1 (en) An Apparatus For Lighting Cold Cathode Fluorescent Lamps
EP3843505A1 (en) Isolated and primary side switched driver for lighting means
JP2722801B2 (en) Discharge lamp lighting device
JPH0458493A (en) Lighting device
JPH0997685A (en) Lighting device
JPH0613192A (en) Discharge lamp lighting device
JPS58198897A (en) Emergency lamp device
JPH08185993A (en) Power unit

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued