CA2441683C - Cardiac valve - Google Patents

Cardiac valve Download PDF

Info

Publication number
CA2441683C
CA2441683C CA002441683A CA2441683A CA2441683C CA 2441683 C CA2441683 C CA 2441683C CA 002441683 A CA002441683 A CA 002441683A CA 2441683 A CA2441683 A CA 2441683A CA 2441683 C CA2441683 C CA 2441683C
Authority
CA
Canada
Prior art keywords
membranes
valve
edges
membrane
apical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002441683A
Other languages
French (fr)
Other versions
CA2441683A1 (en
Inventor
Radu Deac
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic 3F Therapeutics Inc
Original Assignee
3F Therapeutics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3F Therapeutics Inc filed Critical 3F Therapeutics Inc
Publication of CA2441683A1 publication Critical patent/CA2441683A1/en
Application granted granted Critical
Publication of CA2441683C publication Critical patent/CA2441683C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S623/00Prosthesis, i.e. artificial body members, parts thereof, or aids and accessories therefor
    • Y10S623/90Stent for heart valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S623/00Prosthesis, i.e. artificial body members, parts thereof, or aids and accessories therefor
    • Y10S623/901Method of manufacturing prosthetic device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S623/00Prosthesis, i.e. artificial body members, parts thereof, or aids and accessories therefor
    • Y10S623/909Method or apparatus for assembling prosthetic
    • Y10S623/91Heart
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/929Tool or tool with support
    • Y10T83/9411Cutting couple type

Abstract

A cardiac valve (40) comprises a plurality of flexible membranes (42, 44), each having an edge joined by sutures (58, 60) to an edge of another of the membranes to form an unsupported closed body. The body has an oval end portion (46, 48) and forms a plurality of flexile flap portions (51, 53) extending from the end portions, the flap portions of unequal size being formed by substantially parabolic scallops. The sutures (58, 60) extend from the oval end (46, 48) to the apical ends (54, 56) and provide strengthening for the valve.

Description

CARLiffl. VALVE

BACKGROUND OF THE INVENTION
This invention relates to cardiac valve replacement in heart surgery, and particularly to the replacement of the mitral valve.
Cardiac valve replacement is a relatively common procedure. However, in comparison with aortic, tricuspid and pulmonary valve replacement procedures, mitral valve replacement procedures have exhibited the poorest results in terms of morbidity and mortality.
Under normal conditions, the mitral valve is exposed to the greatest pressure and stress during the cardiac cycle, with pressures often exceeding 150 mm Hg.
The mitral valve is generally a thin continuous, flexible membrane, strengthened by collagen fibers, surrounding the left atrio-ventricular ring having two indentations or commissures dividing it into two principal leaflets of unequal size: an anterior or aortic leaflet and a posterior or mural leaflet. The membrane at the junction of the two leaflets has sufficient length to form two auxiliary cusps located at each commissure. The membrane is attached to over two-thirds of the circumference of the atrio-ventricular ring and to the base of the aorta just below the aortic valve. The free ends of the leaflets are attached to chordae tendineae at the ventricular surface and in the regions of the commissures. The other end of the chordae connect to the papillary muscles, with each papillary muscle receiving chordae from both leaflets.
During diastole, a normal mitral valve will have a measured circumference between about 8.5 to 11 cm (for adult males) and 7.5 to 10.5 cm (for adult females) .
The calculated circularized valve orifice diastolic diameter is between about 27 and 35 mm (for adult males) and 23.8 and 33.4 mm (for adult females) and the calculated diastolic cross-sectional area is between about 5.75 and 9.62 sq. cm. for adult males and 4.5 and 8.77 sq. cm. for adult females. In cases of congestive heart failure, these dimensions enlarge, with the circumference of the adult male valve orifice reaching as high as about 12 cm, or greater and the adult female valve orifice reaching as high as about 11 cm.
The dimensions of the anterior leaflet are between about 1.9 and 3.2 cm in length and 2.5 and 4.5 cm in width for adult males, and 1.8 to 2.7 cm in length and 2.4 to 4.2 cm in width for adult females. The posterior leaflet has dimensions of between about 1.0 to 2.5 cm in length and 2.5 to 4.1 cm in width for adult males, and 0.8 to 2.4 cm in length and 2.3 to 3.6 cm in width for adult females. The chordae tendineae for both adult males and females is between about 1.3 and 3.2 cm. As the apical zones of the cusps correspond, the body of the anterior cusp lies opposite the base of the shorter posterior cusp. The chordae tendineae of the posterior cusp are inserted into almost the entire undersurface of the cusp, whereas those of the anterior cusp are inserted into a zone along its periphery. The remaining larger central triangular portion of the anterior cusp is thinner and more mobile than the marginal zone since its components are not directly limited by the chordae tendineae.
During systole a large portion of the anterior cusp billows toward the left atrium above the level of the base of the posterior cusp with about thirty percen-, of the anterior cusp co-apting with about fifty percent of the posterior cusp. The anterior cusp swings upwards and backwards. The swing of the anterior cusp is made possible by three cooperative actions: the absolute length of the anterior cusp and its chordae tendineae, the relative increase in length caused by the systolic approximations of bases of the papillary muscles toward the mitral ring, and the stretching of the papillary muscles by the interventricular pressure acting on the under surfaces of the cusps. Systolic excursions of the cusps are possible well beyond the normal requirements for valve closure due to the length of the cusps and the chordae tendineae and the extendibility of the papillary muscles. Consequently, the mitral valve has a large closing reserve. During diastole, the atrioventricular ring dilates and the valve leaflets descend to rapidly open the valve. The specific gravity of the leaflets is close to that of the blood so that as the ventricular chamber fills, the leaflets begin to float upward toward the annulus, initiating closure of the mitral orifice.
There is normally an excess of cusp tissue in relation to the size of the mitral ring. For example, for a mitral valve orifice area of about 7.9 sq. cm., a leaflet area of about 13.9 sq. cm. is available for closure. Thus, immediate and complete closure of the mitral valve takes place during systole with the ventricular contraction narrowing the mitral ring by about twenty-six to thirty-five percent (in comparison to its diameter during diastole). The decrease in size of the mitral ring exposes less of the mitral valve surface to the burden of left ventricle systolic pressure. Thus, the annulus changes size from a relatively large opening during diastole and a smaller opening during systole.
The ideal valve substitute should be designed to reproduce as accurately as possible the normal flow pattern in the left side of the heart. The valve should have a large orifice, unrestrictive to a central free flow. It should operate at a low opening pressure without gradients across the valve, and be compatible with high outputs at exercise. The valve should exhibit rapid opening and closure throughout its entire range of pressures without requrgitant flow and without obstruction to the left ventricular output flow. The ideal valve substitute should be attached to the papillary muscles in such a manner as to maintain the valvular-papillary muscle continuity with a minimum of stress to thereby preserve the mechanics and contractural movement of the left ventricle. The valve should provide a uniform distribution of forces and stresses and avoid compressive, tensile or flexure stress during operation.
The ideal valve should be constructed entirely of flexible tissue, without mechanical stents and the like.
It should exhibit a long life, be durable, resistant to wear and resistant to degeneration, calcification and infection. It should provide normal heart sounds, without noise. It should produce no thrombo-embolic complications, and avoid trauma to blood elements. It should function normally as the left ventricle changes in size. The ideal valve should be easy and reliable to produce and implant.
Mitral valve replacements have not been altogether successful in the past because they have not fully taxen into account all of the structural and functional characteristics of the normal mitral valve, including the dynamically changing structure of the mitral ring between systole and diastole, the large inflow orifice, excess leaflet tissue for closure, wall continuity between the mitral ring, papillary muscles and left ventricle, and the other factors mentioned above.
Mechanical and bioprosthetic valves have not been altogether successful, because such valves do not have an adequately long life and do not fully simulate the action of a natural valve due to the rigidity of the structure and lack of support to the papillary muscles. Rigid mitral rings and supports do not simulate the physiologic sphincter-like contraction of the natural mitral ring during systole. Patients receiving mechanical valves require anti-coagulant therapy and risk the occurrence of thromboembolic phenomena. Hence, re-operation is necessary in many cases employing mechanical and bioprosthetic valves.
To overcome the problems of mechanical and bioprosthetic valves, many attempts have been made to construct a bicuspid mitral valve formed of entirely an unsupported tissue. However, most of the earlier unsupported valves did not fully account for the factors mentioned above.
SUMMARY OF THE INVENTION
In accordance with the present invention, a cardiac valve comprises a plurality of flexible membranes, each having an edge joined to an edge of another of the membranes to form an unsupported annular body. The annular body has an oval end portion and a plurality of flexible flap portions integral with and extending from the oval end portion, the flap portions being formed by substantially parabolic scallops. The membranes are so sized, and the scallops are so positioned that the flap portions are of unequal size.
For a bicuspid mitral valve with two such flap portions, the smaller flap portion forms the posterior leaflet and the larger flap portion forms the anterior leaflet. At least one junction between adjacent membranes is located along the length of each flap portion to simulate tendons and fibers in the native valve.
In one form of the invention, the flexible membranes are provided as individual trapezoidal membranes unjoined to others. When flat, each membrane has a rim portion between opposite edges, with an elliptic scallop at the end opposite the rim portion.
The membranes are selected on the basis of various measurements of the excised valve, primarily (i) the circumference of the annulus, and (ii) the distance between the annulus and the tips of the papillary muscle.
The membranes and/or scallops are so sized as to form leaflets of different sizes, as one serves as the anterior leaflet and the other as the posterior leaflet.
The surgeon sutures the edges of the two membranes to form the annular cardiac valve, and attaches the apical ends of the flap portions formed at the junction of the two membranes to the chordae tendineae at the papillary muscles. The cylindrical rim is then attached to the mitral annulus.
In another form of the invention, the membranes are provided in a tissue form with the two membranes already joined by suture.
One feature of the present invention resides in the provision of a technique for selecting and orienting membrane material for use in forming the individual membranes.
Another feature of the present invention resides in the provision of a kit comprising a plurality of cutting dies for cutting the material into trapezoidal membranes.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a section view of a portion of a human heart illustrating the position of the mitral valve;
Figures 2A and 2B are section views as in Figure 1 illustrating the function of the mitral valve during systole and diastole, respectively;
Figure 3A is a prospective view of a mitral valve in accordance with the presently preferred embodiment of the present invention;
Figure 3B is a view illustrating the manner of implanting the valve illustrated in Figure 3A;
Figures 4A - 4D are plan views of various constructions of the valve illustrated in Figure 3A; and Figures 5A and 5B are views of a bovine pericardium which is mapped in accordance with the present invention for selecting and forming the membranes employed in the valve of Figure 3A.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Referring to Figure 1, there is illustrated a section of a portion of the human heart showing the left ventricle 10, left atrium 12 and aorta 14. Mitral valve 16 permits the flow of blood from the left atrium to the left ventricle, and aortic valve 18 permits flow from the left ventricle to the aorta. Mitral valve 16 includes an anterior leaflet 20 and a posterior leaflet 22. The apical zones of the leaflets are connected to papillary muscles 24 by chordae tendineae 26. The circumference of the mitral valve 16 is connected to about two-thirds of the circumference of the atrio-ventricular ring 28 and to the base of the aorta just below aortic valve 18. The primary flow of blood into the left ventricle is in the direction of arrows 30 from the pulmonary veins 32, through the left atrium 12, mitral valve 16 and into the left ventricle 10. The blood exits the left ventricle through aortic valve 18 to the aorta 14. As shown in Figure 2A, during the contraction or systolic phase, pressure within the left ventricle forces aortic valve 18 open and forces the anterior and posterior leaflets 20 and 22 to,coapt to close the mitral valve, thus forcing blood from the left ventricle in the direction of arrow 30 into the aorta 14. As shown in Figure 2B, during the relaxation or diastolic phase, aortic valve 18 closes and the leaflets 20 and 22 of the mitral valve 16 separate to permit blood to flow into the left ventricle. Near the end of the diastolic phase, leaflets 20 and 22 begin to float upwardly toward the annulus to initiate closure of the mitral orifice and re-initiate the systolic phase.
Figure 3A illustrates a substitute mitral valve 40 in accordance with the presently preferred embodiment of the present invention. Valve 40 comprises a pair of membranes 42 and 44 which may be formed of a biocompatible synthetic fiber, such as Dacron, Teflon, PTFE, Goretex, polyurethane, or a natural tissue of human or animal origin, such as autologous, homologous or heterologous pericardium, dura mater, venous tissue, fascia (rectus abdominis, diaphragm, fascia lata), pleura, peritoneum. One end 46, 48 of membranes 42 and 44 forms an oval rim portion, whereas the opposite end includes an elliptical scallop 50, 52, respectively. The membranes may by square or rectangular as shown in Figures 4A, 4B and 4C, or may be trapezoidal as shown in Figure 4D. The scallops form apical end portions 54 and 56 at the edges of each membrane so that when the membranes are sutured, as at 58 and 60, the flap portions form opposing flaps. As shown particularly in Figures 4A, 4B, 4C and 4D the scallops may be of unequal size (Figures 4A and 4B) or may be of equal size (Figure 4C), and the membranes 42 and 44 may be of equal size (Figures 4A and 4C) or may be of unequal size (Figure 4B). It is preferred that the scallops be of unequal depth so that leaflets 51 and 53 (formed between each scallop and the respective rim) are of unequal size. The larger of the two leaflets (smaller scallop) is the anterior leaflet 51 for the valve, and the smaller of the two leaflets (larger scallop) is the smaller posterior leaflet 53.
In Figure 4D, each leaflet has a trapezoidal shape with the top, or short base, of the trapezoid being equal to C/2, where C is the circumference of the mitral ring. The height of each leaflet forms the length L of the valve and is equal to C/2. The long base of each leaflet is equal to 0.6C, or about 1.2 times the length of the short base. The scallop is centered on the base and has a width of 0.4C, leaving apical zones for each leaflet equal to O.1C. It will be appreciated that upon joining leaflets, the apical zones attached to the papillary muscles by the chordae tendineae will have a width of about 0.2C. For certain applications, it may be desirable to employ leaflets of equal size, as in Figure 4C.
The depths of scallops 50 and 52 are chosen to assure proper operation of the valve; the depths being deep enough as to provide good opening and flow characteristics, but not so deep as to exhibit poor closing characteristics. I have found that a depth of 15% of the height (0.15L) of the leaflet for the anterior leaflet and 20% of the height (0.20L) of the leaflet for the posterior leaflet provide good operating characteristics for the resulting valve. If the valve is manufactured in a central laboratory, the valve is tested for optimum operating characteristics (flow, opening and closing) before being supplied to the surgeon. If the valve and scallop profile are to be finished by the surgeon, the surgeon will cut openings at the positions where the scallops will be formed, and the valve is tested for opening, flow and closing characteristics.
The tests are repeated with deeper openings until optimum operating characteristics are achieved. The elliptical scallops 50 and 52 are cut into the membranes to the depths of the openings, thereby forming the finished valve. Conveniently, the surgeon is provided with cutting dies according to the present invention to form the scallops.
Membranes 42 and 44 are joined together with double continuous 2-0 (Goretex) sutures with the inferior end of each suture buttressed between two small pledgets 64 of Teflon. The free ends 62 of the sutures are left uncut for attachment to the papillary muscles 24 (Figure 1). The membranes are prepared in a sterile environment, cut to size and stored in preservation solutions in sealed plastic or glass jars. The jars are labelled in accordance to size of the membranes and size and position of elliptical scallops. For a mitral valve formed of homologous or heterologous pericardium, prior to the replacement procedure the pericardium is washed in saline and f ixed in a 0. 2 to 0. 7 percent solution of purif ied glutaraldehyde (A 280nm/A 230nm > 3) prepared in non-phosphate buffer, pH 7.4 for fourteen days.
Preferably, the solution is enriched with known solutions (such as magnesium) for anticalcification purposes.
Alcohol, glycerol, polyglycil ether or other suitable solutions may also be used. The valve or valve pieces are stored in a suitable preservative, such as 4%
formaldehyde in 0.2M acetate buffer. Prior to insertion, the valve or valve pieces, such as the pericardium pieces, are washed in a saline solution to remove the preservation solution.
Under cardio-pulmonary bypass conditions, the left atrium is opened and the diseased mitral valve excised, leaving a few millimeters of chordae tendineae above each papillary muscle. The circumference, C, of the mitral ring is measured (such as with an ova_ obturator), and the distance, D, is measured between the tip of the papillary muscle (at the point of insertion of the main chordae) and the mitral ring (at the point nearest the papillary muscle). The valve size is selected so that the circumference of the artificial valve equals the measured circumference, C, of the mitral ring, and the length L of the valve (Figure 3) equals C/2. As a check on the length L of the vjlve, the surgeon will calculate the equivalent diameter, d, of the mitral ring from the circumference, C, and check that L
approximately equals 115% of the measured distance between the mitral ring and the papillary muscle plus d/2. Thus, L= 1.15(D + d/2). These dimensions can be selected from Table I.

Measured and Calculated Sizes of the Graft Cirzumference Diameter Aiea (sq.cm.) Length (cm) (cm.Gi0318) (sq.Cr0.07958) (C/2) 43 1.4 1S3 2.2 5 13 1.98 2.5 5.5 1.7 2.40 2.7 6 1.9 2.B5 3.0 6S 2.0 3.33 3.2 7 2.2 3.89 3.5 7S 2.3 4.44 3.7 8 2S 5.06 4.0 83 2.7 5.72 4.2 9 2.8 6.44 4S
9.5 3.0 7.16 4.7 10 3.1 7.95 5.0 10S 3.3 8.76 5.2 11 3.5 9.62 5S
11S 3.6 1052 5.7 12 3.8 11.45 6.0 12.5 3.9 12.37 6.2 13 4.1 13.39 6.5 Normally, the lengths of the flaps are equal.
In rare cases the distance between the mitral ring and the each papillary muscle is different, in which case the surgeon will adjust the length of the flaps in accordance with the relationship L = 1.15(D + d/2).

The left ventricle continues to change in size throughout most of life. Consequently, it is important that any artificial valve compensate for change in size of the left ventricle, or re-operation will be required.
The above relationship and Table I provide adequate dimensions for the artificial valve to reduce the likelihood of re-operation.
In the case of a replacement valve formed during the operation from autologous pericardium, the pericardium is preserved in a glutaraldehyde solution (0.5 to 25 percent) for between one and ten minutes.
Cutting dies are chosen in accordance with the foregoing relationships for the calculated sizes of the graft and the inferior margins of the selected membranes are trimmed to a desired elliptical shape as shown in one of Figures 4A, 4B and 4C. The lateral edges of the membranes are sutured together with double continuous 2/0 (Goretex) sutures.
Figures 5A and 5B illustrate the technique for harvesting pericardium for construction of the leaflets illustrated in Figure 4. The technique for harvesting pericardium will be described in connection with bovine pericardium, but it is understood that the techniques described herein are equally applicable to other animal and human pericardium, including donor pericardium.
Figure 5A illustrates the pericardium sac 70 surrounding the heart with dotted line 72 representing the base of the pericardium. The aorta, pulmonary arteries, pulmonary veins and other major veins and arteries are illustrated as emanating from the base of the pericardium. Muscle fiber 74 attaches the pericardium to the diaphragm adjacent the posterior side of the left ventricle. The anterior side of the pericardium is attached to the sternum by two sterno-periocardic ligaments 76. The pericardium sac is shown divided into four regions, the anterior and posterior regions being separated by dotted line 78 and the left and right ventricles being separated by dotted line 80. Figure 5B
shows the pericardium sac 70 laid out flat as if it had been cut along base line 72 and part of line 78. The right side of Figure 5B illustrates the region of the anterior side of the left ventricle, and the left side of Figure 5B illustrates the posterior side of the left ventricle.
Experimentation conducted on bovine pericardium revealed two areas 82 and 84 over the anterior and posterior regions of the right ventricle which exhibit superior tearing strengths, unidirectional fiber orientation and greater thicknesses than other regions of the pericardium. Regions 82 and 84 of bovine pericardium taken from twenty-two week old calves, exhibited thicknesses between about 0.45 and 0.65 millimeters, with the fibrous tissue being orientated predominantly in a direction indicated by arrow 86 in region 82, and in the direction of arrow 88 in region 84. The material in the regions 82 and 84 was found to exhibit the greatest resistance to tearing in directions indicated by the arrows 86 and 88. Another region, 90, predominantly overlying the anterior region of the left ventricle, was found also to be of significantly thick pericardium, but fiber orientation tended to be more mixed. Suture holding power for the regions 82, 84 and 90 were found to be higher than other regions, usually in the range between about 40 and 60 megapascals (MPa).
Where pericardium is used for construction of a mitral valve according to the present invention, it is preferred that the pericardium be harvested from the regions 82 and/or 84. Although bovine pericardium is specifically described, it is believed human pericardium exhibits similar characteristics and that the preferred region of harvest is the regions 82 and 84 adjacent the right ventricle. Hence, donor pericardium may be employed in constructing the valve.
The valve may be constructed by excising pericardium from the regions 82 and 84, selecting cutting dies for cutting the pericardium in accordance with the sizes described above, orienting the cutting dies so that the fibrous orientation of the pericardium is orientated generally along the dimension L in Figure 4 (between the rim of the intended mitral valve and the apical ends to be attached to the papillary muscles), and cutting the pericardium into the individual trapezoidal shape, with elliptical scallops, as previously described. The trapezoidal membranes are sutured along their edges, as at 58, to form the mitral valve illustrated in Figure 3A.
More particularly, a kit may be provided containing a plurality of pairs of cutting dies each having cutting edges arranged to sever pericardium into the sizes and shapes of membranes 42 and 44 in Figure 4. Hence, each die of each pair has a generally trapezoidal shape with a short base length selected by the surgeon equal to one-half the measured circumference of the mitral ring.
The length L, along one edge of the membrane is equal to the length of the short base, the long base is equal to 1.2 times the length of the short base, and the elliptical scallop has a width equal to 0.8 times the short base and is centered on the long base. The depth-of the scallop for one die of each pair is 0.15 times the length, whereas the depth of the scallop for the other die of each pair is 0.20 times the length. Each pair of dies is selected for a different nominal circumference of the mitral ring, as set forth in table I.
Figure 3B illustrates the technique for inserting the substitute valve. The substitute valve 40 is lowered into the left ventricle so that the uncut sutures 62 of each of the sutures 58 and 60 are attached to the tip of each papillary muscle with a figure "8"
suture. A 2/0 Goretex suture is passed through the Teflon pledget 64 at the end of each flap portion in a U-shaped fashion and is inserted on the endocardial surface of each papillary muscle and passed through the left ventricular wall. The sutures are tied on the outside of the epicardial surface with Teflon pledgets 66, avoiding major coronary vessels. Prior to tying, the sutures are pulled straight without tension. The stitch is designed to secure attachment of the replacement valve at the papillary muscle in case other sutures break loose.
The papillary muscle will be used for operation of the replacement valve. Consequently, it is preferred that the sutures are not passed through the core of the papillary muscle, as has been done in previous procedures, so as to avoid damage to the vessels and integrity of the muscle.
The rim 46, 48 of the replacement valve is then pulled up to the mitral ring. The size is again checked, and the superior circumference of the replacement valve is sutured with a circular continuous 2/0 (Goretex or polyester) suture to the annulus and to any remnants of the excised mitral valve. Isolated sutures may be used for positioning the replacement valve.
3C Sutures 58 and 60 along the length of flaps 54 and 56 of the replacement valve serve fDur important functions. First, they serve as reinforcement in a manner similar to the tendon fibers in the natural valve to transmit force from the ventricle through the papillary muscle to the mitral ring and thence to the fibrous trigon of the heart. Hence, the sutures 58 and 60 support much of the stress through the valve. A
second function of the two-piece sutured membrane valve permits the selection of the pericardium membranes and their arrangement so that the longitudinal fibers may be aligned with the papillary muscles. Thi4 provides greater strength and reliability to the replacement valve. A third function of the two-piece sutured valve is that the pericardial tissues are selected for the differences between the anterior and posterior leaflets, thereby providing greater simulation of the natural valve. A fourth function of the two-piece valve is that the double suture technique assures that the replacement valve is a bicuspid valve, allowing the tissue between the suture lines on both flaps to form the leaflets which coapt and provide the principal mechanism of opening and closure of the valve. Thus, when the leaflets coapt, they do so with less folding and more uniform closure than in prior unsupported replacement valves. Each leaflet operates to close or obturate half of the mitral orifice during left ventricle systole. The trapezoidal shape of the valve membranes is preferred because it assures that the lower orifice of the valve is larger than the upper orifice (or opening). This assures better flow through the valve than in cylindrical valves, with no pressure gradient across the lower orifice.
The cardiac valve according to the present invention may be assembled by the surgeon during the procedure from a selection of membranes, or from a tissue of two assembled membranes as in Figures 4A-4D, or from the patient's pericardium. It is preferred, however, that the. valve be fully completed at a central processing laboratory to assure control over the forming and suturing of the membranes.
The present invention thus provides an effective artificial cardiac valve which closely simulates the function and operation of the natural valve. The valve cooperates with the papillary muscles to closely simulate the action of the natural valve during systole and diastole. The high ratio of effective orifice area to mitral ring dimensions gives the valve according to the present invention superior hydrodynamic and hemodynamic characteristics in comparison to prior valves. The valve is sized to remain competent and functional to changes in size of the left ventricle and of the orifice to which the valve is attached; the length of the graft and leaflets provide suf f icient substance for coaptation regardless of expected changes in the distance between the mitral ring and papillary muscles.
Anticoagulation treatment is not expected to be required, and tissue treatment effectively prevents later calcification.
Although the present invention has been described in terms of a bicuspid valve, such as a mitral valve, it is understood that the same principles may be applied to other cardiac valves, including the aortic, tricuspid and pulmonary valves, without departing from the spirit or scope of the present invention. Further, although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.

Claims (14)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A cardiac valve comprising a plurality of flexible membranes, etch membrane having edges and first and second ends, strengthening means joining the edges of adjacent ones of said membranes to form an unsupported body, said first ends together forming an oval end of said body, and said second ends forming a plurality of free apical ends of said body, each apical end being integral to the body and having a length to permit direct attachment to papillary muscles of a recipient, said body having a pair of oppositely-disposed flexible flaps integral with and extending from said oval end and between the apical ends and arranged to coapt during systole to close the valve and to separate during diastole to open the valve, said strengthening means extending between each apical end and the oval end to support force between the papillary muscles and the oval end.
2. A cardiac valve according to claim 1 wherein the flaps are formed by a plurality of substantially parabolic scallops formed in said second end, one of said scallops being formed in each of said membranes, said scallops forming said free apical ends.
3. A cardiac valve according to claim 2 wherein said scallops have relatively different sizes.
4. A cardiac valve according to claim 3 wherein the oval end has a circumference C and each membrane has a length between its first and second ends approximately equal to C/2.
5. A cardiac valve according to claim 4 wherein said membranes are joined by sutures along each edge from said oval end to an apical end.
6. A cardiac valve according to claim 1 wherein said flaps are formed by a substantially parabolic scallop in the second end of each membrane, and said membranes are joined along each edge from said oval end to the apical end.
7. A cardiac valve according to claim 1 wherein there are two flaps forming a bicuspid valve, the oval end has a circumference C and each membrane has a length between its first and second ends approximately equal to C/2.
8. A cardiac valve according to claim 1 wherein the edges of the membranes are joined by sutures to support stress on said body imposed by a papillary muscle.
9. A cardiac valve according to claim 1 wherein each of said membranes is trapezoidal and the edges of the membranes are joined to form a frusto-conical body.
10. A method of forming an unsupported artificial cardiac valve intended to replace a native valve attached to a circumferential valve ring and papillary muscles of a recipient comprising:

selecting first and second flexible membranes each having opposite edges, a first end forming a continuous rim between said edges and a second end opposite the first end, an elliptic scallop formed in the second end of each membrane to form first and second flexible half-flap portions at the edges of the respective membranes, said half-flap portions forming a pair of free apical ends at the second end of the membranes when the edges of the first membrane are attached to the edges of the second membrane, the apical ends being integral to the membranes and having a length to permit direct attachment to the papillary muscles of the recipient; and fastening the edges of said membranes together with a strengthening means to form a closed body so that the first ends of the membranes together form a rim having a circumference approximately equal the circumference of the native valve ring, the body coapting during systole to close the valve and separating during diastole to open the valve, the strengthening means extending from each free apical end to the rim to support force between the valve ring and the papillary muscles.
11. The method according to claim 10 wherein the first and second membranes each has a length between its respective first and second ends, and further including adjusting the length of the membranes to be equal to C/2, where C is the circumference of the native valve ring.
12. The method according to claim 10 wherein the scallop formed in the first membrane has a different size from the scallop formed in the second membrane.
13. The method of claim 10 further including harvesting pericardium tissue from a region of a pericardium sac of a mammal donor located adjacent an anterior side or posterior side of a right ventricle of the donor, the harvested pericardium tissue having predominately aligned fibers, and forming the first and second membranes from the harvested pericardium tissue so that the fibers within the tissue are substantially aligned along the length of the valve between the first and second ends.
14. The method of claim 10 wherein the first and second membranes are trapezoidal and the edges of the membranes are joined to form a frusto-conical body.
CA002441683A 1991-05-16 1992-05-15 Cardiac valve Expired - Lifetime CA2441683C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US70109991A 1991-05-16 1991-05-16
US701,099 1991-05-16
CA002119786A CA2119786C (en) 1991-05-16 1992-05-15 Cardiac valve

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CA002119786A Division CA2119786C (en) 1991-05-16 1992-05-15 Cardiac valve

Publications (2)

Publication Number Publication Date
CA2441683A1 CA2441683A1 (en) 1992-11-26
CA2441683C true CA2441683C (en) 2008-01-15

Family

ID=24816072

Family Applications (4)

Application Number Title Priority Date Filing Date
CA002441674A Abandoned CA2441674A1 (en) 1991-05-16 1992-05-15 Cardiac valve
CA002441683A Expired - Lifetime CA2441683C (en) 1991-05-16 1992-05-15 Cardiac valve
CA002119786A Expired - Lifetime CA2119786C (en) 1991-05-16 1992-05-15 Cardiac valve
CA002441679A Abandoned CA2441679A1 (en) 1991-05-16 1992-05-15 Cardiac valve

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CA002441674A Abandoned CA2441674A1 (en) 1991-05-16 1992-05-15 Cardiac valve

Family Applications After (2)

Application Number Title Priority Date Filing Date
CA002119786A Expired - Lifetime CA2119786C (en) 1991-05-16 1992-05-15 Cardiac valve
CA002441679A Abandoned CA2441679A1 (en) 1991-05-16 1992-05-15 Cardiac valve

Country Status (11)

Country Link
US (2) US5344442A (en)
EP (1) EP0583410B1 (en)
AT (1) ATE203387T1 (en)
AU (1) AU662342B2 (en)
BR (1) BR9206005A (en)
CA (4) CA2441674A1 (en)
DE (1) DE69231964T2 (en)
DK (1) DK0583410T3 (en)
ES (1) ES2159508T3 (en)
RO (1) RO110672B1 (en)
WO (1) WO1992020303A1 (en)

Families Citing this family (217)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK124690D0 (en) * 1990-05-18 1990-05-18 Henning Rud Andersen FAT PROTECTION FOR IMPLEMENTATION IN THE BODY FOR REPLACEMENT OF NATURAL FLEET AND CATS FOR USE IN IMPLEMENTING A SUCH FAT PROTECTION
WO1997024083A1 (en) * 1993-11-01 1997-07-10 Cox James L Method of replacing heart valves using flexible tubes
US5713950A (en) 1993-11-01 1998-02-03 Cox; James L. Method of replacing heart valves using flexible tubes
US5480424A (en) * 1993-11-01 1996-01-02 Cox; James L. Heart valve replacement using flexible tubes
US5716399A (en) * 1995-10-06 1998-02-10 Cardiomend Llc Methods of heart valve repair
US5662704A (en) * 1995-12-01 1997-09-02 Medtronic, Inc. Physiologic mitral valve bioprosthesis
AU774141B2 (en) * 1995-12-28 2004-06-17 3F Therapeutics, Inc. Heart valve replacement
EP0898468B1 (en) * 1996-04-08 2003-10-15 Medtronic, Inc. Method of fixing a physiologic mitral valve bioprosthesis
AU9225598A (en) * 1997-09-04 1999-03-22 Endocore, Inc. Artificial chordae replacement
US6254636B1 (en) 1998-06-26 2001-07-03 St. Jude Medical, Inc. Single suture biological tissue aortic stentless valve
US6214055B1 (en) 1998-10-30 2001-04-10 Mures Cardiovascular Research, Inc. Method and kit for rapid preparation of autologous tissue medical devices
US6342069B1 (en) 1999-03-26 2002-01-29 Mures Cardiovascular Research, Inc. Surgical instruments utilized to assemble a stentless autologous tissue heart valve
US6312464B1 (en) 1999-04-28 2001-11-06 NAVIA JOSé L. Method of implanting a stentless cardiac valve prosthesis
US6491511B1 (en) 1999-10-14 2002-12-10 The International Heart Institute Of Montana Foundation Mold to form stent-less replacement heart valves from biological membranes
US7935147B2 (en) 1999-10-20 2011-05-03 Anulex Technologies, Inc. Method and apparatus for enhanced delivery of treatment device to the intervertebral disc annulus
US7615076B2 (en) 1999-10-20 2009-11-10 Anulex Technologies, Inc. Method and apparatus for the treatment of the intervertebral disc annulus
US8128698B2 (en) 1999-10-20 2012-03-06 Anulex Technologies, Inc. Method and apparatus for the treatment of the intervertebral disc annulus
US7004970B2 (en) 1999-10-20 2006-02-28 Anulex Technologies, Inc. Methods and devices for spinal disc annulus reconstruction and repair
US6592625B2 (en) * 1999-10-20 2003-07-15 Anulex Technologies, Inc. Spinal disc annulus reconstruction method and spinal disc annulus stent
US7052516B2 (en) 1999-10-20 2006-05-30 Anulex Technologies, Inc. Spinal disc annulus reconstruction method and deformable spinal disc annulus stent
US7951201B2 (en) 1999-10-20 2011-05-31 Anulex Technologies, Inc. Method and apparatus for the treatment of the intervertebral disc annulus
US8632590B2 (en) 1999-10-20 2014-01-21 Anulex Technologies, Inc. Apparatus and methods for the treatment of the intervertebral disc
US6598307B2 (en) 1999-11-17 2003-07-29 Jack W. Love Device and method for assessing the geometry of a heart valve
US6409759B1 (en) * 1999-12-30 2002-06-25 St. Jude Medical, Inc. Harvested tissue heart valve with sewing rim
NZ520462A (en) * 2000-01-27 2004-08-27 3F Therapeutics Inc Prosthetic heart valve
US6872226B2 (en) * 2001-01-29 2005-03-29 3F Therapeutics, Inc. Method of cutting material for use in implantable medical device
DE60124872T2 (en) * 2000-03-10 2007-06-14 Paracor Medical, Inc., Los Altos EXPANDABLE HEARTS BAG FOR THE TREATMENT OF CONGESTIVE HEART FAILURE
US6358277B1 (en) * 2000-06-21 2002-03-19 The International Heart Institute Of Montana Foundation Atrio-ventricular valvular device
US8091556B2 (en) * 2001-04-20 2012-01-10 V-Wave Ltd. Methods and apparatus for reducing localized circulatory system pressure
US20050148925A1 (en) * 2001-04-20 2005-07-07 Dan Rottenberg Device and method for controlling in-vivo pressure
US6425902B1 (en) 2001-05-04 2002-07-30 Cardiomend Llc Surgical instrument for heart valve reconstruction
ITMI20011012A1 (en) 2001-05-17 2002-11-17 Ottavio Alfieri ANNULAR PROSTHESIS FOR MITRAL VALVE
US7935145B2 (en) 2001-05-17 2011-05-03 Edwards Lifesciences Corporation Annuloplasty ring for ischemic mitral valve insuffuciency
US6579307B2 (en) * 2001-07-19 2003-06-17 The Cleveland Clinic Foundation Endovascular prosthesis having a layer of biological tissue
US6908482B2 (en) 2001-08-28 2005-06-21 Edwards Lifesciences Corporation Three-dimensional annuloplasty ring and template
US6723041B2 (en) 2001-09-10 2004-04-20 Lilip Lau Device for treating heart failure
GB0125925D0 (en) * 2001-10-29 2001-12-19 Univ Glasgow Mitral valve prosthesis
JP2005507706A (en) 2001-10-31 2005-03-24 パラコー メディカル インコーポレイテッド Heart failure treatment device
US8308797B2 (en) 2002-01-04 2012-11-13 Colibri Heart Valve, LLC Percutaneously implantable replacement heart valve device and method of making same
US7022063B2 (en) 2002-01-07 2006-04-04 Paracor Medical, Inc. Cardiac harness
US6974464B2 (en) 2002-02-28 2005-12-13 3F Therapeutics, Inc. Supportless atrioventricular heart valve and minimally invasive delivery systems thereof
US6830586B2 (en) 2002-02-28 2004-12-14 3F Therapeutics, Inc. Stentless atrioventricular heart valve fabricated from a singular flat membrane
FR2838631B1 (en) * 2002-04-23 2004-12-24 Engeneering And Technological METHOD FOR PRODUCING AN AORTIC OR MITRAL HEART VALVE PROSTHESIS AND AORTIC OR MITRAL HEART VALVE PROSTHESIS THUS OBTAINED
US7485141B2 (en) * 2002-05-10 2009-02-03 Cordis Corporation Method of placing a tubular membrane on a structural frame
US7351256B2 (en) * 2002-05-10 2008-04-01 Cordis Corporation Frame based unidirectional flow prosthetic implant
WO2003094795A1 (en) * 2002-05-10 2003-11-20 Cordis Corporation Method of making a medical device having a thin wall tubular membrane over a structural frame
US7270675B2 (en) * 2002-05-10 2007-09-18 Cordis Corporation Method of forming a tubular membrane on a structural frame
US7041132B2 (en) 2002-08-16 2006-05-09 3F Therapeutics, Inc, Percutaneously delivered heart valve and delivery means thereof
US7485089B2 (en) 2002-09-05 2009-02-03 Paracor Medical, Inc. Cardiac harness
CO5500017A1 (en) * 2002-09-23 2005-03-31 3F Therapeutics Inc MITRAL PROTESTIC VALVE
US20060195182A1 (en) * 2002-10-10 2006-08-31 Navia Jose L Method and apparatus for replacing a mitral valve with a stentless bioprosthetic valve
DE60322567D1 (en) * 2002-10-10 2008-09-11 Cleveland Clinic Foundation DEVICE FOR REPLACING A MITRAL FLAP WITH A STAINLESS BIOPROTHETIC FLAP WITH CHORDAE
US7229405B2 (en) 2002-11-15 2007-06-12 Paracor Medical, Inc. Cardiac harness delivery device and method of use
CA2504555C (en) 2002-11-15 2012-09-04 Paracor Medical, Inc. Cardiac harness delivery device
US7736299B2 (en) 2002-11-15 2010-06-15 Paracor Medical, Inc. Introducer for a cardiac harness delivery
US20050059855A1 (en) * 2002-11-15 2005-03-17 Lilip Lau Cardiac harness delivery device and method
US20070255093A1 (en) * 2002-11-15 2007-11-01 Lilip Lau Cardiac harness delivery device and method
US7189259B2 (en) * 2002-11-26 2007-03-13 Clemson University Tissue material and process for bioprosthesis
US20040249242A1 (en) * 2003-03-28 2004-12-09 Lilip Lau Multi-panel cardiac harness
US20050283042A1 (en) * 2003-03-28 2005-12-22 Steve Meyer Cardiac harness having radiopaque coating and method of use
US7374488B2 (en) * 2003-04-17 2008-05-20 Atronic Systems G.M.B.H. Player insert for a gaming machine, a gaming system and a method of operating a gaming system
US7201772B2 (en) * 2003-07-08 2007-04-10 Ventor Technologies, Ltd. Fluid flow prosthetic device
RU2006103367A (en) * 2003-07-08 2006-06-27 Вентор Текнолоджиз Лтд. (Il) IMPLANTED PROSTHETIC DEVICES, IN PARTICULAR, FOR TRANSARTHERIAL DELIVERY IN TREATMENT OF AORTAL STENOSIS AND METHODS OF IMPLANTING SUCH DEVICES
US7291105B2 (en) 2003-07-10 2007-11-06 Paracor Medical, Inc. Self-anchoring cardiac harness
US7604650B2 (en) 2003-10-06 2009-10-20 3F Therapeutics, Inc. Method and assembly for distal embolic protection
US7070616B2 (en) * 2003-10-31 2006-07-04 Cordis Corporation Implantable valvular prosthesis
US7347869B2 (en) 2003-10-31 2008-03-25 Cordis Corporation Implantable valvular prosthesis
US20070106336A1 (en) * 2003-11-07 2007-05-10 Alan Schaer Cardiac harness assembly for treating congestive heart failure and for pacing/sensing
US7158839B2 (en) 2003-11-07 2007-01-02 Paracor Medical, Inc. Cardiac harness for treating heart disease
US20050171589A1 (en) * 2003-11-07 2005-08-04 Lilip Lau Cardiac harness and method of delivery by minimally invasive access
US20050137673A1 (en) * 2003-11-07 2005-06-23 Lilip Lau Cardiac harness having electrodes and epicardial leads
US20070055091A1 (en) * 2004-12-02 2007-03-08 Lilip Lau Cardiac harness for treating congestive heart failure and for defibrillating and/or pacing/sensing
US7155295B2 (en) 2003-11-07 2006-12-26 Paracor Medical, Inc. Cardiac harness for treating congestive heart failure and for defibrillating and/or pacing/sensing
US20070106359A1 (en) * 2003-11-07 2007-05-10 Alan Schaer Cardiac harness assembly for treating congestive heart failure and for pacing/sensing
EP1703854A1 (en) * 2004-01-12 2006-09-27 Paracor Medical, Inc. Cardiac harness having interconnected strands
US7488346B2 (en) * 2004-01-21 2009-02-10 The Cleveland Clinic Foundation Method and apparatus for replacing a mitral valve and an aortic valve with a single homograft
US20070038294A1 (en) * 2004-01-21 2007-02-15 Navia Jose L Method and apparatus for replacing a mitral valve and an aortic valve with a homograft
US7862610B2 (en) * 2004-01-23 2011-01-04 James Quintessenza Bicuspid vascular valve and methods for making and implanting same
US7320705B2 (en) * 2004-01-23 2008-01-22 James Quintessenza Bicuspid pulmonary heart valve and method for making same
US20060009675A1 (en) * 2004-07-08 2006-01-12 Steven Meyer Self-anchoring cardiac harness for treating the heart and for defibrillating and/or pacing/sensing
US20060129026A1 (en) * 2004-12-15 2006-06-15 Joshua Wallin Apparatus and method for mounting a cardiac harness on the heart
DE102005003632A1 (en) 2005-01-20 2006-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Catheter for the transvascular implantation of heart valve prostheses
US7914569B2 (en) 2005-05-13 2011-03-29 Medtronics Corevalve Llc Heart valve prosthesis and methods of manufacture and use
US8685083B2 (en) 2005-06-27 2014-04-01 Edwards Lifesciences Corporation Apparatus, system, and method for treatment of posterior leaflet prolapse
US20070032696A1 (en) * 2005-07-22 2007-02-08 Sieu Duong Cardiac harness delivery device
US7587247B2 (en) 2005-08-01 2009-09-08 Paracor Medical, Inc. Cardiac harness having an optimal impedance range
WO2007100408A2 (en) 2005-12-15 2007-09-07 Georgia Tech Research Corporation Papillary muscle position control devices, systems & methods
WO2007100410A2 (en) * 2005-12-15 2007-09-07 Georgia Tech Research Corporation Systems and methods for enabling heart valve replacement
CA2669195C (en) * 2005-12-15 2013-06-25 Georgia Tech Research Corporation Systems and methods to control the dimension of a heart valve
US20070213813A1 (en) 2005-12-22 2007-09-13 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US9681948B2 (en) 2006-01-23 2017-06-20 V-Wave Ltd. Heart anchor device
DE602007012691D1 (en) 2006-05-15 2011-04-07 Edwards Lifesciences Ag SYSTEM FOR CHANGING THE GEOMETRY OF THE HEART
CA2654314A1 (en) * 2006-06-01 2007-12-06 Mor Research Applications Ltd. Methods and devices for treatment of cardiac valves
US20070287883A1 (en) * 2006-06-07 2007-12-13 Lilip Lau Apparatus and method for pulling a cardiac harness onto a heart
US11304800B2 (en) 2006-09-19 2022-04-19 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
US8834564B2 (en) 2006-09-19 2014-09-16 Medtronic, Inc. Sinus-engaging valve fixation member
US8414643B2 (en) 2006-09-19 2013-04-09 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
CN101605511B (en) 2007-02-09 2013-03-13 爱德华兹生命科学公司 Progressively sized annuloplasty rings
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US8192351B2 (en) 2007-08-13 2012-06-05 Paracor Medical, Inc. Medical device delivery system having integrated introducer
US20090048480A1 (en) * 2007-08-13 2009-02-19 Paracor Medical, Inc. Cardiac harness delivery device
EP2219558B8 (en) 2007-08-21 2015-09-23 Symetis SA Stent-valves for valve replacement and associated systems for surgery
US8377117B2 (en) 2007-09-07 2013-02-19 Edwards Lifesciences Corporation Active holder for annuloplasty ring delivery
DE102007043830A1 (en) 2007-09-13 2009-04-02 Lozonschi, Lucian, Madison Heart valve stent
EP3311779A1 (en) 2007-10-25 2018-04-25 Symetis SA Stents, valved-stents and methods and systems for delivery thereof
US9044318B2 (en) 2008-02-26 2015-06-02 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis
WO2011104269A1 (en) 2008-02-26 2011-09-01 Jenavalve Technology Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US8313525B2 (en) 2008-03-18 2012-11-20 Medtronic Ventor Technologies, Ltd. Valve suturing and implantation procedures
US8323336B2 (en) 2008-04-23 2012-12-04 Medtronic, Inc. Prosthetic heart valve devices and methods of valve replacement
US20090281372A1 (en) * 2008-05-06 2009-11-12 Paracor Medical, Inc. Cardiac harness assembly for treating congestive heart failure and for defibrillation and/or pacing/sensing
EP2358307B1 (en) 2008-09-15 2021-12-15 Medtronic Ventor Technologies Ltd. Prosthetic heart valve having identifiers for aiding in radiographic positioning
US8137398B2 (en) 2008-10-13 2012-03-20 Medtronic Ventor Technologies Ltd Prosthetic valve having tapered tip when compressed for delivery
US8163022B2 (en) 2008-10-14 2012-04-24 Anulex Technologies, Inc. Method and apparatus for the treatment of the intervertebral disc annulus
JP5392539B2 (en) * 2008-12-25 2014-01-22 学校法人早稲田大学 Stentless artificial mitral valve and prosthetic leaflet
US9034034B2 (en) 2010-12-22 2015-05-19 V-Wave Ltd. Devices for reducing left atrial pressure, and methods of making and using same
US20210161637A1 (en) 2009-05-04 2021-06-03 V-Wave Ltd. Shunt for redistributing atrial blood volume
EP2427143B1 (en) 2009-05-04 2017-08-02 V-Wave Ltd. Device for regulating pressure in a heart chamber
US10076403B1 (en) 2009-05-04 2018-09-18 V-Wave Ltd. Shunt for redistributing atrial blood volume
US10376359B2 (en) 2009-11-02 2019-08-13 Symetis Sa Aortic bioprosthesis and systems for delivery thereof
WO2011072084A2 (en) 2009-12-08 2011-06-16 Avalon Medical Ltd. Device and system for transcatheter mitral valve replacement
US8460319B2 (en) 2010-01-11 2013-06-11 Anulex Technologies, Inc. Intervertebral disc annulus repair system and method
US9522062B2 (en) 2010-02-24 2016-12-20 Medtronic Ventor Technologies, Ltd. Mitral prosthesis and methods for implantation
SG186837A1 (en) 2010-03-01 2013-02-28 Colibri Heart Valve Llc Percutaneously deliverable heart valve and methods associated therewith
EP2552356B1 (en) * 2010-03-26 2019-03-13 Thubrikar Aortic Valve Inc. Valve component, frame component and prosthetic valve device including the same for implantation in a body lumen
US8652204B2 (en) 2010-04-01 2014-02-18 Medtronic, Inc. Transcatheter valve with torsion spring fixation and related systems and methods
JP2013526388A (en) 2010-05-25 2013-06-24 イエナバルブ テクノロジー インク Artificial heart valve, and transcatheter delivery prosthesis comprising an artificial heart valve and a stent
AU2011276503B2 (en) 2010-06-28 2015-09-17 Colibri Heart Value LLC Method and apparatus for the endoluminal delivery of intravascular devices
CN103179920B (en) 2010-08-24 2015-11-25 爱德华兹生命科学公司 There is the flexible valve forming ring selecting control point
US8932350B2 (en) 2010-11-30 2015-01-13 Edwards Lifesciences Corporation Reduced dehiscence annuloplasty ring
SG10201601962WA (en) 2010-12-14 2016-04-28 Colibri Heart Valve Llc Percutaneously deliverable heart valve including folded membrane cusps with integral leaflets
US8845717B2 (en) 2011-01-28 2014-09-30 Middle Park Medical, Inc. Coaptation enhancement implant, system, and method
US8888843B2 (en) 2011-01-28 2014-11-18 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valve regurgitation
BR112013030482A2 (en) * 2011-05-27 2016-09-27 Cormatrix Cardiovascular Inc method of regeneration of an atrioventricular valve and duct of extracellular matrix material
AU2012262549B2 (en) * 2011-05-27 2016-02-11 Cormatrix Cardiovascular, Inc. Extracellular matrix material valve conduit and methods of making thereof
US9358107B2 (en) * 2011-06-30 2016-06-07 Edwards Lifesciences Corporation Systems, dies, and methods for processing pericardial tissue
US9629715B2 (en) 2011-07-28 2017-04-25 V-Wave Ltd. Devices for reducing left atrial pressure having biodegradable constriction, and methods of making and using same
US11135054B2 (en) 2011-07-28 2021-10-05 V-Wave Ltd. Interatrial shunts having biodegradable material, and methods of making and using same
EP4289398A3 (en) 2011-08-11 2024-03-13 Tendyne Holdings, Inc. Improvements for prosthetic valves and related inventions
US9827092B2 (en) 2011-12-16 2017-11-28 Tendyne Holdings, Inc. Tethers for prosthetic mitral valve
US20130274873A1 (en) 2012-03-22 2013-10-17 Symetis Sa Transcatheter Stent-Valves and Methods, Systems and Devices for Addressing Para-Valve Leakage
US11207176B2 (en) 2012-03-22 2021-12-28 Boston Scientific Scimed, Inc. Transcatheter stent-valves and methods, systems and devices for addressing para-valve leakage
CA2877344C (en) * 2012-06-22 2021-10-26 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valve regurgitation
WO2014022124A1 (en) 2012-07-28 2014-02-06 Tendyne Holdings, Inc. Improved multi-component designs for heart valve retrieval device, sealing structures and stent assembly
US9675454B2 (en) 2012-07-30 2017-06-13 Tendyne Holdings, Inc. Delivery systems and methods for transcatheter prosthetic valves
AU2014209124A1 (en) 2013-01-28 2015-09-17 Cartiva, Inc. Systems and methods for orthopedic repair
US9737294B2 (en) 2013-01-28 2017-08-22 Cartiva, Inc. Method and system for orthopedic repair
US9687346B2 (en) 2013-03-14 2017-06-27 Edwards Lifesciences Corporation Multi-stranded heat set annuloplasty rings
US10463489B2 (en) 2013-04-02 2019-11-05 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US11224510B2 (en) 2013-04-02 2022-01-18 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US9486306B2 (en) 2013-04-02 2016-11-08 Tendyne Holdings, Inc. Inflatable annular sealing device for prosthetic mitral valve
US10478293B2 (en) 2013-04-04 2019-11-19 Tendyne Holdings, Inc. Retrieval and repositioning system for prosthetic heart valve
US9907649B2 (en) * 2013-05-03 2018-03-06 Cormatrix Cardiovascular, Inc. Prosthetic tissue valves and methods for anchoring same to cardiovascular structures
CN108294846A (en) 2013-05-20 2018-07-20 托尔福公司 Implantable cardiac valve device, mitral valve repair device and related system and method
EP2999412B1 (en) 2013-05-21 2020-05-06 V-Wave Ltd. Apparatus for delivering devices for reducing left atrial pressure
US9610159B2 (en) 2013-05-30 2017-04-04 Tendyne Holdings, Inc. Structural members for prosthetic mitral valves
JP6461122B2 (en) 2013-06-25 2019-01-30 テンダイン ホールディングス,インコーポレイテッド Thrombus management and structural compliance features of prosthetic heart valves
EP3027144B1 (en) 2013-08-01 2017-11-08 Tendyne Holdings, Inc. Epicardial anchor devices
CN105491978A (en) 2013-08-30 2016-04-13 耶拿阀门科技股份有限公司 Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
CN104436339A (en) * 2013-09-25 2015-03-25 李温斌 No-power-property artificial ventricle device
WO2015058039A1 (en) 2013-10-17 2015-04-23 Robert Vidlund Apparatus and methods for alignment and deployment of intracardiac devices
US10166098B2 (en) 2013-10-25 2019-01-01 Middle Peak Medical, Inc. Systems and methods for transcatheter treatment of valve regurgitation
EP3656353A1 (en) 2013-10-28 2020-05-27 Tendyne Holdings, Inc. Prosthetic heart valve and systems for delivering the same
US9526611B2 (en) 2013-10-29 2016-12-27 Tendyne Holdings, Inc. Apparatus and methods for delivery of transcatheter prosthetic valves
WO2015120122A2 (en) 2014-02-05 2015-08-13 Robert Vidlund Apparatus and methods for transfemoral delivery of prosthetic mitral valve
US9986993B2 (en) 2014-02-11 2018-06-05 Tendyne Holdings, Inc. Adjustable tether and epicardial pad system for prosthetic heart valve
AU2015229708B2 (en) 2014-03-10 2019-08-15 Tendyne Holdings, Inc. Devices and methods for positioning and monitoring tether load for prosthetic mitral valve
CA2958061A1 (en) 2014-06-18 2015-12-23 Middle Peak Medical, Inc. Mitral valve implants for the treatment of valvular regurgitation
EP3160396B1 (en) 2014-06-24 2022-03-23 Polares Medical Inc. Systems for anchoring an implant
EP3242630A2 (en) 2015-01-07 2017-11-15 Tendyne Holdings, Inc. Prosthetic mitral valves and apparatus and methods for delivery of same
US9839512B2 (en) * 2015-02-03 2017-12-12 Boston Scientific, Inc. Prosthetic heart valve having notched leaflet
CA2975294A1 (en) 2015-02-05 2016-08-11 Tendyne Holdings, Inc. Expandable epicardial pads and devices and methods for delivery of same
CA2983002C (en) 2015-04-16 2023-07-04 Tendyne Holdings, Inc. Apparatus and methods for delivery, repositioning, and retrieval of transcatheter prosthetic valves
US10709555B2 (en) 2015-05-01 2020-07-14 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
WO2016178171A1 (en) 2015-05-07 2016-11-10 The Medical Research Infrastructure And Health Services Fund Of The Tel-Aviv Medical Center Temporary interatrial shunts
US10314707B2 (en) 2015-06-09 2019-06-11 Edwards Lifesciences, Llc Asymmetric mitral annuloplasty band
EP3337428A1 (en) 2015-08-21 2018-06-27 Twelve Inc. Implantable heart valve devices, mitral valve repair devices and associated systems and methods
US10327894B2 (en) 2015-09-18 2019-06-25 Tendyne Holdings, Inc. Methods for delivery of prosthetic mitral valves
US9592121B1 (en) 2015-11-06 2017-03-14 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
ES2777609T3 (en) 2015-12-03 2020-08-05 Tendyne Holdings Inc Framework Features for Prosthetic Mitral Valves
CN108366859B (en) 2015-12-28 2021-02-05 坦迪尼控股股份有限公司 Atrial capsular bag closure for prosthetic heart valves
WO2017189276A1 (en) * 2016-04-29 2017-11-02 Medtronic Vascular Inc. Prosthetic heart valve devices with tethered anchors and associated systems and methods
US10470877B2 (en) 2016-05-03 2019-11-12 Tendyne Holdings, Inc. Apparatus and methods for anterior valve leaflet management
EP3454795B1 (en) 2016-05-13 2023-01-11 JenaValve Technology, Inc. Heart valve prosthesis delivery system for delivery of heart valve prosthesis with introducer sheath and loading system
US10835394B2 (en) 2016-05-31 2020-11-17 V-Wave, Ltd. Systems and methods for making encapsulated hourglass shaped stents
US20170340460A1 (en) 2016-05-31 2017-11-30 V-Wave Ltd. Systems and methods for making encapsulated hourglass shaped stents
EP3468480B1 (en) 2016-06-13 2023-01-11 Tendyne Holdings, Inc. Sequential delivery of two-part prosthetic mitral valve
WO2018005779A1 (en) 2016-06-30 2018-01-04 Tegels Zachary J Prosthetic heart valves and apparatus and methods for delivery of same
US11065116B2 (en) 2016-07-12 2021-07-20 Tendyne Holdings, Inc. Apparatus and methods for trans-septal retrieval of prosthetic heart valves
CN110392557A (en) 2017-01-27 2019-10-29 耶拿阀门科技股份有限公司 Heart valve simulation
US11291807B2 (en) 2017-03-03 2022-04-05 V-Wave Ltd. Asymmetric shunt for redistributing atrial blood volume
WO2018158747A1 (en) 2017-03-03 2018-09-07 V-Wave Ltd. Shunt for redistributing atrial blood volume
US10478303B2 (en) 2017-03-13 2019-11-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
CN110913801B (en) 2017-03-13 2022-04-15 宝来瑞斯医疗有限公司 Coaptation assistance element for treating an adverse coaptation of a heart valve of a heart and system for delivering the same
US10653524B2 (en) 2017-03-13 2020-05-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
US10702378B2 (en) 2017-04-18 2020-07-07 Twelve, Inc. Prosthetic heart valve device and associated systems and methods
WO2019014473A1 (en) 2017-07-13 2019-01-17 Tendyne Holdings, Inc. Prosthetic heart valves and apparatus and methods for delivery of same
JP7291124B2 (en) 2017-08-28 2023-06-14 テンダイン ホールディングス,インコーポレイテッド Heart valve prosthesis with tethered connections
WO2019051476A1 (en) 2017-09-11 2019-03-14 Incubar, LLC Conduit vascular implant sealing device for reducing endoleak
US10898698B1 (en) 2020-05-04 2021-01-26 V-Wave Ltd. Devices with dimensions that can be reduced and increased in vivo, and methods of making and using the same
US11458287B2 (en) 2018-01-20 2022-10-04 V-Wave Ltd. Devices with dimensions that can be reduced and increased in vivo, and methods of making and using the same
WO2019142152A1 (en) 2018-01-20 2019-07-25 V-Wave Ltd. Devices and methods for providing passage between heart chambers
EP3829490A1 (en) 2018-07-30 2021-06-09 Edwards Lifesciences Corporation Minimally-invasive low strain annuloplasty ring
US11612385B2 (en) 2019-04-03 2023-03-28 V-Wave Ltd. Systems and methods for delivering implantable devices across an atrial septum
EP3962417A4 (en) 2019-05-02 2023-01-18 University of Maryland, Baltimore Valve translocation device and method for the treatment of functional valve regurgitation
EP3972499A1 (en) 2019-05-20 2022-03-30 V-Wave Ltd. Systems and methods for creating an interatrial shunt
WO2021020420A1 (en) * 2019-07-29 2021-02-04 真嘉 宮本 Artificial valve forming template and artificial valve
EP3831343B1 (en) 2019-12-05 2024-01-31 Tendyne Holdings, Inc. Braided anchor for mitral valve
US11648114B2 (en) 2019-12-20 2023-05-16 Tendyne Holdings, Inc. Distally loaded sheath and loading funnel
JP2023515342A (en) * 2020-02-18 2023-04-13 エルエスアイ ソルーションズ インコーポレーテッド Cardiac repair structures and devices and methods therefore
US11951002B2 (en) 2020-03-30 2024-04-09 Tendyne Holdings, Inc. Apparatus and methods for valve and tether fixation
WO2022039853A1 (en) 2020-08-19 2022-02-24 Tendyne Holdings, Inc. Fully-transseptal apical pad with pulley for tensioning
US11801369B2 (en) 2020-08-25 2023-10-31 Shifamed Holdings, Llc Adjustable interatrial shunts and associated systems and methods
US11857197B2 (en) 2020-11-12 2024-01-02 Shifamed Holdings, Llc Adjustable implantable devices and associated methods
US11234702B1 (en) 2020-11-13 2022-02-01 V-Wave Ltd. Interatrial shunt having physiologic sensor
US11464634B2 (en) 2020-12-16 2022-10-11 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation with secondary anchors
US11759321B2 (en) 2021-06-25 2023-09-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
WO2023199267A1 (en) 2022-04-14 2023-10-19 V-Wave Ltd. Interatrial shunt with expanded neck region

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU167950B (en) * 1973-07-26 1976-01-28
ES474582A1 (en) * 1978-10-26 1979-11-01 Aranguren Duo Iker Process for installing mitral valves in their anatomical space by attaching cords to an artificial stent
US4790844A (en) * 1987-01-30 1988-12-13 Yoel Ovil Replacement of cardiac valves in heart surgery
US4960424A (en) * 1988-06-30 1990-10-02 Grooters Ronald K Method of replacing a defective atrio-ventricular valve with a total atrio-ventricular valve bioprosthesis
GB9012716D0 (en) * 1990-06-07 1990-08-01 Frater Robert W M Mitral heart valve replacements
US5163955A (en) * 1991-01-24 1992-11-17 Autogenics Rapid assembly, concentric mating stent, tissue heart valve with enhanced clamping and tissue alignment

Also Published As

Publication number Publication date
US5500015A (en) 1996-03-19
CA2119786A1 (en) 1992-11-26
AU662342B2 (en) 1995-08-31
CA2119786C (en) 2003-12-16
WO1992020303A1 (en) 1992-11-26
US5344442A (en) 1994-09-06
DE69231964T2 (en) 2002-06-06
AU2156592A (en) 1992-12-30
ES2159508T3 (en) 2001-10-16
RO110672B1 (en) 1996-03-29
DK0583410T3 (en) 2001-11-12
CA2441683A1 (en) 1992-11-26
CA2441674A1 (en) 1992-11-26
EP0583410A1 (en) 1994-02-23
CA2441679A1 (en) 1992-11-26
EP0583410A4 (en) 1994-07-20
EP0583410B1 (en) 2001-07-25
DE69231964D1 (en) 2001-08-30
ATE203387T1 (en) 2001-08-15
BR9206005A (en) 1994-08-02

Similar Documents

Publication Publication Date Title
CA2441683C (en) Cardiac valve
US6358277B1 (en) Atrio-ventricular valvular device
US7087079B2 (en) Method and apparatus for replacing a mitral valve with a stentless bioprosthetic valve
US4340977A (en) Catenary mitral valve replacement
US4759759A (en) Bubble heart valve
US6409759B1 (en) Harvested tissue heart valve with sewing rim
US6830586B2 (en) Stentless atrioventricular heart valve fabricated from a singular flat membrane
US7160320B2 (en) Reed valve for implantation into mammalian blood vessels and heart with optional temporary or permanent support
US20100023119A1 (en) Valve Mold and Prosthesis for Mammalian Systems
EP0276975A1 (en) Replacement of cardiac valves in heart surgery
US20060195182A1 (en) Method and apparatus for replacing a mitral valve with a stentless bioprosthetic valve
SU1710032A1 (en) Method for implanting an artificial heart
CN116138928A (en) Interventional mitral valve capable of reducing left ventricular outflow port
Yacoub Homograft replacement of the mitral valve

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry
MKEX Expiry

Effective date: 20120515