CA2447239C - Endocardial mapping system - Google Patents

Endocardial mapping system Download PDF

Info

Publication number
CA2447239C
CA2447239C CA2447239A CA2447239A CA2447239C CA 2447239 C CA2447239 C CA 2447239C CA 2447239 A CA2447239 A CA 2447239A CA 2447239 A CA2447239 A CA 2447239A CA 2447239 C CA2447239 C CA 2447239C
Authority
CA
Canada
Prior art keywords
lead body
electrode
heart
electrodes
catheter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA2447239A
Other languages
French (fr)
Other versions
CA2447239A1 (en
Inventor
Graydon Ernest Beatty
Jonathan Kagan
Jeffrey R. Budd
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
St Jude Medical Atrial Fibrillation Division Inc
Original Assignee
St Jude Medical Atrial Fibrillation Division Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/950,448 external-priority patent/US5297549A/en
Priority claimed from US07/949,690 external-priority patent/US5311866A/en
Application filed by St Jude Medical Atrial Fibrillation Division Inc filed Critical St Jude Medical Atrial Fibrillation Division Inc
Publication of CA2447239A1 publication Critical patent/CA2447239A1/en
Application granted granted Critical
Publication of CA2447239C publication Critical patent/CA2447239C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6852Catheters
    • A61B5/6853Catheters with a balloon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0538Measuring electrical impedance or conductance of a portion of the body invasively, e.g. using a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1076Measuring physical dimensions, e.g. size of the entire body or parts thereof for measuring dimensions inside body cavities, e.g. using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/282Holders for multiple electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/283Invasive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/283Invasive
    • A61B5/287Holders for multiple electrodes, e.g. electrode catheters for electrophysiological study [EPS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6852Catheters
    • A61B5/6858Catheters with a distal basket, e.g. expandable basket
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/3625External stimulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/37Monitoring; Protecting
    • A61N1/3702Physiological parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/24Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor with a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/00267Expandable means emitting energy, e.g. by elements carried thereon having a basket shaped structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00839Bioelectrical parameters, e.g. ECG, EEG
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0443Modular apparatus
    • A61B2560/045Modular apparatus with a separable interface unit, e.g. for communication
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/043Arrangements of multiple sensors of the same type in a linear array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/046Arrangements of multiple sensors of the same type in a matrix array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/30Input circuits therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing

Abstract

A mapping catheter assembly including a flexible lead body and a deformable lead body. A lumen is provided to accept a reference catheter which includes a distal tip electrode assembly. In use an array of electrode sites are deformed into a spherical shape after the assembly is placed in a heart chamber. The reference electrode assembly is advanced into contact with the heart wall to provide calibration information for the array.

Description

TITLE OF THE INVENTION

ENDOCARDIAL MAPPING SYSTEM

CROSS-REFERENCE TO A RELATED CASE

The present application is a division of Canadian patent application Ser. No. 2,144,973, filed, March 17, 1995, disclosing an endocardial mapping system.

FIELD OF THE INVENTION
The present invention relates generally to endocardial catheters which can be used to map the electrical activity of the heart, and more particularly to a multiple electrode catheter and its method of manufacture.

BACKGROUND OF THE INVENTION
Cardiac arrhythmias can be treated pharmacologically, surgically, or by the implantation of a medical device. In the case of a tachycardia it is now common to perform endocardial mapping to determine the origin and mechanism of the arrythmia prior to selecting a therapeutic approach. Endocardial mapping can also be used to monitor or assess the efficacy of a therapy once selected and delivered.
Traditionally endocardial mapping techniques involve the introduction of one or more catheters into the patient, advancing the catheters through a blood vessel and placing the catheters in a heart chamber. Once located in the heart, the electrode or electrodes of the catheters are pressed against the endocardial surface to record the electrical potential of the cardiac tissue at that electrode site. Single electrode contact systems are tedious to use but they do not interfere with the normal blood flow through the heart. Multiple electrode contact systems are also available to permit simultaneous mapping of potentials from several electrode sites. However some of these systems block blood flow through the heart. Multiple electrode systems which do not interfere with the blood flow, and which do not contact the surface of the heart are also known, although these systems do not permit a high resolution map of the endocardial surface.
U.S. Pat. No. 4,649,924 to Taccardi teaches a catheter which is inserted into the heart chamber. The distal end of this catheter is formed into an elliptical shape which is much smaller than the heart chamber. The multiple electrodes on the surface of this ellipsoid may be used to detect the electrical potential produced by the area of the endocardial surface proximate each individual electrode. Accurate measurements require that the electrodes do not touch the endocardial surface. This type of catheter floats freely in the heart chamber but will typically touch the walls of the beating heart. The constant motion of the catheter and contact with the walls frustrates accurate measurement of the cardiac potentials. Therefore these prior non-contact mapping and in-contact mapping catheters compromise the accuracy of the resultant map with the ease of use. Therefore there is a need for a catheter which can be used to develop an accurate representation of the electrical activity of the heart.

OBJECTS AND STATEMENT OF THE INVENTION
The mapping catheter assembly 10 includes a flexible lead body 12 connected to a deformable distal lead body 14. The deformable distal lead body 14 can be formed into a stable space filling geometric shape after introduction into the heart cavity 20. This deformable distal lead body 14 includes an electrode array 16 defining a number of electrode sites. The mapping catheter assembly 10 also includes a reference electrode preferably placed on a reference catheter 18 which passes through a central lumen 22 formed in the flexible lead body 12 and the distal lead body 14. The reference catheter assembly 18 has a distal tip electrode assembly 29 which may be used to probe the heart wall. This distal contact electrode assembly 29 provides a surface or subsurface electrical reference for calibration. The physical length of the reference catheter 18 taken with the position of the electrode array 16 together provide a reference which may be used to calibrate the electrode array 16. The reference catheter 18 also stabilizes the position of the electrode array 16 which is desirable.
These structural elements provide a mapping catheter assembly which can be readily postiioned within the heart and used to acquire highly accurate information concerning the electrical activity of the heart from a first set of preferably non-contact electrode sites and/or a second set of in-contact electrode sites.

The present invention further provides a mapping catheter for use in mapping cardiac electrical potentials of a patient's heart comprising:
a set of electrodes;
first positioning means coupled to said set of electrodes for spacing a portion of said set of electrodes, defined as a first subset of electrodes, apart from and not in contact with a surface of said patient's heart;
second positioning means coupled to said set of electrodes for placing a second predetermined subset of said set of electrodes into contact with a surface of said patient's heart, said second predetermined subset being different from said first subset; and means for excluding blood from an interior of said spaced portion of said set of electrodes.
The present invention further provides a catheter assembly for mapping the interior of a patient's heart comprising:
a first set of electrode sites defining a first electrode array;
said electrode array adapted to be positioned within said patient's heart with a substantial number of said electrodes not in contact with said heart;
a second set of electrode sites adapted to be located in contact with said patient's heart, said second set of electrode sites being different from said first set of electrode sites; and means for excluding blood from an interior of said electrode array.
The present invention further provides a catheter assembly for mapping the electrical potential of the interior of a heart chamber of a patient's heart, comprising:
a flexible lead body, connected to a deformable lead body, said flexible lead body and said deformable lead body having a lumen;

-3a-said deformable lead body deformable to a first collapsed position wherein said deformable lead body has a substantially cylindrical shape, and said deformable lead body deformable to a second expanded position wherein said deformable lead body has a substantially spherical shape;
an electrode array having a plurality of electrode sites located proximate said deformable lead body, wherein said electrode sites form a spherical array of electrode sites when said deformable lead body is in said second expanded position;
a reference catheter having a tip electrode assembly;
said reference catheter being located in said lumen and supported for relative motion with respect to said electrode array such that said tip electrode assembly is locatable in contact with said patient's heart when said array is in said heart chamber to provide a reference location for the electrode array.
The present invention further provides a method of forming a catheter comprising the steps of:
a) forming a collection of insulated wires each having an interior conductor, and each having an exterior insulation coating;
b) braiding the wires formed in step a) forming a braided structure having a central lumen;
c) incorporating the braided structure in a polymeric material forming a flexible lead body;
d) removing said polymeric material from a portion of said flexible lead body exposing said braid of insulated wires forming a deformable lead body;
e) removing insulation from selected locations on selected insulated wires to form electrode sites on said deformable lead body.
The present invention further provides a method of acquiring and representing physiological data in a heart chamber, comprising: a) acquiring physiological data in the heart chamber with a catheter located in the heart chamber; b) determining the position of the catheter; and c) creating a three-dimensional representation of the physiological data, wherein the representation is a continuous representation of substantially the whole endocardium.

-3b-The present invention further provides a method of acquiring and representing physiological data in a heart chamber, comprising: a) acquiring physiological data in the heart chamber with a catheter located in the heart chamber; b) determining the position of the catheter; c) creating a three-dimensional representation of the physiological data; and d) displaying the position of the catheter superimposed on the representation.
The present invention further provides a method of acquiring and representing physiological data in a heart chamber, comprising: a) acquiring physiological data in the heart chamber with an electrode located in the heart chamber; b) determining the position of the electrode; c) creating a three-dimensional representation of the physiological data; and d) displaying the position of the electrode superimposed on the representation.
The present invention further provides a method of acquiring and representing physiological data in a heart chamber, comprising: a) acquiring physiological data in the heart chamber with an electrode located in the heart chamber; b) determining the position of the electrode; and c) creating a three-dimensional representation of the physiological data, wherein the representation is a continuous representation of substantially the whole endocardium.
The present invention further provides a method of acquiring and representing physiological data in a heart chamber, comprising: a) acquiring physiological data in the heart chamber with an electrode located in the heart chamber; b) determining the position of the electrode; and c) creating a three-dimensional representation of the physiological data, wherein the representation is a continuous representation of electrical activity of an endocardial surface.
The present invention further provides a method of acquiring and representing physiological data in a heart chamber, comprising: a) acquiring physiological data in the heart chamber with an electrode of a catheter, said electrode being in the heart chamber; b) determining the position of the electrode;
c) creating a three-dimensional representation of the physiological data; and d) displaying the position of the catheter superimposed on the representation.
The present invention further provides a system that acquires and represents physiological data in a heart chamber, comprising: a catheter having an -3c-electrode positionable in the heart chamber to acquire physiological data; an analog-to-digital converter coupled to the catheter to process catheter position information and the physiological data; and a computer usable medium having computer readable program code to represent the physiological data in the heart chamber, the computer readable program code comprising: code to create a three-dimensional representation of the physiological data using the catheter position information.
For use with a system that acquires and represents physiological data in a heart chamber, wherein the system includes a catheter having an electrode positionable in the heart chamber to acquire physiological data and an analog-to-digital converter coupled to the catheter to process catheter position information and the physiological data, the present invention further provides a computer usable medium having computer readable program code to cause an application program to execute on a computer to acquire and represent the physiological data in the heart chamber, the computer readable program code comprising: code to create a three-dimensional representation of the physiological data using the catheter position information.

IN THE DRAWINGS
An illustrative example of the invention is shown in the drawing.
Throughout the various figures of the drawing identical numerals refer to identical structure.
FIG. 1 is a view of the catheter assembly placed in an endocardial cavity.
FIG. 2 is a schematic view of the catheter assembly.
FIG. 3 is a view of the mapping catheter with the deformable lead body in the collapsed position.
FIG. 4 is a view of the mapping catheter with the deformable lead body in the expanded position.
FIG. 5 is a view of the reference catheter.
FIG. 6 is a side view of an alternate reference catheter.
FIG. 7 is a side view of an alternate reference catheter.
FIG. 8 is a perspective view of an alternate distal tip.

-3d-DESCRIPTION OF PREFERRED EMBODIMENTS
FIG. 1 shows a portion of the mapping catheter assembly 10 placed into a heart chamber 20. The mapping catheter assembly 10 includes a reference catheter 18 and an array catheter 11. In FIG. 1 the array catheter 11 has been expanded through the use of a stylet 32 to place the electrode array 16 into a stable and reproducible geometric shape. The reference catheter 18 has been passed through the lumen 22 of the array catheter 11 to place a distal tip electrode assembly 29 into position against an endocardial surface. In use, the reference catheter 18 provides a mechanical location reference for the position of the electrode array 16, and the tip electrode assembly 29 provides an electrical potential reference at or in the heart wall for the mapping process.
Although the structures of FIG. 1 are preferred there are several alternatives within the scope of the invention. The principle objective of the preferred form of the catheter system is to reliably place a known collection of electrode sites away from the endocardial surface, and one or more electrode sites into contact with the endocardium. The array catheter is an illustrative structure for placing at least some of the electrode sites away from the endocardial surface. The array catheter itself can be designed to mechanically position one or more electrode sites on the endocardial surface. The reference catheter is a preferred structure for carrying one or more electrode sites and may be used to place these electrode sites into intimate contact with the endocardial surface.
It should be understood that the reference catheter could be replaced with a fixed extension of the array catheter and used to push a segment of the array into the endocardial surface. In this embodiment the spherical array maintains the other electrodes out of contact with the endocardial surface.
FIG. 2 shows the preferred construction of the mapping catheter assembly 10 in exaggerated scale to clarify details o construction. In general, the array catheter 11 includes a flexible lead body 12 coupled to a deformable lead body 14. The deformable lead body 14 is preferably a braid 15 of insulated wires, several of which are shown as wire 33, wire 34, wire 35 and wire 36. An individual wire such as 33 may be traced in the figure from the electrical connection 19 at the proximal end 21 of the flexible lead body 12 through the flexible lead body 12 to the distal braid ring 23 located on the deformable lead body 14. At a predetermined location in the deformable lead body 14 the insulation has been selectively removed from this wire 33 to form a representative electrode site 24.
Each of the several wires in the braid 15 may potentially be used to form an electrode site Preferably all of the typically twenty--four to sixty-four wires in the braid 15 are used to form electrode sites. Wires not used as electrode sites provide mechanical support for the electrode array 16. In general, the electrode sites will be located equidistant from a center defined at the center of the spherical array. Other geometrical shapes are possible including ellipsoidal and the like. However, it is generally desirable to have the electrode sites positioned in a spherical array.
The proximal end 21 of the mapping catheter assembly 10 has suitable electrical connection 19 for the individual wires connected to the various electrode sites. Similarly the proximal connector 19 can have a suitable electrical connection for the distal tip electrode assembly 29 of the reference catheter or the reference catheter 18 can use a separate connector. The distance 30 between the electrode array 16 and the distal tip assembly 29 electrode ca preferentially be varied by sliding the reference catheter through the lumen 22, as shown by motion arrow 25. This distance 30 may be "read" at the proximal end 21 by noting the relative position of the end of the lead body 12 and the proximal end of the reference catheter 18.
FIG. 3 is a view of the mapping catheter with the deformable lead body 14 in the collapsed position.
FIG. 4 shows that the wire stylet 32 is attached to the distal braid ring 23 and positioned in the lumen 22. Traction applied to the distal braid ring 23 by relative motion of the si:ylet 32 with respect to the lead body 12 causes the braid 15 to change shape. In general, traction causes the braid 15 to move from a generally cylindrical form seen in FIG. 3 to a generally spherical form seen best in FIG. 1 and FIG. 4.
The preferred technique is to provide a stylet 32 which can be used to pull the braid 15 which will deploy the electrode array 16. However, other techniques may be used as well including an optional balloon 17 (FIG. 2) which could be inflated under the electrode array 16 thereby causing the spherical deployment of the array 16. Modification of the braid 15 can be used to control the final shape of the array 16. For example an asymmetrical braid pattern using differing diameter wires within the braid can preferentially alter the shape of the array. The most important property of the geometric shape is that it spaces the electrode sites relatively far apart and that the shape be predictable with a high degree of accuracy.

FIG. 5 shows a first embodiment of the reference catheter 18 where the distal electrode assembly 29 is blunt and may be used to make a surface measurement against the endocardial surface. In this version of the catheter assembly the wire 37 (FIG. 1) communicates to the distal tip electrode and this wire may be terminated in the connector 19.
FIG. 6 shows an alternate reference catheter 38 which is preferred if both surface and/or subsurface measurements of the potential proximate the endocardial surface are desired. This catheter 38 includes both a ring electrode 39 and an extendable intramural electrode body 40.
FIG. 7 illustrates the preferred use of an intramural electrode stylet 41 to retract the sharp intramural electrode body 40 into the reference catheter lead body 42. Motion of the intramural electrode body 40 into the lead body 42 is shown by arrow 43.
FIG. 8 shows the location of the intramural electrode site 44 on the electrode body 40. It is desirable to use a relatively small electrode site to permit localization of the intramural electrical activity.
The array catheter 11 may be made by any of a variety of techniques. In one method of manufacture, the braid 15 of insulated wires 33,34,35,36 can be encapsulated into a plastic material to form the flexible lead body 12. This plastic material can be any of various biocompatible compounds with polyurethane being preferred. The encapsulation material for the flexible lead body 12 is selected in part for its ability to be selectively removed to expose the insulated braid 15 to form the deformable lead body 14. The use of a braid 15 rather than a spiral wrap, axial wrap, or other configuration inherently strengthens and supports the electrodes due to the interlocking nature of the braid. This interlocking braid 15 also insures that, as the electrode array 16 deploys, it does so with predictable dimensional control. This braid 15 structure also supports the array catheter and provides for the structural integrity of the array catheter 11 where the encapsulating material has been removed.
To form the deformable lead body 14 at the distal end of the array catheter 11, the encapsulating material can be removed by known techniques.
In a preferred embodiment this removal is accomplished by mechanical removal of the encapsulating material by grinding or the like. It is also possible to remove the material with a solvent. If the encapsulating material is polyurethane, tetrahydrofuran or cyclohexanone can be used as a solvent. In some embodiments the encapsulating material is not removed from the extreme distal tip to provide enhanced mechanical integrity forming a distal braid ring 23.

With the insulated braid 15 exposed, to form the deformable lead body 14 the electrodes sites can be formed by removing the insulation over the conductor in selected areas. Known techniques would involve mechanical, thermal or chemical removal of the insulation followed by identification of the appropriate conducting wire at the proximal connector 19. This method makes it difficult to have the orientation of the proximal conductors in a predictable repeatable manner. Color coding of the insulation to enable selection of the conductor/electrode is possible but is also difficult when large numbers of electrodes are required. Therefore it is preferred to select and form the electrode array through the use of high voltage electricity. By applying high voltage electricity (typically 1-3 KV) to the proximal end of the conductor and detecting this energy through the insulation it is possible to facilitate the creation of the electrode on a known conductor at a desired locationõ After localization, the electrode site can be created by removing insulation using standard means.
Modifications can be made to this mapping catheter assembly without departing from the teachings of the present invention. Accordingly the scope of the invention is only to be limited only by the accompanying claims.

Claims (12)

1. A mapping catheter for use in mapping cardiac electrical potentials of a patient's heart comprising:
a set of electrodes;
first positioning means coupled to said set of electrodes for spacing a portion of said set of electrodes, defined as a first subset of electrodes, apart from and not in contact with a surface of said patient's heart;
second positioning means coupled to said set of electrodes for placing a second predetermined subset of said set of electrodes into contact with a surface of said patient's heart, said second predetermined subset being different from said first subset; and means for excluding blood from an interior of said spaced portion of said set of electrodes.
2. The apparatus of claim 1, further comprising:
third positioning means coupled to said set of electrodes for placing a third predetermined subset of said electrodes into a position beneath a surface of said patient's heart.
3. The apparatus of claim 1, wherein said set of electrodes exceeds twelve electrodes.
4. The apparatus of claim 1, wherein said first subset of electrodes exceeds one electrode.
5. The apparatus of claim 1, wherein said second subset is at least one electrode.
6. The apparatus of claim 1, wherein said first positioning means is substantially spherical in shape.
7. The apparatus of claim 1, wherein said second positioning means is a substantially linear shape.
8. A catheter assembly for mapping the interior of a patient's heart comprising:
a first set of electrode sites defining a first electrode array;
said electrode array adapted to be positioned within said patient's heart with a substantial number of said electrodes not in contact with said heart;
a second set of electrode sites adapted to be located in contact with said patient's heart, said second set of electrode sites being different from said first set of electrode sites; and means for excluding blood from an interior of said electrode array.
9. A catheter assembly for mapping the electrical potential of the interior of a heart chamber of a patient's heart, comprising:
a flexible lead body, connected to a deformable lead body, said flexible lead body and said deformable lead body having a lumen;
said deformable lead body deformable to a first collapsed position wherein said deformable lead body has a substantially cylindrical shape, and said deformable lead body deformable to a second expanded position wherein said deformable lead body has a substantially spherical shape;
an electrode array having a plurality of electrode sites located proximate said deformable lead body, wherein said electrode sites form a spherical array of electrode sites when said deformable lead body is in said second expanded position;
a reference catheter having a tip electrode assembly;
said reference catheter being located in said lumen and supported for relative motion with respect to said electrode array such that said tip electrode assembly is locatable in contact with said patient's heart when said array is in said heart chamber to provide a reference location for the electrode array.
10. The catheter assembly of claim 9, further comprising:

means for excluding blood from the interior of said deformable lead body when said deformable lead body is in said second expanded position.
11. The catheter assembly of claim 9, wherein said flexible lead body comprises a braid of insulated wires incorporated into a polymeric sheath.
12. A method of forming a catheter comprising the steps of:
a) forming a collection of insulated wires each having an interior conductor, and each having an exterior insulation coating;
b) braiding the wires formed in step a) forming a braided structure having a central lumen;
c) incorporating the braided structure in a polymeric material forming a flexible lead body;
d) removing said polymeric material from a portion of said flexible lead body exposing said braid of insulated wires forming a deformable lead body;
e) removing insulation from selected locations on selected insulated wires to form electrode sites on said deformable lead body.
CA2447239A 1992-09-23 1993-09-23 Endocardial mapping system Expired - Lifetime CA2447239C (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US07/950,448 US5297549A (en) 1992-09-23 1992-09-23 Endocardial mapping system
US07/949,690 1992-09-23
US07/949,690 US5311866A (en) 1992-09-23 1992-09-23 Heart mapping catheter
US07/950,448 1992-09-23
CA2144973A CA2144973C (en) 1992-09-23 1993-09-23 Endocardial mapping system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CA2144973A Division CA2144973C (en) 1992-09-23 1993-09-23 Endocardial mapping system

Publications (2)

Publication Number Publication Date
CA2447239A1 CA2447239A1 (en) 1994-03-31
CA2447239C true CA2447239C (en) 2010-10-19

Family

ID=27130293

Family Applications (3)

Application Number Title Priority Date Filing Date
CA2144973A Expired - Lifetime CA2144973C (en) 1992-09-23 1993-09-23 Endocardial mapping system
CA002678625A Pending CA2678625A1 (en) 1992-09-23 1993-09-23 Endocardial mapping system
CA2447239A Expired - Lifetime CA2447239C (en) 1992-09-23 1993-09-23 Endocardial mapping system

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CA2144973A Expired - Lifetime CA2144973C (en) 1992-09-23 1993-09-23 Endocardial mapping system
CA002678625A Pending CA2678625A1 (en) 1992-09-23 1993-09-23 Endocardial mapping system

Country Status (7)

Country Link
US (11) US6826420B1 (en)
EP (1) EP0661948B1 (en)
JP (2) JP3581888B2 (en)
AT (1) ATE160273T1 (en)
CA (3) CA2144973C (en)
DE (1) DE69315354T2 (en)
WO (1) WO1994006349A1 (en)

Families Citing this family (325)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5509411A (en) * 1993-01-29 1996-04-23 Cardima, Inc. Intravascular sensing device
US5699796A (en) * 1993-01-29 1997-12-23 Cardima, Inc. High resolution intravascular signal detection
US7930012B2 (en) 1992-09-23 2011-04-19 St. Jude Medical, Atrial Fibrillation Division, Inc. Chamber location method
US7189208B1 (en) * 1992-09-23 2007-03-13 Endocardial Solutions, Inc. Method for measuring heart electrophysiology
WO1994006349A1 (en) * 1992-09-23 1994-03-31 Endocardial Therapeutics, Inc. Endocardial mapping system
US5645082A (en) * 1993-01-29 1997-07-08 Cardima, Inc. Intravascular method and system for treating arrhythmia
EP0681451B1 (en) * 1993-01-29 2001-09-05 Cardima, Inc. Multiple intravascular sensing devices for electrical activity
US5657755A (en) * 1993-03-11 1997-08-19 Desai; Jawahar M. Apparatus and method for cardiac ablation
US5433198A (en) 1993-03-11 1995-07-18 Desai; Jawahar M. Apparatus and method for cardiac ablation
US6522905B2 (en) 1993-03-11 2003-02-18 Jawahar M. Desai Apparatus and method for cardiac ablation
IL116699A (en) 1996-01-08 2001-09-13 Biosense Ltd Method of constructing cardiac map
AU7924694A (en) * 1993-10-01 1995-05-01 Target Therapeutics, Inc. Sheathed multipolar catheter and multipolar guidewire for sensing cardiac electrical activity
US6690963B2 (en) 1995-01-24 2004-02-10 Biosense, Inc. System for determining the location and orientation of an invasive medical instrument
AU5487696A (en) * 1995-04-20 1996-11-07 Jawahar M. Desai Apparatus for cardiac ablation
CA2225705A1 (en) * 1995-04-20 1996-10-24 Jawahar M. Desai Apparatus and method for cardiac ablation
US5718241A (en) * 1995-06-07 1998-02-17 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias with no discrete target
US5954665A (en) * 1995-06-07 1999-09-21 Biosense, Inc. Cardiac ablation catheter using correlation measure
WO1997017893A1 (en) * 1995-11-13 1997-05-22 Heart Rhythm Technologies, Inc. System and method for analyzing electrogram waveforms
IL125259A (en) 1996-01-08 2002-12-01 Biosense Inc Apparatus for myocardial revascularization
DE69738813D1 (en) * 1996-01-08 2008-08-14 Biosense Webster Inc mapping catheter
DE69733249T8 (en) 1996-02-15 2006-04-27 Biosense Webster, Inc., Diamond Bar DETERMINATION OF THE EXACT POSITION OF ENDOSCOPES
EP0888086B1 (en) 1996-02-15 2005-07-27 Biosense Webster, Inc. Excavation probe
EP0910300B1 (en) 1996-02-15 2003-12-03 Biosense, Inc. Site marking probe
WO1997029678A2 (en) 1996-02-15 1997-08-21 Biosense Inc. Catheter calibration and usage monitoring system
US6618612B1 (en) 1996-02-15 2003-09-09 Biosense, Inc. Independently positionable transducers for location system
US6453190B1 (en) 1996-02-15 2002-09-17 Biosense, Inc. Medical probes with field transducers
CA2246284C (en) 1996-02-15 2008-01-29 Biosense, Inc. Catheter with lumen
JP3881028B2 (en) 1996-02-15 2007-02-14 バイオセンス・インコーポレイテッド Movable transmit or receive coils for position detection systems
AU704129B2 (en) 1996-02-27 1999-04-15 Biosense, Inc. Location system with field actuation sequences
US6443974B1 (en) 1996-07-28 2002-09-03 Biosense, Inc. Electromagnetic cardiac biostimulation
DE69732696T2 (en) 1997-01-08 2006-04-13 Biosense Webster, Inc., Diamond Bar MONITORING MYOCARDIAL REVASCULARIZATION
US6314310B1 (en) 1997-02-14 2001-11-06 Biosense, Inc. X-ray guided surgical location system with extended mapping volume
EP0893093A1 (en) * 1997-07-25 1999-01-27 Sulzer Osypka GmbH Catheter for the endocardial detection of heart potentials
US6490474B1 (en) 1997-08-01 2002-12-03 Cardiac Pathways Corporation System and method for electrode localization using ultrasound
US7806829B2 (en) 1998-06-30 2010-10-05 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for navigating an ultrasound catheter to image a beating heart
US6447504B1 (en) 1998-07-02 2002-09-10 Biosense, Inc. System for treatment of heart tissue using viability map
US6226542B1 (en) 1998-07-24 2001-05-01 Biosense, Inc. Three-dimensional reconstruction of intrabody organs
US6301496B1 (en) 1998-07-24 2001-10-09 Biosense, Inc. Vector mapping of three-dimensionally reconstructed intrabody organs and method of display
ES2227996T3 (en) * 1999-01-28 2005-04-01 Ministero Dell' Universita' E Della Ricerca Scientifica E Tecnologica DEVICE FOR LOCATING ENODCARDIAC ELECTRODES.
US6385476B1 (en) 1999-09-21 2002-05-07 Biosense, Inc. Method and apparatus for intracardially surveying a condition of a chamber of a heart
US6892091B1 (en) * 2000-02-18 2005-05-10 Biosense, Inc. Catheter, method and apparatus for generating an electrical map of a chamber of the heart
US6837886B2 (en) 2000-05-03 2005-01-04 C.R. Bard, Inc. Apparatus and methods for mapping and ablation in electrophysiology procedures
DE10027782A1 (en) * 2000-06-07 2001-12-13 Biotronik Mess & Therapieg System for determining the intracorporeal position of a working catheter
US6400981B1 (en) * 2000-06-21 2002-06-04 Biosense, Inc. Rapid mapping of electrical activity in the heart
US6650927B1 (en) 2000-08-18 2003-11-18 Biosense, Inc. Rendering of diagnostic imaging data on a three-dimensional map
US6633773B1 (en) 2000-09-29 2003-10-14 Biosene, Inc. Area of interest reconstruction for surface of an organ using location data
US7255695B2 (en) 2001-04-27 2007-08-14 C.R. Bard, Inc. Systems and methods for three-dimensional mapping of electrical activity
WO2002087456A1 (en) * 2001-05-01 2002-11-07 C.R. Bard, Inc. Method and apparatus for altering conduction properties in the heart and in adjacent vessels
US7727229B2 (en) 2001-05-01 2010-06-01 C.R. Bard, Inc. Method and apparatus for altering conduction properties in the heart and in adjacent vessels
US6961602B2 (en) 2001-12-31 2005-11-01 Biosense Webster, Inc. Catheter having multiple spines each having electrical mapping and location sensing capabilities
US7846157B2 (en) 2002-03-15 2010-12-07 C.R. Bard, Inc. Method and apparatus for control of ablation energy and electrogram acquisition through multiple common electrodes in an electrophysiology catheter
US6957101B2 (en) 2002-08-21 2005-10-18 Joshua Porath Transient event mapping in the heart
US7001383B2 (en) 2002-10-21 2006-02-21 Biosense, Inc. Real-time monitoring and mapping of ablation lesion formation in the heart
DE602004011608T2 (en) 2003-03-28 2009-01-29 C.R. Bard, Inc. Catheter with braided mesh
US20040226556A1 (en) 2003-05-13 2004-11-18 Deem Mark E. Apparatus for treating asthma using neurotoxin
US8046049B2 (en) 2004-02-23 2011-10-25 Biosense Webster, Inc. Robotically guided catheter
US8007495B2 (en) * 2004-03-31 2011-08-30 Biosense Webster, Inc. Catheter for circumferential ablation at or near a pulmonary vein
JP2005323702A (en) * 2004-05-13 2005-11-24 Asahi Intecc Co Ltd Medical treatment instrument
WO2005112813A1 (en) 2004-05-17 2005-12-01 C.R. Bard, Inc. Method and apparatus for mapping and7or ablation of cardiac tissue
US9782130B2 (en) 2004-05-28 2017-10-10 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic surgical system
US7974674B2 (en) * 2004-05-28 2011-07-05 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic surgical system and method for surface modeling
US10863945B2 (en) 2004-05-28 2020-12-15 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic surgical system with contact sensing feature
US8755864B2 (en) * 2004-05-28 2014-06-17 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic surgical system and method for diagnostic data mapping
US8528565B2 (en) 2004-05-28 2013-09-10 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic surgical system and method for automated therapy delivery
US10258285B2 (en) * 2004-05-28 2019-04-16 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic surgical system and method for automated creation of ablation lesions
US7632265B2 (en) * 2004-05-28 2009-12-15 St. Jude Medical, Atrial Fibrillation Division, Inc. Radio frequency ablation servo catheter and method
US20060036163A1 (en) * 2004-07-19 2006-02-16 Viswanathan Raju R Method of, and apparatus for, controlling medical navigation systems
US8155910B2 (en) 2005-05-27 2012-04-10 St. Jude Medical, Atrial Fibrillation Divison, Inc. Robotically controlled catheter and method of its calibration
US7536218B2 (en) * 2005-07-15 2009-05-19 Biosense Webster, Inc. Hybrid magnetic-based and impedance-based position sensing
KR101222860B1 (en) * 2005-09-01 2013-01-16 삼성전자주식회사 Optical pickup device
US8229545B2 (en) 2005-09-15 2012-07-24 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for mapping complex fractionated electrogram information
US8038625B2 (en) * 2005-09-15 2011-10-18 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for three-dimensional mapping of electrophysiology information
US8403925B2 (en) 2006-12-06 2013-03-26 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for assessing lesions in tissue
US20100234730A1 (en) * 2006-03-31 2010-09-16 National University Corporation Kyoto Institute Of Technology Image processing device, ultrasonic imaging apparatus including the same, and image processing method
US7766896B2 (en) * 2006-04-25 2010-08-03 Boston Scientific Scimed, Inc. Variable stiffness catheter assembly
US7988639B2 (en) * 2006-05-17 2011-08-02 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for complex geometry modeling of anatomy using multiple surface models
US7774051B2 (en) 2006-05-17 2010-08-10 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for mapping electrophysiology information onto complex geometry
US7729752B2 (en) * 2006-06-13 2010-06-01 Rhythmia Medical, Inc. Non-contact cardiac mapping, including resolution map
EP2032028A4 (en) * 2006-06-13 2010-09-01 Rhythmia Medical Inc Non-contact cardiac mapping, including moving catheter and multi-beat integration
US7515954B2 (en) * 2006-06-13 2009-04-07 Rhythmia Medical, Inc. Non-contact cardiac mapping, including moving catheter and multi-beat integration
US7505810B2 (en) * 2006-06-13 2009-03-17 Rhythmia Medical, Inc. Non-contact cardiac mapping, including preprocessing
WO2008002654A2 (en) * 2006-06-28 2008-01-03 C.R. Bard, Inc. Methods and apparatus for assessing and improving electrode contact with cardiac tissue
EP3603500B1 (en) 2006-08-03 2021-03-31 Christoph Scharf Device for determining and presenting surface charge and dipole densities on cardiac walls
US9370312B2 (en) 2006-09-06 2016-06-21 Biosense Webster, Inc. Correlation of cardiac electrical maps with body surface measurements
US8068920B2 (en) 2006-10-03 2011-11-29 Vincent A Gaudiani Transcoronary sinus pacing system, LV summit pacing, early mitral closure pacing, and methods therefor
US20080119697A1 (en) * 2006-11-20 2008-05-22 General Electric Company Bidirectional communication interface
US7957784B2 (en) * 2006-12-29 2011-06-07 St. Jude Medical, Atrial Fibrillation Division, Inc. Body surface mapping system
US8265745B2 (en) 2006-12-29 2012-09-11 St. Jude Medical, Atrial Fibillation Division, Inc. Contact sensor and sheath exit sensor
US9220439B2 (en) * 2006-12-29 2015-12-29 St. Jude Medical, Atrial Fibrillation Division, Inc. Navigational reference dislodgement detection method and system
US7996055B2 (en) * 2006-12-29 2011-08-09 St. Jude Medical, Atrial Fibrillation Division, Inc. Cardiac navigation system including electrode array for use therewith
US9585586B2 (en) 2006-12-29 2017-03-07 St. Jude Medical, Atrial Fibrillation Division, Inc. Navigational reference dislodgement detection method and system
US20080190438A1 (en) 2007-02-08 2008-08-14 Doron Harlev Impedance registration and catheter tracking
US8155756B2 (en) 2007-02-16 2012-04-10 Pacesetter, Inc. Motion-based optimization for placement of cardiac stimulation electrodes
US8195292B2 (en) * 2007-02-16 2012-06-05 Pacestter, Inc. Cardiac resynchronization therapy optimization using parameter estimation from realtime electrode motion tracking
US10433929B2 (en) * 2007-03-09 2019-10-08 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for local deformable registration of a catheter navigation system to image data or a model
US9549689B2 (en) 2007-03-09 2017-01-24 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for correction of inhomogeneous fields
US7825925B2 (en) 2007-03-09 2010-11-02 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and system for repairing triangulated surface meshes
US9757036B2 (en) * 2007-05-08 2017-09-12 Mediguide Ltd. Method for producing an electrophysiological map of the heart
US8706195B2 (en) * 2007-05-08 2014-04-22 Mediguide Ltd. Method for producing an electrophysiological map of the heart
JP5337367B2 (en) * 2007-10-31 2013-11-06 株式会社東芝 Medical image display device
WO2009065140A1 (en) 2007-11-16 2009-05-22 St. Jude Medical, Atrial Fibrillation Division, Inc. Device and method for real-time lesion estimation during ablation
US9717501B2 (en) 2007-11-21 2017-08-01 St. Jude Medical, Atrial Fibrillation Division, Inc. Methods and systems for occluding vessels during cardiac ablation including optional electroanatomical guidance
US8359092B2 (en) * 2007-11-29 2013-01-22 Biosense Webster, Inc. Determining locations of ganglia and plexi in the heart using complex fractionated atrial electrogram
US9622673B2 (en) * 2007-12-14 2017-04-18 Siemens Healthcare Gmbh System for determining electrical status of patient attached leads
US20090163801A1 (en) * 2007-12-19 2009-06-25 St. Jude Medical, Atrial Fibrillation Division, Inc. System for displaying data relating to energy emitting treatment devices together with electrophysiological mapping data
US8103327B2 (en) 2007-12-28 2012-01-24 Rhythmia Medical, Inc. Cardiac mapping catheter
CN107007267A (en) 2007-12-31 2017-08-04 真实成像有限公司 Method, apparatus and system for analyzing thermal image
US8364277B2 (en) * 2008-01-10 2013-01-29 Bioness Inc. Methods and apparatus for implanting electronic implants within the body
WO2009090547A2 (en) 2008-01-17 2009-07-23 Christoph Scharf A device and method for the geometric determination of electrical dipole densities on the cardiac wall
US8483831B1 (en) 2008-02-15 2013-07-09 Holaira, Inc. System and method for bronchial dilation
EP2265163B1 (en) * 2008-03-28 2014-06-04 Real Imaging Ltd. Method apparatus and system for analyzing images
US8538509B2 (en) 2008-04-02 2013-09-17 Rhythmia Medical, Inc. Intracardiac tracking system
US20090276020A1 (en) * 2008-05-02 2009-11-05 Pacesetter, Inc. Tools for delivering implantable medical leads and methods of using and manufacturing such tools
EP2529686B1 (en) 2008-05-09 2015-10-14 Holaira, Inc. System for treating a bronchial tree
US8676303B2 (en) 2008-05-13 2014-03-18 The Regents Of The University Of California Methods and systems for treating heart instability
US8467863B2 (en) * 2008-08-22 2013-06-18 Koninklijke Philips N.V. Sensing apparatus for sensing an object
CN104873190A (en) 2008-10-09 2015-09-02 加利福尼亚大学董事会 Machine and process for automatic localization of sources of biological rhythm disorders
US8386010B2 (en) * 2008-10-23 2013-02-26 Covidien Lp Surgical tissue monitoring system
US8167876B2 (en) 2008-10-27 2012-05-01 Rhythmia Medical, Inc. Tracking system using field mapping
US9339331B2 (en) * 2008-12-29 2016-05-17 St. Jude Medical, Atrial Fibrillation Division, Inc. Non-contact electrode basket catheters with irrigation
US8700129B2 (en) 2008-12-31 2014-04-15 St. Jude Medical, Atrial Fibrillation Division, Inc. Devices and methods for catheter localization
US8900150B2 (en) 2008-12-30 2014-12-02 St. Jude Medical, Atrial Fibrillation Division, Inc. Intracardiac imaging system utilizing a multipurpose catheter
US9307931B2 (en) * 2008-12-31 2016-04-12 St. Jude Medical, Atrial Fibrillation Division, Inc. Multiple shell construction to emulate chamber contraction with a mapping system
US9398862B2 (en) 2009-04-23 2016-07-26 Rhythmia Medical, Inc. Multi-electrode mapping system
US8103338B2 (en) 2009-05-08 2012-01-24 Rhythmia Medical, Inc. Impedance based anatomy generation
US8571647B2 (en) 2009-05-08 2013-10-29 Rhythmia Medical, Inc. Impedance based anatomy generation
EP2440130A4 (en) 2009-06-08 2015-06-03 Mri Interventions Inc Mri-guided surgical systems with proximity alerts
US9211074B2 (en) * 2009-06-09 2015-12-15 Safeop Surgical, Inc. System, method, apparatus, device and computer program product for automatically detecting positioning effect
US8396532B2 (en) 2009-06-16 2013-03-12 MRI Interventions, Inc. MRI-guided devices and MRI-guided interventional systems that can track and generate dynamic visualizations of the devices in near real time
US8406848B2 (en) * 2009-10-06 2013-03-26 Seiko Epson Corporation Reconstructing three-dimensional current sources from magnetic sensor data
US9282910B2 (en) 2011-05-02 2016-03-15 The Regents Of The University Of California System and method for targeting heart rhythm disorders using shaped ablation
US10434319B2 (en) 2009-10-09 2019-10-08 The Regents Of The University Of California System and method of identifying sources associated with biological rhythm disorders
US9332915B2 (en) 2013-03-15 2016-05-10 The Regents Of The University Of California System and method to identify sources associated with biological rhythm disorders
US9392948B2 (en) 2011-12-09 2016-07-19 The Regents Of The University Of California System and method of identifying sources for biological rhythms
US10398326B2 (en) 2013-03-15 2019-09-03 The Regents Of The University Of California System and method of identifying sources associated with biological rhythm disorders
US9649153B2 (en) 2009-10-27 2017-05-16 Holaira, Inc. Delivery devices with coolable energy emitting assemblies
CA2780608C (en) 2009-11-11 2019-02-26 Innovative Pulmonary Solutions, Inc. Systems, apparatuses, and methods for treating tissue and controlling stenosis
US8911439B2 (en) 2009-11-11 2014-12-16 Holaira, Inc. Non-invasive and minimally invasive denervation methods and systems for performing the same
US20110199286A1 (en) * 2010-02-13 2011-08-18 Robin Dziama Spherical Electronic LCD Display
US20110213260A1 (en) * 2010-02-26 2011-09-01 Pacesetter, Inc. Crt lead placement based on optimal branch selection and optimal site selection
EP2555673B1 (en) 2010-04-08 2019-06-12 The Regents of The University of California Methods, system and apparatus for the detection, diagnosis and treatment of biological rhythm disorders
US9131869B2 (en) 2010-05-11 2015-09-15 Rhythmia Medical, Inc. Tracking using field mapping
US8603004B2 (en) 2010-07-13 2013-12-10 St. Jude Medical, Atrial Fibrillation Division, Inc. Methods and systems for filtering respiration noise from localization data
US9539046B2 (en) * 2010-08-03 2017-01-10 Medtronic Cryocath Lp Cryogenic medical mapping and treatment device
US9655666B2 (en) * 2010-10-29 2017-05-23 Medtronic Ablatio Frontiers LLC Catheter with coronary sinus ostium anchor
US8560086B2 (en) 2010-12-02 2013-10-15 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter electrode assemblies and methods of construction therefor
JP5795080B2 (en) 2010-12-17 2015-10-14 セント・ジュード・メディカル・エイトリアル・フィブリレーション・ディヴィジョン・インコーポレーテッド Navigation standard deviation detection method and system
US9095715B2 (en) 2010-12-23 2015-08-04 Medtronic, Inc. Implanted device data to guide ablation therapy
US9061155B2 (en) 2010-12-23 2015-06-23 Medtronic, Inc. Implanted device data to guide ablation therapy
US9277872B2 (en) 2011-01-13 2016-03-08 Rhythmia Medical, Inc. Electroanatomical mapping
US9002442B2 (en) 2011-01-13 2015-04-07 Rhythmia Medical, Inc. Beat alignment and selection for cardiac mapping
EP2683293B1 (en) 2011-03-10 2019-07-17 Acutus Medical, Inc. Device for the geometric determination of electrical dipole densities on the cardiac wall
US10918307B2 (en) 2011-09-13 2021-02-16 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter navigation using impedance and magnetic field measurements
US9901303B2 (en) 2011-04-14 2018-02-27 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for registration of multiple navigation systems to a common coordinate frame
US10362963B2 (en) 2011-04-14 2019-07-30 St. Jude Medical, Atrial Fibrillation Division, Inc. Correction of shift and drift in impedance-based medical device navigation using magnetic field information
ITPD20110125A1 (en) * 2011-04-15 2012-10-16 Elvido Medical Technology Srl CENTRAL VENOUS CATHETER
AU2012246723C9 (en) 2011-04-22 2014-08-28 Topera, Inc. Basket style cardiac mapping catheter having an atraumatic basket tip for detection of cardiac rhythm disorders
US9050006B2 (en) 2011-05-02 2015-06-09 The Regents Of The University Of California System and method for reconstructing cardiac activation information
US8165666B1 (en) 2011-05-02 2012-04-24 Topera, Inc. System and method for reconstructing cardiac activation information
US9107600B2 (en) 2011-05-02 2015-08-18 The Regents Of The University Of California System and method for reconstructing cardiac activation information
US9186515B2 (en) * 2011-07-05 2015-11-17 Cardioinsight Technologies, Inc. System and methods to facilitate providing therapy to a patient
EP2729064A4 (en) * 2011-07-05 2015-03-25 Cardioinsight Technologies Inc Localization for electrocardiographic mapping
US9387031B2 (en) 2011-07-29 2016-07-12 Medtronic Ablation Frontiers Llc Mesh-overlayed ablation and mapping device
US8620417B2 (en) 2011-09-22 2013-12-31 Biosense Webster (Israel), Ltd. Graphic user interface for physical parameter mapping
EP2797539B1 (en) 2011-12-29 2020-12-02 St. Jude Medical Atrial Fibrillation Division Inc. System for optimized coupling of ablation catheters to body tissues and evaluation of lesions formed by the catheters
EP2844140A4 (en) 2012-05-02 2016-01-06 Safeop Surgical Inc System, method, and computer algorithm for characterization and classification of electrophysiological evoked potentials
US10588543B2 (en) 2012-05-23 2020-03-17 Biosense Webster (Israel), Ltd. Position sensing using electric dipole fields
CA2878588A1 (en) 2012-07-30 2014-02-06 Northwestern University Radiofrequency probe for circumferential ablation of a hollow cavity
EP3868283A1 (en) 2012-08-31 2021-08-25 Acutus Medical Inc. Catheter system for the heart
US9113911B2 (en) 2012-09-06 2015-08-25 Medtronic Ablation Frontiers Llc Ablation device and method for electroporating tissue cells
US9895079B2 (en) * 2012-09-26 2018-02-20 Biosense Webster (Israel) Ltd. Electropotential mapping
JP2016501640A (en) 2012-12-20 2016-01-21 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Rotor identification using time-series pattern matching
US9398933B2 (en) 2012-12-27 2016-07-26 Holaira, Inc. Methods for improving drug efficacy including a combination of drug administration and nerve modulation
US9254093B2 (en) 2013-01-16 2016-02-09 University Of Vermont Methods and systems for minimizing and treating cardiac fibrillation
US10912476B2 (en) 2013-01-16 2021-02-09 University Of Vermont Catheters, systems, and related methods for mapping, minimizing, and treating cardiac fibrillation
JP6422894B2 (en) 2013-02-08 2018-11-14 アクタス メディカル インクAcutus Medical,Inc. Expandable catheter assembly with flexible printed circuit board
US10188314B2 (en) 2013-03-05 2019-01-29 St. Jude Medical, Cardiology Division, Inc. System and method for detecting sheathing and unsheathing of localization elements
US9026196B2 (en) 2013-03-05 2015-05-05 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for detecting sheathing and unsheathing of localization elements
US9474486B2 (en) 2013-03-08 2016-10-25 St. Jude Medical, Atrial Fibrillation Division, Inc. Basket for a multi-electrode array catheter
US9345540B2 (en) 2013-03-15 2016-05-24 Medtronic Ablation Frontiers Llc Contact specific RF therapy balloon
CN105050525B (en) * 2013-03-15 2018-07-31 直观外科手术操作公司 Shape sensor system and application method for tracking intervention apparatus
US8715199B1 (en) 2013-03-15 2014-05-06 Topera, Inc. System and method to define a rotational source associated with a biological rhythm disorder
US20140330270A1 (en) * 2013-05-03 2014-11-06 William J. Anderson Method of ablating scar tissue to orient electrical current flow
JP6240751B2 (en) 2013-05-06 2017-11-29 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Anatomic mapping system for continuous display of recent heart rate characteristics during real-time or playback electrophysiological data visualization
US9808171B2 (en) * 2013-05-07 2017-11-07 St. Jude Medical, Atrial Fibrillation Division, Inc. Utilization of electrode spatial arrangements for characterizing cardiac conduction conditions
CN105228510B (en) 2013-05-14 2018-12-14 波士顿科学医学有限公司 The expression and identification of the activity pattern of vector field are used during electrophysiology mapping
US9144391B2 (en) 2013-05-16 2015-09-29 Boston Scientific Scimed Inc. Enhanced activation onset time optimization by similarity based pattern matching
US9576107B2 (en) * 2013-07-09 2017-02-21 Biosense Webster (Israel) Ltd. Model based reconstruction of the heart from sparse samples
US9775578B2 (en) 2013-08-12 2017-10-03 Biosense Webster (Israel) Ltd. Unmapped region visualization
EP2986206B1 (en) 2013-08-20 2018-12-05 St. Jude Medical Atrial Fibrillation Division Inc. System for generating electrophysiology maps
US9737227B2 (en) 2013-08-28 2017-08-22 Boston Scientific Scimed Inc. Estimating the prevalence of activation patterns in data segments during electrophysiology mapping
AU2014318872B2 (en) 2013-09-13 2018-09-13 Acutus Medical, Inc. Devices and methods for determination of electrical dipole densities on a cardiac surface
US9220435B2 (en) 2013-10-09 2015-12-29 St. Jude Medical, Cardiology Division, Inc. System and method for generating electrophysiology maps
WO2015057521A1 (en) 2013-10-14 2015-04-23 Boston Scientific Scimed, Inc. High resolution cardiac mapping electrode array catheter
US9717429B2 (en) 2013-10-31 2017-08-01 St. Jude Medical, Cardiology Division, Inc. System and method for analyzing biological signals and generating electrophyisology maps
CN105636513B (en) * 2013-10-31 2020-05-12 波士顿科学医学有限公司 Medical device for high resolution mapping using local matching
US9314191B2 (en) 2013-11-19 2016-04-19 Pacesetter, Inc. Method and system to measure cardiac motion using a cardiovascular navigation system
US9301713B2 (en) 2013-11-19 2016-04-05 Pacesetter, Inc. Method and system to assess mechanical dyssynchrony based on motion data collected by a navigation system
US9814406B2 (en) 2013-11-19 2017-11-14 Pacesetter, Inc. Method and system to identify motion data associated with consistent electrical and mechanical behavior for a region of interest
US10568686B2 (en) * 2013-11-21 2020-02-25 Biosense Webster (Israel) Ltd. Multi-electrode balloon catheter with circumferential and point electrodes
WO2015095577A1 (en) 2013-12-20 2015-06-25 St. Jude Medical, Cardiology Division, Inc. Coaxial electrode catheters for extracting electrophysiologic parameters
WO2015148470A1 (en) 2014-03-25 2015-10-01 Acutus Medical, Inc. Cardiac analysis user interface system and method
US10285647B2 (en) 2014-05-05 2019-05-14 Pacesetter Inc. Method and system to automatically assign map points to anatomical segments and determine mechanical activation time
US9861823B2 (en) 2014-05-05 2018-01-09 Pacesetter, Inc. Cardiac resynchronization system and method
US10105077B2 (en) 2014-05-05 2018-10-23 Pacesetter, Inc. Method and system for calculating strain from characterization data of a cardiac chamber
US9380940B2 (en) 2014-05-05 2016-07-05 Pacesetter, Inc. Method and system for displaying a three dimensional visualization of cardiac motion
US9895076B2 (en) 2014-05-05 2018-02-20 Pacesetter, Inc. Method and system to determine cardiac cycle length in connection with cardiac mapping
US9364170B2 (en) 2014-05-05 2016-06-14 Pacesetter, Inc. Method and system to characterize motion data based on neighboring map points
US9302099B2 (en) 2014-05-05 2016-04-05 Pacesetter, Inc. System and method for evaluating lead stability of an implantable medical device
US9763591B2 (en) 2014-05-05 2017-09-19 Pacesetter, Inc. Method and system to subdivide a mapping area for mechanical activation analysis
US9700233B2 (en) 2014-05-05 2017-07-11 Pacesetter, Inc. Method and system to equalizing cardiac cycle length between map points
CN106413540A (en) 2014-06-03 2017-02-15 波士顿科学医学有限公司 Electrode assembly having an atraumatic distal tip
EP3151773B1 (en) 2014-06-04 2018-04-04 Boston Scientific Scimed, Inc. Electrode assembly
EP3157419A1 (en) 2014-06-20 2017-04-26 Boston Scientific Scimed Inc. Medical devices for mapping cardiac tissue
WO2016049630A1 (en) * 2014-09-26 2016-03-31 Cardioinsight Technologies, Inc. Localization of objects within a conductive volume
CN107072574B (en) 2014-10-15 2020-06-12 圣犹达医疗用品心脏病学部门有限公司 Method and system for mapping local conduction velocity
JP6531170B2 (en) 2014-10-15 2019-06-12 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド Method and system for generating an integrated substrate map for cardiac arrhythmias
CN107249486B (en) * 2014-11-09 2021-07-30 森索医疗实验室有限公司 Customized three-dimensional shaping of surgical guides
JP6633082B2 (en) 2015-01-07 2020-01-22 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド System, method, and apparatus for visualizing cardiac timing information using animation
US20170354395A1 (en) 2015-01-07 2017-12-14 St. Jude Medical, Cardiology Division, Inc. Imaging Device
US9833161B2 (en) * 2015-02-09 2017-12-05 Biosense Webster (Israel) Ltd. Basket catheter with far-field electrode
US10342611B2 (en) 2015-04-29 2019-07-09 Innoblative Designs, Inc. Cavitary tissue ablation
WO2016176009A1 (en) 2015-04-30 2016-11-03 The Regents Of The University Of Michigan Method and system for mapping and analyzing cardiac electrical activity
CN107530014B (en) 2015-05-04 2021-12-10 赛佛欧普手术有限公司 System, method and computer algorithm for measuring, displaying and accurately detecting changes in electrophysiological evoked potentials
JP6738349B2 (en) 2015-05-07 2020-08-12 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド Position identification system and method of operating the same
JP2018514279A (en) 2015-05-08 2018-06-07 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド System and method for real-time electrophysiological mapping
US11039888B2 (en) 2015-05-12 2021-06-22 Navix International Limited Calculation of an ablation plan
WO2016181318A1 (en) 2015-05-12 2016-11-17 Navix International Limited Lesion assessment by dielectric property analysis
AU2016262547B9 (en) 2015-05-12 2021-03-04 Acutus Medical, Inc. Ultrasound sequencing system and method
WO2016183179A1 (en) 2015-05-12 2016-11-17 Acutus Medical, Inc. Cardiac virtualization test tank and testing system and method
JP2018520718A (en) 2015-05-12 2018-08-02 ナヴィックス インターナショナル リミテッドNavix International Limited Contact quality evaluation by dielectric property analysis
US10278616B2 (en) 2015-05-12 2019-05-07 Navix International Limited Systems and methods for tracking an intrabody catheter
WO2016183468A1 (en) * 2015-05-13 2016-11-17 Acutus Medical, Inc. Localization system and method useful in the acquisition and analysis of cardiac information
US10758144B2 (en) 2015-08-20 2020-09-01 Boston Scientific Scimed Inc. Flexible electrode for cardiac sensing and method for making
CN108348155B (en) 2015-09-02 2019-02-01 圣犹达医疗用品心脏病学部门有限公司 For identification with the method and system of mapping heart excitement wavefront
WO2017042623A1 (en) 2015-09-07 2017-03-16 Ablacon Inc. Systems, devices, components and methods for detecting the locations of sources of cardiac rhythm disorders in a patient's heart
US10271757B2 (en) 2015-09-26 2019-04-30 Boston Scientific Scimed Inc. Multiple rhythm template monitoring
CN108024747B (en) 2015-09-26 2020-12-04 波士顿科学医学有限公司 Intracardiac EGM signal for beat matching and acceptance
JP6691209B2 (en) 2015-09-26 2020-04-28 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Methods for editing anatomical shells
US10405766B2 (en) 2015-09-26 2019-09-10 Boston Scientific Scimed, Inc. Method of exploring or mapping internal cardiac structures
JP2018534035A (en) 2015-10-07 2018-11-22 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド Method and system for mapping cardiac repolarization
JP6620229B2 (en) 2015-10-07 2019-12-11 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド Method and system for mapping cardiac recovery
EP3367945B1 (en) 2015-10-29 2020-02-26 Innoblative Designs, Inc. Screen sphere tissue ablation devices
JP6741776B2 (en) 2015-12-04 2020-08-19 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド Method and system for statistically analyzing and mapping electrograms for regional abnormal ventricular activity
US10362953B2 (en) 2015-12-11 2019-07-30 Biosense Webster (Israel) Ltd. Electrode array catheter with interconnected framework
WO2017136261A1 (en) 2016-02-02 2017-08-10 Innoblative Designs, Inc. Cavitary tissue ablation system
EP3383259A1 (en) 2016-02-16 2018-10-10 St. Jude Medical, Cardiology Division, Inc. Methods and systems for electrophysiology mapping using medical images
JP6646755B2 (en) 2016-03-01 2020-02-14 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド Method and system for operating a system for mapping cardiac activity
WO2017151431A1 (en) 2016-03-01 2017-09-08 Innoblative Designs, Inc. Resecting and coagulating tissue
EP3973908A1 (en) 2016-05-03 2022-03-30 Acutus Medical Inc. Cardiac mapping system with efficiency algorithm
US10987091B2 (en) 2016-05-17 2021-04-27 Biosense Webster (Israel) Ltd. System and method for catheter connections
EP3484362A1 (en) 2016-07-14 2019-05-22 Navix International Limited Characteristic track catheter navigation
WO2018075389A1 (en) 2016-10-17 2018-04-26 Innoblative Designs, Inc. Treatment devices and methods
US11266467B2 (en) 2016-10-25 2022-03-08 Navix International Limited Systems and methods for registration of intra-body electrical readings with a pre-acquired three dimensional image
JP6875757B2 (en) 2016-11-08 2021-05-26 イノブレイティブ デザインズ, インコーポレイテッド Electrosurgical tissue and vascular seal device
WO2018089172A1 (en) 2016-11-11 2018-05-17 St. Jude Medical, Cardiology Division, Inc. System and method for generating electrophysiology maps
US11010983B2 (en) 2016-11-16 2021-05-18 Navix International Limited Tissue model dynamic visual rendering
WO2018092062A1 (en) 2016-11-16 2018-05-24 Navix International Limited Real-time display of tissue deformation by interactions with an intra-body probe
WO2018092063A1 (en) 2016-11-16 2018-05-24 Navix International Limited Real-time display of treatment-related tissue changes using virtual material
WO2018092070A1 (en) 2016-11-16 2018-05-24 Navix International Limited Esophagus position detection by electrical mapping
WO2018092071A1 (en) 2016-11-16 2018-05-24 Navix International Limited Estimators for ablation effectiveness
WO2018094063A1 (en) 2016-11-21 2018-05-24 St. Jude Medical, Cardiology Division, Inc. System and method for generating electrophysiology maps
CN106691438B (en) * 2016-12-07 2022-05-31 首都医科大学附属北京安贞医院 Whole heart three-dimensional mapping system for complex arrhythmia
US11471067B2 (en) 2017-01-12 2022-10-18 Navix International Limited Intrabody probe navigation by electrical self-sensing
US11730395B2 (en) 2017-01-12 2023-08-22 Navix International Limited Reconstruction of an anatomical structure from intrabody measurements
US11311204B2 (en) 2017-01-12 2022-04-26 Navix International Limited Systems and methods for reconstruction of intrabody electrical readings to anatomical structure
US10610120B2 (en) 2017-01-13 2020-04-07 St. Jude Medical, Cardiology Division, Inc. System and method for generating premature ventricular contraction electrophysiology maps
US10893819B2 (en) 2017-01-25 2021-01-19 Biosense Webster (Israel) Ltd. Analyzing and mapping ECG signals and determining ablation points to eliminate Brugada syndrome
US10888379B2 (en) 2017-01-25 2021-01-12 Biosense Webster (Israel) Ltd. Analyzing and mapping ECG signals and determining ablation points to eliminate brugada syndrome
US10952793B2 (en) 2017-01-25 2021-03-23 Biosense Webster (Israel) Ltd. Method and system for eliminating a broad range of cardiac conditions by analyzing intracardiac signals providing a detailed map and determining potential ablation points
CN110381813B (en) 2017-03-02 2022-10-21 圣犹达医疗用品心脏病学部门有限公司 System and method for distinguishing adipose tissue and scar tissue during electrophysiology mapping
US20180318013A1 (en) 2017-05-04 2018-11-08 St. Jude Medical, Cardiology Division, Inc. System and Method for Determining Ablation Parameters
EP3580763A1 (en) 2017-05-17 2019-12-18 St. Jude Medical, Cardiology Division, Inc. System and method for mapping local activation times
US20180344202A1 (en) * 2017-05-30 2018-12-06 Biosense Webster (Israel) Ltd. Catheter Splines as Location Sensors
US11298066B2 (en) 2017-07-07 2022-04-12 St. Jude Medical, Cardiology Division, Inc. System and method for electrophysiological mapping
US11564606B2 (en) 2017-07-19 2023-01-31 St. Jude Medical, Cardiology Division, Inc. System and method for electrophysiological mapping
EP3658053B1 (en) 2017-07-26 2023-09-13 Innoblative Designs, Inc. Minimally invasive articulating assembly having ablation capabilities
CN111050641B (en) 2017-08-17 2023-06-09 纳维斯国际有限公司 Remote imaging based on field gradients
EP3675729A1 (en) 2017-09-01 2020-07-08 St. Jude Medical, Cardiology Division, Inc. System and method for visualizing a proximity of a catheter electrode to a 3d geometry of biological tissue
EP3651636B1 (en) 2017-09-18 2022-04-13 St. Jude Medical, Cardiology Division, Inc. System and method for sorting electrophysiological signals from multi-dimensional catheters
US10532187B2 (en) 2017-10-17 2020-01-14 Biosense Webster (Israel) Ltd. Reusable catheter handle system
US10575746B2 (en) 2017-12-14 2020-03-03 Biosense Webster (Israel) Ltd. Epicardial mapping
US11291398B2 (en) 2018-01-09 2022-04-05 St Jude Medical, Cardiology Division, Inc. System and method for sorting electrophysiological signals on virtual catheters
CN111655141B (en) 2018-02-12 2024-03-19 圣犹达医疗用品心脏病学部门有限公司 System and method for mapping myocardial fiber orientation
US11103177B2 (en) 2018-04-18 2021-08-31 St, Jude Medical, Cardiology Division, Inc. System and method for mapping cardiac activity
EP3761859B1 (en) 2018-04-26 2022-06-15 St. Jude Medical, Cardiology Division, Inc. System for mapping arrhythmic driver sites
US11071486B2 (en) 2018-06-01 2021-07-27 St. Jude Medical, Cardiology Division, Inc. System and method for generating activation timing maps
WO2019241079A1 (en) 2018-06-14 2019-12-19 St. Jude Medical, Cardiology Division, Inc. System and method for mapping cardiac activity
US11819229B2 (en) 2019-06-19 2023-11-21 Boston Scientific Scimed, Inc. Balloon surface photoacoustic pressure wave generation to disrupt vascular lesions
JP7175333B2 (en) 2018-09-10 2022-11-18 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド Systems and methods for displaying electrophysiological signals from multidimensional catheters
WO2020055506A1 (en) 2018-09-12 2020-03-19 St. Jude Medical, Cardiology Division, Inc. System and method for generating three dimensional geometric models of anatomical regions
US11648397B1 (en) 2018-10-12 2023-05-16 Vincent Gaudiani Transcoronary sinus pacing of posteroseptal left ventricular base
US11577075B1 (en) 2018-10-12 2023-02-14 Vincent A. Gaudiani Transcoronary sinus pacing of his bundle
WO2020106604A1 (en) * 2018-11-20 2020-05-28 Boston Scientific Scimed Inc Systems for autonomous cardiac mapping
JP2022517465A (en) 2019-01-03 2022-03-09 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド Systems and methods for mapping cardiac activation wavefronts
US20220142545A1 (en) 2019-03-08 2022-05-12 St. Jude Medical, Cardiology Division, Inc. High density electrode catheters
US20220142553A1 (en) 2019-03-12 2022-05-12 St. Jude Medical, Cardiology Division, Inc. System and method for cardiac mapping
US20220167899A1 (en) 2019-04-04 2022-06-02 St. Jude Medical Cardiology Division, Inc. System and method for cardiac mapping
CN113710157A (en) 2019-04-18 2021-11-26 圣犹达医疗用品心脏病学部门有限公司 Systems and methods for cardiac mapping
WO2020219513A1 (en) 2019-04-24 2020-10-29 St. Jude Medical, Cardiology Division, Inc. System, method, and apparatus for visualizing cardiac activation
WO2020227469A1 (en) 2019-05-09 2020-11-12 St. Jude Medical, Cardiology Division, Inc. System and method for detection and mapping of near field conduction in scar tissue
US11564610B2 (en) 2019-05-23 2023-01-31 Biosense Webster (Israel) Ltd. Volumetric LAT map
US20220183610A1 (en) 2019-05-24 2022-06-16 St. Jude Medical, Cardiology Division, Inc. System and method for cardiac mapping
US10939863B2 (en) * 2019-05-28 2021-03-09 Biosense Webster (Israel) Ltd. Determining occurrence of focal and/or rotor arrhythmogenic activity in cardiac tissue regions
US11717139B2 (en) 2019-06-19 2023-08-08 Bolt Medical, Inc. Plasma creation via nonaqueous optical breakdown of laser pulse energy for breakup of vascular calcium
US11660427B2 (en) 2019-06-24 2023-05-30 Boston Scientific Scimed, Inc. Superheating system for inertial impulse generation to disrupt vascular lesions
US20200406009A1 (en) 2019-06-26 2020-12-31 Boston Scientific Scimed, Inc. Focusing element for plasma system to disrupt vascular lesions
US11583339B2 (en) 2019-10-31 2023-02-21 Bolt Medical, Inc. Asymmetrical balloon for intravascular lithotripsy device and method
US11504023B2 (en) 2019-12-16 2022-11-22 Biosense Webster (Israel) Ltd. Sparse calibration of magnetic field created by coils in metal-rich environment
WO2021150421A1 (en) 2020-01-24 2021-07-29 St. Jude Medical, Cardiology Division, Inc. System and method for generating three dimensional geometric models of anatomical regions
US11672599B2 (en) 2020-03-09 2023-06-13 Bolt Medical, Inc. Acoustic performance monitoring system and method within intravascular lithotripsy device
WO2021188182A1 (en) 2020-03-16 2021-09-23 St. Jude Medical, Cardiology Division, Inc. System, method, and apparatus for mapping local activation times
US20210290286A1 (en) 2020-03-18 2021-09-23 Bolt Medical, Inc. Optical analyzer assembly and method for intravascular lithotripsy device
US11707323B2 (en) 2020-04-03 2023-07-25 Bolt Medical, Inc. Electrical analyzer assembly for intravascular lithotripsy device
CN115379798A (en) 2020-04-21 2022-11-22 圣犹达医疗用品心脏病学部门有限公司 System and method for mapping cardiac activity
WO2021236310A1 (en) 2020-05-19 2021-11-25 St. Jude Medical, Cardiology Division, Inc. System and method for mapping electrophysiological activation
US11896317B2 (en) 2020-08-04 2024-02-13 Mazor Robotics Ltd. Triangulation of item in patient body
US11672585B2 (en) 2021-01-12 2023-06-13 Bolt Medical, Inc. Balloon assembly for valvuloplasty catheter system
KR20230165840A (en) * 2021-04-07 2023-12-05 비티엘 메디컬 디벨롭먼트 에이.에스. Pulsed field ablation device and method
US11648057B2 (en) 2021-05-10 2023-05-16 Bolt Medical, Inc. Optical analyzer assembly with safety shutdown system for intravascular lithotripsy device
US11806075B2 (en) 2021-06-07 2023-11-07 Bolt Medical, Inc. Active alignment system and method for laser optical coupling
WO2023028133A1 (en) 2021-08-26 2023-03-02 St. Jude Medical, Cardiology Division, Inc. Method and system for generating respiration signals for use in electrophysiology procedures
US11839391B2 (en) 2021-12-14 2023-12-12 Bolt Medical, Inc. Optical emitter housing assembly for intravascular lithotripsy device
WO2023114588A1 (en) 2021-12-17 2023-06-22 St. Jude Medical, Cardiology Division, Inc. Method and system for visualizing ablation procedure data
JP2023122622A (en) 2022-02-23 2023-09-04 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド Method and system for tracking and visualizing medical devices

Family Cites Families (127)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4042486A (en) * 1974-06-24 1977-08-16 Kureha Kagaku Kogyo Kabushiki Kaisha Process for the conversion of pitch into crystalloidal pitch
US3954098A (en) 1975-01-31 1976-05-04 Dick Donald E Synchronized multiple image tomographic cardiography
US4173228A (en) 1977-05-16 1979-11-06 Applied Medical Devices Catheter locating device
US4380237A (en) 1979-12-03 1983-04-19 Massachusetts General Hospital Apparatus for making cardiac output conductivity measurements
US4304239A (en) 1980-03-07 1981-12-08 The Kendall Company Esophageal probe with balloon electrode
US4431005A (en) 1981-05-07 1984-02-14 Mccormick Laboratories, Inc. Method of and apparatus for determining very accurately the position of a device inside biological tissue
US4750494A (en) * 1981-05-12 1988-06-14 Medtronic, Inc. Automatic implantable fibrillation preventer
US4444195A (en) 1981-11-02 1984-04-24 Cordis Corporation Cardiac lead having multiple ring electrodes
US4572206A (en) 1982-04-21 1986-02-25 Purdue Research Foundation Method and apparatus for measuring cardiac output
US4572486A (en) * 1982-07-14 1986-02-25 Metcast Associates, Inc. Molten metal filtering vessel with internal filter
US4559951A (en) 1982-11-29 1985-12-24 Cardiac Pacemakers, Inc. Catheter assembly
US4478223A (en) * 1982-12-06 1984-10-23 Allor Douglas R Three dimensional electrocardiograph
US4613866A (en) 1983-05-13 1986-09-23 Mcdonnell Douglas Corporation Three dimensional digitizer with electromagnetic coupling
US4522212A (en) 1983-11-14 1985-06-11 Mansfield Scientific, Inc. Endocardial electrode
US4572186A (en) 1983-12-07 1986-02-25 Cordis Corporation Vessel dilation
US4573473A (en) 1984-04-13 1986-03-04 Cordis Corporation Cardiac mapping probe
US4697595A (en) 1984-07-24 1987-10-06 Telectronics N.V. Ultrasonically marked cardiac catheters
US4628937A (en) 1984-08-02 1986-12-16 Cordis Corporation Mapping electrode assembly
JPS6162444A (en) * 1984-08-14 1986-03-31 コンシ−リオ・ナツイオナ−レ・デツレ・リチエルケ Method and apparatus for detecting frequent pulse generatingposition
US4660571A (en) * 1985-07-18 1987-04-28 Cordis Corporation Percutaneous lead having radially adjustable electrode
US4706670A (en) 1985-11-26 1987-11-17 Meadox Surgimed A/S Dilatation catheter
US4674518A (en) 1985-09-06 1987-06-23 Cardiac Pacemakers, Inc. Method and apparatus for measuring ventricular volume
US4699147A (en) * 1985-09-25 1987-10-13 Cordis Corporation Intraventricular multielectrode cardial mapping probe and method for using same
DE3536658A1 (en) * 1985-10-15 1987-04-16 Kessler Manfred METHOD FOR REPRESENTING ELECTROCARDIOGRAPHIC VALUES
US4641649A (en) 1985-10-30 1987-02-10 Rca Corporation Method and apparatus for high frequency catheter ablation
US4721115A (en) 1986-02-27 1988-01-26 Cardiac Pacemakers, Inc. Diagnostic catheter for monitoring cardiac output
US4821731A (en) 1986-04-25 1989-04-18 Intra-Sonix, Inc. Acoustic image system and method
US4945305A (en) 1986-10-09 1990-07-31 Ascension Technology Corporation Device for quantitatively measuring the relative position and orientation of two bodies in the presence of metals utilizing direct current magnetic fields
US4940064A (en) 1986-11-14 1990-07-10 Desai Jawahar M Catheter for mapping and ablation and method therefor
EP0312495A3 (en) 1987-10-16 1989-08-30 Institut Straumann Ag Electrical cable for carrying out at least one stimulation and/or measurement in a human or animal body
US4922912A (en) 1987-10-21 1990-05-08 Hideto Watanabe MAP catheter
FR2622098B1 (en) 1987-10-27 1990-03-16 Glace Christian METHOD AND AZIMUTAL PROBE FOR LOCATING THE EMERGENCY POINT OF VENTRICULAR TACHYCARDIES
US4777955A (en) * 1987-11-02 1988-10-18 Cordis Corporation Left ventricle mapping probe
GB2212267B (en) 1987-11-11 1992-07-29 Circulation Res Ltd Methods and apparatus for the examination and treatment of internal organs
JP2535988B2 (en) * 1987-12-11 1996-09-18 株式会社ニコン Three-dimensional multi-pattern photometer
US4890623A (en) * 1988-03-14 1990-01-02 C. R. Bard, Inc. Biopotential sensing device and method for making
US5588432A (en) 1988-03-21 1996-12-31 Boston Scientific Corporation Catheters for imaging, sensing electrical potentials, and ablating tissue
US5372138A (en) 1988-03-21 1994-12-13 Boston Scientific Corporation Acousting imaging catheters and the like
US4840182A (en) 1988-04-04 1989-06-20 Rhode Island Hospital Conductance catheter
US4899750A (en) 1988-04-19 1990-02-13 Siemens-Pacesetter, Inc. Lead impedance scanning system for pacemakers
JPH0748316B2 (en) * 1988-05-30 1995-05-24 日本電気株式会社 Dual port memory circuit
CA1327838C (en) * 1988-06-13 1994-03-15 Fred Zacouto Implantable device to prevent blood clotting disorders
US4898176A (en) 1988-06-22 1990-02-06 The Cleveland Clinic Foundation Continuous cardiac output by impedance measurements in the heart
US5000190A (en) 1988-06-22 1991-03-19 The Cleveland Clinic Foundation Continuous cardiac output by impedance measurements in the heart
US4951682A (en) 1988-06-22 1990-08-28 The Cleveland Clinic Foundation Continuous cardiac output by impedance measurements in the heart
US5054496A (en) 1988-07-15 1991-10-08 China-Japan Friendship Hospital Method and apparatus for recording and analyzing body surface electrocardiographic peak maps
US5025786A (en) * 1988-07-21 1991-06-25 Siegel Sharon B Intracardiac catheter and method for detecting and diagnosing myocardial ischemia
US4911174A (en) * 1989-02-13 1990-03-27 Cardiac Pacemakers, Inc. Method for matching the sense length of an impedance measuring catheter to a ventricular chamber
GB2233094B (en) * 1989-05-26 1994-02-09 Circulation Res Ltd Methods and apparatus for the examination and treatment of internal organs
US5029588A (en) 1989-06-15 1991-07-09 Cardiovascular Imaging Systems, Inc. Laser catheter with imaging capability
US5056517A (en) 1989-07-24 1991-10-15 Consiglio Nazionale Delle Ricerche Biomagnetically localizable multipurpose catheter and method for magnetocardiographic guided intracardiac mapping, biopsy and ablation of cardiac arrhythmias
US5220924A (en) 1989-09-28 1993-06-22 Frazin Leon J Doppler-guided retrograde catheterization using transducer equipped guide wire
EP0419729A1 (en) 1989-09-29 1991-04-03 Siemens Aktiengesellschaft Position finding of a catheter by means of non-ionising fields
US5005587A (en) 1989-11-13 1991-04-09 Pacing Systems, Inc. Braid Electrode leads and catheters and methods for using the same
JPH03224552A (en) 1990-01-31 1991-10-03 Toshiba Corp Ultrasonic diagnostic device
US5253078A (en) * 1990-03-14 1993-10-12 C-Cube Microsystems, Inc. System for compression and decompression of video data using discrete cosine transform and coding techniques
US5360006A (en) 1990-06-12 1994-11-01 University Of Florida Research Foundation, Inc. Automated method for digital image quantitation
US5273038A (en) * 1990-07-09 1993-12-28 Beavin William C Computer simulation of live organ
US5058583A (en) 1990-07-13 1991-10-22 Geddes Leslie A Multiple monopolar system and method of measuring stroke volume of the heart
US5054492A (en) 1990-12-17 1991-10-08 Cardiovascular Imaging Systems, Inc. Ultrasonic imaging catheter having rotational image correlation
US5345936A (en) 1991-02-15 1994-09-13 Cardiac Pathways Corporation Apparatus with basket assembly for endocardial mapping
US5156151A (en) 1991-02-15 1992-10-20 Cardiac Pathways Corporation Endocardial mapping and ablation system and catheter probe
US5228442A (en) 1991-02-15 1993-07-20 Cardiac Pathways Corporation Method for mapping, ablation, and stimulation using an endocardial catheter
US5161536A (en) 1991-03-22 1992-11-10 Catheter Technology Ultrasonic position indicating apparatus and methods
US5433729A (en) * 1991-04-12 1995-07-18 Incontrol, Inc. Atrial defibrillator, lead systems, and method
US5255678A (en) 1991-06-21 1993-10-26 Ecole Polytechnique Mapping electrode balloon
US5282471A (en) 1991-07-31 1994-02-01 Kabushiki Kaisha Toshiba Ultrasonic imaging system capable of displaying 3-dimensional angiogram in real time mode
JP2735747B2 (en) 1991-09-03 1998-04-02 ゼネラル・エレクトリック・カンパニイ Tracking and imaging system
US5211165A (en) 1991-09-03 1993-05-18 General Electric Company Tracking system to follow the position and orientation of a device with radiofrequency field gradients
US5713363A (en) 1991-11-08 1998-02-03 Mayo Foundation For Medical Education And Research Ultrasound catheter and method for imaging and hemodynamic monitoring
US5325860A (en) 1991-11-08 1994-07-05 Mayo Foundation For Medical Education And Research Ultrasonic and interventional catheter and method
US5222501A (en) 1992-01-31 1993-06-29 Duke University Methods for the diagnosis and ablation treatment of ventricular tachycardia
US5237996A (en) 1992-02-11 1993-08-24 Waldman Lewis K Endocardial electrical mapping catheter
US5295484A (en) 1992-05-19 1994-03-22 Arizona Board Of Regents For And On Behalf Of The University Of Arizona Apparatus and method for intra-cardiac ablation of arrhythmias
US5255679A (en) * 1992-06-02 1993-10-26 Cardiac Pathways Corporation Endocardial catheter for mapping and/or ablation with an expandable basket structure having means for providing selective reinforcement and pressure sensing mechanism for use therewith, and method
US5324284A (en) 1992-06-05 1994-06-28 Cardiac Pathways, Inc. Endocardial mapping and ablation system utilizing a separately controlled ablation catheter and method
US5411025A (en) 1992-06-30 1995-05-02 Cordis Webster, Inc. Cardiovascular catheter with laterally stable basket-shaped electrode array
US5341807A (en) * 1992-06-30 1994-08-30 American Cardiac Ablation Co., Inc. Ablation catheter positioning system
WO1994006349A1 (en) * 1992-09-23 1994-03-31 Endocardial Therapeutics, Inc. Endocardial mapping system
US5311866A (en) * 1992-09-23 1994-05-17 Endocardial Therapeutics, Inc. Heart mapping catheter
US5662108A (en) 1992-09-23 1997-09-02 Endocardial Solutions, Inc. Electrophysiology mapping system
US6603996B1 (en) * 2000-06-07 2003-08-05 Graydon Ernest Beatty Software for mapping potential distribution of a heart chamber
US5297549A (en) 1992-09-23 1994-03-29 Endocardial Therapeutics, Inc. Endocardial mapping system
US5553611A (en) 1994-01-06 1996-09-10 Endocardial Solutions, Inc. Endocardial measurement method
US5622174A (en) 1992-10-02 1997-04-22 Kabushiki Kaisha Toshiba Ultrasonic diagnosis apparatus and image displaying system
US5687737A (en) 1992-10-09 1997-11-18 Washington University Computerized three-dimensional cardiac mapping with interactive visual displays
US5385146A (en) 1993-01-08 1995-01-31 Goldreyer; Bruce N. Orthogonal sensing for use in clinical electrophysiology
US5433198A (en) 1993-03-11 1995-07-18 Desai; Jawahar M. Apparatus and method for cardiac ablation
US5601084A (en) 1993-06-23 1997-02-11 University Of Washington Determining cardiac wall thickness and motion by imaging and three-dimensional modeling
DE69432148T2 (en) 1993-07-01 2003-10-16 Boston Scient Ltd CATHETER FOR IMAGE DISPLAY, DISPLAY OF ELECTRICAL SIGNALS AND ABLATION
US5840031A (en) 1993-07-01 1998-11-24 Boston Scientific Corporation Catheters for imaging, sensing electrical potentials and ablating tissue
US5551426A (en) 1993-07-14 1996-09-03 Hummel; John D. Intracardiac ablation and mapping catheter
US5391199A (en) 1993-07-20 1995-02-21 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias
US5738096A (en) 1993-07-20 1998-04-14 Biosense, Inc. Cardiac electromechanics
US5409000A (en) 1993-09-14 1995-04-25 Cardiac Pathways Corporation Endocardial mapping and ablation system utilizing separately controlled steerable ablation catheter with ultrasonic imaging capabilities and method
US5908446A (en) 1994-07-07 1999-06-01 Cardiac Pathways Corporation Catheter assembly, catheter and multi-port introducer for use therewith
US5558091A (en) 1993-10-06 1996-09-24 Biosense, Inc. Magnetic determination of position and orientation
US5458126A (en) 1994-02-24 1995-10-17 General Electric Company Cardiac functional analysis system employing gradient image segmentation
US5661108A (en) * 1994-06-01 1997-08-26 Fmc Corporation Herbicidal 3-(bicyclic nitrogen-containing heterocycle)-substituted-1-methyl-6-trifluoromethyluracils
US5722402A (en) 1994-10-11 1998-03-03 Ep Technologies, Inc. Systems and methods for guiding movable electrode elements within multiple-electrode structures
US6690963B2 (en) * 1995-01-24 2004-02-10 Biosense, Inc. System for determining the location and orientation of an invasive medical instrument
US5690117A (en) * 1995-03-20 1997-11-25 Gilbert; John W. Ultrasonic-fiberoptic imaging ventricular catheter
JPH10504225A (en) 1995-06-07 1998-04-28 ユニバーシティ オブ フロリダ リサーチ ファウンデーション,インク. An automated method for digital image quantification
US5824005A (en) 1995-08-22 1998-10-20 Board Of Regents, The University Of Texas System Maneuverable electrophysiology catheter for percutaneous or intraoperative ablation of cardiac arrhythmias
US5848972A (en) 1995-09-15 1998-12-15 Children's Medical Center Corporation Method for endocardial activation mapping using a multi-electrode catheter
US5697377A (en) 1995-11-22 1997-12-16 Medtronic, Inc. Catheter mapping system and method
DE19622078A1 (en) 1996-05-31 1997-12-04 Siemens Ag Active current localising appts. for heart
US5871019A (en) 1996-09-23 1999-02-16 Mayo Foundation For Medical Education And Research Fast cardiac boundary imaging
US5669382A (en) 1996-11-19 1997-09-23 General Electric Company System for measuring myocardium in cardiac images
US6095976A (en) 1997-06-19 2000-08-01 Medinol Ltd. Method for enhancing an image derived from reflected ultrasound signals produced by an ultrasound transmitter and detector inserted in a bodily lumen
US20040006268A1 (en) * 1998-09-24 2004-01-08 Super Dimension Ltd Was Filed In Parent Case System and method of recording and displaying in context of an image a location of at least one point-of-interest in a body during an intra-body medical procedure
US6364835B1 (en) * 1998-11-20 2002-04-02 Acuson Corporation Medical diagnostic ultrasound imaging methods for extended field of view
US6522906B1 (en) * 1998-12-08 2003-02-18 Intuitive Surgical, Inc. Devices and methods for presenting and regulating auxiliary information on an image display of a telesurgical system to assist an operator in performing a surgical procedure
US7343195B2 (en) * 1999-05-18 2008-03-11 Mediguide Ltd. Method and apparatus for real time quantitative three-dimensional image reconstruction of a moving organ and intra-body navigation
US6443894B1 (en) * 1999-09-29 2002-09-03 Acuson Corporation Medical diagnostic ultrasound system and method for mapping surface data for three dimensional imaging
US7366562B2 (en) * 2003-10-17 2008-04-29 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US6650927B1 (en) * 2000-08-18 2003-11-18 Biosense, Inc. Rendering of diagnostic imaging data on a three-dimensional map
US20030093067A1 (en) * 2001-11-09 2003-05-15 Scimed Life Systems, Inc. Systems and methods for guiding catheters using registered images
DE10210648A1 (en) * 2002-03-11 2003-10-02 Siemens Ag Medical 3-D imaging method for organ and catheter type instrument portrayal in which 2-D ultrasound images, the location and orientation of which are known, are combined in a reference coordinate system to form a 3-D image
US7477763B2 (en) * 2002-06-18 2009-01-13 Boston Scientific Scimed, Inc. Computer generated representation of the imaging pattern of an imaging device
WO2004084737A1 (en) * 2003-03-27 2004-10-07 Koninklijke Philips Electronics N.V. Guidance of invasive medical devices by three dimensional ultrasonic imaging
EP1618409A1 (en) * 2003-03-27 2006-01-25 Koninklijke Philips Electronics N.V. Guidance of invasive medical devices with combined three dimensional ultrasonic imaging system
US7270634B2 (en) * 2003-03-27 2007-09-18 Koninklijke Philips Electronics N.V. Guidance of invasive medical devices by high resolution three dimensional ultrasonic imaging
CA2555473A1 (en) * 2004-02-17 2005-09-01 Traxtal Technologies Inc. Method and apparatus for registration, verification, and referencing of internal organs
EP1720480A1 (en) * 2004-03-05 2006-11-15 Hansen Medical, Inc. Robotic catheter system
US8515527B2 (en) * 2004-10-13 2013-08-20 General Electric Company Method and apparatus for registering 3D models of anatomical regions of a heart and a tracking system with projection images of an interventional fluoroscopic system
US7713210B2 (en) * 2004-11-23 2010-05-11 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and apparatus for localizing an ultrasound catheter

Also Published As

Publication number Publication date
EP0661948A1 (en) 1995-07-12
JP3581888B2 (en) 2004-10-27
CA2447239A1 (en) 1994-03-31
US20060058693A1 (en) 2006-03-16
ATE160273T1 (en) 1997-12-15
CA2678625A1 (en) 1994-03-31
US20030176799A1 (en) 2003-09-18
JP2004209262A (en) 2004-07-29
US6978168B2 (en) 2005-12-20
JP3876344B2 (en) 2007-01-31
US20060084972A1 (en) 2006-04-20
US20060084971A1 (en) 2006-04-20
US6826420B1 (en) 2004-11-30
US20060052716A1 (en) 2006-03-09
CA2144973A1 (en) 1994-03-31
US20060058692A1 (en) 2006-03-16
US20060084970A1 (en) 2006-04-20
US6826421B1 (en) 2004-11-30
WO1994006349A1 (en) 1994-03-31
DE69315354D1 (en) 1998-01-02
DE69315354T2 (en) 1998-03-19
EP0661948B1 (en) 1997-11-19
US20060084884A1 (en) 2006-04-20
CA2144973C (en) 2010-02-09
US20050101874A1 (en) 2005-05-12
US7289843B2 (en) 2007-10-30
JPH08501477A (en) 1996-02-20
US8208998B2 (en) 2012-06-26

Similar Documents

Publication Publication Date Title
CA2447239C (en) Endocardial mapping system
US5311866A (en) Heart mapping catheter
US7831288B1 (en) Method for mapping potential distribution of a heart chamber
US7930012B2 (en) Chamber location method
US6603996B1 (en) Software for mapping potential distribution of a heart chamber
US4699147A (en) Intraventricular multielectrode cardial mapping probe and method for using same
US8744599B2 (en) High density mapping catheter
US5628313A (en) Cardiovascular catheter with laterally stable basket-shaped electrode array
KR100789117B1 (en) Catheter, method and apparatus for generating an electrical map of a chamber of the heart
US20180116595A1 (en) Electrophysiological Mapping Catheter
US5526810A (en) Intraventricular mapping catheter
US6647617B1 (en) Method of construction an endocardial mapping catheter
EP3315086B1 (en) Elongated medical device suitable for intravascular insertion and method of making such a device
US11523762B2 (en) Electrophysiological mapping catheter
CN115443170A (en) Single core optical fiber and multi-core optical fiber configuration for medical devices

Legal Events

Date Code Title Description
EEER Examination request