CA2450478A1 - Complex mixtures exhibiting selective inhibition of cyclooxygenase-2 - Google Patents

Complex mixtures exhibiting selective inhibition of cyclooxygenase-2 Download PDF

Info

Publication number
CA2450478A1
CA2450478A1 CA002450478A CA2450478A CA2450478A1 CA 2450478 A1 CA2450478 A1 CA 2450478A1 CA 002450478 A CA002450478 A CA 002450478A CA 2450478 A CA2450478 A CA 2450478A CA 2450478 A1 CA2450478 A1 CA 2450478A1
Authority
CA
Canada
Prior art keywords
composition
cox
acid
catalog
rochester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002450478A
Other languages
French (fr)
Inventor
John G. Babish
M. Terrence Howell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MetaProteomics LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2450478A1 publication Critical patent/CA2450478A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/12Ketones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/02Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/02Nasal agents, e.g. decongestants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/06Antimigraine agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Abstract

A novel formulation is provided that serves to specifically inhibit the COX- 2 mediated inflammatory response in animals. The formulation comprises comprising an effective amount of component I selected from the group consisting of alpha acids and beta acids and an effective amount of at least one component II selected from the group consisting of alpha acids, beta acids, essential oils, fats and waxes, with the proviso that component I and II are not the same compound. The composition provides specific inhibition o f cyclooxygenase-2 with little or no effect on cyclooxygenase-1.

Description

COMPLEX MIXTURES EXHIBITING SELECTIVE INHIBITION OF
C'YCLOOXYGENASE-2 FIELD OF THE INVENTION
The present invention relates generally to a composition comprising a complex mixture of active ingredients exhibiting selective inhibition of inducible cyclooxygenase-2 (COX-2) and method for selective inhibition of COX-2 mediated synthesis of prostaglandins. More particularly, the composition comprises mixtures of active ingredients isolated from an extract of hops (Humulus lupulus). The composition functions to inhibit the inducibility and/or activity of inducible cyclooxygenase (COX-2) with little or no significant effect on constitutive cyclooxygenase (COX-1).
BACKGROUND OF THE INVENTION
Inflammatory diseases affect more than fifty million Americans. As a result of basic research in molecular and cellular immunology over the last ten to fifteen years, approaches to diagnosing, treating and preventing these immunologically-based diseases has been dramatically altered. One example of this is the discovery of an inducible form of the cyclooxygenase enzyme. Constitutive cyclooxygenase (COX), first purified in 1976 and cloned in 1988, functions in the synthesis of prostaglandins (PGs) from arachidonic acid(AA). Three years after its purification, an inducible enzyme with COX
activity was identified and given the name COX-2, while constitutive COX was termed, COX-1.
COX-2 gene expression is under the control of pro-inflammatory cytokines and growth factors. Thus, the inference is that COX-2 functions in both inflammation and control of cell growth. While COX-2 is inducible in many tissues, it is present constitutively in the brain and spinal cord, where it may function in nerve transmission for pain and fever. The two isoforms of COX are nearly identical in structure but have important differences in substrate and inhibitor selectivity and in their intracellular locations. Protective PGs, which preserve the integrity of the stomach lining and maintain , normal renal function in a compromised kidney, are synthesized by COX-1. On the other hand, PGs synthesized by COX-2 in immune cells are central to the inflammatory process.
The discovery of COX-2 has made possible the design of drugs that reduce inflammation without removing the protective PGs in the stomach and kidney made by COX-1. Combinations of the invention would be useful for, but not limited to, the treatment of inflammation in a subject, and for treatment of other inflammation-associated disorders, such as, as an analgesic in the treatment of pain and headaches, or as an antipyretic for the treatment of fever. For example, combinations of the invention would be useful to treat arthritis, including but not limited to rheumatoid arthritis, spondyloathopathies, gouty arthritis, osteoarthritis, systemic lupus erythematosus, and juvenile arthritis. Such combination of the invention would be useful in the treatment of asthma, bronchitis, menstrual cramps, tendonitis, bursitis, and skin related conditions such as psoriasis, eczema, burns and dermatitis. Combinations of the invention also would be useful to treat gastrointestinal conditions such as inflammatory bowel disease, Crohn's disease, gastritis, irritable bowel syndrome and ulcerative colitis and for the prevention or treatment of cancer such as colorectal cancer. Compositions of the invention would be , useful in treating inflammation in such diseases as vascular diseases, migraine headaches, periarteritis nodosa, thyroiditis, aplastic anemia, Hodgkin's disease, sclerodma, rheumatic fever, type I diabetes, myasthenia gravis, multiple sclerosis, sacoidosis, nephrotic syndrome, Behchet's syndrome, polymyositis, gingivitis, hypersensitivity, swelling occurring after injury, myocardial ischemia and the like.
The compositions of the present invention would also be useful in the treatment of ophthalmic diseases, such as retinopathies, conjunctivitis, uveitis, ocular photophobia, and of acute injury to the eye tissue. The compounds would also be useful in the treatment of pulmonary inflammation, such as that associated with viral infections and cystic fibrosis. The compounds would also be useful for the treatment of certain nervous system disorders such as cortical dementias including Alzheimer's disease. The combinations of the invention are useful as anti-inflammatory agents, such as for the treatment of arthritis, with the additional benefit of having significantly less harmful side effects. As inhibitors of COX-2 mediated biosynthesis of PGE2, these compositions would also be useful in the treatment of allergic rhinitis, respiratory distress syndrome, endotoxin shock syndrome, atherosclerosis, and central nervous system damage resulting from stroke, ischemia and trauma.
Besides being useful for human treatment, these compounds are also useful for treatment of other animals, including horses, dogs, cats, birds, sheep, pigs, etc. An ideal formulation for the treatment of inflammation would inhibit the induction and activity of COX-2 without affecting the activity of COX-1. Historically, the non-steroidal and steroidal anti-inflammatory drugs used for treatment of inflammation lack the specificity of inhibiting COX-2 without affecting COX-1. Therefore, most anti-inflammatory drugs damage the gastrointestinal system when used for extended periods. Thus, new specific treatments for inflammation and inflammation-based diseases are urgently needed.
Hop extraction in one form or another goes back over 150 years to the early nineteenth century when extraction in water and ethanol was first attempted.
Even today an ethanol extract is available in Europe, but by far the predominant extracts are organic solvent extracts (hexane) and C02 extracts (supercritical and liquid). COZ
(typically at 60 bars pressure and 5 to 10°C) is in a liquid state and is a relatively mild, non-polar solvent highly specific for hop soft resins and oils. Beyond the critical point, typically at 300 bars pressure and 60°C, C02 has the properties of both a gas and a liquid and is a much stronger solvent. The composition of the various extracts is compared in Table 1.
Table 1. Hop Extracts (Percent W/W) Organic SolventSuper-Critical Component Hops Extract CO2 Liquid C02 Total resins12 - 15 - 60 75 - 90 70 - 95 Alpha-acids 2 - 12 8 - 45 27 - 55 30 - 60 Beta-acids 2 - 10 8 - 20 23 - 33 15 - 45 Essential 0.5 - 0 - 5 1 - 5 2 - 10 oils 1.5 Hard resins 2 - 4 2 - 10 5 - 11, None Tannins 4 - 10 0.5 - 5 0.1 - 5 None Waxes 1 - 5 1 - 20 4 - 13 0 - 10 , Water 8-12 1-15 1-7 1-5 At its simplest, hop extraction involves milling, pelleting and re-milling the hops to spread the lupulin, passing a solvent through a packed column to collect the resin components and finally, removal of the solvent to yield a whole or "pure"
resin extract.
The main organic extractants are strong solvents and in addition to virtually all the lupulin components, they extract plant pigments, cuticular waxes, water and water-soluble materials, Supercritical C02 is more selective than the organic solvents and extracts less of the tannins and waxes and less water and hence water-soluble components. It does extract some of the plant pigments like chlorophyll but rather less than the organic solvents do.
Liquid COZ is the most selective solvent used commercially for hops and hence produces the most pure whole resin and oil extract. It extracts none of the hard resins or tannins, much lower levels of plant waxes, no plant pigments and less water and water-soluble materials.
As a consequence of this selectivity and the milder solvent properties, the absolute yield of liquid COZ extract per unit weight of hops is less than when using the other mentioned solvents. Additionally, the yield of alpha acids with liquid COZ (89 - 93%) is lower than that of supercritical C02 (91 - 94%) or the organic solvents (93 -96%).
Following extraction there is the process of solvent removal, which for organic solvents involves heating to cause volatilization. Despite this, trace amounts of solvent do remain in the extract. The removal of C02, however, simply involves a release of pressure to volatilize the CO2.
The identification of humulone from hops extract as an inhibitor of bone resorption is reported in Tobe, H. et al. 1997. Bone resorption Inhibitors from hop extract.
Biosci. Biotech. Biochem 61(1)158-159. Later studies by the same group characterized the mechanism of action of humulone as inhibition of COX-2 gene transcription following TNFalpha stimulation of MC3T3 -E1 cells [T'amamoto, K. 2000.
Suppression of cyclooxygenase-2 gene transcription by humulon of bee hop extract studied with reference to glucocorticoid. FEBS Letters 465:103-106].
Thus, it would be useful to identify a natural formulation of compounds that would specifically inhibit or prevent the synthesis of prostaglandins by COX-2 with little or no effect on COX-1. Such a formulation, which would be useful for preserving the health of joint tissues, for treating arthritis or other inflammatory conditions, has not previously been discovered. The term "specific or selective COX-2 inhibitor"
embrace compounds or mixtures of compounds that selectively inhibit COX-2 over COX-1.
Preferably, the compounds have a median effective concentration for COX-2 inhibition that is minimally five times greater than the median effective concentration for the inhibition of COX-1. For example, if the median inhibitory concentration for COX-2 of a test formulation was 0.2 gg/mL, the formulation would not be considered COX-2 specific unless the median inhibitory concentration for COX-1 was equal to or greater than 1 ~,g/mL.
While glucosamine is generally accepted as being effective and safe for treating osteoarthritis, medical intervention into the treatment of degenerative joint diseases is generally restricted to the alleviation of its acute symptoms. Medical doctors generally utilize non-steroidal and steroidal anti-inflammatory drugs for treatment of osteoarthritis.
These drugs, however, are not well adapted for long-term therapy because they not only lack the ability to promote and protect cartilage; they can actually lead to degeneration of cartilage or reduction of its synthesis. Moreover, most non-steroidal, anti-inflammatory drugs damage the gastrointestinal system when used for extended periods. Thus, new treatments for arthritis are urgently needed.
The joint-protective properties of glucosamine would make it an attractive therapeutic agent for osteoarthritis except for two drawbacks: (1) the rate of response to glucosamine treatment is slower than for treatment with anti-inflammatory drugs, and (2) glucosamine may fail to fulfill the expectation of degenerative remission. In studies comparing glucosamine with non-steroidal anti-inflammatory agents, for example, a double-blinded study comparing 1500 mg glucosamine sulfate per day with 1200 mg ibuprofen, demonstrated that pain scores decreased faster during the first two weeks in the t ibuprofen patients than in the glucosamine-treated patients. However, the reduction in pain scores continued throughout the trial period in patients receiving glucosamine and the difference between the two groups turned significantly in favor of glucosamine by week eight. Lopes Vaz, A., Double-blind clinical evaluation of the relative efficacy of ibuprofen and glucosamine sulphate in the management of osteoarthritis of the knee in outpatients, 8 Curr. Med Res Opin. 145-149 (1982). Thus, glucosamine may relieve the pain and inflammation of arthritis at a slower rate than the available anti-inflammatory drugs.
An ideal formulation for the normalization of cartilage metabolism or treatment of osteoarthritis would provide adequate chondroprotection with potent anti-inflammatory activity. The optimal dietary supplement for osteoarthritis should enhance the general joint rebuilding qualities offered by glucosamine and attenuate the inflammatory response without introducing any harmful side effects. It should be inexpensively manufactured and comply with all governmental regulations.

However, the currently available glucosarnine formulations have not been formulated to optimally attack and alleviate the underlying causes of osteoarthritis and rheumatoid arthritis. Moreover, as with many commercial herbal and dietary supplements, the available formulations do not have a history of usage, nor controlled ' clinical testing, which might ensure their safety and efficacy.
Therefore, it would be useful to identify a composition that would specifically inhibit or prevent the expression of COX-2 enzymatic activity, while having little or no effect on COX-1 metabolism so that these could be used at sufficiently low doses or at current clinical doses with no adverse side effects.
SUMMARY OF THE INVENTION
The present invention provides a composition comprising an effective amount of component I selected from the group consisting of alpha acids and beta acids and an effective amount of at least one component II selected from the group consisting of alpha acids, beta acids, essential oils, fats and waxes, with the proviso that component I and II
are not the same compound. Preferably, the composition comprises two or more active ingredients selected from the group consisting of ?-acid, ?-acid and essential oil. The active ingredients of the present invention are preferably made from hops extract. The composition functions synergistically to inhibit the activity of inducible COX-2 with little or no effect on COX-1.
The present invention further provides a composition of matter that enhances the function of glucosamine or chondrotin sulfate to normalize joint movement or reduce the symptoms of osteoarthritis.
One specific embodiment of the present invention is a composition comprising a 30 to 60 weight percent of a,-acid, 15 to 45 weight percent of (3-acid and 3 to 6 weight percent of essential oil. The composition optionally comprises 2 to 8 weight percent of fats and waxes. Preferably, the oc-acid, (3-acid, essential oil, fats or waxes are from a hops extract, which is preferably prepared by C02 extraction.
The present invention further provides a method of dietary supplementation and a method of treating inflammation or inflammation-based diseases in an animal which comprises providing to the animal suffering symptoms of inflammation,including pain and swelling, the composition of the present invention containing two or more active ingredients selected from the group consisting of a-acid, (3-acid and essential oil and continuing to administer such a dietary supplementation of the composition until said symptoms are eliminated or reduced.
DETAILED DESCRIPTION OF THE INVENTION
Before the present composition and methods of making and using thereof are disclosed and described, it is to be understood that this invention is not limited to the particular configurations, as process steps, and materials may vary somewhat.
It is also intended to be understood that the terminology employed herein is used for the purpose of describing particular embodiments only and is not intended to be limiting since the scope of the present invention will be limited only by the appended claims and equivalents thereof.
It must be noted that, as used in this specification and the appended claims, the singular forms "a," "an," and "the" include plural referents unless the context clearly dictates otherwise.
The present invention provides a composition having a selective inhibitory effect on the activity of COX-2, said composition comprising an effective amount of component I selected from the group consisting of alpha acids and beta acids and an effective amount of at least one component II selected from the group consisting of alpha acids, beta acids, essential oils, fats and waxes, with the proviso that component I and II are not the same compound. More particularly, the composition comprises two or more active ingredients selected from the groups consisting of a-acids, [3-acids and essential oils.
Preferably, the active ingredients of the present invention are made from Hops extract.
Preferably, composition comprising an 30 to 60 weight percent of a-acids, 15 to 45 weight percent of (3-acids and 3 to 6 weight percent of essential oils. The composition optionally comprises 2 to 8 weight percent of fats and waxes. Preferably, the a-acids, (3-acids, essential oils, fats or waxes are from a hop extract, which is preferably prepared by C02 extraction. The composition provided by the present invention can be formulated as a dietary supplement or therapeutic composition. The composition functions to inhibit the inducibility and/or activity of COX-2 with little or no effect on COX-1.

As used herein, the term "dietary supplement" refers to compositions consumed to affect structural or functional changes in physiology. The term "therapeutic composition"
refers to any compounds administered to treat or prevent a disease.
As used herein, the term "COX inhibitor" refers to a composition of natural compounds that is capable of inhibiting the activity or expression of COX-2 enzymes or is capable of inhibiting or reducing the severity, including pain and swelling, of a severe inflammatory response.
As used herein, the term " hop extract " refers to the solid material resulting from (1) exposing a hops plant product to a solvent, (2) separating the solvent from the hops plant product, and (3) eliminating the solvent.
As used herein, the term "solvent" refers to' a liquid of aqueous or organic nature possessing the necessary characteristics to extract solid material from the hop plant product. Examples of solvents would include water, steam, superheated water, methanol, ethanol, hexane, chloroform, liquid CO2, liquid NZ or any combinations of such materials.
As used herein, the term "C02 extract" refers to the solid material resulting from exposing a hops plant product to a liquid or supercritical COZ preparation followed by the removing the CO2.
As used herein, the term "a-acid fraction" refers to compounds isolated from hops plant products including, among others, humulone, cohumulone, isohumulone, isoprehumulone, hulupone, adhumulone, xanthohumol A and xanthohumol B.
As used herein, the term "(3-acid fraction" refers to compounds collectively known as lupulones including among others lupulone, colupulone, adlupulone, tetrahydroisohumulone, and hexahydrocolupulone, As used herein, the term "essential oil fraction" refers to a complex mixture of components consisting chiefly of myrcene, humulene, beta-caryophyleen, undecane-2-on, and 2-methyl-but-3-en-ol.
As used herein, the term "fats " refers to triacylglyerol esters of fatty acids.
As used herein, the term "waxes " refers to triacylglycerol ethers or esters of extremely long chain (>25 carbons) fatty alcohols or acids.
Therefore, one preferred embodiment of the present invention is a composition comprising a combination of an effective amount of two or more active ingredients selected from the group consisting of a-acid, [3-acid and essential oil. The composition of the present invention functions to specifically inhibit the inducibility and/or activity of COX-2 while showing little or no effect on COX-1. Therefore, the composition of the present invention essentially eliminates the inflammatory response, including pain and swelling, rapidly without introducing any harmful side effects.
The pharmaceutical grade extract must pass extensive safety and efficacy procedures. Pharmaceutical grade COz hops extract refers to a preparation wherein the concentration of hops extract, as employed in the practice of the invention, has an ?-acid content of about 10 to 95 percent by weight. Preferably, the (3-acid content is greater than 45 percent by weight. The range of (3-acid content in a pharmaceutical grade hops extract is about 10 to 95 percent by weight. Preferably, the ?-acid content is greater than 45 percent by weight. The pharmaceutical grade extracts are particularly preferred. A daily dose (mg/kg-day) of the present dietary supplement would be formulated to deliver, about 0.001 to 100 mg C02 extract of hops extract per kg body weight of the animal.
The composition of the present invention for topical application would contain about 0.001 to 10 wt%, preferably 0.01 to 1 wt% of pharmaceutical grade COZ, hops extract.
The preferred composition of the present invention would produce serum or target tissue concentrations of any of the oc-acid or ~i-acid components in the range of about 0.005 to 10,000 nglmL.
In addition to the combination of component I selected from the group consisting of alpha acids and beta acids and at least one component II selected from the group consisting of alpha acids, beta acids, essential oils, fats and waxes, with the proviso that component I and II are not the same compound, the present composition for dietary application may include various additives such as other natural components of intermediary metabolism, vitamins and minerals, as well as inert ingredients such as talc and magnesium stearate that are standard excipients in the manufacture of tablets and capsules.
As used herein, "pharmaceutically acceptable carrier" includes any and all solvents, dispersion media, coatings, isotonic and absorption delaying agents, sweeteners and the like. These pharmaceutically acceptable Garners may be prepared from a wide range of materials including, but not limited to, diluents, binders and adhesives, lubricants, disintegrants, coloring agents, bulking agents, flavoring agents, sweetening agents and miscellaneous materials such as buffers and absorbents that may be needed in order to prepare a particular therapeutic composition. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredients, its use in the 5 present composition is contemplated. In one embodiment, talc and magnesium stearate are included in the present formulation. Other ingredients known to affect the manufacture of this composition as a dietary bar or functional food can include flavorings, sugars, amino-sugars, proteins and/or modified starches, as well as fats and oils.
The dietary supplements, lotions or therapeutic compositions of the present 10 invention can be formulated in any manner known by one of skill in the art.
In one embodiment, the composition is formulated into a capsule or tablet using techniques available to one of skill in the art. In capsule or tablet form, the recommended daily dose for an adult human or animal would preferably be contained in one to six capsules or tablets. However, the present compositions may also be formulated in other convenient forms, such as an injectable solution or suspension, a spray solution or suspension, a lotion, gum, lozenge, food or snack item. Food, snack, gum or lozenge items can include any ingestible ingredient, including sweeteners, flavorings, oils, starches, proteins, fruits or fruit extracts, vegetables or vegetable extracts, grains, animal fats or proteins. Thus, the present compositions can be formulated into cereals, snack items such as chips, bars, chewable candies or slowly dissolving lozenges.
The present invention contemplates treatment of all types of inflammation-based diseases, both acute and chronic. The present formulation reduces the inflammatory response and thereby promotes healing of, or prevents further damage to, the affected tissue. A pharmaceutically acceptable Garner may also be used in the present compositions and formulations.
According to the present invention, the animal may be a member selected from the group consisting of humans, non-human primates, such as dogs, cats, birds, horses, ruminants or other animals. The invention is directed primarily to the treatment of human beings. Administration can be by any method available to the skilled artisan, for example, by oral, topical, transdermal, transmucosal, or parenteral routes.

The following examples are intended to illustrate but not in any way limit the invention.

Selective Inhibition of Cyclooxygenase-2 Mediated Prostaglandin E2 by a C02 Extract of Hops This example illustrates a superior COX-2 selectivity of the COZ hops extract of the present invention compared to the pure compound humulone described in the prior art.
Therefore it is to be inferred that the effectiveness of the C02 hops extract of the present invention would be superior to the pure compound humulone described in the prior art.
Inhibition of COX-2 Mediated Production of PGE2 by C02 extract of Hops Equipment - balancer, analytical, Ohaus Explorer (Ohaus Model #E01140, Switzerland), biosafety cabinet (Forma Model #F1214, Marietta, Ohio), pipettor, 100 to 1000 ~,L (VWR Catalog #4000-208, Rochester, NY), cell hand tally counter (VWR
Catalog #23609-102, Rochester, NY), COZ incubator (Forma Model #F3210, Marietta, Ohio), hemacytometer (Hausser Model #1492, Horsham, PA), microscope, inverted (Leica Model #DM IL, Wetzlar, Germany), multichannel ~ipettor, 12-Channel (VWR
Catalog #53501-662, Rochester, NY), Pipet Aid (VWR Catalog #53498-103, Rochester, NY), Pipettor, 0.5 to 10 ~,L (VWR Catalog #4000-200, Rochester, NY), pipettor, 100 to 1000 ~,L (VWR Catalog #4000-208, Rochester, NY), pipettor, 2 to 20 ~L (VWR
Catalog #4000-202, Rochester, NY), pipettor, 20 to 200 ~,L (VWR Catalog #4000-204, Rochester, NY), PURELAB Plus Water Polishing System (U.S. Filter, Lowell, MA), refrigerator, 4°C (Forma Model #F3775, Marietta, Ohio), vortex mixer (VWR Catalog #33994-306, Rochester, NIA, water bath (Shel Lab Model #1203, Cornelius, OR).
Cells, Chemicals, Reagents and Buffers - Cell scrapers (Corning Catalog #3008, Corning, NY), dimethylsulfoxide (DMSO) (VWR Catalog #5507, Rochester, NY), Dulbecco's Modification of Eagle's Medium (DMEM) (Mediatech Catalog #10-013-CV, Herndon, VA), fetal bovine serum, heat inactivated (FBS-HI).(Mediatech Catalog #35-011-CV, Herndon, VA), lipopolysaccharide (LPS)(Sigma Catalog #L-2654, St.
Louis, MO), microfuge tubes, 1.7 mL (VWR Catalog #20172-698, Rochester, NY), .
penicillin/streptomycin (Mediatech Catalog #30-001-CI, Herndon, VA), pipet tips for 0.5 to 10 ~L pipettor (VWR Catolog #53509-138, Rochester, NY), pipet tips for 100-1000 ~.L
pipettor (VWR Catolog #53512-294, Rochester, NY), pipet tips for 2-20 wL and ~L pipettors (VWR Catolog #53512-260, Rochester, NY), pipets, 10 mL (Becton Dickinson Catalog #7551, Marietta, OH), pipets, 2 mL (Becton Dickinson Catalog #7507, Marietta, OH, pipets, 5 mL (Becton Dickinson Catalog #7543, Marietta, OH), RAW
264.7 Cells (American Type Culture Collection Catalog #TIB-71, Manassas, VA), test compounds (liquid COz hops extract from Hopunion, Yakima, WA), tissue culture plates, 96-well (Becton Dickinson Catalog #3075, Franklin Lanes, NJ), Ultra-pure water (Resistance =18 rnegaOhm-cm deionized water).
General Procedure - RAW 264.7 cells, obtained from ATCC, were grown in DMEM medium and maintained in log phase. The DMEM growth medium was made as follows : 50 mL of heat inactivated FBS and 5 mL of penicillinlstreptomycin was added to a 500 mL bottle of DMEM and stored at 4 C. For best result the medium is to be used within three months and warmed to 37 ~C in water bath before use.
On day one of the experiment, the log phase 264.7 cells were plated at 8 x 104 cells per well in 0.2 mL growth medium per well in a 96-well tissue culture plate in the morning. At the end of the day 1 (6 to 8 hours post plating), 100 ~,L of growth medium from each well were removed and replaced with 100 ~L fresh medium. A 1.0 mg/mL
solution of LPS, which is used to induce the expression of COX-2 in the RAW
264.7 cells, was prepared by dissolving 1.0 mg of LPS in 1 mL DMSO. It was vortexed until it dissolved and was stored at 4 °C. Melt at room temperature or in a 37 °C water bath before use. Make up a new solution every 60 days.
On day two of the experiment, liquid C02 hops extract was prepared as 1000X
stock in DMSO. For example, if the final concentration of the test material is to be 10 ~,g/mL, a 10 mglmL stock should be prepared by dissolving 10 mg of the test material in 1 mL of DMSO. For the best result, fresh liquid COZ hops extract should be prepared on the day of the experiment. In 1.7 mL microfuge tubes, 1 mL DMEM without FBS
was added for test concentrations of 0.05, 0.10, 0.5, and 1.0 ~glmL. 2 ~L of the stock of the test material was added to the 1 mL of medium without FBS. The tube contained the final concentration of the test material concentrated 2-fold and placed tube in an incubator for 10 minutes to equilibrate.

One-hundred microliters of medium was removed from each well of the cell plates prepared on day one. One-hundred microliter of equilibrated 2X final concentration the test compounds was added to cells and incubated for 90 minutes. LPS in DMEM
without FBS was prepared by adding 44 ~.L of the 1 mg/mL DMSO stock to 10 mL of medium.
For each well of cells to be stimulated, 20 ~L of LPS (final concentration of LPS is 0.4 ~.glmL of LPS) was added and incubated for 24 hours.
On day 3, the appearance of the cells was observed. One-hundred microliter supernatent medium from each well was transferred to a clean microfuge tube for the determination of amount of PGE2 in the medium.
Determination of COX-1 Enzyme Inhibition b~Hops Extract The ability of a test material to inhibit COX-1 synthesis of PGE2 was determined essentially as described by Noreen, Y., et al. (J. Nat. Prod. 61, 2-7, 1998).
Equipment - balancer (2400 g, Acculab VI-2400, VWR Catalog #11237-300, Rochester, NY), balancer, analytical, Ohaus Explorer (Ohaus Model #E01140, Switzerland), biosafety cabinet (Forma Model #F1214, Marietta, Ohio), Freezer, -30°C
(Forma Model #F3797), Freezer, -80°C Ultralow (Forma Model #F8516, Marietta, OH), heated stirring plate (VWR Catalog #33918-262, Rochester, NY), ice maker (Scotsman Model #AFE400A-lA, Fairfax, SC), multichannel pipettor, 12-Channel (VWR
Catalog #53501-662, Rochester, NY), Multichannel Pipettor, 8-Channel (VWR Catalog #53501-660, Rochester, NY), orbital shaker platform (Scienceware #F37041-0000, Pequannock, NJ), pH meter (VWR Catalog #33221-010, Rochester, NY), pipet aid (VWR Catalog #53498-103, Rochester, NY), pipettor, 0.5 to 10 ~.L (VWR Catalog #4000-200, Rochester, NY), pipettor, 100 to 1000 ~L (VWR Catalog #4000-208, Rochester, NY), pipettor, 2 to 20 ~.L (VWR Catalog #4000-202, Rochester, NY), pipettox, 20 to 200 ~.L
(VWR Catalog #4000-204, Rochester, NY), PURELAB Plus Water Polishing System (U.S. Filter, Lowell, MA), refrigerator, 4°C (Forma Model #F3775, Marietta, Ohio), vacuum chamber (Sigma Catalog #235, 407-4, St. Louis, MO), vortex mixer (VWR
Catalog #33994-306, Rochester, NY) Supplies and Reagents - 96-Well, round-bottom plate (Nalge Nunc #267245, Rochester, NY), arachidonic acid (Sigma Catalog #A-3925, St. Louis, MO), centrifuge tubes, 15 mL, conical, sterile (VWR Catalog #20171-008, Rochester, NY), COX-1 enzyme (ovine) 40,000 units/mg (Cayman Chemical Catalog #60100, Ann Arbor, M17, dimethylsulfoxide (DMSO) (VWR Catalog #5507, Rochester, NY), ethanol 100% (VWR
Catalog #MK701908, Rochester, NY), epinephrine (Sigma Catalog #E-4250, St.
Louis, MO), glutathione (reduced) (Sigma Catalog # G-6529, St. Louis, MO), graduated cylinder, 1000 mL (VWR Catalog #24711-364, Rochester, NY), hematin (porcine) (Sigma catalog # H-3281, St. Louis, MO), hydrochloric acid (HCl) (VWR Catalog #VW3110-3, Rochester, NY), KimWipes (Kimberly Clark Catalog #34256, Roswell, GA), microfuge tubes, 1.7 mL (VWR Catalog #20172-698, Rochester, NY), NaOH
(Sigma Catalog #S-5881, St. Louis, MO), pipet tips for 0.5 to 10 ~cL pipettor (VWR
Catolog #53509-138, Rochester, NY), pipet tips for 100-1000 ~,L pipettor (VWR
Catolog #53512-294, Rochester, NY), pipet tips for 2-20 pL and 20-200 ~.L pipettors (VWR
Catolog #53512-260, Rochester, NY), prostaglandin E2 (Sigma Catalog # P-5640, St.
Louis, MO), prostaglandin F2alpha (Sigma Catalog # P-0424, St. Louis, MO), stir bar, magnetic (VWR Catalog #58948-193, Rochester, NY), storage bottle, 1000 mL
(Corning Catalog #1395-1L, Corning, NY), storage bottle, 100 mL (Corning Catalog #1395-100, Corning, NY), C02 extract of hops (Hopunion, Yakima, WA), Tris-HCl (Sigma Catalog #T-5941, St. Louis, MO), ultra-pure water (Resistance =18 megaOhm-cm deionized water).
General Procedure - Oxygen-free 1.0M Tris-HCl buffer (pH 8.0) was prepared as follows: In a 1000 mL beaker, 12.11 g Trizma HCl was dissolved into 900 mL
ultra-pure water. The beaker was placed on a stir plate with a stir bar. NaOH was added until the pH
reached 8Ø The volume was adjusted to a final volume of 1000mL and stored in a 1000 mL storage bottle.
The Tris-HCl buffer was placed into a vacuum chamber with a loose top and the air pump was turned on until the buffer stopped bubbling. The vacuum chamber was turned off and the storage bottle was covered tight. This step was repeated each time when the oxygen-free Tris-HCl buffer was used.
1 mL cofactor solution was prepared by adding 1.3 mg (-) epinephrine, 0.3 mg reduced glutathione and 1.3 mg hematin to 1 mL oxygen free Tris-HCl buffer.
Solutions of the test material were prepared as needed. i.e. 10 mg of aspirin was weighed and dissolved into 1 mL DMSO.

Enzyme was dissolved in oxygen free Tris-HC1 buffer as follows, i.e. on ice, 6.5 ~L of enzyme at 40,000 units/mL was taken and added to 643.5 ~.L of oxygen free Tris-HCl buffer. This enzyme solution is enough for 60 reactions. The COX-1 enzyme solution Was prepared as follows. in a 15 mL centrifuge tube, 10 ~,L COX-1 enzyme at 5 40,000 units/mL was added in oxygen free Tris-HCl with 50 ~,L of the cofactor solution per reaction. The mixture was incubated on ice for 5 minutes (i.e. for 60 reactions add 650 ~,1 enzyme in oxygen free Tris-HCl buffer with 3.25 mL cofactor solution).
60 ~1 of the enzyme solution was combined with 20 ~,1 of the test solution in each well of a 96 well plate. Final concentrations of the test solutions were 100, 50, 25, 12.5, 10 6.25 and 3.12 ~.g/mL. The plates were preincubated on ice for 10 minutes.
20 ~,L

arachidonic acid (30~M) was added and incubated for 15 minutes at 37 C.
2 M HCl was prepared by diluting 12.1 N HCI. In a 100 mL storage bottle, 83.5 mL ultra-pure water was added and then 16.5 mL 12.1 N HCl was added. It was stored in a 100 mL storage bottle and placed in the biosafty cabinet (always add acid last). The 15 reaction was terminated by adding 10 ~L 2 M HCl. The final solution was used as the supernate for the PGEZ assay.
Determination of PGE2 Concentration in Medium -The procedure followed was that essentially described by Hamberg, M. and Samuelsson, B. (J. Biol. Chem. 1971. 246, 6713-6721); however a commercial, nonradioactive procedure was employed.
Equipment - freezer, -30°C (Forma Model #F3797), heated stirring plate (VWR
Catalog #33918-262, Rochester, NY), multichannel pipettor, 12-Channel (VVVR
Catalog #53501-662, Rochester, NY), orbital shaker platform (Scienceware #F37041-0000, Pequannock, NJ), Pipet Aid (VWR Catalog #53498-103, Rochester, NY), pipettor, 0.5 to 10 gL (VWR Catalog #4000-200, Rochester, NY), pipettor, 100 to 1000 wL (VWR
Catalog #4000-208, Rochester, NY), pipettor, 2 to 20 ~L (VWR Catalog #4000-202, Rochester, NY), pipettor, 20 to 200 ~,L (VWR Catalog #4000-204, Rochester, NY), plate reader (Bio-tek Instruments Model #E1x800, Winooski, VT), PURELAB Plus Water Polishing System (LT.S. Filter, Lowell, MA), refrigerator, 4°C (Forma Model #F3775, Marietta, Ohio).
Chemicals, Reagents and Buffers - Prostaglandin EZ EIA I~it-Monoclonal 480-well (Cayman Chemical Catalog # 514010, Ann Arbor, MI), centrifuge tube, 50 mL, conical, sterile (VWR Catalog #20171-178, Rochester, N~, Dulbecco's Modification of Eagle's Medium (DMEM) (Mediatech Catalog #10-013-CV, Herndon, VA), graduated cylinder, 100 mL(VWR Catalog #24711-310, Rochester, NY), KimWipes (Kimberly Clark Catalog #34256, Roswell, GA), microfuge tubes, 1.7 mL (VWR Catalog #20172-698, Rochester, NY), penicillin/streptomycin (Mediatech Catalog #30-001-CI, Herndon, VA), pipet tips for 0.5 to 10 ~,L pipettor (VWR Catolog #53509-138, Rochester, N~, pipet tips for 100-1000 ~L pipettor (VWR Catolog #53512-294, Rochester, NY), pipet tips for 2-20 ~L and 20-200 ~L pipettors (VWR Catolog #53512-260, Rochester, NY), pipets, 25 mL (Becton Dickinson Catalog #7551, Marietta, OH), storage bottle, 100 mL
(Corning Catalog #1395-100, Corning, NY), storage bottle, 1000 mL (Corning Catalog #1395-1L, Corning, N~, ultra-pure water (Resistance =1$ megaOhm-cm deionized water).
General Procedure - EIA Buffer was prepared by diluting the contents of EIA
Buffer Concentrate (vial #4) with 90m1 of Ultra-pure water. The vial #4 was rinsed several times to ensure all crystals had been removed and was placed into a 100 mL
storage bottle and stored at 4°C.-The Wash Buffer was prepared by diluting Wash Buffer Concentrate (vial #5) 1:400 with Ultra-pure water. 0.5 ml/liter of Tween 20 (vial #5a) was then added (using a syringe for accurate measurement). i.e. (For one liter Wash Buffer add 2.Srn1 Wash Buffer Concentrate, O.SmI Tween-20, and 997m1 Ultra-pure water.) The solution was stored in a 1 liter storage bottle at 4°C.
The Prostaglandin Ea standard was reconstituted as follows. A 200~,L pipet tip was equilibrated by repeatedly filling and expelling the tip several times in ethanol. The tip was used to transfer 100 gL of the PGE2 Standard (vial #3) into a 1.7 mL
microfuge tube. 900,1 Ultra-pure water was added to the tube and stored at 4°C, which was stable for ~6 weeks.
The Prostaglandin EZ acetylcholinesterase tracer was reconstituted as follows.

~L PGE2 tracer (vial #2) was taken and mixed with 30 mL of the EIA Buffer in a 50 mL
centrifuge tube and stored at 4°C. The solution should be used within five weeks.
The Prostaglandin EZ monoclonal antibody was reconstituted as follows. 100~.L
PGEz Antibody (vial #1) was taken and mixed with 30 mL of the EIA buffer in a 50 mL
centrifuge tube and stored at 4~C. This solution should be used up within 5 weeks.

DMEM with penicillin/streptomycin was prepared by adding 5 mL

penicillin/streptomycin into 500 mL DMEM and stored at 4 C
The plate was set up as follows: Each plate contained a minimum of two blanks (B), two non-specific binding wells (NSB), two maximum binding wells (B°), and an eight point standard curve run in duplicate (Sl-S8). Each sample was assayed at a minimum of two dilutions and each dilution was run in duplicate.
The standard was prepared as follows: Eight 1.7 mL microuge tubes were labeled as tube 1-8. 900 ~,L DMEM into was put in tube 1 and 500 ~L DMEM into tubes 2-8. 100 ~L of the PGE2 standard was put into tube 1 and mixed. Five-hundred microliter solution was taken from tube 1 and put into tube 2 and this process was repeated through tube 8.
Fifty microliters of EIA Buffer and 501 DMEM were added into the NSB wells.
Fifty ~.l DMEM was added to the B° wells. Fifty microliters of solution was taken from tube #8 and added to both the lowest standard wells (S8). Fifty microliters was taken from tube #7 and added to each of the next two wells. Continue this through to tube #1.
(Use the same pipet tip for all 8 of the standards. Make sure to equilibrate the tip in each new standard by pipeting up and down in that standard. Using a P200, add SOpI
of each sample at each dilution to the sample wells).
Using the 12 channel pipetor, 501 of the Prostaglandin EZ acetylcholinesterase tracer was added to each well except the Total Activity (TA) and the Blank (B) wells.
Using the 12 channel pipetor, 50.1 of the Prostaglandin E2 monoclonal antibody was added to each well except the Total Activity (TA), the (NSB), and the Blank (B) wells.
The plate was covered with plastic film (item #7) and incubated for 18 hours at 4°C.
The plate was developed as follows: one 100pL vial of Ellman's Reagent (vial #8) was reconstituted with 50 ml of Ultra-pure water in a 50 mL centrifuge tube.
It was protected from light and used the same day. The wells were and rinsed five times with Wash Buffer using a 12 channel pipettor. Two-hundred microliters of Ellman's Reagent was added to each well using a 12 channel pipettor and 5~,1 of Tracer to the (TA) well was then added to each well using a P 10. The plate was covered with a plastic film and placed on orbital shaker in the dark for 60-90 minutes.
The plate was read in the Bio-tek plate reader at a single wavelength between and 420 nm. Before reading each plate, the bottom was wiped with a I~im wipe.
The plate should be read when the absorbance of the wells is in the range of 0.3-0.8 A.U. If the absorbance of the wells exceeds 1.5, wash and add fresh Ellmans' Reagent and redevelop.
The medium inhibitory concentration of the COZ hops extract for both COX-2 and COX-1 were assessed using CalcuSyn (BIOSOFT, biosoft.com). This statistical package performs multiple drug dose-effect calculations using the Median Effect methods described by T-C Chou and P. Talaly (Trends Pharmacol. Sci. 4:450-454).
Briefly, it correlates the "Dose" and the "Effect" in the simplest possible form: fa/fu =
(C/Cm)m, where C is the concentration or dose of the compound and Cm is the median-effective dose signifying the potency. Cm is determined from the x-intercept of the median-effect plot. The fraction affected by the concentration of the test material is fa and the fraction unaffected by the concentration is fu (fu = 1 - fa). The exponent m is the parameter signifying the sigmoidicity or shape of the dose-effect curve. It is estimated by the slope of the median-effect plot.
The median-effect plot is a plot of x = log(C) vs y = log(fa/fu) and is based on the logarithmic form of Chou's median-effect equation. The goodness of fit for the data to the median-effect equation is represented by the linear correlation coefficient r of the median-effect plot. Usually, the experimental data from enzyme or receptor systems have r > 0.96, from tissue culture or enzyme work.
The medium inhibitory concentration of COX-2 inhibition by the C02-extract of hops in the RAW 264.7 cell model was 0Ø24 ~g/mL (95% CI = 0.16 - 0.36). The same C02 extract of hops demonstrated a median inhibitory concentration of COX-1 production of PGE2 of 25.5 ~g/mL. Thus, a COX-1/COX-2 specificity of 106 is observed. This COX-2 specificity is 2.7-fold greater than the COX-2 specificity demonstrated for pure humulone in the TNFalpha stimulation of MC3T3 -E1 cells [Yamamoto, K. 2000. Suppression of cyclooxygenase-2 gene transcription by humulon of bee hop extract studied with reference to glucocorticoid. FEBS Letters 465:103-106].
Such a large difference in COX-2 specificity between the pure compound and the complex mixture is unexpected and constitutes a novel finding. It is unusual that a complex mixture would contain greater specific biological activity than the most active molecule. The inference is that an underlying synergy among the bioactive molecules, including humulone, is to account for such an effect.

Claims (10)

We claim:
1. A composition consisting essentially of an alpha acid and a beta acid in a ratio that, when administered, is capable of inhibition of inducible COX-2 activity while having minimal effect on COX-1 activity.
2. A composition consisting essentially of 30 to 60 percent of an alpha acid, 15 to 45 percent of a beta acid, said composition, when administered, is capable of inhibition of inducible COX-2 activity while having minimal effect on COX-1 activity.
3. The composition of Claim 1 or 2 wherein the alpha acid or beta acid is made from a hop extract prepared by CO2 extraction.
4. The composition of Claim 3, further comprising an essential oil is made from a hop extract prepared by CO2 extraction.
5. The composition of Claim 1 or 2, wherein the alpha acid is selected from the group consisting of. humulone, cohumulone, isohumulone, isoprehumulone, hulupone, adhumulone, xanthohumol A and xanthohumol B.
6. The composition of Claim 1 or 2, wherein the beta acids are selected from the group consisting of lupulone, colupulone, adlupulone, tetrahydroisohumulone, and hexahydrocolupulone.
7. The composition of Claim 1 or 2, further comprising one or more members selected from the group consisting of antioxidants, vitamins, minerals.
proteins, fats, carbohydrates, glucosamine, chondrotin sulfate and aminosugars.
8. A method of dietary supplementation comprising administering to an animal suffering symptoms of inflammation the composition of Claims 1 or 2, said composition is formulated to provide 0.01 to 100 mg body weight per day of alpha acid, 0.01 to 100 mg body weight per day of beta acid.
9. The method of Claim 8, wherein the composition is administered in an amount sufficient to maintain a serum or target tissue concentration of 0.001 to
10,000 ng/mL of an active ingredient of alpha-acids or beta-acids.
CA002450478A 2001-06-20 2002-06-20 Complex mixtures exhibiting selective inhibition of cyclooxygenase-2 Abandoned CA2450478A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/885,721 2001-06-20
US09/885,721 US7205151B2 (en) 2001-06-20 2001-06-20 Complex mixtures exhibiting selective inhibition of cyclooxygenase-2
PCT/US2002/019617 WO2003000185A2 (en) 2001-06-20 2002-06-20 Complex mixtures exhibiting selective inhibition of cyclooxygenase-2

Publications (1)

Publication Number Publication Date
CA2450478A1 true CA2450478A1 (en) 2003-01-03

Family

ID=25387562

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002450478A Abandoned CA2450478A1 (en) 2001-06-20 2002-06-20 Complex mixtures exhibiting selective inhibition of cyclooxygenase-2

Country Status (6)

Country Link
US (4) US7205151B2 (en)
EP (2) EP2277526A1 (en)
JP (2) JP2004534806A (en)
CA (1) CA2450478A1 (en)
NZ (1) NZ530213A (en)
WO (1) WO2003000185A2 (en)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040033938A1 (en) * 2000-09-12 2004-02-19 Britten Nancy J. Cyclooxygenase-2 inhibitor and antibacterial agent combination for intramammary treatment of mastitis
US7815944B2 (en) * 2001-06-20 2010-10-19 Metaproteomics, Llc Anti-inflammatory pharmaceutical compositions for reducing inflammation and the treatment of prevention of gastric toxicity
US8206753B2 (en) * 2001-06-20 2012-06-26 Metaproteomics, Llc Anti-inflammatory botanical products for the treatment of metabolic syndrome and diabetes
US7205151B2 (en) * 2001-06-20 2007-04-17 Metaproteomics, Llc Complex mixtures exhibiting selective inhibition of cyclooxygenase-2
US20040115290A1 (en) * 2001-06-20 2004-06-17 Tripp Matthew L. Modulation of inflammation by hops fractions and derivatives
US7901713B2 (en) * 2001-06-20 2011-03-08 Metaproteomics, Llc Inhibition of COX-2 and/or 5-LOX activity by fractions isolated or derived from hops
US7270835B2 (en) * 2001-06-20 2007-09-18 Metaproteomics, Llc Compositions that treat or inhibit pathological conditions associated with inflammatory response
US7901714B2 (en) * 2001-06-20 2011-03-08 Metaproteomics, Llp Treatment modalities for autoimmune diseases
US7718198B2 (en) * 2001-06-20 2010-05-18 Metaproteomics, Llc Treatment modalities for autoimmune diseases
US8168234B2 (en) * 2001-06-20 2012-05-01 Metaproteomics, Llc Compositions that treat or inhibit pathological conditions associated with inflammatory response
US8142819B2 (en) * 2002-10-21 2012-03-27 Metaproteomics, Llc Synergistic compositions that treat or inhibit pathological conditions associated with inflammatory response
US8158160B2 (en) 2001-11-13 2012-04-17 Eric Hauser Kuhrts Anti-inflammatory cyclooxygenase inhibitors
KR20050071605A (en) * 2002-10-21 2005-07-07 메타프로테오믹스, 엘엘씨 Compositions that treat or inhibit pathological conditions associated with inflammatory response
DE10256031A1 (en) * 2002-11-30 2004-06-09 Nateco 2 Gmbh & Co. Kg Process for the preparation of a xanthohumol-enriched hop extract and its use
US20080153894A1 (en) * 2002-12-19 2008-06-26 Pharmacia Corporation Cyclooxygenase-2 inhibitor and antibacterial agent combination for intramammary treatment of mastitis
US7144590B2 (en) * 2003-01-09 2006-12-05 Lipoprotein Technologies, Inc. Bioactive compositions derived from humulus lupulus
WO2004089357A2 (en) * 2003-04-02 2004-10-21 Regents Of The University Of Minnesota Anti-fungal formulation of triterpene and essential oil
AU2004283065B2 (en) 2003-05-22 2009-11-26 Metaproteomics, Llc Anti-inflammatory pharmaceutical compositions for reducing inflammation and the treatment or prevention of gastric toxicity
US8367086B1 (en) * 2004-02-02 2013-02-05 S.S. Steiner, Inc. Process and product for inhibiting or preventing bacterial infections
US7641923B1 (en) * 2004-02-02 2010-01-05 S. S. Steiner, Inc. Process and product for inhibiting or preventing bacterial infections
EP1722635B1 (en) 2004-02-23 2015-11-04 SSS Acquisition, LLC Feeds containing hop acids and uses thereof as supplements in animal feeds
US20050192356A1 (en) * 2004-02-27 2005-09-01 Babish John G. Synergistic anti-inflammatory pharmaceutical compositions and methods of use
US7914831B2 (en) * 2004-02-27 2011-03-29 Metaproteomics, Llc Synergistic anti-inflammatory pharmaceutical compositions and related methods using curcuminoids or methylxanthines
SE0400996D0 (en) * 2004-04-16 2004-04-16 Alltech Ireland Inc Use of plants, plant extracts and nature-identical components from plants to affect rumen fermentation and to improve the energy and protein retention of ruminants
US20080280996A1 (en) * 2004-10-01 2008-11-13 Pianowski Luiz F Use of Carophyllenes in the Manufacture of Medicaments and Treatment of Bodily Conditions of Inflammation and Inflammatory Pain
MX2007005697A (en) * 2004-11-13 2007-10-08 Metaproteomics Llc Compositions exhibiting inhibition of cyclooxygenase-2.
US7745209B2 (en) 2005-07-26 2010-06-29 Corning Incorporated Multilayered cell culture apparatus
US20080248131A1 (en) * 2005-08-09 2008-10-09 Metaproteomics, Llc Protein Kinase Modulation by Hops and Acacia Products
EP2737897A3 (en) * 2005-12-09 2014-10-01 Metaproteomics, LLC Anti-inflammatory botanical products for the treatment of metabolic syndrome and diabetes
JP2009518439A (en) * 2005-12-09 2009-05-07 メタプロテオミクス,エルエルシー Protein kinase regulation by hops and acacia products
US7405195B2 (en) * 2006-03-27 2008-07-29 Natural Beauty Bio-Technology Limited Cosmetic compositions
CA2655043A1 (en) * 2006-06-20 2007-12-27 Metaproteomics, Llc Tetrahydro-isoalpha acid based protein kinase modulation cancer treatment
US20080051466A1 (en) * 2006-06-20 2008-02-28 Metaproteomics, Llc Isoalpha acid based protein kinase modulation cancer treatment
FR2910325B1 (en) * 2006-12-22 2010-03-19 Kronenbourg Brasseries USE OF LUPULONES FOR THE PREVENTION AND THERAPY OF COLORECTAL CANCER.
CN101711161A (en) * 2007-03-19 2010-05-19 麦特普罗泰欧米克斯有限公司 Promote the method and composition of skeleton and articulation health
CA2686043A1 (en) 2007-05-11 2008-11-20 Metaproteomics, Llc Methods and compositions for heavy metal detoxification
MX2010006425A (en) * 2007-12-10 2010-08-31 Metaproteomics Llc Substituted 1,3-cyclopentadione multi-target protein kinase modulators of cancer, angiogenesis and the inflammatory pathways associated therewith.
WO2009124176A1 (en) * 2008-04-02 2009-10-08 Metaprotemics, Llc Substituted 1,3-cyclopentadione attenuated endothelial inflammation and endothelial-monocyte interactions
AU2009234355A1 (en) * 2008-04-11 2009-10-15 Betal, Llc Xanthohumol compositions and methods for treating skin diseases or disorders
GB2492680A (en) * 2010-03-17 2013-01-09 Arbonne Internat Llc Oral supplement
CN110200955A (en) 2010-10-30 2019-09-06 金戴克斯治疗学有限责任公司 The iso- α acid derivative of tetrahydro, composition and method
JP2013155130A (en) * 2012-01-30 2013-08-15 Lion Corp Nitric oxide production suppressibility improver and application thereof
US20140255587A1 (en) * 2013-03-11 2014-09-11 S.S. Steiner, Inc. Novel hop powders
KR102474030B1 (en) 2016-08-23 2022-12-06 삼성전자주식회사 Flexible Display Apparatus and Manufacturing Method of Flexible Display Apparatus
US11666553B2 (en) 2020-02-25 2023-06-06 North Cell Pharmceticals Inc. Method of reducing anxiety in non-human mammals by increasing brain serotonin levels

Family Cites Families (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3933919A (en) 1964-12-15 1976-01-20 Geoffrey Wilkinson Hydroformylation of mono-α-olefins and mono-α-acetylenes
GB1145240A (en) 1965-03-01 1969-03-12 Kalamazoo Spice Extract Co Hop flavours for malt beverages and the like
US3451821A (en) * 1965-03-01 1969-06-24 Kalamazoo Spice Extract Co Increasing the utilization of hops and improving flavor control of malt beverages and the like
US3720517A (en) * 1970-12-21 1973-03-13 Hamm T Brewing Co Preparation of a fermented malt champagne
US3932603A (en) * 1971-05-28 1976-01-13 General Foods Corporation Oral preparations for reducing the incidence of dental caries
GB1372932A (en) 1971-03-15 1974-11-06 Gen Foods Corp Anti-caries compositions
US3965188A (en) * 1972-01-10 1976-06-22 Miller Brewing Company Hop extract process and product
CH617326A5 (en) * 1975-12-04 1980-05-30 Siegfried Ag
US4170638A (en) * 1976-11-05 1979-10-09 S. S. Steiner, Inc. Method for producing a deodorant
US4148873A (en) 1976-11-05 1979-04-10 S. S. Steiner, Inc. Method for treating the skin with extracts of hops
US4123561A (en) * 1977-02-01 1978-10-31 S.S. Steiner, Inc. Method for processing hops for brewing
US4401684A (en) * 1981-10-01 1983-08-30 Australian Hop Marketers Pty. Ltd. Preservation of hops utilizing ascorbic acid
BE896610A (en) * 1982-05-06 1983-08-16 Hop Developments Ltd EXTRACTION OF PLANT MATERIAL USING CARBONIC ANHYDRIDE
US4473551A (en) 1982-08-23 1984-09-25 Faxon Pharmaceuticals, Inc. Anti-inflammatory composition
US4590296A (en) * 1984-01-25 1986-05-20 Miller Brewing Company Process for separation of beta-acids from extract containing alpha-acids and beta-acids
US4644084A (en) 1984-01-25 1987-02-17 Miller Brewing Company Preparation of tetrahydroisohumulones
GB2187755B (en) * 1984-02-28 1990-03-28 Kalamazoo Holdings Inc Separation of the constituents of co2 hop extracts
SU1247011A1 (en) 1985-02-20 1986-07-30 Специальное Конструкторское Бюро Химизации Научно-Производственного Объединения "Аэрозоль" Agent for hair care
US4767640A (en) * 1985-10-29 1988-08-30 Miller Brewing Company Light stable hop extracts and method of preparation
US4692280A (en) * 1986-12-01 1987-09-08 The United States Of America As Represented By The Secretary Of Commerce Purification of fish oils
JP2594787B2 (en) 1987-02-27 1997-03-26 大洋香料株式会社 Caries prevention agent
US5041300A (en) * 1987-04-03 1991-08-20 Kalamazoo Holdings, Inc. Hop flavor which is odor forming impurity free
DE3712986A1 (en) * 1987-04-16 1988-10-27 Marbert Gmbh MEDICAL PREPARATIONS BASED ON TREASURE EXTRACT, METHOD FOR THE PRODUCTION THEREOF AND USE OF TREATMENT EXTRACT FOR THE PRODUCTION OF COSMETIC PREPARATIONS AND A SPECIAL TREATMENT EXTRACT
US4857554A (en) 1987-08-17 1989-08-15 Georgios Kallimanis Method for the treatment of psoriasis
US5082975A (en) 1988-08-15 1992-01-21 Kalamazoo Holdings, Inc. Synthesis of hexahydrolupulone, novel forms thereof, and its use as a selective inhibitor of cell growth and multiplication
US5166449A (en) 1988-08-15 1992-11-24 Kalamazoo Holdings, Inc. Synthesis of hexahydrolupulone, novel forms thereof, and its use as a selective inhibitor of cell growth and multiplication
DE3931147A1 (en) 1989-09-19 1991-03-28 Solong Natural Ltd New nerve tonic contg. extract of avena sativa - used to treat frigidity and increase libido in women
US5013571A (en) 1990-01-31 1991-05-07 Pfizer Inc. Methods for making tetrahydroisoalpha and hexahydroisoalpha acids
EP0474892B1 (en) * 1990-09-10 1996-04-10 Fromm, Mayer-Bass Limited Process for the isomerisation of humulone in a carbon dioxide-hop extract and method for extracting the isohumulone
JP3155003B2 (en) * 1990-11-06 2001-04-09 サントリー株式会社 Method for producing hop extract and hop extract obtained by the method
JP2514860B2 (en) * 1990-11-30 1996-07-10 アサヒビール株式会社 Hop extract used for elimination of active oxygen and its utilization
TW199905B (en) * 1992-02-03 1993-02-11 J E Siebel Sons Company Inc Method and composition for enhancing foam properties of fermented malt beverages
RU2045955C1 (en) * 1992-02-24 1995-10-20 Никитина Татьяна Ивановна Method for treating adnexites
KR100277095B1 (en) * 1992-07-29 2001-11-22 토어그젠데비스텔,잔토마스크젠들리에 Testosterone-enhancing composition and its manufacturing method
US5286506A (en) * 1992-10-29 1994-02-15 Bio-Technical Resources Inhibition of food pathogens by hop acids
US5370863A (en) * 1992-12-16 1994-12-06 Miller Brewing Company Oral care compositions containing hop acids and method
US5296637A (en) 1992-12-31 1994-03-22 Kalamazoo Holdings, Inc. Production of odor-free tetrahydroisohumulates from alpha acids via their tetrahydrohumulates and subsequent isomerization
JP3513877B2 (en) * 1993-02-12 2004-03-31 サントリー株式会社 Hop extract, method for producing the same, and method for producing highly aromatic beer
JPH06312924A (en) * 1993-04-28 1994-11-08 Asahi Breweries Ltd Utilization of humulones having antioxidant action
JP3431250B2 (en) * 1993-12-28 2003-07-28 日本臓器製薬株式会社 Beverage and method for producing the same
JP2677762B2 (en) * 1994-04-08 1997-11-17 株式会社神戸製鋼所 Oil-cooled compressor
DK0677289T3 (en) 1994-04-12 1999-09-06 Hoechst Marion Roussel Ltd Pharmaceutical composition for the treatment of osteoporosis
JPH0873369A (en) 1994-09-01 1996-03-19 Fuairudo:Kk Tea for health
JPH0967245A (en) * 1995-08-28 1997-03-11 Asahi Breweries Ltd Bathing agent
US5827895A (en) * 1996-02-27 1998-10-27 Regents Of The University Of Minnesota Hexahydrolupulones useful as anticancer agents
JP3254553B2 (en) * 1996-03-06 2002-02-12 アサヒビール株式会社 Anti-caries material, its production method and use
US6020019A (en) * 1996-03-26 2000-02-01 Miller Brewing Company Hydrogenation of hop soft resins using CO2
JPH1025247A (en) * 1996-07-10 1998-01-27 Asahi Breweries Ltd Preventive and therapeutic agent for gastritis and gastric and duodenal ulcer
US6589994B1 (en) 1996-08-30 2003-07-08 Nps Pharmaceuticals, Inc. Treating a variety of pathological conditions, including spasticity and convulsions, by effecting a modulation of CNS activity with isovaleramide, isovaleric acid, or a related compound
JP4083831B2 (en) 1996-11-20 2008-04-30 株式会社カネボウ化粧品 Skin preparation
US5968539A (en) 1997-06-04 1999-10-19 Procter & Gamble Company Mild, rinse-off antimicrobial liquid cleansing compositions which provide residual benefit versus gram negative bacteria
US6251461B1 (en) * 1997-10-10 2001-06-26 S. S. Steiner, Inc. Antimicrobial activity of hops extract against Clostridium botulinum, Clostridium difficile and Helicobacter pylori
ATE295160T1 (en) 1998-03-04 2005-05-15 Nps Pharma Inc COMPOSITIONS CONTAINING ISOVALERIANAMIDE TOGETHER WITH IBUPROFEN
DE19841615A1 (en) * 1998-09-11 2000-03-16 Fritz Armin Mueller Medicinal wine for alleviating pain and other symptoms of premenstrual syndrome, comprising mixture of extracts of different plants in dry white wine
ES2147538B1 (en) * 1999-01-29 2001-04-01 Revlon Consumer Prod Corp A CAPILLARY LOTION WITH IMPROVED PROPERTIES IN ITS HAIR PROTECTIVE AND PREVENTIVE ACTION OF HIS FALL, AND REDUCTION OF THE EXTERNAL EFFECTS OF ANDROGENETIC ALOPECIA AND WITH THAT OF THE HAIR FALL.
US6801860B1 (en) 1999-02-15 2004-10-05 Genetics Institute, Llc Crystal structure of cPLA2 and methods of identifying agonists and antagonists using same
US6383527B1 (en) 1999-03-04 2002-05-07 Nps Pharmaceuticals, Inc. Compositions comprising valerian extracts, isovaleric acid or derivatives thereof with a NSAID
US20010031305A1 (en) 1999-05-07 2001-10-18 Michael Smith Hop extract of defined composition
GB2367492A (en) 1999-06-02 2002-04-10 Oxford Natural Products Plc Combination of glucosamine with herbal extracts of triptergium, ligustrum and erycibe
US6129907A (en) * 1999-08-04 2000-10-10 Colgate Palmolive Company Stable hydrogenated lupulone antibacterial oral compositions
US6200594B1 (en) 1999-12-29 2001-03-13 Vital Dynamics, Inc. Breast-enhancing, herbal compositions and methods of using same
US6953593B2 (en) * 2000-02-01 2005-10-11 Lipoprotein Technologies, Inc. Sustained-release microencapsulated delivery system
US6583322B1 (en) * 2000-02-25 2003-06-24 Kalamazoo Holdings, Inc. Dihydro and hexahydro isoalpha acids having a high ratio of trans to cis isomers, production thereof, and products containing the same
US20020086070A1 (en) * 2000-03-11 2002-07-04 Kuhrts Eric Hauser Anti-inflammatory and connective tissue repair formulations
AU4468201A (en) * 2000-03-31 2001-10-08 Nisshin Oil Mills Ltd External preparation for the skin and beautifying agents
US6440465B1 (en) 2000-05-01 2002-08-27 Bioderm, Inc. Topical composition for the treatment of psoriasis and related skin disorders
DE10031955A1 (en) 2000-06-30 2002-01-17 Deutsches Krebsforsch Curcumin derivatives with improved water solubility compared to curcumin and medicaments containing them
US20020076452A1 (en) * 2000-08-01 2002-06-20 Ashni Naturaceuticals, Inc. Combinations of sesquiterpene lactones and ditepene lactones or triterpenes for synergistic inhibition of cyclooxygenase-2
US6908630B2 (en) * 2000-08-01 2005-06-21 Metaproteomics, Llc Combinations of sesquiterpene lactones and ditepene triepoxide lactones for synergistic inhibition of cyclooxygenase-2
FR2815227B1 (en) * 2000-10-17 2003-04-11 Schwartz Laboratoires Robert ANTI-STRESS COMPOSITION FOR PRIMARY INCORPORATION IN NUTRITIONAL VEHICLES
US6391346B1 (en) * 2001-04-05 2002-05-21 Thomas Newmark Anti-inflammatory, sleep-promoting herbal composition and method of use
US7205151B2 (en) * 2001-06-20 2007-04-17 Metaproteomics, Llc Complex mixtures exhibiting selective inhibition of cyclooxygenase-2
US20040219240A1 (en) * 2001-06-20 2004-11-04 Babish John G. Anti-inflammatory pharmaceutical compositions for reducing inflammation and the treatment or prevention of gastric toxicity
US20040115290A1 (en) * 2001-06-20 2004-06-17 Tripp Matthew L. Modulation of inflammation by hops fractions and derivatives
US8142819B2 (en) 2002-10-21 2012-03-27 Metaproteomics, Llc Synergistic compositions that treat or inhibit pathological conditions associated with inflammatory response
NZ532560A (en) * 2001-10-26 2005-02-25 Metaproteomics Llc Curcuminoid compositions exhibiting synergistic inhibition of the expression and/or activity of cyclooxygenase-2
US7144590B2 (en) * 2003-01-09 2006-12-05 Lipoprotein Technologies, Inc. Bioactive compositions derived from humulus lupulus

Also Published As

Publication number Publication date
US7205151B2 (en) 2007-04-17
EP2277526A1 (en) 2011-01-26
JP2009203244A (en) 2009-09-10
US20070172532A1 (en) 2007-07-26
US7195785B2 (en) 2007-03-27
JP2004534806A (en) 2004-11-18
US7332185B2 (en) 2008-02-19
NZ530213A (en) 2006-01-27
EP1423132A4 (en) 2005-02-09
US20050042317A1 (en) 2005-02-24
US20030113393A1 (en) 2003-06-19
WO2003000185A2 (en) 2003-01-03
EP1423132A2 (en) 2004-06-02
WO2003000185A3 (en) 2004-03-11
US20030008021A1 (en) 2003-01-09

Similar Documents

Publication Publication Date Title
US7195785B2 (en) Complex mixtures exhibiting selective inhibition of cyclooxygenase-2
AU2008202916B8 (en) Curcuminoid compositions exhibiting synergistic inhibition of the expression and/or activty of cyclooxygenase-2
US7682636B2 (en) Curcuminoid compositions exhibiting synergistic inhibition of the expression and/or activity of cyclooxygenase-2
JP2004534806A5 (en)
AU2002348096A1 (en) Curcuminoid compositions exhibiting synergistic inhibition of the expression and/or activity of cyclooxygenase-2
US20090274778A1 (en) Compositions Exhibiting Inhibition Of Cyclooxygenase-2
US20090263522A1 (en) Curcuminoid Compositions Exhibiting Synergistic Inhibition Of The Expression And/Or Activity Of Cyclooxygenase-2
AU2002310484B2 (en) Complex mixtures exhibiting selective inhibition of cyclooxygenase-2
AU2008243262B2 (en) Complex mixtures exhibiting selective inhibition of cyclooxygenase-2
AU2002310484A1 (en) Complex mixtures exhibiting selective inhibition of cyclooxygenase-2

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued