CA2454017A1 - Implantation catheter with tether system - Google Patents

Implantation catheter with tether system Download PDF

Info

Publication number
CA2454017A1
CA2454017A1 CA002454017A CA2454017A CA2454017A1 CA 2454017 A1 CA2454017 A1 CA 2454017A1 CA 002454017 A CA002454017 A CA 002454017A CA 2454017 A CA2454017 A CA 2454017A CA 2454017 A1 CA2454017 A1 CA 2454017A1
Authority
CA
Canada
Prior art keywords
delivery tube
tether
push rod
wire
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002454017A
Other languages
French (fr)
Inventor
Jeffrey Welch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atritech Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2454017A1 publication Critical patent/CA2454017A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • A61F2/011Instruments for their placement or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0006Rounded shapes, e.g. with rounded corners circular

Abstract

Catheterization apparatus for implanting devices is provided with a device tether. The apparatus includes a device delivery tube that provides a pathwa y for moving implant devices through a patient's vasculature to internal body cavities. The implant devices are carried or pushed through the device delivery tube by a tubular push rod. The implant devices are tethered to a line passing through the push rod lumen. After deployment, the implant devic es may be retracted into the device delivery tube for repositioning or retrieva l by pulling on the tether.

Description

CARDIAC IMPLANT DEVICE TETHER
SYSTEM AND METHOD
[0001] This application claims the benefit of U.S.
provisional application No. 60/306,178, filed July 18, 2001, which is hereby incorporated by reference in its entirety herein.
Background of the Invention Field of the Invention l0 [00021 The invention relates to apparatus for implanting devices in atrial appendages. The implanted devices may be used to filter or otherwise modify blood flow between the atrial appendage and an associated atrium of the heart to prevent thrombi from escaping from the atrial appendage into the body's blood circulation system. In particular the invention relates to apparatus for percutaneous delivery and implantation of such devices.
Description of the Related Art [0003] There are a number of heart diseases (e. g., coronary artery disease, mitral valve disease) that have various adverse effects on a patient's heart. An adverse effect of certain cardiac diseases, such as mitral valve disease, is atrial (or auricular) fibrillation. Atrial fibrillation leads to depressed cardiac output. A high incidence of thromboembolic (i.e., blood clot particulate) phenomena is associated with atrial fibrillation, and the left atrial appendage (LAA) is frequently the source of the emboli (particulates).
[00041 Thrombi (i.e., blood clots) formation in the LAA may be due to stasis within the fibrillating and inadequately emptying LAA. Blood pooling in the atrial appendage is conducive to the formation of blood clots.
Blood clots may accumulate, and build upon themselves.
Small or large fragments of the blood clots may break off and propagate out from the atrial appendage into the atrium. The blood clot fragments can then enter the body's blood circulation and embolize distally into the blood stream.
[00057 Serious medical problems result from the migration of blood clot fragments from the atrial appendage into the body's blood stream. Blood from the left atrium and ventricle circulates to the heart muscle, the brain, and other body organs, supplying them with necessary oxygen and other nutrients. Emboli generated by blood clots formed in the left atrial appendage may block the arteries through which blood flows to a body organ. The blockage deprives the organ tissues of their normal blood flow and oxygen supply (ischemia), and depending on the body organ involved leads to ischemic events such as heart attacks (heart muscle ischemia) and strokes (brain tissue ischemia).
[00061 It is therefore important to find a means of preventing blood clots from forming in the left atrial appendage. It is also important to find a means to prevent fragments or emboli generated by any blood clots that~~may have formed in the atrial appendages, from propagating through the blood stream to the heart muscle, brain or other body organs.
[0007] Some recently proposed methods of treatment are directed toward implanting a plug-type device in an atrial appendage to occlude the flow of blood therefrom.
[0008] Another treatment method for avoiding thromboembolic events (e.g., heart attacks, strokes, and other ischemic events) involves filtering out harmful emboli from the blood flowing out of atrial appendages.
Co-pending and co-owned U.S. patent application No.
09/428,008, U.S. patent application No. 09/614,091, U.S.
patent application No. 09/642,291, U.S.
patent application No. 09/697,628, U.S.
patent application No. 09/932,512, U.S.
patent application No. 09/960,749, and U.S.
patent application No. 10/094,730, all of which are hereby incorporated by reference in their entireties herein, describe filtering devices which may be implanted in an atrial appendage to filter the blood flow therefrom.
[0009] Common catheterization methods (including transseptal procedures) may be used to implant the devices in the atrial appendages. A narrow diameter catheter delivery tube is passed through the patient's vasculature to provide a conduit or pathway to the patient's atrial appendage. The implant devices generally have an elastic or compressible structure.
This structure allows a device to be reversibly compacted to a small size that is suitable for insertion in the narrow diameter catheter delivery tube. A compacted device is attached to a guide wire or a push rod, and moved through the catheter delivery tube to a deployment position within the patient's heart cavity. Then by remote manipulation, the compacted device may be expanded in situ, and detached from the push rod or guide wire to serve as an atrial appendage implant.
[0010] The success of the atrial implant treatment procedure depends on the deployment of the implant device in an appropriate position and orientation (relative to the atrial appendage). To be effective the device must intercept all of the blood flow through the atrial appendage. For example, for a filter device implant to be successful, the device should be positioned and oriented so that all of the atrial appendage blood flow is directed through device filter elements, and so that there is no seepage around the device.
10011] However, the percutaneous catheterization delivery techniques used for implant delivery (which often rely on operator dexterity) may not be sufficiently precise to place the device in a desirable orientation at the first attempt. Inadvertent movement or instability in the position or orientation of the device delivery catheter tube may make precise placement of an atrial appendage implant device difficult. Placing a device in a suitable deployment position with a desirable orientation may in some cases require repeated position probing or adjustment. Further, properly placed compacted devices, may during subsequent in situ expansion or detachment become dislodged or misoriented.
Under some conditions, it may even be desirable to withdraw a delivered device.
[0012] Co-pending and co-owned U.S. patent application No. 09/932,512 describes a catheterization apparatus having a positioning device or guide, which enables position probing and readjustment of as-delivered implant device positions. Consideration is now being given to additional catheterization apparatus features to enable controlled recovery or repositioning of implanted 5 devices.
Summary of the Invention [0013] The invention provides a catheterization apparatus having a system by which implant devices are attached to a tether during device delivery and deployment. The catheterization apparatus includes a delivery tube that provides a conduit or a pathway for moving implant devices through a patient's~vasculature to internal body cavities. The implant devices may be moved through the delivery tube, and expelled or released from the distal end of the delivery tube for deployment in the internal body cavities. Conventional mechanisms such as a tubular push rod or shaft may be used to move a device through the catheter delivery tube.
[0014] The tether system provides remote mechanical control over implant devices, which are expelled or released from the distal end of a catheter delivery tube into the internal body cavities of a patient. This mechanical control over post deployment devices enables a physician to recover and reposition implant devices as needed.
[0015] In one embodiment of the invention, the tether system includes a wire-dispensing hub connected to the device push rod or shaft. The tether system maybe used with implant devices that have (or those that can be fitted with a suitable wire-connection feature, for example, an eye hole. A flexible wire (or line) is dispensed by the hub. The dispensed wire is threaded through push rod and the implant device wire-connection feature to form a wire loop. A wire leg of the loop extends from the hub, through the tubular device push rod, to the implant device. Another wire leg extends from the implant device back to the hub. The hub may have an anchor post or fixture to which a wire end may be attached or fixed to securely anchor one leg of the wire loop. The hub also may have other securement means, for example, an adjustable line lock, to hold the other "free" leg of the wire loop as needed during the implant catheterization procedure.
[0016] During the implant procedure, the tethered implant device is moved through the catheter delivery tube using the push rod. Additional lengths of wire may be dispensed to lengthen the wire loop as the implant device is moved through and out of the catheter delivery tube if needed. The implant device remains attached or tethered to the wire loop even after it has been expelled from the catheter delivery tube and is deployed in a body cavity.
[0017] Deployed implant devices, which, for example, are not satisfactorily positioned, may be retracted into catheter delivery tube by retracting the push rod with both wire legs securely anchored in the hub. The retracted device may be redeployed or may be completely withdrawn as appropriate. Implant devices which are satisfactorily deployed may be untethered by first deactivating the line lock in the hub to free one wire end of the loop, and by then retracting the push rod so that the free end of the wire loop slides clear of the implant device wire connection feature.
[00181 Other embodiments of the tether system may have other configurations of wires (and wire securement means), which allow mechanical control over a tethered implant device.
[0019] Further features of the invention, its nature and various advantages will be more apparent from the accompanying drawings and the following detailed description.
Brief Description of the Drawings [0020] FIG. 1 is a partial cross sectional view of a heart illustrating a conventional catheter entering a left atrial appendage using a transseptal catheterization procedure.
[0021] FIG. 2 is a schematic cross-sectional view of a catheterization apparatus having a device tether system, which includes a wire-dispensing hub connected to a tubular push rod that is used for moving an implant device through a catheter delivery tube in accordance with the principles of the invention. Also, an exemplary filter implant device tethered to a wire loop is shown deployed in an atrial appendage. The two wire legs of the wire loop are, respectively, shown as being anchored at an anchoring post and at a line lock mechanism in the wire-dispensing hub [0022] FIG. 3 is a schematic cross-sectional view of a catheterization apparatus of FIG. 2 showing the line lock mechanism deactivated to release a leg of the wire loop in preparation for untethering the deployed implant device in accordance with the principles of the invention.
Description of the Preferred Embodiments [0023] Implant devices for filtering or otherwise modifying blood flow between an atrial appendage and its atrium may be attached to a push rod or shaft, and then be~percutaneously delivered to the appendage through a catheter delivery tube inserted in a blood vessel leading to the heart.
[0024] FIG. 1 illustrates, for example, catheter 21 inserted through a femoral vein (not shown) entering the right atrium of the heart through the inferior vena cava 18, and then passing into left atrium 11 through the fossa ovalis 19 or through the septum 29 before entering the left atrial appendage 13. Alternatively (not shown in FIG. 1), catheter 21 may enter the left ventricle 16 of the heart through the aorta 12, and then pass through mitral valve 17 to reach left atrial appendage 13. An implant device (not shown) attached to catheter 21 may be used to prevent thrombus 30 or emboli generated therefrom from migrating into atrium 11.
[0025] The implant devices generally include materials having suitable properties (e. g., radio-opacity) that make it possible to monitor the in-vivo device position during and after the catheterization procedure using external imaging techniques such as radiography or fluoroscopy, echocardiography, and ultrasound. However, the circuitous path of the catheter delivery tube through the patient's vasculature across the cardiac septum may make precise placement of an implant device difficult, even when the operating physician has the benefit of using external imaging techniques to monitor the implant device position during the catheterization procedure.
10026] The present invention provides catheterization apparatus having a device tether system in addition to the conventional features of known catheterization apparatus (e. g., previously disclosed catheterization apparatus described in U.S. patent application No.
09/960,749, and U.S. patent application No. 60/351,898).
A basic feature common to known catheterization apparatus is a device delivery tube, which provides a conduit or pathway for insertion of the implant device into the patient's body. Another basic feature common to known catheterization apparatus is a mechanism such as a push rod or shaft for carrying or moving the implant device through the delivery tube. It will be understood that the inventive catheterization apparatus may in general have one or more nested tubes, wires or shafts, and other features (e. g. the positioning guides that are described in U.S. patent application No. 09/960,749). However for clarity in the description of the present invention herein, and to simplify understanding of the invention, reference will made only to the two previsouly mentioned basic conventional features of the inventive catheterization apparatus.
(0027] In the inventive tether system, the implant device is tethered to a length of flexible line or wire extending through a tubular push rod or shaft. The tether wire allows an operating physician to retain mechanical control over an implant device after it has been expelled from the catheter delivery tube into a body cavity. This mechanical control over post deployment devices enables the physician to recover and reposition implant devices as needed.
10028] The tether system may be used with implant devices that have (or those that can be fitted with) a suitable wire connection feature such as an eye hole. It will also be understood that the device materials have suitable properties (e.g., radio-opacity) that make it possible to monitor the in-vivo device position during and after the catheterization procedure using external imaging techniques, for example, radiography or fluoroscopy, echocardiography, and ultrasound. Exemplary devices, which may be implanted using inventive tether system, are the reversibly expandable filter implant 5 devices having elastic structures described in U.S.
patent application No. 09/428,008, U.S.
patent application No. 09/614,091, U.S.
patent application No. 09/642,291, U.S.
patent application No. 09/697,628, U.S.
10 patent application No. 09/932,512, U.S.
patent application No. 09/960,749, and U.S.
patent application No. 10/094,730. It will be understood that the tether system may also be used with any other type or kind of implant devices, which are amenable to delivery through catheter tubes.
[0029] In one embodiment of the invention, the tether system includes a wire-dispensing hub connected to the distal end of the tubular push rod or shaft. A flexible wire (line, cord, or string) is dispensed in the hub.
The wire may be made of any suitable material, for example, metals, polymers or a combination thereof. A
wire of suitable strength may be fabricated from a single strand or from multiple strands of material. The wire passes through the tubular push rod and out of the proximal end of the push rod. The dispensed wire extending out of the push rod is threaded through the implant device wire-connection feature, and passed back through the push rod to the hub. The wire loop thus formed has a wire leg extending from the hub to the implant device, and another leg extending from the implant device back to the hub. Both ends of the wire loop may be anchored or fixed securely at anchoring fixtures that are provided in the hub. The tethered device may be held firmly against (and carried on) the distal end of the push rod by suitably adjusting the length of the wire loop legs.
[00301 In a catheterization implant procedure, the push rod carrying a tethered device on its (push rod's) distal end may be used to transfer the implant device from outside the patient's body into a body cavity through a pathway formed by the catheter delivery tube.
The implant device may, for example, be a self-expanding device. The device is deployed in the body cavity by pushing it through past the distal end of the catheter delivery tube. The implant device remains tethered to the wire loop even after it has been expelled from the catheter delivery tube.
10031] External imaging techniques may be used to verify the position of the deployed device. Alternative diagnostic means, for example, electronic monitoring of the patient's physiological parameters may also be used to assess the suitability of the deployed device.
[0032] Deployed implant devices, which, for example, are not satisfactorily positioned or oriented, may be retracted into catheter delivery tube by pulling the push rod out of the catheter delivery tube. The backward motion of the push rod causes the wire loop to mechanically pull the tethered device into the catheter delivery tube. Because of its elastic structure the implant device is compressed to its compact size as it is retracted into the delivery tube. The operating physician may attempt to reposition and redeploy the retracted device in a more satisfactory position or orientation by moving the push rod forward to again expel the retracted device from the catheter delivery tube.
Before attempts to redeploy the retracted device are made, the catheter delivery tube itself may be suitably repositioned or stabilized as necessary.
10033] Alternatively, if medically appropriate, the retracted device may be retrieved from the patient's body by pulling back the push rod completely out of the catheter delivery tube.
[0034] Implant devices which are satisfactorily deployed may be untethered by first deactivating the line lock in the hub to free one wire end of the loop, and then retracting the push rod so that the free end of the wire loop slides clear of the implant device wire connection feature.
[0035] FIG. 2 schematically illustrates.portions of catheterization apparatus 200 having a device tether system. Catheterization apparatus 200 includes a hollow tubular shaft or push rod 210, and a catheter device delivery tube 205. Catheter delivery tube 205 and push rod 210 may be fabricated from any suitable material including metals and polymeric materials, for example, stainless steel and PTFE (e. g., Teflon). Catheter delivery tube 205 may be used to establish a percuatneous passage to a body cavity. Push rod 210 is designed to slide through catheter device delivery tube 205. Push rod 210 may be used to push or carry a compacted implant device through the device delivery tube 205 into a body cavity.
[0036] For example, FIG. 2 schematically shows delivery tube 205 forming a conduit to atrium 235.
Further, FIG 2.shows filter implant device 230, which has expelled through device delivery tube 205, and deployed in a patient's left atrial appendage 240. Implant device 230 is provided with a eye hole 235 at its distal end.
[0037] A wire-dispensing hub 220 is mechanically connected to the proximal end of push rod 210. Hub 220 has a container-like structure, and may be fabricated from any suitable materials including metals and polymeric materials. Wire post 224 and line lock fixture 222, are disposed on an interior wall of hub 220. Line lock fixture 222 includes posts 222a, 222b, and 222c.
Hub 220 may be provided with a removable access cover (not shown) 'to provide access to the interior of hub 220.
(0038] Implant device 230 is tethered by cable 280.
Cable 280 is fixed to wire post 224, for example, by a conventional screw and washer arrangement (not shown).
Cable 280 may, for example, be a polyester~or nylon string. Alternatively, cable 280 may be fabricated from other suitable natural or synthetic fibers. Cable 280 extends from wire post 224 through push rod 210 lumen to implant device 230. Cable 280 passes through eye hole 235 disposed on device 230, and returns through push rod 230 lumen to hub 220. The return end of cable 280 may be wrapped around line lock posts 222a-222c, to anchor cable 280, and to thereby firmly tether implant device 230 on the distal end of push rod 210. In alternative designs of hub 220, line lock 222 may include moving levers, reels, rollers, or other mechanical structures to grip, pinch, or other wise hold and anchor the return end of cable 280. In this fashion, implant device 230 is tethered by the wire loop that is formed by cable 280 with leg 280a extending from wire post 224 to implant device 230, and leg 280b extending from the device 230 to hub 220. Implant device 230 remains tethered after it has been expelled from catheter delivery tube 205 and deployed in atrial appendage 240, as shown in FIG. 2.
[0039] To untether implanted device 230, the end of leg 280 may be unwrapped from around posts 222a, b and c, to free leg 280b from line lock 222. Push rod 210 (with connected hub 220) may then be pulled back out of catheter delivery tube 205. This back ward movement causes cable 280 to slide out of eye hole 235 and to thereby untether device 230. Fig. 3 schematically illustrates the portions of catheterization apparatus 200 shown in FIG. 2 during the untethering procedure. In FIG. 3, cable leg 280b is shown as free and unattached to line lock 222. Push rod 210 is shown as having moved back into cathter device delivery tube 205, and disengaged from device 230. Further, back ward movement of push rod 210 into catheter device delivery tube 205 would cause the free end of cable 280 to completely slide out of eye hole 235 (not shown).
[0040] It will be understood that the foregoing is only illustrative of the principles of the invention, and that various modifications can be made by those skilled in the art without departing from the scope and spirit of the invention. It will be understood that terms like "distal" and "proximal", "forward" and "backward", "front" and "rear", and other directional or orientational terms are used herein only for convenience, and that no fixed or absolute orientations are intended by the use of these terms.

Claims (26)

Claims
1. A catheterization apparatus for implanting a device in an internal body cavity, comprising:
a delivery tube for establishing a conduit for passage of said device to said body cavity;
a push rod for moving said device through said a delivery tube; and a releasable tether attached to said device for mechanical control over said device after it has been placed in said body cavity.
2. The apparatus of claim 1 wherein said push rod comprises a hollow tube.
3. The apparatus of claim 1 wherein said tether comprises material selected from the group of metals, polymers, natural fibers, synthetic fibers and any combination thereof.
4. The apparatus of claim 1 wherein said push rod is connected to a hub disposed on an end of said push rod, and wherein said tether extends from said hub to said implant device disposed on the other end of said push rod.
5. The apparatus of claim 4 wherein said hub comprises a wire-anchoring fixture, and wherein said tether comprises a wire loop with a wire end secured at said wire-anchoring fixture.
6. A method for positioning a catheter-implanted device in a body cavity, comprising:
providing a catheterization apparatus comprising:
a delivery tube;
a push rod for moving said device through said a delivery tube; and a releasable tether attached to said device for mechanical control over said device after it has been placed in said body cavity;
using said delivery tube to establish a conduit for passage of said device to said body cavity;
attaching said tether to said device, using said push rod to move said tethered device through said delivery tube; and expelling said tethered device into the body cavity.
7. The method of claim 6 further comprising detaching said tether.
8. The method of claim 6 further comprising assessing the position of said expelled device.
9. The method of claim 8 further comprising using said tether to mechanically retract said expelled device back into said delivery tube.
10. The method of claim 8 further comprising expelling said retracted device in said body cavity to reposition said device.
11. The method of claim 6 wherein said providing a catheterization apparatus further comprises providing said push rod with a hollow tubular structure.
12. The method of claim 6 further comprising releasably anchoring said releasable tether at one end of said push rod.
13. An apparatus for implanting a device in an atrial appendage, comprising:
a delivery tube for establishing a conduit through the body's vasculature for passage of said device to said atrial appendage;
a shaft for transporting said device through said delivery tube, wherein said shaft comprises a device tether for mechanical control over said device after it has been placed in said body cavity.
14. The apparatus of claim 13 wherein said shaft comprises a hollow tube.
15. The apparatus of claim 13 wherein said tether comprises material selected from the group of metals, polymers, natural fibers, synthetic fibers, and any combination thereof.
16. The apparatus of claim 13 wherein said shaft is connected to a hub disposed on an end of said shaft, and wherein said tether extends from said hub to said implant device disposed on the other end of said shaft.
17. The apparatus of claim 16 wherein said hub comprises a wire-anchoring fixture, and wherein said tether comprises a wire loop with a wire end secured at said wire-anchoring fixture.
18. A method for implanting a device in an atrium's appendage, comprising providing a catheterization apparatus comprising:
a delivery tube for establishing a conduit through the body's vasculature for passage of said device to said atrial appendage;
a shaft for transporting said device through said delivery tube, wherein said shaft comprises a device tether for mechanical control over said device after it has been placed in said atrial appendage;
percutaneously advancing said delivery tube through a blood vessel to said appendage;
attaching said tether to said device;
using said shaft to move said tethered device through said delivery tube; and expelling said tethered device into said appendage.
19. The method of claim 18 further comprising untethering said expelled device.
20. The method of claim 18 further comprising assessing the position of said expelled device.
21. The method of claim 20 wherein said assessing comprises using an external imaging technique.
22. The method of claim 21 further comprising using said assessing to decide to retract said expelled device into said delivery tube.
23. The method of claim 18 further comprising using said tether to mechanically retract said expelled device back into said delivery tube device.
24. The method of claim 23 further comprising expelling said retracted device in said appendage to reposition said device.
25. The method of claim 18 wherein said providing a catheterization apparatus further comprises providing said shaft with a hollow tubular structure.
26. The method of claim 18 further comprising releasably anchoring said tether at one end of said push rod.
CA002454017A 2001-07-18 2002-07-18 Implantation catheter with tether system Abandoned CA2454017A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US30617801P 2001-07-18 2001-07-18
US60/306,178 2001-07-18
US10/198,261 2002-07-16
US10/198,261 US7011671B2 (en) 2001-07-18 2002-07-16 Cardiac implant device tether system and method
PCT/US2002/023201 WO2003008030A2 (en) 2001-07-18 2002-07-18 Implantation catheter with tether system

Publications (1)

Publication Number Publication Date
CA2454017A1 true CA2454017A1 (en) 2003-01-30

Family

ID=26893616

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002454017A Abandoned CA2454017A1 (en) 2001-07-18 2002-07-18 Implantation catheter with tether system

Country Status (7)

Country Link
US (1) US7011671B2 (en)
EP (1) EP1406689A2 (en)
JP (1) JP2004535257A (en)
CN (1) CN1543367A (en)
CA (1) CA2454017A1 (en)
IL (1) IL159833A0 (en)
WO (1) WO2003008030A2 (en)

Families Citing this family (215)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8845711B2 (en) * 2007-10-19 2014-09-30 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US7713282B2 (en) * 1998-11-06 2010-05-11 Atritech, Inc. Detachable atrial appendage occlusion balloon
US7044134B2 (en) 1999-11-08 2006-05-16 Ev3 Sunnyvale, Inc Method of implanting a device in the left atrial appendage
US7128073B1 (en) 1998-11-06 2006-10-31 Ev3 Endovascular, Inc. Method and device for left atrial appendage occlusion
US6488689B1 (en) 1999-05-20 2002-12-03 Aaron V. Kaplan Methods and apparatus for transpericardial left atrial appendage closure
AU5812299A (en) * 1999-09-07 2001-04-10 Microvena Corporation Retrievable septal defect closure device
US6575997B1 (en) 1999-12-23 2003-06-10 Endovascular Technologies, Inc. Embolic basket
US6660021B1 (en) 1999-12-23 2003-12-09 Advanced Cardiovascular Systems, Inc. Intravascular device and system
US6402771B1 (en) 1999-12-23 2002-06-11 Guidant Endovascular Solutions Snare
US7918820B2 (en) 1999-12-30 2011-04-05 Advanced Cardiovascular Systems, Inc. Device for, and method of, blocking emboli in vessels such as blood arteries
US6695813B1 (en) 1999-12-30 2004-02-24 Advanced Cardiovascular Systems, Inc. Embolic protection devices
US6551344B2 (en) * 2000-04-26 2003-04-22 Ev3 Inc. Septal defect occluder
US6964670B1 (en) 2000-07-13 2005-11-15 Advanced Cardiovascular Systems, Inc. Embolic protection guide wire
US8690910B2 (en) 2000-12-07 2014-04-08 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US6695867B2 (en) 2002-02-21 2004-02-24 Integrated Vascular Systems, Inc. Plunger apparatus and methods for delivering a closure device
US6506203B1 (en) 2000-12-19 2003-01-14 Advanced Cardiovascular Systems, Inc. Low profile sheathless embolic protection system
US8961541B2 (en) * 2007-12-03 2015-02-24 Cardio Vascular Technologies Inc. Vascular closure devices, systems, and methods of use
US8992567B1 (en) 2001-04-24 2015-03-31 Cardiovascular Technologies Inc. Compressible, deformable, or deflectable tissue closure devices and method of manufacture
US20090143808A1 (en) * 2001-04-24 2009-06-04 Houser Russell A Guided Tissue Cutting Device, Method of Use and Kits Therefor
US20080109030A1 (en) * 2001-04-24 2008-05-08 Houser Russell A Arteriotomy closure devices and techniques
US9345460B2 (en) 2001-04-24 2016-05-24 Cardiovascular Technologies, Inc. Tissue closure devices, device and systems for delivery, kits and methods therefor
US7338514B2 (en) 2001-06-01 2008-03-04 St. Jude Medical, Cardiology Division, Inc. Closure devices, related delivery methods and tools, and related methods of use
EP1392394A4 (en) * 2001-06-04 2005-05-18 Albert Einstein Healthcare Network Cardiac stimulating apparatus having a blood clot filter and atrial pacer
US6599307B1 (en) 2001-06-29 2003-07-29 Advanced Cardiovascular Systems, Inc. Filter device for embolic protection systems
US7338510B2 (en) 2001-06-29 2008-03-04 Advanced Cardiovascular Systems, Inc. Variable thickness embolic filtering devices and method of manufacturing the same
US7288105B2 (en) 2001-08-01 2007-10-30 Ev3 Endovascular, Inc. Tissue opening occluder
US6638294B1 (en) 2001-08-30 2003-10-28 Advanced Cardiovascular Systems, Inc. Self furling umbrella frame for carotid filter
US6592606B2 (en) 2001-08-31 2003-07-15 Advanced Cardiovascular Systems, Inc. Hinged short cage for an embolic protection device
US8262689B2 (en) 2001-09-28 2012-09-11 Advanced Cardiovascular Systems, Inc. Embolic filtering devices
US7241304B2 (en) 2001-12-21 2007-07-10 Advanced Cardiovascular Systems, Inc. Flexible and conformable embolic filtering devices
US7976564B2 (en) * 2002-05-06 2011-07-12 St. Jude Medical, Cardiology Division, Inc. PFO closure devices and related methods of use
US7252675B2 (en) 2002-09-30 2007-08-07 Advanced Cardiovascular, Inc. Embolic filtering devices
US7331973B2 (en) 2002-09-30 2008-02-19 Avdanced Cardiovascular Systems, Inc. Guide wire with embolic filtering attachment
US20040088000A1 (en) 2002-10-31 2004-05-06 Muller Paul F. Single-wire expandable cages for embolic filtering devices
CA2512203C (en) 2002-12-02 2012-10-23 Gi Dynamics, Inc. Bariatric sleeve
US7678068B2 (en) * 2002-12-02 2010-03-16 Gi Dynamics, Inc. Atraumatic delivery devices
US7608114B2 (en) 2002-12-02 2009-10-27 Gi Dynamics, Inc. Bariatric sleeve
US7025791B2 (en) * 2002-12-02 2006-04-11 Gi Dynamics, Inc. Bariatric sleeve
US7780700B2 (en) * 2003-02-04 2010-08-24 ev3 Endovascular, Inc Patent foramen ovale closure system
US8591540B2 (en) 2003-02-27 2013-11-26 Abbott Cardiovascular Systems Inc. Embolic filtering devices
US8372112B2 (en) * 2003-04-11 2013-02-12 St. Jude Medical, Cardiology Division, Inc. Closure devices, related delivery methods, and related methods of use
US20040267306A1 (en) 2003-04-11 2004-12-30 Velocimed, L.L.C. Closure devices, related delivery methods, and related methods of use
US7597704B2 (en) * 2003-04-28 2009-10-06 Atritech, Inc. Left atrial appendage occlusion device with active expansion
US7735493B2 (en) 2003-08-15 2010-06-15 Atritech, Inc. System and method for delivering a left atrial appendage containment device
WO2005034764A1 (en) * 2003-09-12 2005-04-21 Nmt Medical, Inc. Device and methods for preventing formation of thrombi in the left atrial appendage
US7846168B2 (en) 2003-10-09 2010-12-07 Sentreheart, Inc. Apparatus and method for the ligation of tissue
US7056286B2 (en) 2003-11-12 2006-06-06 Adrian Ravenscroft Medical device anchor and delivery system
US7892251B1 (en) 2003-11-12 2011-02-22 Advanced Cardiovascular Systems, Inc. Component for delivering and locking a medical device to a guide wire
EP1708655A1 (en) 2003-12-09 2006-10-11 GI Dynamics, Inc. Apparatus to be anchored within the gastrointestinal tract and anchoring method
US7572228B2 (en) * 2004-01-13 2009-08-11 Remon Medical Technologies Ltd Devices for fixing a sensor in a lumen
US20050187568A1 (en) * 2004-02-20 2005-08-25 Klenk Alan R. Devices and methods for closing a patent foramen ovale with a coil-shaped closure device
US20090132035A1 (en) * 2004-02-27 2009-05-21 Roth Alex T Prosthetic Heart Valves, Support Structures and Systems and Methods for Implanting the Same
CN101683291A (en) 2004-02-27 2010-03-31 奥尔特克斯公司 Prosthetic heart valve delivery systems and methods
US20050234540A1 (en) * 2004-03-12 2005-10-20 Nmt Medical, Inc. Dilatation systems and methods for left atrial appendage
US7678129B1 (en) 2004-03-19 2010-03-16 Advanced Cardiovascular Systems, Inc. Locking component for an embolic filter assembly
US7806846B2 (en) * 2004-03-30 2010-10-05 Nmt Medical, Inc. Restoration of flow in LAA via tubular conduit
US20050234543A1 (en) * 2004-03-30 2005-10-20 Nmt Medical, Inc. Plug for use in left atrial appendage
US8267985B2 (en) 2005-05-25 2012-09-18 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
US20060122522A1 (en) * 2004-12-03 2006-06-08 Abhi Chavan Devices and methods for positioning and anchoring implantable sensor devices
US10390714B2 (en) 2005-01-12 2019-08-27 Remon Medical Technologies, Ltd. Devices for fixing a sensor in a lumen
US9259305B2 (en) 2005-03-31 2016-02-16 Abbott Cardiovascular Systems Inc. Guide wire locking mechanism for rapid exchange and other catheter systems
WO2006110734A2 (en) * 2005-04-07 2006-10-19 Sentreheart, Inc. Apparatus and method for the ligation of tissue
US8273101B2 (en) 2005-05-25 2012-09-25 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
JP4945714B2 (en) 2005-05-25 2012-06-06 タイコ ヘルスケア グループ リミテッド パートナーシップ System and method for supplying and deploying an occlusion device in a conduit
US20060282115A1 (en) * 2005-06-09 2006-12-14 Abrams Robert M Thin film vessel occlusion device
US7972359B2 (en) 2005-09-16 2011-07-05 Atritech, Inc. Intracardiac cage and method of delivering same
US20070135826A1 (en) 2005-12-01 2007-06-14 Steve Zaver Method and apparatus for delivering an implant without bias to a left atrial appendage
US8060214B2 (en) * 2006-01-05 2011-11-15 Cardiac Pacemakers, Inc. Implantable medical device with inductive coil configurable for mechanical fixation
US7519424B2 (en) * 2006-01-30 2009-04-14 Medtronic, Inc. Intravascular medical device
US7616992B2 (en) * 2006-01-30 2009-11-10 Medtronic, Inc. Intravascular medical device
US7627376B2 (en) 2006-01-30 2009-12-01 Medtronic, Inc. Intravascular medical device
US8147541B2 (en) * 2006-02-27 2012-04-03 Aortx, Inc. Methods and devices for delivery of prosthetic heart valves and other prosthetics
US8403981B2 (en) * 2006-02-27 2013-03-26 CardiacMC, Inc. Methods and devices for delivery of prosthetic heart valves and other prosthetics
US8585594B2 (en) * 2006-05-24 2013-11-19 Phoenix Biomedical, Inc. Methods of assessing inner surfaces of body lumens or organs
JP2009540952A (en) * 2006-06-20 2009-11-26 エーオーテックス, インコーポレイテッド Torque shaft and torque drive
WO2007149905A2 (en) * 2006-06-20 2007-12-27 Aortx, Inc. Prosthetic valve implant site preparation techniques
CN101505686A (en) * 2006-06-20 2009-08-12 奥尔特克斯公司 Prosthetic heart valves, support structures and systems and methods for implanting the same
CA2657446A1 (en) * 2006-06-21 2007-12-27 Aortx, Inc. Prosthetic valve implantation systems
US8529597B2 (en) 2006-08-09 2013-09-10 Coherex Medical, Inc. Devices for reducing the size of an internal tissue opening
US20080039743A1 (en) * 2006-08-09 2008-02-14 Coherex Medical, Inc. Methods for determining characteristics of an internal tissue opening
CA2661959A1 (en) * 2006-09-06 2008-03-13 Aortx, Inc. Prosthetic heart valves, systems and methods of implanting
US8676349B2 (en) 2006-09-15 2014-03-18 Cardiac Pacemakers, Inc. Mechanism for releasably engaging an implantable medical device for implantation
US8057399B2 (en) * 2006-09-15 2011-11-15 Cardiac Pacemakers, Inc. Anchor for an implantable sensor
US20080108904A1 (en) * 2006-11-08 2008-05-08 Cardiac Pacemakers, Inc. Implant for securing a sensor in a vessel
US20170119516A1 (en) * 2007-01-31 2017-05-04 Stanley Batiste Intravenous Filter with Guidewire and Catheter Access Guide
PL2574287T3 (en) 2007-03-30 2015-10-30 Sentreheart Inc Devices for closing the left atrial appendage
US8204599B2 (en) * 2007-05-02 2012-06-19 Cardiac Pacemakers, Inc. System for anchoring an implantable sensor in a vessel
US20080283066A1 (en) * 2007-05-17 2008-11-20 Cardiac Pacemakers, Inc. Delivery device for implantable sensors
US20080294175A1 (en) * 2007-05-21 2008-11-27 Epitek, Inc. Left atrial appendage closure
WO2008147678A1 (en) * 2007-05-21 2008-12-04 Epitek, Inc. Left atrial appendage closure
US8216209B2 (en) 2007-05-31 2012-07-10 Abbott Cardiovascular Systems Inc. Method and apparatus for delivering an agent to a kidney
EP2157937B1 (en) 2007-06-04 2017-03-22 Sequent Medical, Inc. Devices for treatment of vascular defects
AU2008266678B2 (en) 2007-06-14 2013-06-20 Cardiac Pacemakers, Inc. Multi-element acoustic recharging system
US7867273B2 (en) 2007-06-27 2011-01-11 Abbott Laboratories Endoprostheses for peripheral arteries and other body vessels
EP3272297B1 (en) 2007-09-20 2020-04-22 Sentreheart, Inc. Devices for remote suture management
US9242070B2 (en) * 2007-12-21 2016-01-26 MicronVention, Inc. System and method for locating detachment zone of a detachable implant
WO2009086214A1 (en) 2007-12-21 2009-07-09 Microvention, Inc. A system and method of detecting implant detachment
EP3970633A1 (en) 2008-04-21 2022-03-23 Covidien LP Braid-ball embolic devices and delivery systems
US9597087B2 (en) * 2008-05-02 2017-03-21 Sequent Medical, Inc. Filamentary devices for treatment of vascular defects
US9675482B2 (en) 2008-05-13 2017-06-13 Covidien Lp Braid implant delivery systems
JP5362828B2 (en) * 2008-07-15 2013-12-11 カーディアック ペースメイカーズ, インコーポレイテッド Implant assist for an acoustically enabled implantable medical device
CN102137626A (en) * 2008-07-22 2011-07-27 微治疗公司 Vascular remodeling device
US10695126B2 (en) 2008-10-06 2020-06-30 Santa Anna Tech Llc Catheter with a double balloon structure to generate and apply a heated ablative zone to tissue
US8690911B2 (en) 2009-01-08 2014-04-08 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US8694129B2 (en) 2009-02-13 2014-04-08 Cardiac Pacemakers, Inc. Deployable sensor platform on the lead system of an implantable device
EP2413843B1 (en) 2009-03-30 2020-04-22 Suzhou Jiecheng Medical Technology Co. Ltd. Sutureless valve prostheses and devices for delivery
JP5612073B2 (en) 2009-04-01 2014-10-22 センターハート・インコーポレイテッドSentreHEART, Inc. Tissue ligation apparatus and its operation
DE102009016481A1 (en) 2009-04-06 2010-10-07 Siemens Aktiengesellschaft Screen-like foldable crown-type closure device i.e. watchman closure device, for partial closure of atrial appendage of heart of patient, has sensor arranged within area of distal end, where device is guidable by supply catheter
WO2010121049A1 (en) * 2009-04-15 2010-10-21 Microvention, Inc. Implant delivery system
CA2958337C (en) 2009-06-17 2019-03-19 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US10064628B2 (en) 2009-06-17 2018-09-04 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US10631969B2 (en) 2009-06-17 2020-04-28 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US9351716B2 (en) 2009-06-17 2016-05-31 Coherex Medical, Inc. Medical device and delivery system for modification of left atrial appendage and methods thereof
US9649115B2 (en) 2009-06-17 2017-05-16 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
MX2012001288A (en) * 2009-07-29 2012-06-19 Bard Inc C R Tubular filter.
US10092427B2 (en) 2009-11-04 2018-10-09 Confluent Medical Technologies, Inc. Alternating circumferential bridge stent design and methods for use thereof
US9649211B2 (en) 2009-11-04 2017-05-16 Confluent Medical Technologies, Inc. Alternating circumferential bridge stent design and methods for use thereof
US20110152993A1 (en) * 2009-11-05 2011-06-23 Sequent Medical Inc. Multiple layer filamentary devices or treatment of vascular defects
US20110202085A1 (en) * 2009-11-09 2011-08-18 Siddharth Loganathan Braid Ball Embolic Device Features
US9211123B2 (en) 2009-12-31 2015-12-15 Cook Medical Technologies Llc Intraluminal occlusion devices and methods of blocking the entry of fluid into bodily passages
CN102740799A (en) * 2010-01-28 2012-10-17 泰科保健集团有限合伙公司 Vascular remodeling device
EP2528541B1 (en) * 2010-01-28 2016-05-18 Covidien LP Vascular remodeling device
US20110224495A1 (en) * 2010-03-12 2011-09-15 Tyco Healthcare Group Lp Surgical access port
WO2011129893A1 (en) 2010-04-13 2011-10-20 Sentreheart, Inc. Methods and devices for treating atrial fibrillation
WO2011130081A1 (en) 2010-04-14 2011-10-20 Microvention, Inc. Implant delivery device
EP2584978B1 (en) 2010-06-22 2018-08-01 Covidien LP Apparatus for storage and/or introduction of implant for hollow anatomical structure
US9247942B2 (en) 2010-06-29 2016-02-02 Artventive Medical Group, Inc. Reversible tubal contraceptive device
EP2588042A4 (en) 2010-06-29 2015-03-18 Artventive Medical Group Inc Reducing flow through a tubular structure
US8998947B2 (en) 2010-09-10 2015-04-07 Medina Medical, Inc. Devices and methods for the treatment of vascular defects
EP2613735B1 (en) 2010-09-10 2018-05-09 Covidien LP Devices for the treatment of vascular defects
WO2012043081A1 (en) 2010-09-27 2012-04-05 テルモ株式会社 Medical device
US9149277B2 (en) 2010-10-18 2015-10-06 Artventive Medical Group, Inc. Expandable device delivery
GB201017921D0 (en) 2010-10-22 2010-12-01 Ucl Business Plc Prothesis delivery system
US8864676B2 (en) 2010-10-29 2014-10-21 Medtronic Vascular, Inc. Implantable medical sensor and fixation system
US8475372B2 (en) 2010-10-29 2013-07-02 Medtronic Vascular, Inc. Implantable medical sensor and fixation system
AU2012214240B2 (en) 2011-02-11 2015-03-12 Covidien Lp Two-stage deployment aneurysm embolization devices
US20120245674A1 (en) 2011-03-25 2012-09-27 Tyco Healthcare Group Lp Vascular remodeling device
US8727996B2 (en) 2011-04-20 2014-05-20 Medtronic Vascular, Inc. Delivery system for implantable medical device
CN103747751B (en) 2011-06-08 2016-12-28 森特里心脏股份有限公司 Knot of tissue bundling device and tensioner thereof
WO2013049448A1 (en) 2011-09-29 2013-04-04 Covidien Lp Vascular remodeling device
CN104168843B (en) 2011-11-01 2017-03-08 科赫里克斯医疗股份有限公司 For revising the medical treatment device of left auricle and the system and method for correlation
WO2013120082A1 (en) 2012-02-10 2013-08-15 Kassab Ghassan S Methods and uses of biological tissues for various stent and other medical applications
US9155647B2 (en) 2012-07-18 2015-10-13 Covidien Lp Methods and apparatus for luminal stenting
US9351648B2 (en) 2012-08-24 2016-05-31 Medtronic, Inc. Implantable medical device electrode assembly
US9314248B2 (en) 2012-11-06 2016-04-19 Covidien Lp Multi-pivot thrombectomy device
CN104918565B (en) 2012-11-13 2018-04-27 柯惠有限合伙公司 plugging device
US9295571B2 (en) 2013-01-17 2016-03-29 Covidien Lp Methods and apparatus for luminal stenting
US8984733B2 (en) 2013-02-05 2015-03-24 Artventive Medical Group, Inc. Bodily lumen occlusion
US9095344B2 (en) 2013-02-05 2015-08-04 Artventive Medical Group, Inc. Methods and apparatuses for blood vessel occlusion
AU2014214700B2 (en) 2013-02-11 2018-01-18 Cook Medical Technologies Llc Expandable support frame and medical device
EP3378416B1 (en) 2013-03-12 2020-07-29 Sentreheart, Inc. Tissue ligation devices
WO2014164572A1 (en) 2013-03-13 2014-10-09 Kaplan Aaron V Devices and methods for excluding the left atrial appendage
US10617425B2 (en) 2014-03-10 2020-04-14 Conformal Medical, Inc. Devices and methods for excluding the left atrial appendage
US11399842B2 (en) 2013-03-13 2022-08-02 Conformal Medical, Inc. Devices and methods for excluding the left atrial appendage
US9463105B2 (en) 2013-03-14 2016-10-11 Covidien Lp Methods and apparatus for luminal stenting
WO2014159447A2 (en) 2013-03-14 2014-10-02 Cardiovantage Medical, Inc. Embolic protection devices and methods of use
US11406497B2 (en) 2013-03-14 2022-08-09 Jc Medical, Inc. Heart valve prosthesis
US11259923B2 (en) 2013-03-14 2022-03-01 Jc Medical, Inc. Methods and devices for delivery of a prosthetic valve
CN105142545B (en) 2013-03-15 2018-04-06 柯惠有限合伙公司 Locking device
CN105050489B (en) * 2013-03-15 2018-02-13 微创医学科技有限公司 Implantable anchoring piece
WO2014150288A2 (en) 2013-03-15 2014-09-25 Insera Therapeutics, Inc. Vascular treatment devices and methods
US9737308B2 (en) 2013-06-14 2017-08-22 Artventive Medical Group, Inc. Catheter-assisted tumor treatment
US9636116B2 (en) 2013-06-14 2017-05-02 Artventive Medical Group, Inc. Implantable luminal devices
US10149968B2 (en) 2013-06-14 2018-12-11 Artventive Medical Group, Inc. Catheter-assisted tumor treatment
US9737306B2 (en) 2013-06-14 2017-08-22 Artventive Medical Group, Inc. Implantable luminal devices
US9078658B2 (en) 2013-08-16 2015-07-14 Sequent Medical, Inc. Filamentary devices for treatment of vascular defects
US9955976B2 (en) 2013-08-16 2018-05-01 Sequent Medical, Inc. Filamentary devices for treatment of vascular defects
EP3062711B1 (en) 2013-10-31 2023-06-21 AtriCure, Inc. Devices for left atrial appendage closure
US9629635B2 (en) 2014-04-14 2017-04-25 Sequent Medical, Inc. Devices for therapeutic vascular procedures
US10363043B2 (en) 2014-05-01 2019-07-30 Artventive Medical Group, Inc. Treatment of incompetent vessels
US10052127B2 (en) 2015-02-25 2018-08-21 Medtronic, Inc. Catheters for deploying implantable medical devices, and associated tethering assemblies and methods
US9375333B1 (en) 2015-03-06 2016-06-28 Covidien Lp Implantable device detachment systems and associated devices and methods
US9724507B2 (en) 2015-03-13 2017-08-08 Medtronic, Inc. Interventional medical systems and associated tethering assemblies and methods
CN107530070B (en) 2015-03-24 2021-09-28 森特里心脏股份有限公司 Device and method for left atrial appendage closure
WO2016154488A2 (en) 2015-03-24 2016-09-29 Sentreheart, Inc. Tissue ligation devices and methods therefor
US10130821B2 (en) 2015-04-24 2018-11-20 Medtronic, Inc. Interventional medical systems and associated tethering assemblies and methods
US9468773B1 (en) 2015-05-07 2016-10-18 Medtronic, Inc. Interventional medical systems and implantable medical devices including tethering features, and associated methods
US9757574B2 (en) 2015-05-11 2017-09-12 Rainbow Medical Ltd. Dual chamber transvenous pacemaker
US10478194B2 (en) 2015-09-23 2019-11-19 Covidien Lp Occlusive devices
WO2017083660A1 (en) 2015-11-13 2017-05-18 Cardiac Pacemakers, Inc. Bioabsorbable left atrial appendage closure with endothelialization promoting surface
EP3416568A4 (en) 2016-02-16 2019-10-16 Insera Therapeutics, Inc. Aspiration devices and anchored flow diverting devices
JP7137472B2 (en) 2016-02-26 2022-09-14 センターハート・インコーポレイテッド Device and method for left atrial appendage closure
US10327809B2 (en) 2016-02-29 2019-06-25 Covidien Lp Clip collar advanced fixation
US10813644B2 (en) 2016-04-01 2020-10-27 Artventive Medical Group, Inc. Occlusive implant and delivery system
US11331140B2 (en) 2016-05-19 2022-05-17 Aqua Heart, Inc. Heated vapor ablation systems and methods for treating cardiac conditions
US10300287B2 (en) 2016-06-27 2019-05-28 Medtronic, Inc. Delivery systems for implantable medical devices, and associated tethering assemblies and methods
US10478195B2 (en) 2016-08-04 2019-11-19 Covidien Lp Devices, systems, and methods for the treatment of vascular defects
US11026782B2 (en) 2016-08-11 2021-06-08 4C Medical Technologies, Inc. Heart chamber prosthetic valve implant with elevated valve section and single chamber anchoring for preservation, supplementation and/or replacement of native valve function
US11426172B2 (en) 2016-10-27 2022-08-30 Conformal Medical, Inc. Devices and methods for excluding the left atrial appendage
JP7071350B2 (en) 2016-10-27 2022-05-18 コンフォーマル・メディカル・インコーポレイテッド Devices and methods for eliminating the left atrial appendage
EP3614933A1 (en) 2017-04-27 2020-03-04 Boston Scientific Scimed, Inc. Occlusive medical device with fabric retention barb
US10675036B2 (en) 2017-08-22 2020-06-09 Covidien Lp Devices, systems, and methods for the treatment of vascular defects
EP3459469A1 (en) 2017-09-23 2019-03-27 Universität Zürich Medical occluder device
JP7013591B2 (en) 2017-12-18 2022-01-31 ボストン サイエンティフィック サイムド,インコーポレイテッド Closure device with expandable members
CN211213690U (en) 2018-01-07 2020-08-11 苏州杰成医疗科技有限公司 Control unit for controlling a valve delivery device to deliver a valve prosthesis
CN210582753U (en) 2018-01-07 2020-05-22 苏州杰成医疗科技有限公司 Delivery system for delivering a valve prosthesis
WO2019144072A1 (en) 2018-01-19 2019-07-25 Boston Scientific Scimed, Inc. Occlusive medical device with delivery system
US11234706B2 (en) 2018-02-14 2022-02-01 Boston Scientific Scimed, Inc. Occlusive medical device
WO2019213274A1 (en) 2018-05-02 2019-11-07 Boston Scientific Scimed, Inc. Occlusive sealing sensor system
EP3793450A1 (en) 2018-05-15 2021-03-24 Boston Scientific Scimed, Inc. Occlusive medical device with charged polymer coating
US11123079B2 (en) 2018-06-08 2021-09-21 Boston Scientific Scimed, Inc. Occlusive device with actuatable fixation members
US11672541B2 (en) 2018-06-08 2023-06-13 Boston Scientific Scimed, Inc. Medical device with occlusive member
CN112566566A (en) 2018-07-06 2021-03-26 波士顿科学医学有限公司 Closed medical device
EP3840670B1 (en) 2018-08-21 2023-11-15 Boston Scientific Scimed, Inc. Projecting member with barb for cardiovascular devices
US11857441B2 (en) 2018-09-04 2024-01-02 4C Medical Technologies, Inc. Stent loading device
US11129621B2 (en) 2018-12-17 2021-09-28 Covidien Lp Devices, systems, and methods for the treatment of vascular defects
WO2020163507A1 (en) 2019-02-08 2020-08-13 Conformal Medical, Inc. Devices and methods for excluding the left atrial appendage
US11317921B2 (en) 2019-03-15 2022-05-03 Sequent Medical, Inc. Filamentary devices for treatment of vascular defects
EP3908208A4 (en) 2019-03-15 2022-10-19 Sequent Medical, Inc. Filamentary devices having a flexible joint for treatment of vascular defects
JP2022525316A (en) 2019-03-15 2022-05-12 シークエント メディカル インコーポレイテッド Filamentous devices for the treatment of angiopathy
US11369355B2 (en) 2019-06-17 2022-06-28 Coherex Medical, Inc. Medical device and system for occluding a tissue opening and method thereof
US11540838B2 (en) 2019-08-30 2023-01-03 Boston Scientific Scimed, Inc. Left atrial appendage implant with sealing disk
CN114630627A (en) 2019-11-04 2022-06-14 柯惠有限合伙公司 Devices, systems, and methods for treating intracranial aneurysms
EP4125634A1 (en) 2020-03-24 2023-02-08 Boston Scientific Scimed Inc. Medical system for treating a left atrial appendage
US11812969B2 (en) 2020-12-03 2023-11-14 Coherex Medical, Inc. Medical device and system for occluding a tissue opening and method thereof

Family Cites Families (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US178283A (en) * 1876-06-06 Improvement in vaginal syringes
US1967318A (en) * 1931-10-02 1934-07-24 Monahan William Apparatus for the treatment of the urethra
US3844302A (en) 1970-09-14 1974-10-29 Telesco Brophey Ltd Collapsible umbrella
US3874388A (en) * 1973-02-12 1975-04-01 Ochsner Med Found Alton Shunt defect closure system
US4007743A (en) * 1975-10-20 1977-02-15 American Hospital Supply Corporation Opening mechanism for umbrella-like intravascular shunt defect closure device
US4603693A (en) * 1977-05-26 1986-08-05 United States Surgical Corporation Instrument for circular surgical stapling of hollow body organs and disposable cartridge therefor
US4341218A (en) * 1978-05-30 1982-07-27 University Of California Detachable balloon catheter
US4585000A (en) * 1983-09-28 1986-04-29 Cordis Corporation Expandable device for treating intravascular stenosis
US4665906A (en) * 1983-10-14 1987-05-19 Raychem Corporation Medical devices incorporating sim alloy elements
US4710192A (en) 1985-12-30 1987-12-01 Liotta Domingo S Diaphragm and method for occlusion of the descending thoracic aorta
US5037810A (en) * 1987-03-17 1991-08-06 Saliba Jr Michael J Medical application for heparin and related molecules
EP0352325A4 (en) * 1988-01-12 1990-05-14 Ki Nii Nejrokhirurgii Occluding device.
US6120437A (en) * 1988-07-22 2000-09-19 Inbae Yoon Methods for creating spaces at obstructed sites endoscopically and methods therefor
US4921484A (en) * 1988-07-25 1990-05-01 Cordis Corporation Mesh balloon catheter device
US4917089A (en) * 1988-08-29 1990-04-17 Sideris Eleftherios B Buttoned device for the transvenous occlusion of intracardiac defects
FR2641692A1 (en) * 1989-01-17 1990-07-20 Nippon Zeon Co Plug for closing an opening for a medical application, and device for the closure plug making use thereof
DE8904371U1 (en) 1989-04-07 1989-06-08 Herzberg, Wolfgang, Dr. Med., 2000 Wedel, De
NL8901350A (en) * 1989-05-29 1990-12-17 Wouter Matthijs Muijs Van De M CLOSURE ASSEMBLY.
US5421832A (en) * 1989-12-13 1995-06-06 Lefebvre; Jean-Marie Filter-catheter and method of manufacturing same
US5041093A (en) * 1990-01-31 1991-08-20 Boston Scientific Corp. Catheter with foraminous anchor
US5171259A (en) 1990-04-02 1992-12-15 Kanji Inoue Device for nonoperatively occluding a defect
US5078736A (en) * 1990-05-04 1992-01-07 Interventional Thermodynamics, Inc. Method and apparatus for maintaining patency in the body passages
US5064435A (en) 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
US5042707A (en) * 1990-10-16 1991-08-27 Taheri Syde A Intravascular stapler, and method of operating same
US5108420A (en) * 1991-02-01 1992-04-28 Temple University Aperture occlusion device
SE467948B (en) 1991-06-14 1992-10-12 Ams Medinvent Sa DEVICE FOR TRANSLUMINAL REMOVAL OR IMPLANTATION OF A STENT AND APPARATUS INCLUDING A SOUND DEVICE
US5735290A (en) * 1993-02-22 1998-04-07 Heartport, Inc. Methods and systems for performing thoracoscopic coronary bypass and other procedures
CA2078530A1 (en) * 1991-09-23 1993-03-24 Jay Erlebacher Percutaneous arterial puncture seal device and insertion tool therefore
US5256146A (en) 1991-10-11 1993-10-26 W. D. Ensminger Vascular catheterization system with catheter anchoring feature
EP0545091B1 (en) * 1991-11-05 1999-07-07 The Children's Medical Center Corporation Occluder for repair of cardiac and vascular defects
DE69226841T2 (en) * 1991-11-05 1999-05-20 Childrens Medical Center Occlusion device for repairing heart and vascular defects
US5282827A (en) * 1991-11-08 1994-02-01 Kensey Nash Corporation Hemostatic puncture closure system and method of use
US5176692A (en) * 1991-12-09 1993-01-05 Wilk Peter J Method and surgical instrument for repairing hernia
US5258042A (en) 1991-12-16 1993-11-02 Henry Ford Health System Intravascular hydrogel implant
US5626605A (en) 1991-12-30 1997-05-06 Scimed Life Systems, Inc. Thrombosis filter
JP3393383B2 (en) * 1992-01-21 2003-04-07 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Septal defect closure device
FR2689388B1 (en) 1992-04-07 1999-07-16 Celsa Lg PERFECTIONALLY RESORBABLE BLOOD FILTER.
US5707362A (en) * 1992-04-15 1998-01-13 Yoon; Inbae Penetrating instrument having an expandable anchoring portion for triggering protrusion of a safety member and/or retraction of a penetrating member
US5637097A (en) * 1992-04-15 1997-06-10 Yoon; Inbae Penetrating instrument having an expandable anchoring portion
US5766246A (en) 1992-05-20 1998-06-16 C. R. Bard, Inc. Implantable prosthesis and method and apparatus for loading and delivering an implantable prothesis
US5527338A (en) 1992-09-02 1996-06-18 Board Of Regents, The University Of Texas System Intravascular device
US5469867A (en) 1992-09-02 1995-11-28 Landec Corporation Cast-in place thermoplastic channel occluder
FR2696092B1 (en) * 1992-09-28 1994-12-30 Lefebvre Jean Marie Kit for medical use composed of a filter and its device for placement in the vessel.
US5382259A (en) * 1992-10-26 1995-01-17 Target Therapeutics, Inc. Vasoocclusion coil with attached tubular woven or braided fibrous covering
US5443454A (en) * 1992-12-09 1995-08-22 Terumo Kabushiki Kaisha Catheter for embolectomy
US5417699A (en) * 1992-12-10 1995-05-23 Perclose Incorporated Device and method for the percutaneous suturing of a vascular puncture site
US5284488A (en) * 1992-12-23 1994-02-08 Sideris Eleftherios B Adjustable devices for the occlusion of cardiac defects
US5797960A (en) * 1993-02-22 1998-08-25 Stevens; John H. Method and apparatus for thoracoscopic intracardiac procedures
US5306234A (en) * 1993-03-23 1994-04-26 Johnson W Dudley Method for closing an atrial appendage
US5353784A (en) 1993-04-02 1994-10-11 The Research Foundation Of Suny Endoscopic device and method of use
US5527322A (en) * 1993-11-08 1996-06-18 Perclose, Inc. Device and method for suturing of internal puncture sites
US5490856A (en) * 1993-12-14 1996-02-13 Untied States Surgical Corporation Purse string stapler
US5591196A (en) * 1994-02-10 1997-01-07 Endovascular Systems, Inc. Method for deployment of radially expandable stents
US5634942A (en) * 1994-04-21 1997-06-03 B. Braun Celsa Assembly comprising a blood filter for temporary or definitive use and a device for implanting it
US5522836A (en) * 1994-06-27 1996-06-04 Target Therapeutics, Inc. Electrolytically severable coil assembly with movable detachment point
US5846261A (en) 1994-07-08 1998-12-08 Aga Medical Corp. Percutaneous catheter directed occlusion devices
US5725552A (en) * 1994-07-08 1998-03-10 Aga Medical Corporation Percutaneous catheter directed intravascular occlusion devices
US5433727A (en) * 1994-08-16 1995-07-18 Sideris; Eleftherios B. Centering buttoned device for the occlusion of large defects for occluding
US5690671A (en) 1994-12-13 1997-11-25 Micro Interventional Systems, Inc. Embolic elements and methods and apparatus for their delivery
US5879366A (en) * 1996-12-20 1999-03-09 W.L. Gore & Associates, Inc. Self-expanding defect closure device and method of making and using
US5643292A (en) * 1995-01-10 1997-07-01 Applied Medical Resources Corporation Percutaneous suturing device
US5702421A (en) 1995-01-11 1997-12-30 Schneidt; Bernhard Closure device for closing a vascular opening, such as patent ductus arteriosus
US5614204A (en) * 1995-01-23 1997-03-25 The Regents Of The University Of California Angiographic vascular occlusion agents and a method for hemostatic occlusion
US5634936A (en) * 1995-02-06 1997-06-03 Scimed Life Systems, Inc. Device for closing a septal defect
US5849005A (en) 1995-06-07 1998-12-15 Heartport, Inc. Method and apparatus for minimizing the risk of air embolism when performing a procedure in a patient's thoracic cavity
US5645558A (en) * 1995-04-20 1997-07-08 Medical University Of South Carolina Anatomically shaped vasoocclusive device and method of making the same
US5681347A (en) 1995-05-23 1997-10-28 Boston Scientific Corporation Vena cava filter delivery system
US5709224A (en) * 1995-06-07 1998-01-20 Radiotherapeutics Corporation Method and device for permanent vessel occlusion
US6132438A (en) * 1995-06-07 2000-10-17 Ep Technologies, Inc. Devices for installing stasis reducing means in body tissue
US5725568A (en) * 1995-06-27 1998-03-10 Scimed Life Systems, Inc. Method and device for recanalizing and grafting arteries
US5749883A (en) * 1995-08-30 1998-05-12 Halpern; David Marcos Medical instrument
DE69612507T2 (en) * 1995-10-30 2001-08-09 Childrens Medical Center SELF-CENTERING, SHIELD-LIKE DEVICE FOR CLOSING A SEPTAL DEFECT
US5769816A (en) * 1995-11-07 1998-06-23 Embol-X, Inc. Cannula with associated filter
US5989281A (en) * 1995-11-07 1999-11-23 Embol-X, Inc. Cannula with associated filter and methods of use during cardiac surgery
EP0950385A3 (en) * 1995-12-14 1999-10-27 Prograft Medical, Inc. Stent-graft deployment apparatus and method
US5749894A (en) * 1996-01-18 1998-05-12 Target Therapeutics, Inc. Aneurysm closure method
NL1002423C2 (en) * 1996-02-22 1997-08-25 Cordis Europ Temporary filter catheter.
US5885258A (en) * 1996-02-23 1999-03-23 Memory Medical Systems, Inc. Medical instrument with slotted memory metal tube
US5733294A (en) * 1996-02-28 1998-03-31 B. Braun Medical, Inc. Self expanding cardiovascular occlusion device, method of using and method of making the same
US5853422A (en) * 1996-03-22 1998-12-29 Scimed Life Systems, Inc. Apparatus and method for closing a septal defect
US5906207A (en) * 1996-04-04 1999-05-25 Merck & Co., Inc. Method for simulating heart failure
AR001590A1 (en) * 1996-04-10 1997-11-26 Jorge Alberto Baccaro Abnormal vascular communications occluder device and applicator cartridge of said device
EP0900051A1 (en) * 1996-05-08 1999-03-10 Salviac Limited An occluder device
US6048331A (en) * 1996-05-14 2000-04-11 Embol-X, Inc. Cardioplegia occluder
US5830228A (en) 1996-05-29 1998-11-03 Urosurge, Inc. Methods and systems for deployment of a detachable balloon at a target site in vivo
US5662671A (en) * 1996-07-17 1997-09-02 Embol-X, Inc. Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries
US5669933A (en) 1996-07-17 1997-09-23 Nitinol Medical Technologies, Inc. Removable embolus blood clot filter
US5823198A (en) 1996-07-31 1998-10-20 Micro Therapeutics, Inc. Method and apparatus for intravasculer embolization
US5941249A (en) * 1996-09-05 1999-08-24 Maynard; Ronald S. Distributed activator for a two-dimensional shape memory alloy
DE942767T1 (en) * 1996-11-27 2000-04-06 Boston Scient Corp MECHANISM FOR ANCHORING AND RELEASING A PERMANENT IMPLANT
US5876367A (en) * 1996-12-05 1999-03-02 Embol-X, Inc. Cerebral protection during carotid endarterectomy and downstream vascular protection during other surgeries
US5776097A (en) * 1996-12-19 1998-07-07 University Of California At Los Angeles Method and device for treating intracranial vascular aneurysms
US5782860A (en) * 1997-02-11 1998-07-21 Biointerventional Corporation Closure device for percutaneous occlusion of puncture sites and tracts in the human body and method
US5851232A (en) 1997-03-15 1998-12-22 Lois; William A. Venous stent
US5836913A (en) 1997-05-02 1998-11-17 Innerdyne, Inc. Device and method for accessing a body cavity
US5855597A (en) * 1997-05-07 1999-01-05 Iowa-India Investments Co. Limited Stent valve and stent graft for percutaneous surgery
US5868708A (en) * 1997-05-07 1999-02-09 Applied Medical Resources Corporation Balloon catheter apparatus and method
US5846260A (en) * 1997-05-08 1998-12-08 Embol-X, Inc. Cannula with a modular filter for filtering embolic material
US5911734A (en) * 1997-05-08 1999-06-15 Embol-X, Inc. Percutaneous catheter and guidewire having filter and medical device deployment capabilities
US5928260A (en) * 1997-07-10 1999-07-27 Scimed Life Systems, Inc. Removable occlusion system for aneurysm neck
US5928192A (en) * 1997-07-24 1999-07-27 Embol-X, Inc. Arterial aspiration
US5944738A (en) * 1998-02-06 1999-08-31 Aga Medical Corporation Percutaneous catheter directed constricting occlusion device
US5935148A (en) * 1998-06-24 1999-08-10 Target Therapeutics, Inc. Detachable, varying flexibility, aneurysm neck bridge
US6033420A (en) * 1998-09-02 2000-03-07 Embol-X, Inc. Trocar introducer system and methods of use
US6051014A (en) * 1998-10-13 2000-04-18 Embol-X, Inc. Percutaneous filtration catheter for valve repair surgery and methods of use
US6068621A (en) * 1998-11-20 2000-05-30 Embol X, Inc. Articulating cannula
US6083239A (en) * 1998-11-24 2000-07-04 Embol-X, Inc. Compliant framework and methods of use
US6080183A (en) * 1998-11-24 2000-06-27 Embol-X, Inc. Sutureless vessel plug and methods of use
US6056720A (en) * 1998-11-24 2000-05-02 Embol-X, Inc. Occlusion cannula and methods of use
US6024755A (en) * 1998-12-11 2000-02-15 Embol-X, Inc. Suture-free clamp and sealing port and methods of use
JP2002537943A (en) * 1999-03-08 2002-11-12 マイクロベナ コーポレーション Minimally invasive medical device placement and retrieval system
US6231589B1 (en) * 1999-03-22 2001-05-15 Microvena Corporation Body vessel filter
US6231561B1 (en) * 1999-09-20 2001-05-15 Appriva Medical, Inc. Method and apparatus for closing a body lumen
US6375670B1 (en) * 1999-10-07 2002-04-23 Prodesco, Inc. Intraluminal filter
US6364895B1 (en) * 1999-10-07 2002-04-02 Prodesco, Inc. Intraluminal filter
US6689150B1 (en) * 1999-10-27 2004-02-10 Atritech, Inc. Filter apparatus for ostium of left atrial appendage
US6551303B1 (en) * 1999-10-27 2003-04-22 Atritech, Inc. Barrier device for ostium of left atrial appendage
US6371971B1 (en) * 1999-11-15 2002-04-16 Scimed Life Systems, Inc. Guidewire filter and methods of use

Also Published As

Publication number Publication date
US7011671B2 (en) 2006-03-14
EP1406689A2 (en) 2004-04-14
CN1543367A (en) 2004-11-03
IL159833A0 (en) 2004-06-20
WO2003008030A2 (en) 2003-01-30
JP2004535257A (en) 2004-11-25
US20030023262A1 (en) 2003-01-30
WO2003008030A3 (en) 2003-04-03
WO2003008030A8 (en) 2004-02-12

Similar Documents

Publication Publication Date Title
US7011671B2 (en) Cardiac implant device tether system and method
US7169164B2 (en) Apparatus for implanting devices in atrial appendages
US7066951B2 (en) Delivery system and method for expandable intracorporeal device
US8568465B2 (en) Device for rechanneling a cavity, organ path or vessel
US5947995A (en) Method and apparatus for removing blood clots and other objects
CN104797205B (en) The development system of implantable medicine equipment
EP3128950B1 (en) A kit for placing a bypass
JP3228493B2 (en) Implant delivery assembly with expandable connection / disconnection mechanism
US6447530B1 (en) Atraumatic anchoring and disengagement mechanism for permanent implant device
US20030057156A1 (en) Atrial filter implants
US7537601B2 (en) Apparatus for capturing objects beyond an operative site utilizing a capture device delivered on a medical guide wire
JP4082736B2 (en) Medical graft connectors and fasteners
JP2003521996A (en) Apparatus and method for delivery of endovascular prostheses
KR20090073036A (en) Percutaneous catheter directed intravascular occlusion devices
CA2392194A1 (en) Loop structures for supporting diagnostic and therapeutic elements in contact with body tissue and expandable push devices for use with same
WO1998023322A1 (en) Atraumatic anchoring and disengagement mechanism for permanent implant device
JP2005500865A (en) System and method for vascular filter retrieval
WO1998055027A2 (en) Minimally invasive medical bypass methods and apparatus using partial relocation of tubular body conduit
AU2002315556A1 (en) Implantation catheter with tether system
US20230240696A1 (en) Clot removal device and method of using same
AU2002245626A1 (en) Atrial filter implants

Legal Events

Date Code Title Description
FZDE Discontinued