CA2459284A1 - Anti-listeria compositions for use in food products - Google Patents

Anti-listeria compositions for use in food products Download PDF

Info

Publication number
CA2459284A1
CA2459284A1 CA002459284A CA2459284A CA2459284A1 CA 2459284 A1 CA2459284 A1 CA 2459284A1 CA 002459284 A CA002459284 A CA 002459284A CA 2459284 A CA2459284 A CA 2459284A CA 2459284 A1 CA2459284 A1 CA 2459284A1
Authority
CA
Canada
Prior art keywords
pediocin
raisin
antimicrobial composition
whey
essentially free
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002459284A
Other languages
French (fr)
Inventor
Kaiser Rajinder Nauth
Zuoxing Zheng
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intercontinental Great Brands LLC
Original Assignee
Kraft Foods Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kraft Foods Holdings Inc filed Critical Kraft Foods Holdings Inc
Publication of CA2459284A1 publication Critical patent/CA2459284A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B4/00General methods for preserving meat, sausages, fish or fish products
    • A23B4/14Preserving with chemicals not covered by groups A23B4/02 or A23B4/12
    • A23B4/18Preserving with chemicals not covered by groups A23B4/02 or A23B4/12 in the form of liquids or solids
    • A23B4/20Organic compounds; Microorganisms; Enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B4/00General methods for preserving meat, sausages, fish or fish products
    • A23B4/14Preserving with chemicals not covered by groups A23B4/02 or A23B4/12
    • A23B4/18Preserving with chemicals not covered by groups A23B4/02 or A23B4/12 in the form of liquids or solids
    • A23B4/20Organic compounds; Microorganisms; Enzymes
    • A23B4/22Microorganisms; Enzymes; Antibiotics
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3454Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
    • A23L3/3463Organic compounds; Microorganisms; Enzymes
    • A23L3/34635Antibiotics
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3454Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
    • A23L3/3463Organic compounds; Microorganisms; Enzymes
    • A23L3/3481Organic compounds containing oxygen
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3454Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
    • A23L3/3463Organic compounds; Microorganisms; Enzymes
    • A23L3/3481Organic compounds containing oxygen
    • A23L3/3508Organic compounds containing oxygen containing carboxyl groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/90Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in food processing or handling, e.g. food conservation

Abstract

Improved antimicrobial compositions are provided. The improved antimicrobial compositions of this invention contain a dairy-allergen-free nisin derived from whey, pediocin, an edible organic acid (e.g., lactic acid), and a phenol-based antioxidant (e.g., tertiary butylhydroquinone). Such improved antimicrobial compositions are useful in imparting improved antibacterial activity to food products, especially products having a relatively high water activity including cooked or uncooked meat products, cheeses, and the like.

Description

ANTI-LISTERIA COMPOSITIONS
FOR USE IN FOOD PRODUCTS
Field of the Invention This invention generally relates to anti-Listeria compositions for use s within food products. The anti-Lisferia compositions provided herein comprise nisin derived from whey, pediocin, lactic acid, and tertiary butylhydroquinone (TBHQ) and are especially useful in food products which are susceptible to detrimental bacterial or other microbiological action.
Background of the Invention 1o The presence of food spoilage organisms and pathogens in foods is a major concern to the food processing industry, government regulatory agencies, and consumers. Elimination of pathogenic contamination has been the subject of a great deal of study in the food industry and in the scientific community. In particular, elimination of Listeria monocytogenes has been the 15 focus of numerous studies and articles. See, e.g., Barnes et al., Morbid.
Mortal. INeekIy Rep. 38:267-268 (1989). Buchanan et al, Appl. Environ.
Microbiol. 55:599-603 (1989); Bailey et al., J. Food Prat. 52:148-150 (1989);
Gitter, Vet Res. 99:336 (1976); and Farber et al., Can. Inst. Food Sci.
Technol. J. 21:430-434 (1988).
2o Numerous attempts have been made to increase the microbiological stability of food products, especially for meat, poultry, and seafood products.
Although far from exhausting, the following is provided to provide an overview of the art with regard to these efforts.

U.S. Patent 5,043,174 used a liquid smoke derivative to inhibit Listeria.
Hop acids and hop acid derivatives in various forms have been used to inhibit Listeria. See, e.g., U.S. Patents 5,082,975, 5,286,506, and 5,455,038.
U.S. Patents 5,573,800 and 5,573,801 provide an antimicrobial solution s that includes raisin and/or pediocin along with a chelator, and processes for using the antimicrobial solution to treat the surface of foods by applying the composition to the entire surface of the food. U.S. Patents 6,110,509, i 6,113,954, 6,136,351, and 6,242,017 used raisin-containing whey to inhibit various microorganisms in food products. See also, Jydegaard et al., Soc.
Appl. Microbiology, 31, 68-72 (2000); Motlagh et al., J. Food Protection, 55, 337-343 (1992); Bhunia et al., J. Appl. Bacteriology, 70, 25-33 (1991). Ming et al., J. Food Sci., 62, 413-415 (1997) reported applying raisin and pediocin "powders° to food packaging materials to inhibit Listeria in meat and poultry products. Fang et al., J. Food Protection, 57, 479-484 (1994) employed raisin ~s with a carbon dioxide atmosphere packaging for inhibition of microorganisms in pork products. Ray, "Pediocin(s) of Pediococcus Acidilactici as a Food Biopresevative," in Food Biopreservatives of Microbial Ori~qin, Chapter 10 (1992), provides a review of the use of antimicrobial compositions based on pediocins.
2o U.S. Patent 5,015,487 provides a method using a lanthionine bacteriocin to treat the surFace of meat products to inhibit contamination.
U.S.
Patent 5,085,873 provides a process for the treatment of a hydrated food product by depositing an antimicrobial mixture containing lactoperoxidase, a thiocyanate, and an oxygen donor on the surtace of the hydrated food 2s product. U.S. Patent 6,039,992 provides a method using quaternary ammonium compounds for inhibiting a broad spectrum of microorganisms (including Listeria) on food products.
Antioxidants (e.g., butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), tertiary butylhydroquinone (TBHQ), and propyl gallate) 3o have been used to provide antimicrobial activity in food products. See, e.g., Gailani et al., J. Food Protection, 47, 428-4.33 (1984); Raccach, J. Food _2_ ~ 02459284 2004-03-O1 _ Safety, 6, 141-170 (1984); Payne et al., J. Food Profection, 52, 151-153 (1989).
Although the art has provided improved protection of food products against microorganisms, there remains a need for even further improvements.
s Thus, it would be desirable to provide improved compositions and methods for imparting antibacterial andlor antimicrobial activity, especially Listeria-resisting activity, to food supplies for commercial channels of trade. It would also be desirable to provide Listeria protection in a simplified manner, especially for use in meat products such as wieners and sliced meat products. It would also be desirable to provide antimicrobial compositions which have more effective antimicrobial activities and especially more effective anti-Listeria activities for use in food products. The present invention provides such methods and compositions.
Summary of the Invention ~5 In accordance with the present invention, improved antimicrobial compositions are provided. The improved antimicrobial compositions of this invention contain a nisin derived from whey, pediocin, an edible organic acid (e.g., lactic acid) and a phenol-based antioxidant (e.g., tertiary butylhydroquinone). Such improved antimicrobial compositions are useful in 2o imparting improved antibacterial activity to food products, especially products having a relatively high water activity including cooked or uncooked meat products, cheeses, and the like. Food products containing such improved antimicrobial compositions have Listeria protection to impart an extra level of protection to food supplies incorporating the improved antimicrobial 2s compositions. The improved antimicrobial compositions are especially useful for providing anti-Listeria~protection for cooked meat products such as wieners and sliced meat products such as luncheon meats.
In a preferred embodiment, the present invention provides an aqueous antimicrobial composition comprising nisin derived from whey, pediocin 3o derived from whey, an edible organic acid, and a phenol-based antioxidant;

wherein the composition has a raisin activity of at least about 900 IUlml, a pediocin activity equivalent to at least about a 16 mm inhibition zone, a phenol-based antioxidant concentration at least about 0.5 percent, a pH of about 3 to about 5, and is essentially free of dairy allergens.
s In another preferred embodiment, the present invention provides an aqueous antimicrobial composition comprising raisin derived from whey, pediocin derived from whey, an edible organic acid, and a phenol-based, antioxidant, wherein the composition has a raisin activity of about 1000 about i 3000 IUlml, a pediocin activity equivalent to at least about a 20 mm inhibition ~ o zone, a phenol-based antioxidant concentration of about 0.75 to about 1.5 percent, a pH of about 3.3 to about 3.5, and is essentially free of dairy allergens.
The present invention also provides a method for inhibiting microbial growth in a food product, said method comprising applying an effective ~s amount of an antimicrobial composition to the food product and sealing the food product and the antimicrobial composition in a package, wherein the antimicrobial composition comprises an aqueous antimicrobial composition comprising raisin derived from whey, pediocin derived from whey, an edible organic acid, and a phenol-based antioxidant; wherein the composition has a 2o raisin activity of at least about 900 IUlml, a pediocin activity equivalent to at least about a 16 mm inhibition zone, a phenol-based antioxidant concentration at least about 0.5 percent, a pH of. about 3 to about 5, and is essentially free of dairy aNergens. Preferably the edible organic acid is lactic acid and the phenol-based antioxidant is tertiary butyihydroquinone (TBHQ).
2s Brief Descriiption of the Drawings Figure 1 is a flow chart illustrating the preparation of a dairy-allergen-free raisin derived from whey which is useful in this invention.
Figure 2 is a flow chart illustrating the preparation of a pediocin useful in this invention.

Detailed Description Food products which can be'enhanced in terms of protection from Listeria development according to the invention are those having significant water levels which enhance the hosting of bacteria including those from the s Listeria species, including Lisferia monocyfogenes. Food products which are especially benefitted by the invention are meats (i.e., meat, poultry, seafood, and the like), processed meat products, sliced meat products, and cheeses.
This invention is especially directed towards providing antimicrobial protection for sausage products, wieners or hot dogs, luncheon meats, poultry, seafood, soft cheeses, pate, and the like. Antibacterial and anti-Listeria attributes can be imparted to these by use of the antimicrobial compositions according to the invention.
The antimicrobial composition of this invention comprises nisin derived from whey, pediocin derived from whey, an edible organic acid, and a phenol-15 based antioxidant; wherein the composition has a nisin activity of at least about 900 Illlml, a pediocin activity equivalent to at least about a 16 mm inhibition zone, a phenol-based antioxidant concentration at least about 0.5 percent, a pH of about 3 to about 5, and is essentially free of dairy allergens.
Both the nisin- and pediocin-containing components are derived from 2o wheys obtained from conventional cheese-making processes. Suitable cheese wheys can be obtained from almost any type of cheese-making process which forms a cheese whey. Suitable cheeses from which the cheese whey may be obtained include, for example, ricotta, mozzarella;
Swiss, Parmesan, cheddar, and the like. Such starting cheese whey will, of 2s course, potentially contain significant levels of dairy allergens. The introduction of such dairy allergens into non-dairy food products potentially would, of course, cause allergenic reactions in some individuals if they were to consume such products. Thus, the introduction of such dairy allergens in such non-dairy products should be avoided. Thus, both the nisin- and 3o pediocin-containing components, as well as all other ingredients added to the antimicrobial compositions of this invention, should be essentially free of dairy allergens if the antimicrobial composition is to be used for non-dairy food products. For purposes of this invention, "essentially free of dairy allergens" is intended to mean less than about 5 ppm, more preferably less than about 2.5 ppm, and most preferably less than about 1 pprn as measured using the Neogen VeratoxT"" milk ELISA test kits and procedures (Neogen Corporation, Lansing, MI).
The cheese whey used to prepare the nisin- and pediocin-containing components is, therefore, preferably treated to remove dairy allergens using ultrafiltration techniques with a filtration cutoff of less than about 12k Dalton molecular weight, preferably less than about 10k Dalton molecular weight.
Generally such techniques will reduce the level of dairy allergens in the cheese whey to below detection limits of the Neogen VeratoxT"" milk ELISA
method to provide cheese whey permeates which are essentially dairy allergen free. Of course, if the antimicrobial solutions of this invention are to be used to treat dairy products (e.g., cheeses), such allergen free materials are not needed.
Figures 1 and 2 illustrate procedures for producing both the nisin- and the pediocin-containing components; respectively, which are essentially dairy allergen frsee. Of course, components used in these procedures after the 2o ultrafiltration step should be essentially dairy allergen free (i.e., non-dairy derived) to prevent reintroduction of dairy allergens. The nisin- and pediocin-containing components are preferably derived from cheese whey (each may be prepared from the same cheese whey or types of cheese whey or from different cheese wheys or types of cheese whey). The cheese whey is 2s subjected to conventional ultrafiltration procedures so as to effectively remove dairy allergens and to produce the allergen free permeate. Generally, a molecular weight cut off of less than about 12k Dalton molecular weight, preferably less than about 10k Dalton molecular weight, is used in the ultrafiltration process. The resulting essentially allergen free cheese whey 3o may then be treated with conventional techniques using appropriate cultures to obtain the nisin- and pediocin-containing components.

As shown in Figure 1, the allergen free permeate is combined with suitable non-diary nutrients (e.g., peptone, yeast extract, and the like) to provide a suitable growth medium for the later added nisin producing cultures.
The nutrient-containing allergen free permeate is then pasteurized (generally s at about 165 to about 195°F for about 30 to about 45 minutes) and then cooled to about 65 to about 100°F before inoculating with a nisin producing culture (generally at about 103 to about 10' cfulml). The inoculated medium is then incubated at about 65 to about 100°F for about 8 to about 24 hours to allow growth the nisin producing cultures. The pH, if necessary, is then 1, adjusted to about 3.5 to about 5.0 with an edible organic acid (e.g., lactic acid) and then held at about 65 to about 100°F for about 1 to about 16 hours.
The resulting mixture is then pasteurized (generally at about 165 to about 195°F
for about 20 to about 45 minutes); the pasteurization step will also inactivate any remaining culture. The fermented broth, which contains nisin, is then ~s collected. Preferably, solids are effectively removed from the broth or permeate by, for example, filtration, centrifugation, or the like. Generally, it is preferred that the permeate is then concentrated in order to increase the nisin activity or concentration of the nisin-containing material. Conventional techniques can be used for this concentration step and can include, for 2o example, flash evaporation, vacuum drying, freeze drying, and the like. .
Generally, the permeated is concentrated by a factor of about 2X to about 8X, and more preferably to about 3X, in order to provide a nisin activity of about 1500 to about 3000 IUlml. This concentration preparation can be stored at refrigeration temperatures for several months without significant loss of 25 activity.
As shown in Figure 2, the allergen free permeate is combined with suitable non-diary nutrients (e.g., glucose, peptone; yeast extract, manganese suffate, and the like) to provide a suitable growth medium for the later added pediocin producing cultures (i.e., Pediococcr). The nutrient-containing so allergen free permeate, preferably with the pH adjusted to about 6 to about 6.7, is then pasteurized (generally at about 165 to about 195°F for about 30 to _7_ about 45 minutes) and then cooled to about 60 to about 110°F before inoculating with a pediocin producing culture (generally at about 103 to about 10' cfu/ml). The inoculated medium is then incubated at about 60 to about 100°F for about 6 to about 18 hours to a pH of about 4.6 to about 5.5 to allow growth of the pediocin producing cultures. The resulting mixture is then pasteurized (generally at about 165 to about 195°F for about 20 to about 45 minutes); the pasteurization step will also inactivate any remaining culture.
The fermented broth, which contains pediocin, is then collected. Preferably, solids are effectively removed using, for example, filtration, centrifugation, or 1o the like. Generally, the pediocin activity is sufficiently high so that concentration is not required. The pediocin can be used as a broth (in which case additional water may not be needed to form the ultimate antimicrobial solution) or concentrate (in which case additional water may be added to form the ultimate antimicrobiaf solution). Generally, the pediocin activity (before any optional concentration step) will be equivalent or higher than an inhibition zone of about 16 mm on an indicator lawn (brain heart infusion (BHI) agar plate seeded with 105 to 106 indicator cells of Listeria monocytogenes and incubated overnight at about 32 to about 35°F)). More preferably, the pediocin activity (before any optional concentration step) will be equivalent to 2o an inhibition zone of at least about 18 mm, and even more preferably about 18 to about 22 mm, on the indicator lawn.
Suitable edible organic acids include, for example, Lactic acid; acetic acid, propionic acid, citric acid, and the like, as well as mixtures thereof.
The preferred edible organic acid is lactic acid. The edible organic acid, especially lactic acid, rnay be added to the composition via one of the other ingredients (e.g., included in the nisin derived from whey component and/or the pediocin s:
derived from whey component) or added as a separate component.
Especially, when lactic acid is the edible organic acid, it is generally preferred that the at least one of other ingredients contain the edible organic acid and so that it also be added as a separate component. The amount of edible organic acid (whether included in another component andlor added as a separate _8_ component) should be sufficient to achieve a pH of about 3 to about 5, and more preferably of about 3.3 to about 3.5, in the antimicrobial composition.
Suitable phenol-based antioxidants include, for example, butylated hydroxyanisole (BHA), butylated hydroxytoluene {BHT), tertiary butylhydroquinone {TBHQ). The preferred phenol-based antioxidant is tertiary butythydroquinone. The amount of the phenol-based antioxidant in the antimicrobial solution should about 0.5 to about 1.5 percent, and more preferably about 0.75 to about 1 percent.
The antimicrobial composition of the present invention is aqueous 1o based. Water may be obtained by the addition of one or more of the active ingredients (e.g., from the nisin-containing broth andlor the pediocin-containing broth) and/or may be added as a separate component.
Of course, other functional ingredients can be incorporated into the antimicrobial solution if desired to improve flow characteristics, wetting ability, ~5 adherence to the food surfaces, and the like so long as they are soluble in the antimicrobial solution and do not adversely affect either the antimicrobial activity of the antimicrobial solution or the organoleptic properties of the resulting food products. Of course, any such functional ingredients should not introduce dairy allergens into the antimicrobial solution.
2o Any suitable manner of applying the improved antimicrobial compositions of this invention to the food product can be used. Examples of such methods include mixing the antimicrobial composition with the food product, injecting the antimicrobial composition into the food product, spreading the antimicrobial composition onto the outer surfaces of the food 25 product, dipping the food product into the antimicrobial composition, spraying the food product with the antimicrobial composition, including the antimicrobial composition in a package with the food product such that the antimicrobial composition effectively covers the outer surfaces of the food product, and the like.
3o With regard to sliced meats, the antimicrobiai compositions can be sprayed onto the food product as it is being sliced, thereby providing protection for the food product and reducing the risk of contamination of the slicer and its blade. Alternatively, the food product may be sliced in the presence of a fog or mist of the antimicrobial composition to provide the desired degree of protection. Using an antimicrobial fog during the slicing process should allow uniform delivery of the antimicrobial solution to the surface of the sliced products. Moreover, enclosing the cutting blade assembly and applying the antimicrobial fog within that enclosure should reduce soiling of the cutting blade. Moreover, such an enclosure in combination with the antimicrobial fog will help maintain a constant listericidal environment.
The antimicrobial solutions are this invention as especially adapted for use in a combination treatment scheme involving thermal surface treatment and antimicrobial treatment as described in United States Application Serial Number 10!378,247, filed on March 3, 2003, and entitled "Method for Controlling Microbial Contamination Of a Vacuum-Sealed Food Product,"
which is hereby incorporated by reference. This combination treatment provides a method for controlling contamination of vacuum-sealed food products involving (1 ) a thermal surface treatment and (2) application of one or more antimicrobial agents to the surface of food products, whereby the 2o thermal surface treatment and the application of the antimicrobial solution are, in combination, effective for killing or inactivating essentially all pathogenic contamination in the vacuum-sealed food product. The present methods can easily be incorporated into a vacuum packaging line such as a web packaging system wherein the food product is packaged and sealed between upper and lower webs.
The following examples illustrate the efficacy of the present invention and of the present compositions and are not intended to limit the invention as claimed. Unless noted otherwise, all percentages are by weight. All patents, publications, and the like cited herein are incorporated by reference.
3o EXAMPLE 1. This example illustrates the preparation of nisin derived from whey for use in the present example. Cheese whey was subjected to ultrafiltration using a 10,000 Dalton molecular weight cut off filter at about 120°F in order to obtain a permeate essentially free of dairy allergens. The absence of dairy allergens was confirmed using Neogen VeratoxTM milk ELISA. After adding non-dairy nutrients (i.e., about 1 percent peptone (Difico protease) and about 0.5 percent yeast extract), the permeate was pasteurized at about 185°F for 45 minutes and then cooled to about 86°F. The cooled and pasteurized permeate was inoculated with about 2 x 106 cfulml of a nisin-roducin culture. The inoculated ermeate was incubated at about 86?F for P 9 P , about 10 hours at a pH of about 5.5 followed by a pH drop to about 4.6 for 1o about six hours. The raisin activity was about 900 IU/ml (Fowler et al., Tech.
Series Soc. Bacteriol., 8, 91-105 (1975)). The pH was adjusted to about 3.5 with lactic acid and held overnight at about 86°F to obtain a raisin activity of about 2000 IUlml. After pasteurization (about 185°F for about 30 ri~inutes), the resulting broth was centrifuged at about 16,000 rpm and decanted to 1s obtain a clarified raisin-containing solution with a raisin activity of about 1530 IUlml and a pH of about 3.5. A raisin-containing preparation with a raisin activity of about 4000 lU/ml was obtained by concentrating the solution by about 3X using flash evaporation. The raisin-containing broth was stable at refrigeration conditions for several months.
2o EXAMPLE 2. This example illustrates the preparation of pediocin for use in the present example. Cheese whey was subjected to ultrafiltration using a 10,000 Dalton molecular weight cut off filter at about 120°F in order to obtain a permeate essentially free of dairy allergens. The absence of dairy allergens was confirmed using Neogen VeratoxT"" milk ELISA assay. After 2s adding non-dairy nutrients (i.e., about 1 percent glucose, about 0.5 percent peptone (Difico protease), about 0.5 percent yeast extract, about 0.014 percent manganese sulfate) and adjusting the pH to about 6.5 by adding base (i.e., NaOH or KOH), the permeate was pasteurized at about 185°F for 45 minutes and then cooled to about 98°F. The cooled and pasteurized 3o permeate was inoculated with about 1 x 106 cfu/mi of a pediocin-producing strain of Pediococcus (i.e., Pediococcus acidilactici or Pediococcus pentosaceus). The inoculated permeate was incubated at about 86°F for about 18 hours to a pH of about 4.8. The resulting broth was centrifuged at refrigeration temperatures at about 16,000 rpm and then decanted to obtain a clarified pediocin broth. The broth had a pediocin activity equivalent to a 20 s mm inhibition zone using a welt assay with a brain heart infusion (BHI) agar plate seeded with about 105 to about 106 Listeria monocytogenes indicator cells. Test samples (about 40 NI) were placed in the wells. After incubation I
overnight at about 35°F, the sizes of the zones of inhibition were measured.
EXAMPLE 3. Antimicrobial solutions were prepared by mixing the 1 o nisin-containing broth of Example 1 and the pediocin-containing broth of Example 2 and adding TBHQ and lactic acid at the desired levels.
Specifically, an antimicrobial solution containing the nisin-containing broth and the pediocin-containing broth (1:1 by volume), about 1 percent TBHQ, and about 0.5 percent lactic acid was prepared (pH about 4.2) and evaluated on sliced bologna, turkey, and ham inoculated with about 10~ CFU 5-strain mixture of Listeria monocytogenes. The meat slices were first dipped into the antimicrobial solution for about 60 seconds. One slice of the treated samples was inoculated with the 5-strain mixture at four spots; a second slice of the same meat sample was then placed on top such that the inoculate was 2o sandwiched between the slices, and the inoculated slices were vacuum packaged. Samples were stored for about 24 hours at refrigeration temperatures and then analyzed for the presence of L. monocytogenes by direct plating onto plate count agar and MOX (Modified Oxford Medium) plates. Colonies producing a black precipitate on the plates were considered 2s positive for L: monocytogenes. Additionally, a modified USDA cultural method was performed for some samples. More details of these test methods can be found in Microbiology Laboratory Guidebook, USDA, 3rd Ed., Chapter 8, Revision 3 (1998), which is hereby incorporated by reference. Controls were treated essentially the same expect that they were not dipped in the 3o antimicrobial solution. The following results were obtained.

Bologna Turkey Ham Sample -TPC MOX TPC MOX TPC MOX

Control1 6200 2800 3600 3740 8400 7200 Control2 6800 11000 6400 7800 5800 3800 Control3 10200 6600 9000 8000 8000 1920 Inventive200 380 220 320 260 400 I nventive60 140 60 180 260 320 Inventive40 80 <20 <20 80 180 Values in the above table are reported in CFU per package (two slices).
These results show the effectiveness of the antimicrobial solution in inhibiting 1 o Lisferia.
Example 4. Evaluation similar to those reported in Example 3 were carried out using an antimicrobial solution containing the nisin-containing broth of Example 1 and the pediocin-containing broth of Example 2 (3:1 by volume), about 1 percent TBHQ, and about 0.5 percent lactic acid (pH about 3.5). Again, bologna, turkey, and ham slices treated with the antimicrobial solution were evaluated using inoculation with about 104 CFU 5-strain mixture of Lisferia monocytogenes in the same manner of Example 3. The following results were obtained.
Bologna Turkey Ham Sample TPC MOX TPC MOX TPC MOX

Control 8400 92000 9600 13000 40000 14000 Inventive <20 <20 <20 <20 <20 <20 Inventive <20 <20 <20 <20 <20 <20 Inventive <20 <20 <20 <20 <20 <20 Values in the above table are reported in CFU per package (two slices).
Additionally, USDA enrichment tests on the three inventive samples were negative. These results show the effectiveness of the antimicrobial solution in inhibiting Liste~a.

Example 5. Wieners were treated in a manner similar to that described in Example 3 with various solutions (as indicated in the table below) except both the wieners and the packaging material were treated with the test solutions as follows: wieners were dipped in the test solution for about 60 seconds; the insides of the packages were also rinsed with the test solutions and drip dried. After treatment, the wieners were inoculated with Listeria monocytogens (about 2500 cells per wiener) and then sealed in the packages. No additional lactic acid addition was required; lactic acid was introduced via the nisin-containing whey component. After inoculation and 1 o storage at refrigeration temperatures for various times, the Listeria level (measured as CFUlwiener) was determined. The following results were obtained.
Time (days) - ..

Sample 3 7 14 21 Control 2000 1950 1600 2200 Nisin-containing whey 100 ~ 150 100 70 Nisin-containing whey + 70 40 15 0 0.8% TBHQ

Pedioci~ 1200 510 600 370 Pediocin + 0.8% TgHQ 1100 200 0 0 Nisin-containing whey + 1000 500 1500 300 Pediocin (1:1 by volume}

Nisin-containing whey + 10 g0 0 0 Pediocin (1:1 by volume) + 0.8~ TBHQ

As demonstrated in the table, the inventive sample (i.e., Nisin-containing whey + Pediocin (1:1 by volume) + 0.8% TBHQ) shows consistent and effective inhibition.
It will be understood that the embodiments of the present invention which have been described are illustrative of some of the applications of the principles of the present invention. Numerous modifications may be made by 3o those skilled in the art without departing from the true spirit and scope of the invention.

Claims (21)

Claims
1. An aqueous antimicrobial composition comprising raisin derived from whey, pediocin, an edible organic acid, and a phenol-based antioxidant;
wherein the composition has a raisin activity of at least about 900 IU/ml, a pediocin activity equivalent to at least about a 16 mm inhibition zone, at least about 0.5 percent of the phenol-based antioxidant, and a pH of about 3 to about 5.
2. The antimicrobial composition of claim 1, wherein the antimicrobial composition is essentially free of dairy allergens.
3. The antimicrobial composition of claim 2, wherein the raisin activity is about 1000 to about 3000 IU/ml, the pediocin activity is equivalent to at least about a 18 mm inhibition zone, the phenol-based antioxidant is about 0.75 to about 1.5 percent, and the pH is about 3.3 to about 3.5.
4. The antimicrobial composition of claim 2, wherein the raisin derived from whey is prepared by a method comprising treating a first cheese whey by ultrafilitration to obtain a first cheese whey permeate that is essentially free of dairy allergens, treating the first cheese whey permeate with a raisin-producing culture to obtain the raisin derived from whey, and collecting the raisin derived from whey, wherein the raisin derived from whey is essentially free of dairy allergens.
5. The antimicrobial composition of claim 3, wherein the raisin derived from whey is prepared by a method comprising treating a first cheese whey by ultrafilitration to obtain a first cheese whey permeate that is essentially free of dairy allergens, treating the first cheese whey permeate with a raisin-producing culture to obtain the raisin derived from whey, and collecting the raisin derived from whey, wherein the raisin derived from whey is essentially free of dairy allergens.
6. The antimicrobial composition of claim 2, wherein the pediocin is prepared by a method comprising treating a second cheese whey by ultrafilitration to obtain a second cheese whey permeate that is essentially free of dairy allergens, treating the second cheese whey permeate with a pediocin-producing culture to obtain the pediocin, and collecting the pediocin, wherein the pediocin is essentially free of dairy allergens.
7. The antimicrobial composition of claim 3, wherein the pediocin is prepared by a method comprising treating a second cheese whey by ultrafilitration to obtain a second cheese whey permeate that is essentially free of dairy allergens, treating the second cheese whey permeate with a pediocin-producing culture to obtain the pediocin, and collecting the pediocin, wherein the pediocin is essentially free of dairy allergens.
8. The antimicrobial composition of claim 4, wherein the pediocin is prepared by a method comprising treating a second cheese whey by ultrafilitration to obtain a second cheese whey permeate that is essentially free of dairy allergens, treating the second cheese whey permeate with a pediocin-producing culture to obtain the pediocin, and collecting the pediocin, wherein the pediocin is essentially free of dairy allergens.
9. The antimicrobial composition of claim 5, wherein the pediocin is prepared by a method comprising treating a second cheese whey by ultrafilitration to obtain a second cheese whey permeate that is essentially free of dairy allergens, treating the second cheese whey permeate with a pediocin-producing culture to obtain the pediocin, and collecting the pediocin, wherein the pediocin is essentially free of dairy allergens.
10. The antimicrobial composition of claim 1, wherein the edible organic acid is lactic acid, acetic acid, propionic acid, citric acid, or mixtures thereof; and wherein the phenol-based antioxidant is butylated hydroxyanisole, butylated hydroxytoluene, tertiary butylhydroquinone, or mixtures thereof.
11. The antimicrobial composition of claim 2, wherein the edible organic acid is lactic acid, acetic acid, propionic acid, citric acid, or mixtures thereof; and wherein the phenol-based antioxidant is butylated hydroxyanisole, butylated hydroxytoluene, tertiary butylhydroquinone, or mixtures thereof.
12. The antimicrobial composition of claim 3, wherein the edible organic acid is lactic acid, acetic acid, propionic acid, citric acid, or mixtures thereof; and wherein the phenol-based antioxidant is butylated hydroxyanisole, butylated hydroxytoluene, tertiary butylhydroquinone, or mixtures thereof.
13. The antimicrobial composition of claim 5, wherein the edible organic acid is lactic acid and the phenol-based antioxidant is tertiary butylhydroquinone.
14. The antimicrobial composition of claim 7, wherein the edible organic acid is lactic acid and the phenol-based antioxidant is tertiary butylhydroquinone.
15. A method for inhibiting microbial growth in a food product, said method comprising applying an effective amount of an antimicrobial composition to the food product and sealing the food product and the antimicrobial composition in a package, wherein the antimicrobial composition comprises nisin derived from whey, pediocin, an edible organic acid, and a phenol-based antioxidant; and wherein the antimicrobial composition has a raisin activity of at least about 900 IU/ml, a pediocin activity equivalent to at least about a 16 mm inhibition zone, at least about 0.5 percent of the phenol-based antioxidant, a pH of about 3 to about 5, and is essentially free of dairy allergens.
16. The method of claim 15, wherein the food product susceptible to Listeria monocytogenes activity.
17. The method of claim 16, wherein the food product is a meat food product.
18. The method of claim 17, wherein the raisin activity of the antimicrobial composition is about 1000 to about 3000 IU/ml, the pediocin activity of the antimicrobial composition is equivalent to at least about a 18 mm inhibition zone, the antimicrobial composition contains about 0.75 to about 1.5 percent of the phenol-based antioxidant, and the pH of the antimicrobial composition is about 3:3 to about 3.5.
19. The method of claim 18, wherein the raisin derived from whey is prepared by a method comprising treating a first cheese whey by ultrafilitration to obtain a first cheese whey permeate that is essentially free of dairy allergens, treating the first cheese whey permeate with a raisin-producing culture to obtain the raisin derived from whey, and collecting the raisin derived from whey, wherein the raisin derived from whey is essentially free of dairy allergens; and wherein the pediocin is prepared by a method comprising treating a second cheese whey by ultrafilitration to obtain a second cheese whey permeate that is essentially free of dairy allergens, treating the second cheese whey permeate with a pediocin-producing culture to obtain the pediocin, and collecting the pediocin, wherein the pediocin is essentially free of dairy allergens.
20. The method of claim 19, wherein the edible organic acid is lactic acid, acetic acid, propionic acid, citric acid, or mixtures thereof; and wherein the phenol-based antioxidant is butylated hydroxyanisole, butylated hydroxytoluene, tertiary butylhydroquinone, or mixtures thereof.
21. The method of claim 19, wherein the edible organic acid is lactic acid and the phenol-based antioxidant is tertiary butylhydroquinone.
CA002459284A 2003-03-03 2004-03-01 Anti-listeria compositions for use in food products Abandoned CA2459284A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/378,329 2003-03-03
US10/378,329 US7001632B2 (en) 2003-03-03 2003-03-03 Anti-listeria compositions for use in food products

Publications (1)

Publication Number Publication Date
CA2459284A1 true CA2459284A1 (en) 2004-09-03

Family

ID=32926466

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002459284A Abandoned CA2459284A1 (en) 2003-03-03 2004-03-01 Anti-listeria compositions for use in food products

Country Status (2)

Country Link
US (1) US7001632B2 (en)
CA (1) CA2459284A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK174676B1 (en) * 2001-01-18 2003-08-25 Slagteriernes Forskningsinst Process and plant for the production of sliced food
US7323204B2 (en) * 2004-06-25 2008-01-29 Kraft Foods Holdings, Inc. Stabilization of fresh mozzarella cheese using fermented whey
US20060222746A1 (en) * 2005-03-31 2006-10-05 Unilever Bestfoods North America, Division Of Conopco, Inc. Food preservative system and method for preserving a food composition
US20060257539A1 (en) * 2005-05-16 2006-11-16 Krafts Foods Holdings, Inc. Synergistic antimicrobial system
US9241497B2 (en) * 2005-06-30 2016-01-26 The United States Of America, As Represented By The Secretary Of Agriculture Method and apparatus for treatment of food products
US7476409B2 (en) * 2006-03-03 2009-01-13 Conagra Foods Rdm, Inc. Color stable meat product for an egg product
US7476410B2 (en) * 2006-03-03 2009-01-13 Conagra Foods Rdm, Inc. Stable meat product for a food product environment and a method for making such a product
KR100734029B1 (en) * 2006-04-20 2007-06-29 건국대학교 산학협력단 A method for preparation of high-quality korean jerky using unpopular region of pork meat
US20080152757A1 (en) * 2006-12-22 2008-06-26 Zuoxing Zheng Method of Making Fresh Cheese with Enhanced Microbiological Safety
US7863350B2 (en) * 2007-01-22 2011-01-04 Maxwell Chase Technologies, Llc Food preservation compositions and methods of use thereof
CL2008001000A1 (en) * 2008-04-07 2008-08-18 Univ Pontificia Catolica Chile ANTIOXIDANT NATURAL COMPOSITION FOR MEAT PRODUCTS THAT ARE PREPARED FROM PHENOLIC EXTRACTS OF MONOFLORAL HONEYS THAT ACT INDEPENDENTLY AS ANTIOXIDANTS; PROCESS FOR OBTAINING A MONOFLORAL HONEY EXTRACT; AND USE OF DICH
US8241690B2 (en) * 2008-11-14 2012-08-14 Kraft Foods Global Brands Llc Method of making fresh cheese with enhanced microbiological safety
WO2010136405A1 (en) * 2009-05-26 2010-12-02 Laboratorios Miret, S.A. Novel method for the treatment of food products
US20110053832A1 (en) * 2009-09-03 2011-03-03 Kraft Foods Global Brands Llc Natural antimicrobial composition
CA2794841C (en) 2010-05-20 2021-02-23 Ecolab Usa Inc. Rheology modified low foaming liquid antimicrobial compositions and methods of use thereof
CA2868288A1 (en) * 2012-04-16 2013-10-24 Cascades Canada Ulc Antimicrobial compositions comprising pediocin, lactic acid and citric acid and uses thereof
EP2928326A2 (en) * 2012-12-06 2015-10-14 DSM IP Assets B.V. New antimicrobial compositions
US9883689B2 (en) * 2015-04-17 2018-02-06 Kerry Luxembourg S.à.r.l. Composition and methods to control the outgrowth of pathogens and spoilage microorganisms in high moisture and low sodium systems
US10327463B2 (en) 2015-04-17 2019-06-25 Kerry Luxembourg S.à.r.l. Composition and methods to control the outgrowth of pathogens and spoilage microorganisms in high moisture and low sodium systems
US10980259B1 (en) * 2016-08-10 2021-04-20 Cargill, Incorporated Finely textured beef product and process
US20180228189A1 (en) 2017-02-14 2018-08-16 Kraft Foods Group Brands Llc Process for maintaining freshness of vegetable pieces
EP3802122B1 (en) 2018-05-25 2023-08-16 Cryovac, LLC Method of making an antimicrobial multilayer film

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2839388A1 (en) * 1978-09-11 1980-03-27 Siegfried Ag IMIDAZOLYLVINYLAETHER AND THEIR USE
US4380554A (en) 1979-06-25 1983-04-19 Standard Oil Company (Indiana) Polymeric monohydroxybenzenoid hydroquinoid antioxidants
US4310657A (en) 1979-06-25 1982-01-12 Standard Oil Company (Indiana) Polymeric monohydroxybenzenoid hydroquinoid antioxidants
US4559234A (en) 1984-05-30 1985-12-17 Canadian Patents And Development Limited Meat curing compositions and method of use
IT1197924B (en) 1986-10-28 1988-12-21 Prodotti Antibiotici Spa PROCEDURE FOR THE PREPARATION OF FOODS OF ANIMAL ORIGIN
US4883673A (en) 1987-02-09 1989-11-28 Microlife Technics, Inc. Method for inhibiting bacterial spoilage and resulting compositions
US4874704A (en) 1987-05-15 1989-10-17 Microlife Technics, Inc. Method for inhibiting food-borne human pathogens and preventing microbial spoilage in refrigerated foods using a Lactobacillus
US4929445A (en) 1988-01-25 1990-05-29 Microlife Technics, Inc. Method for inhibiting Listeria monocytogenes using a bacteriocin
JP2575795B2 (en) 1988-04-28 1997-01-29 富士通株式会社 Method for manufacturing semiconductor device
US5082975A (en) 1988-08-15 1992-01-21 Kalamazoo Holdings, Inc. Synthesis of hexahydrolupulone, novel forms thereof, and its use as a selective inhibitor of cell growth and multiplication
US5458876A (en) 1988-12-21 1995-10-17 Haarman & Reimer Corp. Control of microbial growth with lantibiotic/lysozyme formulations
US5573797A (en) 1989-02-21 1996-11-12 Viskase Corporation Film and method for surface treatment of foodstuffs with antimicrobial compositions
US5573801A (en) 1989-02-21 1996-11-12 Viskase Corporation Surface treatment of foodstuffs with antimicrobial compositions
US5573800A (en) 1989-02-21 1996-11-12 Viskase Corporation Antimicrobial composition for surface treatment of foodstuffs
FR2648321B1 (en) 1989-05-12 1992-01-17 Bio Serae Lab PROCESS OF TREATING A NON-LIQUID FOOD PRODUCT TO ENSURE MICROBIAL DECONTAMINATION, APPLICATIONS IN PARTICULAR TO CHEESE AND MOTHER PREPARATION FOR IMPLEMENTING SAID TREATMENT
US5015487A (en) 1990-04-23 1991-05-14 Haarmann & Reimer Corp. Use of lanthionines for control of post-processing contamination in processed meat
US5043176A (en) 1990-06-13 1991-08-27 Haarmann & Reimer Corp. Synergistic antimicrobial compositions
EP0466244A1 (en) 1990-07-13 1992-01-15 Unilever N.V. Compositions having antibacterial properties and use of such compositions in suppressing growth of microorganisms, eg. Listeria bacteria
US5230915A (en) 1990-10-24 1993-07-27 Fereidoon Shahidi Process for preparing a powdered cooked cured-meat pigment
US5043174A (en) 1990-11-08 1991-08-27 Hickory Specialties, Inc. Meat processing with Listeria monocytogene re-inoculation control stage
US5170611A (en) 1990-12-12 1992-12-15 Rapidpak, Inc. Web supply mechanism for an indexing motion packaging machine
US5205110C1 (en) 1990-12-12 2001-05-15 Dec Int Servo motor operated indexing motion packaging machine and method
US5186962A (en) 1991-03-12 1993-02-16 Board Of Regents Of The University Of Nebraska Composition and method for inhibiting pathogens and spoilage organisms in foods
US5268185A (en) 1991-06-07 1993-12-07 Rhone-Poulenc Inc. Process for treating red meat to control bacterial contamination and/or growth
US5192570A (en) 1991-06-07 1993-03-09 Bender Fredric G Process for treating red meat to control bacterial contamination and/or growth
US5451369A (en) 1992-05-13 1995-09-19 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Bacteriocidal surfaces and articles with attached bacteriocin
DE4229707A1 (en) * 1992-09-05 1994-03-10 Beiersdorf Ag Germicide drug combinations
US5286506A (en) 1992-10-29 1994-02-15 Bio-Technical Resources Inhibition of food pathogens by hop acids
US5370863A (en) 1992-12-16 1994-12-06 Miller Brewing Company Oral care compositions containing hop acids and method
US5443150A (en) 1993-09-23 1995-08-22 Rapidpak, Inc. Apparatus for advancing preformed containers
AUPN131095A0 (en) 1995-02-22 1995-03-16 Commonwealth Scientific And Industrial Research Organisation Novel bacteriocin JG 126
US6010726A (en) 1995-06-02 2000-01-04 Kalamazoo Holdings, Inc. Electrostatic deposition of edible liquid condiment compositions upon edible food substrates and thus-treated products
DK0759469T3 (en) 1995-08-07 2003-06-23 Nestle Sa bacteriocin
FR2739867B1 (en) 1995-10-13 1997-12-05 Pasteur Sanofi Diagnostics SELECTIVE MEDIA FOR CULTURE AND ISOLATION OF GRAM- BACTERIA, ANTIBIOTIC COMPOSITION
SE510498C2 (en) * 1996-02-14 1999-05-31 Biofeed Thailand Co Ltd Animal feed additive containing microorganisms
US5855940A (en) 1996-04-12 1999-01-05 University Of Arkansas Method for the broad spectrum prevention and removal of microbial contamination of poultry and meat products by quaternary ammonium compounds
US5895680A (en) * 1996-06-19 1999-04-20 Thomas J. Lipton Foodstuff preservation
EP0927023B1 (en) * 1996-09-13 2004-11-03 Clemson University Composition for treating acne
US6149952A (en) 1998-05-15 2000-11-21 Herbert W. Stoltenberg Method for determining deleterious bacterial growth in packaged food utilizing hydrophilic polymers
CA2281102A1 (en) 1998-08-31 2000-02-29 Kraft Foods, Inc. Stabilization of cooked meat compositions using whey from nisin-producing cultures
CA2281052A1 (en) 1998-08-31 2000-02-29 Kraft Foods, Inc. Stabilization of fermented dairy compositions using whey from nisin producing cultures
CA2281056A1 (en) 1998-08-31 2000-02-29 Kraft Foods, Inc. Stabilization of cream cheese compositions using nisin-producing cultures
CA2281101A1 (en) 1998-08-31 2000-02-29 Kraft Foods, Inc. Stabilization of mayonnaise spreads using whey from nisin-producing cultures
US6451365B1 (en) * 2000-07-14 2002-09-17 Rhodia Inc. Antibacterial composition for control of gram positive bacteria in food applications
US6433053B1 (en) * 1999-11-16 2002-08-13 The Procter & Gamble Company Surface adhesion modifying compositions
US6287617B1 (en) 2000-02-02 2001-09-11 Rhodia Inc. Gram negative antibacterial composition
US6403134B1 (en) * 2000-08-14 2002-06-11 Kraft Foods Holdings, Inc. Premium quality intermediate moisture vegetables and method of making
DE10110431A1 (en) * 2001-03-05 2002-09-19 Nutrinova Gmbh Bacteriocin-containing sorbic acid preparation as a feed additive in livestock rearing
EP1369045A3 (en) * 2002-05-28 2004-02-25 Viskase Corporation Films and casing having anti-listeria properties

Also Published As

Publication number Publication date
US7001632B2 (en) 2006-02-21
US20040175473A1 (en) 2004-09-09

Similar Documents

Publication Publication Date Title
US7001632B2 (en) Anti-listeria compositions for use in food products
Galvez et al. Application of bacteriocins in the control of foodborne pathogenic and spoilage bacteria
EP1068808B1 (en) Method for surface treatment of foodstuffs
Scannell et al. An effective lacticin biopreservative in fresh pork sausage
Lado et al. Characteristics of Listeria monocytogenes important to food processors
Amézquita et al. Competitive inhibition of Listeria monocytogenes in ready-to-eat meat products by lactic acid bacteria
Khoshgozaran et al. Evaluating the effect of modified atmosphere packaging on cheese characteristics: a review
US5186962A (en) Composition and method for inhibiting pathogens and spoilage organisms in foods
Nattress et al. Effects of treatment with lysozyme and nisin on the microflora and sensory properties of commercial pork
EP1793692B1 (en) Antimicrobial composition
EP1796487B1 (en) The use of glycine and/or glycine derivates as antibacterial agent against gram negative bacterial pathogens in foods and/or drinks
US6242017B1 (en) Stabilization of cooked meat compositions stabilized by nisin-containing whey and method of making
US6613364B2 (en) Stabilization of cooked meat and meat-vegetable compositions using whey from nisin-producing cultures and product thereof
Kim et al. Gram negative bacteria inhibition by lactic acid culture and food preservatives on catfish fillets during refrigerated storage
US20020064585A1 (en) Method for use of antimicrobial agents to inhibit microbial growth on ready to eat meat and poultry products
CA2046452A1 (en) Compositions having improved antibacterial properties and use of such compositions in suppressing growth of micro-organisms, e.g. listeria bacteria
CA2281056A1 (en) Stabilization of cream cheese compositions using nisin-producing cultures
Ray Cells of lactic acid bacteria as food biopreservatives
Roberts et al. Shelf-life of pasteurized process cheese spreads made from cheddar cheese manufactured with a nisin-producing starter culture
US20150140186A1 (en) Clostridium botulinum control in midly processed refrigerated food products
JP2002540805A (en) New protective cultures and their use in food preservation
US5019411A (en) Process for bacterial decontamination of vegetable foods
Piccinin et al. Survival of Listeria monocytogenes in cottage cheese
WO2017095221A1 (en) Preservative system and use thereof in edible products
Glass et al. Effects of acid type and ALTA™ 2341 on Listeria monocytogenes in a Queso Blanco type of cheese

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued
FZDE Discontinued

Effective date: 20120301