CA2459910A1 - Adjustable expansion cone assembly - Google Patents

Adjustable expansion cone assembly Download PDF

Info

Publication number
CA2459910A1
CA2459910A1 CA002459910A CA2459910A CA2459910A1 CA 2459910 A1 CA2459910 A1 CA 2459910A1 CA 002459910 A CA002459910 A CA 002459910A CA 2459910 A CA2459910 A CA 2459910A CA 2459910 A1 CA2459910 A1 CA 2459910A1
Authority
CA
Canada
Prior art keywords
expansion cone
tubular support
coupled
support body
tubular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002459910A
Other languages
French (fr)
Other versions
CA2459910C (en
Inventor
Lev Ring
David Paul Brisco
Kevin Waddell
Robert Lance Cook
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enventure Global Technology Inc
Original Assignee
Enventure Global Technology
Lev Ring
David Paul Brisco
Kevin Waddell
Robert Lance Cook
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enventure Global Technology, Lev Ring, David Paul Brisco, Kevin Waddell, Robert Lance Cook filed Critical Enventure Global Technology
Publication of CA2459910A1 publication Critical patent/CA2459910A1/en
Application granted granted Critical
Publication of CA2459910C publication Critical patent/CA2459910C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing, or removing tools, packers or the like in the boreholes or wells
    • E21B23/004Indexing systems for guiding relative movement between telescoping parts of downhole tools
    • E21B23/006"J-slot" systems, i.e. lug and slot indexing mechanisms
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/10Setting of casings, screens, liners or the like in wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/10Setting of casings, screens, liners or the like in wells
    • E21B43/103Setting of casings, screens, liners or the like in wells of expandable casings, screens, liners, or the like
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/10Setting of casings, screens, liners or the like in wells
    • E21B43/103Setting of casings, screens, liners or the like in wells of expandable casings, screens, liners, or the like
    • E21B43/105Expanding tools specially adapted therefor

Abstract

An adjustable expansion cone assembly.

Claims (79)

1. An apparatus for radially expanding a tubular member, comprising:
a tubular support member comprising:
a first tubular support body defining a longitudinal passage;
a first lug coupled to and extending from the first tubular support body in the radial direction;
a second lug coupled to and extending from the first tubular support body in the radial direction;
and an expansion cone support body coupled to the first tubular support body comprising:
an N-sided tapered tubular support member;
wherein each side of the multi-sided tapered tubular support member defines a T-shaped slot;
N expansion cone segments movably coupled to the expansion cone support body, each comprising:
an expansion cone segment body including arcuate conical outer surfaces;
a first T-shaped retaining member coupled to the expansion cone segment body for movably coupling the expansion cone segment body to a corresponding one of the T-shaped slots of the expansion cone support body; and a second T-shaped retaining member coupled to the expansion cone segment body;
a split ring collar assembly movably coupled to the exterior of the tubular support member comprising:
a second tubular support body defining:
N T-shaped slots for movably receiving corresponding ones of the second T-shaped retaining members of the expansion cone segments; and an L-shaped retaining member coupled to the second tubular support body;
a first drag block assembly movably coupled to the tubular support member that comprises:
a first drag block body defining:
a slot for receiving and mating with the L-shaped retaining member of the split ring collar; and a first J-shaped slot for receiving the first lug; and one or more first drag blocks coupled to the first drag block body;
a second drag block assembly movably coupled to the tubular support member that comprises:
a second drag block body defining:
a second J-shaped slot for receiving the second lug; and one or more second drag blocks coupled to the second drag block body; and first and second packer cups coupled to the tubular support member between the first and second drag block assemblies.
2. An apparatus for radially expanding a tubular member, comprising:
a tubular support member comprising:
a first tubular support body defining a longitudinal passage;
a first flange coupled to the first tubular support body;
a second flange coupled to the first tubular support body;
a first tapered flange coupled to the first tubular support body;

a second tapered flange coupled to the first tubular support body; and an expansion cone support body coupled to the first tubular support body comprising:
an N-sided tapered tabular support member;
wherein each side of the multi-sided tapered tubular support member defines a T-shaped slot;
N expansion cone segments movably coupled to the expansion cone support body, each comprising:
an expansion cone segment body including arcuate conical outer surfaces;
a first T-shaped retaining member coupled to the expansion cone segment body for movably coupling the expansion cone segment body to a corresponding one of the T-shaped slots of the expansion cone support body; and a second T-shaped retaining member coupled to the expansion cone segment body;
a split ring collar movably coupled to the exterior of the tubular support member comprising:
a second tubular support body that defines:
N T-shaped slots for movably receiving corresponding ones of the second T-shaped retaining members of the expansion cone segments; and an L-shaped retaining member coupled to the second tubular support body;
a first collet assembly movably coupled to the tubular support member that comprises:
a first tubular sleeve defining:
a slot for receiving and mating with the L-shaped retaining member of the split ring collar;
a first counterbore for receiving the first flange; and a first radial passage;
a first spring received within the first counterbore;
a first retaining ring received within the first counterbore;
a first load transfer pin coupled to the first retaining ring and extending through the first radial passage;
a second tubular sleeve coupled to the first load transfer pin;
a first resilient collet coupled to the second tubular sleeve and positioned above the first tapered flange; and a third tubular sleeve coupled to the first resilient collet;
a second collet assembly movably coupled to the tubular support member that comprises:
a fourth tubular sleeve defining:
a second counterbore for receiving the second flange; and a second radial passage;
a second spring received within the second counterbore;
a second retaining ring received within the second counterbore;
a second load transfer pin coupled to the second retaining ring and extending through the second radial passage;
a fifth tubular sleeve coupled to the second load transfer pin;
a second resilient collet coupled to the fifth tubular sleeve and positioned above the second tapered flange; and a sixth tubular sleeve coupled to the second resilient collet; and first and second packer cups coupled to the tubular support member between the first and second collet assemblies.
3. An apparatus for radially expanding a tubular member, comprising:
a tubular support member comprising:
a first tubular support body defining a longitudinal passage;
a first radial passage defined in the first tubular support body fluidicly coupled to the longitudinal passage;
a first flange coupled to the first tubular support body;
a second flange coupled to the first tubular support body;
a first tapered flange coupled to the first tubular support body;
a second tapered flange coupled to the first tubular support body; and an expansion cone support body coupled to the first tubular support body comprising:
an N-sided tapered tubular support member;
wherein each side of the multi-sided tapered tubular support member defines a T-shaped slot;
N expansion cone segments movably coupled to the expansion cone support body, each comprising:
an expansion cone segment body including arcuate conical outer surfaces;
a first T-shaped retaining member coupled to the expansion cone segment body for movably coupling the expansion cone segment body to a corresponding one of the T-shaped slots of the expansion cone support body; and a second T-shaped retaining member coupled to the expansion cone segment body;
a split ring collar movably coupled to the exterior of the tubular support member comprising:
a second tubular support body defining:
N T-shaped slots for movably receiving corresponding ones of the second T-shaped retaining members of the expansion cone segments; and an L-shaped retaining member coupled to the second tubular support body;
a first dog assembly movably coupled to the tubular support member that comprises:
a first tubular sleeve defining:
a slot for receiving and mating with the L-shaped retaining member of the split ring collar;
a first counterbore for receiving the first flange; and a second radial passage;
a first spring received within the first counterbore;
a first retaining ring received within the first counterbore;
a first load transfer pin coupled to the first retaining ring and extending through the second radial passage;
a second tubular sleeve coupled to the first load transfer pin defining:
a second counterbore for receiving the first tubular sleeve;
a first resilient dog coupled to the second tubular sleeve and positioned adjacent to the first tapered flange;
a second dog assembly movably coupled to the tubular support member that comprises:

a third tubular sleeve defining:
a second counterbore for receiving the second flange;
a third radial passage; and a fourth radial passage fluidicly coupled to the first radial passage;
a second spring received within the second counterbore;
a second retaining ring received within the second counterbore;
a second load transfer pin coupled to the second retaining ring and extending through the third radial passage;
a fourth tubular sleeve coupled to the second load transfer pin;
a second resilient dog coupled to the fourth tubular sleeve and positioned adjacent to the second tapered flange; and first and second packer cups coupled to the tubular support member between the first and second dog assemblies.
4. An apparatus for radially expanding a tubular member, comprising:
a tubular support member comprising:
a first tubular support body defining a longitudinal passage including a throat passage;
a first radial passage defined in the first tubular support body fluidicly coupled to the longitudinal passage;
a first flange coupled to the first tubular support body;
a second flange coupled to the first tubular support body defining:
a second radial passage defined in the second flange fluidicly coupled to the longitudinal passage;
a tapered flange coupled to the first tubular support body; and an expansion cone support body coupled to the first tubular support body comprising:
an N-sided tapered tubular support member;
wherein each side of the multi-sided tapered tubular support member defines a T-shaped slot;
N expansion cone segments movably coupled to the expansion cone support body, each comprising:
an expansion cone segment body including arcuate conical outer surfaces;
a first T-shaped retaining member coupled to the expansion cone segment body for movably coupling the expansion cone segment body to a corresponding one of the T-shaped slots of the expansion cone support body; and a second T-shaped retaining member coupled to the expansion cone segment body;
a split ring collar movably coupled to the exterior of the tubular support member comprising:
a second tubular support body defining:
N T-shaped slots for movably receiving corresponding ones of the second T-shaped retaining members of the expansion cone segments; and an L-shaped retaining member coupled to the second tubular support body;
a dog assembly movably coupled to the tubular support member that comprises:
a first tubular sleeve defining:

a slot for receiving and mating with the L-shaped retaining member of the split ring collar;
a first counterbore for receiving the first flange; and a third radial passage;
a spring received within the first counterbore;
a retaining ring received within the first counterbore;
a load transfer pin coupled to the retaining ring and extending through the third radial passage;
a second tubular sleeve coupled to the first load transfer pin that defines:
a first counterbore for receiving the first tubular sleeve;
a second counterbore for receiving and mating with the tapered flange; and comprises:
a third flange defining:
a third counterbore for receiving the second flange;
a fourth counterbore for receiving the second flange; and a fourth radial passage; and a resilient dog coupled to the second tubular sleeve and positioned adjacent to the tapered flange;
and first and second packer cups coupled to the tubular support member between the resilient dog and the third flange.
5. An adjustable expansion cone assembly, comprising:
a tubular support member comprising:
a tubular support body; and an expansion cone support body coupled to the tubular support body comprising:
an N-sided tapered tubular support member;
wherein each side of the multi-sided tapered tubular support member defines a T-shaped slot;
N expansion cone segments movably coupled to the expansion cone support body, each comprising:
an expansion cone segment body including arcuate conical outer surfaces;
a first T-shaped retaining member coupled to the expansion cone segment body for movably coupling the expansion cone segment body to a corresponding one of the T-shaped slots of the expansion cone support body; and a second T-shaped retaining member coupled to the expansion cone segment body;
a split ring collar movably coupled to the exterior of the tubular support member comprising:
a second tubular support body defining:
N T-shaped slots for movably receiving corresponding ones of the second T-shaped retaining members of the expansion cone segments; and an L-shaped retaining member coupled to the second tubular support body; and a tubular actuating sleeve movably coupled to the tubular support member that comprises:
a third tubular support body defining:
a slot for receiving and mating with the L-shaped retaining member of the split ring collar.
6. An adjustable expansion cone assembly, comprising:
a tubular support member comprising:
a first tubular support body; and an expansion cone support body coupled to the tubular support body comprising:
a tapered tubular support member defining N stepped slots;
an expansion cone assembly movably coupled to the tubular support member comprising:
a second tubular support body movably coupled to the first tubular support body defining an L-shaped slot; and N expansion cone segments extending from the second tubular support member, each expansion cone segment comprising:
a resilient collet coupled to the second tubular support member;
an expansion cone segment body coupled to the resilient collet including arcuate conical outer surfaces; and a retaining member coupled to the expansion cone segment body for movably coupling the expansion cone segment body to a corresponding one of the stepped slots of the expansion cone support body;
a split ring collar movably coupled to the exterior of the tubular support member comprising:
a third tubular support body;
a first L-shaped retaining member coupled to the third tubular support body for mating with the L-shaped slot of the second tubular support body of the expansion cone assembly;
and a second L-shaped retaining member coupled to the third tubular body; and a tubular actuating sleeve movably coupled to the tubular support member that comprises:
a third tubular support body defining:
a slot for receiving and mating with the second L-shaped retaining member of the split ring collar.
7. An adjustable expansion cone assembly, comprising:
a tubular support member comprising:
a first tubular support body; and an expansion cone support body coupled to the tubular support body comprising:
a tapered tubular support member defining N slots;
an expansion cone assembly movably coupled to the tubular support member comprising:
a second tubular support body movably coupled to the first tubular support body defining an L-shaped slot; and N expansion cone segments extending from the second tubular support member, each expansion cone segment comprising:
a resilient collet coupled to the second tubular support member;
an expansion cone segment body coupled to the resilient collet including arcuate conical outer surfaces; and a retaining member coupled to the expansion cone segment body for movably coupling the expansion cone segment body to a corresponding one of the slots of the expansion cone support body;
a split ring collar movably coupled to the exterior of the tubular support member comprising:
a third tubular support body;
a first L-shaped retaining member coupled to the third tubular support body for mating with the L-shaped slot of the second tubular support body; and a second L-shaped retaining member coupled to the third tubular support body;
and a tubular actuating sleeve movably coupled to the tubular support member that comprises:
a third tubular support body defining:
a slot for receiving and mating with the second L-shaped retaining member of the split ring collar.
8. An adjustable expansion cone assembly, comprising:
a tubular support member comprising:
a first tubular support body; and an expansion cone support body coupled to the tubular support body comprising:
a tapered tubular support member defining N slots;
an expansion cone assembly movably coupled to the tubular support member comprising:
a second tubular support body movably coupled to the first tubular support body defining an L-shaped slot; and N/2 first expansion cone segments extending from the second tubular support member, each first expansion cone segment comprising:
a first resilient collet coupled to the second tubular support member;
a first expansion cone segment body coupled to the resilient collet including arcuate conical outer surfaces; and a first retaining member coupled to the expansion cone segment body for movably coupling the expansion cone segment body to a corresponding one of the slots of the expansion cone support body;
N/2 second expansion cone segments extending from the second tubular support member, each second expansion cone segment comprising:
a second resilient collet coupled to the second tubular support member;
a second expansion cone segment body coupled to the resilient collet including arcuate conical outer surfaces; and a second retaining member coupled to the expansion cone segment body for movably coupling the expansion cone segment body to a corresponding one of the slots of the expansion cone support body;
wherein the second expansion cone segments overlap and are interleaved with the first expansion cone segments;
a split ring collar movably coupled to the exterior of the tubular support member comprising:
a third tubular support body;

a first L-shaped retaining member coupled to the third tubular support body for mating with L-shaped slot of the second tubular support body; and a second L-shaped retaining member coupled to the third tubular support body;
and a tubular actuating sleeve movably coupled to the tubular support member that comprises:
a third tubular support body defining:
a slot for receiving and mating with the second L-shaped retaining member of the split ring collar.
9. An adjustable expansion cone assembly, comprising:
a tubular support member comprising:
a first tubular support body; and an expansion cone support body coupled to the first tubular support body comprising:
an N-sided tapered tubular support member;
wherein each side of the multi-sided tapered tubular support member defines a T-shaped slot;
N/2 first expansion cone segments movably coupled to the expansion cone support body, each comprising:
a first expansion cone segment body including arcuate conical outer surfaces;
a first T-shaped retaining member coupled to the first expansion cone segment body for movably coupling the first expansion cone segment body to a corresponding one of the T-shaped slots of the expansion cone support body; and a second T-shaped retaining member coupled to the first expansion cone segment body;
N/2 second expansion cone segments movably coupled to the expansion cone support body, each comprising:
a second expansion cone segment body including arcuate conical outer surfaces;
a third T-shaped retaining member coupled to the second expansion cone segment body for movably coupling the second expansion cone segment body to a corresponding one of the T-shaped slots of the expansion cone support body; and a fourth T-shaped retaining member coupled to the expansion cone segment body;
wherein the first and second expansion cone segments are interleaved;
wherein the first expansion cone segment bodies are complementary shaped with respect to the second expansion cone segment bodies;
a split ring collar assembly movably coupled to the exterior of the tubular support member comprising:
a second tubular support body defining:
N T-shaped slots for movably receiving corresponding ones of the second and fourth T-shaped retaining members of the interleaved first and second expansion cone segments; and an L-shaped retaining member coupled to the second tubular support body; and a tubular actuating sleeve movably coupled to the tubular support member that comprises:
a third tubular support body defining:
a slot for receiving and mating with the L-shaped retaining member of the split ring collar.
10. An apparatus for radially expanding a tubular member, comprising:
a tubular support member comprising:
a first tubular support body defining a longitudinal passage;
a first lug coupled to and extending from the first tubular support body in the radial direction; and a second lug coupled to and extending from the first tubular support body in the radial direction;
an adjustable expansion cone assembly movably coupled to the tubular support member;
a first drag block assembly movably coupled to the tubular support member that comprises:
a first drag block body coupled to the adjustable expansion cone assembly defining:
a first J-shaped slot for receiving the first lug; and one or more first drag blocks coupled to the first drag block body;
a second drag block assembly movably coupled to the tubular support member that comprises:
a second drag block body defining:
a second J-shaped slot for receiving the second lug; and one or more second drag blocks coupled to the second drag block body; and first and second packer cups coupled to the tubular support member between the first and second drag block assemblies.
11. The apparatus of claim 10, wherein the tubular support member further comprises:
an expansion cone support body coupled to the first tubular support body comprising:
an N-sided tapered tubular support member;
wherein each side of the multi-sided tapered tubular support member defines a T-shaped slot;
wherein the adjustable expansion cone assembly comprises:
N expansion cone segments movably coupled to the expansion cone support body, each comprising:
an expansion cone segment body including arcuate conical outer surfaces;
a first T-shaped retaining member coupled to the expansion cone segment body for movably coupling the expansion cone segment body to a corresponding one of the T-shaped slots of the expansion cone support body; and a second T-shaped retaining member coupled to the expansion cone segment body;
and a split ring collar movably coupled to the exterior of the tubular support member comprising:
a second tubular support body defining:
N T-shaped slots for movably receiving corresponding ones of the second T-shaped retaining members of the expansion cone segments; and an L-shaped retaining member coupled to the second tubular support body; and wherein the first drag block body further defines:
a slot for receiving and mating with the L-shaped retaining member of the split ring collar.
12. The apparatus of claim 10, wherein the tubular support member further comprises:
an expansion cone support body coupled to the tubular support body comprising:
a tapered tubular support member defining N stepped slots;
wherein the adjustable expansion cone assembly comprises:

an expansion cone assembly movably coupled to the tubular support member comprising:
a second tubular support body movably coupled to the first tubular support body defining an L-shaped slot; and N expansion cone segments extending from the second tubular support member, each expansion cone segment comprising:
a resilient collet coupled to the second tubular support member;
an expansion cone segment body coupled to the resilient collet including arcuate conical outer surfaces; and a retaining member coupled to the expansion cone segment body for movably coupling the expansion cone segment body to a corresponding one of the stepped slots of the expansion cone support body; and a split ring collar movably coupled to the exterior of the tubular support member comprising:
a third tubular support body:
a first L-shaped retaining member coupled to the third tubular support body for mating with the L-shaped slot of the second tubular support body; and a second L-shaped retaining member coupled to the third tubular support member;
wherein the first drag block body further defines:
a slot for receiving and mating with the second L-shaped retaining member of the split ring collar.
13. The apparatus of claim 10, wherein the tubular support member further comprises:
an expansion cone support body coupled to the first tubular support body comprising:
a tapered tubular support member defining N slots;
wherein the adjustable expansion cone assembly comprises:
an expansion cone assembly movably coupled to the tubular support member comprising:
a second tubular support body movably coupled to the first tubular support body defining an L-shaped slot; and N expansion cone segments extending from the second tubular support member, each expansion cone segment comprising:
a resilient collet coupled to the second tubular support member;
an expansion cone segment body coupled to the resilient collet including arcuate conical outer surfaces; and a retaining member coupled to the expansion cone segment body for movably coupling the expansion cone segment body to a corresponding one of the slots of the expansion cone support body; and a split ring collar movably coupled to the exterior of the tubular support member comprising:
a third tubular support body;
a first L-shaped retaining member coupled to the third tubular support body for mating with L-shaped slot of the second tubular support body; and a second L-shaped retaining member coupled to the third tubular support body;
wherein the first drag block body further defines:

a slot for receiving and mating with the second L-shaped retaining member of the split ring collar.
14. The apparatus of claim 10, wherein the tubular support member further comprises:
an expansion cone support body coupled to the tubular support body comprising:
a tapered tubular support member defining N slots;
wherein the adjustable expansion cone assembly comprises:
an expansion cone assembly movably coupled to the tubular support member comprising:
a second tubular support body movably coupled to the first tubular support body defining an L-shaped slot; and N/2 first expansion cone segments extending from the second tubular support member, each first expansion cone segment comprising:
a first resilient collet coupled to the second tubular support member;
a first expansion cone segment body coupled to the resilient collet including arcuate conical outer surfaces; and a first retaining member coupled to the expansion cone segment body for movably coupling the expansion cone segment body to a corresponding one of the slots of the expansion cone support body;
N/2 second expansion cone segments extending from the second tubular support member, each second expansion cone segment comprising:
a second resilient collet coupled to the second tubular support member;
a second expansion cone segment body coupled to the resilient collet including arcuate conical outer surfaces; and a second retaining member coupled to the expansion cone segment body for movably coupling the expansion cone segment body to a corresponding one of the slots of the expansion cone support body;
wherein the second expansion cone segments overlap and are interleaved with the first expansion cone segments; and a split ring collar movably coupled to the exterior of the tubular support member comprising:
a third tubular support body;
a first L-shaped retaining member coupled to the third tubular support body for mating with the L-shaped slot of the second tubular support body; and a second L-shaped retaining member coupled to the third tubular support body;
wherein the first drag block body further defines:
a slot for receiving and mating with the second L-shaped retaining member of the split ring collar.
15. The apparatus of claim 10, wherein the tubular support member further comprises:
an expansion cone support body coupled to the first tubular support body comprising:
an N-sided tapered tubular support member;
wherein each side of the multi-sided tapered tubular support member defines a T-shaped slot;

wherein the adjustable expansion cone assembly comprises:
N/2 first expansion cone segments movably coupled to the expansion cone support body, each comprising:
a first expansion cone segment body including arcuate conical outer surfaces;
a first T-shaped retaining member coupled to the first expansion cone segment body for movably coupling the first expansion cone segment body to a corresponding one of the T-shaped slots of the expansion cone support body; and a second T-shaped retaining member coupled to the first expansion cone segment body;
N/2 second expansion cone segments movably coupled to the expansion cone support body, each comprising:
a second expansion cone segment body including arcuate conical outer surfaces;
a third T-shaped retaining member coupled to the second expansion cone segment body for movably coupling the second expansion cone segment body to a corresponding one of the T-shaped slots of the expansion cone support body;
and a fourth T-shaped retaining member coupled to the expansion cone segment body;
wherein the first and second expansion cone segments are interleaved;
wherein the first expansion cone segment bodies are complementary shaped with respect to the second expansion cone segment bodies; and a split ring collar assembly movably coupled to the exterior of the tubular support member comprising:
a second tubular support body defining:
N T-shaped slots for movably receiving corresponding ones of the second and fourth T-shaped retaining members of the interleaved first and second expansion cone segments; and an L-shaped retaining member coupled to the second tubular support body; and wherein the first drag block body further defines:
a slot for receiving and mating with the L-shaped retaining member of the split ring collar.
16. An apparatus for radially expanding a tubular member, comprising:
a tubular support member comprising:
a first tubular support body defining a longitudinal passage;
a first flange coupled to the first tubular support body;
a second flange coupled to the first tubular support body;
a first tapered flange coupled to the first tubular support body; and a second tapered flange coupled to the first tubular support body;
an adjustable expansion cone assembly movably coupled to the tubular support member;
a first collet assembly movably coupled to the tubular support member that comprises:
a first tubular sleeve coupled to the adjustable expansion cone assembly and defining:
a first counterbore for receiving the first flange; and a first radial passage;
a first spring received within the first counterbore;

a first retaining ring received within the first counterbore;
a first load transfer pin coupled to the first retaining ring and extending through the first radial passage;
a second tubular sleeve coupled to the first load transfer pin;
a first resilient collet coupled to the second tubular sleeve and positioned above the first tapered flange; and a third tubular sleeve coupled to the first resilient collet;
a second collet assembly movably coupled to the tubular support member that comprises:
a fourth tubular sleeve defining:
a second counterbore for receiving the second flange; and a second radial passage;
a second spring received within the second counterbore;
a second retaining ring received within the second counterbore;
a second load transfer pin coupled to the second retaining ring and extending through the second radial passage;
a fifth tubular sleeve coupled to the second load transfer pin;
a second resilient collet coupled to the fifth tubular sleeve and positioned above the second tapered flange; and a sixth tubular sleeve coupled to the second resilient collet; and first and second packer cups coupled to the tubular support member between the first and second collet assemblies.
17. The apparatus of claim 16, wherein the tubular support member further comprises:
an expansion cone support body coupled to the first tubular support body comprising:
an N-sided tapered tubular support member;
wherein each side of the multi-sided tapered tubular support member defines a T-shaped slot;
wherein the adjustable expansion cone assembly comprises:
N expansion cone segments movably coupled to the expansion cone support body, each comprising:
an expansion cone segment body including arcuate conical outer surfaces;
a first T-shaped retaining member coupled to the expansion cone segment body for movably coupling the expansion cone segment body to a corresponding one of the T-shaped slots of the expansion cone support body; and a second T-shaped retaining member coupled to the expansion cone segment body;
and a split ring collar movably coupled to the exterior of the tubular support member comprising:
a second tubular support body defining:
N T-shaped slots for movably receiving corresponding ones of the second T-shaped retaining members of the expansion cone segments; and an L-shaped retaining member coupled to the second tubular support body; and wherein the first tubular sleeve of the first collet assembly further defines:
a slot for receiving and mating with the L-shaped retaining member of the split ring collar.
18. The apparatus of claim 16, wherein the tubular support member further comprises:
an expansion cone support body coupled to the tubular support body comprising:
a tapered tubular support member defining N stepped slots;
wherein the adjustable expansion cone assembly comprises:
an expansion cone assembly movably coupled to the tubular support member comprising:
a second tubular support body movably coupled to the first tubular support body defining an L-shaped slot; and N expansion cone segments extending from the second tubular support member, each expansion cone segment comprising:
a resilient collet coupled to the second tubular support member;
an expansion cone segment body coupled to the resilient collet including arcuate conical outer surfaces; and a retaining member coupled to the expansion cone segment body for movably coupling the expansion cone segment body to a corresponding one of the stepped slots of the expansion cone support body; and a split ring collar movably coupled to the exterior of the tubular support member comprising:
a third tubular support body:
a first L-shaped retaining member coupled to the third tubular support body for mating with the L-shaped slot of the second tubular support body; and a second L-shaped retaining member coupled to the third tubular support member;
wherein the first tubular sleeve of the first collet assembly further defines:
a slot for receiving and mating with the second L-shaped retaining member of the split ring collar.
19. The apparatus of claim 16, wherein the tubular support member further comprises:
an expansion cone support body coupled to the first tubular support body comprising:
a tapered tubular support member defining N slots;
wherein the adjustable expansion cone assembly comprises:
an expansion cone assembly movably coupled to the tubular support member comprising:
a second tubular support body movably coupled to the first tubular support body defining an L-shaped slot; and N expansion cone segments extending from the second tubular support member, each expansion cone segment comprising:
a resilient collet coupled to the second tubular support member;
an expansion cone segment body coupled to the resilient collet including arcuate conical outer surfaces; and a retaining member coupled to the expansion cone segment body for movably coupling the expansion cone segment body to a corresponding one of the slots of the expansion cone support body; and a split ring collar movably coupled to the exterior of the tubular support member comprising:

a third tubular support body;
a first L-shaped retaining member coupled to the third tubular support body for mating with L-shaped slot of the second tubular support body; and a second L-shaped retaining member coupled to the third tubular support body;
wherein the first tubular sleeve of the first collet assembly further defines:
a slot for receiving and mating with the second L-shaped retaining member of the split ring collar.
20. The apparatus of claim 16, wherein the tubular support member further comprises:
an expansion cone support body coupled to the tubular support body comprising:
a tapered tubular support member defining N slots;
wherein the adjustable expansion cone assembly comprises:
an expansion cone assembly movably coupled to the tubular support member comprising:
a second tubular support body movably coupled to the first tubular support body defining an L-shaped slot; and N/2 first expansion cone segments extending from the second tubular support member, each first expansion cone segment comprising:
a first resilient collet coupled to the second tubular support member;
a first expansion cone segment body coupled to the resilient collet including arcuate conical outer surfaces; and a first retaining member coupled to the expansion cone segment body for movably coupling the expansion cone segment body to a corresponding one of the slots of the expansion cone support body;
N/2 second expansion cone segments extending from the second tubular support member, each second expansion cone segment comprising:
a second resilient collet coupled to the second tubular support member;
a second expansion cone segment body coupled to the resilient collet including arcuate conical outer surfaces; and a second retaining member coupled to the expansion cone segment body for movably coupling the expansion cone segment body to a corresponding one of the slots of the expansion cone support body;
wherein the second expansion cone segments overlap and are interleaved with the first expansion cone segments; and a split ring collar movably coupled to the exterior of the tubular support member comprising:
a third tubular support body;
a first L-shaped retaining member coupled to the third tubular support body for mating with the L-shaped slot of the second tubular support body; and a second L-shaped retaining member coupled to the third tubular support body;
wherein the first tubular sleeve of the first collet assembly further defines:
a slot for receiving and mating with the second L-shaped retaining member of the split ring collar.
21. The apparatus of claim 16, wherein the tubular support member further comprises:
an expansion cone support body coupled to the first tubular support body comprising:
an N-sided tapered tubular support member;
wherein each side of the mufti-sided tapered tubular support member defines a T-shaped slot;
wherein the adjustable expansion cone assembly comprises:
N/2 first expansion cone segments movably coupled to the expansion cone support body, each comprising:
a first expansion cone segment body including arcuate conical outer surfaces;
a first T-shaped retaining member coupled to the first expansion cone segment body for movably coupling the first expansion cone segment body to a corresponding one of the T-shaped slots of the expansion cone support body; and a second T-shaped retaining member coupled to the first expansion cone segment body;
N/2 second expansion cone segments movably coupled to the expansion cone support body, each comprising:
a second expansion cone segment body including arcuate conical outer surfaces;
a third T-shaped retaining member coupled to the second expansion cone segment body for movably coupling the second expansion cone segment body to a corresponding one of the T-shaped slots of the expansion cone support body;
and a fourth T-shaped retaining member coupled to the expansion cone segment body;
wherein the first and second expansion cone segments are interleaved;
wherein the first expansion cone segment bodies are complementary shaped with respect to the second expansion cone segment bodies; and a split ring collar assembly movably coupled to the exterior of the tubular support member comprising:
a second tubular support body defining:
N T-shaped slots for movably receiving corresponding ones of the second and fourth T-shaped retaining members of the interleaved first and second expansion cone segments; and an L-shaped retaining member coupled to the second tubular support body; and wherein the first tubular sleeve of the first collet assembly further defines:
a slot for receiving and mating with the L-shaped retaining member of the split ring collar.
22. An apparatus for radially expanding a tubular member, comprising:
a tubular support member comprising:
a first tubular support body defining a longitudinal passage;
a first radial passage defined in the first tubular support body fluidicly coupled to the longitudinal passage;
a first flange coupled to the first tubular support body;
a second flange coupled to the first tubular support body;
a first tapered flange coupled to the first tubular support body; and a second tapered flange coupled to the first tubular support body;
an adjustable expansion cone assembly movably coupled to the tubular support member;
a first dog assembly movably coupled to the tubular support member that comprises:
a first tubular sleeve coupled to the adjustable expansion cone assembly defining:
a first counterbore for receiving the first flange; and a second radial passage;
a first spring received within the first counterbore;
a first retaining ring received within the first counterbore;
a first load transfer pin coupled to the first retaining ring and extending through the second radial passage;
a second tubular sleeve coupled to the first load transfer pin defining:
a second counterbore for receiving the first tubular sleeve;
a first resilient dog coupled to the second tubular sleeve and positioned adjacent to the first tapered flange;
a second dog assembly movably coupled to the tubular support member that comprises:
a third tubular sleeve defining:
a second counterbore for receiving the second flange;
a third radial passage; and a fourth radial passage fluidicly coupled to the first radial passage;
a second spring received within the second counterbore;
a second retaining ring received within the second counterbore;
a second load transfer pin coupled to the second retaining ring and extending through the third radial passage;
a fourth tubular sleeve coupled to the second load transfer pin;
a second resilient dog coupled to the fourth tubular sleeve and positioned adjacent to the second tapered flange; and first and second packer cups coupled to the tubular support member between the first and second dog assemblies.
23. The apparatus of claim 22, wherein the tubular support member further comprises:
an expansion cone support body coupled to the first tubular support body comprising:
an N-sided tapered tubular support member;
wherein each side of the mufti-sided tapered tubular support member defines a T-shaped slot;
wherein the adjustable expansion cone assembly comprises:
N expansion cone segments movably coupled to the expansion cone support body, each comprising:
an expansion cone segment body including arcuate conical outer surfaces;
a first T-shaped retaining member coupled to the expansion cone segment body for movably coupling the expansion cone segment body to a corresponding one of the T-shaped slots of the expansion cone support body; and a second T-shaped retaining member coupled to the expansion cone segment body;
and a split ring collar movably coupled to the exterior of the tubular support member comprising:
a second tubular support body defining:
N T-shaped slots for movably receiving corresponding ones of the second T-shaped retaining members of the expansion cone segments; and an L-shaped retaining member coupled to the second tubular support body; and wherein the first tubular sleeve of the first dog assembly further defines:
a slot for receiving and mating with the L-shaped retaining member of the split ring collar.
24. The apparatus of claim 22, wherein the tubular support member further comprises:
an expansion cone support body coupled to the tubular support body comprising:
a tapered tubular support member defining N stepped slots;
wherein the adjustable expansion cone assembly comprises:
an expansion cone assembly movably coupled to the tubular support member comprising:
a second tubular support body movably coupled to the first tubular support body defining an L-shaped slot; and N expansion cone segments extending from the second tubular support member, each expansion cone segment comprising:
a resilient collet coupled to the second tubular support member;
an expansion cone segment body coupled to the resilient collet including arcuate conical outer surfaces; and a retaining member coupled to the expansion cone segment body for movably coupling the expansion cone segment body to a corresponding one of the stepped slots of the expansion cone support body; and a split ring collar movably coupled to the exterior of the tubular support member comprising:
a third tubular support body:
a first L-shaped retaining member coupled to the third tubular support body for mating with the L-shaped slot of the second tubular support body; and a second L-shaped retaining member coupled to the third tubular support member; and wherein the first tubular sleeve of the first dog assembly further defines:
a slot for receiving and mating with the second L-shaped retaining member of the split ring collar.
25. The apparatus of claim 22, wherein the tubular support member further comprises:
an expansion cone support body coupled to the first tubular support body comprising:
a tapered tubular support member defining N slots;
wherein the adjustable expansion cone assembly comprises:
an expansion cone assembly movably coupled to the tubular support member comprising:
a second tubular support body movably coupled to the first tubular support body defining an L-shaped slot; and N expansion cone segments extending from the second tubular support member, each expansion cone segment comprising:
a resilient collet coupled to the second tubular support member;

an expansion cone segment body coupled to the resilient collet including arcuate conical outer surfaces; and a retaining member coupled to the expansion cone segment body for movably coupling the expansion cone segment body to a corresponding one of the slots of the expansion cone support body; and a split ring collar movably coupled to the exterior of the tubular support member comprising:
a third tubular support body;
a first L-shaped retaining member coupled to the third tubular support body for mating with L-shaped slot of the second tubular support body; and a second L-shaped retaining member coupled to the third tubular support body;
and wherein the first tubular sleeve of the first dog assembly further defines:
a slot for receiving and mating with the second L-shaped retaining member of the split ring collar.
26. The apparatus of claim 22, wherein the tubular support member further comprises:
an expansion cone support body coupled to the tubular support body comprising:
a tapered tubular support member defining N slots;
wherein the adjustable expansion cone assembly comprises:
an expansion cone assembly movably coupled to the tubular support member comprising:
a second tubular support body movably coupled to the first tubular support body defining an L-shaped slot; and N/2 first expansion cone segments extending from the second tubular support member, each first expansion cone segment comprising:
a first resilient collet coupled to the second tubular support member;
a first expansion cone segment body coupled to the resilient collet including arcuate conical outer surfaces; and a first retaining member coupled to the expansion cone segment body for movably coupling the expansion cone segment body to a corresponding one of the slots of the expansion cone support body;
N/2 second expansion cone segments extending from the second tubular support member, each second expansion cone segment comprising:
a second resilient collet coupled to the second tubular support member;
a second expansion cone segment body coupled to the resilient collet including arcuate conical outer surfaces; and a second retaining member coupled to the expansion cone segment body for movably coupling the expansion cone segment body to a corresponding one of the slots of the expansion cone support body;
wherein the second expansion cone segments overlap and are interleaved with the first expansion cone segments; and a split ring collar movably coupled to the exterior of the tubular support member comprising:

a third tubular support body;
a first L-shaped retaining member coupled to the third tubular support body for mating with the L-shaped slot of the second tubular support body; and a second L-shaped retaining member coupled to the third tubular support body;
and wherein the first tubular sleeve of the first dog assembly further defines:
a slot for receiving and mating with the second L-shaped retaining member of the split ring collar.
27. The apparatus of claim 22, wherein the tubular support member further comprises:
an expansion cone support body coupled to the first tubular support body comprising:
an N-sided tapered tubular support member;
wherein each side of the mufti-sided tapered tubular support member defines a T-shaped slot;
wherein the adjustable expansion cone assembly comprises:
N/2 first expansion cone segments movably coupled to the expansion cone support body, each comprising:
a first expansion cone segment body including arcuate conical outer surfaces;
a first T-shaped retaining member coupled to the first expansion cone segment body for movably coupling the first expansion cone segment body to a corresponding one of the T-shaped slots of the expansion cone support body; and a second T-shaped retaining member coupled to the first expansion cone segment body;
N/2 second expansion cone segments movably coupled to the expansion cone support body, each comprising:
a second expansion cone segment body including arcuate conical outer surfaces;
a third T-shaped retaining member coupled to the second expansion cone segment body for movably coupling the second expansion cone segment body to a corresponding one of the T-shaped slots of the expansion cone support body;
and a fourth T-shaped retaining member coupled to the expansion cone segment body;
wherein the first and second expansion cone segments are interleaved;
wherein the first expansion cone segment bodies are complementary shaped with respect to the a second expansion cone segment bodies; and a split ring collar assembly movably coupled to the exterior of the tubular support member comprising:
a second tubular support body defining:
N T-shaped slots for movably receiving corresponding ones of the second and fourth T-shaped retaining members of the interleaved first and second expansion cone segments; and an L-shaped retaining member coupled to the second tubular support body; and wherein the first tubular sleeve of the first dog assembly further defines:
a slot for receiving and mating with the L-shaped retaining member of the split ring collar.
28. An apparatus for radially expanding a tubular member, comprising:

a tubular support member comprising:
a first tubular support body defining a longitudinal passage including a throat passage;
a first radial passage defined in the first tubular support body fluidicly coupled to the longitudinal passage;
a first flange coupled to the first tubular support body;
a second flange coupled to the first tubular support body defining:
a second radial passage defined in the second flange fluidicly coupled to the longitudinal passage; and an adjustable expansion cone assembly movably coupled to the tubular support member;
a dog assembly movably coupled to the tubular support member that comprises:
a first tubular sleeve coupled to the adjustable expansion cone assembly defining:
a first counterbore for receiving the first flange; and a third radial passage;
a spring received within the first counterbore;
a retaining ring received within the first counterbore;
a load transfer pin coupled to the retaining ring and extending through the third radial passage;
a second tubular sleeve coupled to the first load transfer pin that defines:
a first counterbore for receiving the first tubular sleeve;
a second counterbore for receiving and mating with the tapered flange; and comprises:
a third flange defining:
a third counterbore for receiving the second flange;
a fourth counterbore for receiving the second flange; and a fourth radial passage; and a resilient dog coupled to the second tubular sleeve and positioned adjacent to the tapered flange;
and first and second packer cups coupled to the tubular support member between the resilient dog and the third flange.
29. The apparatus of claim 28, wherein the tubular support member further comprises:
an expansion cone support body coupled to the first tubular support body comprising:
an N-sided tapered tubular support member;
wherein each side of the multi-sided tapered tubular support member defines a T-shaped slot;
wherein the adjustable expansion cone assembly comprises:
N expansion cone segments movably coupled to the expansion cone support body, each comprising:
an expansion cone segment body including arcuate conical outer surfaces;
a first T-shaped retaining member coupled to the expansion cone segment body for movably coupling the expansion cone segment body to a corresponding one of the T-shaped slots of the expansion cone support body; and a second T-shaped retaining member coupled to the expansion cone segment body;
and a split ring collar movably coupled to the exterior of the tubular support member comprising:
a second tubular support body defining:
N T-shaped slots for movably receiving corresponding ones of the second T-shaped retaining members of the expansion cone segments; and an L-shaped retaining member coupled to the second tubular support body; and wherein the first tubular sleeve of the dog assembly further defines:
a slot for receiving and mating with the L-shaped retaining member of the split ring collar.
30. The apparatus of claim 28, wherein the tubular support member further comprises:
an expansion cone support body coupled to the tubular support body comprising:
a tapered tubular support member defining N stepped slots;
wherein the adjustable expansion cone assembly comprises:
an expansion cone assembly movably coupled to the tubular support member comprising:
a second tubular support body movably coupled to the first tubular support body defining an L-shaped slot; and N expansion cone segments extending from the second tubular support member, each expansion cone segment comprising:
a resilient collet coupled to the second tubular support member;
an expansion cone segment body coupled to the resilient collet including arcuate conical outer surfaces; and a retaining member coupled to the expansion cone segment body for movably coupling the expansion cone segment body to a corresponding one of the stepped slots of the expansion cone support body; and a split ring collar movably coupled to the exterior of the tubular support member comprising:
a third tubular support body:
a first L-shaped retaining member coupled to the third tubular support body for mating with the L-shaped slot of the second tubular support body; and a second L-shaped retaining member coupled to the third tubular support member; and wherein the first tubular sleeve of the dog assembly further defines:
a slot for receiving and mating with the second L-shaped retaining member of the split ring collar.
31. The apparatus of claim 28, wherein the tubular support member further comprises:
an expansion cone support body coupled to the first tubular support body comprising:
a tapered tubular support member defining N slots;
wherein the adjustable expansion cone assembly comprises:
an expansion cone assembly movably coupled to the tubular support member comprising:
a second tubular support body movably coupled to the first tubular support body defining an L-shaped slot; and N expansion cone segments extending from the second tubular support member, each expansion cone segment comprising:
a resilient collet coupled to the second tubular support member;

an expansion cone segment body coupled to the resilient collet including arcuate conical outer surfaces; and a retaining member coupled to the expansion cone segment body for movably coupling the expansion cone segment body to a corresponding one of the slots of the expansion cone support body; and a split ring collar movably coupled to the exterior of the tubular support member comprising:
a third tubular support body;
a first L-shaped retaining member coupled to the third tubular support body for mating with L-shaped slot of the second tubular support body; and a second L-shaped retaining member coupled to the third tubular support body;
and wherein the first tubular sleeve of the dog assembly further defines:
a slot for receiving and mating with the second L-shaped retaining member of the split ring collar.
32. The apparatus of claim 28, wherein the tubular support member further comprises:
an expansion cone support body coupled to the tubular support body comprising:
a tapered tubular support member defining N slots;
wherein the adjustable expansion cone assembly comprises:
an expansion cone assembly movably coupled to the tubular support member comprising:
a second tubular support body movably coupled to the first tubular support body defining an L-shaped slot; and N/2 first expansion cone segments extending from the second tubular support member, each first expansion cone segment comprising:
a first resilient collet coupled to the second tubular support member;
a first expansion cone segment body coupled to the resilient collet including arcuate conical outer surfaces; and a first retaining member coupled to the expansion cone segment body for movably coupling the expansion cone segment body to a corresponding one of the slots of the expansion cone support body;

N/2 second expansion cone segments extending from the second tubular support member, each second expansion cone segment comprising:
a second resilient collet coupled to the second tubular support member;
a second expansion cone segment body coupled to the resilient collet including arcuate conical outer surfaces; and a second retaining member coupled to the expansion cone segment body for movably coupling the expansion cone segment body to a corresponding one of the slots of the expansion cone support body;
wherein the second expansion cone segments overlap and are interleaved with the first expansion cone segments; and a split ring collar movably coupled to the exterior of the tubular support member comprising:

a third tubular support body;
a first L-shaped retaining member coupled to the third tubular support body for mating with the L-shaped slot of the second tubular support body; and a second L-shaped retaining member coupled to the third tubular support body;
and wherein the first tubular sleeve of the dog assembly further defines:
a slot for receiving and mating with the second L-shaped retaining member of the split ring collar.
33. The apparatus of claim 28, wherein the tubular support member further comprises:
an expansion cone support body coupled to the first tubular support body comprising:
an N-sided tapered tubular support member;
wherein each side of the multi-sided tapered tubular support member defines a T-shaped slot;
wherein the adjustable expansion cone assembly comprises:
N/2 first expansion cone segments movably coupled to the expansion cone support body, each comprising:
a first expansion cone segment body including arcuate conical outer surfaces;
a first T-shaped retaining member coupled to the first expansion cone segment body for movably coupling the first expansion cone segment body to a corresponding one of the T-shaped slots of the expansion cone support body; and a second T-shaped retaining member coupled to the first expansion cone segment body;
N/2 second expansion cone segments movably coupled to the expansion cone support body, each comprising:
a second expansion cone segment body including arcuate conical outer surfaces;
a third T-shaped retaining member coupled to the second expansion cone segment body for movably coupling the second expansion cone segment body to a corresponding one of the T-shaped slots of the expansion cone support body;
and a fourth T-shaped retaining member coupled to the expansion cone segment body;
wherein the first and second expansion cone segments are interleaved;
wherein the first expansion cone segment bodies are complementary shaped with respect to the second expansion cone segment bodies; and a split ring collar assembly movably coupled to the exterior of the tubular support member comprising:
a second tubular support body defining:
N T-shaped slots for movably receiving corresponding ones of the second and fourth T-shaped retaining members of the interleaved first and second expansion cone segments; and an L-shaped retaining member coupled to the second tubular support body; and wherein the first tubular sleeve of the dog assembly further defines:
a slot for receiving and mating with the L-shaped retaining member of the split ring collar.
34. An apparatus for radially expanding a tubular member, comprising:

a tubular support member;

an adjustable expansion cone assembly movably coupled to the tubular support member; and means for adjusting the adjustable expansion cone assembly.
35. The apparatus of claim 34, wherein the means for adjusting the adjustable expansion cone assembly comprises:

frictional means for adjusting the adjustable expansion cone assembly.
36. The apparatus of claim 34, wherein the means for adjusting the adjustable expansion cone assembly comprises:

resilient means for adjusting the adjustable expansion cone assembly.
37. An adjustable expansion cone assembly, comprising:

a tubular support member;

an adjustable expansion cone movably coupled to the tubular support member, comprising:
a plurality of expansion cone segments; and means for guiding the expansion cone segments on the tubular support member;
and means for adjusting the adjustable expansion cone.
38. The adjustable expansion cone assembly of claim 37, wherein the adjustable expansion cone further comprises:

means for interlocking the expansion cone segments.
39. The adjustable expansion cone assembly of claim 37, wherein the means for adjusting the adjustable expansion cone comprises:

resilient means for supporting the expansion cone segments.
40. The adjustable expansion cone assembly of claim 37, wherein the expansion cone segments include first and second interleaved groups of expansion cone segments.
41. The adjustable expansion cone assembly of claim 40, wherein the means for adjusting the adjustable expansion cone comprises:

means for displacing the first and second interleaved groups of expansion cone segments in opposite directions.
42. A method of operating an adjustable expansion cone assembly comprising a plurality of expansion cone segments, comprising:

guiding the expansion cone segments on a tapered body; and controllably displacing the expansion cone segments along the tapered body.
43. The method of claim 42, further comprising:

resiliently guiding the expansion cone segments on the tapered body.
44. The method of claim 42, further comprising:

interlocking the expansion cone segments.
45. The method of claim 42, further comprising:

dividing the expansion cone segments into first and second groups of expansion cone segments; and interleaving the first and second groups of expansion cone segments.
46. The method of claim 45, further comprising:

overlapping the first and second groups of expansion cone segments.
47. The method of claim 45, wherein controllably displacing the expansion cone segments along the tapered body comprises:

displacing the first and second interleaved groups of expansion cone segments in opposite directions.
48. A method of operating an adjustable expansion cone assembly comprising a plurality of expansion cone segments, comprising:

guiding the expansion cone segments on a multi-sided tapered body;
interlocking the expansion cone segments; and controllably displacing the expansion cone segments along the tapered body.
49. A method of operating an adjustable expansion cone assembly comprising a plurality of expansion cone segments, comprising:

resiliently guiding the expansion cone segments on a multi-sided tapered body;
guiding each of the expansion cone segments on opposite sides in the circumferential direction;
interlocking the expansion cone segments; and controllably displacing the expansion cone segments along the tapered body.
50. A method of operating an adjustable expansion cone assembly comprising a plurality of expansion cone segments, comprising:

dividing the expansion cone segments into first and second groups of expansion cone segments;
interleaving the first and second groups of expansion cone segments;
overlapping the first and second groups of expansion cone segments;
resiliently guiding the expansion cone segments on a multi-sided tapered body;
guiding each of the expansion cone segments on opposite sides in the circumferential direction; and controllably displacing the expansion cone segments along the tapered body.
51. A method of operating an adjustable expansion cone assembly comprising a plurality of expansion cone segments, comprising:

dividing the expansion cone segments into first and second groups of expansion cone segments;

interleaving the first and second groups of expansion cone segments;

guiding the expansion cone segments on a multi-sided tapered body; and controllably displacing the expansion cone segments along the tapered body while also relatively displacing the first and second groups of expansion cone segments in opposite directions.
52. A method of plastically deforming and radially expanding an expandable tubular member using an apparatus comprising a tubular support member, an adjustable expansion cone assembly movably coupled to the tubular support member, and an actuator movably coupled to the tubular support member for adjusting the adjustable expansion cone assembly, comprising:

coupling a first end of the expandable tubular member to a tubular structure;
locking the actuator to the tubular support member of the apparatus;
inserting the apparatus into the first end of the expandable tubular member;
moving the actuator and the adjustable expansion cone assembly of the apparatus out of the second end of the expandable tubular member;
reinserting the actuator of the apparatus into the second end of the expandable tubular member;

unlocking the actuator from the tubular support member of the apparatus;
rotating the actuator relative to the tubular support member of the apparatus;
and increasing the outside diameter of the adjustable expansion cone assembly by moving the tubular support member relative to the actuator, the adjustable expansion cone assembly, and the expandable tubular member; and plastically deforming and radially expanding the expandable tubular member by moving the adjustable expansion cone assembly through the expandable tubular member.
53. The method of claim 52, wherein the tubular support member includes one or more lugs; wherein the actuator includes one or more corresponding retaining slots; and wherein locking comprises positioning the lugs into the corresponding retaining slots.
54. The method of claim 52, wherein the tubular support member includes one or more lugs; wherein the actuator includes one or more corresponding retaining slots; and wherein unlocking comprises positioning the lugs out of engagement with corresponding retaining slots.
55. The method of claim 52, wherein moving the tubular support member relative to the actuator, the adjustable expansion cone assembly, and the expandable tubular member comprises:
the actuator frictionally engaging the expandable tubular member.
56. The method of claim 52, wherein moving the adjustable expansion cone assembly through the expandable tubular member comprises:

pulling the adjustable expansion cone through the expandable tubular member.
57. The method of claim 52, further comprising:
fluidicly sealing the interface between the tubular support member of the apparatus and the expandable tubular member;

wherein moving the adjustable expansion cone assembly through the expandable tubular member comprises:

injecting a pressurized fluid into the tubular support member.
58. A method of plastically deforming and radially expanding an expandable tubular member using an apparatus comprising a tubular support member, an adjustable expansion cone assembly movably coupled to the tubular support member, and an actuator movably coupled to the tubular support member for adjusting the adjustable expansion cone assembly, comprising:

coupling a first end of the expandable tubular member to a tubular structure;
inserting the apparatus into the first end of the expandable tubular member in a first direction;
displacing the actuator of the apparatus in a second direction opposite to the first direction;
applying a resilient biasing force to the adjustable expansion cone assembly in the second direction;
moving the actuator and the adjustable expansion cone assembly of the apparatus out of the second end of the expandable tubular member;

reinserting the actuator of the apparatus into the second end of the expandable tubular member in the second direction;
increasing the outside diameter of the adjustable expansion cone assembly by displacing the actuator and the adjustable expansion cone assembly relative to the expandable tubular member in the first direction; and plastically deforming and radially expanding the expandable tubular member by moving the adjustable expansion cone assembly through the expandable tubular member in the second direction.
59. The method of claim 58, wherein displacing the actuator of the apparatus in the second direction comprises:
impacting the actuator with the first end of the expandable tubular member.
60. The method of claim 58, wherein displacing the actuator and the adjustable expansion cone assembly relative to the expandable tubular member in the first direction comprises:

impacting the actuator with the second end of the expandable tubular member.
61. The method of claim 58, wherein moving the adjustable expansion cone assembly through the expandable tubular member comprises:

pulling the adjustable expansion cone through the expandable tubular member.
62. The method of claim 58, further comprising:

fluidicly sealing the interface between the tubular support member of the apparatus and the expandable tubular member;

wherein moving the adjustable expansion cone assembly through the expandable tubular member comprises;

injecting a pressurized fluid into the tubular support member.
63. An adjustable expansion cone assembly, comprising:

a plurality of expansion cone segments;

means for guiding the expansion cone segments on a tapered body; and means for controllably displacing the expansion cone segments along the tapered body.
64. The assembly of claim 63, further comprising:

means for resiliently guiding the expansion cone segments on the tapered body.
65. The assembly of claim 63, further comprising:

means for interlocking the expansion cone segments.
66. The assembly of claim 63, further comprising:

means for dividing the expansion cone segments into first and second groups of expansion cone segments;
and means for interleaving the first and second groups of expansion cone segments.
67. The assembly of claim 66, further comprising:

means for overlapping the first and second groups of expansion cone segments.
68. The assembly of claim 66, wherein the means for controllably displacing the expansion cone segments along the tapered body comprises:

means for displacing the first and second interleaved groups of expansion cone segments in opposite directions.
69. An adjustable expansion cone assembly, comprising:

a plurality of expansion cone segments;

means for guiding the expansion cone segments on a multi-sided tapered body;
means for interlocking the expansion cone segments; and means for controllably displacing the expansion cone segments along the tapered body.
70. An adjustable expansion cone assembly, comprising:

a plurality of expansion cone segments;

means for resiliently guiding the expansion cone segments on a multi-sided tapered body;
means for guiding each of the expansion cone segments on opposite sides in the circumferential direction;

means for interlocking the expansion cone segments; and means for controllably displacing the expansion cone segments along the tapered body.
71. An adjustable expansion cone assembly, comprising:

a plurality of expansion cone segments;

means for dividing the expansion cone segments into first and second groups of expansion cone segments;
means for interleaving the first and second groups of expansion cone segments;
means for overlapping the first and second groups of expansion cone segments;
means for resiliently guiding the expansion cone segments on a multi-sided tapered body;

means for guiding each of the expansion cone segments on opposite sides in the circumferential direction;
and means for controllably displacing the expansion cone segments along the tapered body.
72. An adjustable expansion cone assembly, comprising:

a plurality of expansion cone segments;

means for dividing the expansion cone segments into first and second groups of expansion cone segments;
means for interleaving the first and second groups of expansion cone segments;
means for guiding the expansion cone segments on a multi-sided tapered body;
and means for controllably displacing the expansion cone segments along the tapered body while also relatively displacing the first and second groups of expansion cone segments in opposite directions.
73. An apparatus for plastically deforming and radially expanding an expandable tubular member, comprising:
a tubular support member;

an adjustable expansion cone assembly movably coupled to the tubular support member;
means for actuating the adjustable expansion cone assembly;

means for locking the actuator to the tubular support member of the apparatus;

means for unlocking the actuator from the tubular support member of the apparatus;

means for increasing the outside diameter of the adjustable expansion cone assembly by moving the tubular support member relative to the actuator, the adjustable expansion cone assembly, and the expandable tubular member.
74. The apparatus of claim 73, wherein the tubular support member includes one or more lugs; wherein the actuator includes one or more corresponding retaining slots; and wherein the means for locking comprises positioning the lugs into the corresponding retaining slots.
75. The apparatus of claim 73, wherein the tubular support member includes one or more lugs; wherein the actuator includes one or more corresponding retaining slots; and wherein the means for unlocking comprises positioning the lugs out of engagement with corresponding retaining slots.
76. The method of claim 73, further comprising:

means for fluidicly sealing the interface between the tubular support member of the apparatus and the expandable tubular member.
77. An apparatus for plastically deforming and radially expanding an expandable tubular member, comprising:
a tubular support member;

an adjustable expansion cone assembly movably coupled to the tubular support member;
means for actuating the adjustable expansion cone assembly;

means for displacing the actuator of the apparatus in a first direction;

means for applying a resilient biasing force to the adjustable expansion cone assembly when the actuator is displaced in the first direction;

means for increasing the outside diameter of the adjustable expansion cone assembly by displacing the actuator and the adjustable expansion cone assembly relative to the expandable tubular member in a second direction opposite to the first direction.
78. The apparatus of claim 77, wherein the means for displacing the actuator of the apparatus in the first direction comprises:

means for impacting the actuator.
79. The apparatus of claim 77, wherein the means for displacing the actuator and the adjustable expansion cone assembly relative to the expandable tubular member in the first direction comprises:
means for impacting the actuator.
CA2459910A 2001-09-07 2002-08-13 Adjustable expansion cone assembly Expired - Fee Related CA2459910C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US31802101P 2001-09-07 2001-09-07
US60/318,021 2001-09-07
PCT/US2002/025608 WO2003023178A2 (en) 2001-09-07 2002-08-13 Adjustable expansion cone assembly

Publications (2)

Publication Number Publication Date
CA2459910A1 true CA2459910A1 (en) 2003-03-20
CA2459910C CA2459910C (en) 2010-04-13

Family

ID=23236285

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2459910A Expired - Fee Related CA2459910C (en) 2001-09-07 2002-08-13 Adjustable expansion cone assembly

Country Status (5)

Country Link
US (2) US7416027B2 (en)
AU (1) AU2002319813A1 (en)
CA (1) CA2459910C (en)
GB (1) GB2396646B (en)
WO (1) WO2003023178A2 (en)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6712154B2 (en) 1998-11-16 2004-03-30 Enventure Global Technology Isolation of subterranean zones
US7357188B1 (en) 1998-12-07 2008-04-15 Shell Oil Company Mono-diameter wellbore casing
US6823937B1 (en) 1998-12-07 2004-11-30 Shell Oil Company Wellhead
US6745845B2 (en) 1998-11-16 2004-06-08 Shell Oil Company Isolation of subterranean zones
US6725919B2 (en) 1998-12-07 2004-04-27 Shell Oil Company Forming a wellbore casing while simultaneously drilling a wellbore
GB0304335D0 (en) * 2003-02-26 2003-04-02 Weatherford Lamb Tubing expansion
GB2412681B (en) * 2001-09-07 2006-01-18 Enventure Global Technology Plastically deforming and radially expanding an expandable tubular member
US7028770B2 (en) * 2001-10-01 2006-04-18 Baker Hughes, Incorporated Tubular expansion apparatus and method
GB2422860B (en) * 2001-11-12 2006-10-04 Enventure Global Technology Mono diameter wellbore casing
NL1019368C2 (en) 2001-11-14 2003-05-20 Nutricia Nv Preparation for improving receptor performance.
BR0214432A (en) 2001-11-28 2004-11-03 Shell Int Research Expandable tubular element for use in a wellbore formed in a terrestrial formation
US7740076B2 (en) 2002-04-12 2010-06-22 Enventure Global Technology, L.L.C. Protective sleeve for threaded connections for expandable liner hanger
CA2482278A1 (en) 2002-04-15 2003-10-30 Enventure Global Technology Protective sleeve for threaded connections for expandable liner hanger
WO2004027392A1 (en) 2002-09-20 2004-04-01 Enventure Global Technology Pipe formability evaluation for expandable tubulars
US7886831B2 (en) 2003-01-22 2011-02-15 Enventure Global Technology, L.L.C. Apparatus for radially expanding and plastically deforming a tubular member
GB2415454B (en) 2003-03-11 2007-08-01 Enventure Global Technology Apparatus for radially expanding and plastically deforming a tubular member
CA2523862C (en) 2003-04-17 2009-06-23 Enventure Global Technology Apparatus for radially expanding and plastically deforming a tubular member
RU2249090C1 (en) * 2003-06-30 2005-03-27 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Device for mounting profiled overlapping means in well
US7712522B2 (en) 2003-09-05 2010-05-11 Enventure Global Technology, Llc Expansion cone and system
RU2006110933A (en) * 2003-09-05 2007-10-10 Инвенчер Глобал Текнолоджи, Ллс (Us) EXPANDABLE TUBULAR ELEMENTS
US7117940B2 (en) 2004-03-08 2006-10-10 Shell Oil Company Expander for expanding a tubular element
US7140428B2 (en) 2004-03-08 2006-11-28 Shell Oil Company Expander for expanding a tubular element
US7131498B2 (en) 2004-03-08 2006-11-07 Shell Oil Company Expander for expanding a tubular element
US7404445B2 (en) * 2004-05-20 2008-07-29 Baker Hughes Incorporated Perimetrically loading collet
US8033247B2 (en) 2004-06-12 2011-10-11 Gea Farm Technologies, Inc. Automatic dairy animal milker unit backflusher and teat dip applicator system and method
US7819185B2 (en) 2004-08-13 2010-10-26 Enventure Global Technology, Llc Expandable tubular
US7735568B2 (en) * 2006-03-29 2010-06-15 Schlumberger Technology Corporation Packer cup systems for use inside a wellbore
US8069916B2 (en) * 2007-01-03 2011-12-06 Weatherford/Lamb, Inc. System and methods for tubular expansion
US7779923B2 (en) * 2007-09-11 2010-08-24 Enventure Global Technology, Llc Methods and apparatus for anchoring and expanding tubular members
US8443881B2 (en) * 2008-10-13 2013-05-21 Weatherford/Lamb, Inc. Expandable liner hanger and method of use
US7980302B2 (en) * 2008-10-13 2011-07-19 Weatherford/Lamb, Inc. Compliant expansion swage
US8230926B2 (en) 2010-03-11 2012-07-31 Halliburton Energy Services Inc. Multiple stage cementing tool with expandable sealing element
US8443903B2 (en) 2010-10-08 2013-05-21 Baker Hughes Incorporated Pump down swage expansion method
US8826974B2 (en) 2011-08-23 2014-09-09 Baker Hughes Incorporated Integrated continuous liner expansion method
US9085967B2 (en) 2012-05-09 2015-07-21 Enventure Global Technology, Inc. Adjustable cone expansion systems and methods
US9771768B2 (en) 2014-04-15 2017-09-26 Baker Hughes Incorporated Slip release assembly with cone undermining feature

Family Cites Families (251)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US46818A (en) 1865-03-14 Improvement in tubes for caves in oil or other wells
US341237A (en) 1886-05-04 Bicycle
US331940A (en) 1885-12-08 Half to ralph bagaley
US519805A (en) 1894-05-15 Charles s
US332184A (en) 1885-12-08 William a
US2734580A (en) 1956-02-14 layne
US802880A (en) * 1905-03-15 1905-10-24 Thomas W Phillips Jr Oil-well packer.
US806156A (en) 1905-03-28 1905-12-05 Dale Marshall Lock for nuts and bolts and the like.
US984449A (en) 1909-08-10 1911-02-14 John S Stewart Casing mechanism.
US958517A (en) 1909-09-01 1910-05-17 John Charles Mettler Well-casing-repairing tool.
US1166040A (en) 1915-03-28 1915-12-28 William Burlingham Apparatus for lining tubes.
US1233888A (en) 1916-09-01 1917-07-17 Frank W A Finley Art of well-producing or earth-boring.
US1494128A (en) * 1921-06-11 1924-05-13 Power Specialty Co Method and apparatus for expanding tubes
US1597212A (en) 1924-10-13 1926-08-24 Arthur F Spengler Casing roller
US1590357A (en) 1925-01-14 1926-06-29 John F Penrose Pipe joint
US1589781A (en) 1925-11-09 1926-06-22 Joseph M Anderson Rotary tool joint
US1613461A (en) 1926-06-01 1927-01-04 Edwin A Johnson Connection between well-pipe sections of different materials
US1756531A (en) 1928-05-12 1930-04-29 Fyrac Mfg Co Post light
US1880218A (en) 1930-10-01 1932-10-04 Richard P Simmons Method of lining oil wells and means therefor
US2067185A (en) * 1931-06-23 1937-01-12 Semagraph Company Means for preparing control sheets for linotype machines and the like
US1981525A (en) 1933-12-05 1934-11-20 Bailey E Price Method of and apparatus for drilling oil wells
US2046870A (en) 1934-05-08 1936-07-07 Clasen Anthony Method of repairing wells having corroded sand points
US2122757A (en) 1935-07-05 1938-07-05 Hughes Tool Co Drill stem coupling
US2145168A (en) 1935-10-21 1939-01-24 Flagg Ray Method of making pipe joint connections
US2087185A (en) 1936-08-24 1937-07-13 Stephen V Dillon Well string
US2187275A (en) 1937-01-12 1940-01-16 Amos N Mclennan Means for locating and cementing off leaks in well casings
US2226804A (en) 1937-02-05 1940-12-31 Johns Manville Liner for wells
US2160263A (en) 1937-03-18 1939-05-30 Hughes Tool Co Pipe joint and method of making same
US2204586A (en) 1938-06-15 1940-06-18 Byron Jackson Co Safety tool joint
US2255451A (en) * 1938-07-27 1941-09-09 Herbert C Otis Well device
US2214226A (en) 1939-03-29 1940-09-10 English Aaron Method and apparatus useful in drilling and producing wells
US2301495A (en) 1939-04-08 1942-11-10 Abegg & Reinhold Co Method and means of renewing the shoulders of tool joints
US2273017A (en) 1939-06-30 1942-02-17 Boynton Alexander Right and left drill pipe
US2371840A (en) * 1940-12-03 1945-03-20 Herbert C Otis Well device
US2383214A (en) 1943-05-18 1945-08-21 Bessie Pugsley Well casing expander
US2447629A (en) 1944-05-23 1948-08-24 Richfield Oil Corp Apparatus for forming a section of casing below casing already in position in a well hole
US2500276A (en) 1945-12-22 1950-03-14 Walter L Church Safety joint
US2546295A (en) 1946-02-08 1951-03-27 Reed Roller Bit Co Tool joint wear collar
US2583316A (en) 1947-12-09 1952-01-22 Clyde E Bannister Method and apparatus for setting a casing structure in a well hole or the like
US2664952A (en) * 1948-03-15 1954-01-05 Guiberson Corp Casing packer cup
US2647847A (en) 1950-02-28 1953-08-04 Fluid Packed Pump Company Method for interfitting machined parts
US2627891A (en) * 1950-11-28 1953-02-10 Paul B Clark Well pipe expander
US3018547A (en) 1952-07-30 1962-01-30 Babcock & Wilcox Co Method of making a pressure-tight mechanical joint for operation at elevated temperatures
US2877822A (en) * 1953-08-24 1959-03-17 Phillips Petroleum Co Hydraulically operable reciprocating motor driven swage for restoring collapsed pipe
US2796134A (en) 1954-07-19 1957-06-18 Exxon Research Engineering Co Apparatus for preventing lost circulation in well drilling operations
US2812025A (en) 1955-01-24 1957-11-05 James U Teague Expansible liner
US2919741A (en) * 1955-09-22 1960-01-05 Blaw Knox Co Cold pipe expanding apparatus
US2907589A (en) 1956-11-05 1959-10-06 Hydril Co Sealed joint for tubing
US2929741A (en) 1957-11-04 1960-03-22 Morris A Steinberg Method for coating graphite with metallic carbides
US3067819A (en) 1958-06-02 1962-12-11 George L Gore Casing interliner
US3068563A (en) 1958-11-05 1962-12-18 Westinghouse Electric Corp Metal joining method
US3015362A (en) * 1958-12-15 1962-01-02 Johnston Testers Inc Well apparatus
US3015500A (en) 1959-01-08 1962-01-02 Dresser Ind Drill string joint
US3104703A (en) 1960-08-31 1963-09-24 Jersey Prod Res Co Borehole lining or casing
US3209546A (en) 1960-09-21 1965-10-05 Lawton Lawrence Method and apparatus for forming concrete piles
US3119080A (en) * 1960-11-02 1964-01-21 Gen Electric Semiconductor attenuating circuit
US3111991A (en) 1961-05-12 1963-11-26 Pan American Petroleum Corp Apparatus for repairing well casing
US3175618A (en) 1961-11-06 1965-03-30 Pan American Petroleum Corp Apparatus for placing a liner in a vessel
US3191680A (en) 1962-03-14 1965-06-29 Pan American Petroleum Corp Method of setting metallic liners in wells
US3167122A (en) 1962-05-04 1965-01-26 Pan American Petroleum Corp Method and apparatus for repairing casing
US3203451A (en) 1962-08-09 1965-08-31 Pan American Petroleum Corp Corrugated tube for lining wells
US3179168A (en) 1962-08-09 1965-04-20 Pan American Petroleum Corp Metallic casing liner
US3203483A (en) 1962-08-09 1965-08-31 Pan American Petroleum Corp Apparatus for forming metallic casing liner
US3188816A (en) 1962-09-17 1965-06-15 Koch & Sons Inc H Pile forming method
US3233315A (en) 1962-12-04 1966-02-08 Plastic Materials Inc Pipe aligning and joining apparatus
US3245471A (en) * 1963-04-15 1966-04-12 Pan American Petroleum Corp Setting casing in wells
US3191677A (en) * 1963-04-29 1965-06-29 Myron M Kinley Method and apparatus for setting liners in tubing
US3343252A (en) 1964-03-03 1967-09-26 Reynolds Metals Co Conduit system and method for making the same or the like
US3270817A (en) 1964-03-26 1966-09-06 Gulf Research Development Co Method and apparatus for installing a permeable well liner
US3354955A (en) 1964-04-24 1967-11-28 William B Berry Method and apparatus for closing and sealing openings in a well casing
US3326293A (en) 1964-06-26 1967-06-20 Wilson Supply Company Well casing repair
US3364993A (en) 1964-06-26 1968-01-23 Wilson Supply Company Method of well casing repair
US3297092A (en) 1964-07-15 1967-01-10 Pan American Petroleum Corp Casing patch
US3210102A (en) 1964-07-22 1965-10-05 Joslin Alvin Earl Pipe coupling having a deformed inner lock
US3353599A (en) 1964-08-04 1967-11-21 Gulf Oil Corp Method and apparatus for stabilizing formations
US3358769A (en) 1965-05-28 1967-12-19 William B Berry Transporter for well casing interliner or boot
US3371717A (en) 1965-09-21 1968-03-05 Baker Oil Tools Inc Multiple zone well production apparatus
US3520049A (en) 1965-10-14 1970-07-14 Dmitry Nikolaevich Lysenko Method of pressure welding
US3358760A (en) 1965-10-14 1967-12-19 Schlumberger Technology Corp Method and apparatus for lining wells
US3389752A (en) 1965-10-23 1968-06-25 Schlumberger Technology Corp Zone protection
FR1489013A (en) * 1965-11-05 1967-07-21 Vallourec Assembly joint for metal pipes
US3427707A (en) 1965-12-16 1969-02-18 Connecticut Research & Mfg Cor Method of joining a pipe and fitting
US3422902A (en) * 1966-02-21 1969-01-21 Herschede Hall Clock Co The Well pack-off unit
US3412565A (en) 1966-10-03 1968-11-26 Continental Oil Co Method of strengthening foundation piling
US3498376A (en) 1966-12-29 1970-03-03 Phillip S Sizer Well apparatus and setting tool
US3424244A (en) 1967-09-14 1969-01-28 Kinley Co J C Collapsible support and assembly for casing or tubing liner or patch
US3504515A (en) 1967-09-25 1970-04-07 Daniel R Reardon Pipe swedging tool
US3579805A (en) 1968-07-05 1971-05-25 Gen Electric Method of forming interference fits by heat treatment
US3477506A (en) 1968-07-22 1969-11-11 Lynes Inc Apparatus relating to fabrication and installation of expanded members
US3489220A (en) 1968-08-02 1970-01-13 J C Kinley Method and apparatus for repairing pipe in wells
US3574357A (en) * 1969-02-27 1971-04-13 Grupul Ind Pentru Foray Si Ext Thermal insulating tubing
US3528498A (en) 1969-04-01 1970-09-15 Wilson Ind Inc Rotary cam casing swage
US3578081A (en) 1969-05-16 1971-05-11 Albert G Bodine Sonic method and apparatus for augmenting the flow of oil from oil bearing strata
US3704730A (en) 1969-06-23 1972-12-05 Sunoco Products Co Convolute tube and method for making same
US3568773A (en) 1969-11-17 1971-03-09 Robert O Chancellor Apparatus and method for setting liners in well casings
US3687196A (en) 1969-12-12 1972-08-29 Schlumberger Technology Corp Drillable slip
US3631926A (en) 1969-12-31 1972-01-04 Schlumberger Technology Corp Well packer
US3665591A (en) 1970-01-02 1972-05-30 Imp Eastman Corp Method of making up an expandable insert fitting
US3691624A (en) 1970-01-16 1972-09-19 John C Kinley Method of expanding a liner
US3682256A (en) 1970-05-15 1972-08-08 Charles A Stuart Method for eliminating wear failures of well casing
US3605887A (en) 1970-05-21 1971-09-20 Shell Oil Co Apparatus for selectively producing and testing fluids from a multiple zone well
US3667547A (en) 1970-08-26 1972-06-06 Vetco Offshore Ind Inc Method of cementing a casing string in a well bore and hanging it in a subsea wellhead
US3693717A (en) 1970-10-22 1972-09-26 Gulf Research Development Co Reproducible shot hole
US3669190A (en) 1970-12-21 1972-06-13 Otis Eng Corp Methods of completing a well
US3711123A (en) 1971-01-15 1973-01-16 Hydro Tech Services Inc Apparatus for pressure testing annular seals in an oversliding connector
US3709306A (en) 1971-02-16 1973-01-09 Baker Oil Tools Inc Threaded connector for impact devices
US3785193A (en) * 1971-04-10 1974-01-15 Kinley J Liner expanding apparatus
US3746092A (en) 1971-06-18 1973-07-17 Cities Service Oil Co Means for stabilizing wellbores
US3712376A (en) 1971-07-26 1973-01-23 Gearhart Owen Industries Conduit liner for wellbore and method and apparatus for setting same
US3746091A (en) 1971-07-26 1973-07-17 H Owen Conduit liner for wellbore
US3746068A (en) 1971-08-27 1973-07-17 Minnesota Mining & Mfg Fasteners and sealants useful therefor
BE788517A (en) * 1971-09-07 1973-03-07 Raychem Corp VERY LOW TEMPERATURE CHUCK EXPANSION PROCESS
US3779025A (en) 1971-10-07 1973-12-18 Raymond Int Inc Pile installation
US3764168A (en) 1971-10-12 1973-10-09 Schlumberger Technology Corp Drilling expansion joint apparatus
US3776307A (en) 1972-08-24 1973-12-04 Gearhart Owen Industries Apparatus for setting a large bore packer in a well
US3781966A (en) * 1972-12-04 1974-01-01 Whittaker Corp Method of explosively expanding sleeves in eroded tubes
US3866954A (en) * 1973-06-18 1975-02-18 Bowen Tools Inc Joint locking device
FR2234448B1 (en) * 1973-06-25 1977-12-23 Petroles Cie Francaise
US3942824A (en) * 1973-11-12 1976-03-09 Sable Donald E Well tool protector
BR7600832A (en) * 1975-05-01 1976-11-09 Caterpillar Tractor Co PIPE ASSEMBLY JOINT PREPARED FOR AN ADJUSTER AND METHOD FOR MECHANICALLY ADJUSTING AN ADJUSTER TO THE END OF A METAL TUBE LENGTH
US4069573A (en) * 1976-03-26 1978-01-24 Combustion Engineering, Inc. Method of securing a sleeve within a tube
US4257155A (en) * 1976-07-26 1981-03-24 Hunter John J Method of making pipe coupling joint
US4190108A (en) * 1978-07-19 1980-02-26 Webber Jack C Swab
US4442586A (en) * 1978-10-16 1984-04-17 Ridenour Ralph Gaylord Tube-to-tube joint method
SE427764B (en) * 1979-03-09 1983-05-02 Atlas Copco Ab MOUNTAIN CULTURAL PROCEDURES REALLY RUCH MOUNTED MOUNTAIN
US4635333A (en) * 1980-06-05 1987-01-13 The Babcock & Wilcox Company Tube expanding method
US4423889A (en) * 1980-07-29 1984-01-03 Dresser Industries, Inc. Well-tubing expansion joint
NO159201C (en) * 1980-09-08 1988-12-07 Atlas Copco Ab PROCEDURE FOR BOLTING IN MOUNTAIN AND COMBINED EXPANSION BOLT AND INSTALLATION DEVICE FOR SAME.
US4368571A (en) * 1980-09-09 1983-01-18 Westinghouse Electric Corp. Sleeving method
US4366971A (en) * 1980-09-17 1983-01-04 Allegheny Ludlum Steel Corporation Corrosion resistant tube assembly
US4424865A (en) * 1981-09-08 1984-01-10 Sperry Corporation Thermally energized packer cup
US4429741A (en) * 1981-10-13 1984-02-07 Christensen, Inc. Self powered downhole tool anchor
JPS58107292A (en) * 1981-12-21 1983-06-25 Kawasaki Heavy Ind Ltd Method and device for treating welded joint part of pipe
US4420866A (en) * 1982-01-25 1983-12-20 Cities Service Company Apparatus and process for selectively expanding to join one tube into another tube
US4501327A (en) * 1982-07-19 1985-02-26 Philip Retz Split casing block-off for gas or water in oil drilling
US4513995A (en) * 1982-12-02 1985-04-30 Mannesmann Aktiengesellschaft Method for electrolytically tin plating articles
US4917409A (en) * 1983-04-29 1990-04-17 Hydril Company Tubular connection
US4508167A (en) * 1983-08-01 1985-04-02 Baker Oil Tools, Inc. Selective casing bore receptacle
GB8323348D0 (en) * 1983-08-31 1983-10-05 Hunting Oilfield Services Ltd Pipe connectors
US4506432A (en) * 1983-10-03 1985-03-26 Hughes Tool Company Method of connecting joints of drill pipe
US4495073A (en) * 1983-10-21 1985-01-22 Baker Oil Tools, Inc. Retrievable screen device for drill pipe and the like
US4637436A (en) * 1983-11-15 1987-01-20 Raychem Corporation Annular tube-like driver
US4649492A (en) * 1983-12-30 1987-03-10 Westinghouse Electric Corp. Tube expansion process
US4796668A (en) * 1984-01-09 1989-01-10 Vallourec Device for protecting threadings and butt-type joint bearing surfaces of metallic tubes
GB8414203D0 (en) * 1984-06-04 1984-07-11 Hunting Oilfield Services Ltd Pipe connectors
US4683944A (en) * 1985-05-06 1987-08-04 Innotech Energy Corporation Drill pipes and casings utilizing multi-conduit tubulars
US4651836A (en) * 1986-04-01 1987-03-24 Methane Drainage Ventures Process for recovering methane gas from subterranean coalseams
JPS63167108A (en) * 1986-12-26 1988-07-11 三菱電機株式会社 Fixing device
US4822081A (en) * 1987-03-23 1989-04-18 Xl Systems Driveable threaded tubular connection
JPS63293384A (en) * 1987-05-27 1988-11-30 住友金属工業株式会社 Frp pipe with screw coupling
US5097710A (en) * 1987-09-22 1992-03-24 Alexander Palynchuk Ultrasonic flash gauge
US4817712A (en) * 1988-03-24 1989-04-04 Bodine Albert G Rod string sonic stimulator and method for facilitating the flow from petroleum wells
US4892337A (en) * 1988-06-16 1990-01-09 Exxon Production Research Company Fatigue-resistant threaded connector
SE466690B (en) * 1988-09-06 1992-03-23 Exploweld Ab PROCEDURE FOR EXPLOSION WELDING OF Pipes
WO1990005833A1 (en) * 1988-11-22 1990-05-31 Tatarsky Gosudarstvenny Nauchno-Issledovatelsky I Proektny Institut Neftyanoi Promyshlennosti Device for closing off a complication zone in a well
DE8902572U1 (en) * 1989-03-03 1990-07-05 Siemens Ag, 1000 Berlin Und 8000 Muenchen, De
US4919989A (en) * 1989-04-10 1990-04-24 American Colloid Company Article for sealing well castings in the earth
US4915426A (en) * 1989-06-01 1990-04-10 Skipper Claud T Pipe coupling for well casing
US4915177A (en) * 1989-07-19 1990-04-10 Claycomb Jack R Blast joint for snubbing installation
US4995464A (en) * 1989-08-25 1991-02-26 Dril-Quip, Inc. Well apparatus and method
MY106026A (en) * 1989-08-31 1995-02-28 Union Oil Company Of California Well casing flotation device and method
GB2248255B (en) * 1990-09-27 1994-11-16 Solinst Canada Ltd Borehole packer
US5306101A (en) * 1990-12-31 1994-04-26 Brooklyn Union Gas Cutting/expanding tool
BR9102789A (en) * 1991-07-02 1993-02-09 Petroleo Brasileiro Sa PROCESS TO INCREASE OIL RECOVERY IN RESERVOIRS
US5286393A (en) * 1992-04-15 1994-02-15 Jet-Lube, Inc. Coating and bonding composition
US5390735A (en) * 1992-08-24 1995-02-21 Halliburton Company Full bore lock system
US5275242A (en) * 1992-08-31 1994-01-04 Union Oil Company Of California Repositioned running method for well tubulars
US5361843A (en) * 1992-09-24 1994-11-08 Halliburton Company Dedicated perforatable nipple with integral isolation sleeve
US5492173A (en) * 1993-03-10 1996-02-20 Halliburton Company Plug or lock for use in oil field tubular members and an operating system therefor
FR2703102B1 (en) * 1993-03-25 1999-04-23 Drillflex Method of cementing a deformable casing inside a wellbore or a pipe.
US5388648A (en) * 1993-10-08 1995-02-14 Baker Hughes Incorporated Method and apparatus for sealing the juncture between a vertical well and one or more horizontal wells using deformable sealing means
GB2287996B (en) * 1994-03-22 1997-08-06 British Gas Plc Joining thermoplastic pipe to a coupling
FR2717855B1 (en) * 1994-03-23 1996-06-28 Drifflex Method for sealing the connection between an inner liner on the one hand, and a wellbore, casing or an outer pipe on the other.
AT404386B (en) * 1994-05-25 1998-11-25 Johann Dipl Ing Springer DOUBLE-WALLED THERMALLY INSULATED TUBING STRAND
US5755296A (en) * 1994-09-13 1998-05-26 Nabors Industries, Inc. Portable top drive
DE69527635T4 (en) * 1994-10-04 2010-10-28 Nsct Prenium Tublars B.V. STEEL TUBE CLUTCH WITH INCREASED ABRASION SAFETY AND METHOD FOR SURFACE TREATMENT
US6857486B2 (en) * 2001-08-19 2005-02-22 Smart Drilling And Completion, Inc. High power umbilicals for subterranean electric drilling machines and remotely operated vehicles
US5743335A (en) * 1995-09-27 1998-04-28 Baker Hughes Incorporated Well completion system and method
UA67719C2 (en) * 1995-11-08 2004-07-15 Shell Int Research Deformable well filter and method for its installation
GB9524109D0 (en) * 1995-11-24 1996-01-24 Petroline Wireline Services Downhole apparatus
JP2762070B2 (en) * 1996-02-16 1998-06-04 積進産業株式会社 Rehabilitation of underground pipes
US6564867B2 (en) * 1996-03-13 2003-05-20 Schlumberger Technology Corporation Method and apparatus for cementing branch wells from a parent well
WO1998009049A1 (en) * 1996-08-30 1998-03-05 Camco International, Inc. Method and apparatus to seal a junction between a lateral and a main wellbore
CA2230396C (en) * 1997-02-25 2001-11-20 Sumitomo Metal Industries, Ltd. High-toughness, high-tensile-strength steel and method of manufacturing the same
US5857524A (en) * 1997-02-27 1999-01-12 Harris; Monty E. Liner hanging, sealing and cementing tool
US6012874A (en) * 1997-03-14 2000-01-11 Dbm Contractors, Inc. Micropile casing and method
US6672759B2 (en) * 1997-07-11 2004-01-06 International Business Machines Corporation Method for accounting for clamp expansion in a coefficient of thermal expansion measurement
US6029748A (en) * 1997-10-03 2000-02-29 Baker Hughes Incorporated Method and apparatus for top to bottom expansion of tubulars
US6021850A (en) * 1997-10-03 2000-02-08 Baker Hughes Incorporated Downhole pipe expansion apparatus and method
US6315498B1 (en) * 1997-11-21 2001-11-13 Superior Energy Services, Llc Thruster pig apparatus for injecting tubing down pipelines
US6017168A (en) * 1997-12-22 2000-01-25 Abb Vetco Gray Inc. Fluid assist bearing for telescopic joint of a RISER system
US6012521A (en) * 1998-02-09 2000-01-11 Etrema Products, Inc. Downhole pressure wave generator and method for use thereof
CA2268515C (en) * 1998-04-08 2005-05-31 Gary Ackles Articulated boom and head for manipulating objects under water
US6182775B1 (en) * 1998-06-10 2001-02-06 Baker Hughes Incorporated Downhole jar apparatus for use in oil and gas wells
GB9817246D0 (en) * 1998-08-08 1998-10-07 Petroline Wellsystems Ltd Connector
US6216509B1 (en) * 1998-08-25 2001-04-17 R.J. Tower Corporation Hydroformed tubular member and method of hydroforming tubular members
US6009611A (en) * 1998-09-24 2000-01-04 Oil & Gas Rental Services, Inc. Method for detecting wear at connections between pin and box joints
US6167971B1 (en) * 1998-10-06 2001-01-02 Paul Van Lingen Fire Protection system
US6823937B1 (en) * 1998-12-07 2004-11-30 Shell Oil Company Wellhead
AU6981001A (en) * 1998-11-16 2002-01-02 Shell Oil Co Radial expansion of tubular members
US7231985B2 (en) * 1998-11-16 2007-06-19 Shell Oil Company Radial expansion of tubular members
US6220306B1 (en) * 1998-11-30 2001-04-24 Sumitomo Metal Ind Low carbon martensite stainless steel plate
US7552776B2 (en) * 1998-12-07 2009-06-30 Enventure Global Technology, Llc Anchor hangers
CA2310878A1 (en) * 1998-12-07 2000-12-07 Shell Internationale Research Maatschappij B.V. Lubrication and self-cleaning system for expansion mandrel
EP2273064A1 (en) * 1998-12-22 2011-01-12 Weatherford/Lamb, Inc. Procedures and equipment for profiling and jointing of pipes
US6352112B1 (en) * 1999-01-29 2002-03-05 Baker Hughes Incorporated Flexible swage
AU770359B2 (en) * 1999-02-26 2004-02-19 Shell Internationale Research Maatschappij B.V. Liner hanger
FR2791293B1 (en) * 1999-03-23 2001-05-18 Sonats Soc Des Nouvelles Appli IMPACT SURFACE TREATMENT DEVICES
US6345373B1 (en) * 1999-03-29 2002-02-05 The University Of California System and method for testing high speed VLSI devices using slower testers
US6349521B1 (en) * 1999-06-18 2002-02-26 Shape Corporation Vehicle bumper beam with non-uniform cross section
US6183013B1 (en) * 1999-07-26 2001-02-06 General Motors Corporation Hydroformed side rail for a vehicle frame and method of manufacture
US6679328B2 (en) * 1999-07-27 2004-01-20 Baker Hughes Incorporated Reverse section milling method and apparatus
JP2001137978A (en) * 1999-11-08 2001-05-22 Daido Steel Co Ltd Metal tube expanding tool
US6698517B2 (en) * 1999-12-22 2004-03-02 Weatherford/Lamb, Inc. Apparatus, methods, and applications for expanding tubulars in a wellbore
US6513600B2 (en) * 1999-12-22 2003-02-04 Richard Ross Apparatus and method for packing or anchoring an inner tubular within a casing
US6478091B1 (en) * 2000-05-04 2002-11-12 Halliburton Energy Services, Inc. Expandable liner and associated methods of regulating fluid flow in a well
IT1320503B1 (en) * 2000-06-16 2003-12-10 Iveco Fiat PROCEDURE FOR THE PRODUCTION OF AXLES FOR INDUSTRIAL VEHICLES.
FR2811056B1 (en) * 2000-06-30 2003-05-16 Vallourec Mannesmann Oil & Gas TUBULAR THREADED JOINT SUITABLE FOR DIAMETRIC EXPANSION
GB0023032D0 (en) * 2000-09-20 2000-11-01 Weatherford Lamb Downhole apparatus
GB0026063D0 (en) * 2000-10-25 2000-12-13 Weatherford Lamb Downhole tubing
US7121351B2 (en) * 2000-10-25 2006-10-17 Weatherford/Lamb, Inc. Apparatus and method for completing a wellbore
US20040011534A1 (en) * 2002-07-16 2004-01-22 Simonds Floyd Randolph Apparatus and method for completing an interval of a wellbore while drilling
US6543545B1 (en) * 2000-10-27 2003-04-08 Halliburton Energy Services, Inc. Expandable sand control device and specialized completion system and method
US6725934B2 (en) * 2000-12-21 2004-04-27 Baker Hughes Incorporated Expandable packer isolation system
GB0102021D0 (en) * 2001-01-26 2001-03-14 E2 Tech Ltd Apparatus
US6516887B2 (en) * 2001-01-26 2003-02-11 Cooper Cameron Corporation Method and apparatus for tensioning tubular members
GB0108638D0 (en) * 2001-04-06 2001-05-30 Weatherford Lamb Tubing expansion
DE10124874A1 (en) * 2001-05-22 2002-11-28 Voss Fluidtechnik Gmbh & Co Kg Tube Fitting
CA2453400C (en) * 2001-07-13 2010-08-31 Shell Canada Limited Method of expanding a tubular element in a wellbore
US7243731B2 (en) * 2001-08-20 2007-07-17 Enventure Global Technology Apparatus for radially expanding tubular members including a segmented expansion cone
WO2003021080A1 (en) * 2001-09-05 2003-03-13 Weatherford/Lamb, Inc. High pressure high temperature packer system and expansion assembly
US6820690B2 (en) * 2001-10-22 2004-11-23 Schlumberger Technology Corp. Technique utilizing an insertion guide within a wellbore
US6722427B2 (en) * 2001-10-23 2004-04-20 Halliburton Energy Services, Inc. Wear-resistant, variable diameter expansion tool and expansion methods
GB2422860B (en) * 2001-11-12 2006-10-04 Enventure Global Technology Mono diameter wellbore casing
US6719064B2 (en) * 2001-11-13 2004-04-13 Schlumberger Technology Corporation Expandable completion system and method
BR0214432A (en) * 2001-11-28 2004-11-03 Shell Int Research Expandable tubular element for use in a wellbore formed in a terrestrial formation
US6622789B1 (en) * 2001-11-30 2003-09-23 Tiw Corporation Downhole tubular patch, tubular expander and method
US6688397B2 (en) * 2001-12-17 2004-02-10 Schlumberger Technology Corporation Technique for expanding tubular structures
ATE458123T1 (en) * 2002-01-07 2010-03-15 Enventure Global Technology PROTECTIVE SLEEVE FOR THREADED CONNECTIONS FOR AN EXPANDABLE LINER HANGING DEVICE
US6681862B2 (en) * 2002-01-30 2004-01-27 Halliburton Energy Services, Inc. System and method for reducing the pressure drop in fluids produced through production tubing
CA2482278A1 (en) * 2002-04-15 2003-10-30 Enventure Global Technology Protective sleeve for threaded connections for expandable liner hanger
US6701598B2 (en) * 2002-04-19 2004-03-09 General Motors Corporation Joining and forming of tubular members
US20050143933A1 (en) * 2002-04-23 2005-06-30 James Minor Analyzing and correcting biological assay data using a signal allocation model
US6843322B2 (en) * 2002-05-31 2005-01-18 Baker Hughes Incorporated Monobore shoe
US6725939B2 (en) * 2002-06-18 2004-04-27 Baker Hughes Incorporated Expandable centralizer for downhole tubulars
EP1540128A4 (en) * 2002-08-23 2006-07-19 Enventure Global Technology Interposed joint sealing layer method of forming a wellbore casing
ATE368170T1 (en) * 2002-09-20 2007-08-15 Enventure Global Technology UNIFORM DIAMETER HOLE CASING PIPE
DE60315172T2 (en) * 2002-09-20 2008-04-10 Enventure Global Technology, Houston GROUND PACKER FOR FORMING A DRILLING HOOD WITH UNIFORM DIAMETER
US6840325B2 (en) * 2002-09-26 2005-01-11 Weatherford/Lamb, Inc. Expandable connection for use with a swelling elastomer
US7182141B2 (en) * 2002-10-08 2007-02-27 Weatherford/Lamb, Inc. Expander tool for downhole use
GB0417328D0 (en) * 2004-08-04 2004-09-08 Read Well Services Ltd Apparatus and method

Also Published As

Publication number Publication date
US7416027B2 (en) 2008-08-26
US20080135252A1 (en) 2008-06-12
GB2396646A (en) 2004-06-30
AU2002319813A1 (en) 2003-03-24
WO2003023178A3 (en) 2004-08-05
CA2459910C (en) 2010-04-13
WO2003023178A2 (en) 2003-03-20
WO2003023178B1 (en) 2004-09-16
GB2396646B (en) 2006-03-01
US20050022986A1 (en) 2005-02-03
GB0406258D0 (en) 2004-04-21

Similar Documents

Publication Publication Date Title
CA2459910A1 (en) Adjustable expansion cone assembly
US6702030B2 (en) Procedures and equipment for profiling and jointing of pipes
CN101238273B (en) Pipe expander
US4425780A (en) Apparatus having extended prestressing and sleeve retaining devices for prestressing countersunk fastener holes and method
US4471643A (en) Method and apparatus for prestressing fastener holes
CA2467377C (en) Collapsible expansion cone
US4524600A (en) Apparatus for prestressing fastener holes
CA2416573A1 (en) Liner hanger with sliding sleeve valve
CN103362460B (en) Dislocated support-type centering guide for cased well logger
WO2003016669B1 (en) Apparatus for radially expanding tubular members including a segmented expansion cone
JPH0253129B2 (en)
WO2003078785B1 (en) Collapsible expansion cone
WO2004081346B1 (en) Apparatus for radially expanding and plastically deforming a tubular member
GB2415980A (en) Tubular expansion using a collapsible expansion cone
GB2417275A (en) Apparatus for radially expanding an expandable tubular member
CN220118075U (en) Crushing reaming head for non-excavation pipeline replacement
GB2616383A (en) High-expansion anchor slip assembly for well tool
JP4624657B2 (en) Retaining ring assembly method
CN220566025U (en) Axial limiting mechanism for drill rod
CA2557965C (en) Procedures and equipment for profiling and jointing of pipes
US20120090855A1 (en) Down hole well tool with expansion tool
US20120103596A1 (en) down hole well tool with rolling means
CN105221084A (en) A kind of Wedged hydraulic centralizing device
CN117739185A (en) A fixed protector for water conservancy pipeline
JPH0430095A (en) Direction correcting method in burying small bore pipe and small bore pipe burying device

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20180813