CA2461380C - Hepatitis c virus vaccine - Google Patents

Hepatitis c virus vaccine Download PDF

Info

Publication number
CA2461380C
CA2461380C CA2461380A CA2461380A CA2461380C CA 2461380 C CA2461380 C CA 2461380C CA 2461380 A CA2461380 A CA 2461380A CA 2461380 A CA2461380 A CA 2461380A CA 2461380 C CA2461380 C CA 2461380C
Authority
CA
Canada
Prior art keywords
base pair
region
seq
nucleic acid
ala
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA2461380A
Other languages
French (fr)
Other versions
CA2461380A1 (en
Inventor
Emilio A. Emini
David C. Kaslow
Andrew J. Bett
John W. Shiver
Alfredo Nicosia
Armin Lahm
Alessandra Luzzago
Riccardo Cortese
Stefano Colloca
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MSD Italia SRL
Merck Sharp and Dohme LLC
Original Assignee
Istituto di Ricerche di Biologia Molecolare P Angeletti SpA
Merck Sharp and Dohme LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Istituto di Ricerche di Biologia Molecolare P Angeletti SpA, Merck Sharp and Dohme LLC filed Critical Istituto di Ricerche di Biologia Molecolare P Angeletti SpA
Priority to CA2718802A priority Critical patent/CA2718802C/en
Publication of CA2461380A1 publication Critical patent/CA2461380A1/en
Application granted granted Critical
Publication of CA2461380C publication Critical patent/CA2461380C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5256Virus expressing foreign proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10341Use of virus, viral particle or viral elements as a vector
    • C12N2710/10343Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24211Hepacivirus, e.g. hepatitis C virus, hepatitis G virus
    • C12N2770/24222New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24211Hepacivirus, e.g. hepatitis C virus, hepatitis G virus
    • C12N2770/24234Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/108Plasmid DNA episomal vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • C12N2810/50Vectors comprising as targeting moiety peptide derived from defined protein
    • C12N2810/60Vectors comprising as targeting moiety peptide derived from defined protein from viruses
    • C12N2810/6009Vectors comprising as targeting moiety peptide derived from defined protein from viruses dsDNA viruses
    • C12N2810/6018Adenoviridae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/001Vector systems having a special element relevant for transcription controllable enhancer/promoter combination
    • C12N2830/002Vector systems having a special element relevant for transcription controllable enhancer/promoter combination inducible enhancer/promoter combination, e.g. hypoxia, iron, transcription factor
    • C12N2830/003Vector systems having a special element relevant for transcription controllable enhancer/promoter combination inducible enhancer/promoter combination, e.g. hypoxia, iron, transcription factor tet inducible
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2840/00Vectors comprising a special translation-regulating system
    • C12N2840/20Vectors comprising a special translation-regulating system translation of more than one cistron
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2840/00Vectors comprising a special translation-regulating system
    • C12N2840/20Vectors comprising a special translation-regulating system translation of more than one cistron
    • C12N2840/203Vectors comprising a special translation-regulating system translation of more than one cistron having an IRES

Abstract

The present invention features Ad6 vectors and a nucleic acid encoding a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide containing an inactive NS5B RNA-dependent RNA polymerase region. The nucleic acid is particularly useful as a component of an adenovector or DNA plasmid vaccine providing a broad range of antigens for generating an HCV specific cell mediated immune (CMI) response against HCV.

Description

TITLE OF THE INVENTION
HEPATITIS C VIRUS VACCINE

BACKGROUND OF THE INVENTION
The references cited in the present application are not admitted to be prior art to the claimed invention.
About 3% of the world's population are infected with the Hepatitis C
virus (HCV). (Wasley et al., Semin. Liver Dis. 20, 1-16, 2000.) Exposure to HCV
results in an overt acute disease in a small percentage of cases, while in most instances the virus establishes a chronic infection causing liver inflammation and slowly progresses into liver failure and cirrhosis. (Iwarson, FEMS Microbiol.
Rev. 14, 201-204, 1994.) In addition, epidemiological surveys indicate an important role of HCV in the pathogenesis of hepatocellular carcinoma. (Kew, FEMS Microbiol.
Rev.
14, 211-220, 1994, Alter, Blood 85, 1681-1695, 1995.) Prior to the implementation of routine blood screening for HCV in 1992, most infections were contracted by inadvertent exposure to contaminated blood, blood products or transplanted organs. In those areas where blood screening of HCV
is carried out, HCV is primarily contracted through direct percutaneous exposure to infected blood, i.e., intravenous drug use. Less frequent methods of transmission include perinatal exposure, hemodialysis, and sexual contact with an HCV
infected person. (Alter et al., N. Engl. J. Med. 341(8), 556-562, 1999, Alter, J.
Hepatol. 31 Suppl. 88-91, 1999. Seniin. Liver. Dis. 201, 1-16, 2000.) The HCV genome consists of a single strand RNA about 9.5 kb encoding a precursor polyprotein of about 3000 amino acids. (Choo et al., Science 244, 362-364, 1989, Choo et al., Science 244, 359-362, 1989, Takamizawa et al., J.
Virol. 65, 1105-1113, 1991.) The HCV polyprotein contains the viral proteins in the order: C-El-E2-p7-NS2-NS3-NS4A-NS4B-NS5A-NSSB.
Individual viral proteins are produced by proteolysis of the HCV
polyprotein. Host cell proteases release the putative structural proteins C, El, E2, and p7, and create the N-terminus of NS2 at amino acid 810. (Mizushima et al., J.
Virol.
68, 2731-2734, 1994, Hijikata et al., P.N.A.S. USA 90, 10773-10777, 1993.) The non-structural proteins NS3, NS4A, NS4B, NS5A and NS5B
presumably form the virus replication machinery and are released from the polyprotein. A zinc-dependent protease associated with NS2 and the N-terminus of NS3 is responsible for cleavage between NS2 and NS3. (Grakoui et al., J.
Virol. 67, 1385-1395, 1993, Hijikata et at., P.N.A.S. USA 90, 10773-10777, 1993.) A
distinct serine protease located in the N-terminal domain of NS3 is responsible for proteolytic cleavages at the NS3/NS4A, NS4A/NS4B, NS4B/NS5A and NS5A/NS5B junctions.
(Bartenschlager et al., J. Virol. 67, 3835-3844, 1993, Grakoui et at., Proc.
Natl. Acad.
Sci. USA 90, 10583-10587, 1993, Tomei et al., J. Virol. 67, 4017-4026, 1993.) NS4A provides a cofactor for NS3 activity. (Failla et al., J. Virol. 68, 3753-3760, 1994, De Francesco et al., U.S. Patent No. 5,739,002.) NS5A is a highly phosphorylated protein conferring interferon resistance. (De Francesco et al., Semin. Liver Dis., 20(1), 69-83, 2000, Pawlotsky, Viral Hepat. Suppl. 1, 47-48, 1999.) NS5B provides an RNA-dependent RNA polymerase. (De Francesco et al., International Publication Number WO 96/37619, Behrens et al., EMBO 15, 22, 1996, Lohmann et al., Virology 249, 108-118, 1998.) SUMMARY OF THE INVENTION
The present invention features Ad6 vectors and a nucleic acid encoding a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide containing an inactive NS5B
RNA-dependent RNA polymerase region. The nucleic acid is particularly useful as a component of an adenovector or DNA plasmid vaccine providing a broad range of antigens for generating an HCV specific cell mediated immune (CMI) response against HCV.
A HCV specific CMI response refers to the production of cytotoxic T
lymphocytes and T helper cells that recognize an HCV antigen. The CMI response may also include non-HCV specific immune effects.
Preferred nucleic acids encode a Met-NS3-NS4A-NS4B-NS5A-NS5B
polypeptide that is substantially similar to SEQ. ID. NO. 1 and has sufficient protease activity to process itself to produce at least a polypeptide substantially similar to the NS5B region present in SEQ. ID. NO. 1. The produced polypeptide corresponding to NS5B is enzymatically inactive. More preferably, the HCV polypeptide has sufficient protease activity to produce polypeptides substantially similar to the NS3, NS4A, NS4B, NS5A, and NS5B regions present in SEQ. ID. NO. 1.
Reference to a "substantially similar sequence" indicates an identity of at least about 65% to a reference sequence. Thus, for example, polypeptides having an amino acid sequence substantially similar to SEQ. ID. NO. 1 have an overall amino acid identity of at least about 65% to SEQ. ID. NO. 1.
Polypeptides corresponding to NS3, NS4A, NS4B, NS5A, and NS5B
have an amino acid sequence identity of at least about 65% to the corresponding region in SEQ. ID. NO. 1. Such corresponding polypeptides are also referred to herein as NS3, NS4A, NS4B, NS5A, and NS5B polypeptides.
Thus, a first aspect of the present invention describes a nucleic acid comprising a nucleotide sequence encoding a Met-NS3-NS4A-NS4B-NS5A-NS5B
polypeptide substantially similar to SEQ. ID. NO. 1. The encoded polypeptide has sufficient protease activity to process itself to produce an NS5B polypeptide that is enzymatically inactive.
In a preferred embodiment, the nucleic acid is an expression vector capable of expressing the Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide in a desired human cell. Expression inside a human cell has therapeutic applications for actively treating an HCV infection and for prophylactically treating against an HCV
infection.
An expression vector contains a nucleotide sequence encoding a polypeptide along with regulatory elements for proper transcription and processing.
The regulatory elements that may be present include those naturally associated with the nucleotide sequence encoding the polypeptide and exogenous regulatory elements not naturally associated with the nucleotide sequence. Exogenous regulatory elements such as an exogenous promoter can be useful for expression in a particular host, such as in a human cell. Examples of regulatory elements useful for functional expression include a promoter, a terminator, a ribosome binding site, and a polyadenylation signal.
Another aspect of the present invention describes a nucleic acid comprising a gene expression cassette able to express in a human cell a Met-NS4A-NS4B-NS5A-NS5B polypeptide substantially similar to SEQ. ID. NO. 1. The polypeptide can process itself to produce an enzymatically inactive NS5B
protein. The gene expression cassette contains at least the following:
a) a promoter transcriptionally coupled to a nucleotide sequence encoding a polypeptide;
b) a 5' ribosome binding site functionally coupled to the nucleotide sequence, c) a terminator joined to the 3' end of the nucleotide sequence, and d) a 3' polyadenylation signal functionally coupled to the nucleotide sequence.
Reference to "transcriptionally coupled" indicates that the promoter is positioned such that transcription of the nucleotide sequence can be brought about by RNA polymerase binding at the promoter. Transcriptionally coupled does not require that the sequence being transcribed is adjacent to the promoter.
Reference to "functionally coupled" indicates the ability to mediate an effect on the nucleotide sequence. Functionally coupled does not require that the coupled sequences be adjacent to each other. A 3' polyadenylation signal functionally coupled to the nucleotide sequence facilitates cleavage and polyadenylation of the transcribed RNA. A 5' ribosome binding site functionally coupled to the nucleotide sequence facilitates ribosome binding.
In preferred embodiments the nucleic acid is a DNA plasmid vector or an adenovector suitable for either therapeutic application in treating HCV or as an intermediate in the production of a therapeutic vector. Treating HCV includes actively treating an HCV infection and prophylactically treating against an HCV
infection.
Another aspect of the present invention describes an adenovector comprising a Met-NS3-NS4A-NS4B-NS5A-NS5B expression cassette able to express a polypeptide substantially similar to SEQ. ID. NO. 1 that is produced by a process involving (a) homologous recombination and (b) adenovector rescue. The homologous recombinant step produces an adenovirus genome plasmid. The adenovector rescue step produces the adenovector from the adenogenome plasmid.
Adenovirus genome plasmids described herein contain a recombinant adenovirus genome having a deletion in the El region and optionally in the E3 region and a gene expression cassette inserted into one of the deleted regions. The recombinant adenovirus genome is made of regions substantially similar to one or more adenovirus serotypes.
Another aspect of the present invention describes an adenovector consisting of the nucleic acid sequence of SEQ. ID. NO. 4 or a derivative thereof, wherein said derivative thereof has the HCV polyprotein encoding sequence present in SEQ. ID. NO. 4 replaced with the HCV polyprotein encoding sequence of either SEQ. ID. NO. 3, SEQ. ID. NO. 10 or SEQ. ID. NO. 11.
Another aspect of the present invention describes a cultured recombinant cell comprising a nucleic acid containing a sequence encoding a Met-NS3-NS4A-NS4B-NS5A-NSSB polypeptide substantially similar to SEQ. ID. NO. 1.
The recombinant cell has a variety of uses such as being used to replicate nucleic acid encoding the polypeptide in vector construction methods.
Another aspect of the present invention describes a method of making an adenovector comprising a Met-NS3-NS4A-NS4B-NS5A-NS5B expression cassette able to express a polypeptide substantially similar to SEQ. ID. NO. 1. The method involves the steps of (a) producing an adenovirus genome plasmid containing a recombinant adenovirus genome with deletions in the El and E3 regions and a gene expression cassette inserted into one of the deleted regions and (b) rescuing the adenovector from the adenovirus genome plasmid.
Another aspect of the present invention describes a pharmaceutical composition comprising a vector for expressing a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide substantially similar to SEQ. ID. NO. 1 and a pharmaceutically acceptable carrier. The vector is suitable for administration and polypeptide expression in a patient.
A "patient" refers to a mammal capable of being infected with HCV.
A patient may or may not be infected with HCV. Examples of patients are humans and chimpanzees.
Another aspect of the present invention describes a method of treating a patient comprising the step of administering to the patient an effective amount of a vector expressing a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide substantially similar to SEQ. ID. NO. 1. The vector is suitable for administration and polypeptide expression in the patient.
The patient undergoing treatment may or may not be infected with HCV. For a patient infected with HCV, an effective amount is sufficient to achieve one or more of the following effects: reduce the ability of HCV to replicate, reduce HCV load, increase viral clearance, and increase one or more HCV specific CMI
responses. For a patient not infected with HCV, an effective amount is sufficient to achieve one or more of the following: an increased ability to produce one or more components of a HCV specific CMI response to a HCV infection, a reduced susceptibility to HCV infection, and a reduced ability of the infecting virus to establish persistent infection for chronic disease.
Another aspect of the present invention features a recombinant nucleic acid comprising an Ad6 region and a region not present in Ad6. Reference to "recombinant" nucleic acid indicates the presence of two or more nucleic acid regions not naturally associated with each other. Preferably, the Ad6 recombinant nucleic acid contains Ad6 regions and a gene expression cassette coding for a polypeptide heterologous to Ad6.
Other features and advantages of the present invention are apparent from the additional descriptions provided herein including the different examples.
The provided examples illustrate different components and methodology useful in practicing the present invention. The examples do not limit the claimed invention.
Based on the present disclosure the skilled artisan can identify and employ other components and methodology useful for practicing the present invention.
BRIEF DESCRIPTION OF THE DRAWINGS
Figures 1A and 113 illustrate SEQ. ID. NO. 1.
Figures 2A, 2B, 2C, and 2D illustrate SEQ. ID. NO. 2. SEQ. ID. NO.
2 provides a nucleotide sequence coding for SEQ. ID. NO. 1 along with an optimized internal ribosome entry site and TAAA termination. Nucleotides 1-6 provides an optimized internal ribosome entry site. Nucleotides 7-5961 code for a HCV Met-NS3-NS4A-NS4B-NS5A-NSSB polypeptide with nucleotides in positions 5137 to 5145 providing a AlaAlaGly sequence in amino acid positions 1711 to 1713 that renders NS5B inactive. Nucleotides 5962-5965 provide a TAAA termination.
Figures 3A, 3B, 3C, and 3D illustrate SEQ. ID. NO. 3. SEQ. ID. NO.
3 is a codon optimized version of SEQ. ID. NO. 2. Nucleotides 7-5961 encode a HCV Met-NS3-NS4A-NS4B-NS5A-NSSB polypeptide.
Figures 4A-4M illustrate MRKAd6-NSmut (SEQ. ID. NO. 4). SEQ.
ID. NO. 4 is an adenovector containing an expression cassette where the polypeptide of SEQ. ID. NO. 1 is encoded by SEQ. ID. NO. 2. Base pairs 1-450 correspond to the Ad5 bp 1 to 450; base pairs 462 to 1252 correspond to the human CMV promoter;
base pairs 1258 to 1267 correspond to the Kozak sequence; base pairs 1264 to correspond to the NS genes; base pairs 7231 to 7451 correspond to the BGH
polyadenylation signal; base pairs 7469 to 9506 correspond to Ad5 base pairs 3511 to 5548; base pairs 9507 to 32121 correspond to Ad6 base pairs 5542 to 28156;
base pairs 32122 to 35117 correspond to Ad6 base pairs 30789 to 33784; and base pairs 35118 to 37089 correspond to Ad5 base pairs 33967 to 35935.
Figures 5A-50 illustrate SEQ. ID. NOs. 5 and 6. SEQ. ID. NO. 5 encodes a HCV Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide with an active RNA dependent RNA polymerase. SEQ. ID. NO. 6 provides the amino acid sequence for the polypeptide.
Figures 6A-6C provide the nucleic acid sequence for pVlJnsA (SEQ.
ID. NO. 7).
Figures 7A-7N provide the nucleic acid sequence for the Ad6 genome (SEQ. ID. NO. 8).
Figures 8A-8K provide the nucleic acid sequence for the Ad5 genome (SEQ. ID. NO. 9).
Figure 9 illustrates different regions of the Ad6 genome. The linear (35759 bp) ds DNA genome is indicated by two parallel lines and is divided into 100 map units. Transcription units are shown relative to their position and orientation in the genome. Early genes (E1A, E1B, E2A/B, E3 and E4 are indicated by gray arrows.
Late genes (L1 to L5) , indicated by black arrows, are produced by alternative splicing of a transcript produced from the major late promoter (MLP) and all contain the tripartite leader (1, 2, 3) at their 5' ends. The El region is located from approximately 1.0 to 11.5 map units, the E2 region from 75.0 to 11.5 map units, E3 from 76.1 to 86.7 map units, and E4 from 99.5 to 91.2 map units. The major late transcription unit is located between 16.0 and 91.2 map units.
Figure 10 illustrates homologous recombination to recover pAdEl-E3+
containing Ad6 and Ad5 regions.
Figure 11 illustrates homologous recombinant to recover a pAdEl-E3+
containing Ad6 regions.
Figure 12 illustrates a western blot on whole-cell extracts from 293 cells transfected with plasmid DNA expressing different HCV NS cassettes.
Mature NS3 and NS5A products were detected with specific antibodies. "pVlJns-NS"
refers to a pVlJnsA plasmid where a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide is encoded by SEQ. ID. NO. 5, and SEQ. ID. NO. 5 is inserted between bases 1881 and 1912 of SEQ. ID. NO. 7. "pVlJns-NSmut" refers to a pVlJnsA plasmid where SEQ.
ID. NO. 2 is inserted between bases 1882 and 1925 of SEQ. ID. NO. 7. "pVlJns-NSOPTmut" refers to a pVlJnsA plasmid where SEQ. ID. NO. 3 is inserted between bases 1881 and 1905 of SEQ. ID. NO. 7.
Figures 13A and 13B illustrate T cell responses by IFNy ELlspot induced in C57black6 mice (A) and BalbC mice (B) by two injections of 25 g and 50 g, respectively, of plasmid DNA encoding the different HCV NS cassettes with Gene Electro-Transfer (GET). IFNy ELlspot on splenocytes from C57black6 mice immunized with two injections of 25 g DNA/dose with GET of plasmid vectors expressing the different HCV NS cassettes. (A) Data are expressed as SFC/106 PBMC. (B) IFNy ELlspot on splenocytes from BalbC mice immunized with two injections of 50 g DNA/dose with GET of plasmid vectors expressing the different HCV NS cassettes. Data are expressed as SFC/106 PBMC.
Figure 14 illustrates protein expression from different adenovectors upon infection of HeLa cells. MRKAd5-NSmut is an adenovector based on an Ad5 sequence (SEQ. ID. NO. 9), where the Ad5 genome has an E1 deletion of base pairs 451 to 3510, an E3 deletion of base pairs 28134 to 30817, and has the NS3-NS4A-NS4B-NS5A-NS5B expression cassette as provided in base pairs 451 to 7468 of SEQ.
ID. NO. 4 inserted between positions 450 and 3511. Ad5-NS is an adenovector based on an Ad5 backbone with an El deletion of base pairs 342 to 3523, and E3 deletion of base pairs 28134 to 30817 and containing an expression cassette encoding a NS3-NS4A-NS4B-NS5A-NS5B from SEQ. ID. NO. 5. "MRKAd6-NSOPTmut" refers to an adenovector having a modified SEQ. ID. NO. 4 sequence, wherein base pairs to 7222 of SEQ. ID. NO. 4 is replaced with SEQ. ID. NO. 3.
Figure 15 illustrates T cell responses by IFNy ELlspot induced in C57black6 mice by two injections of 109 vp of adenovectors containing different HCV non-structural gene cassettes. Data are expressed as SFC/l06 PBMC.
Figures 16A-16D illustrate T cell responses by IFNy ELIspot induced in Rhesus monkeys by one or two injections of 1010 vp (A) or 1011 vp (B) of adenovectors containing different HCV non-structural gene cassettes. Data are expressed as SFC/l06 PBMC.
Figures 17A and 17B illustrates CD8+ T cell responses by IFNy ICS
induced in Rhesus monkeys by two injections of 1010 vp (A) or 1011 vp (B) of adenovectors encoding the different HCV non-structural gene cassettes. Data are expressed as number of positive IFNy/CD3/CD8 per 106 lymphocytes.
Figures 18A-18F illustrate T cell responses by bulk CTL assay induced in Rhesus monkeys by two injections of 1011 vp of Ad5-NS (A+B), MRKAd5-NSmut (C+D), or MRKAd6-NSmut (E+F).
Figure 19 illustrates the plasmid pE2.
Figures 20A-D illustrates the partial codon optimized sequence NSsuboptmut (SEQ. ID. NO. 10). Coding sequence for the Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide is from base 7 to 5961.

8a DETAILED DESCRIPTION OF THE INVENTION
The present invention features Ad6 vectors and nucleic acid encoding a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide that contains an inactive NS5B
region. Providing an inactive NS5B region supplies NS5B antigens while reducing the possibility of adverse side effects due to an active viral RNA polymerase.
Uses of the featured nucleic acid include use as a vaccine component to introduce into a cell an HCV polypeptide that provides a broad range of antigens for generating a CMI
response against HCV, and as an intermediate for producing such a vaccine component.
The adaptive cellular immune response can function to recognize viral antigens in HCV infected cells throughout the body due to the ubiquitous distribution of major histocompatibility complex (MHC) class I and II expression, to induce immunological memory, and to maintain immunological memory. These functions are attributed to antigen-specific CD4+ T helper (Th) and CD8+ cytotoxic T
cells (CTL).
Upon activation via their specific T cell receptors, HCV specific Th cells fulfill a variety of immunoregulatory functions, most of them mediated by Thl and Th2 cytokines. HCV specific Th cells assist in the activation and differentiation of B cells and induction and stimulation of virus-specific cytotoxic T cells.
Together with CTL, Th cells may also secrete IFN-y and TNF-a that inhibit replication and gene expression of several viruses. Additionally, Th cells and CTL, the main effector cells, can induce apoptosis and lysis of virus infected cells.
HCV specific CTL are generated from antigens processed by professional antigen presenting cells (pAPCs). Antigens can be either synthesized within or introduced into pAPCs. Antigen synthesis in a pAPC can be brought about by introducing into the cell an expression cassette encoding the antigen.
A preferred route of nucleic acid vaccine administration is an intramuscular route. Intramuscular administration appears to result in the introduction and expression of nucleic acid into somatic cells and pAPCs. HCV antigens produced in the somatic cells can be transferred to pAPCs for presentation in the context of MHC class I molecules. (Donnelly et al., Annu. Rev. Immunol. 15:617-648, 1997.) pAPCs process longer length antigens into smaller peptide antigens in the proteasome complex. The antigen is translocated into the endoplasmic reticulum/Golgi complex secretory pathway for association with MHC class I
proteins. CD8+ T lymphocytes recognize antigen associated with class I MHC via the T cell receptor (TCR) and the CD8 cell surface protein.
Using a nucleic acid encoding a Met-NS3-NS4A-NS4B-NS5A-NS5B
polypeptide as a vaccine component allows for production of a broad range of antigens capable of generating CMI responses from a single vector. The polypeptide should be able to process itself sufficiently to produce at least a region corresponding to NS5B. Preferred nucleic acids encode an amino acid sequence substantially similar to SEQ. ID. NO. 1 that has sufficient protease activity to process itself to produce individual HCV polypeptides substantially similar to the NS3, NS4A, NS4B, NS5A, and NS5B regions present in SEQ. ID. NO. 1.
A polypeptide substantially similar to SEQ. ID. NO. 1 with sufficient protease activity to process itself in a cell provides the cell with T cell epitopes that are present in several different HCV strains. Protease activity is provided by NS3 and NS3/NS4A proteins digesting the Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide at the appropriate cleavage sites to release polypeptides corresponding to NS3, NS4A, NS4B, NS5A, and NS5B. Self- processing of the Met-NS3-NS4A-NS4B-NS5A-NSSB generates polypeptides that approximate naturally occurring HCV
polypeptides.
Based on the guidance provided herein a sufficiently strong immune response can be generated to achieve beneficial effects in a patient. The provided guidance includes information concerning HCV sequence selection, vector selection, vector production, combination treatment, and administration.
1. HCV SEQUENCES
A variety of different nucleic acid sequences can be used as a vaccine component to supply a HCV Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide to a cell or as an intermediate to produce vaccine components. The starting point for obtaining suitable nucleic acid sequences are preferably naturally occurring NS4A-NS4B-NS5A-NS5B polypeptide sequences modified to produce an inactive NS5B.
The use of a HCV nucleic acid sequence providing HCV non-structural antigens to generate a CMI response is mentioned by Cho et al., Vaccine 17:1136-1144, 1999, Paliard et al., International Publication Number WO 01/30812 (not admitted to be prior art to the claimed invention), and Coit et al., International Publication Number WO 01/38360 (not admitted to be prior art to the claimed invention). Such references fail to describe, for example, a polypeptide that processes itself to produce an inactive NS5B, and the particular combinations of HCV
sequences and delivery vehicles employed herein.
Modifications to a HCV Met-NS3-NS4A-NS4B-NS5A-NS5B
polypeptide sequence can be produced by altering the encoding nucleic acid.
Alterations can be performed to create deletions, insertions and substitutions.
Small modifications can be made in NS5B to produce an inactive polymerase by targeting motifs essentially for replication. Examples of motifs critical for NS5B activity and modifications that can be made to produce an inactive are described by Lohmann et al., Journal of Virology 71:8416-8426, 1997, and Kolykhalov et al., Journal of Virology 74:2046-2051, 2000.
Additional factors to take into account when producing modifications to a HCV Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide include maintaining the ability to self-process and maintaining T cell antigens. The ability of the HCV
polypeptide to process itself is determined to a large extent by a functional protease. Modifications that maintain NS3 activity protease activity can be obtained by taking into account the NS3 protein, NS4A which serves as a cofactor for NS3, and NS3 protease recognition sites present within the NS3-NS4A-NS4B-NS5A-NS5B
polypeptide.
Different modifications can be made to naturally occurring NS3-NS4A-NS4B-NS5A-NS5B polypeptide sequences to produce polypeptides able to elicit a broad range of T cell responses. Factors influencing the ability of a polypeptide to elicit a broad T cell response include the preservation or introduction of HCV specific T cell antigen regions and prevalence of different T cell antigen regions in different HCV isolates.
Numerous examples of naturally occurring HCV isolates are well known in the art. HCV isolates can be classified into the following six major genotypes compri sing one or more subtypes: HCV-1/(1a,1b,lc), HCV-2/(2a,2b,2c), HCV-3/(3 a,3b,1Oa), HCV-4/(4a), HCV-5/(5a) and HCV-6/(6a,6b,7b,8b,9a, 11 a).
(Simmonds, J. Gen. Virol., 693-712, 2001.) Examples of particular HCV
sequences such as HCV-BK, HCV-J, HCV-N, HCV-H, have been deposited in GenBank and described in various publications. (See, for example, Chamberlain et al., J.
Gen.
Virol., 1341-1347, 1997.) HCV T cell antigens can be identified by, for example, empirical experimentation. One way of identifying T cell antigens involves generating a series of overlapping short peptides from a longer length polypeptide and then screening the T-cell populations from infected patients for positive clones. Positive clones are activated/primed by a particular peptide. Techniques such as IFNy-ELISPOT, IFNy-Intracellular staining and bulk CTL assays can be used to measure peptide activity.
Peptides thus identified can be considered to represent T-cell epitopes of the respective pathogen.
HCV T cell antigen regions from different HCV isolates can be introduced into a single sequence by, for example, producing a hybrid NS3-NS4A-NS4B-NS5A-NS5B polypeptide containing regions from two or more naturally occurring sequences. Such a hybrid can contain additional modifications, which preferably do not reduce the ability of the polypeptide to produce an HCV CMI
response.
The ability of a modified Met-NS3-NS4A-NS4B-NS5A-NS5B
polypeptide to process itself and produce a CMI response can be determined using techniques described herein or well known in the art. Such techniques include the use of IFNy-ELISPOT, IFNy-Intracellular staining and bulk CTL assays to measure a HCV specific CMI response.

A. Met-NS3-NS4A-NS4B-NS5A-NS5B Sequences SEQ. ID. NO. 1 provides a preferred Met-NS3-NS4A-NS4B-NS5A-NS5B sequence. SEQ. ID. NO. 1 contains a large number of HCV specific T cell antigens that are present in several different HCV isolates. SEQ. ID. NO. 1 is similar to the NS3-NS4A-NS4B-NS5A-NS5B portion of the HCV BK strain nucleotide sequence (GenBank accession number M58335).
In SEQ. ID. NO. 1 anchor positions important for recognition by MHC
class I molecules are conserved or represent conservative substitutions for 18 out of 20 known T-cell epitopes in the NS3-NS4A-NS4B-NS5A-NS5B portion of HCV
polyproteins. With respect to the remaining two known T-cell epitopes, one has a non-conservative anchor substitution in SEQ. ID. NO. 1 that may still be recognized by a different HLA supertype and one epitope has one anchor residue not conserved.
HCV T-cell epitopes are described in Chisari et at., Curr. Top. Microbiol Immunol., 242:299-325, 2000, and Lechner et al. J. Exp. Med. 9:1499-1512, 2000.
Differences between the HCV-BK NS3-NS4A-NS4B-NS5A-NS5B
nucleotide sequence and SEQ. ID. NO. 1 include the introduction of a methionine at the 5' end and the presence of modified NS5B active site residues in SEQ. ID.
NO. 1.

The modification replaces GlyAspAsp with AlaAlaGly (residues 1711-1713) to inactivate NS5B.
The encoded HCV Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide preferably has an amino acid sequence substantially similar to SEQ. ID. NO. 1.
In different embodiments, the encoded HCV Met-NS3-NS4A-NS4B-NS5A-NS5B
polypeptide has an amino acid identify to SEQ. ID. NO. 1 of at least 65%, at least 75%, at least 85%, at least 95%, at least 99% or 100%; or differs from SEQ.
ID. NO.
1 by 1-2, 1-3, 1-4, 1-5, 1-6, 1-7, 1-8, 1-9, 1-10, 1-11, 1-12, 1-13, 1-14, 1-15, 1-16, 1-17, 1-18, 1-19, or 1-20 amino acids.
Amino acid differences between a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide and SEQ. ID. NO. 1 are calculated by determining the minimum number of amino acid modifications in which the two sequences differ. Amino acid modifications can be deletions, additions, substitutions or any combination thereof.
Amino acid sequence identity is determined by methods well known in the art that compare the amino acid sequence of one polypeptide to the amino acid sequence of a second polypeptide and generate a sequence alignment. Amino acid identity is calculated from the alignment by counting the number of aligned residue pairs that have identical amino acids.
Methods for determining sequence identity include those described by Schuler, G.D. in Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins, Baxevanis, A.D. and Ouelette, B.F.F., eds., John Wiley & Sons, Inc, 2001;
Yona, et al., in Bioinformatics: Sequence, structure and databanks, Higgins, D. and Taylor, W. eds, Oxford University Press, 2000; and Bioinformatics: Sequence and Genome Analysis, Mount, D.W., ed., Cold Spring Harbor Laboratory Press, 2001).
Methods to determine amino acid sequence identity are codified in publicly available computer programs such as GAP (Wisconsin Package Version 10.2, Genetics Computer Group (GCG), Madison, Wisc.), BLAST (Altschul et al., J. Mol. Biol.
215(3):403-10, 1990), and FASTA (Pearson, Methods in Enzymology 183:63-98, 1990, R.F. Doolittle, ed.).
In an embodiment of the present invention sequence identity between two polypeptides is determined using the GAP program (Wisconsin Package Version 10.2, Genetics Computer Group (GCG), Madison, Wisc.). GAP uses the alignment method of Needleman and Wunsch. (Needleman, et al., J. Mol. Biol. 48:443-453, 1970.) GAP considers all possible alignments and gap positions between two sequences and creates a global alignment that maximizes the number of matched residues and minimizes the number and size of gaps. A scoring matrix is used to assign values for symbol matches. In addition, a gap creation penalty and a gap extension penalty are required to limit the insertion of gaps into the alignment.
Default program parameters for polypeptide comparisons using GAP are the BLOSUM62 (Henikoff et al., Proc. Natl. Acad. Sci. USA, 89:10915-10919, 1992) amino acid scoring matrix (MATrix=blosum62.cmp), a gap creation parameter (GAPweight=8) and a gap extension pararameter (LENgthweight=2).
More preferred HCV Met-NS3-NS4A-NS4B-NS5A-NS5B
polypeptides in addition to being substantially similar to SEQ. ID. NO. 1 across their entire length produce individual NS3, NS4A, NS4B, NS5A and NS5B regions that are substantially similar to the corresponding regions present in SEQ. ID. NO. 1.
The corresponding regions in SEQ. ID. NO. 1 are provided as follows: Met-NS3 amino acids 1-632; NS4A amino acids 633-686; NS4B amino acids 687-947; NS5A amino acids 948-1394; and NS5B amino acids 1395-1985.
In different embodiments a NS3, NS4A, NS4B, NS5A and/or NS5B
region has an amino acid identity to the corresponding region in SEQ. ID. NO.
1 of at least 65%, at least 75%, at least 85%, at least 95%, at least 99%, or 100%; or an amino acid difference of 1-2, 1-3, 1-4, 1-5, 1-6, 1-7, 1-8, 1-9, 1-10, 1-11, 1-12, 1-13, 1-14, 1-15, 1-16, 1-17, 1-18, 1-19, or 1-20 amino acids.
Amino acid modifications to SEQ. ID. NO. 1 preferably maintain all or most of the T-cell antigen regions. Differences in naturally occurring amino acids are due to different amino acid side chains (R groups). An R group affects different properties of the amino acid such as physical size, charge, and hydrophobicity.
Amino acids can be divided into different groups as follows: neutral and hydrophobic (alanine, valine, leucine, isoleucine, proline, tyrptophan, phenylalanine, and methionine); neutral and polar (glycine, serine, threonine, tryosine, cysteine, asparagine, and glutamine); basic (lysine, arginine, and histidine); and acidic (aspartic acid and glutamic acid).
Generally, in substituting different amino acids it is preferable to exchange amino acids having similar properties. Substituting different amino acids within a particular group, such as substituting valine for leucine, arginine for lysine, and asparagine for glutamine are good candidates for not causing a change in polypeptide tertiary structure.
Starting with a particular amino acid sequence and the known degeneracy of the genetic code, a large number of different encoding nucleic acid sequences can be obtained. The degeneracy of the genetic code arises because almost all amino acids are encoded by different combinations of nucleotide triplets or "codons". The translation of a particular codon into a particular amino acid is well known in the art (see, e.g., Lewin GENES IV, p. 119, Oxford University Press, 1990).
Amino acids are encoded by codons as follows:
A=Ala=Alanine: codons GCA, GCC, GCG, GCU
C=Cys=Cysteine: codons UGC, UGU
D=Asp=Aspartic acid: codons GAC, GAU
E=Glu=Glutamic acid: codons GAA, GAG
F=Phe=Phenylalanine: codons UUC, UUU
G=Gly=Glycine: codons GGA, GGC, GGG, GGU
H=His=Histidine: codons CAC, CAU
I=Ile=lsoleucine: codons AUA, AUC, AUU
K=Lys=Lysine: codons AAA, AAG
L=Leu=Leucine: codons UUA, UUG, CUA, CUC, CUG, CUU
M=Met=Methionine: codon AUG
N=Asn=Asparagine: codons AAC, AAU
P=Pro=Proline: codons CCA, CCC, CCG, CCU
Q=Gln=Glutamine: codons CAA, CAG
R=Arg=Arginine: codons AGA, AGG, CGA, CGC, CGG, CGU
S=Ser=Serine: codons AGC, AGU, UCA, UCC, UCG, UCU
T=Thr=Threonine: codons ACA, ACC, ACG, ACU
V=Val=Valine: codons GUA, GUC, GUG, GUU
W=Trp=Tryptophan: codon UGG
Y=Tyr=Tyrosine: codons UAC, UAU.
Nucleic acid sequences can be optimized in an effort to enhance expression in a host. Factors to be considered include C:G content, preferred codons, and the avoidance of inhibitory secondary structure. These factors can be combined in different ways in an attempt to obtain nucleic acid sequences having enhanced expression in a particular host. (See, for example, Donnelly et al., International Publication Number WO 97/47358.) The ability of a particular sequence to have enhanced expression in a particular host involves some empirical experimentation. Such experimentation involves measuring expression of a prospective nucleic acid sequence and, if needed, altering the sequence.

B. Encoding Nucleotide Sequences SEQ. ID. NOs. 2 and 3 provide two examples of nucleotide sequences encoding a Met-NS3-NS4A-NS4B-NS5A-NS5B sequence. The coding sequence of SEQ. ID. NO. 2 is similar (99.4% nucleotide sequence identity) to the NS3-NS4A-NS4B-NS5A-NS5B region of the naturally occurring HCV-BK sequence (GenBank accession number M58335). SEQ. ID. NO. 3 is a codon-optimized version of SEQ.
ID. NO. 2. SEQ. ID. NOs. 2 and 3 have a nucleotide sequence identity of 78.3%.
Differences between the HCV-BK NS3-NS4A-NS4B-NS5A-NS5B
nucleotide (GenBank accession number M58335) and SEQ. ID. NO. 2, include SEQ.
ID. NO. 2 having a ribosome binding site, an ATG methionine codon, a region coding for a modified NS5B catalytic domain, a TAAA stop signal and an additional 30 nucleotide differences. The modified catalytic domain codes for a AlaAlaGly (residues 1711-1713) instead of G1yAspAsp to inactivate NS5B.
A nucleotide sequence encoding a HCV Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide is preferably substantially similar to the SEQ. ID. NO.

coding region. In different embodiments, the nucleotide sequence encoding a HCV
Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide has a nucleotide sequence identify to the SEQ. ID. NO. 2 coding region of at least 65%, at least 75%, at least 85%, at least 95%, at least 99%, or 100%; or differs from SEQ. ID. NO. 2 by 1-2, 1-3, 1-4, 1-5, 1-6, 1-7, 1-8, 1-9, 1-10, 1-11, 1-12, 1-13, 1-14, 1-15, 1-16, 1-17, 1-18, 1-19, 1-20, 1-25, 1-30, 1-35, 1-40, 1-45, or 1-50 nucleotides.
Nucleotide differences between a sequence coding Met-NS3-NS4A-NS4B-NS5A-NS5B and the SEQ. ID. NO. 2 coding region are calculated by determining the minimum number of nucleotide modifications in which the two sequences differ. Nucleotide modifications can be deletions, additions, substitutions or any combination thereof.
Nucleotide sequence identity is determined by methods well known in the art that compare the nucleotide sequence of one sequence to the nucleotide sequence of a second sequence and generate a sequence alignment. Sequence identity is determined from the alignment by counting the number of aligned positions having identical nucleotides.
Methods for determining nucleotide sequence identity between two polynucleotides include those described by Schuler, in Bioinformatics: A
Practical Guide to the Analysis of Genes and Proteins, Baxevanis, A.D. and Ouelette, B.F.F., eds., John Wiley & Sons, Inc, 2001; Yona et al.,. in Bioinformatics: Sequence, structure and databanks, Higgins, D. and Taylor, W. eds, Oxford University Press, 2000; and Bioinformatics: Sequence and Genome Analysis, Mount, D.W., ed., Cold Spring Harbor Laboratory Press, 2001). Methods to determine nucleotide sequence identity are codified in publicly available computer programs such as GAP
(Wisconsin Package Version 10.2, Genetics Computer Group (GCG), Madison, Wisc.), BLAST (Altschul et al., J. Mol. Biol. 215(3):403-10, 1990), and FASTA
(Pearson, W.R., Methods in Enzymology 183:63-98, 1990, R.F. Doolittle, ed.).
In an embodiment of the present ivnention, sequence identity between two polynucleotides is determined by application of GAP (Wisconsin Package Version 10.2, Genetics Computer Group (GCG), Madison, Wisc.). GAP uses the alignment method of Needleman and Wunsch. (Needleman et al., J. Mol. Biol.
48:443-453, 1970.) GAP considers all possible alignments and gap positions between two sequences and creates a global alignment that maximizes the number of matched residues and minimizes the number and size of gaps. A scoring matrix is used to assign values for symbol matches. In addition, a gap creation penalty and a gap extension penalty are required to limit the insertion of gaps into the alignment.
Default program parameters for polynucleotide comparisons using GAP are the nwsgapdna.cmp scoring matrix (MATrix=nwsgapdna.cmp), a gap creation parameter (GAPweight=50) and a gap extension pararameter (LENgthweight=3).
More preferred HCV Met-NS3-NS4A-NS4B-NS5A-NS5B nucleotide sequences in addition to being substantially similar across its entire length, produce individual NS3, NS4A, NS4B, NS5A and NS5B regions that are substantially similar to the corresponding regions present in SEQ. ID. NO. 2. The corresponding coding regions in SEQ. ID. NO. 2 are provided as follows: Met-NS3, nucleotides 7-1902;
NS4A nucleotides 1903-2064; NS4B nucleotides 2065-2847; NS5A nucleotides 2848-4188: NS5B nucleotides 4189-5661.
In different embodiments a NS3, NS4A, NS4B, NS5A and/or NS5B
encoding region has a nucleotide sequence identity to the corresponding region in SEQ. ID. NO. 2 of at least 65%, at least 75%, at least 85%, at least 95%, at least 99%
or 100%; or a nucleotide difference to SEQ. ID. NO. 2 of 1-2, 1-3, 1-4, 1-5, 1-6, 1-7, 1-8, 1-9, 1-10, 1-11, 1-12, 1-13, 1-14, 1-15, 1-16, 1-17, 1-18, 1-19, 1-20, 1-25, 1-30, 1-35, 1-40, 1-45, or 1-50 nucleotides.

C. Gene Expression Cassettes A gene expression cassette contains elements needed for polypeptide expression. Reference to "polypeptide" does not provide a size limitation and includes protein. Regulatory elements present in a gene expression cassette generally include: (a) a promoter transcriptionally coupled to a nucleotide sequence encoding the polypeptide, (b) a 5' ribosome binding site functionally coupled to the nucleotide sequence, (c) a terminator joined to the 3' end of the nucleotide sequence, and (d) a 3' polyadenylation signal functionally coupled to the nucleotide sequence.
Additional regulatory elements useful for enhancing or regulating gene expression or polypeptide processing may also be present.
Promoters are genetic elements that are recognized by an RNA
polymerase and mediate transcription of downstream regions. Preferred promoters are strong promoters that provide for increased levels of transcription.
Examples of strong promoters are the immediate early human cytomegalovirus promoter (CMV), and CMV with intron A. (Chapman et al, Nucl. Acids Res. 19:3979-3986, 1991.) Additional examples of promoters include naturally occurring promoters such as the EF1 alpha promoter, the murine CMV promoter, Rous sarcoma virus promoter, and SV40 early/late promoters and the (3-actin promoter; and artificial promoters such as a synthetic muscle specific promoter and a chimeric muscle-specific/CMV promoter (Li et al., Nat. Biotechnol. 17:241-245, 1999, Hagstrom et al., Blood 95:2536-2542, 2000).
The ribosome binding site is located at or near the initiation codon.
Examples of preferred ribosome binding sites include CCACCAUGG, CCGCCAUGG, and ACCAUGG, where AUG is the initiation codon. (Kozak, Cell 44:283-292, 1986). Another example of a ribosome binding site is GCCACCAUGG
(SEQ. ID. NO. 12).
The polyadenylation signal is responsible for cleaving the transcribed RNA and the addition of a poly (A) tail to the RNA. The polyadenylation signal in higher eukaryotes contains an AAUAAA sequence about 11-30 nucleotides from the polyadenylation addition site. The AAUAAA sequence is involved in signaling RNA
cleavage. (Lewin, Genes IV, Oxford University Press, NY, 1990.) The poly (A) tail is important for the mRNA processing.
Polyadenylation signals that can be used as part of a gene expression cassette include the minimal rabbit 0 -globin polyadenylation signal and the bovine growth hormone polyadenylation (BGH). (Xu et al., Gene 272:149-156, 2001, Post et al., U.S. Patent U. S. 5,122,458.) Additional examples include the Synthetic Polyadenylation Signal (SPA) and SV40 polyadenylation signal. The SPA sequence is as follows: AAUAAAAGAUCUUUAUUUUCAUUAGAUCUGUGUG
UUGGUUUUUUGUGUG (SEQ. ID. NO. 13).
Examples of additional regulatory elements useful for enhancing or regulating gene expression or polypeptide processing that may be present include an enhancer, a leader sequence and an operator. An enhancer region increases transcription. Examples of enhancer regions include the CMV enhancer and the SV40 enhancer. (Hitt et al., Methods in Molecular Genetics 7:13-30, 1995, Xu, et al., Gene 272:149-156, 2001.) An enhancer region can be associated with a promoter.
A leader sequence is an amino acid region on a polypeptide that directs the polypeptide into the proteasome. Nucleic acid encoding the leader sequence is 5' of a structural gene and is transcribed along the structural gene. An example of a leader sequences is tPA.
An operator sequence can be used to regulate gene expression. For example, the Tet operator sequence can be used to repress gene expression.

H. THERAPEUTIC VECTORS
Nucleic acid encoding a Met-NS3-NS4A-NS4B-NS5A-NS5B
polypeptide can be introduced into a patient using vectors suitable for therapeutic administration. Suitable vectors can deliver nucleic acid into a target cell without causing an unacceptable side effect.
Cellular expression is achieved using a gene expression cassette encoding a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide. The gene expression cassette contains regulatory elements for producing and processing a sufficient amount of nucleic acid inside a target cell to achieve a beneficial effect.
Examples of vectors that can be used for therapeutic applications include first and second generation adenovectors, helper dependent adenovectors, adeno-associated viral vectors, retroviral vectors, alpha virus vectors, Venezuelan Equine Encephalitis virus vector, and plasmid vectors. (Hitt, et al., Advances in Pharmacology 40:137-206, 1997, Johnston et al., U.S. Patent No. 6,156,588, and Johnston et at., International Publication Number WO 95/32733.) Preferred vectors for introducing a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide into a subject are first generation adenoviral vectors and plasmid DNA vectors.

A. First Generation Adenovectors First generation adenovector for expressing a gene expression cassette contain the expression cassette in an El and optionally E3 deleted recombinant adenovirus genome. The deletion in the El region is sufficiently large to remove elements needed for adenoviral replication.
First generation adenovectors for expressing a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide contain a El and E3 deleted recombinant adenovirus genome. The deletion in the El region is sufficiently large to remove elements needed for adenoviral replication. The combinations of deletions of the El and regions are sufficiently large to accommodate a gene expression cassette encoding a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide.
The adenovirus has a double-stranded linear genome with inverted terminal repeats at both ends. During viral replication, the genome is packaged inside a viral capsid to form a virion. The virus enters its target cell through viral attachment followed by internalization. (Hitt et al., Advances in Pharmacology 40:137-206, 1997.) Adenovectors can be based on different adenovirus serotypes such as those found in humans or animals. Examples of animal adenoviruses include bovine, porcine, chimp, murine, canine, and avian (CELO). Preferred adenovectors are based on human serotypes, more preferably Group B, C, or D serotypes. Examples of human adenovirus Group B, C, D, or E serotypes include types 2 ("Ad2"), 4 ("Ad4"), 5 ("Ad5"), 6 ("Ad6"), 24 ("Ad24"), 26 ("Ad26"), 34 ("Ad34") and 35 ("Ad35").
Adenovectors can contain regions from a single adenovirus or from two or more adenovirus.
In different embodiments adenovectors are based on Ad5, Ad6, or a combination thereof. Ad5 is described by Chroboczek, et al., J. Virology 186:280-285, 1992. Ad6 is described in Figures 7A-7N. An Ad6 based vector containing Ad5 regions is described in the Example section provided below.
Adenovectors do not need to have their El and E3 regions completely removed. Rather, a sufficient amount the El region is removed to render the vector replication incompetent in the absence of the El proteins being supplied in trans; and the El deletion or the combination of the El and E3 deletions are sufficiently large enough to accommodate a gene expression cassette.
El deletions can be obtained starting at about base pair 342 going up to about base pair 3523 of Ad5, or a corresponding region from other adenoviruses.

Preferably, the deleted region involves removing a region from about base pair 450 to about base pair 3511 of Ad5, or a corresponding region from other adenoviruses.
Larger El region deletions starting at about base pair 341 removes elements that facilitate virus packaging.
E3 deletions can be obtained starting at about base pair 27865 to about base pair 30995 of Ad5, or the corresponding region of other adenovectors.
Preferably the deletion region involves removing a region from about base pair up to about base pair 30817 of Ad5, or the corresponding region of other adenovectors.
The combination of deletions to the El region and optionally the E3 region should be sufficiently large so that the overall size of the recombinant genome containing the gene expression cassette does not exceed about 105% of the wild type adenovirus genome. For example, as recombinant adenovirus Ad5 genomes increase size above about 105% the genome becomes unstable. (Bett et al., Journal of Virology 67:5911-5921, 1993.) Preferably, the size of the recombinant adenovirus genome containing the gene expression cassette is about 85% to about 105% the size of the wild type adenovirus genome. In different embodiments, the size of the recombinant adenovirus genome containing the expression cassette is about 100% to about 105.2%, or about 100%, the size of the wild type genome.
Approximately 7,500 kb can be inserted into an adenovirus genome with a El and E3 deletion. Without any deletion, the Ad5 genome is 35,935 base pairs and the Ad6 genome is 35,759 base pairs.
Replication of first generation adenovectors can be performed by supplying the El gene products in trans. The El gene product can be supplied in trans, for example, by using cell lines that have been transformed with the adenovirus El region. Examples of cells and cells lines transformed with the adenovirus El region are HEK 293 cells, 911 cells, PERC.6TM cells, and transfected primary human aminocytes cells. (Graham et al., Journal of Virology 36:59-72, 1977, Schiedner et al., Human Gene Therapy 11:2105-2116, 2000, Fallaux et al., Human Gene Therapy 9:1909-1917, 1998, Bout et al., U.S. Patent No. 6,033,908.) A Met-NS3-NS4A-NS4B-NS5A-NSSB expression cassette should be inserted into a recombinant adenovirus genome in the region corresponding to the deleted El region or the deleted E3 region. The expression cassette can have a parallel or anti-parallel orientation. In a parallel orientation the transcription direction of the inserted gene is the same direction as the deleted El or E3 gene. In an anti-parallel orientation transcription the opposite strand serves as a template and the transcription direction is in the opposite direction.
In an embodiment of the present invention the adenovector has a gene expression cassette inserted in the El deleted region. The vector contains:
a) a first adenovirus region from about base pair 1 to about base pair 450 corresponding to either Ad5 or Ad6;
b) a gene expression cassette in a El parallel or El anti-parallel orientation joined to the first region;
c) a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to the expression cassette;
d) a third adenovirus region from about base pair 5549 to about base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair 28156 corresponding to Ad6, joined to the second region;
e) a fourth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, joined to the third region; and f) a fifth adenovirus region from about base pair 33967 to about base pair 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6 joined to the fourth region.
In another embodiment of the present invention the adenovector has an expression cassette inserted in the E3 deleted region. The vector contains:
a) a first adenovirus region from about base pair 1 to about base pair 450 corresponding to either Ad5 or Ad6;
b) a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to the first region;
c) a third adenovirus region from about base pair 5549 to about base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair 28156 corresponding to Ad6, joined to the second region;
d) a gene expression cassette in a E3 parallel or E3 anti-parallel orientation joined to the third region;

e) a fourth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, joined to the gene expression cassette; and f) a fifth adenovirus region from about base pair 33967 to about base pair 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6, joined to the fourth region.
In preferred different embodiments concerning adenovirus regions that are present: (1) the first, second, third, fourth, and fifth region corresponds to Ad5; (2) the first, second, third, fourth, and fifth region corresponds to Ad6; and (3) the first region corresponds to Ad5, the second region corresponds to Ad5, the third region corresponds to Ad6, the fourth region corresponds to Ad6, and the fifth region corresponds to Ad5.

B. DNA Plasmid Vectors DNA vaccine plasmid vectors contain a gene expression cassette along with elements facilitating replication and preferably vector selection.
Preferred elements provide for replication in non-mammalian cells and a selectable marker.
The vectors should not contain elements providing for replication in human cells or for integration into human nucleic acid.
The selectable marker facilitates selection of nucleic acids containing the marker. Preferred selectable markers are those that confer antibiotic resistance.
Examples of antibiotic selection genes include nucleic acid encoding resistance to ampicillin, neomycin, and kanamycin.
Suitable DNA vaccine vectors can be produced starting with a plasmid containing a bacterial origin of replication and a selectable marker. Examples of bacterial origins of replication providing for higher yields include the ColEl plasmid-derived bacterial origin of replication. (Donnelly et al., Annu. Rev. Immunol.
15:617-648, 1997.) The presence of the bacterial origin of replication and selectable marker allows for the production of the DNA vector in a bacterial strain such as E.
coli. The selectable marker is used to eliminate bacteria not containing the DNA
vector.

III. AD6 RECOMBINANT NUCLEIC ACID
Ad6 recombinant nucleic acid comprises an Ad6 region substantially similar to an Ad6 region found in SEQ. ID. NO. 8, and a region not present in Ad6 nucleic acid. Recombinant nucleic acid comprising Ad6 regions have different uses such as in producing different Ad6 regions, as intermediates in the production of Ad6 based vectors, and as a vector for delivering a recombinant gene.
As depicted in Figure 9, the genomic organization of Ad6 is very similar to the genomic organization of Ad5. The homology between Ad5 and Ad6 is approximately 98%.
In different embodiments, the Ad6 recombinant nucleic acid comprises a nucleotide region substantially similar to E1A, E1B, E2B, E2A, E3, E4, L1, L2, L3, or L4, or any combination thereof. A substantially similar nucleic acid region to an Ad6 region has a nucleotide sequence identity of at least 65%, at least 75%, at least 85%, at least 95%, at least 99% or 100%; or a nucleotide difference of 1-2, 1-3, 1-4, 1-5, 1-6, 1-7, 1-8, 1-9, 1-10, 1-11, 1-12, 1-13, 1-14, 1-15, 1-16, 1-17, 1-18, 1-19, 1-20, 1-25, 1-30, 1-35, 1-40, 1-45, or 1-50 nucleotides. Techniques and embodiments for determining substantially similar nucleic acid sequences are described in Section I.B.
supra.
Preferably, the recombinant Ad6 nucleic acid contains an expression cassette coding for a polypeptide not found in Ad6. Examples of expression cassettes include those coding for HCV regions and those coding for other types of polypeptides.
Different types of adenoviral vectors can be produced incorporating different amounts of Ad6, such as first and second generation adenovectors. As noted in Section II.A. supra. first generation adenovectors are defective in El and can replicate when El is supplied in trans.
Second generation adenovectors contain less adenoviral genome than first generation vectors and can be used in conjugation with complementing cell lines and/or helper vectors supplying adenoviral proteins. Second generation adenovectors are described in different references such as Russell, Journal of General Virology 81:2573-2604, 2000; Hitt et al., 1997, Human Ad vectors for Gene Transfer, Advances in Pharmacology, Vol 40 Academic Press.
In an embodiment of the present invention, the Ad6 recombinant nucleic acid is an adenovirus vector defective in El that is able to replicate when El is supplied in trans. Expression cassettes can be inserted into a deleted El region and/or a deleted E3 region.
An example of an Ad6 based adenoviral vector with an expression cassette provided in a deleted El region comprises or consists of:
a) a first adenovirus region from about base pair 1 to about base pair 450 corresponding to either Ad5 or Ad6;
b) a gene expression cassette in a El parallel or El anti-parallel orientation joined to the first region;
c) a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to the expression cassette;
d) a third adenovirus region from about base pair 5549 to about base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair 28156 corresponding to Ad6, joined to the second region;
e) an optionally present fourth region from about base pair 28134 to about base pair 30817 corresponding to Ad5, or from about base pair 28157 to about base pair 30788 corresponding to Ad6, joined to the third region;
f) a fifth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, wherein the fifth region is joined to the fourth region if the fourth region is present, or the fifth is joined to the third region if the fourth region is not present; and g) a sixth adenovirus region from about base pair 33967 to about base pair 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6, joined to the fifth region;
wherein at least one Ad6 region is present.
In different embodiments of the invention, all of the regions are from Ad6; all of the regions expect for the first and second are from Ad6; and 1, 2, 3, or 4 regions selected from the second, third, fourth, and fifth regions are from Ad6.
An example of an Ad6 based adenoviral vector with an expression cassette provided in a deleted E3 region comprises or consists of:
a) a first adenovirus region from about base pair 1 to about base pair 450 corresponding to either Ad5 or Ad6;

b) a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to the first region;
c) a third adenovirus region from about base pair 5549 to about base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair 28156 corresponding to Ad6, joined to the second region;
d) a gene expression cassette in a E3 parallel or E3 anti-parallel orientation joined to the third region;
e) a fourth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, joined to the gene expression cassette; and f) a fifth adenovirus region from about base pair 33967 to about base pair 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6, joined to the fourth region;
wherein at least one Ad6 region is present.
In different embodiment of the invention, all of the regions are from Ad6; all of the regions expect for the first and second are from Ad6; and 1, 2, 3, or 4 regions selected from the second, third, fourth and fifth regions are from Ad6.

IV. VECTOR PRODUCTION
Vectors can be produced using recombinant nucleic acid techniques such as those involving the use of restriction enzymes, nucleic acid ligation, and homologous recombination. Recombinant nucleic acid techniques are well known in the art. (Ausubel, Current Protocols in Molecular Biology, John Wiley, 1987-1998, and Sambrook et al., Molecular Cloning, A Laboratory Manual, 2'd Edition, Cold Spring Harbor Laboratory Press, 1989.) Intermediate vectors are used to derive a therapeutic vector or to transfer an expression cassette or portion thereof from one vector to another vector.
Examples of intermediate vectors include adenovirus genome plasmids and shuttle vectors.
Useful elements in an intermediate vector include an origin of replication, a selectable marker, homologous recombination regions, and convenient restriction sites. Convenient restriction sites can be used to facilitate cloning or release of a nucleic acid sequence.

Homologous recombination regions provide nucleic acid sequence regions that are homologous to a target region in another nucleic acid molecule. The homologous regions flank the nucleic acid sequence that is being inserted into the target region. In different embodiments homologous regions are preferably about 150 to 600 nucleotides in length, or about 100 to 500 nucleotides in length.
An embodiment of the present invention describes a shuttle vector containing a Met-NS3-NS4A-NS4B-NS5A-NS5B expression cassette, a selectable marker, a bacterial origin of replication, a first adenovirus homology region and a second adenovirus homologous region that target the expression cassette to insert in or replace an El region. The first and second homology regions flank the expression cassette. The first homology region contains at least about 100 base pairs substantially homologous to at least the right end (3' end) of a wild-type adenovirus region from about base pairs 4-450. The second homology contains at least about 100 base pairs substantially homologous to at least the left end (5' end) of Ad5 from about base pairs 3511-5792, or the corresponding region from another adenovirus.
Reference to "substantially homologous" indicates a sufficient degree of homology to specifically recombine with a target region. In different embodiments substantially homologous refers to at least 85%, at least 95%, or 100%
sequence identity. Sequence identity can be calculated as described in Section I.B.
supra.
One method of producing adenovectors is through the creation of an adenovirus genome plasmid containing an expression cassette. The pre-Adenovirus plasmid contains all the adenovirus sequences needed for replication in the desired complimenting cell line. The pre-Adenovirus plasmid is then digested with a restriction enzyme to release the viral ITR's and transfected into the complementing cell line for virus rescue. The ITR's must be released from plasmid sequences to allow replication to occur. Adenovector rescue results in the production on an adenovector containing the expression cassette.

A. Adenovirus Genome Plasmids Adenovirus genome plasmids contain an adenovector sequence inside a longer-length plasmid (which may be a cosmid). The longer-length plasmid may contain additional elements such as those facilitating growth and selection in eukaryotic or bacterial cells depending upon the procedures employed to produce and maintain the plasmid. Techniques for producing adenovirus genome plasmids include those involving the use of shuttle vectors and homologous recombination, and those involving the insertion of a gene expression cassette into an adenovirus cosmid. (Hitt et al., Methods in Molecular Genetics 7:13-30, 1995, Danthinne et al., Gene Therapy 7:1707-1714, 2000.) Adenovirus genome plasmids preferably have a gene expression cassette inserted into a El or E3 deleted region. In an embodiment of the present invention, the adenovirus genome plasmid contains a gene expression cassette inserted in the El deleted region, an origin of replication, a selectable marker, and the recombinant adenovirus region is made up of:
a) a first adenovirus region from about base pair 1 to about base 450 corresponding to either Ad5 or Ad6;
b) a gene expression cassette in a El parallel or El anti-parallel orientation joined to the first region;
c) a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to the expression cassette;
d) a third adenovirus region from about base pair 5549 to about base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair 28156 corresponding to Ad6, joined to the second region;
e) a fourth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, joined to the third region;
f) a fifth adenovirus region from about base pair 33967 to about base pair 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6, joined to the fourth region, and g) an optionally present E3 region corresponding to all or part of the E3 region present in Ad5 or Ad6, which may be present for smaller inserts taking into account the overall size of the desired adenovector.
In another embodiment of the present invention the recombinant adenovirus genome plasmid has the gene expression cassette inserted in the E3 deleted region. The vector contains an origin of replication, a selectable marker, and the following:
a) a first adenovirus region from about base pair 1 to about base pair 450 corresponding to either Ad5 or Ad6;

b) a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to the expression cassette;
c) a third adenovirus region from about base pair 5549 to about base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair 28156 corresponding to Ad6, joined to the second region;
d) the gene expression cassette in a E3 parallel or E3 anti-parallel orientation joined to the third region;
e) a fourth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, joined to the gene expression cassette; and f) a fifth adenovirus region from about base pair 33967 to about base pair 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6, joined to the fourth region.
In different embodiments concerning adenovirus regions that are present: (1) the first, second, third, fourth, and fifth region corresponds to Ad5; (2) the first, second, third, fourth, and fifth region corresponds to Ad6; and (3) the first region corresponds to Ad5, the second region corresponds to Ad5, the third region corresponds to Ad6, the fourth region corresponds to Ad6, and the fifth region corresponds to Ad5.
An embodiment of the present invention describes a method of making an adenovector involving a homologous recombination step to produce a adenovirus genome plasmid and an adenovirus rescue step. The homologous recombination step involves the use of a shuttle vector containing a Met-NS3-NS4A-NS4B-NS5A-NS5B
expression cassette flanked by adenovirus homology regions. The adenovirus homology regions target the expression cassette into either the El or E3 deleted region.
In an embodiment of the present invention concerning the production of an adenovirus genome plasmid, the gene expression cassette is inserted into a vector comprising: a first adenovirus region from about base pair 1 to about base pair 450 corresponding to either Ad5 or Ad6; a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair to about base pair 5541 corresponding to Ad6, joined to the second region; a third adenovirus region from about base pair 5549 to about base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair 28156 corresponding to Ad6, joined to the second region; a fourth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, joined to the third region; and a fifth adenovirus region from about 33967 to about 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6, joined to the fourth region. The adenovirus genome plasmid should contain an origin of replication and a selectable marker, and may contain all or part of the Ad5 or Ad6 E3 region.
In different embodiments concerning adenovirus regions that are present: (1) the first, second, third, fourth, and fifth region corresponds to Ad5; (2) the first, second, third, fourth, and fifth region corresponds to Ad6; and (3) the first region corresponds to Ad5, the second region corresponds to Ad5, the third region corresponds to Ad6, the fourth region corresponds to Ad6, and the fifth region corresponds to Ad5.

B. Adenovector Rescue An adenovector can be rescued from a recombinant adenovirus genome plasmid using techniques known in the art or described herein. Examples of techniques for adenovirus rescue well known in the art are provided by Hitt et al., Methods in Molecular Genetics 7:13-30, 1995, and Danthinne et al., Gene Therapy 7:1707-1714, 2000.
A preferred method of rescuing an adenovector described herein involves boosting adenoviral replication. Boosting adenoviral replication can be performed, for example, by supplying adenoviral functions such as E2 proteins (polymerase, pre-terminal protein and DNA binding protein) as well as E4 orf6 on a separate plasmid. Example 10 infra. illustrates the boosting of adenoviral replication to rescue an adenovector containing a codon optimized Met-NS3-NS4A-NS4B-NS5A-NS5B expression cassette.

V. PARTIAL-OPITIMIZED HCV ENCODING SEQUENCES
Partial optimization of HCV polyprotein encoding nucleic acid provides for a lesser amount of codons optimized for expression in a human than complete optimization. The overall objective is to provide the benefits of increased expression due to codon optimization, while facilitating the production of an adenovector containing HCV polyprotein encoding nucleic acid having optimized codons.

Complete optimization of an HCV polyprotein encoding sequence provides the most frequently observed human codon for each amino acid.
Complete optimization can be performed using codon frequency tables well known in the art and using programs such as the BACKTRANSLATE program (Wisconsin Package version 10, Genetics Computer Group, GCG, Madison, Wisc.).
Partial optimization can be preformed on an entire HCV polyprotein encoding sequence that is present (e.g., NS3-NS5B), or one or more local regions that are present. In different embodiments the GC content for the entire HCV encoded polyprotein that is present is no greater than at least about 65%; and the GC content for one or more local regions is no greater than about 70%.
Local regions are regions present in HCV encoding nucleic acid, and can vary in size. For example, local regions can be about 60, about 70, about 80, about 90 or about 100 nucleotides in length.
Partial optimization can be achieved by initially constructing an HCV
encoding polyprotein sequence to be partially optimized based on a naturally ocurring sequence. Alternatively, an optimized HCV encoding sequence can be used as basis of comparison to produce a partial optimized sequence.

VI. HCV COMBINATION TREATMENT
The HCV Met-NS3-NS4A-NS4B-NS5A-NS5B vaccine can be used by itself to treat a patient, can be used in conjunction with other HCV
therapeutics, and can be used with agents targeting other types of diseases. Additional therapeutics include additional therapeutic agents to treat HCV and diseases having a high prevalence in HCV infected persons. Agents targeting other types of disease include vaccines directed against HIV and HBV.
Additional therapeutics for treating HCV include vaccines and non-vaccine agents. (Zein, Expert Opin. Investig. Drugs 10: 1457-1469, 2001.) Examples of additional HCV vaccines include vaccines designed to elicit an immune response against an HCV core antigen and the HCV El, E2 or p7 region. Vaccine components can be naturally occurring HCV polypeptides, HCV mimotope polypeptides or nucleic acid encoding such polypeptides.
HCV mimotope polypeptides contain HCV epitopes, but have a different sequence than a naturally occurring HCV antigen. A HCV mimotope can be fused to a naturally occurring HCV antigen. References describing techniques for producing mimotopes in general and describing different HCV mimotopes are provided in Felici et al. U.S. Patent No. 5,994,083 and Nicosia et al., International Application Number WO 99/60132.

VII. PHARMACEUTICAL ADMINISTRATION
HCV vaccines can be formulated and administered to a patient using the guidance provided herein along with techniques well known in the art.
Guidelines for pharmaceutical administration in general are provided in, for example, Modern Vaccinology, Ed. Kurstak, Plenum Med. Co. 1994; Remington's Pharmaceutical Sciences 18`'' Edition, Ed. Gennaro, Mack Publishing, 1990; and Modern Pharmaceutics 2d Edition, Eds. Banker and Rhodes, Marcel Dekker, Inc., 1990.
HCV vaccines can be administered by different routes such intravenous, intraperitoneal, subcutaneous, intramuscular, intradermal, impression through the skin, or nasal. A preferred route is intramuscular.
Intramuscular administration can be preformed using different techniques such as by injection with or without one or more electric pulses.
Electric mediated transfer can assist genetic immunization by stimulating both humoral and cellular immune responses.
Vaccine injection can be performed using different techniques, such as by employing a needle or a needless injection system. An example of a needless injection system is a jet injection device. (Donnelly et al., International Publication Number WO 99/52463.) A. Electrically Mediated Transfer Electrically mediated transfer or Gene Electro-Transfer (GET) can be performed by delivering suitable electric pulses after nucleic acid injection.
(See Mathiesen, International Publication Number WO 98/43702). Plasmid injection and electroporation can be performed using stainless needles. Needles can be used in couples, triplets or more complex patterns. In one configuration the needles are soldered on a printed circuit board that is a mechanical support and connects the needles to the electrical field generator by means of suitable cables.
The electrical stimulus is given in the form of electrical pulses. Pulses can be of different forms (square, sinusoidal, triangular, exponential decay) and different polarity (monopolar of positive or negative polarity, bipolar).
Pulses can be delivered either at constant voltage or constant current modality.

Different patterns of electric treatment can be used to introduce nucleic acid vaccines including HCV and other nucleic acid vaccines into a patient.
Possible patterns of electric treatment include the following:
Treatment 1: 10 trains of 1000 square bipolar pulses delivered every other second, pulse length 0.2 msec/phase, frequency 1000 Hz, constant voltage mode, 45 Volts/phase, floating current.
Treatment 2: 2 trains of 100 square bipolar pulses delivered every other second, pulse length 2 msec/phase, frequency 100 Hz, constant current mode, mA/phase, floating voltage.
Treatment 3: 2 trains of bipolar pulses at a pulse length of about 2 msec/phase, for a total length of about 3 seconds, where the actual current going through the tissue is fixed at about 50 mA.
Electric pulses are delivered through an electric field generator. A
suitable generator can be composed of three independent hardware elements assembled in a common chassis and driven by a portable PC which runs the driving program. The software manages both basic and accessory functions. The elements of the device are: (1) signal generator driven by a microprocessor, (2) power amplifier and (3) digital oscilloscope.
The signal generator delivers signals having arbitrary frequency and shape in a given range under software control. The same software has an interactive editor for the waveform to be delivered. The generator features a digitally controlled current limiting device (a safety feature to control the maximal current output). The power amplifier can amplify the signal generated up to +/- 150 V. The oscilloscope is digital and is able to sample both the voltage and the current being delivered by the amplifier.

B. Pharmaceutical Carriers Pharmaceutically acceptable carriers facilitate storage and administration of a vaccine to a subject. Examples of pharmaceutically acceptable carriers are described herein. Additional pharmaceutical acceptable carriers are well known in the art.
Pharmaceutically acceptable carriers may contain different components such a buffer, normal saline or phosphate buffered saline, sucrose, salts and polysorbate. An example of a pharmaceutically acceptable carrier is follows:
2.5-10 mM TRIS buffer, preferably about 5 mM TRIS buffer; 25-100 mM NaCl, preferably about 75 mM NaCl; 2.5-10% sucrose, preferably about 5% sucrose; 0.01 -2 mM
MgC12; and 0.001%-0.01% polysorbate 80 (plant derived). The pH is preferably from about 7.0-9.0, more preferably about 8Ø A specific example of a carrier contains 5 mM TRIS, 75 mM NaCl, 5% sucrose, 1 mM MgC12, 0.005% polysorbate 80 at pH


C. Dosing Re ig mes Suitable dosing regimens can be determined taking into account the efficacy of a particular vaccine and factors such as age, weight, sex and medical condition of a patient; the route of administration; the desired effect; and the number of doses. The efficacy of a particular vaccine depends on different factors such as the ability of a particular vaccine to produce polypeptide that is expressed and processed in a cell and presented in the context of MHC class I and II complexes.
HCV encoding nucleic acid administered to a patient can be part of different types of vectors including viral vectors such as adenovector, and DNA
plasmid vaccines. In different embodiments concerning administration of a DNA
plasmid, about 0.1 to 10 mg of plasmid is administered to a patient, and about 1 to 5 mg of plasmid is administered to a patient. In different embodiments concerning administration of a viral vector, preferably an adenoviral vector, about 105 to 1011 viral particles are administered to a patient, and about 107 to 1010 viral particles are administered to a patient.
Viral vector vaccines and DNA plasmid vaccines may be administered alone, or may be part of a prime and boost administration regimen. A mixed modality priming and booster inoculation involves either priming with a DNA vaccine and boosting with viral vector vaccine, or priming with a viral vector vaccine and boosting with a DNA vaccine.
Multiple priming, for example, about to 2-4 or more may be used. The length of time between priming and boost may typically vary from about four months to a year, but other time frames may be used. The use of a priming regimen with a DNA vaccine may be preferred in situations where a person has a pre-existing anti-adenovirus immune response.
In an embodiment of the present invention, 1x10 to 1x1012 particles and preferably about 1x1010 to 1x1011 particles of adenovector is administered directly into muscle tissue. Following initial vaccination a boost is performed with an adenovector or DNA vaccine.

In another embodiment of the present invention initial vaccination is performed with a DNA vaccine directly into muscle tissue. Following initial vaccination a boost is performed with an adenovector or DNA vaccine.
Agents such as interleukin-12, GM-CSF, B7-1, B7-2, IP10, Mig-1 can be coadministered to boost the immune response. The agents can be coadministered as proteins or through use of nucleic acid vectors.

D. Heterologous Prime-Boost Heterologous prime-boost is a mixed modality involving the use of one type of viral vector for priming and another type of viral vector for boosting. The heterologous prime-boost can involve related vectors such as vectors based on different adenovirus serotypes and more distantly related viruses such adenovirus and poxvirus. The use of poxvirus and adenovirus vectors to protect mice against malaria is illustrated by Gilbert et al., Vaccine 20:1039-1045, 2002.
Different embodiments concerning priming and boosting involve the following types of vectors expressing desired antigens such as Met-NS3-NS4A-NS4B-NS5A-NS5B: Ad5 vector followed by Ad6 vector; Ad6 vector followed by Ad5 vector; Ad5 vector followed by poxvirus vector; poxvirus vector followed by Ad5 vector; Ad6 vector followed by poxvirus vector; and poxvirus vector followed by Ad6 vector.
The length of time between priming and boosting typically varies from about four months to a year, but other time frames may be used. The minimum time frame should be sufficient to allow for an immunological rest. In an embodiment, this rest is for a period of at least 6 months. Priming may involve multiple priming with one type of vector, such as 2-4 primings.
Expression cassettes present in a poxvirus vector should contain a promoter either native to, or derived from, the poxvirus of interest or another poxvirus member. Different strategies for constructing and employing different types of poxvirus based vectors including those based on vaccinia virus, modified vaccinia virus, avipoxvirus, raccoon poxvirus, modified vaccinia virus Ankara, canarypoxviruses (such as ALVAC), fowlpoxviruses, cowpoxviruses, and NYVAC
are well known in the art. (Moss, Current Topics in Microbiology and Immunology 158:25-38, 1982; Earl et al., In Current Protocols in Molecular Biology, Ausubel et al. eds., New York: Greene Publishing Associates & Wiley Interscience;
1991:16.16.1-16.16.7, Child et al., Virology 174(2):625-9, 1990; Tartaglia et al., Virology 188:217-232, 1992; U.S. Patent Nos., 4,603,112, 4,722,848, 4,769,330, 5,110,587, 5,174,993, 5,185,146, 5,266,313, 5,505,941, 5,863,542, and 5,942,235.
E. Adjuvants HCV vaccines can be formulated with an adjuvant. Adjuvants are particularly useful for DNA plasmid vaccines. Examples of adjuvants are alum, A1PO4, alhydrogel, Lipid-A and derivatives or variants thereof, Freund's incomplete adjuvant, neutral liposomes, liposomes containing the vaccine and cytokines, non-ionic block copolymers, and chemokines.
Non-ionic block polymers containing polyoxyethylene (POE) and polyxylpropylene (POP), such as POE-POP-POE block copolymers may be used as an adjuvant. (Newman et al., Critical Reviews in Therapeutic Drug Carrier Systems 15:89-142, 1998.) The immune response of a nucleic acid can be enhanced using a non-ionic block copolymer combined with an anionic surfactant.
A specific example of an adjuvant formulation is one containing CRL-1005 (CytRx Research Laboratories), DNA, and benzylalkonium chloride (BAK).
The formulation can be prepared by adding pure polymer to a cold (< 5 C) solution of plasmid DNA in PBS using a positive displacement pipette. The solution is then vortexed to solubilize the polymer. After complete solubilization of the polymer a clear solution is obtained at temperatures below the cloud point of the polymer (-6-7 C). Approximately 4 mM BAK is then added to the DNA/CRL-1005 solution in PBS, by slow addition of a dilute solution of BAK dissolved in PBS. The initial DNA
concentration is approximately 6 mg/mL before the addition of polymer and BAK, and the final DNA concentration is about 5 mg/mL. After BAK addition the formulation is vortexed extensively, while the temperature is allowed to increase from 2 C to above the cloud point. The formulation is then placed on ice to decrease the temperature below the cloud point. Then, the formulation is vortexed while the temperature is allowed to increase from -2 C to above the cloud point. Cooling and mixing while the temperature is allowed to increase from -2 C to above the cloud point is repeated several times, until the particle size of the formulation is about 200-500 nm, as measured by dynamic light scattering. The formulation is then stored on ice until the solution is clear, then placed in storage at -70 C. Before use, the formulation is allowed to thaw at room temperature.

F. Vaccine Storage Adenovector and DNA vaccines can be stored using different types of buffers. For example, buffer A105 described in Example 9 infra. can be used to for vector storage.
Storage of DNA can be enhanced by removal or chelation of trace metal ions. Reagents such as succinic or malic acid, and chelators can be used to enhance DNA vaccine stability. Examples of chelators include multiple phosphate ligands and EDTA. The inclusion of non-reducing free radical scavengers, such as ethanol or glycerol, can also be useful to prevent damage of DNA plasmid from free radical production. Furthermore, the buffer type, pH, salt concentration, light exposure, as well as the type of sterilization process used to prepare the vials, may be controlled in the formulation to optimize the stability of the DNA vaccine.

VII. EXAMPLES
Examples are provided below to further illustrate different features of the present invention. The examples also illustrate useful methodology for practicing the invention. These examples do not limit the claimed invention.

Example 1: Met-NS3-NS4A-NS4B-NS5A-NS5B Expression Cassettes Different gene expression cassettes encoding HCV NS3-NS4A-NS4B-NS5A-NS5B were constructed based on a lb subtype HCV BK strain. The encoded sequences had either (1) an active NS5B sequence ("NS"), (2) an inactive NS5B
sequence ("NSmut"), (3) a codon optimized sequence with an inactive NS5B
sequence ("NSOPTmut"). The expression cassettes also contained a CMV
promoter/enhancer and the BGH polyadenylation signal.
The NS nucleotide sequence (SEQ. ID. NO. 5) differs from HCV BK
strain GenBank accession number M58335 by 30 out of 5952 nucleotides. The NS
amino acid sequence (SEQ. ID. NO. 6) differs from the corresponding lb genotype HCV BK strain by 7 out of 1984 amino acids. To allow for initiation of translation an ATG codon is present at the 5' end of the NS sequence. A TGA termination sequence is present at the 3' end of the NS sequence.
The NSmut nucleotide sequence (SEQ. ID. NO. 2, Figure 2), is similar to the NS sequence. The differences between NSmut and NS include NSmut having an altered NS5B catalytic site; an optimal ribosome binding site at the 5' end; and a TAAA termination sequence at the 3' end. The alterations in NS5B comprise bases 5138 to 5146, which encode amino acids 1711 to 1713. The alterations result in a change of amino acids GlyAspAsp into AlaAlaGly and creates an inactive form of the NS5B RNA-dependent RNA-polymerase NS5B.
The NSOPTmut sequence (SEQ. ID. NO. 3, Figure 3) was designed based on the amino acid sequence encoded by NSmut. The NSmut amino acid sequence was back translated into a nucleotide sequence with the GCG
(Wisconsin Package version 10, Genetics Computer Group, GCG, Madison, Wisc.) BACKTRANSLATE program. To generate a NSOPTmut nucleotide sequence where each amino acid is coded for by the corresponding most frequently observed human codon, the program was run choosing as parameter the generation of the most probable nucleotide sequence and specifying the codon frequency table of highly expressed human genes (human_high.cod) available within the GCG Package as translation scheme.

Example 2: Generation pVlJns plasmid with NS, NSmut or NSOPTmut Sequences pV1Jns plasmids containing either the NS sequence, NSmut sequence or NSOPTmut sequences were generated and characterised as follows:

pVlJns Plasmid with the NS Sequence The coding region Met-NS3-NS4A-NS4B-NS5A and the coding region Met-NS3-NS4A-NS4B-NS5A-NS5B from a HCV BK type strain (Tomei et al., J. Virol. 67:4017-4026, 1993) were cloned into pcDNA3 plasmid (Invitrogen), generating pcD3-5a and pcD3-5b vectors, respectively. PcD3-5A was digested with Hind III, blunt-ended with Klenow fill-in and subsequently digested with Xba I, to generate a fragment corresponding to the coding region of Met-NS3-NS4A-NS4B-NS5A. The fragment was cloned into pVlJns-poly, digested with Bgl II blunt-ended with Klenow fill-in and subsequently digested with Xba I, generating pV1JnsNS3-5A.
pVlJns-poly is a derivative of pVlJnsA plasmid (Montgomery et al., DNA and Cell Biol. 12:777-783, 1993), modified by insertion of a polylinker containing recognition sites for Xbal, Pmel, PacI into the unique Bg1II and Nod restriction sites. The pVlJns plasmid with the NS sequence (pVlJnsNS3-5B) was obtained by homologous recombination into the bacterial strain BJ5183, co-transforming pV1JNS3-5A linearized with Xbal and Nod digestion and a PCR
fragment containing approximately 200 bp of NS5A, NS5B coding sequence and approximately 60 bp of the BGH polyadenylation signal. The resulting plasmid represents pV1Jns-NS.
pVlJns-NS can be summarized as follows:
Bases 1 to 1881 of pV1JnsA
an additional AGCTT
then the Met-NS3-NS5B sequence (SEQ. ID. NO. 5) then the wt TGA stop an additional TCTAGAGCGTTTAAACCCTTAATTAAGG (SEQ. ID.
NO. 14) Bases 1912 to 4909 of pV1JnsA
pVl Jns Plasmid with the NSmut Sequence The V1JnsNS3-5A plasmid was modified at the 5' of the NS3 coding sequence by addition of a full Kozak sequence. The plasmid (V1JNS3-5Akozak) was obtained by homologous recombination into the bacterial strain BJ5183, co-transforming V 1JNS3-5A linearized by AflII digestion and a PCR fragment containing the proximal part of Intron A, the restriction site Bg1II, a full Kozak translation initiation sequence and part of the NS3 coding sequence.
The resulting plasmid (V1JNS3-5Akozak) was linearized with Xba I
digestion and co-transformed into the bacterial strain BJ5183 with a PCR
fragment, containing approximately 200 bp of NS5A, the NS5B mutated sequence, the strong translation termination TAAA and approximately 60 bp of the BGH
polyadenylation signal. The PCR fragment was obtained by assembling two 22bp-overlapping fragments where mutations were introduced by the oligonucleotides used for their amplification. The resulting plasmid represents pV1Jns-NSmut.
pVlJns-NSmut can be summarized as follows:
Bases 1 to 1882 of pVlJnsA
then the kozak Met-NS3-NS5B(mut) TAAA sequence (SEQ. ID. NO. 2) an additional TCTAGA
Bases 1925 to 4909 of pV1JnsA
pVlJns Plasmid with the NSOPTmut Sequence The human codon-optimized synthetic gene (NSOPTmut) with mutated NS5B to abrogate enzymatic activity, full Kozak translation initiation sequence and a strong translation termination was digested with BamHI and SaII

restriction sites present at the 5' and 3' end of the gene. The gene was then cloned into the Bg1II and Sall restriction sites present in the polylinker of pVlJnsA
plasmid, generating pVlJns-NSOPTmut.
pV 1Jns-NSOPTmut can be summarized as follows:
Bases 1 to 1881 of pV1JnsA
an additional C
then kozak Met-NS3-NS5B(optmut) TAAA sequence (SEQ. ID. NO. 3) an additional TTTAAATGTTTAAAC (SEQ. ID. NO. 15) Bases 1905 to 4909 of pVlJnsA
Plasmids Characterization Expression of HCV NS proteins was tested by transfection of HEK
293 cells, grown in 10% FCS/DMEM supplemented by L-glutamine (final 4 mM).
Twenty-four hours before transfection, cells were plated in 6-well 35 mm diameter, to reach 90-95% confluence on the day of transfection. Forty nanograms of plasmid DNA (previously assessed as a non-saturating DNA amount) were co-transfected with 100 ng of pRSV-Luc plasmid containing the luciferase reporter gene under the control of Rous sarcoma virus promoter, using the LIPOFECTAMINE 2000 reagent. Cells were kept in a CO2 incubator for 48 hours at 37 C.
Cell extracts were prepared in 1% Triton/TEN buffer. The extracts were normalized for Luciferase activity, and run in serial dilution on 10% SDS-acrylamide gel. Proteins were transferred on nitrocellulose and assayed with antibodies directed against NS3, NS5A and NS5B to assess strength of expression and correct proteolytic cleavage. Mock-transfected cells were used as a negative control.
Results from representative experiments testing pV1JnsNS, pVlJnsNSmut and pVlJnsNSOPTmut are shown in Figure 12.

Example 3: Mice Immunization with Plasmid DNA Vectors The DNA plasmids pVlJns-NS, pVlJns-NSmut and pVlJns-NSOPTmut were injected in different mice strains to evaluate their potential to elicit anti-HCV immune responses. Two different strains (Balb/C and C57Black6, N=9-10) were injected intramuscularly with 25 or 50 g of DNA followed by electrical pluses.
Each animal received two doses at three weeks interval.
Humoral immune response elicited in C57Black6 mice against the NS3 protein was measured in post dose two sera by ELISA on bacterially expressed protease domain. Antibodies specific for the tested antigen were detected in animals immunized with all three vectors with geometric mean titers (GMT) ranging from 94000 to 133000 (Tables 1-3).

Table 1: pVljns-NS

GMT
Mice 1 2 3 4 5 6 7 8 9 n.
Titer 105466 891980 78799 39496 543542 182139 32351 95028 67800 94553 Table 2: pVljns-NSmut GMT
Mice 11 12 13 14 15 16 17 18 19 20 n.
Titer 202981 55670 130786 49748 17672 174958 44304 37337 78182 193695 75083 Table 3: pVljns-NSOPTmut GMT
Mice 21 22 23 24 25 26 27 28 29 30 n.
Titer 310349 43645 63496 82174 630778 297259 66861 146735 173506 77732 133165 A T cell response was measured in C57Black6 mice immunized with two intramuscular injections at three weeks interval with 25 pg of plasmid DNA.
Quantitative ELlspot assay was performed to determine the number of IFNy secreting T cells in response to five pools of 20mer peptides overlapping by ten residues encompassing the NS3-NS5B sequence. Specific CD8+ response was analyzed by the same assay using a 20mer peptide encompassing a CD8+ epitope for C57Black6 mice (pep1480).
Cells secreting IFNy in an antigen specific-manner were detected using a standard ELlspot assay. T cell response in C57Black6 mice immunized with two intramuscular injections at three weeks interval with 50 g of plasmid DNA, was analyzed by the same ELlspot assay measuring the number of IFNy secreting T
cells in response to five pools of 20mer peptides overlapping by ten residues encompassing the NS3-NS5B sequence.
Spleen cells were prepared from immunized mice and re-suspended in RIO medium (RPMI 1640 supplemented with 10% FCS, 2 mM L-Glutamine, 50 U/ml-501tg/ml Penicillin/Streptomycin, 10 mM Hepes, 50 M 2-mercapto-ethanol).
Multiscreen 96-well Filtration Plates (Millipore, Cat. No. MAIPS4510, Millipore Corporation, 80 Ashby Road Bedford, MA) were coated with purified rat anti-mouse INFy antibody (PharMingen, Cat. No. 18181D, PharmiMingen, 10975 Torreyana Road, San Diego, California 92121-1111 USA). After overnight incubation, plates were washed with PBS 1X/0.005% Tween and blocked with 250 l/well of RIO
medium.
Splenocytes from immunized mice were prepared and incubated for twenty-four hours in the presence or absence of 10 tM peptide at a density of 2.5 X
105/well or 5 X 105/well. After extensive washing (PBS 1X/0.005% Tween), biotinylated rat anti-mouse IFNy antibody (PharMingen, Cat. No. 18112D, PharMingen, 10975 Torreyana Road, San Diego, California 92121-1111 USA) was added and incubated overnight at 4 C. For development, streptavidin-AKP
(PharMingen, Cat. No. 13043E, PharMingen, 10975 Torreyana Road, San Diego, California 92121-1111 USA) and 1-StepTM NBT-BCIP development solution (Pierce, Cat. No. 34042, Pierce, P.O. Box 117, Rockford, IL 61105 USA) were added.
Pools of 20mer overlapping peptides encompassing the entire sequence of the HCV BK strain NS3 to NS5B were used to reveal HCV-specific IFNy-secreting T cells. Similarly a single 20mer peptide encompassing a CD8+ epitope for C57Black6 mice was used to detect CD8 response. Representative data from groups of C57Black6 and Balb/C mice (N=9-10) immunized with two injections of 25 or g of plasmid vectors pVlJns-NS, pVlJns-NSmut and pVlJns-NSOPTmut are shown in Figures 13A and 13B.

Example 4: Immunization of Rhesus Macaques Rhesus macaques (N=3) were immunized by intramuscular injection with 5mg of plasmid pVlJns-NSOPTmut in 7.5mg/ml CRL1005, Benzalkonium chloride 0.6 mM. Each animal received two doses in the deltoid muscle at 0, and 4 weeks.

CMI was measured at different time points by IFN-y ELISPOT. This assay measures HCV antigen-specific CD8+ and CD4+ T lymphocyte responses, and can be used for a variety of mammals, such as humans, rhesus monkeys, mice, and rats.
The use of a specific peptide or a pool of peptides can simplify antigen presentation in CTL cytotoxicity assays, interferon-gamma ELISPOT assays and interferon-gamma intracellular staining assays. Peptides based on the amino acid sequence of various HCV proteins (core, E2, NS3, NS4A, NS4B, NS5A, NS5B) were prepared for use in these assays to measure immune responses in HCV DNA and adenovirus vector vaccinated rhesus monkeys, as well as in HCV-infected humans.
The individual peptides are overlapping 20-mers, offset by 10 amino acids.
Large pools of peptides can be used to detect an overall response to HCV proteins while smaller pools and individual peptides may be used to define the epitope specificity of a response.
IFNyELISPOT
The IFNy-ELISPOT assay provides a quantitative determination of HCV-specific T lymphocyte responses. PBMC are serially diluted and placed in microplate wells coated with anti-rhesus IFN-y antibody (MD-1 U-Cytech). They are cultured with a HCV peptide pool for 20 hours, resulting in the restimulation of the precursor cells and secretion of IFN-y. The cells are washed away, leaving the secreted IFN bound to the antibody-coated wells in concentrated areas where the cells were sitting. The captured IFN is detected with biotinylated anti-rhesus IFN
antibody (detector Ab U-Cytech) followed by alkaline phosphatase-conjugated streptavidin (Pharmingen 13043E). The addition of insoluble alkaline phosphatase substrate results in dark spots in the wells at the sites where the cells were located, leaving one spot for each T cell that secreted IFN-y.
The number of spots per well is directly related to the precursor frequency of antigen-specific T cells. Gamma interferon was selected as the cytokine visualized in this assay (using species specific anti-gamma interferon monoclonal antibodies) because it is the most common, and one of the most abundant cytokines synthesized and secreted by activated T lymphocytes. For this assay, the number of spot forming cells (SFC) per million PBMCs is determined for samples in the presence and absence (media control) of peptide antigens. Data from Rhesus macaques on PBMC from post dose two material are shown in Table 4.

Table 4 PV 1J-NSOPTmut Pep pools 21G 99C161 99C166 F (NS3) 8 10 170 G (NS3h) 7 592 229 H (NS4) 3 14 16 I (NS5a) 5 71 36 L (NS5b) 14 23 11 M (NS5b) 3 35 8 INFyELISPOT on PBMC from Rhesus monkeys immunized with two injections of 5 mg DNA/dose in OPTIVAX/BAK of plasmid pVlJns-NSOPTmut. Data are expressed as SFC7 106 PBMC.

Example 5: Construction of Ad6 Pre-Adenovirus Plasmids Ad6 pre-adenovirus plasmids were obtained as follows:
Construction of pAd6 El -E3+ Pre-adenovirus Plasmid An Ad6 based pre-adenovirus plasmid which can be used to generate first generation Ad6 vectors was constructed either taking advantage of the extensive sequence identity (approx. 98%) between Ad5 and Ad6 or containing only Ad6 regions. Homologous recombination was used to clone wtAd6 sequences into a bacterial plasmid.
A general strategy used to recover pAd6El-E3+ as a bacterial plasmid containing Ad5 and Ad6 regions is illustrated in Figure 10. Cotransformation of BJ
5183 bacteria with purified wt Ad6 viral DNA and a second DNA fragment termed the Ad5 ITR cassette resulted in the circularization of the viral genome by homologous recombination. The ITR cassette contains sequences from the right (bp 33798 to 35935) and left (bp 1 to 341 and bp 3525 to 5767) end of the Ad5 genome separated by plasmid sequences containing a bacterial origin of replication and an ampicillin resistance gene. The ITR cassette contains a deletion of El sequences from Ad5 342 to 3524. The Ad5 sequences in the ITR cassette provide regions of homology with the purified Ad6 viral DNA in which recombination can occur.
Potential clones were screened by restriction analysis and one clone was selected as pAd6El-E3+. This clone was then sequenced in it entirety.
pAd6E1-E3+ contains Ad5 sequences from bp 1 to 341 and from bp 3525 to 5548, Ad6 bp 5542 to 33784, and Ad5 bp 33967 to 35935 (bp numbers refer to the wt sequence for both Ad5 and Ad6). pAd6El-E3+ contains the coding sequences for all Ad6 virion structural proteins which constitute its serotype specificity.
A general strategy used to recover pAd6E1-E3+ as a bacterial plasmid containing Ad6 regions is illustrated in Figure 11. Cotransformation of BJ

bacteria with purified wt Ad6 viral DNA and a second DNA fragment termed the Ad6 ITR cassette resulted in the circularization of the viral genome by homologous recombination. The ITR cassette contains sequences from the right (bp 35460 to 35759) and left (bp 1 to 450 and bp 3508 to 3807) end of the Ad6 genome separated by plasmid sequences containing a bacterial origin of replication and an ampicillin resistance gene. These three segments were generated by PCR and cloned sequentially into pNEB 193, generating pNEBAd6-3 (the ITR cassette). The ITR
cassette contains a deletion of El sequences from Ad5 451 to 3507. The Ad6 sequences in the ITR cassette provide regions of homology with the purified Ad6 viral DNA in which recombination can occur.

Construction of pAd6 El -E3- pre-adenovirus plasmids Ad6 based vectors containing AS regions and deleted in the E3 region were constructed starting with pAd6E1-E3+ containing Ad5 regions. A 5322 bp subfragment of pAd6E1-E3+ containing the E3 region (Ad6 bp 25871 to 31192) was subcloned into pABS.3 generating pABSAd6E3. Three E3 deletions were then made in this plasmid generating three new plasmids pABSAd6E3(1.8Kb) (deleted for Ad6 bp 28602 to 30440), pABSAd6E3(2.3Kb) (deleted for Ad6 bp 28157 to 30437) and pABSAd6E3(2.6Kb) (deleted for Ad6 bp 28157 to 30788). Bacterial recombination was then used to substitute the three E3 deletions back into pAd6El-E3+
generating the Ad6 genome plasmids pAd6E1-E3-1.8Kb, pAd6El-E3-2.3Kb and pAd6E1-E3-2.6Kb.

Example 6: Generation of Ad5 Genome Plasmid with the NS Sequence A pcDNA3 plasmid (Invitrogen) containing the coding region NS3-NS4A-NS4B-NS5A was digested with XmnI and Nrul restriction sites and the DNA
fragment containing the CMV promoter, the NS3-NS4A-NS4B-NS5A coding sequence and the Bovine Growth Hormone (BGH) polyadenylation signal was cloned into the unique EcorV
restriction site of the shuttle vector pDelElSpa, generating the Sva3-5A
vector.
A pcDNA3 plasmid containing the coding region NS3-NS4A-NS4B-NS5A-NS5B was digested with Xmnl and Ecorl (partial digestion), and the DNA
fragment containing part of NS5A, NS5B gene and the BGH polyadenylation signal was cloned into the Sva3-5A vector, digested Ecorl and BglIl blunted with Klenow, generating the Sva3-5B vector.
The Sva3-5B vector was finally digested SspI and Bstl107I restriction sites and the DNA fragment containing the expression cassette (CMV promoter, NS4A-NS4B-NS5A-NS5B coding sequence and the BGH polyadenylation signal) flanked by adenovirus sequences was co-transformed with pAd5HVO (E1-,E3-) Clal linearized genome plasmid into the bacterial strain BJ5183, to generate pAd5HVONS.
pAd5HVO contains Ad5 bp 1 to 341, bp 3525 to 28133 and bp 30818 to 35935.
Example 7: Generation of Adenovirus Genome Plasmids with the NSmut Sequence Adenovirus genome plasmids containing an NS-mut sequence were generated in an Ad5 or Ad6 background. The Ad6 background contained Ad5 regions at bases 1 to 450, 3511 to 5548 and 33967 to 35935.
pV1JNS3-SAkozak was digested with BgllI and Xbal restriction enzymes and the DNA fragment containing the Kozak sequence and the sequence coding NS3-NS4A-NS4B-NS5A was cloned into a Bg1II and XbaI digested polypMRKpdelEl shuttle vector. The resulting vector was designated shNS3-SAkozak.
PolypMRKpdelEl is a derivative of RKpdelEl(Pac/pIX/pack450) +
CMVmin+BGHpA(str.) modified by the insertion of a polylinker containing recognition sites for Bgll, Pmel, Swal, XbaI, Sall, into the unique BglII
restriction site present downstream the CMV promoter. MRKpdeIEl(Pac/pIX/pack450) +
CMVmin + BGHpA(str.) contains Ad5 sequences from bp 1 to 5792 with a deletion of El sequences from bp 451 to 3510. The human CMV promoter and BGH
polyadenylation signal were inserted into the El deletion in an El parallel orientation with a unique BgIIl site separating them.

The NS5B fragment, mutated to abrogate enzymatic activity and with a strong translation termination at the 3' end, was obtained by assembly PCR and inserted into the shNS3-5Akozak vector via homologous recombination, generating polypMRKpdelElNSmut. In polypMRKpdelElNSmut the NS-mut coding sequence is under the control of CMV promoter and the BGH polyadenylation signal is present downstream.
The gene expression cassette and the flanking regions which contain adenovirus sequences allowing homologous recombination were excised by digestion with Pacl and Bstl 1071 restriction enzymes and co-transformed with either pAd5HVO (E1-,E3-) or pAd6El-E3-2.6Kb ClaI linearized genome plasmids into the bacterial strain BJ5183, to generate pAd5HVONSmut and pAd6El-,E3-NSmut, respectively.
pAd6El-E3-2.6Kb contains Ad5 bp 1 to 341 and from bp 3525 to 5548, Ad6 bp 5542 to 28157 and from bp 30788 to 33784, and Ad5 bp 33967 to 35935 (bp numbers refer to the wt sequence for both Ad5 and Ad6). In both plasmids the viral ITR's are joined by plasmid sequences that contain the bacterial origin of replication and an ampicillin resistance gene.

Example 8: Generation of Adenovirus Genome Plasmids with the NSOPTmut The human codon-optimized synthetic gene (NSOPTmut) provided by SEQ. ID. NO. 3 cloned into a pCRBlunt vector (Invitrogen) was digested with BamHl and Sall restriction enzymes and cloned into Bglli and Sall restriction sites present in the shuttle vector polypMRKpdelEl. The resulting clone (polypNIRKpdelElNSOPTmut) was digested with Pacl and Bstl 1071 restriction enzymes and co-transformed with either pAd5HVO (E1-,E3-) or pAd6El-E3-2.6Kb ClaI linearized genome plasmids, into the bacterial strain BJ5183, to generate pAd5HVONSOPTmut and pAd6El-,E3-NSOPTmut, respectively.
Example 9: Rescue and Amplification of Adenovirus Vectors Adenovectors were rescued in Per.6 cells. Per.C6 were grown in 10%
FCS / DMEM supplemented by L-glutamine (final 4mM), penicillin/streptomycin (final 100 IU/ml) and 10 mM MgC12. After infection, cells were kept in the same medium supplemented by 5% horse serum (HS). For viral rescue, 2.5 X 106 Per.C6 were plated in 6 cm 0 Petri dishes.

Twenty-four hours after plating, cells were transfected by calcium phosphate method with 10 g of the Pac I linearized adenoviral DNA. The DNA
precipitate was left on the cells for 4 hours. The medium was removed and 5%
HS/DMEM was added.
Cells were kept in a CO2 incubator until a cytopathic effect was visible (1 week). Cells and supernatant were recovered and subjected to 3X
freeze/thawing cycles (liquid nitrogen / water bath at 37 C). The lysate was centrifuged at 3000 rpm at - 4 C for 20 minutes and the recovered supernatant (corresponding to a cell lysate containing virus passed on cells only once; P1) was used, in the amount of 1 ml/ dish, to infect 80-90% confluent Per.C6 in 10 cm 0 Petri dishes. The infected cells were incubated until a cytopathic effect was visible, cells and supernatant recovered and the lysate prepared as described above (P2).
P2 lysate (4 ml) were used to infect 2 X 15 cm 0 Petri dishes. The lysate recovered from this infection (P3) was kept in aliquots at -80 C as a stock of virus to be used as starting point for big viral preparations. In this case, 1 ml of the stock was enough to infect 2 X 15 cm 0 Petri dishes and resulting lysate (P4) was used for the infection of the Petri dishes devoted to the large scale infection.
Further amplification was obtained from the P4 lysate which was diluted in medium without FCS and used to infect 30 X 15 cm 0 Petri dishes (with Per.C6 80%-90% confluent) in the amount of 10 ml/dish. Cells were incubated 1 hour in the CO2 incubator, mixing gently every 20 minutes. 12 ml / dish of 5%
HS /
DMEM was added and cells were incubated until a cytopathic effect was visible (about 48 hours).
Cells and supernatant were collected and centrifuged at 2K rpm for 20 minutes at 4 C. The pellet was resuspended in 15 ml of 0.1 M Tris pH=8Ø
Cells were lysed by 3X freeze/thawing cycles (liquid nitrogen / water bath at 37 C).
150 l of 2 M MgCl2 and 75 tl of DNAse (10 mg of bovine pancreatic deoxyribonuclease I
in 10 ml of 20 mM Tris-HCI pH= 7.4, 50 mM NaCl, 1 mM dithiothreitol, 0.1 mg/ml bovine serum albumin, 50% glycerol) were added. After a 1 hour incubation at in a water bath (vortex every 15 minutes) the lysate was centrifuged at 4K rpm for 15 minutes at 4 C. The recovered supernatant was ready to be applied on CsCl gradient.
The CsCI gradients were prepared in SW40 ultra-clear tubes as follows:
0.5 ml of 1.5d CsCI
3 ml of 1.35d CsCI

3 ml of 1.25d CsCI
5-ml/ tube of viral supernatant was applied.
If necessary, the tubes were topped up with 0.1 M tris-Cl pH=8Ø
Tubes were centrifuged at 35K rpm for 1 hour at -10 C with rotor SW40. The viral bands (located at the 1.25/1.35 interface) were collected using a syringe.
The virus was transferred into a new SW40 ultraclear tube and 1.35d CsCI was added to top the tube up. After centrifugation at 35K rpm for 24 hours at C in the rotor SW40, the virus was collected in the smallest possible volume and dialyzed extensively against buffer A105 (5 mM Tris, 5% sucrose, 75 mM NaCl, 1 10 mM MgC12, 0.005% polysorbate 80 pH=8.0). After dialysis, glycerol was added to final 10% and the virus was stored in aliquots at - 80 C.

Example 10: Enhanced Adenovector Rescue First generation Ad5 and Ad6 vectors carrying HCV NSOPTmut transgene were found to be difficult to rescue. A possible block in the rescue process might be attributed to an inefficient replication of plasmid DNA that is a sub-optimal template for the replication machinery of adenovirus. The absence of the terminal protein linked to the 5'ends of the DNA (normally present in the viral DNA), associated with the very high G-C content of the transgene inserted in the El region of the vector, may be causing a substantial reduction in replication rate of the plasmid-derived adenovirus.
To set up a more efficient and reproducible procedure for rescuing Ad vectors, an expression vector (pE2; Figure 19) containing all E2 proteins (polymerase, pre-terminal protein and DNA binding protein) as well as E4 orf6 under the control of tet-inducible promoter was employed. The transfection of pE2 in combination with a normal preadeno plasmid in PerC6 and in 293 leads to a strong increase of Ad DNA
replication and to a more efficient production of complete infectious adenovirus particles.

Plasmid Construction pE2 is based on the cloning vector pBI (CLONTECH) with the addition of two elements to allow episomal replication and selection in cell culture:
(1) the EBV-OriP (EBV [nt] 7421-8042) region permitting plasmid replication in synchrony with the cell cycle when EBNA-1 is expressed and (2) the hygromycin-B
phosphotransferase (HPH)-resistance gene allowing a positive selection of transformed cells. The two transcriptional units for the adenoviral genes E2 a and b and E4-Orf6 were constructed and assembled in pE2 as described below.
The Ad5-Polymerase Clal/Sphl fragment and the Ad5-pTP
Acc65/EcoRV fragment were obtained from pVac-Pol and pVac-pTP (Stunnemberg et al. NAR 16:2431-2444, 1988). Both fragments were filled with Klenow and cloned into the Sail (filled) and EcoRV sites of pBI, respectively obtaining pBI-Pol/pTP.
EBV-OriP element from pCEP4 (Invitrogen) was first inserted within two chicken (3-globin insulator dimers by cloning it into BamHl site of pJC13-(Chung et al., Cell 74(3):505-14, 1993). HS4-OriP fragment from pJC13-OriP was then cloned inside pSAlmv (a plasmid containing tk-Hygro-B resistance gene expression cassette as well as Ad5 replication origin), the ITR's arranged as head-to-tail junction, obtained by PCR from pFG140 (Graham, EMBO J. 3:2917-2922,1984) using the following primers: 5'-TCGAATCGATACGCGAACCTACGC-3' (SEQ.
ID. NO. 16) and 5'-TCGACGTGTCGACTTCGAAGCGCACACCAAAAACGTC-3' (SEQ. ID. NO. 17), thus generating pMVHS4Orip. A DNA fragment from pMVHS4Orip, containing the insulated OriP, Ad5 ITR junction and tk-HygroB
cassette, was then inserted into pBI-Pol/pTP vector restricted Asel/AatIl generating pBI-Pol/pTPHS4.
To construct the second transcriptional unit expressing Ad5-Orf6 as well as Ad5-DBP, E4orf6 (Ad 5 [nt] 33193-34077) obtained by PCR was first inserted into pBI vector, generating pBI-Orf6. Subsequently, DBP coding DNA
sequence (Ad 5 [nt] 22443-24032) was inserted into pBI-Orf6 obtaining the second bi-directional Tet-regulated expression vector (pBI-DBP/E4orf6). The original polyA
signals present in pBI were substituted with BGH and SV40 polyA.
pBI-DBP/E4orf6 was then modified by inserting a DNA fragment containing the Adeno5-ITRs arranged in head-to-tail junction plus the hygromicin B
resistance gene obtained from plasmid pSA-lmv. The new plasmid pBI-DBP/E4orf6shuttle was then used as donor plasmid to insert the second tet-regulated transcriptional unit into pBI-Pol/pTPHS4 by homologous recombination using E.
coli strain BJ5183 obtaining pE2.

Cell lines, Transfections and Virus Amplification PerC6 cells were cultured in Dulbecco's modified Eagle's Medium (DMEM) plus 10% fetal bovine serum (FBS), 10 mM MgC12, penicillin (100 U/ml), streptomycin (100.tg/ml) and 2 mM glutamine.

All transient transfections were performed using Lipofectamine2000 (Invitrogen) as described by the manufacturer. 90% confluent PERC.6TM planted in 6-cm plates were transfected with 3.5 tg of Ad5/6NSOPTmut pre-adeno plasmids, digested with PacI, alone or in combination with 5 tg pE2 plus 1 tg pUHD52.1.
pUHD52.1 is the expression vector for the reverse tet transactivator 2 (rtTA2) (Urlinger et al., Proc. Natl. Acad. Sci. U.S.A. 97(14):7963-7968, 2000). Upon transfection, cells were cultivated in the presence of 1 .tg/ml of doxycycline to activate pE2 expression. 7 days post-transfection cells were harvested and cell lysate was obtained by three cycles of freeze-thaw. Two ml of cell lysate were used to infect a second 6-cm dish of PerC6. Infected cells were cultivated until a full CPE
was observed then harvested. The virus was serially passaged five times as described above, then purified on CsC1 gradient. The DNA structure of the purified virus was controlled by endonuclease digestion and agarose gel electrophoresis analysis and compared to the original pre-adeno plasmid restriction pattern.
Example 11: Partial Optimizeation of HCV Polyprotein Encoding Nucleic acid Partial optimization of HCV polyprotein encoding nucleic acid was performed to facilitate the production of adenovectors containing codons optimized for expression in a human host. The overall objective was to provide for increased expression due to codon optimization, while facilitating the production of an adenovector encoding HCV polyprotein.
Several difficulties were encountered in producing an adenovector encoding HCV polyprotein with codons optimized for expression in a human host.
An adenovector containing an optimized sequence (SEQ. ID. NO. 3) was found to be more difficult to synthesize and rescue than an adenovector containing a non-optimized sequence (SEQ. ID. NO. 2).
The difficulties in producing an adenovector containing SEQ. ID. NO.
3 were attributed to a high GC content. A particularly problemetic region was the region at about position 3900 of NSOPTmut (SEQ. ID. NO. 3).
Alternative versions of optimized HCV encoding nucleic acid sequence were designed to facilitate its use in an adenovector. The alternative versions, compared to NSOPTmut, were designed to have a lower overall GC
content, to reduce/avoid the presence of potentially problematic motifis of consecutive G's or C's, while maintaining a high level of codon optimization to allow improved expression of the encoded polyprotein and the individual cleavage products.

A starting point for the generation of a suboptimally codon-optimized sequence is the coding region of the NSOPTmut nucleotide sequence (bases 7 to of SEQ. ID. NO. 3). Values for codon usage frequencies (normalized to a total of 1.0 for each amino acid) were taken from the file human_high.cod available in the Wisconsin Package Version 10.3 (Accelrys Inc., a wholly owned subsidiary of Pharmacopeia, Inc).
To reduce the local and overall GC content a table defining preferred codon substitutions for each amino acid was manually generated. For each amino acid the codon having 1) a lower GC content as compared to the most frequent codon and 2) a relativly high observed codon usage frequency (as defined in human_high.cod) was choosen as the replacement codon. For example for Arg the codon with the highest frequency is CGC. Out of the other five alternative codons encoding Arg (CGG, AGG, AGA, CGT, CGA) three (AGG, CGT, CGA) reduce the GC content by 1 base, one (AGA) by two bases and one (CGG) by 0 bases. Since the AGA codon is listed in human_high.cod as having a relatively low usage frequency (0.1), the codon substituting CGC was therefore choosen to be AGG with a relative frequency of 0.18.
Similar criteria were applied in order to establish codon replacements for the other amino acids resulting in the list shown in Table 5. Parameters applied in the following optimization procedure were determined empirically such that the resulting sequence maintained a considerably improved codon usage (for each amino acid) and the GC
content (overall and in form of local stretches of consecutive G's and/or C's) was decreased.
Two examples of partial optimized HCV encoding sequences are provided by SEQ. ID. NO. 10 and SEQ. ID. NO. 11. SEQ. ID. NO. 10 provides a HCV encoding sequence that is partially optimized throughout. SEQ. ID. NO. 11 provides an HCV encoding sequence fully optimized for codon usage with the exception of a region that was partially optimized.
Codon optimization was performed using the following procedure:
Step 1) The coding region of the input fully optimized NSOPTmut sequence was analyzed using a sliding window of 3 codons (9 bases) shifting the window by one codon after each cycle. Whenever a stretch containing 5 or more consecutive C's and/or G's was detected in the window the following replacement rule was applied: Let N indicate the number of codon replacements previously performed.
If N is odd replace the middle codon in the window with the codon specified in Table 5, if N is even replace the third terminal codon in the window with the codon specified in a codon optimization table such as human_high.cod. If Leu or Val is present at the second or third codon do not apply any replacement in order not to introduce Leu or Val codons with very low relative codon usage frequency (see, for example, human_high.cod). In the following cycle analysis of the shifted window was then applied to a sequence containing the replacements of the previous cycle.
The alternating replacement of the middle and terminal codon in the 3 codon window was found empirically to give a more satisfying overall maintenance of optimized codon usage while also reducing GC content (as judged from the final sequence after the procedure). In general, however, the precise replacement strategy depends on the amino acid sequence encoded by the nucelotide sequence under analysis and will have to be determined empirically.
Step 2) The sequence containing all the codon replacements performed during step 1) was then subjected to an additional analysis using a sliding window of 21 codons (63 bases) in length: according to an adjustable parameter the overall GC
content in the window was determined. If the GC content in the window was higher than 70% the following codon replacement strategy was applied: In the window replace the codons for the amino acids Asn, Asp, Cys, Glu, His, Ile, Lys, Phe, Tyr by the codons given in Table 5. Restriction of the replacement to this set of amino acids was motivated by the fact that a) the replacement codon still has an accetably high frequency of usage in human_high.cod and b) the average overall human codon usage in CUTG for the replacement codon is nearly as high as the most frequent codon. In the following cycle analysis of the shifted window is then applied to a sequence containing the replacements of the previous cycle.
The threshold 70% was determined empirically by compromising between an overall reduction in GC content and maintenance of a high codon optimization for the individual amino acids. As in step 1) the precise replacement strategy (choice of amino acids and GC content threshold value) will again depend on the amino acid sequence encoded by the nucleotide sequence under analysis and will have to be determined empirically.
Step 3) The sequence generated by steps 1) and 2) was then manually edited and additional codons were changed according to the following criteria:
Regions still having a GC content higher than 70% over a window of 21 codons were examined manually and a few codons were replaced again following the scheme given in Table 5.

Subsequent steps were performed to provide for useful restriction sites, remove possible open reading frames on the complementary strand, to add homologous recombinant regions, to add a Kozac signal, and to add a terminator.
These steps are numbered 4-7 Step 4) The sequence generated in step 3 was examined for the absence of certain restriction sites (BglIl, Pmel and Xbal) and presence of only 1 Stul site to allow a subsequent cloning strategy using a subset of restriction enzymes. Two sites (one for BglII and one for Stul) were removed from the sequence by replacing codons that were part of the respective recognition sites.
Step 5) The sequence generated by steps 1) through 4) was then modified according to allow subsequent generation of a modified NSOPTmut sequence (by homologous recombination). In the sequence obtained from steps 1) through 4) the segment comprising base 3556 to 3755 and the segment comprising base 4456 to 4656 were replaced by the corresponding segments from NSOPTmut.
The segment comprising bases 3556 to 4656 of SEQ. ID. NO. 10 can be used to replace the problematic region in NSOPTmut (around position 3900) by homologous recombination thus creating the variant of NSOPTmut having the sequence of SEQ.
ID. NO. 11.
Step 6) Analysis of the sequence generated through steps 1) to 5) revealed a potential open reading frame spanning nearly the complete fragment on the complementary strand. Removal of all codons CTA and TTA (Leu) and TCA (Ser) from the sense strand effectively removed all stop codons in one of the reading frames on the complementary strand. Although the likelyhood for transcription of this complementary strand open reading frame and subsequent translation into protein is very small, in order to exclude a potential interference with the transcription and subsequent translation of the sequence encoded on the sense strand, TCA codons for Ser were introduced on the sense approximately every 500 bases. No changes were introduced in the segments introduced during step 5) to allow homologous recombination. The TCA codon for Ser was preferred over the CTA and TTA codons for Leu because of the higher relative frequency for TCA (0.05) as compared to CTA
(0.02) and TTA (0.03) in human_high.cod. In addition, the average human codon usage from CUTG favored TCA (0.14 against 0.07 for CTA and TTA).
Step 7) In a final step GCCACC was added at the 5' end of the sequence to generate an optimized internal ribosome entry site (Kozak signal) and a TAAA stop sgnal was added at the 3'. To maintain the initiation of translation properties of NSsuboptmut the first 8 codons of the coding region were kept identical to the NSOPTmut sequence. The resulting sequence was again checked for the absence of Bg1II, Pmel and XbaI recognition sites and the presence of only 1 Stul site.
The NSsuboptmut sequence (SEQ. ID. NO. 10) has an overall reduced GC content (63.5%) as compared to NSOPTmut (70.3%) and maintains a well optimized level of codon usage optimization. Nucleotide sequence identity of NSsuboptmut is 77.2% with respect to NSmut.

Table 5: Definition of codon replacements performed during steps 1) and 2).
Amino Acid Most frequent Relative Reduction in Replacement Relative codon frequency GC content codon frequency (bases) Amino Acids where the replacement codon reduces the codon GC-content by 1 base Ala GCC 0.51 1 GCT 0.17 Arg CGC 0.37 1 AGG 0.18 Asn AAC 0.78 1 AAT 0.22 Asp GAC 0.75 1 GAT 0.25 Cys TGC 0.68 1 TGT 0.32 Glu GAG 0.75 1 GAA 0.25 Gln CAG 0.88 1 CAA 0.12 Gly GGC 0.50 1 GGA 0.14 His CAC 0.79 1 CAT 0.21 Ile ATC 0.77 1 ATT 0.18 Lys AAG 0.82 1 AAA 0.18 Phe TTC 0.80 1 TTT 0.20 Pro CCC 0.48 1 CCT 0.19 Ser AGC 0.34 1 TCT 0.13 Thr ACC 0.51 1 ACA 0.14 Tyr TAC 0.74 1 TAT 0.26 Amino Acids with no alternative codon Met ATG 1.00 0 ATG 1.00 Trp TGG 1.00 0 TGG 1.00 Amino Acids where the replacement codon has a very low relative frequency.
These amino acids were excluded from the repl cement procedure Leu CTG 0.58 1 TTG 0.06 Val GTG 0.64 1 GTT 0.07 Example 12: Virus Characterization Adenovectors were characterized by: (a) measuring the physical particles/ml; (b) running a TaqMan PCR assay; and (c) checking protein expression after infection of HeLa cells.

a) Physical Particles Determination CsCI purified virus was diluted 1/10 and 1/100 in 0.1% SDS PBS. As a control, buffer A105 was used. These dilutions were incubated 10 minutes at 55 C.
After spinning the tubes briefly, O.D. at 260 nm was measured. The amount of viral particles was calculated as follows: 1 OD 260 nm = 1.1 X 1012 physical particles/ml.
The results were typically between 5 X 1011 and 1 X 1012 physical particles /ml.

b) TaqMan PCR Assay TaqMan PCR assay was used for adenovectors genome quantification (Q-PCR particles/ml). TaqMan PCR assay was performed using the ABI Prism 7700-sequence detector. The reaction was performed in a final 50 l volume in the presence of oligonucleotides (at final 200 nM) and probe (at final 200 M) specific for the adenoviral backbone. The virus was diluted 1/10 in 0.1% SDS PBS and incubated 10 minutes at 55 C. After spinning the tube briefly, serial 1/10 dilutions (in water) were prepared. 10 l the 10-3, 10-5 and 10-7 dilutions were used as templates in the PCR assay.
The amount of particles present in each sample was calculated on the basis of a standard curve run in the same experiment. Typically results were between 1 X 1012 and 3 X 1012 Q-PCR particles /ml.

c) Expression of HCV Non-Structural Proteins Expression of HCV NS proteins was tested by infection of HeLa cells.
Cells were plated the day before the infection at 1.5 X 106 cells/dish (10 cm 0 Petri dishes). Different amounts of CsCI purified virus corresponding to m.o.i. of 50, 250 and 1250 pp/cell were diluted in medium (FCS free) up to a final volume of 5 ml. The diluted virus was added on the cells and incubated for 1 hour at 37 C in a CO2 incubator (gently mixing every 20 minutes). 5 ml of 5% HS-DMEM was added and the cells were incubated at 37 C for 48 hours.
Cell extracts were prepared in 1% Triton/TEN buffer. The extracts were run on 10% SDS-acrylamide gel, blotted on nitrocellulose and assayed with antibodies directed against NS3, NS5a and NS5b in order to check the correct polyprotein cleavage. Mock-infected cells were used as a negative control.
Results from representative experiments testing the Ad5-NS, MRKAd5-NSmut, MRKAd6-NSmut and MRKAd6-NSOPTmut are shown in Figure 14.

Example 13: Mice Immunization with Adenovectors Encoding Different NS
Cassettes The adenovectors Ad5-NS, MRKAd5-NSmut, MRKAd6-NSmut and MRKAd6-NSOPTmut were injected in C57Black6 mice strains to evaluate their potential to elicit anti-HCV immune responses. Groups of animals (N=9-10) were injected intramuscularly with 109 pp of CsCl purified virus. Each animal received two doses at three weeks interval.
Humoral immune response against the NS3 protein was measured in post dose two sera from C57Black6 immunized mice by ELISA on bacterially expressed NS3 protease domain. Antibodies specific for the tested antigen were detected with geometric mean titers (GMT) ranging from 100 to 46000 (Tables 6, 7, 8 and 9).

Table 6: Ad5-NS

GMT
Mice n. 1 2 3 4 5 6 7 8 9 10 Titer 50 253 50 50 50 2257 504 50 50 50 108 Table 7: Ad5-NSmut GMT
Mice 11 12 13 14 15 16 17 18 19 20 n.
Titer 3162 78850 87241 6796 12134 3340 18473 13093 76167 49593 23645 Table 8: MRKAd6-NSmut GMT
Mice 21 22 23 24 25 26 27 28 29 30 n.
Titer 125626 39751 40187 65834 60619 69933 21555 49348 29290 26859 46461 Table 9: MRKAd6-NSOPTmut GMT
Mice n. 31 32 33 34 35 36 37 Titer 25430 3657 893 175 10442 49540 173 2785 T cell response in C57Black6 mice was analyzed by the quantitative ELISPOT assay measuring the number of IFNy secreting T cells in response to five pools (named from F to L+M) of 20mer peptides overlapping by ten residues encompassing the NS3-NS5B sequence. Specific CD8+ response induced in C57Black6 mice was analyzed by the same assay using a 20mer peptide encompassing a CD8+ epitope for C57Black6 mice (pepl480). Cells secreting IFNy in an antigen specific-manner were detected using a standard ELlspot assay.
Spleen cells, splenocytes and peptides were produced and treated as described in Example 3, supra. Representative data from groups of C57Black6 mice (N=9-10) immunized with two injections of 109 viral particles of vectors Ad5-NS, MRKAd5-NSmut and MRKAd6-NSmut are shown in Figure 15.
Example 14: Immunization of Rhesus macaques with Adenovectors Rhesus macaques (N=3-4) were immunized by intramuscular injection of CsCl purified Ad5-NS, MRKAd5-NSmut, MRKAd6-NSmut or MRKAd6-NSOPTmut virus. Each animal received two doses of 1011 or 1010 vp in the deltoid muscle at 0, and 4 weeks.
CMI was measured at different time points by a) IFN-y ELISPOT (see Example 3, supra), b) IFN-y ICS and c) bulk CTL assays. These assays measure HCV
antigen-specific CD8+ and CD4+ T lymphocyte responses, and can be used for a variety of mammals, such as humans, rhesus monkeys, mice, and rats.
The use of a specific peptide or a pool of peptides can simplify antigen presentation in CTL cytotoxicity assays, interferon-gamma ELISPOT assays and interferon-gamma intracellular staining assays. Peptides based on the amino acid sequence of various HCV proteins (core, E2, NS3, NS4A, NS4B, NS5a, NS5b) were prepared for use in these assays to measure immune responses in HCV DNA and adenovirus vector vaccinated rhesus monkeys, as well as in HCV-infected humans.
The individual peptides are overlapping 20-mers, offset by 10 amino acids.
Large pools of peptides can be used to detect an overall response to HCV proteins while smaller pools and individual peptides may be used to define the epitope specificity of a response.

IFN- yICS
For IFN-y ICS, 2 x 106 PBMC in 1 ml R10 (RPMI medium, supplemented with 10% FCS) were stimulated with peptide pool antigens. Final concentration of each peptide was 2 g/ml. Cells were incubated for 1 hour in a CO2 incubator at 37 C and then Brefeldin A was added to a final concentration of 10 g /ml to inhibit the secretion of soluble cytokines. Cells were incubated for additional 14-16 hours at 37 C.
Stimulation was done in the presence of co-stimulatory antibodies:
CD28 and CD49d (anti-humanCD28 BD340975 and anti-humanCD49d BD340976).
After incubation, cells were stained with fluorochrome-conjugated antibodies for surface antigens: anti-CD3, anti-CD4, anti-CD8 (CD3-APC Biosource APS0301, CD4-PE BD345769, CD8-PerCP BD345774).
To detect intracellular cytokines, cells were treated with FACS
permeabilization buffer 2 (BD340973), 2x final concentration. Once fixed and permeabilized, cells were incubated with an antibody against human IFN-y, IFN-yFITC (Biosource AHC4338).
Cells were resuspended in 1% formaldehyde in PBS and analyzed at FACS within 24 hours. Four color FACS analysis was performed on a FACSCalibur instrument (Becton Dickinson) equipped with two lasers. Acquisition was done gating on the lymphocyte population in the Forward versus Side Scatter plot coupled with the CD3, CD8 positive populations. At least 30,000 events of the gate were taken. The positive cells are expressed as number of IFN-y expressing cells over 106 lymphocytes.
IFN-y ELISPOT and IFN-y ICS data from immunized monkeys after one or two injections of 1010 or 1011 vp of the different adenovectors are reported in Figures 16A-16D, 17A, and 17B.

Bulk CTL Assays A distinguishing effector function of T lymphocytes is the ability of subsets of this cell population to directly lyse cells exhibiting appropriate MHC-associated antigenic peptides. This cytotoxic activity is most often associated with CD8+ T lymphocytes.
PBMC samples were infected with recombinant vaccine viruses expressing HCV antigens in vitro for approximately 14 days to provide antigen restimulation and expansion of memory T cells. Cytotoxicity against autologous B
cell lines treated with peptide antigen pools was tested.
The lytic function of the culture is measured as a percentage of specific lysis resulted from chromium released from target cells during 4 hours incubation with CTL effector cells. Specific cytotoxicity is measured and compared to irrelevant antigen or excipient-treated B cell lines. This assay is semi-quantitative and is the preferred means for determining whether CTL responses were elicited by the vaccine.
Data after two injections from monkeys immunized with 10i1 vp/dose with adenovectors Ad5-NS, MRKAd5-NSmut and MRKAd6-NSmut are reported in Figures 18A-18F.

Other embodiments are within the following claims. While several embodiments have been shown and described, various modifications may be made without departing from the spirit and scope of the present invention.

SEQUENCE LISTING

<110> Merck & Co. Inc., and Istituto Di Ricerche Di Biologia Molecolare P.
Angeletti S.P.A.

<120> HEPATITIS C VIRUS VACCINE
<130> 08900045CA

<140>
<141> 2002-10-10 <150> 60/363,774 <151> 2002-03-13 <150> 60/328,655 <151> 2001-10-11 <160> 17 <170> FastSEQ for Windows Version 4.0 <210> 1 <211> 1985 <212> PRT
<213> Artificial Sequence <220>
<223> Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide <400> 1 Met Ala Pro Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu Leu Gly Cys Ile Ile Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val Glu Gly Glu Val Gln Val Val Ser Thr Ala Thr Gln Ser Phe Leu Ala Thr Cys Val Asn Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Ser Lys Thr Leu Ala Gly Pro Lys Gly Pro Ile Thr Gln Met Tyr Thr Asn Val Asp Gln Asp Leu Val Gly Trp Gln Ala Pro Pro Gly Ala Arg Ser Leu Thr Pro Cys Thr Cys Gly Ser Ser Asp Leu Tyr Leu Val Thr Arg His Ala Asp Val Ile Pro Val Arg Arg Arg Gly Asp Ser Arg Gly Ser Leu Leu Ser Pro Arg Pro Val Ser Tyr Leu Lys Gly Ser Ser Gly Gly Pro Leu Leu Cys Pro Ser Gly His Ala Val Gly Ile Phe Arg Ala Ala Val Cys Thr Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu Ser Met Glu Thr Thr Met Arg Ser Pro Val Phe Thr Asp Asn Ser Ser Pro Pro Ala Val Pro Gln Ser Phe Gln Val Ala His Leu His Ala Pro Thr Gly Ser Gly Lys Ser Thr Lys Val Pro Ala Ala Tyr Ala Ala Gln Gly Tyr Lys Val Leu Val Leu Asn Pro Ser Val Ala Ala Thr Leu Gly Phe Gly Ala Tyr Met Ser Lys Ala His Gly Ile Asp Pro Asn Ile Arg Thr Gly Val Arg Thr Ile Thr Thr Gly Ala Pro Val Thr Tyr Ser Thr Tyr Gly Lys Phe Leu Ala Asp Gly Gly Cys Ser Gly Gly Ala Tyr Asp Ile Ile Ile Cys Asp Glu Cys His Ser Thr Asp Ser Thr Thr Ile Leu Gly Ile Gly Thr Val Leu Asp Gln Ala Glu Thr Ala Gly Ala Arg Leu Val Val Leu Ala Thr Ala Thr Pro Pro Gly Ser Val Thr Val Pro His Pro Asn Ile Glu Glu Val Ala Leu Ser Asn Thr Gly Glu Ile Pro Phe Tyr Gly Lys Ala Ile Pro Ile Glu Ala Ile Arg Gly Gly Arg His Leu Ile Phe Cys His Ser Lys Lys Lys Cys Asp Glu Leu Ala Ala Lys Leu Ser Gly Leu Gly Ile Asn Ala Val Ala Tyr Tyr Arg Gly Leu Asp Val Ser Val Ile Pro Thr Ile Gly Asp Val Val Val Val Ala Thr Asp Ala Leu Met Thr Gly Tyr Thr Gly Asp Phe Asp Ser Val Ile Asp Cys Asn Thr Cys Val Thr Gln Thr Val Asp Phe Ser Leu Asp Pro Thr Phe Thr Ile Glu Thr Thr Thr Val Pro Gln Asp Ala Val Ser Arg Ser Gln Arg Arg Gly Arg Thr Gly Arg Gly Arg Arg Gly Ile Tyr Arg Phe Val Thr Pro Gly Glu Arg Pro Ser Gly Met Phe Asp Ser Ser Val Leu Cys Glu Cys Tyr Asp Ala Gly Cys Ala Trp Tyr Glu Leu Thr Pro Ala Glu Thr Ser Val Arg Leu Arg Ala Tyr Leu Asn Thr Pro Gly Leu Pro Val Cys Gln Asp His Leu Glu Phe Trp Glu Ser Val Phe Thr Gly Leu Thr His Ile Asp Ala His Phe Leu Ser Gln Thr Lys Gln Ala Gly Asp Asn Phe Pro Tyr Leu Val Ala Tyr Gln Ala Thr Val Cys Ala Arg Ala Gln Ala Pro Pro Pro Ser Trp Asp Gln Met Trp Lys Cys Leu Ile Arg Leu Lys Pro Thr Leu His Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly Ala Val Gln Asn Glu Val Thr Leu Thr His Pro Ile Thr Lys Tyr Ile Met Ala Cys Met Ser Ala Asp Leu Glu Val Val Thr Ser Thr Trp Val Leu Val Gly Gly Val Leu Ala Ala Leu Ala Ala Tyr Cys Leu Thr Thr Gly Ser Val Val Ile Val Gly Arg Ile Ile Leu Ser Gly Arg Pro Ala Ile Val Pro Asp Arg Glu Phe Leu Tyr Gln Glu Phe Asp Glu Met Glu Glu Cys Ala Ser His Leu Pro Tyr Ile Glu Gln Gly Met Gln Leu Ala Glu Gln Phe Lys Gln Lys Ala Leu Gly Leu Leu Gln Thr Ala Thr Lys Gln Ala Glu Ala Ala Ala Pro Val Val Glu Ser Lys Trp Arg Ala Leu Glu Thr Phe Trp Ala Lys His Met Trp Asn Phe Ile Ser Gly Ile Gln Tyr Leu Ala Gly Leu Ser Thr Leu Pro Gly Asn Pro Ala Ile Ala Ser Leu Met Ala Phe Thr Ala Ser Ile Thr Ser Pro Leu Thr Thr Gln Ser Thr Leu Leu Phe Asn Ile Leu Gly Gly Trp Val Ala Ala Gln Leu Ala Pro Pro Ser Ala Ala Ser Ala Phe Val Gly Ala Gly Ile Ala Gly Ala Ala Val Gly Ser Ile Gly Leu Gly Lys Val Leu Val Asp Ile Leu Ala Gly Tyr Gly Ala Gly Val Ala Gly Ala Leu Val Ala Phe Lys Val Met Ser Gly Glu Met Pro Ser Thr Glu Asp Leu Val Asn Leu Leu Pro Ala Ile Leu Ser Pro Gly Ala Leu Val Val Gly Val Val Cys Ala Ala Ile Leu Arg Arg His Val Gly Pro Gly Glu Gly Ala Val Gln Trp Met Asn Arg Leu Ile Ala Phe Ala Ser Arg Gly Asn His Val Ser Pro Thr His Tyr Val Pro Glu Ser Asp Ala Ala Ala Arg Val Thr Gln Ile Leu Ser Ser Leu Thr Ile Thr Gln Leu Leu Lys Arg Leu His Gln Trp Ile Asn Glu Asp Cys Ser Thr Pro Cys Ser Gly Ser Trp Leu Arg Asp Val Trp Asp Trp Ile Cys Thr Val Leu Thr Asp Phe Lys Thr Trp Leu Gln Ser Lys Leu Leu Pro Gln Leu Pro Gly Val Pro Phe Phe Ser Cys Gln Arg Gly Tyr Lys Gly Val Trp Arg Gly Asp Gly Ile Met Gln Thr Thr Cys Pro Cys Gly Ala Gln Ile Thr Gly His Val Lys Asn Gly Ser Met Arg Ile Val Gly Pro Lys Thr Cys Ser Asn Thr Trp His Gly Thr Phe Pro Ile Asn Ala Tyr Thr Thr Gly Pro Cys Thr Pro Ser Pro Ala Pro Asn Tyr Ser Arg Ala Leu Trp Arg Val Ala Ala Glu Glu Tyr Val Glu Val Thr Arg Val Gly Asp Phe His Tyr Val Thr Gly Met Thr Thr Asp Asn Val Lys Cys Pro Cys Gln Val Pro Ala Pro Glu Phe Phe Thr Glu Val Asp Gly Val Arg Leu His Arg Tyr Ala Pro Ala Cys Arg Pro Leu Leu Arg Glu Glu Val Thr Phe Gln Val Gly Leu Asn Gln Tyr Leu Val Gly Ser Gln Leu Pro Cys Glu Pro Glu Pro Asp Val Ala Val Leu Thr Ser Met Leu Thr Asp Pro Ser His Ile Thr Ala Glu Thr Ala Lys Arg Arg Leu Ala Arg Gly Ser Pro Pro Ser Leu Ala Ser Ser Ser Ala Ser Gln Leu Ser Ala Pro Ser Leu Lys Ala Thr Cys Thr Thr His His Val Ser Pro Asp Ala Asp Leu Ile Glu Ala Asn Leu Leu Trp Arg Gln Glu Met Gly Gly Asn Ile Thr Arg Val Glu Ser Glu Asn Lys Val Val Val Leu Asp Ser Phe Asp Pro Leu Arg Ala Glu Glu Asp Glu Arg Glu Val Ser Val Pro Ala Glu Ile Leu Arg Lys Ser Lys Lys Phe Pro Ala Ala Met Pro Ile Trp Ala Arg Pro Asp Tyr Asn Pro Pro Leu Leu Glu Ser Trp Lys Asp Pro Asp Tyr Val Pro Pro Val Val His Gly Cys Pro Leu Pro Pro Ile Lys Ala Pro Pro Ile Pro Pro Pro Arg Arg Lys Arg Thr Val Val Leu Thr Glu Ser Ser Val Ser Ser Ala Leu Ala Glu Leu Ala Thr Lys Thr Phe Gly Ser Ser Glu Ser Ser Ala Val Asp Ser Gly Thr Ala Thr Ala Leu Pro Asp Gln Ala Ser Asp Asp Gly Asp Lys Gly Ser Asp Val Glu Ser Tyr Ser Ser Met Pro Pro Leu Glu Gly Glu Pro Gly Asp Pro Asp Leu Ser Asp Giy Ser Trp Ser Thr Val Ser Glu Glu Ala Ser Glu Asp Val Val Cys Cys Ser Met Ser Tyr Thr Trp Thr Gly Ala Leu Ile Thr Pro Cys Ala Ala Glu Glu Ser Lys Leu Pro Ile Asn Ala Leu Ser Asn Ser Leu Leu Arg His His Asn Met Val Tyr Ala Thr Thr Ser Arg Ser Ala Gly Leu Arg Gln Lys Lys Val Thr Phe Asp Arg Leu Gln Val Leu Asp Asp His Tyr Arg Asp Val Leu Lys Glu Met Lys Ala Lys Ala Ser Thr Val Lys Ala Lys Leu Leu Ser Val Glu Glu Ala Cys Lys Leu Thr Pro Pro His Ser Ala Lys Ser Lys Phe Gly Tyr Gly Ala Lys Asp Val Arg Asn Leu Ser Ser Lys Ala Val Asn His Ile His Ser Val Trp Lys Asp Leu Leu Glu Asp Thr Val Thr Pro Ile Asp Thr Thr Ile Met Ala Lys Asn Glu Val Phe Cys Val Gin Pro Glu Lys Gly Gly Arg Lys Pro Ala Arg Leu Ile Val Phe Pro Asp Leu Gly Val Arg Val Cys Glu Lys Met Ala Leu Tyr Asp Val Val Ser Thr Leu Pro Gln Val Val Met Gly Ser Ser Tyr Gly Phe Gln Tyr Ser Pro Gly Gln Arg Val Glu Phe Leu Val Asn Thr Trp Lys Ser Lys Lys Asn Pro Met Gly Phe Ser Tyr Asp Thr Arg Cys Phe Asp Ser Thr Val Thr Glu Asn Asp Ile Arg Val Glu Glu Ser Ile Tyr Gln Cys Cys Asp Leu Ala Pro Glu Ala Arg Gin Ala Ile Lys Ser Leu Thr Glu Arg Leu Tyr Ile Gly Gly Pro Leu Thr Asn Ser Lys Gly Gln Asn Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Leu Thr Thr Ser Cys Gly Asn Thr Leu Thr Cys Tyr Leu Lys Ala Ser Ala Ala Cys Arg Ala Ala Lys Leu Gln Asp Cys Thr Met Leu Val Asn Ala Ala Gly Leu Val Val Ile Cys Glu Ser Ala Gly Thr Gln Glu Asp Ala Ala Ser Leu Arg Val Phe Thr Glu Ala Met Thr Arg Tyr Ser Ala Pro Pro Gly Asp Pro Pro Gln Pro Glu Tyr Asp Leu Glu Leu Ile Thr Ser Cys Ser Ser Asn Val Ser Val Ala His Asp Ala Ser Gly Lys Arg Val Tyr Tyr Leu Thr Arg Asp Pro Thr Thr Pro Leu Ala Arg Ala Ala Trp Glu Thr Ala Arg His Thr Pro Val Asn Ser Trp Leu Gly Asn Ile Ile Met Tyr Ala Pro Thr Leu Trp Ala Arg Met Ile Leu Met Thr His Phe Phe Ser Ile Leu Leu Ala Gln Glu Gln Leu Glu Lys Ala Leu Asp Cys Gln Ile Tyr Gly Ala Cys Tyr Ser Ile Glu Pro Leu Asp Leu Pro Gln Ile Ile Glu Arg Leu His Gly Leu Ser Ala Phe Ser Leu His Ser Tyr Ser Pro Gly Glu Ile Asn Arg Val Ala Ser Cys Leu Arg Lys Leu Gly Val Pro Pro Leu Arg Val Trp Arg His Arg Ala Arg Ser Val Arg Ala Arg Leu Leu Ser Gln Gly Gly Arg Ala Ala Thr Cys Gly Lys Tyr Leu Phe Asn Trp Ala Val Lys Thr Lys Leu Lys Leu Thr Pro Ile Pro Ala Ala Ser Gln Leu Asp Leu Ser Gly Trp Phe Val Ala Gly Tyr Ser Gly Gly Asp Ile Tyr His Ser Leu Ser Arg Ala Arg Pro Arg Trp Phe Met Leu Cys Leu Leu Leu Leu Ser Val Gly Val Gly Ile Tyr Leu Leu Pro Asn Arg <210> 2 <211> 5965 <212> DNA
<213> Artificial Sequence <220>
<223> Non-optimized cDNA sequence encoding SEQ. ID. NO.

<400> 2 gccaccatgg cgcccatcac ggcctactcc caacagacgc ggggcctact tggttgcatc 60 atcactagcc ttacaggccg ggacaagaac caggtcgagg gagaggttca ggtggtttcc 120 accgcaacac aatccttcct ggcgacctgc gtcaacggcg tgtgttggac cgtttaccat 180 ggtgctggct caaagacctt agccggccca aaggggccaa tcacccagat gtacactaat 240 gtggaccagg acctcgtcgg ctggcaggcg ccccccgggg cgcgttcctt gacaccatgc 300 acctgtggca gctcagacct ttacttggtc acgagacatg ctgacgtcat tccggtgcgc 360 cggcggggcg acagtagggg gagcctgctc tcccccaggc ctgtctccta cttgaagggc 420 tcttcgggtg gtccactgct ctgcccttcg gggcacgctg tgggcatctt ccgggctgcc 480 gtatgcaccc ggggggttgc gaaggcggtg gactttgtgc ccgtagagtc catggaaact 540 actatgcggt ctccggtctt cacggacaac tcatcccccc cggccgtacc gcagtcattt 600 caagtggccc acctacacgc tcccactggc agcggcaaga gtactaaagt gccggctgca 660 tatgcagccc aagggtacaa ggtgctcgtc ctcaatccgt ccgttgccgc taccttaggg 720 tttggggcgt atatgtctaa ggcacacggt attgacccca acatcagaac tggggtaagg 780 accattacca caggcgcccc cgtcacatac tctacctatg gcaagtttct tgccgatggt 840 ggttgctctg ggggcgctta tgacatcata atatgtgatg agtgccattc aactgactcg 900 actacaatct tgggcatcgg cacagtcctg gaccaagcgg agacggctgg agcgcggctt 960 gtcgtgctcg ccaccgctac gcctccggga tcggtcaccg tgccacaccc aaacatcgag 1020 gaggtggccc tgtctaatac tggagagatc cccttctatg gcaaagccat ccccattgaa 1080 gccatcaggg ggggaaggca tctcattttc tgtcattcca agaagaagtg cgacgagctc 1140 gccgcaaagc tgtcaggcct cggaatcaac gctgtggcgt attaccgggg gctcgatgtg 1200 tccgtcatac caactatcgg agacgtcgtt gtcgtggcaa cagacgctct gatgacgggc 1260 tatacgggcg actttgactc agtgatcgac tgtaacacat gtgtcaccca gacagtcgac 1320 ttcagcttgg atcccacctt caccattgag acgacgaccg tgcctcaaga cgcagtgtcg 1380 cgctcgcagc ggcggggtag gactggcagg ggtaggagag gcatctacag gtttgtgact 1440 ccgggagaac ggccctcggg catgttcgat tcctcggtcc tgtgtgagtg ctatgacgcg 1500 ggctgtgctt ggtacgagct cacccccgcc gagacctcgg ttaggttgcg ggcctacctg 1560 aacacaccag ggttgcccgt ttgccaggac cacctggagt tctgggagag tgtcttcaca 1620 ggcctcaccc acatagatgc acacttcttg tcccagacca agcaggcagg agacaacttc 1680 ccctacctgg tagcatacca agccacggtg tgcgccaggg ctcaggcccc acctccatca 1740 tgggatcaaa tgtggaagtg tctcatacgg ctgaaaccta cgctgcacgg gccaacaccc 1800 ttgctgtaca ggctgggagc cgtccaaaat gaggtcaccc tcacccaccc cataaccaaa 1860 tacatcatgg catgcatgtc ggctgacctg gaggtcgtca ctagcacctg ggtgctggtg 1920 ggcggagtcc ttgcagctct ggccgcgtat tgcctgacaa caggcagtgt ggtcattgtg 1980 ggtaggatta tcttgtccgg gaggccggct attgttcccg acagggagtt tctctaccag 2040 gagttcgatg aaatggaaga gtgcgcctcg cacctccctt acatcgagca gggaatgcag 2100 ctcgccgagc aattcaagca gaaagcgctc gggttactgc aaacagccac caaacaagcg 2160 gaggctgctg ctcccgtggt ggagtccaag tggcgagccc ttgaaacatt ctgggcgaag 2220 cacatgtgga atttcatcag cgggatacag tacttagcag gcttatccac tctgcctggg 2280 aaccccgcaa tagcatcatt gatggcattc acaccctcta tcaccagccc gctcaccacc 2340 caaagtaccc tcctgtttaa catcttgggg gggtgggtgg ctgcccaact cgcccccccc 2400 agcgccgctt cggctttcgt gggcgccggc atcgccggtg cggctgttgg cagcataggc 2460 cttgggaagg tgcttgtgga cattctggcg ggttatggag caggagtggc cggcgcgctc 2520 gtggccttca aggtcatgag cggcgagatg ccctccaccg aggacctggt caatctactt 2580 cctgccatcc tctctcctgg cgccctggtc gtcggggtcg tgtgtgcagc aatactgcgt 2640 cgacacctgg gtccgggaga gggggctgtg cagtggatga accggctgat agcgttcgcc 2700 tcgcggggta atcatgtttc ccccacgcac tatgtgcctg agagcgacgc cgcagcgcgt 2760 gttactcaga tcctctccag ccttaccatc actcagctgc tcaaaagggt ccaccagtgg 2820 attaatgaag actgctccac accgtgttcc ggctcgtggc taagggatgt ttgggactgg 2880 atatgcacgg tgttaactga cttcaagacc tggctccagt ccaagctcct gccgcagcta 2940 ccgggagtcc cttttttctc gtgccaacgc gggtacaagg gagtctggcg gggagacggc 3000 atcatgcaaa ccacctgccc atgtggagca cagatcaccg gacatgtcaa aaacggttcc 3060 atgaggatcg tcgggcctaa gacctgcagc aacacgtggc atggaacatt ccccatcaac 3120 gcatacacca cgggcccctg cacaccctct ccagcgccaa actattctag ggcgctgtgg 3180 Cgggtggccg ctgaggagta cgtggagttc acgcgggtgg gggatttcca ctacgtgacg 3240 ggcatgacca ctgacaacgt aaagtgccca tgccaggttc cggctcctga attcttcacg 3300 gaggtggacg gagtgcggtt gcacaggtac gctccggcgt gcaggcctct cctacgggag 3360 gaggttacat tccaggtcgg gctcaaccaa tacctggttg ggtcacagct accatgcgag 3420 cccgaaccgg atgtagcagt gctcacttcc atgctcaccg aaccctccca catcacagca 3480 gaaacggcta agcgtaggtt ggccaggggg tctcccccct ccttgcccag ctcttcagct 3540 agccagttgt ctgcgccttc cttgaaggcg acatgcacta cccaccatgt ctctccggac 3600 gctgacctca tCgaggccaa cctcctgtgg cggcaggaga tgggcgggaa catcacccgc 3660 gtggagtcgg acaacaaggt ggtgttcctg gactctttcg acccgcttcg agcggaggag 3720 gatgagaggg aagaatccgt tccggcggag atcctgCgga aatCCaagaa gttccccgca 3780 gcgatgccca tctgggcgcg cccggattac aaccctccac tgttagagtc ctggaaggac 3840 ccggactacg tccctccggt ggtgcacggg tgcccgttgc cacctatcaa ggcccctcca 3900 ataccacctc cacggagaaa gaggacggtt gtcctaacag agtcctccgt gtcttctgcc 3960 ttagcggagc tcgctactaa gaccttcggc agctccgaat catcggccgt cgacagcggc 4020 acggcgaccg cccttcctga ccaggcctcc gacgacggtg acaaaggatc cgacgttgag 4080 tcttactcct ccatgccccc ccttgagggg gaaccggggg accccgatct cagtgacggg 4140 tcttggtcta ccgtgagcga ggaagctagt gaggatgtcg tctgctgctc aatgtcctac 4200 acatggacag gcgccttgat cacgccatgc gctgcggagg aaagcaagct gcccatcaac 4260 gcgttgagca actctttgct gcgccaccat aacatggttt atgCCaCaac atctcgcagc 4320 gcagacctgc ggcagaagaa ggtcaccttt gacagactgc aagtcctgga cgaccactac 4380 cgggacgtgc tcaaggagat gaaggcgaag gcgtccacag ttaaggctaa actcctatcc 4440 gtagaggaag cctgcaagct gacgccccca cattcggcca aatccaagtt tggctatggg 4500 gcaaaggacg tccggaacct atccagcaag gccgttaacc acatccactc cgtgtggaag 4560 gacttgctgg aagacactgt gacaccaatt gacaccacca tcatggcaaa aaatgaggtt 4620 ttctgtgtcc aaccagagaa aggaggccgt aagccagccc gccttatcgt attcccagat 4680 ctgggagtcc gtgtatgcga gaagatggcc ctctatgatg tggtctccac ccttcctcag 4740 gtcgtgatgg gctcctcata cggattccag tactttcctg ggcagcgagt cgagttcctg 4800 gtgaatacct ggaaatcaaa gaaaaacccc atgggctttt catatgacac tcgctgtttc 4860 gactcaacgg tcaccgagaa cgacatccgt gttgaggagt caatttacca atgttgtgac 4920 ttggcccccg aagccagaca ggccataaaa tcgctcacag agcggcttta tatcgggggt 4980 cctctgacta attcaaaagg gcagaactgc ggttatcgcc ggtgccgcgc gagcggcgtg 5040 ctgacgacta gctgcggtaa caccctcaca tgttacttga aggcctctgc agcctgtcga 5100 gctgcgaagc tccaggactg cacgatgctc gtgaacgccg ccggccttgt cgttatctgt 5160 gaaagcgcgg gaacccaaga ggacgcggcg agcctacgag tcttcacgga ggctatgact 5220 aggtactctg ccccccccgg ggacccgccc caaccagaat acgacttgga gctgataaca 5280 tcatgttcct ccaatgtgtc ggtcgcccac gatgcatcag gcaaaagggt gtactacctc 5340 acccgtgatc ccaccacccc cctcgcacgg gctgcgtggg aaacagctag acacactcca 5400 gttaactcct ggctaggcaa cattatcatg tatgcgccca ctttgtgggc aaggatgatt 5460 ctgatgactc acttcttctc catccttcta gcacaggagc aacttgaaaa agccctggac 5520 tgccagatct acggggcctg ttactccatt gagccacttg acctacctca gatcattgaa 5580 cgactccatg gccttagcgc attttcactc catagttact ctccaggtga gatcaatagg 5640 gtggcttcat gcctcaggaa acttggggta ccacccttgc gagtctggag acatcgggcc 5700 aggagcgtcc gcgctaggct actgtcccag ggggggaggg ccgccacttg tggcaagtac 5760 ctcttcaact gggcagtgaa gaccaaactc aaactcactc caatcccggc tgcgtcccag 5820 ctggacttgt ccggctggtt cgttgctggt tacagcgggg gagacatata tcacagcctg 5880 tctcgtgccc gaccccgctg gttcatgctg tgcctactcc tactttctgt aggggtaggc 5940 atctacctgc tccccaaccg ataaa 5965 <210> 3 <211> 5965 <212> DNA
<213> Artificial Sequence <220>
<223> Optimized cDNA encoding SEQ ID NO: 1 <400> 3 gccaccatgg cccccatcac cgcctacagc cagcagaccc gcggcctgct gggctgcatc 60 atcaccagcc tgaccggccg cgacaagaac caggtggagg gcgaggtgca ggtggtgagc 120 accgccaccc agagcttcct ggccacctgc gtgaacggcg tgtgctggac cgtgtaccac 180 ggcgccggca gcaagaccct ggccggcccc aagggcccca tcacccagat gtacaccaac 240 gtggaccagg acctggtggg ctggcaggcc ccccccggcg cccgcagcct gaccccctgc 300 acctgcggca gcagcgacct gtacctggtg acccgccacg ccgacgtgat ccccgtgcgc 360 cgccgcggcg acagccgcgg cagcctgctg agcccccgcc ccgtgagcta cctgaagggc 420 agcagcggcg gccccctgct gtgccccagc ggccacgccg tgggcatctt ccgcgccgcc 480 gtgtgcaccc gcggcgtggc caaggccgtg gacttcgtgc ccgtggagag catggagacc 540 accatgcgca gccccgtgtt caccgacaac agcagccccc ccgccgtgcc ccagagcttc 600 caggtggccc acctgcacgc ccccaccggc agcggcaaga gcaccaaggt gcccgccgcc 660 tacgccgccc agggctacaa ggtgctggtg ctgaacccca gcgtggccgc caccctgggc 720 ttcggcgcct acatgagcaa ggcccacggc atcgacccca acatccgcac cggcgtgcgc 780 accatcacca ccggcgcccc cgtgacctac agcacctacg gcaagttcct ggccgacggc 840 ggctgcagcg gcggcgccta cgacatcatc atctgcgacg agtgccacag caccgacagc 900 accaccatcc tgggcatcgg caccgtgctg gaccaggccg agaccgccgg cgcccgcctg 960 gtggtgctgg ccaccgccac cccccccggc agcgtgaccg tgccccaccc caacatcgag 1020 gaggtggccc tgagcaacac cggcgagatc cccttctacg gcaaggccat ccccatcgag 1080 gccatccgcg gcggccgcca cctgatcttc tgccacagca agaagaagtg cgacgagctg 1140 gccgccaagc tgagcggcct gggcatcaac gccgtggcct actaccgcgg cctggacgtg 1200 agcgtgatcc ccaccatcgg cgacgtggtg gtggtggcca ccgacgccct gatgaccggc 1260 tacaccggcg acttcgacag cgtgatcgac tgcaacacct gcgtgaccca gaccgtggac 1320 ttcagcctgg accccacctt caccatcgag accaccaccg tgccccagga cgccgtgagc 1380 cgcagccagc gccgcggccg caccggccgc ggccgccgcg gcatctaccg cttcgtgacc 1440 cccggcgagc gccccagcgg catgttcgac agcagcgtgc tgtgcgagtg ctacgacgcc 1500 ggctgcgcct ggtacgagct gacccccgcc gagaccagcg tgcgcctgcg cgcctacctg 1560 aacacccccg gcctgcccgt gtgccaggac cacctggagt tctgggagag cgtgttcacc 1620 ggcctgaccc acatcgacgc ccacttcctg agccagacca agcaggccgg cgacaacttc 1680 ccctacctgg tggcctacca ggccaccgtg tgcgcccgcg cccaggcccc cccccccagc 1740 tgggaccaga tgtggaagtg cctgatccgc ctgaagccca ccctgcacgg ccccaccccc 1800 ctgctgtacc gcctgggcgc cgtgcagaac gaggtgaccc tgacccaccc catcaccaag 1860 tacatcatgg cctgcatgag cgccgacctg gaggtggtga ccagcacctg ggtgctggtg 1920 ggcggcgtgc tggccgccct ggccgcctac tgcctgacca ccggcagcgt ggtgatcgtg 1980 ggccgcatca tcctgagcgg ccgccccgcc atcgtgcccg accgcgagtt cctgtaccag 2040 gagttcgacg agatggagga gtgcgccagc cacctgccct acatcgagca gggcatgcag 2100 ctggccgagc agttcaagca gaaggccctg ggcctgctgc agaccgccac caagcaggcc 2160 gaggccgccg cccccgtggt ggagagcaag tggcgcgccc tggagacctt ctgggccaag 2220 cacatgtgga acttcatcag cggcatccag tacctggccg gcctgagcac cctgcccggc 2280 aaccccgcca tcgccagcct gatggccttc accgccagca tcaccagccc cctgaccacc 2340 cagagcaccc tgctgttcaa catcgtcggc ggctgggtgg ccgcccagct ggcccccccc 2400 agcgccgcca gcgccttcgt gggcgccggc atcgccggcg ccgccgtggg cagcatcggc 2460 ctgggcaagg tgctggtgga catcctgacc ggctacggcg ccggcgtggc cggcgccctg 2520 gtggccttca aggtgatgag cgccgagaag cccagcaccg aggacctggt gaacctgctg 2580 cccaccatcc tgagccccgg cgccctggtg gtggaggtgg tgtgcgccac catcctccgc 2640 cgccacgtgg gccccggcga gggcgccgtg cagtggatga accgcctgat cgccttcccc 2700 agccgcggca accacgtgag ccacacccac taCgtgcccg agagcgacgc cgccgcccgc 2760 gtgacccaga tcctgagcag cctgaccatc acccagctgc tgaaggccat gcaccagtgg 2820 atcaacgagg actgcagcac cccctgcagc ggcagctggc tgcgcgacgt gtgggactgg 2880 atctgcaccg tgctaaccga cttcaagacc tggctgcaga gcaagctcgt gccccagctg 2940 Cccggcgtgc ccttcttcag ctgccagcgc ggctacaacg gcgtgtggcg cggcgacggc 3000 atcatgcaga ccacctgccc ctgcggcgcc cagatCaccg gccaggagaa gaacggcagc 3060 atgcgcatcg tgggccccaa gacctgcagc aacacctggc acggcacctt ccccatcaac 3120 gCCtacaCCa ccggcccctg cacccccagc cccgccccca actacagccg cgccctgtgg 3180 cgcgtggccg ccgaggagta cgtggaggtg acccgcgtgg gcgacttcca ctacgtgacc 3240 ggcatgacca ccgacaacgt gaagtgCccc tgccaggtgc cCgcccccga gttcttcacc 3300 gaggtggacg gcgtgcgcct gcaccgctac gcccccgcct gccgccccct gctccgcgag 3360 gaggtgacct tccaggtggg cctgaaccag tacctggtgg gcagccagct gccctccgag 3420 cccgagcccg acgtggccgt gctgaccagc atgctgaccg accccagcca catcaccgcc 3480 gagaccgcca agcgccgcct ggcccgcggc agccccccca gcctggccag cagcagcgcc 3540 agccagctga gcgcccccag cctgaaggac accttgacca cccaCCacgt gagccccgac 3600 gccgacctga tcgaggccaa cctgctgtgg cgccaggaga tgtgcggcaa catcacccgc 3660 gtggagagcg agaacaaggt ggtggtgctg gacagcttcg accccctgcg cgccgaggag 3720 gacgagggcg aggtgagggt gcccgccgag atcctgCgca agagcaagaa gttccccgcc 3780 gccatgacca tctgggcccg ccccgactac aacccccccc tgctggagag ctggaaggac 3840 cccgactacg tgccccccgt gatcgacggc tgccccctgc cccccatcaa ggcccccccc 3900 agcccccccc cccgccgcaa gcgcaccgtg gtgCtgaccg agaacaaggt gagcagcgcc 3960 caggcccagc tggccaccaa gaccttcggc agcagcgaga gcagcgccgt ggacagcggc 4020 accgccaccg ccctgcccga ccaggccagc gacgacggcg acaagggcag cgacgtggag 4080 agctacagca gcatgccccc cctggagggC gagcccggcg accccgacct gagcgacggc 4140 agctggagca ccgtgagcga ggaggccagc gaggacgtgg tgtgctgcag catgagctac 4200 acctcgaccg gcgccctgat caccccctgc gccgccgagg agagcaagct gcccatcaac 4260 gccctgacca acagcctgtt gagccaccac aacatggtgt acgccaccac cagccgcagc 4320 gccggcctgc gccagaagaa ggtgaccttc gaccgcctgc aggtgctgga cgaccactac 4380 cgcgacgtgc tgaaggagat gaaggccaag gccagcaccg tgaaggccaa gctgctgagc 4440 gtggaggagg cctgcaagct gacccccccc cacagcgcca agagcaagtt cagctacggc 4500 gccaagaacg tgcgcaacct gagcagcaag gccgtgaacc acatccacag cgtgtggaag 4560 gacctgctgg aggacaccgt gagccccatc gacaccacca tcatggccaa gaacgaggtg 4620 ttctgcgtgc agcccgagaa ggagggccgc aagcccgccc gcctgatcgt gttccccgac 4680 ctgggcgtgc gcgtgtgcga gaagatggcc ctgtacgacg tggtgagcac cctgccccag 4740 gtggtgatgg gcagcagcta cggcttccag tacagccccg gccagcgcgt ggagttcctg 4800 gtgaacacct ggaagagcaa gaagaacccc atgggcttca gctacgacac ccgctgcttc 4860 gacagcaccg tgaccgagaa cgacatccgc gtggaggaga gcatctacca gtgctgcgac 4920 ctggcccccg aggcccgcca ggccatcaag agcctgaccg agcgcctgta catcggcggc 4980 cccctgacca acagcaaggg ccagaactgc ggctaccgcc gctgccgcgc cagcggcgtg 5040 ctgaccacca gctgcggcaa caccctgacc tgctacctga aggccagcgc cgcctgccgc 5100 gccgccaagc tgcaggactg catcatcctg gtgaacgccg ccggcctggt ggtgatctgc 5160 gagagcgccg gcacccagga ggacgccgcc agcctgcccg tgttcaccga ggccatgacc 5220 cgctacagcg ccccccccgg cgaccccccc cagcccgagt acgacctgga gctgatcacc 5280 agctacagca gcaacgtgag cgtggcccac gacgccagcg gcaagcgcgt gtactacctg 5340 acccgcgacc ccaccacccc cctggcccgc gccgcctggg agaccgcccg ccacaccccc 5400 gtgaacagCt ggctgggcaa catcatcatg tacgccccca ccctgtgggc ccgcatgatc 5460 ctgatgaccc acttcttcag catcctgctg gcccaggagc agctggagaa ggccctggac 5520 tgccagatct acggcgcctg ctacagcatc gagcccctgg acctgcccca gatcatcgag 5580 cgcctgcacg gcctgagcgc cttcagcctg cacagctaca gccccggcga gatcaaccgc 5640 gtggccagCt gcctgcgcaa gctgggcgtg ccccccctgc gcgtgtggcg ccaccgcgcc 5700 cgcagcgtgc gcgcccgcct gctgagccag ggcggccgcg ccgccacctg cggcaagtac 5760 ctgttcaact gggccgtgaa gaccaagctg aagctgaccc ccatccccgc cgccagccag 5820 ctggacctta gcggctggtt cgtggccggc tacagcggcg gcgacatcta ccacagcctg 5880 agccgcgccc gcccccgctg gttcatgctg tgcctgctgc tgctgagcgt gggcgtgggc 5940 atctacctgc tgcccaaccg ctaaa 5965 <210> 4 <211> 37090 <212> DNA
<213> Artificial Sequence <220>
<223> MRKAd6-NSmut nucleic acid <400> 4 catcatcaat aatatacctt attttggatt gaagccaata tgataatgag ggggtggagt 60 ttgtgacgtg.gcgcggggcg tgggaacggg gcgggtgacg tagtagtgtg gcggaagtgt 120 gatgttgcaa gtgtggcgga acacatgtaa gcgacggatg tggcaaaagt gacgtttttg 180 gtgtgcgccg gtgtacacag gaagtgacaa ttttcgcgcg gttttaggcg gatgttgtag 240 taaatttggg cgtaaccgag taagatttgg ccattttcgc gggaaaactg aataagagga 300 agtgaaatct gaataatttt gtgttactca tagcgcgtaa tatttgtcta gggccgcggg 360 gactttgacc gtttacgtgg agactcgccc aggtgttttt ctcaggtgtt ttccgcgttc 420 cgggtcaaag ttggcgtttt attattatag gcggccgcga tccattgcat acgttgtatc 480 catatcataa tatgtacatt tatattggct catgtccaac attaccgcca tgttgacatt 540 gattattgac tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata 600 tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc 660 cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc 720 attgacgtca atgggtggag tatttacggt aaactgccca cttggcagta catcaagtgt 780 atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt 840 atgcccagta catgacctta tgggactttc ctacttggca gtacatctac gtattagtca 900 tcgctattac catggtgatg cggttttggc agtacatcaa tgggcgtgga tagcggtttg 960 actcacgggg atttccaagt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc 1020 aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg 1080 gtaggcgtgt acggtgggag gtctatataa gcagagctcg tttagtgaac cgtcagatcg 1140 cctggagacg ccatccacgc tgttttgacc tccatagaag acaccgggac cgatccagcc 1200 tccgcggccg ggaacggtgc attggaacgc ggattccccg tgccaagagt gagatctgcc 1260 accatggcgc ccatcacggc ctactcccaa cagacgcggg gcctacttgg ttgcatcatc 1320 actagcctta caggccggga caagaaccag gtcgagggag aggttcaggt ggtttccacc 1380 gcaacacaat ccttcctggc gacctgcgtc aacggcgtgt gttggaccgt ttaccatggt 1440 gctggctcaa agaccttagc cggcccaaag gggccaatca cccagatgta cactaatgtg 1500 gaccaggacc tcgtcggctg gcaggcgccc cccggggcgc gttccttgac accatgcacc 1560 tgtggcagct cagaccttta cttggtcacg agacatgctg acgtcattcc ggtgcgccgg 1620 cggggcgaca gtagggggag cctgctctcc cccaggcctg tctcctactt gaagggctct 1680 tcgggtggtc cactgctctg cccttcgggg cacgctgtgg gcatcttccg ggctgccgta 1740 tgcacccggg gggttgcgaa ggcggtggac tttgtgcccg tagagtccat ggaaactact 1800 atgcggtctc cggtcttcac ggacaactca tcccccccgg ccgtaccgca gtcatttcaa 1860 gtggcccacc tacacgctcc cactggcagc ggcaagagta ctaaagtgcc ggctgcatat 1920 gcagcccaag ggtacaaggt gctcgtcctc aatccgtccg ttgccgctac cttagggttt 1980 ggggcgtata tgtctaaggc acacggtatt gaccccaaca tcagaactgg ggtaaggacc 2040 attaccacag gcgcccccgt cacatactct acctatggca agtttcttgc cgatggtggt 2100 tgctctgggg gcgcttatga catcataata tgtgatgagt gccattcaac tgactcgact 2160 acaatcttgg gcatcggcac agtcctggac caagcggaga cggCtggagc gcggcttctc 2220 gtgctcgcca ccgctacgcc tccgggatcg gtcaccgtgc cacacccaaa catcgaggag 2280 gtggCcctgt Ctaatactgg agagatcccc ttctatggca aagccatccc cattgaagcc 2340 atcagggggg gaaggcatct cattttctgt cattccaaga agaagtgcga cgagctcgcc 2400 gcaaagctgt caggcctcgg aatcaacgct gtggcgtatt accgggggct cgatgtgtcc 2460 gtcataccaa Ctatcggaga cgtcgttgtc gtggcaacag acgctctgat gacgggctat 2520 acgggcgact ttgactcagt gatCgactgt aacacatgtg tcacccagac agtcgacttc 2580 agcttggatc ccaccttcac cattgagacg acgaccgtgc ctcaagacgc agtgtcgcgc 2640 tcgcagcggc ggggtaggac tggcaggggt aggagaggca tctacaggtt tgtgactccg 2700 ggagaacggc cctcgggcat gttcgattcc tcggtcctgt gtgagtgcta tgacgcgggc 2760 tgtgcttggt acgagctcac ccccgccgag acctcggtta ggttgCgggc ctacctgaac 2820 acaccagggt tgcccgtttg ccaggaccac ctggagttct gggagagtgt cttcacagaC 2880 ctcacccaca tagatgcaca cttcttgtcc cagaccaagc aggcaggaga caacttcccc 2940 tacctggtag cagaccaagc cacggtgtgc gccagggctc aggccccacc tccatcatgg 3000 gatcaaatgt ggaagtgtct catacggctg aaacctacgc tgcacgggcc aacacccttg 3060 ctttacaggc tgggagccgt ccaaaatgag gtcaccctca cccaccccat aaccaaatac 3120 atcatggcat gcatgtcggc tgacctggag gtcgtcacta gcacttgggt gctggtgggc 3180 ggagtccttg cagctctggc cgcgtattgc ctgacaacag gcagtgtggt cattgtgggt 3240 aggattatct tgtccgggag gccggctatt gttcccgaca ggaagtttct ctaccaggag 3300 ttcgatgaaa tggaagagtg cccctcgcac ctcccttaca tcgagcaggg aatgcagctc 3360 gccgagcaat tcaagcagaa agcgctcggg ttactgcaaa cagccaccaa acaagcggag 3420 gctgctgctc ccgtcgtgca gtccaagtgg cgagcccttg agacattctg ggcgaagaac 3480 atgtggaatt tcatcagcgg gatacagtac ttagcaggtt tatccactct gcctgggaac 3540 cccgcaatag catcattgat ggcattcaca gcctctatca ccagcccgct caccccccaa 3600 agtaccctcc tgtttaacat cttggggggg tgggtggctg cccaactcgc cccccccagc 3660 gccggttcgg ctttcgtggg cgccggcatc gccggtgcgg ctgttggcag cataggcctt 3720 gggaaagtgc ttgtggacat tctggcgggt tatggagcag gagtggccgg cgcgctcgtg 3780 gccttcaagg tcatgagcgg cgagatgccc tccaccgagg acctggtcaa tctacttcct 3840 gccatcctct ctcctggcgc cctggtcgtc ggggtcgtgt gtggagcaat actgCgtcga 3900 cacgtgggtc cgggagaggg ggctgtgcag tggatgaacc ggctgatagc gttcgcctcg 3960 cgcggtaatc atgtttcccc cacgcactat gtgcctgaga gcgacgccgc agcgcgtgtt 4020 actcagatcc tctccagcct taccatcact cagctgctga aaaggctcca ccagtggatt 4080 aatgaagact gctccacacc gtgttccggc tcgtggctaa gggatgtttg ggactggata 4140 tgcacggtgt tgactgactt caagacctgg ctccagtcca agctcctgcc gcagctaccg 4200 ggagtccctt ttttctcgtg ccaacgcggg tacaagggag tctggcgggg agacggcatc 4260 atgcaaacca cctgcccatg tggagcacag atcaccggac atgtcaaaaa cggttccatg 4320 aggatcgtcg ggcctaagac ctgcagcaac acgtggcatg gaacattccc catcaacgca 4380 tacaccacgg gcccctgcac aacttctcca gcgccaaact attctagggc gctgtggcgg 4440 gtggccgctg aggattacgt ggaggtcacg cgggtggggg atttccacta cgtgacgggc 4500 atgaccactg acaacgtaaa gtgcccatgc caggttccgg ctcctgaatt cttcacggag 4560 gtggacggag tgcggttgca caggtacgct ccggcgtgca ggcctctcct acgagaggag 4620 gttacattcc aggtcgggct caaccaatac ctggttgggt cacagctacc atgcgagccc 4680 gaaccggatg tagcagtgct cacttccatg ctcaccgacc cctcccacat cacagcagaa 4740 acggctaagc gtaggttggc cagggggtct cccccctcct tggccagctc ttcagctagc 4800 cagttgtctg cgccttcctt gaaggcgaca tgcactaccc accatgtctc tccggacgct 4860 gacctcatcg acgccaacct cctgtggcgg caggagatgg gcgggaacat cacccgcgtg 4920 gagtcggaga acaaggtggt agtcctggac tctttcgacc cgcttcgagc ggaggaggat 4980 gagagggaag tatccgttcc ggcggagatc ctgcggaaat ccaagaagtt ccccgcagcg 5040 atgcccatct gggcgcgccc ggattacaac cctccactgt tagagtcctg gaaggacccg 5100 gactacgtcc ctccggtggt gcacgggtgc.ccgttgccac ctatcaaggc ccctccaata 5160 ccacctccac ggagaaagag gacggttgtc ctaacagagt cctccgtgtc ttctgcctta 5220 gcggagctcg ctactaagac cttcggcagc tccgaatcat cggccgtcga cagcggcacg 5280 gcgaccgccc ttcctgacca ggcctcccac gacggtgaca aaggatccga cgttgagtcg 5340 tactcctcca tgCCCCCCct tgagggggaa ccgggggacc ccgatctcag tgacgggtct 5400 tggtctaccg tgagcgagga agctagtgag gatgtcgtct gctgctcaat gtcctacaca 5460 tggacaggcg ccttgatcac gccatgcgct gcggaggaaa gcaagctgcc catcaacgcg 5520 ttgagcaact ctttgctgcg ccaccataac atggtttatg ccacaacatc tcgcagcgca 5580 ggccttcggc agaagaaggt cacctttgac agactgcaag tcctggacga ccactaccgg 5640 gacgtgctca aggagatgaa ggcgaaggcg tccacagtta aggctaaact cctatCCgta 5700 gaggaaccct gcaagctgac gcccccacat tcggccaaat ccaattttgg ctatggggca 5760 aaggacgtcc ggaacctatc cagcaaggcc gttaaccaca tccactccgt gtcgaaggac 5820 tttctggaag acactgtgac accaattgac accaccatca tggcaaaaaa tgaggttttc 5880 tgtgtccaac cagagaaagg aggccgtaag ccagcccgcc ttatcgtatt cccagatctg 5940 ggagtccgtg tatgcgagaa gatggccctc tatgatgtgg tctccaccct tcctcaggtc 6000 gtgatgggct cctcatacgg attccagtac tctcctggtC agcgagtcga gttcctggtg 6060 aatacctgga aatcaaagaa aaaccccatg ggcttttcat atgacactcg ctgtttcgac 6120 tcaacggtca ccgagaacga catccgtgtt gaggagtcaa tttaccaatg ttgtgacttg 6180 gcccccgaag ccagacaggc cataaaatcg ctcacagagc ggctttatat cgtgggtcct 6240 ctgactaatt caaaagggca ggactgcggt tatcgccggt gccgcgcgag cggcgtgctg 6300 acgactagct gcggaaacac cctcacatgt tacttgaagg cctctgcagc ctgtcgagct 6360 gcgaagctcc aggactgcac gatgctcgtg aacgccgccg gccttttcgt tatctgtgaa 6420 agcgcgggaa cccaagagga cgcggcgagc ctacgagtct tcacggaggc tatgactagg 6480 tactctgccc cccccgggga cccgccccaa ccagaatacg acttggagct gataacatca 6540 tgttcctcca atgtgtcggt cgcccacgat gcatcaggca aaagggtgta ctacctcacc 6600 cgtgatccca ccacccccct cgcacgggct gcgtgggaaa cagctagaca cactccagtt 6660 aactcctggc taggcaacat tatcatgtat gcgcccactt tgtgggcaag gatgattctg 6720 atgactcact tcttctccat ccttctagca caggagcaac ttgaaaaagc cctggactgc 6780 cagatctacg gggcctgtta ctccattgag ccacttgacc tacctcagat cattgaacga 6840 ctccatggcc ttagCgcatt ttcactccat agttactctc cagatgagat caatagggtg 6900 gcttcatgcc tcaggaaact tggggtacca cccttgcgag tctggagaca tcggggcagg 6960 agcgtccgcg ctaggctact gtcccagggg gggagggccg ccacttgtgg caagtacctc 7020 ttcaactggg cagtgaagac caaactcaaa ctcactccaa tcCcggCtgc gtcccagctg 7080 gacttgtccg gctggttcgt tgctggttac agcgggggag acatatatca cagcctgtct 7140 cgtgcccgac cccgctggtt catgctgtgc ctactcctac tttctgtagg ggtaggcatc 7200 tacctgctcc ccaaccggta aatctagagc tgtcccttct agttgccagc catctgttgt 7260 ttgcccctcc cccgtgcctt ccttgaccct ggaaggtgcc actcccactg tcctttccta 7320 ataaaatgag gaaattgcat cgcattgtct gagtaggtgt cattctattc tggggggtgg 7380 ggtggggcag gacagcaagg gggaggattg ggaagacaat agcaggcatg ctggggatgc 7440 ggtgggctct atggccgatc ggcgcgccgt actgaaatgt gtgggcgtgg cttaagggtg 7500 ggaaagaata tataaggtgg gggtcttatg tagttttgta tctgttttgc agcagccgcc 7560 gccgccatga gcaccaactc gtttgatgga agcattgtga gctcatattt gacaacgcgc 7620 atgcccccat gggccggggt gcgtcagaat gtgatgggct ccagcattga tggtcgcccc 7680 gtcctgcccg caaactctac taccttgacc tacgagaccg tgtctggaac gccgttggag 7740 actgcagcct ccgccgccgc ttcagccgct gcagccaccg cccgcgggat tgtgactgac 7800 tttgctttcc tgagcccgct tgcaagcagt gcagcttccc gttcatccgc ccgcgatgac 7860 aagttgacgg ctcttttggc acaattggat tctttgaccc gggaacttaa tgtcgtttct 7920 cagcagctgt tggatctgcg ccagcaggtt tctgccctga aggcttcctc ccctcccaat 7980 gcggtttaaa acataaataa aaaaccagac tctgtttgga tttggatcaa gcaagtgtct 8040 tgctgtcttt atttaggggt tttgcgcgcg cggtaggccc gggaccagcg gtctcggtcg 8100 ttgagggtcc tgtgtatttt ttccaggacg tggtaaaggt gactctggat gttcagatac 8160 atgggcataa gcccgtctct ggggtggagg tagcaccact gcagagcttc atgctgcggg 8220 gtggtgttgt agatgatcca gtcgtagcag gagcgctggg cggggtgcct aaaaatgtct 8280 ttcagtagca agctgattgc caggggcagg cccttgctat aagtgtttac aaagcggtta 8340 agctgggatg ggtgcatacg tggggatatg agatgcatct tggactgtat ttttaggttg 8400 gctatgttcc cagccatatc cctccgggga ttcatgttgt gcagaaccac cagcacagtg 8460 tatccggtgc acttgggaaa tttgtcatgt agcttagaag gaaatgcgtg gaagaacttg 8520 gagacgccct tgtgacttcc aagattttcc atgcattcgt ccataatgat ggcaatgggc 8580 ccacgggcgg cggcctgggc gaagatattt ctgggatcac taacgtcata gttgtgttcc 8640 aggatgagat cgtcataggc catttttaca aagcgcgggc ggagggtgcc agactgcggt 8700 ataatggttc catccggccc aggggcgtag ttaccctcac agatttgcat ttcccacgct 8760 ttgagttcag atggggggat catgtctacc tgcggggcga tgaagaaaac ggtttccggg 8820 gtaggggaga tcagctggga agaaagcagg ttcctgagca gctgcgactt accgcagccg 8880 gtgggcccgt aaatCacacc tattaccggc tgcaactggt agttaagaga gctgcagctg 8940 ccgtcatccc tgagcagggg ggccacttcg ttaagcatgt cccttactcg catgttttcc 9000 ctgaccaaat ccgccagaag gcgctcgccg cccagcgata gcagttcttg caaggaagca 9060 aagtttttca acggtttgag accgtccgcc gtaggcatgc ttttgagcgt ttgaccaagc 9120 agttccaggc ggtcccacag ctcggtcacc tggtctacgg catctcgatc cagcatatct 9180 cctcgtttcg cgggttgggg cggctttcgc tgtacggcag tagtcggtgc tcgtccagac 9240 gggccagggt catgtctttc cacgggcgca gggtcctcgt caacgtaatc tgggtcacgg 9300 tgaaggggtg cgctccgggc tgcgcgctgg ccagggtgcg cttgagagtg gtcctgctgg 9360 tgctgaagcg ctgccggtct tcgccctgcg cgtcggccag gtagcatttg accatggtgt 9420 catagtccag cccctccgcg gcgtggccct tggcgcgcag cttgcccttg gaggaggcgc 9480 cgcacgaggg gcagtgcaga cttttgaggg cgtagagctt gggcgcgaga aataccgatt 9540 ccggggagta ggcaaccgcg ccgcaggccc cgcagatggt ctcgcattcc acgagccagg 9600 tgagctctgg ccgttcgggg tcaaaaacca ggtttccccc atgctttttg atgcgtttct 9660 tacctctggt ttccataagc cggtgtccac gctcggtgac gaaaaggctg tccgtgtccc 9720 cgtatacaga cttgagaggc ctgtcctcga gccgttttcc gcggtcctcc tcgtatagaa 9780 actcggacca ctctgagacg aaggctcgcg tccaggccag cacgaaggag gctaagtggg 9840 aggggtagcg gtcgttgtcc actagggggt ccactcgctc cagggtgtga agacacatgt 9900 cgccctcttc ggcatcaagg aaggtgattg gtttataggt gtaggccacg tgaccgggtg 9960 ttcctgaagg ggggctataa aagggggtgg gggcgcgttc gtcctcactc tcttccgcat 10020 cgctgtctgc gagggccagc tgttggggtg agtactccct ctcaaaagcg ggcatgactt 10080 ctgcgctaag attgtcagtt tccaaaaacg aggaggattt gatattcacc tggcccgcgg 10140 tgatgccttt gagggtggcc gcgtccatct ggtcagaaaa gacaatcttt ttgttgtcaa 10200 gcttggtggc aaacgacccg tagagggcgt tggacagcaa cttggcgatg gagcgcaggg 10260 tttggttttt gtcgcgatcg gcgcgctcct tggccgcgat gtttagctgc acgtattcgc 10320 gcgcaacgca ccgccattcg ggaaagacgg tggtgcgctc gtcgggcact aggtgaaagc 10380 gccaaccgcg gttgtgcagg gtgacaaggt caacgctggt ggctacctct ccgcgtaggc 10440 gctcgttggt ccagcagagg cggccgccct tgcgcgagca gaatggcggt agtgggtcta 10500 gctgcgtctc gtccgggggg tctgcgtcca cggtaaagac cccgggcagc aggcgcgcgt 10560 cgaagtagtc tatcttgcat ccttgcaagt ctagcgcctg ctgccatgcg cgggcggcaa 10620 gcgcgcgctc gtatgggttg attgggggac cccatggcat ggggtgggtg agcgcggagg 10680 cgtacatgcc gcaaatgtcg taaacgtaga ggggctctct gagtattcca agatatgtag 10740 ggtagcatct tccaccgcgg atgctggcgc gcacgtaatc gtatagttcg tgcgagggag 10800 cgaggaggtc gggaccgagg ttgctacggg cgggctgctc tgctcggaag actatctgcc 10860 tgaagatggc atgtgagttg gatgatatgg ttggacgctg gaagacgttg aagctggcgt 10920 ctgtgagacc taccgcgtca cgcacgaagg aggcgtagga gtcgcgcagc ttgttgacca 10980 gctcggcggt gacctgcacg tctagggcgc agtagtccag ggtttccttg atgatgtcat 11040 acttatcctg tccctttttt ttccacagct cgggtttgag gacaaactct tcgcggtctt 11100 tccagtactc ttggatcgga aacccgtcgg cctccgaacg gtaagagcct agcatgtaga 11160 actggttgac ggcctggtag gcgcagcatc ccttttctac gggtagcgcg tatgcctgcg 11220 cggccttccg gagcgaggtg tgggtcacgg caaaggtgtc cctaaccatg actttgaggt 11280 actggtattt gaagtcagtg tcgtcgcatc cgccctgctc ccagagcaaa aagtccgtgc 11340 gctttttgga acgcgggttt ggcagggcga aggtgacatc gttgaagagt atctttcccg 11400 cgcgaggcat aaagttgcgt gtgatgCgga agggtcccgg cacctcggaa cggttgttaa 11460 ttacctgggc ggcgagcacg atctcgtcaa agccgttgat gttgtggccc acaatgtaaa 11520 gttccaagaa gcgcgggatg cccttgatgg aaggcaattt tttaagttcc tcgtaggtga 11580 gctcttcagg ggagctgagc ccgtgctctg aaagggccca gtctgcaaga tgagggttgg 11640 aagcgacgaa tgagctccac aggtcacggg ccattagcat ttgcaggtgg tcgCgaaagg 11700 tcctaaactg gcgacctatg gccatttttt ctggggtgat gcagtagaag gtaagcgggt 11760 cttgttccca gcggtcccat ccaaggtccg cggctaggtc tcgcgcggcg gtcactagag 11820 gctcatctcc gccgaacttc atgaccagca tgaagggcac gagctgcttc ccaaaggccc 11880 ccatccaagt ataggtctct acatcgtagg tgacaaagag acgctcggtg cgaggatgcg 11940 agccgatcgg gaagaaatgg atctcccgcc accagttgga ggagtggctg ttgatgtggt 12000 gaaagtagaa gtccctgcga cgggccgaac actcgtgctg gcttttgtaa aaacgtgcgc 12060 agtactggca gcggtgcacg ggctgtacat cctgcacgag gttgacctga cgaccgcgca 12120 caaggaagca gagtgggaat ttgagcccct cccctcgcgg gtttggctgg tggtcttcta 12180 cttcggctgc ttgtccttga ccgtctggct gctcgagggg agttacggtg gatcggacca 12240 ccacgccgcg cgagcccaaa gtccagatgt ccgcgcgcgg cggtcggagc ttgatgacaa 12300 catcgcgcag atgggagctg tccatggtct ggagctcccg cggcgtcagg tcaggcggga 12360 gctcctgcag gtttacctcg catagccggg tcagcgcgcg ggctaggtcc aggtgatacc 12420 tgatttccag gggctggttg gtggcggcgt cgatggcttg caagaggccg catcgccgcg 12480 gcgcgactac ggtaccgcgc ggcgggCggt gggccgcggg ggtgtccttg gatgatgcat 12540 ctaaaagcgg tgacgcgggc gggcccccgg aggtaggggg ggctcgggac ccgccgggag 12600 agggggcagg ggcacgtcgg cgccgcgcgc gggcaggagc tggtgctgcg cgcggaggtt 12660 gctggcgaac gcgacgacgc ggcggttgat ctcctgaatc tggcgcctct gcgtgaagac 12720 gacgggcccg gtgagcttga acctgaaaga gagttcgaca gaatcaattt cggtgtcgtt 12780 gacggcggcc tggcgcaaaa tctcctgcac gtctcctgag ttgtcttgat aggcgatctc 12840 ggccatgaac tgctcgatct cttcctcctg gagatctccg cgtccggctc gctccacggt 12900 ggcggcgagg tcgttggaga tgcgggccat gagctgcgag aagcggttga ggcctccctc 12960 gttccagacg cggctgtata ccacgccccc ttcggcatcg cgggcgcgca tgaccacctg 13020 cgcgagattg agctccacgt gccgggcgaa gacggcgtag tttcgcaggc gctgaaaaag 13080 gtagttgagg gtggtggcgg tgtgttctgc cacgaagaag tacataaccc agcgccgcaa 13140 cgtggattcg ttgatatccc ccaaggcctc aaggcgctcc atggcctcgt agaagtccac 13200 ggcgaagttg aaaaactggg agttgcgcgc cgacacggtt aactcctcct ccagaagacg 13260 gatgagctcg gcgacagtgt cgcgcacctc gcgctcaaag gctacagggg cctcttcttc 13320 ttcttcaatc tcctcttcca taagggcctc cccttcttct tcttctggcg gcggtggggg 13380 aggggggaca cggcggcgac gacggcgcac cgggaggcgg tcgacaaagc gctcgatcat 13440 ctccccgcgg cgacggcgca tggtctcggt gacggcgcgg ccgttctcgc gggggcgcag 13500 ttggaagacg ccgcccgtca tgtcccggtt atgggttggc ggggggctgc cgtgcggcag 13560 ggatacggcg ctaacgatgc atctcaacaa ttgttgtgta ggtactccgc caccgaggga 13620 cctgagcgag tccgcatcga ccggatcgga aaacctctcg agaaaggcgt ctaaccagtc 13680 acagtcgcaa ggtaggctga gcaccgtggc gggcggcagc gggCggcggt cggggttgtt 13740 tctggcggag gtgctgctga tgatgtaatt aaagtaggcg gtctggagac ggcggatgat 13800 cgacagaagc accatgtcct tgggtccggc ctgCtgaatg cgcaggcggt cggccatgcc 13860 ccaggcttcg ttttgacatc ggcgcaggtc tttgtagtag tcttgcatga gcctttctac 13920 cggcacttct tcttctcctt cctcttgtcc tgcatctctt gcatctatcg CtgcggcggC 13980 ggcggagttt ggccgtaggt ggcgccctct tcctcccatg cgtgtgaccc cgaagcccct 14040 catcggctga agcagggcca ggtcggcgac aacgcgctcg gctaatatgg cctgctgcac 14100 ctgcgtgagg gttgacttga agtcgtccat gtccacaaag cggtggtatg cgcccgtgtt 14160 gatggtgtaa gtgcagttgg ccataacgga ccagataacg gtctggtgac ccggctgcga 14220 gagctcggtg tacctgaaac gcgagtaagc ccttgagtca aagacgtagt cgttgcaagt 14280 ccgcacgagg tactggtatc ccaccaaaaa gtgcggcggc ggctggcggt agaggggcca 14340 gcgtaggggg gccggggctc cgggggcgag gtcttccaac ataaggcgat gatatccgta 14400 gatgtacctg gacatccagg tgatgccggc ggcggtggtg gaggcgcgcg gaaagtcacg 14460 gacgcggttc cagatgttgc gcagcggcaa aaagtgctcc atggtcggga cgctctggcc 14520 ggtcacgcgc gcgcagtcgt tgacgctcta gaccgtgcaa aaggagagcc tgtaagcggg 14580 cactcttccg tggtctggtg gataaattcg caagggtatc atggcgcacg accggggttc 14640 gaaccccgga tccggccgtc cgccgtgatc catgcggtta ccgcccgcgt gtcgaaccca 14700 ggtgtgcgac gtcagacaac gggggactgc tccttttggc ttccttccag gcgcggcgga 14760 tgctgcgcta gcttttttgg ccactccccg cgcgcggcgt aagcggttag gctggaaagc 14820 gaaagcatta agtggctcgc tccctgtagc cggagggtta ttttccaagg gttgagtcgc 14880 gggacccccg gttcgagtct cgggccggcc ggactgcggc gaacgggggt ttgcctcccc 14940 gtcatgcaag accccgcttg caaattcctc cggaaacagg gacgagcccc ttttttgctt 15000 ttcccagatg catccggtgc tgcggcagat gcgcccccct cctcagcagc ggcaagagca 15060 agagcagcgg cagacatgca gggcaccctc cccttcttct accgcgtcag gaggggcaac 15120 atccgcggct gacgcggcgg cagatggtga ttacgaaccc ccgcggcgcc ggacccggca 15180 ctacttggac ttggaggagg gcgagggcct ggCgcggcta ggagcgccct ctcctgagcg 15240 acacccaagg gtgcacctga agcgtgacac gcgcgaggcg tacgtgccgc ggcagaacct 15300 gtttcgcgac cgcgagggag aggagcccga gtagatgcgg gatcgaaagt tccatgcagg 15360 gcgcgagttg cggcatggcc ttaaccgcga gcgctttctg cgcgaggagg actttgagcc 15420 cgacgcgcgg accgggatta gtCCCgcgcg cgcacacgtg gcggccgccg acctggtaac 15480 cgcgtacgag cagacggtga accaggagat taactttcaa aaaagcttta acaaccacgt 15540 gcgcacgctt gtggcgcgcg aggaggtggc tataggactg atgcatctgt gggactttgt 15600 aagcgcgctg gagcaaaacc caaatagcaa gccgctcatg gcgcagctgt tccttatagt 15660 gcagcacagc agggacaacg aggcattcag ggatgcgctg ctaaacatag tagagcccga 15720 gggccgctgg ctgctcgatt tgataaacat tctgcagagc atagtggtgc aggagcgcag 15780 cttcagcctg gctgacaagg tggccgccat taactattcc atgctcagtc tgggcaagtt 15840 ttacgcccgc aagatatacc atacccctta cgttcccata gacaaggagg taaagatcga 15900 ggggttctac atgcgcatgg cgctgaaggt gcttaCcttg agcgacgacc tgggcgttta 15960 tcgcaaCgag cgcatccaca aggccgtgag cgtgagccgg cggcgcgagc tcagcgaccg 16020 cgagctgatg cacagcctgc aaagggccct ggctggcacg ggcagcggcg atagagatgc 16080 cgagtcctac tttgacgcgg gcgctgacct gctctgggcc ccaagccgac gcgccctgga 16140 ggcagctggg gccggacctg ggctggcggt ggcacccgcg cgcgctggaa acgtcggcgg 16200 Cgtggaggaa tatgagcagg acgatgagta cgagccagag gacggCgagt actaagcggt 16260 gatgtttctg atcagatgat gcaagacgca acggacccgg cggcgcgggc ggcgctgcag 16320 agccagccgt cgagccttaa ctccacggac gactggcgcc aggtcatgga ccgcataatg 16380 tcgctgactg cgcgcaaccc tgacgcgttc cggcaccagc cgcaggccaa ccggcttttc 16440 gcaattctgg aagcggtggt cccggCgCgc gcaaacccca cgcacgagaa ggtgctcgcg 16500 atcgtaaacg cgctggccga aaacagggcc atccggcccg atgaggccgg cttggtctac 16560 gacgcgctgc ttcagcgcgt ggctcgttac aacagcagca acgtgcagac caacctggac 16620 cggctggtgg gggatgtgcg cgagcccgtg gcgcagcgtg agcgcgcgca gcagcagggc 16680 aacctgggct ccatggttgc actaaacgcc ttcctgagta cacagcccgc caacgtaccg 16740 cggggacagg aggactacac caactttgtg agcgcactgc ggctaatggt gactgagaca 16800 ccgcaaagtg aggtgtatca gtccgggcca gactattttt tccagaccag taaacaaggc 16860 ctgcagaccg taaacctgag ccaggctttc aagaacttgc aggggctgtg gggggtgcgg 16920 gctcccacag gcgaccgcgc gaccgtgtct aacttgctga cgcccaactc gcgcctgttg 16980 ctgctgctaa tagcgccctt cacggacagt ggcagcgtgt cccgggacac atacctaggt 17040 cacttgctga cactgtaccg cgaggccata ggtcaggcgc atgtggacga gcatactttc 17100 caggagatta caagtgttag ccgcgcgctg gggcaggagg acacgggcag cctggaggca 17160 accctgaact acctgctgac caaccggcgg caaaaaatcc cctcgttgca cagtttaaac 17220 agcgaggagg agcgcatttt gcgctatgtg cagcagagcg tgagccttaa cctgatgcgc 17280 gacggggtaa cgcccagcgt ggcgctggac atgaccgcgc gcaacatgga accgggcatg 17340 tatgcctcaa accggccgtt tatcaatcgc ctaatggact acttgcatcg cgcggccgcc 17400 gtgaaccccg agtatttcac caatgccatc ttgaacccgc actggctaac gccccctggt 17460 ttctacaccg ggggattcga ggtgcccgag ggtaacgatg gattcctctg ggacgacata 17520 gacgacagcg tgttttcccc gcaaccgcag accctgctag agttgcaaca acgcgagcag 17580 gcagaggcgg cgctgcgaaa ggaaagcttc cgcaggccaa gcagcttgtc cgatctaggc 17640 gctgcggccc cgcggtcaga tgctagtagc ccatttccaa gcttgatagg gtctcttacc 17700 agcactcgca ccacccgccc gcgcctgctg ggcgaggagg agtacctaaa caactcgctg 17760 ctgcagccgc agcgcgaaaa gaacctgcct ccggcgtttc ccaacaacgg gatagagagC 17820 ctagtggaca agatgagtag atggaagacg tatgcgcagg agcacaggga tgtgcccggc 17880 ccgcgcccgc ccacccgtcg tcaaaggcac gaccgtcagc ggggtctggt gtgggaggac 17940 gatgactcgg cagacgacag cagcgtcttg gatttgggag ggagtggcaa cccgtttgca 18000 caccttcgcc ccaggctggg gagaatgttt taaaaaaaag catgatgcaa aataaaaaac 18060 tcaccaaggc catggcaccg agcgttggtt ttcttgtatt ccccttagta tgcggcgcgc 18120 ggcgatgtat gaggaaggtc ctcctccctc ctacgagagc gtggtgagcg cggcgccagt 18180 ggcagcggcg ctgggttcac ccttcgatgc tcccctggac ccgccgttcg tgcctccgcg 18240 gtacctgcgg cctaccgggg ggagaaacag catccgttac tctgagttgg cacccctatt 18300 cgacaccacc cgtgtgtacc ttgtggacaa caagtcaacg gatgtggcat ccctgaacta 18360 ccagaacgac cacagcaact ttctaaccac ggtcattcaa aacaatgact acagcccggg 18420 ggaggcaagc acacagacca tcaatcttga cgaccggtcg cactggggcg gcgacctgaa 18480 aaccatcctg cataccaaca tgccaaatgt gaacgagttc atgtttacca ataagtttaa 18540 ggcgcgggtg atggtgtcgc gctcgcttac taaggacaaa caggtggagc tgaaatacga 18600 gtgggtggag ttcacgctgc ccgagggcaa ctactccgag accatgacca tagaccttat 18660 gaacaacgcg atcgtggagc actacttgaa agtgggcagg cagaacgggg ttctggaaag 18720 cgacatcggg gtaaagtttg acacccgcaa cttcagactg gggtttgacc cagtcactgg 18780 tcttgtcatg CCtggggtat atacaaacga agccttccat ccagacatca ttttgctgcc 18840 aggatgcggg gtggacttca cccacagccg cctgagcaac ttgttgggca tccgcaagcg 18900 gcaacccttc caggagggct ttaggatcac ctacgatgac ctggagggtg gtaacattcc 18960 cgcactgttg gatgtggacg ccaaccaggc aaagttgaaa gatgacaccg aacagggcgg 19020 gggtggcgca ggcggcggca acaacagtgg cagcggcgcg gaagagaact ccaacgcggc 19080 agctgcggca atgcagcCgg tggaggacat gaacgatcat gccattcgcg gcgacacttt 19140 tgccacacgg gcggaggaga agcgcgctga ggccgaggca gcggccgaag ctgccgcccc 19200 cgctgcggag gctgCacaaC ccgaggtcga gaagcctcag aagaaaccgg tgattaaacc 19260 cctgacagag gacagcaaga aacgcagtta caacctaata agcaatgaca gcaccttcac 19320 ccagtaccgc agctggtacc ttgcatacaa ctacggcgac cctcaggccg ggatccgctc 19380 atggaccctg ctttgcactc ctgacgtaac ctgcggctcg gaggaggtat actggtcgtt 19440 gcccgacatg atgcaagacc ccgtgacctt ccgctccacg cgccagatca gcaactttcc 19500 ggtggtgcgc gccgagcttt tgcgcgtgca ctccaagagc ttctacaacg accaggccgt 19560 ctactcccag ctcatccgcc agtttacctc tctgacccac gtgttcaatc gctttcccga 19620 gaaccagatt ttagcgcccc cgccagcccc caccatcacc accgtcagtg aaaacgttcc 19680 tgctctcaca gatcacggga cgctaccgct gcgcaacagc atcggaggag tccagcgagt 19740 gaccattact gacgccagac gccgcacctg cccctacgtt tacaaggccc tgggcatagt 19800 ctcgccgcgc gtcctatcga gccgcacttt ttgagcaagc atgtccatcc ttatatcgcc 19860 cagcaataac acaggctggg gcctgcgctt cccaagcaag atgtttggcg gggccaagaa 19920 gcgctccgac caacacccag tgcgcgtgcg cgggcactac cgCgcgccct ggggcgcgca 19980 caaacgcggc cgcactggtc gcaccaccgt cgatgatgcc atcgacgcgg tggtggagga 20040 ggcgcgcaac tacacgccca cgccgccgcc agtgtccacc gtggacgcgg ccattcagac 20100 cgtggtgcgc ggagcccggc gctacgctaa aatgaagaga cggcggaggc gcgtagcacg 20160 tcgccaccgc cgccgacccg gcactgccgc ccaacgcgcg gcggcggccc tgcttaaccg 20220 cgcacgtggc accggccgac gggcggccat gcgagccgct cgaaggctgg ccgcgggtat 20280 tgtcactgtg ccccccaggt ccaggcgacg agcggccgcc gcagcagccg cggccattag 20340 tgctatgact cagggtcgca ggggcaacgt gtactgggtg cgcgactcgg ttagcggcct 20400 gcgcgtgccc gtgcgcaccc gccccccgcg caactagatt gcaataaaaa actacttaga 20460 ctcgtactgt tgtatgtatc cagcggcggc ggcgcgcatc gaagctatgt ccaagcgcaa 20520 aatcaaaaaa gagatgctcc aggtcatcgc gccggagatc tatggccccc cgaagaagga 20580 agagcaggat tacaaccccc gaaagctaaa gcgggtcaaa aagaaaaaga aagatgatga 20640 tgatgatgaa cttgacgacg aggtggaact gttgcacgcg accgcgccca ggcgacgggt 20700 acagtggaaa ggtcgacgcg taagacgtgt tttgcgaccc ggcaccaccg tagtctttac 20760 gcccggtgag cgctccaccc gcacctacaa gcgcgtgtat gatgaggtgt acggcgacga 20820 ggacctgctt gagcaggcca acgagcgcct cggggagttt gcctacggaa agcggcataa 20880 ggacatgctg gcgttgccgc tggacgaggg caacccaaca cctagcctaa agcccgtgac 20940 actgcagcag gtgctgcgcg cgcttgcacc gtccgaagaa aagcgcggcc taaagcgcga 21000 gtctggtgac ttggcaccca ccgtgcagct gatggtaccc aagcgtcagc gactggaaga 21060 tgtcttggaa aaaatgaccg tggagcctgg gctggagccc gaggtccgcg tgcggccaat 21120 caagcaggtg gcaccgggac tgggcgtgca gaccgtggac gttcagatac ccaccaccag 21180 tagcactagt attgccactg ccacagaggg catgtagaaa caaacgtccc cggttgcctc 21240 ggcggtggca gatgccgcgg tgcaggcggc cgctgcggcc gcgtccaaga cctctacgga 21300 ggtgcaaacg gacccgtgga tgtttcgtgt ttcagccccc cggcgtccgC gccgttcaag 21360 gaagtacggc gccgccagcg cgctactgcc cgaatatgcc ctacatcctt ccatcgcgcc 21420 tacccccggc tatcgtggct acacctaccg ccccagaaga cgagcaacta cccgacgccg 21480 aaccaccact ggaacccgcc gccgccgtcg ccgtcgccag cccgtgctgg ccccgatttc 21540 cgtgcgcagg gtggctcgcg aaggaggcag gaccctggtg ctgccaacag cgcgctacca 21600 ccccagcatc gtttaaaagc cggtctttgt ggttcttgca gatatggccc tcacctgccg 21660 cctccgtttc ccggtgccgg gattccgagg aagaatgcac cgtaggaggg gcatggccgg 21720 ccacggcctg acgggcggca tgcgtcgtgc gcaccaccgg cggcggcgcg cgtcgcaccg 21780 tcgcatgcgc ggcggtatcc tgcccctcct tattccactg atcgccgcgg cgattggcgc 21840 cgtgcccgga attgcatccg tggccttgca ggcgcagaga cactgattaa aaacaagtta 21900 catgtggaaa aatcaaaata aaagtctgga ctctcacgct cgcttgctcc tgtaactatt 21960 ttgtagaatg gaagacatca actttgcgtc actggccccg cgacacggct cgcgcccgtt 22020 catgggaaac tggcaagata tcggcaccag caatatgagc ggtggcgcct tcagctgtgg 22080 ctcgctgtgg agcggcatta aaaatttcgg ttccgcggtt aagaactatg gcagcaaagc 22140 ctggaaaagc agcacaggcc agatgctgag ggacaagttg aaagagcaaa atttccaaca 22200 aaaggtggta gatggcctgg cctctggcat tagcggggtg gtggacctgg ccaaccaggc 22260 agtgcaaaat aagattaaca gtaagcttga tccccgccct cccgtagagg agcctccacc 22320 ggccgtggag acagtatctc cagaggggcg tggcgaaaag cgtccgcgac ccgacaggga 22380 aaaaactctg gtgacgcaaa tagacgagcc tccctcgtac gaggaggcac taaagcaagg 22440 cctgcccacc acccgtccca tcgcgcccat ggctaccgga gtgctgggcc agcacacacc 22500 cgtaacgctg gacctgcctc cccccgccga cacccagcag aaacctgtgc tgccaggccc 22560 gtccgccgtt gttgtaacCc gtcctagccg cgcgtccctg cgccgcgCCg ccagcggtcc 22620 gcgatcgttg cggcccgtag ccagtggcaa ctggcaaagc acactgaaca gcatcgtggg 22680 tttgggggtg caatccctga agcgccgacg atgcttctga tagctaacgt gtcgtatgtg 22740 tgtcatgtat gcgtccatgt cgccgccaga ggagctgctg agccgccgcg cgcccgcttt 22800 ccaagatggc taccccttcg atgatgccgc agtggtctta catgcacatc tcgggccagg 22860 acgcctcgga gtacctgagc cccgggctgg tgcagttcac ccgcgccacc gagacgtact 22920 tcagcctgaa taacaagttt agaaacccca cggtggcgcc tacgcacgac gtgaccacag 22980 accggtctca gcgtttgacg ctgcggttca tcccggtgga ccgcgaggat actgcgtact 23040 cgtacaaggc gcggttcacc ctagctgtgg gtgataaccg tgtgctagac atggcttcca 23100 cgtactttga catccgcggc gtgctggaca gggcccctac ttttaagccc tactctggca 23160 ctgcctacaa cgcactggcc cccaagggtg cccccaactc gtggaagtgg gaacaaaatg 23220 aaactgcaca agtggatgct caagaacttg acgaagagga gaatgaagcc aatgaagctc 23280 aggcgcgaga acaggaacaa gctaagaaaa cccatgtata tgcccaggct ccactgtccg 23340 gaataaaaat aactaaagaa ggtctacaaa taggaactgc cgacgccaca gtagcaggtg 23400 ccggcaaaga aattttcgca gacaaaactt ttcaacctga accacaagta ggagaatctc 23460 actggaacga agcggatgcc acagcagctg gtggaagggt tcttaaaaag acaactccca 23520 tgaaaccctg ctatggctca tacgctagac ccaccaattc caacggcgga cagggcgtta 23580 tggttgaaca aaatggtaaa ttggaaagtc aagtcgaaat gcaatttttt tccacatcca 23640 caaatgccac aaatgaagtt aacaatatac aaccaacagt tgtattgtac agcgaagatg 23700 taaacatgga aactccagat actcatcttt cttataaacc taaaatgggg gataaaaatg 23760 ccaaagtcat gcttggacaa caagcaaagc caaacagacc aaattacatt gcttttagag 23820 acaattttat tggtctcatg tattacaaca gcacaggtaa catgggtgtc cttgctggtc 23880 aggcatcgca gttgaacgct gttgtagatt tgcaagacag aaacacagag ctgtcctacc 23940 agcttttgct tgattcaatt ggcgacagaa caagatactt ttcaatgtgg aatcaagctg 24000 ttgacagcta tgatccagat gtcagaatta ttgagaacca tggaactgag gatgagttgc 24060 caaattattg cttccctctt ggtggaattg ggattactga cacttttcaa gctgttaaaa 24120 caactgctgc taacggggac caaggcaata ctacctggca aaaagattca acatttgcag 24180 aacgcaatga aataggggtg ggaaataact ttgccatgga aattaacctg aatgccaacc 24240 tatggagaaa tttcctttac tccaatattg cgctgtacct gccagacaag ctaaaataca 24300 accccaccaa tgtggaaata tctgacaacc ccaacaacca cgactacatg aacaagcgag 24360 tggtggctcc tgggcttgta gactgctaca ttaaccttgg ggcgcgctgg tctctggact 24420 acatgaacaa cgttaatccc tttaaccacc accgcaatgc gggcctgcgt taccgctcca 24480 tgttgttggg aaacggccgc tacgtgccct ttcacattca ggtgccccaa aagttttttg 24540 ccattaaaaa cctcctcctc ctgccaggct catacacata tgaatggaac ttcaggaagg 24600 atgttaacat ggttctgcag agctctctgg gaaacgacct tagagttgac ggggctagca 24660 ttaagtttga cagcatttgt ctttacgcca ccttcttccc catggcccac aacacggcct 24720 ccacgctgga agccatgctc agaaatgaca ccaacgacca gtcctttaat gactaccttt 24780 ccgccgccaa catgctatat cccatacccg ccaacgccac caacgtgccc atctccatcc 24840 catcgcgcaa ctgggcagca tttcgcggtt gggccttcac acgcttgaag acaaaggaaa 24900 ccccttccct gggatcaggc tacgaccctt actacaccta ctctggctcc ataccatacc 24960 ttgacggaac cttctatctt aatcacacct ttaagaaggt ggccattact tttgactctt 25020 ctgttagctg gccgggcaac gaccgcctgc ttactcccaa tgagtttgag attaagcgct 25080 cagttgacgg ggagggctat aacgtagctc agtgcaacat gacaaaggac tggttcctag 25140 tgcagatgtt ggccaactac aatattggct accagggctt ctacattcca gaaagctaca 25200 aagaccgcat gtactcgttc ttcagaaact tccagcccat gagccggcaa gtggtggacg 25260 atactaaata caaagattat cagcaggttg gaattatcca ccagcataac aactcaggct 25320 tcgtaggcta cctcgctccc accatgcgcg agggacaagc ttaccccgct aatgttccct 25380 acccactaat aggcaaaacc gcggttgata gtattaccca gaaaaagttt ctttgcgacc 25440 gcaccctgtg gcgcatcCCc ttctccagta actttatgtc catgggtgcg ctcacagacc 25500 tgggccaaaa ccttctctac gcaaactccg cccacgcgct agacatgacc tttgaggtgg 25560 atcccatgga cgagcccacc cttctttatg ttttgtttga agtctttgac gtggtccgtg 25620 tgcaccagcc gcaccgcggc gtcatcgaga ccgtgtacct gcgcacgccc ttctcggccg 25680 gcaacgccac aacataaaga agcaagcaac atcaacaaca gctgccgcca tgggctccag 25740 tgagcaggaa ctgaaagcca ttgtcaaaga tcttggttgt gggccatatt ttttgggcac 25800 ctatgacaag cgcttcccag gctttgtttc cccacacaag ctcgcctgcg ccatagttaa 25860 cacggccggt cgcgagactg ggggcgtaca ctggatggcc tttgcctgga acccgcgctc 25920 aaaaacatgc tacctctttg agccctttgg cttttctgac caacgtctca agcaggttta 25980 ccagtttgag tacgagtcac tcctgcgccg tagcgccatt gcctcttccc ccgaccgctg 26040 tataacgctg gaaaagtcca cccaaagcgt gcaggggccc aactcggccg cctgtggcct 26100 attctgctgc atgtttctcc acgCctttgc caactggccc caaactccca tggatcacaa 26160 ccccaccatg aaccttatta ccggggtacc caactccatg cttaacagtc cccaggtaca 26220 gcccaccctg cgccgcaacc aggaacagCt ctacagcttc ctggagcgcc actcgcccta 26280 cttccgcagc cacagtgcgc aaattaggag cgccacttct ttttgtcact tgaaaaacat 26340 gtaaaaataa tgtactagga gacactttca ataaaggcaa atgtttttat ttgtacactc 26400 tcgggtgatt atttaccccc acccttgccg tctgcgccgt ttaaaaatca aaggggttct 26460 gccgcgcatc gctatgcgcc actggcaggg acacgttgcg atactggtgt ttagtgctcc 26520 acttaaactc aggcacaacc atccgcggca gctcggtgaa gttttcactc cacaggctgc 26580 gcaccatcac caacgcgttt agcaagtcgg gcgccgatat cttgaagtcg cagttggggc 26640 ctccgccctg cgcgcgcgag ttgcgataca cagggttaca gcactggaac actatcagcg 26700 ccgggtggtg cacgctgccc agcacgctct tgtcggagat cagatccgcg tccaggtcct 26760 ccgcgttgct cagggcgaac ggagtcaact ttggtagctg ccttcccaaa aagggtgcat 26820 gcccaggctt tgagttgcac tcgcaccgta gtggcatcag aaggtgaccg tgcccagtct 26880 gggcgttagg atacagcgcc tgcatgaaag ccttgatctg cttaaaagcc acctgagcct 26940 ttgcgccttc agagaagaac atgccgcaag acttgccgga aaactgattg gccggacagg 27000 ccgcgtcatg cacgcagcac cttgcgtcgg tgttggagat ctgcaccaca tttcggcccc 27060 accggttctt cacgatcttg gccttgctag actgctcctt cagcgcgcgc tgcccgtttt 27120 cgctcgtcac atccatttca atcacgtgct ccttatttat cataatgctc ccgtgtagac 27180 acttaatgtc gccttcgatc tcagcgcagc ggtgcagcca caacgcgcag cccgtgggct 27240 cgtggtgctt gtaggttacc tctgcaaacg actgcaggta cgcctgcagg aatcgcccca 27300 tcatcgtcac aaaggtcttg ttgctggtga aggtcagctg caacccgcgg tgctcctcgt 27360 ttagccaggt cttgcatacg gccgccagag cttccacttg gtcaggcagt agcttgaagt 27420 ttgcctttag atcgttatcc acgtggtact tgtccatcaa cgcgcgcgca gcctccatgc 27480 ccttctccca cgcagacacg atcggcaggc tcagcgggtt tatcaccgtg ctttcacttt 27540 ccgcttcact ggactcttcc ttttcctctt gcatccgcat accccgcgcc actgggtcgt 27600 cttcattcag ccgccgcacc gtgcgcttac ctcccttgcc gtgcttgatt agcaccggtg 27660 ggttgctgaa acccaccatt tgtagcgcca catcttctct ttcttcctcg ctgtccacga 27720 tcacctctgg ggatggcggg cgctcgggct tgggagaggg gcgcttcttt ttctttttgg 27780 acgcaatggc caaatccgcc gtcgaggtcg atggccgcgg gctgggtgtg cgcggcacca 27840 gcgcatcttg tgacgagtct tcttcgtcct cgcactcgag acgccgcctc agccgctttt 27900 ttgggggcgc gcggggaggc ggcggcgacg gcgacgggga cgagacgtcc tccatggttg 27960 gtggacgtcg cgccgcaccg cgcccgcgct cgggggtggt ttcgcgctgc tcctcttccc 28020 gactggccat ttccttctcc tataggcaga aaaagatcat ggagtcagtc gagaaggagg 28080 acagcctaac cgcccccttt gagttcgcca ccaccgcctc caccgatgcc gccaacgcgc 28140 ctaccacctt ccccgtcgag gcaccccggc ttgaggagga ggaagtgatt atcgagcagg 28200 acccaggttt tgtaagcgaa gacgacgaag atcgctcagt accaacagag gataaaaagc 28260 aagaccagga cgacgcagag gcaaacgagg aacaagtcgg gcggggggac caaaggcatg 28320 gcgactacct agatgtggga gacgacgtgc tgttgaagca tctgcagcgc cagtgcgcca 28380 ttatctgcga cgcgttgcaa gagcgcagcg atgtgcccct cgccatagcg gatgtcagcc 28440 ttgcctacga acgccacctg ttctcaccgc gcgtaccccc caaacgccaa gaaaacggca 28500 catgcgagcc caacccgcgc ctcaacttct accccgtatt tgccgtgcca gaggtgcttg 28560 ccacctatca catctttttc caaaaCtgca agatacccct atcctgccgt gccaaccgca 28620 gccgagcgga caagcagctg gccttgcggc agggcgctgt catacctgat atcgcctcgc 28680 tcgacgaagt gccaaaaatc tttgagggtc ttggacgcga cgagaagcgc gcggcaaacg 28740 ctctgcaaca agaaaacagc gaaaatgaaa gtcactgtgg agtgctggtg gaacttgagg 28800 gtgacaacgc gcgcctagcc gtgctgaaac gcagcatcga ggtCacccac tttgcctacc 28860 cggcacttaa cctacccccc aaggttatga gcacagtcat gagcgagctg atcgtgcgcc 28920 gtgcacgacc cctggagagg gatgcaaact tgcaagaaca aaccgaggag ggcctacccg 28980 cagttggcga tgagcagctg gcgcgctggc tggagacgcg cgagcctgcc gacttggagg 29040 agcgacgcaa gctaatgatg gccgcagtgc ttgttaccgt ggagcttgag tgcatgcagc 29100 ggttctttgc tgacccggag atgcagcgca agctagagga aacgttgcac tacacctttc 29160 gccagggcta cgtgcgccag gcctgcaaaa tttccaacgt ggagctttaC aacctggtct 29220 cctaccttgg aattttgcac gaaaaccgcc ttgggcaaaa cgtgcttcat tccacgctca 29280 agggcgaggc gcgccgcgac tacgtccgcg actgcgttta cttatttctg tgctacacct 29340 ggcaaacggc catgggcgtg tggcagcagt gcctggagga gcgcaacctg aaggagctgc 29400 agaagctgct aaagcaaaac ttgaaggacc tatggacggc cttcaacgag ccctccttgg 29460 ccgcgcacct ggcggacatt atcttccccg aacgcctgct taaaaccctg caacagagtc 29520 tgccagactt caccagtcaa agcatgttgc aaaactttag gaactttatc ctagagcgtt 29580 caggaattct ggccgccacc tgctgtgcgc ttcctagcga ctttgtgccc attaagtacc 29640 gtaaatgccc tccgccgctt tggggtcact gctaccttct gcagctagcc aactaccttg 29700 cctaccactc cgacatcatg gaagacgtga gcggtgacgg cctactttag tgtcactgtc 29760 gctgcaacct atgcaccccg caccgctccc tggtctgcaa ttcacaactg cttagcgaaa 29820 gtcaaattat cggtaccttt gagctgcagg gtccctcgcc tgacgaaaag tccgcggctc 29880 cggggttgaa actcactccg gggctgtgga cgtcggctta ccttcgcaaa tttgtacctg 29940 aggactacca cgcccacgag attaggttct acgaagacca atcccgcccg ccaaatgcgg 30000 agcttaccgc ctgcgtcatt acccagggcc acatccttgg ccaattgcaa gcctttaaca 30060 aagcccgcca agagtttctg ctacgaaagg gacggggggt ttacttggac ccccagtccg 30120 gcgaggagct caacccaatc cccccgccgc cgcagcccta tcagcagccg cgggcccttg 30180 cttcccagga tggcacccaa aaagaagctg cagctgccgc cgccgccacc cacggacgag 30240 gaggaatact gggacagtca ggcagaggag gttttggacg aggaggagga gatgatggaa 30300 gactgggaca gcctagacga ggaaatttcc gaggccgaag aggtgtcaga cgaaacaccg 30360 tcaccctcgg tcgcattccc ctcaccggcg ccccagaaat cggcaaccgt tcccagcatt 30420 gctacaacct ccgctcctca ggcgccgccg gcactgcccg ttcgccgacc caaccgaaca 30480 tgggacacca ctggaaccag ggccggtaag tctaagcagc cgccgccgtt agcccaagag 30540 caacaacagc gccaaggcta ccgctcgtgg cgcgtgcaca agaaccccat agtttgttgc 30600 ttgcaagact gtgggggcaa catctccttc gcccgccgct ttcttctcta ccatcacggc 30660 gtggccttcc cccgtaacat cctgcattac taccgtcatc tctacagccc ctactgcacc 30720 ggcggcagcg gcagcaacag cagcggccac gcagaagcaa aggcgaccgg atagcaagac 30780 tctgacaaag cccaagaaat ccacagcggc ggcagcagca ggaggaggag cactgcgtct 30840 ggcgcccaac gaacccgtat cgacccgcga gcttagaaac aggatttttc ccactctgta 30900 tgctatattt caacagagca ggggccaaga acaagagctg aaaataaaaa acaggtctct 30960 gcgctccctc acccgcagct gcctgtatca caaaagcgaa gatcagcttc ggcgcacgct 31020 ggaagacgcg gaggctctct tcagcaaata ctgcgcgctg actcttaagg actagtttcg 31080 cgccctttct caaatttaag cgcgaaaact acgtcatctc cagcggccac acccggcgcc 31140 agcacctgtc gtcagcagca ttatgagcaa ggaaattccc acgccctaca tgtggagtta 31200 ccagccacaa atgggacttg cggctggagc tgcccaagac tactcaaccc gaataaacta 31260 catgagcgcg ggaccccaca tgatatcccg ggtcaacgga atccggggcc accgaaaccg 31320 aattctcctc gaacaggcgg ctattaccac cacacctcgt aataacctta atccccgtag 31380 ttggcccgct gccctggtgt accaggaaag tcccgctccc accactgtgg tacttcccag 31440 agacgcccag gccgaagttc agatgactaa ctcaggggcg cagcttgcgg gcggctttcg 31500 tcacagggtg cggtcgcccg ggcagggtat aactcacctg aaaatcagag ggcgaggtat 31560 tcagctcaac gaacagtcgg tgagctcctc tcttggtctc cgtccggacg ggacatttca 31620 gatcggcggc gctggccgct cttcatttac gccccgtcag gcgatcctaa ctctgcagac 31680 ctcgtcctcg gagccgcgct ccggaggcat tggaactcta caatttattg aggagttcgt 31740 gccttcggtt tacttcaacc ccttttctgg acctcccggc cactacccgg accagtttat 31800 tcccaacttt gacgcggtaa aagactcggc ggacggctac gactgaatga ccagtggaga 31860 ggcagagcaa ctgcgcctga cacacctcga ccactgccgc cgccacaagt gctttgcccg 31920 cggctccggt gagttttgtt actttgaatt gcccgaagag catatcgagg gcccggcgca 31980 cggcgtccgg ctcaccaccc aggtagagct tacacttagc ctgattcggg agtttaccaa 32040 gcgccccctg ctagtggagc gggagcgggg tccctgtgtt ctgaccgtgg tttgcaactg 32100 tcctaaccct ggattacatc aagatcttat tccattcaac taacaataaa cacacaataa 32160 attacttact taaaatcagt cagcaaatct ttgtccagct tattcagcat cacctccttt 32220 ccctcctccc aactttggta tttcagcagc cttttagctg cgaactttct ccaaagtcta 32280 aatgggatgt caaattcctc atgttcttgt ccctccgcac ccactatctt catatttttg 32340 cagatgaaac gcgccagacc gtctgaagac accttcaacc ctgtgtaccc atatgacacg 32400 gaaaccggcc ctccaactgt gcctttcctt acccctccct ttgtgtcgcc aaatgggttc 32460 caagaaagtc cccccggagt gctttctttg cgtctttcag aacttttggt tacctcacac 32520 ggcatgcttg cgctaaaaat gggcagcggc ctgtccctgg atcaggcagg caaccttaca 32580 tcaaatacaa tcactgtttc tcaaccgcta aaaaaaacaa agtccaatat aactttggaa 32640 acatccgcgc cccttacagt cagctcaggc gccctaacca tggccacaac ttcgcctttg 32700 gtggtctctg acaacactct taccatgcaa tcacaagcac cgctaaccgt gcaagactca 32760 aaacttagca ttgctaccaa agagccactt acagtgttag atggaaaact ggccctgcag 32820 acatcagccc ccctctctgc cactgataac aacgccctca Ctatcactgc ctcacctcct 32880 cttactactg caaatggtag tctggctgtt accatggaaa acccacttta caacaacaat 32940 ggaaaacttg ggctcaaaat tggcggtcct ttgcaagtgg caacagactc acatgcacta 33000 acactaggta ctggtcaggg ggttggagtt cataacaatt tgctacatac aaaagttaca 33060 ggcgcaatag ggtttgatac atctggcaac atggaactta aaactggaga tggcctctat 33120 gtggatagcg ccggtcctaa ccaaaaacta catattaatc taaataccac aaaaggcctt 33180 gcttttgaca acaccgcaat aacaattaac gctggaaaag ggttggaatt tgaaacagac 33240 tcctcaaacg gaaatcccat aaaaacaaaa attggatcag gcatacaata taataccaat 33300 ggagctatgg ttgcaaaact tggaacaggc ctcacttttg acagctccgg agccataaca 33360 atgggcagca taaacaatga cagacttact ctttggacaa caccagaccc atccccaaat 33420 tgcagaattg cttcagataa agactgcaag ctaactctgg cgctaacaaa atgtggcagt 33480 caaattttgg gcactgtttc agctttggca gtatcaggta atatggcctc catcaatgga 33540 actctaagca gtgtaaactt ggttcttaga tttgatgaca acggagtgct tatgtcaaat 33600 tcatcactgg acaaacagta ttggaacttt agaaacgggg actccactaa cggtcaacca 33660 tacactaatg ctgttgggtt tatgccaaac ctaaaagctt acccaaaaac tcaaaataaa 33720 actgcaaaaa gtaatattgt tagccaggtg tatcttaatg gtgacaagtc taaaccattg 33780 cattttacta ttacgctaaa tggaacagat gaaaccaacc aagtaagcaa atactcaata 33840 tcattcagtt ggtcctggaa cagttgacaa tacactaatg aaaaatttgc caccaattcc 33900 tataccttct cctacattgc ccaggaataa agaatcgtga acctgttgca tgttatgttt 33960 caacgtgttt atttttcaat tgcagaaaat ttcaagtcat ttttcattca gtagtatagc 34020 cccaccacca catagcttat actaatcacc gtaccttaat caaactcaca gaaccctagt 34080 attcaacctg ccacctccct cccaacacac agagtacaca gtcctttctc cccggctggc 34140 cttaaacagc atcatatcat gggtaacaga catattctta ggtgttatat tccacacggt 34200 ctcctgtcga gccaaacgct catcagtgat gttaataaac tccccgggca gctcgcttaa 34260 gttcatgtcg ttgtccagct gctgagccac aggctgctgt ccaacttgcg gttgctcaac 34320 gggcggcgaa ggagaagtcc acgcctacat gggggtagag tcataatcgt gcatcaggat 34380 agggcggtgg tggtgcagca gcgcgcgaat aaactgctgc cgccgccgct ccgtcctgca 34440 ggaatacaac atggcagtgg tctcctcagc gatgattcgc accgcccgca gcataaggcg 34500 ccttgtcctc cgggcacagc agcgcaccct gatctcactt aagtcagcac agtaactgca 34560 gcacaagacc ataatattgt ttaaaatccc acagtgcaag gCgctgtatc caaagctcat 34620 ggcggggacc acagaaccca cgtggccatc ataccacaag cgcaggtaga ttaagtggcg 34680 acccctcata aacacgctgg acataaacat tacctctttt ggcatgttgt aattcaCCac 34740 ctcccggtac catataaacc tctgattaaa catggcgcca tccaccacca tcctaaacca 34800 gctggacaaa acctgcccgc cggctatgca ctgcagggaa ccgggactgg aacaatgaca 34860 gtggagagcc caggactcgt aaccatggat catcatgctc gtcatgatat caatgttggc 34920 acaacacagg cacacgtgca tacacttcct caggattaca agctcctccc gcgtcagaac 34980 catatcccag ggaacaaccc attcctgaat cagcgtaaat cccacactgc agggaagacc 35040 tcgcacgtaa ctcacgttgt gcattgtcaa agtgttacat tcgggcagca gcggatgatc 35100 ctccagtatg gtagcgcggg tttctgtctc aaaaggaggt agacgatccc tactgtacgg 35160 agtgcgccga gacaaccgag atcgtgttgg tcgtagtgtc atgccaaatg gaacgccgga 35220 cgtagtcata tttcctgaag caaaaccagg tgcgggcgtg acaaacagat ctgcgtctcc 35280 ggtctcgccg cttagatcgc tctgtgtagt agttgtagta tatccactct ctcaaagcat 35340 ccaggcgccc cctggcttcg ggttctatgt aaactccttc atgcgccgct gccctgataa 35400 catccaccac cgcagaataa gccacaccca gccaacctac acattCgttc tgcgagtcac 35460 acacgggagg agcgggaaga gctggaagaa ccatgttttt ttttttattc caaaagatta 35520 tccaaaacct caaaatgaag atctattaag tgaacgcgct cccctccggt ggcgtggtca 35580 aactctacag ccaaagaaca gataatggca tttgtaagat gttgcacaat ggcttccaaa 35640 aggcaaacgg ccctcacgtc caagtggacg taaaggctaa acccttcagg gtgaatctcc 35700 tctataaaca ttccagcacc ttcaaccatg cccaaataat tctcatctcg ccaccttctc 35760 aatatatctc taagcaaatc ccgaatatta agtccggcca ttgtaaaaat ctgctccaga 35820 gcgccctcca ccttcagcct caagcagcga atcatgattg caaaaattta ggttcctcac 35880 agacctgtat aagattcaaa agcggaacat taacaaaaat accgcgatcc cgtaggtccc 35940 ttcgcagggc cagctgaaca taatcgtgca ggtctgcacg gaccagcgcg gccacttccc 36000 cgccaggaac catgacaaaa gaacccacac tgattatgac acgcatactc ggagctatgc 36060 taaccagcgt agccccgatg taagcttgtt gcatgggcgg cgatataaaa tgcaaggtgc 36120 tgctcaaaaa atcaggcaaa gcctcgcgca aaaaagaaag cacatcgtag tcatgctcat 36180 gcagataaag gcaggtaaaC tccggaacca ccacagaaaa agacaccatt tttctctcaa 36240 acatgtctgc gggtttctgc ataaacacaa aataaaataa caaaaaaaca tttaaacatt 36300 agaagcctgt cttacaacag gaaaaacaac ccttataagc ataagacgga ctacggccat 36360 gccggcgtga ccgtaaaaaa actggtcacc gtgattaaaa agcaccaccg acagctcctc 36420 ggtcatgtcc ggagtcataa tgtaagactc ggtaaacaca tcaggttgat tcacatcggt 36480 cagtgctaaa aagcgaccga aatagcccgg gggaatacat acccgcaggc gtagagacaa 36540 cattacagcc cccataggag gtataacaaa attaatagga gagaaaaaca cataaacacc 36600 tgaaaaaccc tcctgcctag gcaaaatagc accctcccgc tccagaacaa catacagcgc 36660 ttccacagcg gcagccataa cagtcagcct taccagtaaa aaagaaaacc tattaaaaaa 36720 acaccactcg acacggcacc agctcaatca gtcacagtgt aaaaaagggc caagtgcaga 36780 gcgagtatat ataggactaa aaaatgacgt aacggttaaa gtccacaaaa aacacccaga 36840 aaaccgcacg cgaacctacg cccagaaacg aaagccaaaa aacccacaac ttcctcaaat 36900 cgtcacttcc gttttcccac gttacgtcac ttcccatttt aagaaaacta caattcccaa 36960 cacatacaag ttactccgcc ctaaaaccta cgtcacccgc cccgttccca cgccccgcgc 37020 cacgtcacaa actccacccc ctcattatca tattggcttc aatccaaaat aaggtatatt 37080 attgatgatg 37090 <210> 5 <211> 5955 <212> DNA
<213> Artificial Sequence <220>
<223> NS cDNA sequence <221> CDS
<222> (1)...(5955) <400> 5 atg gcg ccc atc acg gcc tac tcc caa cag acg cgg ggc cta ctt ggt 48 Met Ala Pro Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu Leu Gly tgc atc atc act agc ctt aca ggc cgg gac aag aac cag gtc gag gga 96 Cys Ile Ile Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val Glu Gly gag gtt cag gtg gtt tcc acc gca aca caa tcc ttc ctg gcg acc tgc 144 Glu Val Gln Val Val Ser Thr Ala Thr Gln Ser Phe Leu Ala Thr Cys gtc aac ggc gtg tgt tgg acc gtt tac cat ggt get ggc tca aag acc 192 Val Asn Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Ser Lys Thr tta gcc ggc cca aag ggg cca atc acc cag atg tac act aat gtg gac 240 Leu Ala Gly Pro Lys Gly Pro Ile Thr Gln Met Tyr Thr Asn Val Asp cag gac ctc gtc ggc tgg cag gcg ccc ccc ggg gcg cgt tcc ttg aca 288 Gln Asp Leu Val Gly Trp Gln Ala Pro Pro Gly Ala Arg Ser Leu Thr cca tgc acc tgt ggc agc tca gac ctt tac ttg gtc acg aga cat get 336 Pro Cys Thr Cys Gly Ser Ser Asp Leu Tyr Leu Val Thr Arg His Ala gac gtc att ccg gtg cgc cgg cgg ggc gac agt agg ggg agc ctg ctc 384 Asp Val Ile Pro Val Arg Arg Arg Gly Asp Ser Arg Gly Ser Leu Leu tcc ccc agg cct gtc tcc tac ttg aag ggc tct tcg ggt ggt cca ctg 432 Ser Pro Arg Pro Val Ser Tyr Leu Lys Gly Ser Ser Gly Gly Pro Leu ctc tgc cct tcg ggg cac get gtg ggc atc ttc cgg get gcc gta tgc 480 Leu Cys Pro Ser Gly His Ala Val Gly Ile Phe Arg Ala Ala Val Cys acc cgg ggg gtt gcg aag gcg gtg gac ttt gtg ccc gta gag tcc atg 528 Thr Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu Ser Met gaa act act atg cgg tct ccg gtc ttc acg gac aac tca tcc ccc ccg 576 Glu Thr Thr Met Arg Ser Pro Val Phe Thr Asp Asn Ser Ser Pro Pro gcc gta ccg cag tca ttt caa gtg gcc cac cta cac get ccc act ggc 624 Ala Val Pro Gln Ser Phe Gln Val Ala His Leu His Ala Pro Thr Gly agc ggc aag agt act aaa gtg ccg get gca tat gca gcc caa ggg tac 672 Ser Gly Lys Ser Thr Lys Val Pro Ala Ala Tyr Ala Ala Gln Gly Tyr aag gtg ctc gtc ctc aat ccg tcc gtt gcc get acc tta ggg ttt ggg 720 Lys Val Leu Val Leu Asn Pro Ser Val Ala Ala Thr Leu Gly Phe Gly gcg tat atg tct aag gca cac ggt att gac ccc aac atc aga act ggg 768 Ala Tyr Met Ser Lys Ala His Gly Ile Asp Pro Asn Ile Arg Thr Gly gta agg acc att acc aca ggc gcc ccc gtc aca tac tct acc tat ggc 816 Val Arg Thr Ile Thr Thr Gly Ala Pro Val Thr Tyr Ser Thr Tyr Gly aag ttt ctt gcc gat ggt ggt tgc tct ggg ggc get tat gac atc ata 864 Lys Phe Leu Ala Asp Gly Gly Cys Ser Gly Gly Ala Tyr Asp Ile Ile ata tgt gat gag tgc cat tca act gac tcg act aca atc ttg ggc atc 912 Ile Cys Asp Glu Cys His Ser Thr Asp Ser Thr Thr Ile Leu Gly Ile ggc aca gtc ctg gac caa gcg gag acg get gga gcg cgg ctt gtc gtg 960 Gly Thr Val Leu Asp Gln Ala Glu Thr Ala Gly Ala Arg Leu Val Val ctc gcc acc get acg cct ccg gga tcg gtc acc gtg cca cac cca aac 1008 Leu Ala Thr Ala Thr Pro Pro Gly Ser Val Thr Val Pro His Pro Asn atc gag gag gtg gcc ctg tct aat act gga gag atc ccc ttc tat ggc 1056 Ile Glu Glu Val Ala Leu Ser Asn Thr Gly Glu Ile Pro Phe Tyr Gly aaa gcc atc ccc att gaa gcc atc agg ggg gga agg cat ctc att ttc 1104 Lys Ala Ile Pro Ile Glu Ala Ile Arg Gly Gly Arg His Leu Ile Phe tgt cat tcc aag aag aag tgc gac gag ctc gcc gca aag ctg tca ggc 1152 Cys His Ser Lys Lys Lys Cys Asp Glu Leu Ala Ala Lys Leu Ser Gly ctc gga atc aac get gtg gcg tat tac cgg ggg ctc gat gtg tcc gtc 1200 Leu Gly Ile Asn Ala Val Ala Tyr Tyr Arg Gly Leu Asp Val Ser Val ata cca act atc gga gac gtc gtt gtc gtg gca aca gac get ctg atg 1248 Ile Pro Thr Ile Gly Asp Val Val Val Val Ala Thr Asp Ala Leu Met acg ggc tat acg ggc gac ttt gac tca gtg atc gac tgt aac aca tgt 1296 Thr Gly Tyr Thr Gly Asp Phe Asp Ser Val Ile Asp Cys Asn Thr Cys gtc acc cag aca gtc gac ttc agc ttg gat ccc acc ttc acc att gag 1344 Val Thr Gln Thr Val Asp Phe Ser Leu Asp Pro Thr Phe Thr Ile Glu acg acg acc gtg cct caa gac gca gtg tcg cgc tcg cag cgg cgg ggt 1392 Thr Thr Thr Val Pro Gln Asp Ala Val Ser Arg Ser Gln Arg Arg Gly agg act ggc agg ggt agg aga ggc atc tac agg ttt gtg act ccg gga 1440 Arg Thr Gly Arg Gly Arg Arg Gly Ile Tyr Arg Phe Val Thr Pro Gly gaa cgg ccc tcg ggc atg ttc gat tcc tcg gtc ctg tgt gag tgc tat 1488 Glu Arg Pro Ser Gly Met Phe Asp Ser Ser Val Leu Cys Glu Cys Tyr gac gcg ggc tgt get tgg tac gag ctc acc ccc gcc gag acc tcg gtt 1536 Asp Ala Gly Cys Ala Trp Tyr Glu Leu Thr Pro Ala Glu Thr Ser Val agg ttg cgg gcc tac ctg aac aca cca ggg ttg ccc gtt tgc cag gac 1584 Arg Leu Arg Ala Tyr Leu Asn Thr Pro Gly Leu Pro Val Cys Gln Asp cac ctg gag ttc tgg gag agt gtc ttc aca ggc ctc acc cac ata gat 1632 His Leu Glu Phe Trp Glu Ser Val Phe Thr Gly Leu Thr His Ile Asp gca cac ttc ttg tcc cag acc aag cag gca gga gac aac ttc ccc tac 1680 Ala His Phe Leu Ser Gln Thr Lys Gln Ala Gly Asp Asn Phe Pro Tyr ctg gta gca tac caa gcc acg gtg tgc gcc agg get cag gcc cca cct 1728 Leu Val Ala Tyr Gin Ala Thr Val Cys Ala Arg Ala Gln Ala Pro Pro cca tca tgg gat caa atg tgg aag tgt ctc ata cgg ctg aaa cct acg 1776 Pro Ser Trp Asp Gln Met Trp Lys Cys Leu Ile Arg Leu Lys Pro Thr ctg cac ggg cca aca ccc ttg ctg tac agg ctg gga gcc gtc caa aat 1824 Leu His Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly Ala Val Gln Asn gag gtc acc ctc acc cac ccc ata acc aaa tac atc atg gca tgc atg 1872 Glu Val Thr Leu Thr His Pro Ile Thr Lys Tyr Ile Met Ala Cys Met tcg get gac ctg gag gtc gtc act agc acc tgg gtg ctg gtg ggc gga 1920 Ser Ala Asp Leu Glu Val Val Thr Ser Thr Trp Val Leu Val Gly Gly gtc ctt gca get ctg gcc gcg tat tgc ctg aca aca ggc agt gtg gtc 1968 Val Leu Ala Ala Leu Ala Ala Tyr Cys Leu Thr Thr Gly Ser Val Val att gtg ggt agg att atc ttg tcc ggg agg ccg get att gtt ccc gac 2016 Ile Val Gly Arg Ile Ile Leu Ser Gly Arg Pro Ala Ile Val Pro Asp agg gag ttt ctc tac cag gag ttc gat gaa atg gaa gag tgc gcc tcg 2064 Arg Glu Phe Leu Tyr Gin Glu Phe Asp Glu Met Glu Glu Cys Ala Ser cac ctc cct tac atc gag cag gga atg cag ctc gcc gag caa ttc aag 2112 His Leu Pro Tyr Ile Glu Gln Gly Met Gln Leu Ala Glu Gln Phe Lys cag aaa gcg ctc ggg tta ctg caa aca gcc acc aaa caa gcg gag get 2160 Gln Lys Ala Leu Gly Leu Leu Gln Thr Ala Thr Lys Gln Ala Glu Ala get get ccc gtg gtg gag tcc aag tgg cga gcc ctt gag aca ttc tgg 2208 Ala Ala Pro Val Val Glu Ser Lys Trp Arg Ala Leu Glu Thr Phe Trp gcg aag cac atg tgg aat ttc atc agc ggg ata cag tac tta gca ggc 2256 Ala Lys His Met Trp Asn Phe Ile Ser Gly Ile Gln Tyr Leu Ala Gly tta tcc act ctg cct ggg aac ccc gca ata gca tca ttg atg gca ttc 2304 Leu Ser Thr Leu Pro Gly Asn Pro Ala Ile Ala Ser Leu Met Ala Phe aca gcc tct atc acc agc ccg ctc acc acc caa agt acc ctc ctg ttt 2352 Thr Ala Ser Ile Thr Ser Pro Leu Thr Thr Gln Ser Thr Leu Leu Phe aac atc ttg ggg ggg tgg gtg get gcc caa ctc gcc ccc ccc agc gcc 2400 Asn Ile Leu Gly Gly Trp Val Ala Ala Gln Leu Ala Pro Pro Ser Ala get tcg get ttc gtg ggc gcc ggc atc gcc ggt gcg get gtt ggc agc 2448 Ala Ser Ala Phe Val Gly Ala Gly Ile Ala Gly Ala Ala Val Gly Ser ata ggc ctt ggg aag gtg ctt gtg gac att ctg gcg ggt tat gga gca 2496 Ile Gly Leu Gly Lys Val Leu Val Asp Ile Leu Ala Gly Tyr Gly Ala gga gtg gcc ggc gcg ctc gtg gcc ttc aag gtc atg agc ggc gag atg 2544 Gly Val Ala Gly Ala Leu Val Ala Phe Lys Val Met Ser Gly Glu Met ccc tcc acc gag gac ctg gtc aat cta ctt cct gcc atc ctc tct cct 2592 Pro Ser Thr Glu Asp Leu Val Asn Leu Leu Pro Ala Ile Leu Ser Pro ggc gcc ctg gtc gtc ggg gtc gtg tgt gca gca ata ctg cgt cga cac 2640 Gly Ala Leu Val Val Gly Val Val Cys Ala Ala Ile Leu Arg Arg His gtg ggt ccg gga gag ggg get gtg cag tgg atg aac cgg ctg ata gcg 2688 Val Gly Pro Gly Glu Gly Ala Val Gln Trp Met Asn Arg Leu Ile Ala ttc gcc tcg cgg ggt aat cat gtt tcc ccc acg cac tat gtg cct gag 2736 Phe Ala Ser Arg Gly Asn His Val Ser Pro Thr His Tyr Val Pro Glu agc gac gcc gca gcg cgt gtt act cag atc ctc tcc agc ctt acc atc 2784 Ser Asp Ala Ala Ala Arg Val Thr Gln Ile Leu Ser Ser Leu Thr Ile act cag ctg ctg aaa agg ctc cac cag tgg att aat gaa gac tgc tcc 2832 Thr Gln Leu Leu Lys Arg Leu His Gln Trp Ile Asn Glu Asp Cys Ser aca ccg tgt tcc ggc tcg tgg cta agg gat gtt tgg gac tgg ata tgc 2880 Thr Pro Cys Ser Gly Ser Trp Leu Arg Asp Val Trp Asp Trp Ile Cys acg gtg ttg act gac ttc aag acc tgg ctc cag tcc aag ctc ctg ccg 2928 Thr Val Leu Thr Asp Phe Lys Thr Trp Leu Gln Ser Lys Leu Leu Pro cag cta ccg gga gtc cct ttt ttc tcg tgc caa cgc ggg tac aag gga 2976 Gln Leu Pro Gly Val Pro Phe Phe Ser Cys Gln Arg Gly Tyr Lys Gly gtc tgg cgg gga gac ggc atc atg caa acc acc tgc cca tgt gga gca 3024 Val Trp Arg Gly Asp Gly Ile Met Gln Thr Thr Cys Pro Cys Gly Ala cag atc acc gga cat gtc aaa aac ggt tcc atg agg atc gtc ggg cct 3072 Gln Ile Thr Gly His Val Lys Asn Gly Ser Met Arg Ile Val Gly Pro aag acc tgc agc aac acg tgg cat gga aca ttc ccc atc aac gca tac 3120 Lys Thr Cys Ser Asn Thr Trp His Gly Thr Phe Pro Ile Asn Ala Tyr acc acg ggc ccc tgc aca ccc tct cca gcg cca aac tat tct agg gcg 3168 Thr Thr Gly Pro Cys Thr Pro Ser Pro Ala Pro Asn Tyr Ser Arg Ala ctg tgg cgg gtg gcc get gag gag tac gtg gag gtc acg cgg gtg ggg 3216 Leu Trp Arg Val Ala Ala Glu Glu Tyr Val Glu Val Thr Arg Val Gly gat ttc cac tac gtg acg ggc atg acc act gac aac gta aag tgc cca 3264 Asp Phe His Tyr Val Thr Gly Met Thr Thr Asp Asn Val Lys Cys Pro tgc cag gtt ccg get cct gaa ttc ttc acg gag gtg gac gga gtg cgg 3312 Cys Gln Val Pro Ala Pro Glu Phe Phe Thr Glu Val Asp Gly Val Arg ttg cac agg tac get ccg gcg tgc agg cct ctc cta cgg gag gag gtt 3360 Leu His Arg Tyr Ala Pro Ala Cys Arg Pro Leu Leu Arg Glu Glu Val aca ttc cag gtc ggg ctc aac caa tac ctg gtt ggg tca cag cta cca 3408 Thr Phe Gln Val Gly Leu Asn Gln Tyr Leu Val Gly Ser Gln Leu Pro tgc gag ccc gaa ccg gat gta gca gtg ctc act tcc atg ctc acc gac 3456 Cys Glu Pro Glu Pro Asp Val Ala Val Leu Thr Ser Met Leu Thr Asp ccc tcc cac atc aca gca gaa acg get aag cgt agg ttg gcc agg ggg 3504 Pro Ser His Ile Thr Ala Glu Thr Ala Lys Arg Arg Leu Ala Arg Gly tct ccc ccc tcc ttg gcc agc tct tca get agc cag ttg tct gcg cct 3552 Ser Pro Pro Ser Leu Ala Ser Ser Ser Ala Ser Gln Leu Ser Ala Pro tcc ttg aag gcg aca tgc act acc cac cat gtc tct ccg gac get gac 3600 Ser Leu Lys Ala Thr Cys Thr Thr His His Val Ser Pro Asp Ala Asp 1185 1190 1195 ,1200 ctc atc gag gcc aac ctc ctg tgg cgg cag gag atg ggc ggg aac atc 3648 Leu Ile Glu Ala Asn Leu Leu Trp Arg Gln Glu Met Gly Gly Asn Ile acc cgc gtg gag tcg gag aac aag gtg gta gtc ctg gac tct ttc gac 3696 Thr Arg Val Glu Ser Glu Asn Lys Val Val Val Leu Asp Ser Phe Asp ccg ctt cga gcg gag gag gat gag agg gaa gta tcc gtt ccg gcg gag 3744 Pro Leu Arg Ala Glu Glu Asp Glu Arg Glu Val Ser Val Pro Ala Glu atc ctg cgg aaa tcc aag aag ttc ccc gca gcg atg ccc atc tgg gcg 3792 Ile Leu Arg Lys Ser Lys Lys Phe Pro Ala Ala Met Pro Ile Trp Ala cgc ccg gat tac aac cct cca ctg tta gag tcc tgg aag gac ccg gac 3840 Arg Pro Asp Tyr Asn Pro Pro Leu Leu Glu Ser Trp Lys Asp Pro Asp tac gtc cct ccg gtg gtg cac ggg tgc ccg ttg cca cct atc aag gcc 3888 Tyr Val Pro Pro Val Val His Gly Cys Pro Leu Pro Pro Ile Lys Ala cct cca ata cca cct cca cgg aga aag agg acg gtt gtc cta aca gag 3936 Pro Pro Ile Pro Pro Pro Arg Arg Lys Arg Thr Val Val Leu Thr Glu tcc tcc gtg tct tct gcc tta gcg gag ctc get act aag acc ttc ggc 3984 Ser Ser Val Ser Ser Ala Leu Ala Glu Leu Ala Thr Lys Thr Phe Gly agc tcc gaa tca tcg gcc gtc gac agc ggc acg gcg acc gcc ctt cct 4032 Ser Ser Glu Ser Ser Ala Val Asp Ser Gly Thr Ala Thr Ala Leu Pro gac cag gcc tcc gac gac ggt gac aaa gga tcc gac gtt gag tcg tac 4080 Asp Gln Ala Ser Asp Asp Gly Asp Lys Gly Ser Asp Val Glu Ser Tyr tcc tcc atg ccc ccc ctt gag ggg gaa ccg ggg gac ccc gat ctc agt 4128 Ser Ser Met Pro Pro Leu Glu Gly Glu Pro Gly Asp Pro Asp Leu Ser gac ggg tct tgg tct acc gtg agc gag gaa get agt gag gat gtc gtc 4176 Asp Gly Ser Trp Ser Thr Val Ser Glu Glu Ala Ser Glu Asp Val Val tgc tgc tca atg tcc tac aca tgg aca ggc gcc ttg atc acg cca tgc 4224 Cys Cys Ser Met Ser Tyr Thr Trp Thr Gly Ala Leu Ile Thr Pro Cys get gcg gag gaa agc aag ctg ccc atc aac gcg ttg agc aac tct ttg 4272 Ala Ala Glu Glu Ser Lys Leu Pro Ile Asn Ala Leu Ser Asn Ser Leu ctg cgc cac cat aac atg gtt tat gcc aca aca tct cgc agc gca ggc 4320 Leu Arg His His Asn Met Val Tyr Ala Thr Thr Ser Arg Ser Ala Gly ctg cgg cag aag aag gtc acc ttt gac aga ctg caa gtc ctg gac gac 4368 Leu Arg Gln Lys Lys Val Thr Phe Asp Arg Leu Gln Val Leu Asp Asp cac tac cgg gac gtg ctc aag gag atg aag gcg aag gcg tcc aca gtt 4416 His Tyr Arg Asp Val Leu Lys Glu Met Lys Ala Lys Ala Ser Thr Val aag get aaa ctc cta tcc gta gag gaa gcc tgc aag ctg acg ccc cca 4464 Lys Ala Lys Leu Leu Ser Val Glu Glu Ala Cys Lys Leu Thr Pro Pro cat tcg gcc aaa tcc aag ttt ggc tat ggg gca aag gac gtc cgg aac 4512 His Ser Ala Lys Ser Lys Phe Gly Tyr Gly Ala Lys Asp Val Arg Asn cta tcc agc aag gcc gtt aac cac atc cac tcc gtg tgg aag gac ttg 4560 Leu Ser Ser Lys Ala Val Asn His Ile His Ser Val Trp Lys Asp Leu ctg gaa gac act gtg aca cca att gac acc acc atc atg gca aaa aat 4608 Leu Glu Asp Thr Val Thr Pro Ile Asp Thr Thr Ile Met Ala Lys Asn gag gtt ttc tgt gtc caa cca gag aaa gga ggc cgt aag cca gcc cgc 4656 Glu Val Phe Cys Val Gln Pro Glu Lys Gly Gly Arg Lys Pro Ala Arg ctt atc gta ttc cca gat ctg gga gtc cgt gta tgc gag aag atg gcc 4704 Leu Ile Val Phe Pro Asp Leu Gly Val Arg Val Cys Glu Lys Met Ala ctc tat gat gtg gtc tcc acc ctt cct cag gtc gtg atg ggc tcc tca 4752 Leu Tyr Asp Val Val Ser Thr Leu Pro Gln Val Val Met Gly Ser Ser tac gga ttc cag tac tct cct ggg cag cga gtc gag ttc ctg gtg aat 4800 Tyr Gly Phe Gln Tyr Ser Pro Gly Gln Arg Val Glu Phe Leu Val Asn acc tgg aaa tca aag aaa aac ccc atg ggc ttt tca tat gac act cgc 4848 Thr Trp Lys Ser Lys Lys Asn Pro Met Gly Phe Ser Tyr Asp Thr Arg tgt ttc gac tca acg gtc acc gag aac gac atc cgt gtt gag gag tca 4896 Cys Phe Asp Ser Thr Val Thr Glu Asn Asp Ile Arg Val Glu Glu Ser att tac caa tgt tgt gac ttg gcc ccc gaa gcc aga cag gcc ata aaa 4944 Ile Tyr Gln Cys Cys Asp Leu Ala Pro Glu Ala Arg Gln Ala Ile Lys tcg ctc aca gag cgg ctt tat atc ggg ggt cct ctg act aat tca aaa 4992 Ser Leu Thr Glu Arg Leu Tyr Ile Gly Gly Pro Leu Thr Asn Ser Lys ggg cag aac tgc ggt tat cgc cgg tgc cgc gcg agc ggc gtg ctg acg 5040 Gly Gln Asn Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Leu Thr act agc tgc ggt aac acc ctc aca tgt tac ttg aag gcc tct gca gcc 5088 Thr Ser Cys Gly Asn Thr Leu Thr Cys Tyr Leu Lys Ala Ser Ala Ala tgt cga get gcg aag ctc cag gac tgc acg atg ctc gtg aac gga gac 5136 Cys Arg Ala Ala Lys Leu Gin Asp Cys Thr Met Leu Val Asn Gly Asp gac ctt gtc gtt atc tgt gaa agc gcg gga acc caa gag gac gcg gcg 5184 Asp Leu Val Val Ile Cys Glu Ser Ala Gly Thr Gln Glu Asp Ala Ala agc cta cga gtc ttc acg gag get atg act agg tac tct gcc ccc ccc 5232 Ser Leu Arg Val Phe Thr Glu Ala Met Thr Arg Tyr Ser Ala Pro Pro ggg gac ccg ccc caa cca gaa tac gac ttg gag ctg ata aca tca tgt 5280 Gly Asp Pro Pro Gln Pro Glu Tyr Asp Leu Glu Leu Ile Thr Ser Cys tcc tcc aat gtg tcg gtc gcc cac gat gca tca ggc aaa agg gtg tac 5328 Ser Ser Asn Val Ser Val Ala His Asp Ala Ser Gly Lys Arg Val Tyr tac ctc acc cgt gat ccc acc acc ccc ctc gca cgg get gcg tgg gaa 5376 Tyr Leu Thr Arg Asp Pro Thr Thr Pro Leu Ala Arg Ala Ala Trp Glu aca get aga cac act cca gtt aac tcc tgg cta ggc aac att atc atg 5424 Thr Ala Arg His Thr Pro Val Asn Ser Trp Leu Gly Asn Ile Ile Met tat gcg ccc act ttg tgg gca agg atg att ctg atg act cac ttc ttc 5472 Tyr Ala Pro Thr Leu Trp Ala Arg Met Ile Leu Met Thr His Phe Phe tcc atc ctt cta gca cag gag caa ctt gaa aaa gcc ctg gac tgc cag 5520 Ser Ile Leu Leu Ala Gln Glu Gln Leu Glu Lys Ala Leu Asp Cys Gln atc tac ggg gcc tgt tac tcc att gag cca ctt gac cta cct cag atc 5568 Ile Tyr Gly Ala Cys Tyr Ser Ile Glu Pro Leu Asp Leu Pro Gln Ile att gaa cga ctc cat ggc ctt agc gca ttt tca ctc cat agt tac tct 5616 Ile Glu Arg Leu His Gly Leu Ser Ala Phe Ser Leu His Ser Tyr Ser cca ggt gag atc aat agg gtg get tca tgc ctc agg aaa ctt ggg gta 5664 Pro Gly Glu Ile Asn Arg Val Ala Ser Cys Leu Arg Lys Leu Gly Val cca ccc ttg cga gtc tgg aga cat cgg gcc agg agc gtc cgc get agg 5712 Pro Pro Leu Arg Val Trp Arg His Arg Ala Arg Ser Val Arg Ala Arg cta ctg tcc cag ggg ggg agg gcc gcc act tgt ggc aag tac ctc ttc 5760 Leu Leu Ser Gln Gly Gly Arg Ala Ala Thr Cys Gly Lys Tyr Leu Phe aac tgg gca gtg aag acc aaa ctc aaa ctc act cca atc ccg get gcg 5808 Asn Trp Ala Val Lys Thr Lys Leu Lys Leu Thr Pro Ile Pro Ala Ala tcc cag ctg gac ttg tcc ggc tgg ttc gtt get ggt tac agc ggg gga 5856 Ser Gln Leu Asp Leu Ser Gly Trp Phe Val Ala Gly Tyr Ser Gly Gly gac ata tat cac agc ctg tct cgt gcc cga ccc cgc tgg ttc atg ctg 5904 Asp Ile Tyr His Ser Leu Ser Arg Ala Arg Pro Arg Trp Phe Met Leu tgc cta ctc cta ctt tct gta ggg gta ggc atc tac ctg ctc ccc aac 5952 Cys Leu Leu Leu Leu Ser Val Gly Val Gly Ile Tyr Leu Leu Pro Asn cga 5955 Arg <210> 6 <211> 1984 <212> PRT
<213> Artificial Sequence <220>
<223> NS sequence <400> 6 Ala Pro Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu Leu Gly Cys Ile Ile Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val Glu Gly Glu Val Gln Val Val Ser Thr Ala Thr Gln Ser Phe Leu Ala Thr Cys Val Asn Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Ser Lys Thr Leu Ala Gly Pro Lys Gly Pro Ile Thr Gln Met Tyr Thr Asn Val Asp Gln Asp Leu Val Gly Trp Gln Ala Pro Pro Gly Ala Arg Ser Leu Thr Pro Cys Thr Cys Gly Ser Ser Asp Leu Tyr Leu Val Thr Arg His Ala Asp Val Ile Pro Val Arg Arg Arg Gly Asp Ser Arg Gly Ser Leu Leu Ser Pro Arg Pro Val Ser Tyr Leu Lys Gly Ser Ser Gly Gly Pro Leu Leu Cys Pro Ser Gly His Ala Val Gly Ile Phe Arg Ala Ala Val Cys Thr Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu Ser Met Glu Thr Thr Met Arg Ser Pro Val Phe Thr Asp Asn Ser Ser Pro Pro Ala Val Pro Gln Ser Phe Gln Val Ala His Leu His Ala Pro Thr Gly Ser Gly Lys Ser Thr Lys Val Pro Ala Ala Tyr Ala Ala Gln Gly Tyr Lys Val Leu Val Leu Asn Pro Ser Val Ala Ala Thr Leu Gly Phe Gly Ala Tyr Met Ser Lys Ala His Gly Ile Asp Pro Asn Ile Arg Thr Gly Val Arg Thr Ile Thr Thr Gly Ala Pro Val Thr Tyr Ser Thr Tyr Gly Lys Phe Leu Ala Asp Gly Gly Cys Ser Gly Gly Ala Tyr Asp Ile Ile Ile Cys Asp Glu Cys His Ser Thr Asp Ser Thr Thr Ile Leu Gly Ile Gly Thr Val Leu Asp Gln Ala Glu Thr Ala Gly Ala Arg Leu Val Val Leu Ala Thr Ala Thr Pro Pro Gly Ser Val Thr Val Pro His Pro Asn Ile Glu Glu Val Ala Leu Ser Asn Thr Gly Glu Ile Pro Phe Tyr Gly Lys Ala Ile Pro Ile Glu Ala Ile Arg Gly Gly Arg His Leu Ile Phe Cys His Ser Lys Lys Lys Cys Asp Glu Leu Ala Ala Lys Leu Ser Gly Leu Gly Ile Asn Ala Val Ala Tyr Tyr Arg Gly Leu Asp Val Ser Val Ile Pro Thr Ile Gly Asp Val Val Val Val Ala Thr Asp Ala Leu Met Thr Gly Tyr Thr Gly Asp Phe Asp Ser Val Ile Asp Cys Asn Thr Cys Val Thr Gln Thr Val Asp Phe Ser Leu Asp Pro Thr Phe Thr Ile Glu Thr Thr Thr Val Pro Gln Asp Ala Val Ser Arg Ser Gln Arg Arg Gly Arg Thr Gly Arg Gly Arg Arg Gly Ile Tyr Arg Phe Val Thr Pro Gly Glu Arg Pro Ser Gly Met Phe Asp Ser Ser Val Leu Cys Glu Cys Tyr Asp Ala Gly Cys Ala Trp Tyr Glu Leu Thr Pro Ala Glu Thr Ser Val Arg Leu Arg Ala Tyr Leu Asn Thr Pro Gly Leu Pro Val Cys Gln Asp His Leu Glu Phe Trp Glu Ser Val Phe Thr Gly Leu Thr His Ile Asp Ala His Phe Leu Ser Gln Thr Lys Gln Ala Gly Asp Asn Phe Pro Tyr Leu Val Ala Tyr Gln Ala Thr Val Cys Ala Arg Ala Gin Ala Pro Pro Pro Ser Trp Asp Gln Met Trp Lys Cys Leu Ile Arg Leu Lys Pro Thr Leu His Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly Ala Val Gln Asn Glu Val Thr Leu Thr His Pro Ile Thr Lys Tyr Ile Met Ala Cys Met Ser 610 615 620' Ala Asp Leu Glu Val Val Thr Ser Thr Trp Val Leu Val Gly Gly Val Leu Ala Ala Leu Ala Ala Tyr Cys Leu Thr Thr Gly Ser Val Val Ile Val Gly Arg Ile Ile Leu Ser Gly Arg Pro Ala Ile Val Pro Asp Arg Glu Phe Leu Tyr Gln Glu Phe Asp Glu Met Glu Glu Cys Ala Ser His Leu Pro Tyr Ile Glu Gln Gly Met Gln Leu Ala Glu Gln Phe Lys Gln Lys Ala Leu Gly Leu Leu Gln Thr Ala Thr Lys Gln Ala Glu Ala Ala Ala Pro Val Val Glu Ser Lys Trp Arg Ala Leu Glu Thr Phe Trp Ala Lys His Met Trp Asn Phe Ile Ser Gly Ile Gln Tyr Leu Ala Gly Leu Ser Thr Leu Pro Gly Asn Pro Ala Ile Ala Ser Leu Met Ala Phe Thr Ala Ser Ile Thr Ser Pro Leu Thr Thr Gln Ser Thr Leu Leu Phe Asn Ile Leu Gly Gly Trp Val Ala Ala Gln Leu Ala Pro Pro Ser Ala Ala Ser Ala Phe Val Gly Ala Gly Ile Ala Gly Ala Ala Val Gly Ser Ile Gly Leu Gly Lys Val Leu Val Asp Ile Leu Ala Gly Tyr Gly Ala Gly Val Ala Gly Ala Leu Val Ala Phe Lys Val Met Ser Gly Glu Met Pro Ser Thr Glu Asp Leu Val Asn Leu Leu Pro Ala Ile Leu Ser Pro Gly Ala Leu Val Val Gly Val Val Cys Ala Ala Ile Leu Arg Arg His Val Gly Pro Gly Glu Gly Ala Val Gln Trp Met Asn Arg Leu Ile Ala Phe Ala Ser Arg Gly Asn His Val Ser Pro Thr His Tyr Val Pro Glu Ser Asp Ala Ala Ala Arg Val Thr Gln Ile Leu Ser Ser Leu Thr Ile Thr Gln Leu Leu Lys Arg Leu His Gln Trp Ile Asn Glu Asp Cys Ser Thr Pro Cys Ser Gly Ser Trp Leu Arg Asp Val Trp Asp Trp Ile Cys Thr Val Leu Thr Asp Phe Lys Thr Trp Leu Gln Ser Lys Leu Leu Pro Gln Leu Pro Gly Val Pro Phe Phe Ser Cys Gln Arg Gly Tyr Lys Gly Val Trp Arg Gly Asp Gly Ile Met Gln Thr Thr Cys Pro Cys Gly Ala Gln Ile Thr Gly His Val Lys Asn Gly Ser Met Arg Ile Val Gly Pro Lys Thr Cys Ser Asn Thr Trp His Gly Thr Phe Pro Ile Asn Ala Tyr Thr Thr Gly Pro Cys Thr Pro Ser Pro Ala Pro Asn Tyr Ser Arg Ala Leu Trp Arg Val Ala Ala Glu Glu Tyr Val Glu Val Thr Arg Val Gly Asp Phe His Tyr Val Thr Gly Met Thr Thr Asp Asn Val Lys Cys Pro Cys Gln Val Pro Ala Pro Glu Phe Phe Thr Glu Val Asp Gly Val Arg Leu His Arg Tyr Ala Pro Ala Cys Arg Pro Leu Leu Arg Glu Glu Val Thr Phe Gln Val Gly Leu Asn Gln Tyr Leu Val Gly Ser Gln Leu Pro Cys Glu Pro Glu Pro Asp Val Ala Val Leu Thr Ser Met Leu Thr Asp Pro Ser His Ile Thr Ala Glu Thr Ala Lys Arg Arg Leu Ala Arg Gly Ser Pro Pro Ser Leu Ala Ser Ser Ser Ala Ser Gln Leu Ser Ala Pro Ser Leu Lys Ala Thr Cys Thr Thr His His Val Ser Pro Asp Ala Asp Leu Ile Glu Ala Asn Leu Leu Trp Arg Gln Glu Met Gly Gly Asn Ile Thr Arg Val Glu Ser Glu Asn Lys Val Val Val Leu Asp Ser Phe Asp Pro Leu Arg Ala Glu Glu Asp Glu Arg Glu Val Ser Val Pro Ala Glu Ile Leu Arg Lys Ser Lys Lys Phe Pro Ala Ala Met Pro Ile Trp Ala Arg Pro Asp Tyr Asn Pro Pro Leu Leu Glu Ser Trp Lys Asp Pro Asp Tyr Val Pro Pro Val Val His Gly Cys Pro Leu Pro Pro Ile Lys Ala Pro Pro Ile Pro Pro Pro Arg Arg Lys Arg Thr Val Val Leu Thr Glu Ser Ser Val Ser Ser Ala Leu Ala Glu Leu Ala Thr Lys Thr Phe Gly Ser Ser Glu Ser Ser Ala Val Asp Ser Gly Thr Ala Thr Ala Leu Pro Asp Gln Ala Ser Asp Asp Gly Asp Lys Gly Ser Asp Val Glu Ser Tyr Ser Ser Met Pro Pro Leu Glu Gly Glu Pro Gly Asp Pro Asp Leu Ser Asp Gly Ser Trp Ser Thr Val Ser Glu Glu Ala Ser Glu Asp Val Val Cys Cys Ser Met Ser Tyr Thr Trp Thr Gly Ala Leu Ile Thr Pro Cys Ala Ala Glu Glu Ser Lys Leu Pro Ile Asn Ala Leu Ser Asn Ser Leu Leu Arg His His Asn Met Val Tyr Ala Thr Thr Ser Arg Ser Ala Gly Leu Arg Gln Lys Lys Val Thr Phe Asp Arg Leu Gln Val Leu Asp Asp His Tyr Arg Asp Val Leu Lys Glu Met Lys Ala Lys Ala Ser Thr Val Lys Ala Lys Leu Leu Ser Val Glu Glu Ala Cys Lys Leu Thr Pro Pro His Ser Ala Lys Ser Lys Phe Gly Tyr Gly Ala Lys Asp Val Arg Asn Leu Ser Ser Lys Ala Val Asn His Ile His Ser Val Trp Lys Asp Leu Leu Glu Asp Thr Val Thr Pro Ile Asp Thr Thr Ile Met Ala Lys Asn Glu Val Phe Cys Val Gln Pro Glu Lys Gly Gly Arg Lys Pro Ala Arg Leu Ile Val Phe Pro Asp Leu Gly Val Arg Val Cys Glu Lys Met Ala Leu Tyr Asp Val Val Ser Thr Leu Pro Gln Val Val Met Gly Ser Ser Tyr Gly Phe Gln Tyr Ser Pro Gly Gln Arg Val Glu Phe Leu Val Asn Thr Trp Lys Ser Lys Lys Asn Pro Met Gly Phe Ser Tyr Asp Thr Arg Cys Phe Asp Ser Thr Val Thr Glu Asn Asp Ile Arg Val Giu Glu Ser Ile Tyr Gin Cys Cys Asp Leu Ala Pro Glu Ala Arg Gln Ala Ile Lys Ser Leu Thr Glu Arg Leu Tyr Ile Gly Gly Pro Leu Thr Asn Ser Lys Gly Gln Asn Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Leu Thr Thr Ser Cys Gly Asn Thr Leu Thr Cys Tyr Leu Lys Ala Ser Ala Ala Cys Arg Ala Ala Lys Leu Gln Asp Cys Thr Met Leu Val Asn Gly Asp Asp Leu Val Val Ile Cys Glu Ser Ala Gly Thr Gln Glu Asp Ala 'Ala Ser Leu Arg Val Phe Thr Glu Ala Met Thr Arg Tyr Ser Ala Pro Pro Gly Asp Pro Pro Gln Pro Glu Tyr Asp Leu Glu Leu Ile Thr Ser Cys Ser Ser Asn Val Ser Val Ala His Asp Ala Ser Gly Lys Arg Val Tyr Tyr Leu Thr Arg Asp Pro Thr Thr Pro Leu Ala Arg Ala Ala Trp Glu Thr Ala Arg His Thr Pro Val Asn Ser Trp Leu Gly Asn Ile Ile Met Tyr Ala Pro Thr Leu Trp Ala Arg Met Ile Leu Met Thr His Phe Phe Ser Ile Leu Leu Ala Gln Glu Gln Leu Glu Lys Ala Leu Asp Cys Gln Ile Tyr Gly Ala Cys Tyr Ser Ile Glu Pro Leu Asp Leu Pro Gln Ile Ile Glu Arg Leu His Gly Leu Ser Ala Phe Ser Leu His Ser Tyr Ser Pro Gly Glu Ile Asn Arg Val Ala Ser Cys Leu Arg Lys Leu Gly Val Pro Pro Leu Arg Val Trp Arg His Arg Ala Arg Ser Val Arg Ala Arg Leu Leu Ser Gln Gly Gly Arg Ala Ala Thr Cys Gly Lys Tyr Leu Phe Asn Trp Ala Val Lys Thr Lys Leu Lys Leu Thr Pro Ile Pro Ala Ala Ser Gln Leu Asp Leu Ser Gly Trp Phe Val Ala Gly Tyr Ser Gly Gly Asp Ile Tyr His Ser Leu Ser Arg Ala Arg Pro Arg Trp Phe Met Leu Cys Leu Leu Leu Leu Ser Val Gly Val Gly Ile Tyr Leu Leu Pro Asn Arg <210> 7 <211> 4909 <212> DNA
<213> Artificial Sequence <220>
<223> pV1J nucleic acid <400> 7 tcgcgcgttt cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca 60 cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg 120 ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 180 accatatgcg gtgtgaaata ccgcacagat gcgtaaggag aaaataccgc atcagattgg 240 ctattggcca ttgcatacgt tgtatccata tcataatatg tacatttata ttggctcatg 300 tccaacatta ccgccatgtt gacattgatt attgactagt tattaatagt aatcaattac 360 ggggtcatta gttcatagcc catatatgga gttccgcgtt acataactta cggtaaatgg 420 cccgcctggc tgaccgccca acgacccccg cccattgacg tcaataatga cgtatgttcc 480 catagtaacg ccaataggga ctttccattg acgtcaatgg gtggagtatt tacggtaaac 540 tgcccacttg gcagtacatc aagtgtatca tatgccaagt acgcccccta ttgacgtcaa 600 tgacggtaaa tggcccgcct ggcattatgc ccagtaaatg accttatggg actttcctac 660 ttggcagtac atctacgtat tagtcatcgc tattaccatg gtgatgcggt tttggcagta 720 catcaatggg cgtggatagc ggtttgactc acggggattt ccaagtctcc accccattga 780 cgtcaatggg agtttgtttt ggcaccaaaa tcaacgggac tttccaaaat gtcgtaacaa 840 ctccgcccca ttgacgcaaa tgggcggtag gcgtgtacgg tgggaggtct atataagcag 900 agctcgttta gtgaaccgtc agatcgcctg gagacgccat ccacgctgtt ttgacctcca 960 tagaagacac cgggaccgat ccagcctccg cggccgggaa cggtgcattg gaacgcggat 1020 tccccgtgcc aagagtgacg taagtaccgc ctatagactc tataggcaca cccctttggc 1080 tcttatgcat gctatactgt ttttggcttg gggcctatac acccccgctt ccttatgcta 1140 taggtgatgg tatagcttag cctataggtg tgggttattg accattattg accactcccc 1200 tattggttac gatactttcc attactaatc cataacatgg ctctttgcca caactatctc 1260 tattggctat atgccaatac tctgtccttc agagactgac acggactctg tatttttaca 1320 ggatgcggtc ccatttatta tttacaaatt cacatataca acaacgccgt cccccgtgcc 1380 cgcagttttt attaaacata gcgtgggatc tccacgcgaa tctcgggtac gtgttccgga 1440 catgggctct tctccggtag cggcggagct tccacatccg agccctggtc ccatgcctcc 1500 agcggctcat ggtcgctcgg cagctccttg ctcctaacag tggaggccag acttaggcac 1560 agcacaatgc ccaccaccac cagtgtgccg cacaaggccg tggcggtagg gtatgtgtct 1620 gaaaatgagc gtggagattg ggctcgcacg gctgacgcag atggaagact taaggcagcg 1680 gcagaagaag atgcaggcag ctaatttgtt gtattctgat aagagtcaga ggtaactccc 1740 gttgcggtgc tgttaacggt ggagggcagt gtattctgag cagtactcgt tgctgccgcg 1800 cgcgccacca gacataatag ctgacagact aacagactgt tcctttccat gggtcttttc 1860 tgcagtcacc gtccttagat ctaggtacca gatatcagaa ttcagtcgac agcggccgcg 1920 atctgctgtg ccttctagtt gccagccatc tgttgtttgc ccctcccccg tgccttcctt 1980 gaccctggaa ggtgccactc ccactgtcct ttcctaataa aatgaggaaa ttgcatcgca 2040 ttgtctgagt aggtgtcatt ctattctggg gggtggggtg gggcaggaca gcaaggggga 2100 ggattgggaa gacaatagca ggcatgCtgg ggatgcggtg ggctctatgg ccgctgcggc 2160 caggtgctga agaattgacc cggttcctcc tgggccagaa agaagcaggc acatcccctt 2220 ctctgtgaca caccctgtcc acgcccctgg ttcttagttc cagccccact cataggacac 2280 tcatagctca ggagggctcc gccttcaatc ccacccgcta aagtacttgg aggtgtcact 2340 ccctccctca tcagcccacc aaaccaaacc tagcctccaa gagtgggaag aaattaaagc 2400 aagataggct attaagtgca gagggagaga aaatgcctcc aacatgtgag gaagtaatga 2460 gagaaatcat agaatttctt ccgcttcctc gctcactgac tcgctgcgct cggtcgttcg 2520 gctgcggcga gcggtatcag ctcactcaaa ggcggtaata cggttatcca cagaatcagg 2580 ggataacgca ggaaagaaca tgtgagcaaa aggccagcaa aaggccagga accgtaaaaa 2640 ggccgcgttg ctggcgtttt tccatacgct ccgcccccct gacgagcatc acaaaaatcg 2700 acgctcaagt cagaggtggc gaaacccgac aggactataa agataccagg cgtttccccc 2760 tggaagctcc ctcgtgcgct ctcctgttcc gaccctgccg cttaccggat acctgtccgc 2820 ctttctccct tcgggaagcg tggcgctttc tcatagctca cgctgtaggt atctcagttc 2880 ggtgtaggtc gttcgctcca agctgggctg tgtgcacgaa ccccccgttc agcccgaccg 2940 ctgcgcctta tccggtaact atcgtcttga gtccaacccg gtaagacacg acttatcgcc 3000 actggcagca gccactggta acaggattag cagagcgagg tatgtaggcg gtgctacaga 3060 gttcttgaag tggtggccta actacggcta cactagaaga acagtatttg gtatctgcgc 3120 tctgctgaag ccagttacct tcggaaaaag agttggtaaC tcttgatccg gcaaacaaac 3180 caccgctggt agcggtggtt tttttgtttg caagcagcag attacgtgca gaaaaaaagg 3240 atctcaagaa gatcctttga tcttttctac ggggtctgac gctcagtgga acgaaaactc 3300 acgttaaggg attttggtca tgagattatc aaaaaggatc ttcacctaga tccttttaaa 3360 ttaaaaatga agttttaaat caatctaaag tatatatgag taaacttggt ctgacagtta 3420 ccaatgctta atcagtgagg cacctatctc agcgatctgt ctatttcgtt catccatagt 3480 tgcctgactc gggggggggg ggcgctgagg tctgcctcgt gaagaaggtg ttgctgactc 3540 ataccaggcc tgaatcgccc catcatccag ccagaaagtg agggagccac ggttgatgag 3600 agctttgttg taggtggacc agttggtgat tttgaacttt tgctttgcca cggaacggtc 3660 tgcgttgtcg ggaagatgcg ttatctgatc cttcaactca gcaaaagttc gatttattca 3720 acaaagccgc cgtcccgtca agtcagcgta atgctctgcc agtgttacaa ccaattaacc 3780 aattctgatt agaaaaactc atcgagcatc aaatgaaact gcaatttatt catatcagga 3840 ttatcaatac catatttttg aaaaagccgt ttctgtaatg aaggagaaaa ctcatcgagg 3900 cagttccata ggatggcaag atcctggtat cggtctgcga ttccgaCtcg tccaacatca 3960 atacaaccta ttaatttccc ctcgtcaaaa ataaggttat caagtgagaa atcaccatga 4020 gtgaagactg aatcctgtga gaatggcaaa agcttatgca tttctttcca gacttgttca 4080 acaggccagc cattacgctc gtcatcaaaa tcactcgcat caaccaaacc gttattcatt 4140 cgtgattgcg cctgagcgag acgaaatacg cgatcgctgt taaaaggaca attacaaaca 4200 ggaatcgaat gcaaccggcg caggaacact gccagcgcat caacaatatt ttcacctgaa 4260 tcaggatatt cttctaatac ctggaatgtt gttttcccgg ggatcgcagt ggtgagtaac 4320 catgcatcat caggagtacg gataaaatgc ttgatggtcg gaagaggcat aaattccgtc 4380 agccagttta gtctgaccat ctcatctgta acatcattgg caacgctacc tttgccatgt 4440 ttcagaaaca actctggcgc atagggcttc ccatacaatc gatagattgt cgcacctgat 4500 tgcccgacat tatcgcgagc ccatgtatac ccatataaat cagcatccat gttggaattt 4560 aatcgcggcc tcgagcaaga cgtttcccgt tgaaaatgaC tcataacacc ccttgtatta 4620 ctgtttatgt aagcagacag ttttattgtt caggatgata tatttttatc ttgtgcaatg 4680 taacatcaga gattttgaga cacaacgtgg ctttcccccc ccccccatta ttgaagcatt 4740 tatcagggtt attgtctcat gagcggatac atatttgaat gtatttagaa aaataaacaa 4800 ataggggttc cgcgcacatt tccccgaaaa gtgccacctg acgtctaaga aaccattatt 4860 atcatgacat taacctataa aaataggcgt atcacgaggc cctttcgtc 4909 <210> 8 <211> 35935 <212> DNA
<213> Adenovirus serotype 6 <400> 8 catcatcaat aatatacctt attttggatt gaagccaata tgataatgag ggggtggagt 60 ttgtgacgtg gcgcggggcg tgggaacggg gcgggtgacg tagtagtgtg gcggaagtgt 120 gatgttgcaa gtgtggcgga acacatgtaa gcgacggatg tggcaaaagt gacgtttttg 180 gtgtgcgccg gtgtacacag gaagtgacaa ttttcgcgcg gttttagtgg gatgttgtag 240 taaatttggg cgtaaccgag taagatttgg ccattttcgc gggaaaactg aataagagga 300 agtgaaatct gaataatttt gtgttactca tagcgcgtaa tatttgtcta gggccgcggg 360 gactttgacc gtttacgtgg agactcgccc aggtgttttt ctcaggtgtt ttccgcgttc 420 cgggtcaaag ttggcgtttt attattatag tcagctgacg tgtagtgtat ttatacccgg 480 tgagttcctc aagaggccac tcttgagtgc cagcgagtag agttttctcc tccgagccgc 540 tccgacaccg ggactgaaaa tgagacatat tatctgccac ggaggtgtta ttaccgaaga 600 aatggccgcc agtcttttgg accagctgat cgaagaggta ctggctgata atcttccacc 660 tcctagccat tttgaaccac ctacccttca cgaactgtat gatttagacg tgacggcccc 720 cgaagatccc aacgaggagg cggtttcgca gatttttccc gactctgtaa tgttggcggt 780 gcaggaaggg attgacttac tcacttttcc gccggcgccc ggttctccgg agccgcctca 840 cctttcccgg cagcccgagc agccggagca gagagccttg ggtccggttt ctatgccaaa 900 ccttgtaccg gaggtgatag atcttacctg ccacgaggct ggctttccac caagtgacga 960 cgaggatgaa gagggtgagg agtttgtgtt agattatgtg gagcaccccg ggtacggttg 1020 caggtcttgt cattatcacc ggaggaatac gggggaccca gatattatgt gttcgctttg 1080 ctatatgagg acctgtggca tgtttgtcta cagtaagtga aaattatggg cagtgggtga 1140 tagagtggtg ggtttggtgt ggtaattttt tttttaattt ttacagtttt gtggtttaaa 1200 gaattttgta ttgtgatttt tttaaaaggt cctgtgtctg aacctgagcc tgagcccgag 1260 ccagaaccgg agcctgcaag acctacccgc cgtcctaaaa tggcgcctgc tatcctgaga 1320 tgcccgacat cacctgtgtc tagagaatgc aatagtagta cggatagctg tgaCtccggt 1380 ccttctaaca cacctcctga gatacacccg gtggtcccgc tgtgccccat taaaccagtt 1440 gccgtgagag ttggtgggcg tcgccaggct gtggaatgta tcgaggactt gcttaacgag 1500 cctgggcaac ctttggactt gagctgtaaa cgccccaagc cataaggtgt aaacctgtga 1560 ttgcgtgtgt ggttaacgcc tttgtttgct gaatgagttg atgtaagttt aataaagggt 1620 gagataatgt ttaacttgca tggggtgtta aatggggcgg ggcttaaagg gtatataatg 1680 cgccgtgggc taatcttggt tacatctgac ctcatggagg cttgggagtg tttggaagat 1740 ttttctgctg tgcgtaactt gctggaacag agctctaaca gtaCCtcttg gttttggagg 1800 tttctgtggg gctcatccca ggcaaagtta gtctgcagaa ttaaggagga ttacaagtgg 1860 gaatttgaag agcttttgaa atcctgtggt gagctgtttg attctttgaa tctgggtaac 1920 caggcgcttt tccaagaaaa ggtcatcaag actttggatt tttccacacc ggggcgcgct 1980 gcggctgctg ttgctttttt gagttttata aaggataaat ggagcgaaga aacccatctg 2040 agcggggggt accttctgga ttttctggcc atgcatctgt ggagagcggt tatgagacac 2100 aagaatcgcc tgctactgtt gtcttccgtc cgcccggcga taataccgac ggaggagcag 2160 cagcagcagc aggaggaagc caggcggcgg cggcaggagc agagcccatg gaacccgaga 2220 gccggcctgg accctcggga atgaatgttg tacaggtggc tgagatgtat ccagaactga 2280 gacgcatttt gacaattaca gaggatgggc aggggctaaa gggggtaaag agggagcggg 2340 gggcttgtga ggctacagag gaggctagga atctagcttt tagcttaatg accagacacc 2400 gtcctgagtg tattactttt caacagatca aggataattg cgctaatgag cttgatctgc 2460 tggggcagaa gtattccata gagcagctga ccacttactg gCtgcagcca ggggatgatt 2520 ttgaggaggc tattagggta tatgcaaagg tggcacttag gccagattgc aagtacaaga 2580 tcagcaaact tgtaaatatc aggaattgtt gctacatttc tgggaacggg gccgacctgg 2640 agatagatac ggaggatagg gtggccttta gatgtagcat gataaatatg tgaccgggtg 2700 tgcttggcat ggacggggtg gttattatga atgtaaggtt tactggcccc aattttagcg 2760 gtacggtttt cctggccaat accaacctta tcctacacgg tgtaagcttc tatgggttta 2820 acaatacctg tgtggaagcc tggaccgatg taagggttcg gggctgtgcc ttttactgct 2880 gctggaaggg ggtggtgtgt cgccccaaaa gcagggcttc aattaagaaa tgcctctttg 2940 aaaggtgtac cttgggtatc ctgtctgagg gtaactccag ggtgcgccac aatgtggcct 3000 ccgactgtgg ttgcttcatg ctagtgaaaa gcgtggctgt gattaagcat aacatggtat 3060 gtggcaactg cgaggacagg gcctctcaga tgctgacctg ctcggacggc aactgtcacc 3120 tgctgaagac cattcacgta gccagccact ctcgcaaggc ctggccagtg tttgagcata 3180 acatattgac ccgctgttcc ttgcatttgg gtaacaggag gggggtgttc ctaccttacc 3240 aatgcaattt gagtcacact aagatattgc ttgagcccga gagcatgtcc aaggtgaacc 3300 tgaacggggt gtttgacatg accatgaaga tctggaaggt gctgaggtac gatgagaccc 3360 gcaccaggtg cagaccctgc gagtgtgggg gtaaacatat taggaaccag cctgtgatgc 3420 tggatgtgac cgaggagctg aggcccgatc acttggtgct ggcctgcacc cgcgctgagt 3480 ttggctctag cgatgaagat acagattgag gtactgaaat gtgtgggcgt ggcttaaggg 3540 tgggaaagaa tatataaggt gggggtctta tgtagttttg tatctgtttt gcagcagccg 3600 ccgccgccat gagcaccaac tcgtttgatg gaagcattgt gagctcatat ttgacaacgc 3660 gcatgccccc atgggccggg gtgcgtcaga atgtgatggg ctccagcatt gatggtcccc 3720 ccgtcctgcc cgcaaactct actaccttga cctacgagac cgtgtctgga acgccgttgg 3780 aaactgcagc ctccgccgcc gcttcagccg ctgcagccac cgcccgcggg attgtgactg 3840 actttgcttt cctgagcccg cttgcaagca gtgcagcttc ccgttcatcc gcccgcgatg 3900 acaagttgac ggctcttttg gcacaattgg attctttgac ccgggaactt aatgtcgttt 3960 ctcagcagct gttggatctg caccagcagg tttctgccct gaaggcttcc tcccctccca 4020 atgcggttta aaacataaat aaaaaaccag actctgtttg gatttggatc aagcaagtgt 4080 cttgctgtct ttatttaggg gttttgcgcg cgcggtaggc ccgggaccag cggtctcggt 4140 cgttgagggt cctgtgtatt ttttccagga cgtggtaaag gtgactctgg atgttcagat 4200 acatgggcat aagcccgtct ctggggtgga ggtagcacca ctgcagagct tcatgctgcg 4260 gggtggtgtt gtagatgatc cagtcgtagc aggagcgctg ggcgtggtgc ctaaaaatgt 4320 ctttcagtag caagctgatt gccaggggca ggcccttggt gtaagtgttt acaaagcggt 4380 taagctggga tgggtgcata cgtggggata tgagatgcat cttggactgt atttttaggt 4440 tggctatgtt cccagccata tccctccggg gattcatgtt gttgagaacc accagcacag 4500 tgtatccggt gcacttggga aatttgtcat gtagcttaga aggaaatgcg tcgaagaaat 4560 tggagacgcc cttgtgacct ccaagatttt ccatgcattc gtccataatg atggcaatgg 4620 gcccacgggc ggcggcctgg gcgaagatat ttctgggatc actaacgtca tagttgtgtt 4680 ccaggatgag atcgtcatag gccattttta caaagcgcgg gcggagggtg ccagactgag 4740 gtataatggt tccatccggc ccaggggcgt agttaccctc acagatttgc atttcccacg 4800 ctttgagttc agatgggggg atcatgtcta cctgcggggc gatgaagaaa acggtttccg 4860 gggtagggga gatcagctgg gaagaaagca ggttcctgag cagctgcgac ttaccgcagc 4920 cggtgggccc gtaaatcaca cctattaccg ggtgcaactg gtagttaaga gagctgcagc 4980 tgccgtcatc cctgagcagg ggggccactt cgttaagcat gtccctgact cgCatgtttt 5040 ccctgaccaa atccgccaga aggcgctcgc cgcccagcga tagcagttct tgcaaggaag 5100 caaagttttt caacggtttg agaccgtccg ccgtaggcat gcttttgagc gtttgaccaa 5160 gcagttccag gcggtcccac agctcggtca cctgctctac ggcatctcga tccagcatat 5220 ctcctcgttt cgcgggttgg ggcggctttc gctgtacggc agtagtcggt gctcgtccag 5280 acgggccagg gtcatgtctt tccacgggcg cagggtcctc gtcagcgtag tctgggtcac 5340 ggtgaagggg tgcgctccgg gctgcgcgct ggccagggtg cgcttgaggc tggtcctgct 5400 ggtgctgaag cgctgccggt cttcgccctg cgcgtcagcc aggtagcatt tgaccatggt 5460 gtcatattcc agcccctccg cggcgtggcc cttggcccgc agcttgccct tggaggaggc 5520 gccgcacgag gggcagtgca gacttttgag ggcgtagagc ttgggcgcga gaaataccga 5580 ttccggggag taggcatccg cgccgcaggc cccgcagacg gtctcgcatt ccacgagcca 5640 ggtgagctct ggccgtccgg ggtcaaaaac caggtttccc ccatgctttt tgatgcgttt 5700 cttacctctg gtttccatga gccggtgtcc acgctcggtg acgaaaaggc tgtccgtgtc 5760 cccgtataca gacttgagag gcctgtcctc gagcggtgtt ccgcggtcct cctcgtatag 5820 aaactcggac cactctgaga caaaggctcg cgtccaggcc agcacgaagg aggctaagtg 5880 ggaggggtag cggtcgttgt ccactagggg gtccactcgc tccagggtgt gaagacacat 5940 gtcgccctct tcggcatcaa ggaaggtgat tggtttgtag gtgtaggcca cgtgaccggg 6000 tgttcctgaa ggggggctat aaaagggggt gggggcgcgt tcgtcctcac tctcttccgc 6060 atcgctgtct gcgagggcca gctgttgggg tgagtactcc ctctgaaaag cgggcatgac 6120 ttctgcgcta agattgtcag tttccaaaaa cgaggaggat ttgatattca cctggcccgc 6180 ggtgatgcct ttgagggtgg ccgcatccat ctggtcagaa aagacaatct ttttgttgtc 6240 aagcttggtg gcaaacgacc cgtagagggc gttggacagc aacttggcga tgaagcgcag 6300 ggtttggttt ttgtcgcgat cggcgcgctc cttggccccg atgtttagct gcacgtattc 6360 gcgcgcaacg caccgccatt cgggaaagac ggtggtgcgc tcgtcgggca ccaggtgcac 6420 gcgccaaccg Cggttgtgca gggttacaag gtcaacgctg gtggctacct ctccgcgtag 6480 gcgctcgttg gtccagcaga ggcggccgcc cttgcgcgag cagaatggcg gtagggggtc 6540 tagctgcgtc tcgtccgggg ggtctgcgtc cacggtaaag accccgggca gcaggcgcgc 6600 gtcgaagtag tctatcttgc atccttgcaa gtctagcgcc tgctgccatg cgcgggcggc 6660 aagcgcgcgc tcgtatgggt tgagtggggg accccatggc atggggtggg tgagcgcgga 6720 ggcgtacatg ccgcaaatgt cgtaaacgta gaggggctct ctgagtattc caagatatgt 6780 agggtagcat cttccaccgc ggatgctggc gcgcacgtaa tcgtatagtt cgtgcgaggg 6840 agcgaggagg tcgggaccga ggttgctacg ggcgggctgc tctgctcgga agactatctg 6900 cctgaagatg gcatgtgagt tggatgatat ggttggacgc tggaagacgt tgaagctggc 6960 gtctgtgaga cctaccgcgt cacgcacgaa ggaggcgtag gagtcgcgca gcttgttgac 7020 cagctcggcg gtgacctgca cgtctagggc gcagtagtcc agggtttcct tgatgatgtc 7080 atacttatcc tgtccctttt ttttccacag ctcgcggttg aagacaaact cttcgcggtc 7140 tttccagtac tcttggatcg gaaacccgtc ggcctccgaa cggtaaaaac ctagcatgta 7200 gaactggttg acggcctggt aggcgcagca tcccttttct acgggtagcg cgtatgcctg 7260 cgcggccttc cggagcgagg tgtgggtgag cgcaaaggtg tccctgacca tgactttgag 7320 gtactggtat ttgaagtcag tgtcgtcgca tccgccctgc tcccagagca aaaagtccgt 7380 gcgctttttg gaacgcggat ttggcagggc gaaggtgaca tcgttgaaga gtatctttcc 7440 cgcgcgaggc ataaagttgc gtgtgatgcg gaagggtccc ggcacctcgg aacggttgtt 7500 aattacctgg gcggcgagca cgatctCgtc aaagccgttg atgttgtggc ccacaatgta 7560 aagttccaag aagcgcggga tgcccttgat ggaaggcaat tttttaagtt cctcgtaggt 7620 gagctcttca ggggagctga gcccgtgctc tgaaagggcc cagtctgcaa gatgagggtt 7680 ggaagcgacg aatgagctcc acaggtcacg ggccattagc atttgcaggt ggtcgcgaaa 7740 ggtcctaaac tggcgaccta tggccatttt ttctggggtg atgcagtaga agggaagcgg 7800 gtcttgttcc cagcggtccc atccaaggtt cggggctagg tctcgcgcgg cagtcactag 7860 aggctcatct ccgccgaact tcatgaccag catgaagggc acgagctgct tcccaaaggc 7920 ccccatccaa gtataggtct ctacatcgta ggtgacaaag agacgctcgg tgcgaggatg 7980 cgagccgatc gggaagaact ggatctcccg ccaccaattg gaggagtggc tattgatgtg 8040 gtgaaagtag aagtccctgc gacgggccga acactcgtgc tggcttttat aaaaacgtgc 8100 gcagtacttg cagcggtgca cgggctgtac atcctgcacg aggttgacct gacgaccgcg 8160 cacaaggaag cagagtggga atttgagccc ctcgcctggc ggttttggct ggtggtcttc 8220 tacttcggct gcttgtcctt gaccgtctgg ctgctcgagg ggagttacgg tggatcggac 8280 caccacgccg cgcgagccca aagtccagat gtccgcgcgc ggcggtcgga gcttgatgac 8340 aacatCgcgc agatgggagc tgtccatggt ctggagctcc cgcggcgtca ggtcaggcgg 8400 gagctcctgc aggtttacct cgcatagacg ggtcagggcg cgggctagat ccaggtgata 8460 cctaatttcc aggggctggt tggtggcggc gtcgatggct tgcaagaggc cgcatccccg 8520 cggcgcgact aaggtaCCgC gcggcgggcg gtgggccgcg ggggtgttct tggatgatgc 8580 atctaaaagc ggtgacggcg gcgagccccc ggaggtaggg ggggctccgg acccgccggg 8640 agagggggca ggggcacgtc ggcgacgccc gcgggcagga gctggtgctg cgcgcgtagg 8700 ttgctggcga acgcgacgac gcggcggttg atctcctgaa tctggcgcct ctgcgtgaag 8760 acgacgggcc cggtgagctt gagcctgaaa gagagttcga cagaatcaat ttcggtgtcg 8820 ttgacggcgg cctggcgcaa aatctcctgc acgtctcctg aattgtcttg ataggcgatc 8880 tcggccatga actgctcgat ctcttcctcc tggagatctc cgcgtcCggc tcgctccacg 8940 gtggcggcga ggtcgttgga aatgcgggcc atgagctggg agaaggcgtt gaggcctccc 9000 tcgttccaga cgcggctgta gaccacgccc ccttcggcat cgcgggcgcg catgaccacc 9060 tgcgcgagat tgagctccac gggcagggcg aagacggcgt agtttcgcag gcgctaaaag 9120 aggtagttga gggtgagggc ggtgtgttct gccacgaaga agtacataac ccagcgtcgc 9180 aacgtggatt cgttgatatc cccgaaggcc tcaaggcgct ccatggcctc gtagaagtcc 9240 acggcgaagt tgaaaaactg ggagttgcgc gccgacacgg ttaactcctc ccccagaaga 9300 cggatgagCt cggcgacagt gtcgcgcacc tcgcgctcaa aggctacagg ggcctcttct 9360 tcttcttCaa tctcctcttc cataagggcc tccccttctt cttcttctgg cggcggtggg 9420 ggagggggga cacggcggcg acgacggcgc accgggaggc ggtcgacaaa gcgctcgatc 9480 atctccccgc ggcgacggcg catggtctcg gtgacggcgc ggccgttctc gcgggggcgc 9540 agttggaaga cgccgcccgt catgtcccgg ttatgggttg gcggcgggct gccatgcggc 9600 agggatacgg cgctaacgat gcatctcaac aattgttgtg taggtactcc gccgccgagg 9660 gacctgagcg agtccgcatc gaccggatcg gaaaacctct cgagaaaggc gtctaaccag 9720 tcacagtcgc aaggtaggct gagcaccgtg gcgggcggca gcgggcggcg gtcggggttg 9780 tttctggcgg aggtgctgct gatgatgtaa ttaaagtagg cggtcttgag acggcggatg 9840 gtcgacagaa gcaccatgtc cttgggtccg gcctgctgaa tgcgcaggcg gtcggccatg 9900 ccccaggctt cgttttgaca tcggcgcagg tctttgtagt agtcttgcat gagcctttct 9960 accggcactt cttcttctcc ttcctcttgt cctgcatctc ttgcatctat cgctgcggcg 10020 gcggcggagt ttggccgtag gtggcgccct cttcctccca tgcgtgtgac cccgaagccc 10080 ctcatcggct gaagcagggc taggtcggcg acaacgcgct cggctaatat ggcctgctgc 10140 acctgcgtga gggtagactg gaagtcatcc atgtccacaa agcggtggta tgcgcccgtg 10200 ttgatggtgt aagtgcagtt ggccataacg gaccagttaa cggtctggtg acccggctgc 10260 gagagctcgg tgtacctgag acgcgagtaa gccgtcgagt caaatacgta gtcgttgcaa 10320 gtccgcacca ggtactggta tcccaccaaa aactgcggcg gcggctggcg gtagaggggc 10380 cagcgtaggg tggcgagggc tccgggggcg agatcttcca acataaggcg atgatatccg 10440 tagatgtacc tggacatcca ggtgatgccg gcggcggtcg tggaggcgcg cggaaagtcg 10500 cgaacgcggt tccagatgtt gcgcagcggc aaaaagtgct ccatggtcgg gacgctctgg 10560 ccggtcaggc gcgcgcaatc gttgacgctc tagaccgtgc aaaaggagag cctgtaagcg 10620 ggcactcttc cgtggtctgg tggataaatt cgcaagggta tcatggcgga cgaccggggt 10680 tcgagccccg tatccggccg tccgccgtga tccatgcggt taccgcccgc gtgtcgaacc 10740 caggtgtgcg acgtcagaca acgggggagt gctccttttg gcttccttcc aggcgcggcg 10800 gctgctgcgc tagctttttt ggCcactggc cgcgcgcagc gtaagcggtt aggctggaaa 10860 gcgaaagcat taagtggctc gctccctgta gccggagggt tattttccaa gggttgagtc 10920 gcgggacccc cggttcgagt ctcggaccgg ccggactgcg gcgaacgggg gtttgcctcc 10980 ccgtcatgca agaccccgct tgcaaattcc tccggaaaca gggacgagcc ccttttttgc 11040 ttttcccaga tgcatccggt gctgcggcag atgcgccccc ctcctcagca gcggcaagag 11100 caagagcagc ggcagacatg cagggcaccc tcccctcctc ctaccgcgtc aggaggggcg 11160 acatccgcgg ttgacgcggc agcagatggt gattacgaac ccccgcggcg ccgggcccgg 11220 cactacctgg acttggagga gggcgagggc ctggcgcggc taggagcgcc ctctcctgag 11280 cggtacccaa gggtgcagct gaagCgtgat acgcgtgagg cggacgtgcc gcggcagaac 11340 ctgtttcgcg accgcgaggg agaggagccc gagaagatgc gggatcgaaa gttccacgca 11400 gggcgcgagc tgcggcatgg cctgaatcgc gagcggttgc tgcgcgagga ggactttgag 11460 cccgacgcgc gaaccgggat tagtccggcg cgcgcacacg tggcggccgc cgacctggta 11520 accgcatacg agcagacggt gaaccaggag attaactttc aaaaaatctt taacaaccac 11580 gtgcgtacgc ttgtggcgcg cgaggaggtg gctataggac tgatgcatct gtgggacttt 11640 gtaagcgcgc tggagcaaaa cccaaatagc aagccgctca tggcgcagct gttccttata 11700 gtgcagcaca gcagggacaa cgagggattc agggatgcgc tgctaaacat agtagagccc 11760 gagggccgct ggctgcgcga tttgataaac atcctgcaga gcatagtggt gcaggagcgc 11820 agcttgagcc tggctgacaa ggtggccgcc atcaactatt ccatgcttag cctgggcaag 11880 ttttacgccc gcaagatata ccatacccct tacgttccca tagacaagga ggtaaagatc 11940 gaggggttct acatgcgcat ggcgctgaag gtgcttacct tgagcgacga cctgggcgtt 12000 tatcgcaacg agcgcatcca caaggccgtg agcgtgagcc ggcggcgcga gctcagcgac 12060 cgcgaggtca tgcacagcct gcaaagggcc ctggctggca cgggcagcgg Cgatagagag 12120 gccgagtcct actttgacac gggcgctgac ctgcgctgcg ccccaagccg acgcgccctg 12180 gaggcagctg gggccggacc tgggctggcg gtggcacccg cccgcgctgg caacgtcggc 12240 ggcgtggagg aatatgacga ggacgatgag tagaagccag aggacggcga gtactaagcg 12300 gtgatgtttc tgatcagatg atgcaagacg caacggaccc ggcggtgcgg gcggcgctgc 12360 agagccagcc gtccggcctt aactccacgg acgactggcg ccaggtcatg gaccgcatca 12420 tgtcgctgac tgcgcgcaat cctgacgcgt tccggcagca gccgcaggcc aaccggctct 12480 ccgcaattct ggaagCggtg gtcccggcgc gcgcaaaccc cacgcacgag aaggtgctgg 12540 cgatcgtaaa cgcgctggcc gaaaacaggg ccatccggcc cgacgaggcc ggcctggtct 12600 acgacgcgct gcttcagcgc gtggctcgtt acaacagcgg caacgtgcag accaacctgg 12660 accggctggt gggggatgtg cgcgaggccg tggcgcagcg tgagcgcgcg cagcagcagg 12720 gcaacctggg ctccatggtt gcactaaacg ccttcctgag tacacagccc gccaacgtgc 12780 cgcggggaca ggaggactac accaactttg tgagcgcact gcggctaatg gtgactgaga 12840 caccgcaaag tgaggtgtac cagtctgggc cagactattt tttccagacc agtagacaag 12900 gcctgcagac cgtaaacctg agccaggctt tcaaaaactt gcaggggctg tggggggtgc 12960 gggctcccac aggcgaccgc gcgaccgggt ctagcttgct gacgcccaac tcgcgcctgt 13020 tgctgctgct aatagcgccc ttcacggaca gtggcagcgt gtcccgggac acatacctag 13080 gtcacttgct gacactgtac cgcgaggcca taggtcaggc gcatgtggac gagcatactt 13140 tccaggagat tacaagtgtc agccgcgcgc tggggcacga ggacacgggc agcctggagg 13200 caaccctaaa ctacctgctg accaaccggc ggcagaagat cccctcgttg cacagtttaa 13260 acagcgagga ggagcgcatt ttgcgctacg tgcagcagag cgtgagcctt aacctgatgc 13320 gcgacggggt aacgcccagc gtggcgctgg acatgaccgc gcacaacatg gaaccgggca 13380 tgtatgcctc aaaccggccg tttatcaacc gcctaatgga ctacttgcat cgcgcggccg 13440 ccgtgaaccc cgagtatttc accaatgcca tcttgaaccc gcactggcta ccgccccctg 13500 gtttctacac cgggggattc gaggtgCCCg agggtaacga tggattcctc tgggacgaca 13560 tagacgacag cgtgttttcc ccgcaaccgc agaccctgct agagttgcaa cagcgcgagc 13620 aggcagacgc ggcgctgcga aaggaaagct tccgcaggcc aagcagcttg tccgatctag 13680 gcgctgcggc cccgcggtca gatgctagta gcccatttcc aagcttgata gggtctctta 13740 ccagcactcg caccacccgc ccggccctgc tgggcgagga ggagtaccta aacaactcgc 13800 tgctgcagcc gcagcgcgaa aaaaacctgc ctccggcatt tcccaacaac gggatagaga 13860 gcctagtgga caagatgagt agatggaaga cgtacgcgca ggagcacagg gacgtgccag 13920 gcccccggcc gcccacccgt cgtcaaaggc acgaccgtca gcggggtctg gtgtgggagg 13980 acgatgactc ggcagacgac agcagcgtcc tggatttggg agggagtggc aacccgtttg 14040 cgcaccttcg ccccaggctg gggagaatgt tttaaaaaaa aaaaagcatg atgcaaaata 14100 aaaaactcac caaggccatg gcaccgagcg ttggttttct tgtattcccc ttagtatgcg 14160 gcgcgcggcg atgtatgagg aaggtcctcc tccctcctac gagagtgtgg tgagcgcggc 14220 gccagtggcg gcggcgctgg gttctccctt cgatgctccc ctggacccgc cgtttgtgcc 14280 tccgcggtac ctgcggccta ccggggggag aaacagcatc cgttactctg agttggcacc 14340 cctattcgac accacccgtg tgtacctggt ggacaacaag tcaacggatg tggcatccct 14400 gaactaccag aacgaccaca gcaactttct gaccacggtc attcaaaaca atgactacag 14460 cccgggggag gcaagcacac agaccatcaa tcttgacgac cggtcgcact ggggcggcga 14520 cctgaaaacc atcctgcata ccaacatgcc aaatgtgaac gagttcatgt ttaccaataa 14580 gtttaaggcg cgggtgatgg tgtcgcgctt gcctactaag gacaatcagg tggagctgaa 14640 atacgagtgg gtggagttca cgctgcccga gggcaaatac tccgagacca tgaccataga 14700 ccttatgaac aacgcgatcg tggagcacta cttgaaagtg ggcagacaga acggggttct 14760 ggaaagcgac atcggggtaa agtttgacac ccgcaactgc agactggggt ttgaccccgt 14820 cactggtctt gtcatgcctg gggtatatac aaacgaagcc ttccatccag acatcatttt 14880 gctgccagga tgcggggtgg acttcaccca cagccgcctg agcaacttgt tgggcatccg 14940 caagcggcaa cccttccagg agggctttag gatcacctac gaggatctgg agggtggtaa 15000 cattcccgca ctgttggatg tggacgccta ccaggcgagc ttgaaagatg acaccgaaca 15060 gggcggcggt ggcgcaggcg gcagcaacag cagtggcagc ggcgcggaag agaactccaa 15120 cgcggcagcc gcggcaatgc agccggtgga ggacatgaac gatcatgcca ttcgcggcga 15180 cacctttccc acacgggctg aggagaagcg cgctgaggcc gaagcagcgg ccgaagctgc 15240 cgcccccact gcgcaacccg aggtcgagaa gcctcagaag aaaccggtga tcaaacccct 15300 gacagaggac agcaagaaac gcagttacaa cctaataagc aatgacagca ccttcaccca 15360 gtaccgcagc tggtaccttg catacaacta cggcgaccct cagaccggaa tccgctcatg 15420 gaccctgctt tgcactcctg acgtaacctg cggctcggag caggtctact ggtcgttgcc 15480 agacatgatg caagaccccg tgaacttctg ctccacgcgc cagatcagca actttccggt 15540 ggtgggcgcc gagctgttgc ccgtgcactc caagagcttc tacaacgacc aggccgtcta 15600 ctcccaactc atccgccagt ttacctctct gacccacgtg ttcaatcgct ttcccgagaa 15660 ccagattttg gcgcgcccgc cagcccccac catcaccacc gtcagtgaaa acgttcctgc 15720 tctcacagat cacgggacgc taCcgctgcg caacagCatc ggaggattcc agcgagtgac 15780 cattactgac gccagacgcc gcacctgccc ctacgtttac aaggccctgg gcatagtctc 15840 gccgcgcgtc ctatcgagcc gcactttttg agcaagcatg tccatcctta tatcgcccag 15900 caataacaca ggctggggcc tgcgcttccc aagcaagatg tttggcgggg ccaagaagcg 15960 ctccgaccaa cacccagtgc gcgtgcgcgg gcactaccgc gcgccctggg gcgcgcacaa 16020 acgcggccgc actgggcgca ccaccgtcga tgacgccatc gacgcggtgg tggaggaggc 16080 gcgcaactac acgcgcacgc cgccaccagt gtccacagtg gacgcggcca ttcagaccgt 16140 ggtgcgcgga gccccgcgct atgctaaaat gaagagacgg cggaggcgcg tagcacgtcg 16200 ccaccgccgc cgacccggca ctgccgccca acgcgcggcg gcggccctgc ttaaccgcgc 16260 acgtcgcacc ggccgacggg cggccatgcg ggcCgctcga aggctggccg cgggtattgt 16320 cactgtgccc cccaggtCCa ggcgacgagc ggccgccgca gcagccgcgg ccattagtgc 16380 tatgactcag ggtcgcaggg gcaacgtgta ttgggtgCgc gactcggtta gcggcctgcg 16440 cgtgcccgtg cgcacccgcc ccccgcgcaa ctagattgca agaaaaaact acttagactc 16500 gtactgttgt atgtatccag cggcggcggc gcgcaaCgaa gctatgtcca agcgcaaaat 16560 caaagaagag atgctccagg tcatcgcgcc ggagatctat ggccccccga agaaggaaga 16620 gcaggattac aagccccgaa agctaaagcg ggtcaaaaag aaaaagaaag atgatgatga 16680 tgaacttgac gacgaggtgg aactgCtgca cgctaccgcg cccaggcgac gggtacagtg 16740 gaaaggtcga cgcgtaaaac gtgttttgcg acccggcacc accgtagtct ttacgcccgg 16800 tgagcgctcc acccgcacct acaagcgcgt gtatgatgag gtgtacggcg acgaggacct 16860 gcttgagcag gccaacgagc gcctcgggga gtttgcctac ggaaagcggc ataaggacat 16920 gctggcgttg ccgctggacg agggcaaccc aacacctagc ctaaagcccg taacactgca 16980 gcaggtgctg cccgcgcttg caccgtccga agaaaagcgc ggcctaaagc gcgagtctgg 17040 tgacttggca cccaccgtgc agctgatggt acccaagcgc cagcgactgg aagatgtctt 17100 ggaaaaaatg accgtggaac ctgggctgga gcccgaggtc cgcgtgcggc caatcaagca 17160 ggtggcgccg ggactgggcg tgcagaccgt ggacgttcag atacccacta ccagtagcac 17220 cagtattgcc accgccacag agggcatgga gacacaaacg tccccggttg cctcagcggt 17280 ggcggatgcc gcggtgcagg cggtcgctgc ggccgcgtcc aagacctcta cggaggtgca 17340 aacggacccg tggatgtttc gcgtttcagc cccccggcgc ccgcgcggtt cgaggaagta 17400 cggcgccgcc agcgcgctac tgcccgaata tgccctacat ccttccattg cgcctacccc 17460 cggctatcgt ggctacacct accgccacag aagacgagca actacccgac gccgaaccac 17520 cactggaacc cgccgccgcc gtcgccgtcg ccagcccgtg ctggccccga tttccgtgcg 17580 cagggtggct cgcgaaggag gcaggaccct ggtgctgcca acagcgcgct accaccccag 17640 catcgtttaa aagccggtct ttgtggttct tgcagatatg gccctcacct gccgcctccg 17700 tttcccggtg ccgggattcc gaggaagaat gcaccgtagg aggggcatgg ccggccacgg 17760 cctgacgggc ggcatgcgtc gtgcgcacca ccggcggcgg cgcgcgtcgc accgtcgcat 17820 gcgcggcggt atcctgcccc tccttattcc actgatcgcc gcggcgattg gcgccgtgcc 17880 cggaattgca tccgtggcct tgcaggcgca gagacactga ttaaaaacaa gttgcatgtg 17940 gaaaaatcaa aataaaaagt ctggactctc acgctcgctt ggtcctgtaa ctattttgta 18000 gaatggaaga catcaacttt gcgtctctgg ccccgcgaca cggctcgcgc ccgttcatgg 18060 gaaactggca agatatcggc accagcaata tgagcggtgg cgccttcagc tggggctcgc 18120 tgtggagcgg cattaaaaat ttcggttcca ccgttaagaa ctatggcagc aaggcctgga 18180 acagcagcac agaccagatg ctgagggata agttgaaaga gcaaaatttc caacaaaagg 18240 tggtagatgg cctggcctct ggcattagcg gggtggtgga cctggccaac caggcagtgc 18300 aaaataagat taacagtaag cttgatcccc gccctcccgt agaggagcct ccaccgaccg 18360 tggagacagt gtctccagag gggcgtggcg aaaagcgtcc gcgccccgac agggaagaaa 18420 ctctggtgac gcaaatagac gagcctccct cgtacgagga ggcactaaag Caaggcctgc 18480 ccaccaaccg tcccatcgcg cccatggcta ccggagtgct gggccagcac acacccgtaa 18540 cgctggacct gcctcccccc gccgacaccc agcagaaacc tgtgctgcca ggcccgaccg 18600 ccgttgttgt aacccgtcct agccgcgcgt ccctgcgccg cgccgccagc ggtccgcgat 18660 cgttgcggcc cgtagccagt ggcaactggc aaagcacact gaacagcatc gtgggtctgg 18720 gggtgcaatc cctgaagcgc cgacgatgct tctgaatagc taacgtgtcg tatgtgtgtc 18780 atgtatgcgt ccatgtcgcc gccagaggag ctgctgagcc gccgCgCgCC cgctttcaaa 18840 gatggctacc ccttcgatga tgccgcagtg gtcttacatg cacatctcgg gccaggacgc 18900 ctcggagtac ctgagccccg ggctggtgca gtttgcccgc gccaccgaga cgtacttcag 18960 cctgaataac aagtttagaa accccacggt ggcgcctacg cacgacgtga ccacagaccg 19020 gtcccagcgt ttgacgctgc ggttcatccc tgtggaccgt gaggatactg cgtactcgta 19080 caaggcgcgg ttcaccctag ctgttgttga taaccgtgtg ctggacatgg cttccacgta 19140 ctttgacatc cgcggcgtgc tggacagggg ccctactttt aagccctact ctggaactgc 19200 ctacaacgcc ctggctccca agggtgcccc aaatccttgc gaatgggatg aagctgctac 19260 tgctcttgaa ataaacctag aagaagagga cgatgacaac gaagacgaag tagacgagca 19320 agctaagcag caaaaaactc acgtatttgg gcaggcgcct tattctggta taaatattac 19380 aaaggagggt attcaaatag gtgtcgaagg taaaacacct aaatatgccg ataaaacatt 19440 tcaacttgaa cctcaaatag gagaatctca gtggtacgaa actgaaatta atcatgcagc 19500 tgggagagtc cttaaaaaga ctaccccaat gaaaccatgt tacggttcat atgcaaaacc 19560 cacaaatgaa aatggagggc aaggcattct tgtaaagcaa caaaatggaa agctagaaag 19620 tcaagtggaa atgcaatttt tctgaactac tgaggcgacc gcaggcaatg gtgataactt 19680 gactcctaaa gtggtattgt acagtgaaga tgtagatata gaaaccccag acactcatat 19740 ttcttacatg cccactatta aggaaggtaa ctcacgagaa ctaatgggcc aacaatctat 19800 gcccaacagg cctaattaca ttgcttttag ggacaatttt attgttctaa tgtattacaa 19860 cagcacgggt aatatgggtg ttctggcggg ccaagcatcg cagttgaatg ctgttgtaga 19920 tttgcaagac agaaacacag agctttcata ccagcttttg cttgattcca ttggtgatag 19980 aaccaggtac ttttctatgt ggaatcaggc tgttgacagc tatgatccag atgttagaat 20040 tattgaaaat catgaaactg aagatgaact tccaaattac tgctttccac tgggaggtgt 20100 gattaataca gagactctta ccaaggtaaa acctaaaaca ggtcaggaaa atggatggga 20160 aaaagatgct acagaatttt cagataaaaa tgaaataaga gttggaaata attttgccat 20220 ggaaatcaat ctaaatgcca acctgtggag aaatttcctg tactccaaca tagcgctgta 20280 tttgcccgac aagctaaagt acagtccttc caacgtaaaa atttctgata acccaaacac 20340 ctacgactac atgaacaagc gagtggtggc tcccgggtta gtggaattgt acattaacct 20400 tggagcacgc tggtcccttg actatatgga caacgtcaac ccatttaacc accaccgcaa 20460 tgctggcctg cgctaccgct caatgttgct gggcaatggt cgctatgtgc ccttccacat 20520 ccaggtgcct cagaagttct ttgccattaa aaacctcctt ctcctgccgg gctcatacac 20580 ctacgagtgg aacttcagga aggatgttaa catggttctg cagagctccc taggaaatga 20640 cctaagggtt gacggagcca gcattaagtt tgatagcatt tgcctttacg ccaccttctt 20700 ccccatggcc cacaacaccg cctccacgct tgaggccatg cttagaaacg acaccaacga 20760 ccagtccttt aacgactatc tctccgccgc caacatcatc taccctatac ccgccaacgc 20820 taccaacgtg cccatatcca tcccctcccg caactgggcg gctttccgcg gctgggcctt 20880 cacgcgcctt aagactaagg aaaccccatc actgggctcg ggctacgacc cttattacac 20940 ctactctggc tctataccct acctagatgg aaccttttac ctcaaccaca cctttaagaa 21000 ggtggccatt acctttgact cttctgtcag ctggcctggc aatgaccgcc tgcttacccc 21060 caacgagttt gaaattaagc gctcagttga cggggagggt tacaacgttg cccagtgtaa 21120 catgaccaaa gactggttcc tggtacaaat gctagctaac tacaacattg gctaccaggg 21180 cttctatatc ccagagagct acaaggaccg catgtactcc ttctttagaa acttccagcc 21240 catgagccgt caggtggtgg atgatactaa atacaaggac taccaacagg tgggcatcct 21300 acaccaacac aacaactctg gatttgttgg ctaccttgcc cccaccatgc gcgaaggaca 21360 ggcctaccct gctaacttcc cctatccgct tataggcaag accgcagttg acagcattac 21420 ccagaaaaag tttctttgcg atcgcaccct ttggcgcatc ccattctcca gtaactttat 21480 gtccatgggc gcactcacag accggagcca aaaccttctc tacgccaact ccgcccacgc 21540 gctagacatg acttttgagg tggatcccat ggacgagccc acccttcttt atgttttgtt 21600 tgaagtcttt gacgtggtcc gtgtgcaccg gccgcaccgc ggcgtcatcg aaaccgtgta 21660 cctgcgcacg cccttctcgg ccggcaacgc cacaacataa agaagcaagc aacatcaaca 21720 acagCtgccg ccattggctc cagtgagcag gaactgaaag ccattgtcaa agatcttggt 21780 tgtgggccat attttttggg cacctatgac aagcgctttc caggctttgt ttctccacac 21840 aagctcgcct gcgccatagt caatacggcc ggtcgcgaga ctcgggggtt acactggatg 21900 gcctttgcct ggaacccgca ctcaaaaaca tgttacctct ttgagccctt tggcttttct 21960 gaccagCgac tcaagcaggt ttaccagttt gagtacgagt cactcctgcg ccgtatcgcc 22020 attgCttctt cccccgaccg ctgtataacg ctggaaaagt ccacccaaag cgtacagggg 22080 cccaactcgg ccgcctgtgg actattctgc tgcatgtttc tccacgCCtt tgccaactgg 22140 cccaaaactc ccattgatca caaccccacc atgaacctta ttaccggggt acccaactcc 22200 atgCtcaaca gtccccaggt acagcccacc ctgcgtcgca accaggaaca gctctaCagc 22260 ttcctggagc gccactCgcc Ctacttccgc agccacagtg cgcagattag gagcgccact 22320 tctttttgtc acttgaaaaa catgtaaaaa taatgtacta gagacacttt caataaaggc 22380 aaattctttt atttgtacac tctcgggtga ttatttaccc ccacccttgc cgtctgcgcc 22440 gtttaaaaat caaaggggtt ctgccgcgca tcgctatgcg ccactggcag ggacacgttg 22500 cgatactggt gtttagtgct ccacttaaac tcaggcacaa ccatccgcgg cagctcagcg 22560 aagttttcac tccacaggct gcgcaccatc accaacgcgt ttagcaggtc gggcgccgat 22620 atcttgaagt cgcagttggg gcctccgccc tgcgcgcgcg agttgcgata cacagggttg 22680 cagcactgga acactatcag cgccgggtgg tgcacgctgg ccagcacgct cttgtcggag 22740 atcagatccg cgtccaggtc ctccgcgttg ctcagggcga acggagtcaa ctttggtagc 22800 tgccttccca aaaagggcgc gtgcccaggc tttgagttgc actcgcaccg tagtggcatc 22860 aaaaggtgac cgtgcccggt ctgggcgtta ggatacagcg cctgcataaa agccttgatc 22920 tgcttaaaag ccacctgagc ctttgcgcct tcagagaaga acatgcccca agacttgccg 22980 gaaaactgat tggccggaca ggccgcgtcg tgcacgcagc accttgcgtc ggtgttggag 23040 atctgcacca catttcggcc ccaccggttc ttcacgatct tggccttgct agactgctcc 23100 ttcagcgcgc gctgcccgtt ttcgctcgtc acatccattt caatcacgtg ctccttattt 23160 atcataatgc ttccgtgtag acacttaagc tcgccttcga tctcagcgca gcggtgcagc 23220 cacaacgcgc agcccgtggg ctcgtgatgc ttgtaggtca cctctgcaaa cgactgcagg 23280 tacgcctgca ggaatcgccc catcatcgtc acaaaggtct tgttgctggt gaagatcagc 23340 tgcaacccgc ggtgctcctc gttcagccag gtcttgcata cggccgccag agcttccact 23400 tggtcaggca gtagtttgaa gttcgccttt agatcgttat ccacgtggta cttgtccatc 23460 agcgcgcgcg cagcctccat gcccttctcc cacgcagaca cgatcggcac actcagcggg 23520 ttcatcaccg taatttcact ttccgcttcg ctgggctctt cctcttcctc ttgcgtccgc 23580 ataccacgcg ccactgggtc gtcttcattc agccgccgca ctgtgcgctt acctcctttg 23640 ccatgcttga ttagcaccgg tgggttgctg aaacccacca tttgtagcgc cacatcttct 23700 ctttcttcct cgctgtccac gattacctct ggtgatggcg ggcgctcggg cttgggagaa 23760 gggcgcttct ttttcttctt gggcgcaatg gccaaatccg ccgccgaggt cgatggccgc 23820 gggctgggtg tgcgcggcac cagcgcgtct tgtgatgagt cttcctcgtc ctcggactcg 23880 atacgccgcc tcatccgctt ttttgggggc gcccggggag gcggcggcga cggggacggg 23940 gacgacacgt cctccatggt tgggggacgt cgcgccgcac cgcgtccgcg ctcgggggtg 24000 gtttcgcgct gctcctcttc ccgactggcc atttccttct cctataggca gaaaaagatc 24060 atggagtcag tcgagaagaa ggacagccta accgccccct ctgagttcgc caccaccgcc 24120 tccaccgatg ccgccaacgc gcctaccacc ttccccgtcg aggcaccccc gcttgaggag 24180 gaggaagtga ttatcgagca ggacccaggt tttgtaagcg aagacgacga ggaccgctta 24240 gtaccaacag aggataaaaa gcaagaccag gacaacgcag aggcaaacga gaaacaagtc 24300 gggcgggggg acgaaaggca tggcgactac ctagatgtgg gagacgacgt gctgttgaag 24360 catctgcagc gccagtgcgc cattatctgc gacgcgttgc aagagcgcag cgatgtgccc 24420 ctcgccatag cggatgtcag ccttgcctac gaacgccacc tattctcacc gcgcgtaccc 24480 cccaaacgcc aagaaaacgg cacatgcgag cccaacccgc gcctcaactt ctaccccgta 24540 tttgccgtgc cagaggtgct tgccacctat cacatctttt tccaaaactg caagataccc 24600 ctatcctgcc gtgccaaccg cagccgagcg gacaagcagc tggccttgcg gcagggcgct 24660 gtcatacctg atatcgcctc gctcaacgaa gtgccaaaaa tctttgaggg tcttggacgc 24720 gacgagaagc gcgcggcaaa cgctctgcaa caggaaaaca gcgaaaatga aagtcactct 24780 ggagtgttgg tggaactcga gggtgacaac gcgcgcctag ccgtactaaa acgcagcatc 24840 gaggtcaccc actttgccta cccggcactt aacctacccc ccaaggtcat gagcacagtc 24900 atgagtgagc tgatcgtgcg ccgtgcgcag cccctggaca gggatgcaaa tttgcaagaa 24960 caaacagagg agggcctacc cgcagttggc gacgagcagc tagcgcgctg gcttcaaacg 25020 cgcgagcctg ccgacttgga ggagcgacgc aaactaatga tggccgcagt gctcgttacc 25080 gtggagcttg agtgcatgca gcggttcttt gctgacccgg agatgcagcg caagctagag 25140 gaaacattgc actacacctt tcgacagagc tacgtacgcc aggcctgcaa gatctccaac 25200 gtggagctct gcaacctggt ctcctacctt ggaattttgc acgaaaaccg ccttgggcaa 25260 aacgtgcttc attccacgct caagggcgag gcgcgccgcg actacgtccg cgactgcgtt 25320 tacttatttc tatgctacac ctggcagacg gccatgggcg tttggcagca gtgcttggag 25380 gagtgcaacc tcaaggagct gcagaaactg ctaaagcaaa acttgaagga cctatggacg 25440 gccttcaacg agcgctccgt ggccgcgcac ctggCggaca tcattttccc cgaacgcctg 25500 cttaaaaccc tgcaacaggg tctgccagac ttcaccagtc aaagcatgtt gcagaacttt 25560 aggaacttta tcctagagcg ctcaggaatc ttgcccgcca cctgctgtgc acttcctagc 25620 gactttgtgc ccattaagta ccgcgaatgc catccgccgc tttggggcca ctgctacctt 25680 ctgcagctag ccaactacct tgcctaccac tctgacataa tggaagacgt gagcggtgac 25740 ggtctactgg agtgtcactg tcgctgcaac ctatgcaccc cgcaccgctc cctggtttgc 25800 aattcgcagc tgcttaacga aagtcaaatt atcggtacct ttgagctgca gggtccctcg 25860 cctgacgaaa agtccgcggc tccggggttg aaactcactc cggggctgtg gacgtcggct 25920 taccttcgca aatttgtacc tgaggactac cacgcccacg agattaggtt ctacgaagac 25980 caatcccgcc cgccaaatgc ggagctaacc gcctgcgtca ttacccaggg ccacattctt 26040 ggccaattgc aagccatcaa caaagcccgc caagagtttc tgctacgaaa gggacggggg 26100 gtttacttgg acccccagtc cggcgaggag ctcaacccaa tccccccgcc gccgcagccc 26160 tatcagcagc agccgcgggc ccttgCttcc caggatggca cccaaaaaga agctgcagct 26220 gccgccgcca cccacggacg aggaggaata ctgggacagt caggcagagg aggttttgga 26280 cgaggaggag gaggacatga tggaagactg ggagagccta gacgaggaag cttccgaggt 26340 cgaagaggtg tcagacgaaa caccgtcacc ctcggtcgca ttcccctcgc cggcgcccca 26400 gaaatcggca accggttcca gcatggctac aacctccgct cctcaggcgc cgccggcact 26460 gcccgttcgc cgacccaacc gtagatggga caccactgga accagggccg gtaagtccaa 26520 gcagccgccg ccgttagccc aagagcaaca acagcgccaa ggctaccgct catggcgcgg 26580 gcacaagaac gccatagttg cttgcttgca agactgtggg ggcaacatct ccttcgcccg 26640 ccgctttctt ctctaccatc acggcgtggc cttcccccgt aacatcctgc attactaccg 26700 tcatctctac agcccatact gcaccggcgg cagcagcagc ggcagcaaca gcagcggcca 26760 cacagaagca aaggcgaccg gatagcaaga ctctgacaaa gcccaagaaa tccacagcgg 26820 cggcagcagc aggaggagga gcgctgcgtc tggcgcccaa cgaacccgta tcgacccgcg 26880 agcttagaaa caggattttt cccactctgt atgctatatt tcaacagagc aggggccaag 26940 aacaagagct gaaaataaaa aacaggtctc tgcgatccct cacccgcagc tgcctgtatc 27000 acaaaagcga agatcagctt cggcgcacgc tggaagacgt ggaggctctc ttcagtaaat 27060 actgcgcgct gactcttaag gactagtttc gcgccctttc tcaaatttaa gCgcgaaaac 27120 tacgtcatct ccagcggcca cacccgcagc cagcacctgt cgtcagcacc attatgagca 27180 aggaaattcc cacgccctac atgtggagtt accagccaca aatgggactt gcggctggag 27240 ctgcccaaga ctactcaacc cgaataaact acatgagcgc gggaccccac atgatatccc 27300 gggtcaacgg aatccgcgcc caccgaaacc gaattctctt ggaacaggcg gctattacca 27360 ccacacctcg taataacctt aatccccgta gttggcccgc tgccctggtg taccaggaaa 27420 gtcccgctcc caccactgtg gtacttccca gagacgccca ggccgaagtt cagatgacta 27480 actcacgggc gcagcttgag ggcggctttc gtcacagggt gcggtcgccc gggcagggta 27540 taactcacct gacaatcaga gggcgaggta ttcagtacaa cgacgagtcg gtgagctcct 27600 cgcttggtct ccgtccggac gggacatttc agatcggCgg cgCCggccgt ccttcattca 27660 cgcctcgtca ggcaatccta actctgcaga cctcgtcctc tgagccacgc tctggaggca 27720 ttggaactct gcaatttatt gaggagtttg tgccatcggt ctactttaac cccttctcgg 27780 gacctcccgg ccactatccg gatcaattta ttcctaactt tgacgcggta aaggactcgg 27840 cggacggcta cgactgaatg ttaagtggag aggcagagca actgcgcctg aaacacctgg 27900 tccactgtcg ccgccacaag tgctttgccc gcgactccgg tgagttttgc tactttgaat 27960 tgcccgagga tcatatcgag ggcccggcgc acggcgtccg gcttaccgcc cagggagagc 28020 ttgcccgtag cctgattcgg gagtttaccc agcgccccct gctagttgag cgggacaggg 28080 gaccctgtgt tctcactgtg atttgcaact gtcctaacct tggattacat caagatcttt 28140 gttgccatct ctgtgctgag tataataaat acagaaatta aaatatactg gggctcctat 28200 cgccatcctg taaacgccac cgtcttcacc cgcccaagca aaccaaggcg aaccttacct 28260 ggtactttta acatctctcc ctctgtgatt tacaacagtt tcaacccaga cggagtgagt 28320 ctacgagaga acctctccga ggtcagctac tccatcagaa aaaacaccac cctccttacc 28380 tgccgggaac gtacgagtgc gtcaccggcc gctgcaccac acctaccgcc tgaccgtaaa 28440 ccagactttt tccggacaga cctcaataac tctgtttacc agaacaggag gtgagcttag 28500 aaaaccctta gggtattagg ccaaaggcgc agctactgtg gggtttatga acaattcaag 28560 caactctacg ggctattcta attcaggttt ctctagaatc ggggttgggg ttattctctg 28620 tcttgtgatt ctctttattc ttatactaac gcttctctgc ctaaggctcg ccgcctgctg 28680 tgtgcacatt tgcatttatt ggtagctttt taaacgctgg ggtcaccacc caagatgatt 28740 aggtacataa ttttaggttt actcaccctt gcgtcagccc agcgtaccac ccaaaaggtg 28800 gattttaagg agccagcctg taatgttaca ttcgcagctg aagctaatga gtgcaccact 28860 cttataaaat gcaccacaga acatgaaaag ctgcttattc gccacaaaaa caaaattggc 28920 aagtatgctg tttatgctat ttggcagcca ggtgacacta cagagtataa tgttacagtt 28980 ttccagggta aaagtcataa aacttttatg tatacttttc cattttatga aatgtgcgac 29040 attaccatgt acatgagcaa acatgataag ttgtggcccc cacaaaattg tgtggaaaac 29100 actggcactt tctgctgcac tgctatgcta attacagtgc tcgctttggt ctgtacccta 29160 ctctatatta aatacaaaag cagacgcagC tttattgagg aaaagaaaat gccttaattt 29220 actaagttac aaagctaatg tcaccactaa ctgctttact cgctgcttgc aaaacaaatt 29280 caaaaagtta gcattataat tagaatagga tttaaacccc ccggtcattt cctgctcaat 29340 accattcccc tgaacaattg actctatgtg ggatatgctc cagcgctaca accttgaagt 29400 caggcttcct ggatgtcagc atctgacttt ggccagcacc tgtcccgcgg atttgttcca 29460 gtccaactac agcgacccac cctaacagag atgaccaaca caaccaacgc ggccgccgct 29520 accggactta catctaccac aaatacaccc caagtttctg cctttgtcaa taactgggat 29580 aacttgggca tgtggtggtt ctccatagcg cttatgtttg tatgccttat tattatgtgg 29640 ctcatctgct gcctaaagcg caaacgcgcc cgaccaccca tctatagtcc catcattgtg 29700 ctacacccaa acaatgatgg aatccataga ttggacggac tgaaacacat gttcttttct 29760 cttacagtat gattaaatga gacatgattc ctcgagtttt tatattactg acccttgttg 29820 cgcttttttg tgcgtgctcc aaattggctg cggtttctca catcgaagta gactgcattc 29880 cagccttcac agtctatttg ctttacggat ttgtcaccct cacgctcatc tgcagcctca 29940 tcactgtggt catcgccttt atccagtgca ttgactgggt ctgtgtgcgc tttgcatatc 30000 tcagacacca tccccagtac agggacagga ctatagctga gcttcttaga attctttaat 30060 tatgaaattt actgtgactt ttctgctgat tatttgcacc ctatctgcgt tttgttcccc 30120 gacctccaag cctcaaagac atatatcatg cagattcact cgtatatgga atattccaag 30180 ttgctacaat gaaaaaagcg atctttccga agcctggtta tatgcaatca tctctgttat 30240 ggtgttctgc agtaccatct tagccctagc tatatatccc taccttgaca ttggctggaa 30300 acgaatagat gccatgaacc acccaacttt ccccgcgccc gctatgcttc cactgcaaca 30360 agttgttgcc ggcggctttg tcccagccaa tcagcctcgc cccacttctc ccacccccac 30420 tgaaatcagc tactttaatc taacaggagg agatgactga caccctagat ctagaaatgg 30480 acggaattat tacagagcag cgcctgctag aaagacgcag ggcagcggcc gagcaacagc 30540 gcatgaatca agagctccaa gacatggtta acttgcacca gtgcaaaagg ggtatctttt 30600 gtctggtaaa gcaggccaaa gtcacctacg acagtaatac caccggacac cgccttagct 30660 acaagttgcc aaccaagcgt cagaaattgg tggtcatggt gggagaaaag cccattacca 30720 taactcagca ctcggtagaa accgaaggct gcattcactc accttgtcaa ggacctgagg 30780 atctctgcac ccttattaag accctgtgcg gtctaaaaga tattattccc tttaactaat 30840 aaaaaaaaat aataaagcat cacttactta aaatcagtta gcaaatttct gtccagttta 30900 ttcagcagca cctccttgcc ctcctcccag ctctggtatt gcagcttcct cctggctgca 30960 aactttctcc acaatctaaa tggaatgtca gtttcctcct gttcctgtcc atccgcaccc 31020 actatcttca tgttgttgca gatgaagcgc gcaagaccgt cttaagatac cttaaacccc 31080 gtgtatccat atgacacgga aaccggtcct caaactttgc cttttcttac tcctcccttt 31140 gtatccccca atgggtttca agagagtccc cctggggtac tctctttgcg cctatccgaa 31200 cctctagtta cctccaatgg catgcttgcg ctcaaaatgg gcaacggcct ctctctggac 31260 gaggccggca accttacctc ccaaaatgta accactgtga gcccacctct caaaaaaacc 31320 aattcaaaca taaacctgga aatatctgca cccctcacag ttacctcaga agccctaact 31380 gtggctgccg ccgcacctct aatggtcgcg ggcaacacac tcaccatgca atcacaggcc 31440 ccgctaaccg tgcacgactc caaacttagc attgccaccc aacgacccct cacagtgtca 31500 gaagcaaagc tagccctgca aacatcaggc cccctcacca ccaccgatag cagtaccctt 31560 actatcactg cctcaccccc tctaaatact gccactggta gcttgggcat ttacttgaaa 31620 gagcccattt atacacaaaa tggaaaacta ggactaaagt acggggctcc tttgcatgta 31680 acagacgacc taaacacttt gaccgtagca actggtccag gtgtgactat taataatact 31740 tccttgcaaa ctaaagttac tggagccttg ggttttgatt cacaaggcaa tatgcaactt 31800 aatgtagcag gaggactaag gattgattct caaaacagac gccttatact tgatgttagt 31860 tatccgtttg atgctcaaaa ccaactaaat ctaagactag gacagggccc tctttttata 31920 aactcagccc acaacttgga tattaactac aacaaaggcc tttacttgtt tacagcttca 31980 aacaattCCa aaaagcttga ggttaaccta agcactgcca aggggttgat gtttgacgct 32040 acagccatag ccattaatgc aggagatggg cttgaatttg gttcacctaa tgcaccaaac 32100 acaaatcccc tcaaaacaaa aattggccat ggcctagaat ttgattcaaa caaggctatg 32160 gttcctaaac taggaactgg ccttagtttt gacagcacag gtgccattac agtaggaaac 32220 aaaaataatg ataagctaac tttgtggacc acaccagctc catttcctaa ctgtagacta 32280 aatgcagaga aagatgctaa aatcactttg gtcttaacaa aatgtagcag tcaaatactt 32340 gctacagttt cagtttttgc tgttaaaggc agtttggctc caatatctgg aacagttcaa 32400 agtgctcatc ttattataag atttgacgaa aatggagtgc tactaaacaa ttccttactg 32460 gacccagaat attggaactt tagaaatgga gatcttactg aaggcacagc ctatacaaac 32520 gctgttggat ttatgcctaa cctatcagct tatccaaaat ctcacggtaa aactgccaaa 32580 attaacattg tcagtcaaat ttatttaaac ggagacaaaa ctaaacctgt aacactaacc 32640 attacactaa acggtacaca ggaaacagga gacacaactc caagtgcata ctctatgtca 32700 ttttcatggg actggtctgg ccacaactac attaatgaaa tatttgccac atcctcttac 32760 actttttcat acattgccca agaataaaga atcgtttgtg ttatgtttca acgtgtttat 32820 ttttcaattg cagaaaattt caagtcattt ttcattcagt agtatagccc caccaccaca 32880 tagcttatac agatcaccgt accttaatca aactcacaga accctagtat tcaacctgcc 32940 acctccctcc caacacacag agtacacagt cctttctccc cggctggcct taaaaagcat 33000 catatcatgg gtaacagaca tattcttagg tgttatattc cacacggttt cctgtcgagc 33060 caaacgctca tcagtgatat taataaactc cccgggcagc tcacttaagt tcatgtccgt 33120 gtccagctgc tgagccacag gctgctgtcc aacttgcggt tgcttaacgg gcggcgaagg 33180 agaagtccac gcctacatgg gggtagagtc ataatcgtgc atcaggatag ggcggtggtg 33240 ctccagcagc gcgcgaataa actgctgccg ccgccgctcc gtcctgcagg aatacaacat 33300 ggcagtggtc tcctcagcga tgattcgcac cgcccgcagc ataaggcgcc ttgtcctccg 33360 ggcacagcag cgcaccctga tctcacttaa atcagcacag taactgcagc acagcaccac 33420 aatattgttc aaaattccac aaggcaaagc gctgtatcca aagctcatgg cggggaccac 33480 agaacccacg tggccatcat accacaagcg caggtagatt aagtggcgac ccctcataaa 33540 cacgctggac ataaacatta cctcttttgg catgttgtaa ttcaccacct cccggtacca 33600 tataaaactc tgattaaaca tggcgccatc caccaccatc ctaaaCCagC tgcccaaaac 33660 ctgcccgccg gctatacact gcagggaacc gggactggaa caatgacagt ggagagccca 33720 ggactcgtaa ccatggatca tcatgctcgt catgatatca atgttggcac aacacaggca 33780 cacgtgcata cacttcctca ggattaaaag ctcctccagc gttagaacca tatcccaggg 33840 aacaacccat tcctgaatca gcgtaaatcc cacactgcag ggaagacctc gcacgtaact 33900 cacgttgtgc attgtcaaag tgttacattc gggcagcagc ggatgatcct ccagtatggt 33960 agcgcgggtt tctgtctcaa aaggaggtag acgatcccta ctgtacggag tgcgccgaga 34020 caaccgagat cgtgttggtc gtagtgtcat gccaaatgga acgccggacg tattcatatt 34080 tcctgaagca aaaccaggtg cgggcgtgac aaacagatct gcgtctccgg tctcgccgct 34140 tagatcgctc tgtgtagtag ttgtagtata tccactctct caaagcatcc aggcgccccc 34200 tggcttcggg ttctatgtaa actccttcat gcgccgctgc cctgataaca tccaccaccg 34260 cagaataagc cacacccagc caacctacac attcgttctg cgagtcacac acggaaggag 34320 cgggaagagc tggaagaacc atgttttttt ttttattcca aaagattatc caaaacctca 34380 aaatgaagat ctattaagtg aacgcgctcc cctccggtgg cgtggtcaaa ctctacagcc 34440 aaagaacaga taatggcatt tgtaagatgt tgcacaatgg cttccaaaag gcaaacggcc 34500 ctcacgtcca agtggacgta aaggctaaac ccttcagggt gaatctcctc tataaacatt 34560 ccagcacctt caaccatgcc caaataattc tcatcttgcc acctttataa tatatctcta 34620 agcaaatccc gaatattaag tccggccatt gtaaaaatct gctccagagc gccctccacc 34680 ttcagcctca agcagcgaat catgattgca aaaattcagg ttcctcacag acctgtataa 34740 gattcaaaag cggaacatta acaaaaatac cgcgatcccg taggtccctt cgcagggcca 34800 gctgaacata atcgtgcagg tctgcacgga ccagcgcggc cacttccccg ccaggaacct 34860 tgacaaaaga acccacactg attatgacac gcatactcgg agctatgcta accagcgtag 34920 ccccgatgta agctttgttg catgggcggc gatataaaat gcaaggtgct gctcaaaaaa 34980 tcaggcaaag cctcgcgcaa aaaagaaagc acatcgtagt catgatcatg cagataaagg 35040 caggtaagct ccggaaccac cacagaaaaa gacaccattt ttctctcaaa catgtctgcg 35100 ggtttctgca taaacacaaa ataaaataac aaaaaaacat ttaaacatta gaagcctgtc 35160 ttacaacagg aaaaaaaacc cttataagca taagacggac tacggccatg ccggcgtgac 35220 cgtaaaaaaa ctggtcaccg tgattaaaaa gcaccaccga cagctcctcg gtcatgtccg 35280 gagtcataat gtaagactcg gtaaacacat caggtttatt catcggtcag tgctaaaaag 35340 cgaccgaaat agcccggggg aatacatacc cgcaggcgta gaaacaacat tacagccccc 35400 ataggaggta taacaaaatt aataggagag aaaaacacat aaacacctga aaaaccctcc 35460 tgcctaggca aaatagcacc ctcccgctcc agaacaacat acagcgcttc acagcggcag 35520 cctaacagtc agccttacca gtaaaaaaga aaacctatta aaaaaacacc actcgacacg 35580 gcaccagctc aatcagtcac agtgtaaaaa agggccaagt gcagagcgag tatatatagg 35640 actaaaaaat gacgtaacgg ttaaagtcca caaaaaacac ccagaaaacc gcacgcgaac 35700 ctacgcccag aaaagaaagc caaaaaaccc acaagttcct caaatcgtca cttccgtttt 35760 cccacgttac gtaacttccc attttaagaa aactacaatt cccaacacat acaagttact 35820 ccgccctaaa acctacgtca cccgccccgt tccgaggccc cgcgccacgt caaaaactcc 35880 accccctcat tatcatattg gcttcaatcc aaaataaggt atattattga tgatg 35935 <210> 9 <211> 35935 <212> DNA
<213> Adenovirus serotype 5 <400> 9 catcatcaat aatatacctt attttggatt gaagccaata tgataatgag ggggtggagt 60 ttgtgacgtg gcgcggggcg tgggaacggg gcgggtgacg tagtagtgtg gcggaagtgt 120 gatgttgcaa gtgtggcgga acacatgtaa ggcacggatg tggCaaaagt gacgtttttg 180 gtgtgcgccg gtgtacacag gaagtgacaa ttttcgcgcg gttttaggcg gatgttgtag 240 taaatttggg cgtaaccgag taagatttgg ccattttcgc gggaaaactg aataagagga 300 agtgaaatct gaataatttt gtgttactca tagcgcgtaa tatttgtcta gggccgcggg 360 gactttgacc gtttacgtgg agactcgccc aggtgttttt ctcaggtgtt ttccgcgttc 420 cgggtcaaag ttggcgtttt attattatag tcagctgacg tgtagtgtat ttatacccgg 480 tgagttcctc aagaggccac tcttgagtgc cagcgagtag agttttctcc tccgagccgc 540 tccgacaccg ggactgaaaa tgagacatat tatctgccac ggaggtgtta ttaccgaaga 600 aatggccgcc agtcttttgg accagctgat cgaagaggta ctggctgata atcttccacc 660 tcctagccat tttgaaccac ctacccttca cgaactgtat gatttagacg tgacggcccc 720 cgaagatccc aacgaggagg cggtttcgca gatttttccc gactctgtaa tgttggcggt 780 gcaggaaggg attgacttac tcacttttcc gccggcgccc ggttctccgg agccgcctca 840 cctttcccgg cagcccgagc agccggagca gagagccttg ggtccggttt ctatgccaaa 900 ccttgtaccg gaggtgatcg atcttacctg ccacgaggct ggctttccac ccagtgacga 960 cgaggatgaa gagggtgagg agtttgtgtt agattatgtg gagcaccccg ggcacggttg 1020 caggtcttgt cattatcacc ggaggaatac gggggaccca gatattatgt gttcgctttg 1080 ctatatgagg acctgtggca tgtttgtcta cagtaagtga aaattatggg cagtgggtga 1140 tagagtggtg ggtttggtgt ggtaattttt tttttaattt ttacagtttt gtggtttaaa 1200 gaattttgta ttgtgatttt tttaaaaggt cctgtgtctg aacctgagcc tgagcccgag 1260 ccagaaccgg agcctgcaag acctacccgc cgtcctaaaa tggcgcctgc tatcctgaga 1320 cgcccgaaat cacctgtgtc tagagaatgc aatagtagta cggatagctg tgactccggt 1380 ccttctaaca cacctcctga gatacacccg gtggtcccgc tgtgccccat taaaccagtt 1440 gccgtgagag ttggtgggcg tcgccaggct gtggaatgta tcgaggactt gcttaacgag 1500 cctgggcaac ctttggactt gagctgtaaa caccccaggc cataaggtgt aaacctgtga 1560 ttgcgtgttt ggttaacgcc tttgtttgct gaatgagttg atgtaagttt aataaagggt 1620 gagataatgt ttaacttgca tggcgtgtta aatggggcgg ggcttaaagg gtatataatg 1680 cgccgtgggc taatcttggt tacatctgac ctcatggagg cttgggagtg tttggaagat 1740 ttttctgctg tgcgtaactt gctggaacag agctctaaca gtacctcttg gttttggagg 1800 tttttttggg gctcatccca ggcaaagtta gtctgcagaa ttaaggagga ttacaagtgg 1860 gaatttgaag agcttttgaa atcctgtggt gagctgtttg attctttgaa tctgggtaac 1920 caggcgcttt tccaagagaa gttcataaag actttggatt tttccacacc ggggCgcgct 1980 gcggctgctg ttgctttttt gagttttata aaggataaat ggagcgaaga aacccatctg 2040 agcggggggt acctgctgga ttttctggcc atgcatctgt ggagagcggt tgtgagacac 2100 aagaatcgcc tgctactgtt gtcttccgtc cgcccggcga taataccgac ggaggagcag 2160 cagcagcagc aggaggaagc caggcggcgg cggcaggagc agagcccatg gaacccgaga 2220 gccggcctgg accctcggga atgaatgttg tacaggtggc tgaactgtat ccagaactga 2280 gacgcatttt gacaattaca gaggatgggc aggggttaaa gggggtaaag agggagcggg 2340 gggcttgtga ggctacagag gaggctagga atctagcttt tagcttaatg accagacacc 2400 gtcctgagtg tattactttt caacagatca aggataattg cgctaatgag cttgatctgc 2460 tggcgcagaa gtattccata gagcagctga ccacttactg gctgcagcca ggggatgatt 2520 ttaaggaggc tattagggta tatgcaaagg tggcacttag gccagattgc aagtacaaga 2580 tcagcaaact tataaatatc aggaattgtt gctacatttc tgggaacggg gCCgaggtgg 2640 agatagatac ggaggatagg gtggccttta gatgtagcat gataaatatg tggccggggg 2700 tgcttggcat ggacggggtg gttattatga atgtaaggtt tactggcccc aattttagcg 2760 gtacggtttt cctggccaat accaacctta tcctacacgg tgtaagcttc tatgggttta 2820 acaatacctg tgtggaagcc tggaccgatg taagggttcg gggctgtgcc ttttactgct 2880 gctggaaggg ggtggtgtgt cgccccaaaa gcagggcttc aattaagaaa tgcctctttg 2940 aaaggtgtac cttgggtatc ctgtctgagg gtaactccag ggtgcgccac aatgtggcct 3000 ccgactgtgg ttgcttcatg ctagtgaaaa gcgtggctgt gattaagcat aacatggtat 3060 gtggcaactg cgaggacagg gcctctcaga tgctgacctg ctcggacggc aactgtcacc 3120 tgctgaagac cattcacgta gccagccact ctcgcaaggc ctggccagtg tttgagcata 3180 acatactgac ccgctgttcc ttgcatttgg gtaacaggag gggggtgttc ctaccttacc 3240 aatgcaattt gagtcacact aagatattgc ttgagcccga gagcatgtcc aaggtgaacc 3300 tgaacggggt gtttgacatg accatgaaga tctggaaggt gctgaggtac gatgataccc 3360 gcaccaggtg cagaccctgc gagtgtggcg gtaaacatat taggaaccag cctgtgatgc 3420 tggatgtgac cgaggagctg aggcccgatc acttggtgct ggcctgcacc cgcgctgagt 3480 ttggctctag cgatgaagat acagattgag gtactgaaat gtgtgggcgt ggcttaaggg 3540 tgggaaagaa tatataaggt gggggtctta tgtagttttg tatctgtttt gcagcagccg 3600 ccgccgccat gagcaccaac tcgtttgatg gaagcattgt gagctcatat ttgacaacgc 3660 gcatgccccc atgggCCggg gtgcgtcaga atgtgatggg ctccagcatt gatggtcgcc 3720 ccgtcctgcc cgcaaactct actaccttga cctacgagac cgtgtctgga acgccgttgg 3780 aaactgcagc ctccgccgcc gcttcagccg ctgcagccac cgcccgcggg attgtgactg 3840 actttgcttt cctgagcccg cttgcaagca gtgcagcttc ccgttcatcc gcccgcgatg 3900 acaagttgac ggctcttttg gcacaattgg attctttgac ccgggaactt aatgtcgttt 3960 ctcagcagct gttggatctg cgccagcagg tttctgccct gaaggcttcc tcccctccca 4020 atgcggttta aaacataaat aaaaaaccag actctgtttg gatttggatc aagcaagtgt 4080 cttgctgtct ttatttaggg gttttgcacg cgcggtaggc ccgggaccag cggtctcggt 4140 cgttgagggt cctgtgtatt,ttttccagga cgtggtaaag gtgactctgg atgttcagat 4200 acatgggcat aagcccgttt ctggggtgga ggtagcacca ctgcagagct tcatgctgcg 4260 gggtggtgtt gtagatgatc cagtcgtagc aggagcgctg ggcgtggtgc ctaaaaatgt 4320 ctttcagtag caagctgatt gccaggggca ggcccttggt gtaagtgttt acaaagcggt 4380 taagctggga tgggtgcata cgtggggata tgagatgcat cttggactgt atttttaggt 4440 tggctatgtt cccagccata tccctccggg gattcatgtt gtgcagaacc accagcacag 4500 tgtatccggt gcacttggga aatttgtcat gtagcttaga aggaaatgcg tggaagaact 4560 tggagacgcc cttgtgacct ccaagatttt ccatgcattc gtccataatg atggcaatgg 4620 gcccacgggc ggcggcctgg gcgaagatat ttctgggatc actaacgtca tagttgtgtt 4680 ccaggatgag atcgtcatag gccattttta caaagcgcgg gcggagggtg ccagactgcg 4740 gtataatggt tccatccggc ccaggggcgt agttaccctc acagatttac atttcccacg 4800 ctttgagttc agatgggggg atcatgtcta cctgcggggc gatgaagaaa acggtttccg 4860 gggtagggga gatcagctgg gaagaaagca ggttcctgag cagctgcgac ttaccgcagc 4920 cggtgggccc gtaaatcaca cctattaccg ggtgcaactg gtagttaaga gagctgcagc 4980 tgccgtcatc cctgagcagg ggggccactt cgttaagcat gtccctgact cgcatgtttt 5040 ccctgaccaa atccgccaga aggcgctcgc cgcccagcga tagcagttct tgcaaggaag 5100 caaagttttt caacggtttg agaccgtccg ccgtaggcat gcttttgagc gtttgaccaa 5160 gcagttccag gcggtcccac agctcggtca cctgctctac ggcatctcga tccagcatat 5220 ctcctcgttt cgcgggttgg ggcggctttc gctgtacggc agtagtcggt gctcgtccag 5280 acgggccagg gtcatgtctt tccacgggcg cagggtcctc gtcagcgtag tctgggtcac 5340 ggtgaagggg tgcgctccgg gctgcgcgct ggccagggtg cgCttgaggc tggtcctgct 5400 ggtgctgaag cgctgccggt cttacccctg cgcgtcggcc aggtagcatt tgaccatggt 5460 gtcatagtcc agcccctccg cggcgtggcc cttggcgcgc agcttgccct tggaggaggc 5520 gccgcacgag gggcagttga gacttttgag ggcgtagagc ttgggcgcga gaaataccga 5580 ttccggggag taggcatccg cgccgcaggc cccgcagacg gtctcgtatt ccacgagcca 5640 ggtgagctct ggccgttcgg ggtcaaaaac caggtttccc ccatgctttt tgatgcgttt 5700 cttacctctg gtttccatga gccggtgtcc acgcttggtg acgaaaaggc tgtccgtgtc 5760 cccgtataca gacttgagag gcctgtcctc gagcggtgtt ccgcggtcct cctcgtatag 5820 aaactcggac cactctgaga caaaggctcg cgtccaggcc agcacgaagg aggctaagtg 5880 ggaggggtag cggtcgttgt ccactagggg gtccactcgc tccagggtgt gaagacacat 5940 gtcgccctct tcggcatcaa ggaaggtgat tggtttgtag gtgtaggcca cgtgaccggg 6000 tgttcctgaa gaggggctat aaaagggggt gggggcgcgt tcgtcctcac tctcttccgc 6060 atcgctgtct gcgagggcca gctgttgggg tgagtactcc ctctgaaaag cgggcatgac 6120 ttctgcgcta agattgtcag tttccaaaaa cgaggaggat ttgatattca cctggcccgc 6180 ggtgatgcct ttgagggtgg ccgcatccat ctggtcagaa aagacaatct ttttgttgtc 6240 aagcttggtg gcaaacgacc cgtagagggc gttggacagc aacttggcga tggagcgcag 6300 ggtttggttt ttgtcgcgat cggcccgctc cttggccgcg atgtttagct gcacgtattc 6360 gcgcgcaacg caccgccatt cgggaaagac ggtggtgcgc tcgtcgggca ccaggtgcac 6420 gcgccaaccg cggttgtgca gggtgacaag gtcaacgctg gtggctacct ctccgcgtag 6480 gcgctcgttg gtccagcaga ggcggccgcc cttgcgcgag cagaatggcg gtagggggtc 6540 tagctgcgtc tcgtccgggg ggtctgcgtc cacggtaaag accccgggca gcaggcgcgc 6600 gtcgaagtag tctatcttgc atccttgcaa gtctagcgcc tgctgccatg cgcgggcggc 6660 aagcgcgcgc tcgtatgggt tgagtggggg accccatggc atggggtggg tgagcgcgga 6720 ggcgtacatg ccgcaaatgt cgtaaacgta gaggggctct ctgagtattc caagatatgt 6780 agggtagcat cttccaccgc ggatgctggc gcgcacgtaa tcgtatagtt cgtgcgaggg 6840 agcgaggagg tcgggaccga ggttgctacg ggcgggctgc tctgctcgga agactatctg 6900 cctgaagatg gcatgtgagt tggatgatat ggttggacgc tggaagacgt tgaagctggc 6960 gtctgtgaga cctaccgcgt cacgcacgaa ggaggcgtag gagtcgcgca gcttgttgac 7020 cagctcggcg gtgacctgca cgtctagggc gcagtagtcc agggtttcct tgaccatgtc 7080 atacttatcc tgtccctttt ttttccacag ctcgcggttg aggacaaact cttcgcggtc 7140 tttccagtac tcttggatcg gaaacccgtc ggcctccgaa cggtaagagc ctagcatgta 7200 gaactggttg acggcctggt aggcgcagca tcccttttct acgggtaagg cgtatgcctg 7260 cgcggccttc cggagcgagg tgtgggtgag cgcaaaggtg tccctgacca tgactttgag 7320 gtactggtat ttgaagtcag tgtcgtcgca tccgccctgc tcccagagca aaaagtccgt 7380 gcgctttttg gaacgcggat ttggcagggc gaaggtgaca tcgttgaaga gtatctttcc 7440 cgcgcgaggc ataaagttgc gtgtgatgcg gaagggtccc ggcacctcgg aacggttgtt 7500 aattacctgg gcggcgagca cgatctcgtc aaagccgttg atgttttggc ccacaatgta 7560 aagttccaag aagcgcggga tgcccttgat ggaaggcaat tttttaagtt cctcgtaggt 7620 gagctcttca ggggagctga gcccgtgctc tgaaagggcc cagtctgcaa gatgagggtt 7680 ggaagcgacg aatgagctcc acaggtcacg ggccattagc atttgcaggt ggtcgcgaaa 7740 ggtcctaaac tggcgaccta tggccatttt ttctggggtg atgcagtaga agttaagcgg 7800 gtcttgttcc cagcggtccc atccaaggtt ccgggctagg tctcgcgcgg cagtcactag 7860 aggctcatct ccgccgaact tcatgaccag cataaagggc acgagctgct tcccaaaggc 7920 ccccatccaa gtataggtct ctacatcgta ggtgacaaag agacgctcgg tgCgaggatg 7980 cgagccgatc gggaagaact ggatctcccg ccaccaattg gaggagtggc tattgatgtg 8040 gtgaaagtag aagtccctgc gacgggccga acactcgtgc tggcttttat aaaaacgtgc 8100 gcagtactgg cagcggtgca cgggctgtac atcctgcacg aggttgacct gacgaccgcg 8160 cacaaggaag cagagtggga atttgagccc ctcgcctggc gggtttggct ggtggtcttc 8220 tacttcggct gcttgtcctt gaccgtctgg ctgctcgagg ggagttacgg tggatcggac 8280 caccacgccg cgcgagccca aagtccagat gtccgcgcgc ggcggtcgga gcttgatgac 8340 accatcgcgc agatgggagC tgtccatggt ctggagctcc cgcggcgtca ggtcagggcg 8400 gagctcctgc aggtttacct cgcatagacg ggtcagggcg cgggctagat ccaggtgata 8460 cctaatttcc aggggctggt tggtggcggc gtcgatggct tgcaagaggc cgcatccccg 8520 cggcgcgact acgcgacgac gcggcgggcg gtgggccgcg ggggtgttct tggatgatgc 8580 atctaaaagc ggtgacgcgg gcgagccccc ggaggtaggg ggggctccgg acccgccggg 8640 agagggggca ggggcacgtc ggcgccgcgc gcgggcagga gctggtgctg cccgcgtagg 8700 ttgctggcga acgcgacgac gcggcggttg atctcctgaa tctggcgcct ctgcgtgaag 8760 acgacgggcc cggtgagctt gagcctgaaa gagagttcga cagaatcaat ttcggtgtcg 8820 ttgacggcgg cctggcgcaa aatctcctgc acgtctcctg agttgtcttg ataggcgatc 8880 tcggccatga actgctcgat ctcttcctcc tggagatctc cgcgtcccgc tcgctccacg 8940 gtgctggcga ggtcgttgga aatgcgggcc atgagctgcg agaaggcgtt gaggcctccc 9000 tctttccaga cgcggctgta gaccacgccc ccttcggcat cgcgggcgcg catgaccacc 9060 tgcgcgagat tgagctccac gttccgggcg aagacggcgt agtttcgcag gcgctgaaag 9120 aggtagttga gggtggtggc ggtgtgttct gccacgaaga agtacataac ccagCgtcgc 9180 aacgtggatt cgttgatatc ccccaagccc tcaaggcgct ccatggcctc gtagaagtcc 9240 acggcgaatt tgaaaaactg ggagttgcgc gccgacacgg ttaactcctc ctccagaaga 9300 cggatgagct cggcgacagt gtcgcgcacc tcgcgctcaa aggctacagg ggcctcttct 9360 tcttcttcaa tctcctcttc cataagggcc tccccttctt cttcttctgg cggcggtggg 9420 ggagggggga cacggcggcg acgacggcgc accgggaggc ggtcgacaaa gcgctcgatc 9480 atctccccgc ggcgacggcg catggtctcg gtgacggcgc ggccgttctc gcgggggcgc 9540 agttggaaga cgccgcccgt catgtcccgg ttatgggttg gcggggggct gCCatgcggc 9600 agggatacgg cgctaacgat gcatctcaac aattgttgtg taggtactcc gccgccgagg 9660 gacctgagcg agtccgcatc gaccggatcg gaaaacctct cgagaaaggc gtctaaccag 9720 tcacagtcgc aaggtaggct gagcaccgtg gcgggcggca gcgggcggcg gtcggggttg 9780 tttctggcgg aggtgctgct gatgatgtaa ttaaagtagg cgatcttgag acggcggatg 9840 gtcgacagaa gcaccatgtc cttgggtccg gcctgctgaa tgcgcaggcg gtcggccatg 9900 ccccaggctt cgttttgaca tcggcgcagg tctttgtagt agtcttgcat gagcctttct 9960 accggcactt cttcttctcc ttcctcttgt cctgcatctc ttgcatctat cgctgcggcg 10020 gcggcggagt ttggccgtag gtggccccct cttcctccca tgcgtgtgac cccgaagccc 10080 ctcatcggct gaagcagggc taggtgtgcg acaacgcgct cggctaatat ggcctgCtgC 10140 acctgcgtga gggtagactg gaagtcatcc atgtccacaa agcggtggta tgcgcccgtg 10200 ttgatggtgt aagtgcagtt ggccataacg gaccagttaa cggtctggtg acccggctgc 10260 gagagctcgg tgtacctgag acgcgagtaa gccctCgagt caaatacgta gtcgttgcaa 10320 gtccgcacca ggtactggta tcccaccaaa aagtgcggcg gcggctggcg gtagaggggc 10380 cagcgtaggg tggccggggc tccgcgggcg agatcttcca acataaggcg atgatatccg 10440 tagatgtacc tggacatcca ggtgatgccg gcggcggggg ttgagccgcg cggaaagtcg 10500 cggacgcggt tccagatgtt gcgcagcggc aaaaagtgct ccatggtcgg gacgctctgg 10560 ccggtcaggc gcgcgcaatc gttgacgctc tagaccgtgc aaaaggagag cctgtaagcg 10620 ggcactcttc cgtggtctgg tggataaatt cgcaagggta tcatggcgga cgaccgggtt 10680 tcgagccccg tatccggccg tccgccgtga tccatgcggt taccgcccgc gtgtcgaacc 10740 caggtgtgcg acgtcagaca aggggcgagt gctccttttg gcttccttcc aggcgcggcg 10800 gctgctgcgc tagctttttt ggccactggc cgcgcgcagc gtaagcggtt aggctggaaa 10860 gcgaaagcat taagtggctc gctccctgta gccggagggt tattttccaa gggttgagtc 10920 gcgggacccc cggttcgagt ctcggaccgg ccggactgcg gcgaacgggg gtttgcctcc 10980 ccgtcatgca agaccccgct tgcaaattcc tccggaaaca gggacgagcc ccttttttgc 11040 ttttcccaga tgcatccggt gctgcggcag atgcgccccc ctcctcagca gcggcaagag 11100 caagagcagc ggcagacatg cagggcaccc tcccctcctc ctaccgcgtc aggaggggcg 11160 acatccgcgg ttgacgcggc agcagatggt gattacgaac ccccgcggcg ccgggcccgg 11220 cactacctgg acttggagga gggcgagggc ctggcgcggc taggagcgcc ctctcctgag 11280 cggtacccaa gggtgcagct gaagcgtgat acgcgtgagg cgtacgtgcc gcggcagaac 11340 ctgtttcgcg accgcgaggg agaggagccc gaggagatgc gggatcgaaa gttccacgca 11400 gggcgcgagc tgcggcatgg cctgaatcgc gagcggttgc tgcgcgagga ggactttgag 11460 cccgacgcgc gaaccgggat tagtcccgcg cgcgcacacg tggcggccgc cgacctggta 11520 accgcatacg agcagacggt gaaccaggag attaactttc aaaaaagctt taacaaccac 11580 gtgcgtacgc ttgtggcgcg cgaggaggtg gctataggac tgatgcatct gtgggacttt 11640 gtaagcgcgc tggagcaaaa cccaaatagc aagccgctca tggcgcagct gttccttata 11700 gtgcagcaca gcagggacaa cgaggcattc aggcatgcgc tgctaaacat agtagagccc 11760 gagggccgct ggctgctcga tttgataaac atcctgcaga gcatagtggt gcaggagcgc 11820 agcgtgagcc tggctgacaa ggtggccgcc agcaactatt ccatgcttag cctgggcaag 11880 ttttacgccc gcaagatata ccatacccct tacgttccca tagacaagga ggtaaagatc 11940 gaggggttct acatgcgcat ggcgctgaag gtgcttacct tgagcgacga cctgggcgtt 12000 tatcgcaacg agcgcatcca caaggccgtg agcgtgagcc ggcggcgcga gctcagcgac 12060 cgcgagctga tgcacagcct gcaaagggcc ctggctggca cgggcagcgg cgatagagag 12120 gccgagtcct actttgacgc gggcgctgac ctgcgctggg ccccaagccg acgcgccctg 12180 gaggcagctg gggccggacc tgggctggcg gtggcacccg cgcgcgctgg caacgtcggc 12240 ggcgtggagg aatatgacga ggacgatgag tacaagccag aggacggcga gtactaagcg 12300 gtgatgtttc tgatcagatg atgcaagacg caacggaccc ggcgttgcgg gcggcgctgc 12360 agagccagcc gtccggcctt aactccacgg acgactggcg ccaggtcatg gaccgcatca 12420 tgtcgctgac tgcgcgcaat cctgacgcgt tccggcagca gccgcaggcc aaccggctct 12480 ccgcaattct ggaagCggtg gtccccgcgc gcgcaaaccc cacgcacgag aaggtgctgg 12540 cgatcgtaaa cgcgctggcc gaaaacaggg ccatccggcc cgacgaggcc ggcctggtct 12600 acgacgcgct gcttcagcgc gtggctcgtt acaacagcgg caacgtgcag accaacctgg 12660 accggctggt gggggatgtg cgcgaggccg tggcgcagcg tgagcgcgcg cagcagcagg 12720 gcaacctggg ctccatggtt gcactaaacg ccttcctgag tacacagccc gccaacgtgc 12780 cgcggggaca ggaggactac accaactttg tgagcgcact gcggctaatg gtgactgaga 12840 caccgcaaag tgaggtgtac cagtctgggc cagactattt tttccagacc agtagacaag 12900 gcctgcagac cgtaaacctg agccaggctt tcaaaaactt gcaggggctg tggggggtgc 12960 gggctcccac aggcgaccgc gcgaccgtgt ctagcttgct gacgcccaac tcgcgcctgt 13020 tgctgctgct aatagcgccc ttcacggaca gtggcagcgt gtcccgggac acatacctag 13080 gtcacttgCt gacactgtac cgcgaggcca taggtcaggc gcatgtggac gagcatactt 13140 tccaggagat tacaagtgtc agccgcgcgc tggggcagga ggacacgggc agcctggagg 13200 caaccctaaa ctacctgctg accaaccggc ggcagaagat cccctcgttg cacagtttaa 13260 acagcgagga ggagcgcatt ttgcgctacg tgcagcagag cgtgagcctt aacctgatgc 13320 gcgacggggt aacgcccagc gtggcgctgg acatgaccgc gcacaacatg gaaccgggca 13380 tgtatgcctc aaaccggccg tttaacaacc gcctaatgga ctacttgcat cgcgcggccg 13440 ccgcaaaccc cgagtatttc accaatgcca tcttgaaccc gcactggcta ccgccccctg 13500 gtttctacac cgggggattc gacgtgcccg aggataacga tggattcctc tgggacgaca 13560 tagacgacag cgtgttttcc ccgcaaccgc agaccctgct agagttgcaa cagcgcgagc 13620 aggcagaggc ggcgctgaaa aaggaaagct tccgcaggcc aagcagcttg tccgatctag 13680 gcgctgcggc cccgcggtca gatgctagta gcccatttcc aagcttgata gggtctctta 13740 ccagcactcg caccacccgc ccgcgcctgc tgggcgagga ggagtaccta aacaactcgc 13800 tgctgcagcc gcagcgcgaa aaaaacttgc ctccggcatt tcccaacaac gggatagaga 13860 gcctagtgga caagatgagt agatggaaga cgtacgcgca ggagcacagg gacgtgccag 13920 gCCC C ccc gcccacccgt cgtcaaaggc acgaccgtca gcggggtctg gtgtgggagg 13980 acgatgactc ggcagacgac agcagcgtcc tggatttggg aggcagtggc aacccgtttg 14040 cgcaccttcg ccccaggctg gggagaatgt tttaaaaaaa aaaaagcatg atgcaaaata 14100 aaaaactcac caaggccatg gcaccgagcg ttggttttct tgtattcccc ttagtatgcg 14160 gcgcgcggcg atgtatgagg aaggtcctcc tccctcctac gagagtgtgg tgagcgcggc 14220 gccagtggcg ggcgcgctgg gttctccctt cgatgctccc ctggacccgc cgtttgtgcc 14280 tccgcggtac ctgcggccta ccggggggag aaacagcatc cgttactctg agttggcacc 14340 cctattcgac accacccgtg tgtacctggt ggacaacaag tcaacggatg tggcatccct 14400 gaactaccag aacgaccaca gcaactttct gaccacggtC attcaaaaca atgactacag 14460 cccgggggag gcaagcacac agaccatcaa tcttgacgac cggtcgcact ggggcggcga 14520 cctgaaaacc atcctgcata ccaacatgcc aaatgtgaac gagttcatgt ttaccaataa 14580 gtttaaggcg cgggtgatgg tgtcgcgctt gcctactaag gacaatcagg tggagctgaa 14640 atacgagtgg gtggagttca cgctgcccga gggcaactac tccgacacca tgaccataga 14700 ccttatgaac aacgcgatcg tggagcacta cttgaaagtg ggcagacaga acggggttct 14760 ggaaagcgac atcggggtaa agtttgaaac ccgcaacttc agactggggt ttgaccccgt 14820 cactggtctt gtcatgcctg gggtatatac aaacgaagcc ttccatccag acatcatttt 14880 gctgccagga tgcggggtgg acttcaccca cagccgcctg agcaacttgt tgggcatccg 14940 caagcggcaa cccttccagg agggctttag gatcacctac gatgatctgg agggtggtaa 15000 cattcccgca ctgttggatg tggacgccta ccaggcgagc ttgaaagatg acaccgaaca 15060 gggcgggggt ggcgcaggcg gcagcaacag cagtggcagc ggcgCggaag agaactccaa 15120 cgcggcagcc gcggcaatgc agccggtgga ggacatgaac gatcatgcca ttcgcggcga 15180 cacctttgcc acacgggctg aggagaagcg cgctgaggcc gaagcagcgg ccgaagctgc 15240 cgcccccgct gcgcaacccg aggtcgagaa gcctcagaag aaaccggtga tcaaacccct 15300 gacagaggac agcaagaaac gcagttacaa cctaataagc aatgacagca ccttcaccca 15360 gtaccgcagc tggtaccttg catacaacta cggcgaccct cagaccggaa tccgctcatg 15420 gaccctgctt tgcactcctg acgtaacctg cggctcggag caggtctact ggtcgttgcc 15480 agacatgatg caagaccccg tgaccttccg ctccacgcgc cagatcagca actttccggt 15540 ggtgggcgcc gagctgttgc ccgtgcactc caacagcttc tacaacgacc aggccgtcta 15600 ctcccaactc atccgccagt ttacctctct gacccacgtg ttcaatcgct ttcccgagaa 15660 ccagattttg gcgcgcccgc cagcccccac catcaccacc gtcagtgaaa acgttcctgc 15720 tctcacagat cacgggacgc taccgctgcg caacagcatc ggaggagtcc agcgagtgac 15780 cattactgac gccagacgcc gcacctgccc ctacgtttac aaggccctgg gcatagtctc 15840 gccgcgcgtc ctatcgaacc gcactttttg agaaatgatg tccatcctta tatcgcccag 15900 caataacaca ggctggggcc tgcgcttccc aagcaagatg tttggcgggg ccaagaagcg 15960 ctccgaccaa cacccagtgc gcgtgcgcgg gcactaccgc gcgccctggg gcgcgcacaa 16020 acgcggccgc actgggcgca ccaccgtcga tgacgccatc gacgcggtgg tggaggaggc 16080 gcgcaactac acgcccacgc cgccaccagt gtccacagtg gacgcggcca ttcagaccgt 16140 ggtgcgcgga gcccggcgct atcgtaaaat gaagagacgg cggaggcgcg tagcacgtcg 16200 ccaccgccgc cgacccggca ctgccgccca acgcgcggcg gcggccctgc ttaaccgcgc 16260 acgtcgcacc ggccgacggg cggccatgcg ggccgctcga aggctggccg cgggtattgt 16320 cactgtgccc cccaggtcca ggcgacgagc ggccgccgca gcagccgcgg ccattagtgc 16380 tatgactcag ggtcgcaggg gcaacgtgta ttgggtgcgc gactcggtta gcggcctgcg 16440 cgtgcccgtg cgcacccgcc ccccgcgcaa ctatattgca agaaaaaact acttagactc 16500 gtactgttgt atgtatccag cggcggcggc gcgcaacgaa gctatgtcca agcgcaaaat 16560 caaagaagag atgctccagg tcatcgcgcc ggagatctat ggccccccga agaaggaaga 16620 gcaggattac aagccccgaa agctaaagcg ggaaaaaaag aaaaagaaag atgatgatga 16680 tgaacttgac gacgaggtgg aactgctgca cgctaccgcg cccaggcgac gggtacagtg 16740 gaaaggtcga cgcgtaaaac gtgttttgcg acccggcacc accgtagtct ttacgcccgg 16800 tgagcgctcc acccgcacct acaagcgcgt gtatgatgag gtgtacggcg acgaggacct 16860 gcttgagcag gccaacgagc gcctcgggga gtttgcctac ggaaagcggc ataaggacat 16920 gctggcgttg ccgctggacg agggcaaccc aacacctagc ctaaagcccg taacactgca 16980 gcaggtgctg cccgcgcttg caccgtccga agaaaagcgc ggcctaaagc gcgagtctgg 17040 tgacttggca cccaccgtgc agctgatggt acccaagcgc cagcgactgg aagatgtctt 17100 ggaaaaaatg accgtggaac ctgggctgga gcccgaggtc cgcgtgcggc caatcaagca 17160 ggtggcgccg ggactgggcg tgcagaccgt ggacgttcag atacccacta ccagtagcac 17220 cagtattgcc accgccacag agggcatgga gacacaaacg tccccggttg cctcagcggt 17280 ggcggatgcc gcggtgcagg cggtcgctgc ggccgcgtcc aagacctcta cggaggtgca 17340 aacggacccg tggatgtttc gcgtttcagc cccccggcgc ccgcgcggtt cgaggaagta 17400 cgccgccgcc agcgcgctac tgcccgaata tgccctacat ccttccattg cgcctacccc 17460 cggctatcgt ggctacacct accgccccag aagacgagca actacccgac gccgaaccac 17520 cactggaacc cgccgccgcc gtcgccgtcg ccagcccgtg ctggccccga tttccgtgcg 17580 cagggtggct cgcgaaggag gcaggaccct ggtgctgcca acagcgcgct accaccccag 17640 catcgtttaa aagccggtct ttgtggttct tgcagatatg gccctcacct gccgcctccg 17700 tttcccggtg ccgggattcc gaggaagaat gcaccgtagg aggggcatgg ccggccacgg 17760 cctgacgggc ggcatgcgtc gtgcgcacca ccggcggcgg cgcgcgtcgc accgtcgcat 17820 gcgcggcggt atcctgcccc tccttattcc actgatcgcc gcggcgattg gcgccgtgcc 17880 cggaattgca tccgtggcct tgcaggcgca gagacactga ttaaaaacaa gttgcatgtg 17940 gaaaaatcaa aataaaaagt ctggactctc acgctcgctt ggtcctgtaa ctattttgta 18000 gaatggaaga catcaacttt gcgtctctgg ccccgcgaca cggctcgcgc ccgttcatgg 18060 gaaactggca agatatcggc accagcaata tgagcggtgg cgccttcagc tggggctcgc 18120 tgtggagcgg cattaaaaat ttcggttcca ccgttaagaa ctatggcagc aaggcctgga 18180 acagcagcac aggccagatg ctgagggata agttgaaaga gcaaaatttc caacaaaagg 18240 tggtagatgg cctggcctct ggcattagcg gggtggtgga cctggccaac caggcagtgc 18300 aaaataagat taacagtaag cttgatcccc gccctcccgt agaggagcct ccaccggccg 18360 tggagacagt gtttccagag gggcgtggcg aaaagcgtcc gcgccccgac agggaagaaa 18420 ctctggtgac gcaaatagac gagcctccct cgtacgagga ggcactaaag caaggcctgc 18480 ccaccagccg tcccatcgcg cccatggcta ccggagtgct gggccagcac acacccgtaa 18540 cgctggacct gcctcccccc gccgacaccc agcagaaacc tgtgctgcca ggcccgaccg 18600 ccgttgttgt aacccgtcct agccgcgcgt ccatgggccg cgccgccagc ggtccgcgat 18660 cgttgcggcc cgtagccagt ggcaactggc aaagcacact gaacagcatc gtgggtctgg 18720 gggtgcaatc cctgaagcgc cgacgatgct tctcaataac taacgtgtcg tatgtgtgtc 18780 atgtatgcgt ccatgtcgcc gccagaggag ctgctgagcc gccgcgcgcc cgctttccaa 18840 gatggctacc ccttcgatga tgccgcagtg gtcttacatg cacatctcgg gccaggacgc 18900 ctcggagtac ctgagccccg ggctggtgca gtttgcccgc gccaccgaga cgtacttcag 18960 cctgaataac aagtttagaa accccacggt ggcgCCtacg cacgacgtga ccacagaccg 19020 gtcccagcgt ttgacgctgc ggttcatccc tgtagaccgt gaggatactg cgtactcgta 19080 caaggcgcgg ttcaccctag ctgtgggtga taaccgtgtg ctggacatgg cttccacgta 19140 ctttgacatc cgcggcgtgc tggacagggg ccctactttt aagccctact ctggcactgc 19200 ctacaacgcc ctggctccca agggtgcccc aaatccttgc gaatgggatg aagctgctac 19260 tgctcttgaa ataaacatag aagaagagga cgatgacaac gaagacgaag tagacgagca 19320 agctgaaaag caaaaaactc acgtatttgg gcaggcgcct tattctggta taaatattac 19380 aaaggagggt attcaaatag gtgtcgaagg tcaaacacct aaatatgccg ataaaacatt 19440 tcaacttgaa cctcaaatag gagaatctca gtggtacgaa actgaaatta atcatgcagc 19500 tgggagagtc Cttaaaaaga ctaccccaat gaaaccatgt tacggttcat atgcaaaacc 19560 cacaaatgaa aatggagggc aaggcattct tgtaaagcaa ccaaatggaa agctagaaag 19620 tcaagtggaa atgcaatttt tctcaactac tgaggcgacc gcaggcaatg gtgataactt 19680 gactcctaaa gtggtattgt acagtgaaga tgtagatata gaaaccccag acactcatat 19740 ttcttacatg cccactatta aggaaggtaa ctcacgagaa ctaatgggcc aacaatctat 19800 gcccaacagg cctaattaca ttgcttttag ggacaatttt attggtctaa tgtattacaa 19860 cagcacgggt aatatgggtg ttctggcggg ccaaggatcg cagttgaatg ctgttgtaga 19920 tttgcaagac agaaacacag agctttcata ccagcttttg cttgattcca ttggtgatag 19980 aaccaggtac ttttctatgt ggaatcaggc tgttgacagc tatgatccag atgttagaat 20040 tattgaaaat catggaactg aagatgaact tccaaattac tgctttccac tgggaggtgt 20100 gattaataca gagactctta ccaaggtaaa acctaaaaca ggtcaggaaa atggatggga 20160 aaaagatgct acagaatttt cagataaaaa tgaaataaga gttggaaata attttgccat 20220 ggaaatcaat ctaaatgcca acctgtggag aaatttcctg tactccaaca tagcgctgta 20280 tttgcccgac aagctaaagt acagtatttc caacgtaaaa atttctgata acccaaacac 20340 ctacgactac atgaacaa'gc gagtggtggc tcccgggtta gtggactggt acattaacct 20400 tggagaacgc tggtcccttg actatatgga caacgtcaac ccatttaacc accaccgcaa 20460 tgctgccctg cgctaccgct caatgttgct gggcaatggt cgctatgtgc ccttccacat 20520 ccagatacct cagaagttct ttgccattaa aaacctcctt ctcctgccgg gctcatacac 20580 ctacgagtgg aacttcagga aggatgttaa catggttctg cagagctccc taggaaatga 20640 cctaagggtt gacggagcca gcattaagtt tgatagcatt ttgctttacg ccaccttctt 20700 ccccatggcc caaaacaccg cctccacgct tgaggccatg cttagaaacg acaccaacga 20760 ccagtccttt aacgactatc tctccgccgc caacatgctc taccctatac ccgccaacgc 20820 taccaacgtg cccatatcca tcccctcccg caactgggcg gctttccgcg ggtggccctt 20880 cacgcgcctt aagactaagg aaaccccatc actgggctcg ggctacgacc cttattacac 20940 ctactctggc tctataccct acctagatgg aaccttttac ctcaaccaca cctttaagaa 21000 ggtggccatt acctttgact cttctgtcag ctggcctggc aatgaccgcc tgcttacccc 21060 caacgagttt gaaattaagc gctcagttga cggggagggt tacaacgttg cccagtgtaa 21120 catgaccaaa gactggttcc tggtacaaat gctagctaac tacaacattg gctaccaggg 21180 cttctatatc ccagagagct acaaggaccg catgtactcc tttttaagaa acttccagcc 21240 catgagccgt caggtggtgg atgatactaa atacaaggac taccaacagg tgggcatcct 21300 acaccaacac aacaactctg gatttgttgg ctaccttgcc cccaccatgc gcgaaggaca 21360 ggcctaccct gctaacttcc cctatccgct tataggcaag accgcagttg acagcattac 21420 ccagaaaaag tttctttgcg atcgcaccct ttggcgcatc ccattctcca gtaactttat 21480 gtccatgggc gcactcacag aactgggcca aaaccttctc tacgccaact ccgcccacgc 21540 gctagacatg acttttgagg tggatcccat ggacgagccc acccttattt atgttttgtt 21600 tgaagtcttt gacgtggtcc gtgcgcaccg gccgcaccgc ggcgtcatcg aaaccgtgta 21660 cctgcgcacg cccttctcgg ccggcaacgc cacaacataa agaagcaagc aacatcaaca 21720 acagctgccg ccatgggctc cagtgagcag gaactgaaag ccattgtcaa agatcttggt 21780 tgtgggccat attttttggg cacctatgac aagcgctttc caggctttgt ttctccacac 21840 aagctcgcct gcgccatagt caatacgcgc ggtcgcgaga ctgggggcgt acactggatg 21900 gcctttgcct ggaacccgca ctcaaaaaca tattacctct ttgagccctt tggcttttct 21960 gaccagcgac tcaagcaggt ttaccagttt gagtacgagt cactcctgcg ccgtagcgcc 22020 attgcttctt cccccgaccg ctgtataacg ctggaaaagt ccacccaaag cgtacagggg 22080 cccaactcgg ccgcctgtgg actattctgc tgcatgtttc tccacgcctt tgccaactgg 22140 ccccaaactc ccattgttca caaccccacc atgaacctta ttaccggggt acccaactcc 22200 atgCtcaaca gtccccaggt aaagcccacc ctgcgtcgca accaggaaca gctctacagc 22260 ttcctggagc gccactcgcc ctacttccgc agccacagtg cgcagattag gagcgccact 22320 tctttttgtc acttgaaaaa catataaaaa taatgtacta gagacacttt caataaaggc 22380 aaatgctttt atttgtacac tctcgggtga ttatttaccc ccacctttgc cgtctgcgcc 22440 gtttaaaaat caaaggggtt cggccgggca tcgctatgcg ccactggcag ggacacgttg 22500 cgatactggt gtttagtgct ccacttaaac tcagacacaa ccatccgcgg cagctCggtg 22560 aagttttcac tccacaggct gcgcagcatc accaacgcgt ttagcaggtc gggcgccgat 22620 atcttgaagt cgcagttggg gcctccgccc tgcgcgcgcg agttgcgata cacagggttg 22680 cagcactgga acactatcag cgccgggtgg tgcacgCtgg ccagcacgct cttgtcggag 22740 atcagatccg cgtccaggtc ctccgcgttg ctcagggcga acggagtcaa ctttggtagc 22800 tgccttccca aaaagggcgc gtgcccaggc tttgagttgc actcgcaccg tagtggcatc 22860 aaaaggtgac cgtgcccggt ctgggcgtta ggatacagcg cctgaataaa agccttgatc 22920 tgcttaaaag ccacctgagc ctttgcgcct tcagagaaga acatgccgca agacttgccg 22980 gaaaactgat tggccggaca ggccgcgtcg tgcacgcagc accttgcgtc ggtgttggag 23040 atctgcacca catttcggcc ccaccggttc ttcacgatct tggccttgct agactggtcc 23100 ttcagcgcgc gctgcccgtt ttcgctcgtc acatccattt caatcacgtg ctccttattt 23160 atcataatgc ttccgtgtag acacttaagc tcgccttcga tctcagcgca gcggtgcagc 23220 cacaacgcgc agcccgtggg ctcgtgatgc ttgtaggtca cctctgcaaa cgactgcagg 23280 tacgcctgca ggaatcgccc catcatcgtc acaaaggtct tgttgctggt gaaggtcagc 23340 tgcaacccgc ggtgctcctc gttcagccag gtcttgcata cggccgccag agcttccact 23400 tggtcaggca gtagtttgaa gttcgccttt agatcgttat ccacttggta cttgtccatc 23460 agcgcgcgcg cagcctccat gcccttctcc cacgcagaca cgatcggcac actcagcggg 23520 ttcatcaccg taatttcact ttccgcttcg ctgggctctt cctcttcctc ttgcgtccgc 23580 ataccacgcg ccactgggtc gtcttcattc agccgccgca ctgtgcgctt acctcctttg 23640 ccatgcttga ttagcaccgg tgggttgctg aaacccacca tttgtagcgc cacatcttct 23700 ctttcttcct cgctgtccac gattacctct ggtgatggcg ggcgctcggg cttgggagaa 23760 gggcgcttct ttttcttctt gggcgcaatg gccaaatccg cagccgagct cgatggccgc 23820 gggctgggtg tgcgcggcac cagcgcgtct tgtgatgagt ctccctcgtc ctcggactcg 23880 atacgccgcc tcatccgctt ttttgggggc gcccggggag gcggcggcga cggggacggg 23940 gacgacacgt cctccatggt tgggggacgt cgcgccgcac cgcgtccgcg ctcgggggtg 24000 gtttcgcgct gctcctcttc ccgactggCC atttccttct cctataggca gaaaaagatc 24060 atggagtcag tcgagaagaa ggacagctta accgccccct ctgagttcgc caccaccgcc 24120 tccaccgatg ccgccaacgc gcctaccacc ttccccgtcg aggcaccccc gcttgaggag 24180 gaggaagtga ttatcgagca ggacccaggt tttgtaagcg aagacgacga ggaccgctca 24240 gtaccaacag aggataaaaa gcaagaccag gacaacgcag aggcaaacga ggaacaagtc 24300 gggcgggggg acgaaaggca tggcgactac ctagatgtgg gagacgacgt gctgttgaag 24360 catctgcagc gccagtgcgc cattatctgc gacgcgttgc aagagcgcag cgatctgccc 24420 ctcgccatag cggatgtcag ccttgcctac gaacgccacc tattctcacc gcgcgtaccc 24480 cccaaacgcc aagaaaacgg cacatgcgag cccaacccgc gcctcaactt ctaccccgta 24540 tttgccgtgc cagaggtgct tgccacctat cacatctttt tccaaaactg caagataccc 24600 ctatcctgcc gtgccaaccg cagccgagcg gacaagcagc tggccttgcg gcagggcgct 24660 gtcatacctg atatcgcctc gctcaacgaa gtgccaaaaa tctttgaggg tcttggacgc 24720 gacgagaagc gcgcggcaaa cgctctgcaa caggaaaaca gcgaaaatga aagtcactct 24780 ggagtgttgg tggaactcga gggtgacaac gcgcgcctag ccgtactaaa acgcagcatc 24840 gaggtcaccc actttgccta cccggcactt aacctacccc ccaaggtcat gagcacagtc 24900 atgagtgagc tgatcgtgcg ccgtgcgcag cccctggaca gggatgcaaa tttgcaagaa 24960 caaacagagg agagcctacc cgcagttggc gacgagcagc tagcgcgctg gcttcaaacg 25020 cgcgagcctg ccgacttgga ggagcgacgc aaactaatga tggccgcagt gctcgttacc 25080 gtggagcttg agtgcatgca gcggttcttt gctgacccgg agatgcagcg caagctagag 25140 gaaacattgc actacacctt tCgacagggc tacgtacgcc aggcctgcaa gatctccaac 25200 gtggagCtct gcaacctggt ctcctacctt ggaattttgc acgaaaaccg ccttgggcaa 25260 aacgtgcttc attccacgct caagggcgag gcgcgccgcg actacgtccg cgactgcgtt 25320 tacttatttc tatgctacac ctggcagacg gccatgggcg tttgccagaa gtgcttggag 25380 gagtgcaacc tcaaggagct gcagaaactg ctaaagcaaa acttgaagga cctatggacg 25440 gccttcaacg agcgctccgt ggccgcgcac ctggcggaca tcattttccc cgaacgcctg 25500 cttaaaaccc tgcaacaggg tctgccagac ttcaccagtc aaagcatgtt gcagaacttt 25560 aggaacttta tcctagagcg ctcaggaatc ttgcccgcca cctgctgtgc acttcctagc 25620 gactttgtgc ccattaagta ccgcgaatgc catccgccgc tttggggcca ctgctacctt 25680 ctgcagctag ccaactacct tgcctaccac tctgacataa tggaagacgt gagcggtgac 25740 ggtctactgg agtgtcactg tcgctgcaac ctatgcaccc cgcaccgctc cctggtttgc 25800 aattcgcagc tgcttaacga aagtcaaatt atcggtacct ttgagctgca gggtccctcg 25860 cctgacgaaa agtccgcggc tccggggttg aaactcactc cggggctgtg gacgtcggct 25920 taccttcgca aatttgtacc tgaggactac cacgcccacg agattaggtt ctacgaagac 25980 caatcccgcc cgccaaatgc ggagcttacc gcctgcgtca ttacccaggg ccacattctt 26040 ggccaattgc aagccatcaa caaagcccgc caagagtttc tgctacgaaa gggacggggg 26100 gtttacttgg acccccagtc cggcgaggag ctcaacccaa tccccccgcc gccgcagccc 26160 tatcagcagc agccgcgggc ccttgcttcc caggatggca cccaaaaaga agctgcagct 26220 gccgccgcca cccacggacg aggaggaata ctgggacagt caggcagagg aggttttgga 26280 cgaggaggag gaggacatga tggaagactg ggagagccta gacgaggaag cttccgaggt 26340 cgaagaggtg tcagacgaaa caccgtcaCC ctcggtcgca ttcccctcgc cggcgcccca 26400 gaaatcggca accggttcca ggatggctac aacctccgct cctcaggcgc cgccggcact 26460 gcccgttcgc Cgacccaacc gtagatggga caccactgga accagggccg gtaagtccaa 26520 gcagccgccg ccgttagccc aagagcaaca acagcgccaa ggctaccgct catggcgcgg 26580 gcacaagaac gccatagttg cttgcttgca agactgtggg ggcaacatct ccttcgcccg 26640 ccgctttctt ctctaccatc acggcgtggc cttcccccgt aacatcctgc attactaccg 26700 tcatctctac agcccatact gcaccggcgg cagcggcagc ggcagcaaca gcagcggcca 26760 cacagaagca aaggcgaccg gatagcaaga ctctgacaaa gcccaagaaa tccacagcgg 26820 cggcagcagc aggaggagga gcgctgcgtc tggcgcccaa cgaacccgta tcgacccgcg 26880 agcttagaaa caggattttt cccactctgt atgctatatt taaacagagc aggggccaag 26940 aacaagagct gaaaataaaa aacaggtctc tgcgatccct cacccgcagc tgcctgtatc 27000 acaaaagcga agatcagctt cggcgcacgc tggaagacgc ggaggCtctc ttcagtaaat 27060 actgcgcgct gactcttaag gactagtttc gcgccctttc tcaaatttaa gcgcgaaaac 27120 tacgtcatct ccagcggcca cacccggagc cagcacctgt cgtcagcgcc attatgagca 27180 aggaaattcc cacgccctac atgtggagtt accagccaca aatgggactt gcggctggag 27240 ctgcccaaga ctactcaacc cgaataaact acatgagcgc gggaccccac atgatatccc 27300 gggtcaacgg aatccgcgcc caccgaaacc gaattctctt ggaacaggcg gctattacca 27360 ccacacctcg taataacctt aatccccgta gttggcccgc tgccctggtg taccaggaaa 27420 gtcccgctcc caccactgtg gtaattacca gagacgccca ggccgaagtt cagatgacta 27480 aCtcaggggc gcagcttgag ggCggCtttc gtcacagggt gcggtagccc gggcagggta 27540 taactcacct gacaatcaga gggcgaggta ttcagctcaa cgacgagtcg gtgagctcct 27600 cgcttggtct ccgtccggac gggacatttc agatcggcgg cgccggccgt ccttcattca 27660 cgcctcgtca ggcaatccta actctgcaga cctcgtcctc tcagccgcgc tctggaggca 27720 ttggaactct gcaatttatt gaggagtttg tgccatcggt ctactttaac cccttctcgg 27780 gacctcccgg ccactatccg gatcaattta ttcctaactt tgacgcggta aaggactcgg 27840 cggacggcta cgactgaatg ttaagtggag aggcagagca actgcgcctg aaacacctgg 27900 tccactgtcg ccgccacaag tgctttgccc gcgactccgg tgagttttgc tactttgaat 27960 tgcccgagga tcatatcgag ggcccggcgc acggcgtccg gcttaccgcc cagggagagc 28020 ttgcccgtag cctgattcgg gagtttaccc agcgccccct gctagttgag cgggacaggg 28080 gaccctgtgt tctcactgtg atttgcaact gtcctaacct tggattacat caagatcttt 28140 gttgccatct ctgtgctgag tataataaat aaagaaatta aaatatactg gggctcctat 28200 cgccatcctg taaacgccac cgtcttcacc cgcccaagca aaccaaggcg aaccttacct 28260 ggtactttta acatctctcc ctctgtgatt tacaacagtt tcaacccaga cggagtgagt 28320 ctacgagaga acctctccga gctcagctac tccatcagaa aaaacaccac cctccttacc 28380 tgccgggaac gtacgagtgc gtcaccggcc gctgcaccac acctaccgcc tgaccgtaaa 28440 ccagactttt tccggacaga cctcaataac tctgtttacc agaacaggag gtgagcttag 28500 aaaaccctta gggtattagg ccaaaggcgc agctactgtg gggtttatga acaattcaag 28560 caactctacg ggctatttta attcaggttt ctctagaatc ggggttgggg ttattctctg 28620 tcttgtgatt ctctttattc ttatactaac gcttctctgc ctaaggctcg ccgcctgctg 28680 tgtgcacatt tgcatttatt gtcagctttt taaacgctgg ggtcgccacc caagatgatt 28740 aggtacataa tcctaggttt actcaccctt gcgtcagccc acggtaccac ccaaaaggtg 28800 gattttaagg agccagcctg taatgttaca ttcgcagctg aagctaatga gtgcaccact 28860 cttataaaat gcaccacaga acatgaaaag ctccttattc gccacaaaaa caaaattggc 28920 aagtatgctg tttatgctat ttggcagcca ggtgacacta cagagtataa tgttacagtt 28980 ttccagggta aaagtcataa aacttttatg tatacttttc cattttatga aatgtgcgac 29040 attaccatgt acatgagcaa acagtataag ttgtggcccc caaaaaattg tgtggaaaac 29100 actggcactt tctgctgcac tgctatgcta attacagtgc tcgctttggt ctgtacccta 29160 ctctatatta aatacaaaag cagacgcagc tttattgagg aaaagaaaat gccttaattt 29220 actaagttac aaagctaatg tcaccactaa ctgctttact cgctgcttgc aaaagaaatt 29280 caaaaagtta gcattataat tagaatagga tttaaacccc ccggtcattt cctgctcaat 29340 accattcccc tgaacaattg actctatgtg ggatatgctc cagcgctaca accttgaagt 29400 caggcttcct ggatgtcagc atctgacttt gcccagcacc tgtcccgcgg atttgttcca 29460 gtccaactac agcgacccac cctaacagag atgaccaaca caaccaacgc ggccgccgct 29520 accggactta catctaccac aaatacaccc caagtttctg cctttgtcaa taactgggat 29580 aacttgggca tgtggtggtt ctccatagcg cttatgtttg tatgccttat tattatgtgg 29640 ctcatctgct gcctaaagcg caaacgcgcc cgaccaccca tctatagtcc catcattgtg 29700 ctacacccaa acaatgatgg aatccataga ttggacggac tgaaacacat gttcttttct 29760 cttacagtat gattaaatga gacatgattc ctcgagtttt tatattactg acccttgttg 29820 cgcttttttg tgcgtgctcc acattggctg cggtttctca catcgaagta gactgcattc 29880 cagccttcac actctatttg ctttacggat ttgtcaccct cacgctcatc tgcagcctca 29940 tcactgtgat catcgccttt atccagtgca ttgactgggt ctgtgtgcgc tttgcatatc 30000 tcagacacca tccccagtac agggacagga ctatagctga gcttcttaga attctttaat 30060 tatgaaattt actgtgactt ttctgctgat tatttgcacc ctatctgcgt tttgttcccc 30120 gacctccaag cctcaaagac atatatcatg cagattcact cgtatatgga atattccaag 30180 ttgctacaat gaaaaaagcg atctttccga agcctggtta tatgcaatca tctctgttat 30240 ggtgttctgc agtaccatct tagccctagc tatatatccc taccttgaca ttggctggaa 30300 acgaatagat gccatgaacc acccaacttt ccccgcgccc gctatgcttc cactgcaaca 30360 agttgttgcc ggcggctttg tcccagccaa tcagcctcgc cccacttctc ccacccccac 30420 tgaaatcagc tactttaatc taacaggagg agatgactga caccctagat ctagaaatgg 30480 acggaattat tacagagcag cgcctgctag aaagacgcag ggcagcggcc gagCaaCagc 30540 gcatgaatca agagctccaa gacatggtta acttgcacca gtgcaaaagg ggtatctttt 30600 gtctggtaaa gcaggccaaa gtcacctacg acagtaatac caccggacac cgccttagct 30660 acaagttgcc aaccaagcgt cagaaattgg tggtcatggt gggagaaaag cccattacca 30720 taactcagca ctcggtagaa accgaaggct gcattcactc accttgtcaa ggacctgagg 30780 atctctgcac ccttattaag accctgtgcg gtctcaaaga tcttattccc tttaactaat 30840 aaaaaaaaat aataaagcat cacttactta aaatcagtta gcaaatttct gtccagttta 30900 ttcagcagca cctccttgcc ctcctcccag ctctggtatt gcagcttcct cctggctgca 30960 aactttctcc acaatctaaa tggaatgtca gtttcctcct gttcctgtcc atccgcaccc 31020 actatcttca tgttgttgca gatgaagcgc gcaagaccgt ctgaagatac cttcaacccc 31080 gtgtatccat atgacacgga aaccggtcct ccaactgtgc cttttcttac tcctcccttt 31140 gtatccccca atgggtttca agagagtccc cctggggtac tctctttgcg cctatccgaa 31200 cctctagtta cctccaatgg catgcttgcg ctcaaaatgg gcaacggcct ctctctggac 31260 gaggccggca accttaCCtc ccaaaatgta accactgtga gcccacctct caaaaaaacc 31320 aagtcaaaca taaacctgga aatatcttca cccctcacag ttacctcaga agccctaact 31380 gtggctgccg ccgcacctct aatggtcgcg ggcaacacac tcaccatgca atcacaggcc 31440 ccgctaaccg tgcacgactc caaacttagc attgccaccc aaggacccct cacagtgtca 31500 gaaggaaagc tagccctgca aacatcaggc cccctcacca ccaccgatag cagtaccctt 31560 actatcactg cctcaccccc tctaaatact gccactggta gcttgggcat tgacttaaaa 31620 gagcccattt atacacaaaa tggaaaacta ggactaaagt acggggctcc tttgcatgta 31680 acagacgacc taaacacttt gaccgtagca actggtccag gtgtgactat taataatact 31740 tccttgcaaa ctaaagttac tggagccttg ggttttgatt cacaaggcaa tatgcaactt 31800 aatgtagcag gaggactaag gattgattct caaaacagac gccttatact tgatgttagt 31860 tatccgtttg atgctcaaaa ccaactaaat ctaagactag gacagggccc tctttttata 31920 aactcagccc acaacttgga tattaactac aacaaaggcc tttacttgtt tacagtttca 31980 aacaattcca aaaagcttga ggttaaccta agcactgcca aggggttgat gtttgacgct 32040 acagccatag ccattaatgc aggagatggg cttgaatttg gttcacctaa tgcaccaaac 32100 acaaatcccc tcaaaacaaa aattggccat ggcctagaat ttgattcaaa caaggctatg 32160 gttcctaaac taggaactgg ccttagtttt gacagcacag gtgccattac agtaggaaac 32220 aaaaataatg ataagctaac tttgtggacc acaccagctc catctcctaa ctgtagacta 32280 aatgcagaga aagatgctaa actcactttg gtcttaacaa aatgtagcag tcaaatactt 32340 gctacagttt cagttttggc tgttaaaggc agtttggctc caatatctgg aacagttcaa 32400 agtgctcatc ttattataag atttgacgaa aatggagtgc tactaaacaa ttccttcctg 32460 gacccagaat attggaactt tagaaatgga gatcttactg aaggcacagc ctatacaaac 32520 gctgttggat ttatgcctaa cctatcagct tatccaaaat ctcacgttaa aactgccaaa 32580 agtaacattg tcagtcaagt ttatttaaac ggagacaaaa ctaaacctgt aacactaacc 32640 attacactaa acggtacaca ggaaacagga gacacaactc caagtgcata ctctatgtca 32700 ttttcatggg actggtctgg ccacaactac attaatgaaa tatttgccac atcctcttac 32760 actttttcat acattgccca agaataaaga atCgtttgtg ttatgtttca acgtgtttat 32820 ttttcaattg cagaaaattt caagtcattt ttcattcagt agtatagccc caccaccaca 32880 tagcttatac agatcaccgt accttaatca aactcacaga accctagtat tcaacctgcc 32940 acctccctcc caacacacag agtacacagt cctttctccc cggctggcct taaaaagcat 33000 catatcatgg gtaacagaca tattcttagg tgttatattc cacacggttt cctgtcgagc 33060 caaacgctca tcagtgatat taataaactc cccgggcagc tcacttaagt tcatgtcgct 33120 gtccagctgc tgagccacag gctgctgtcc aacttgcggt tgcttaacgg gcggcgaagg 33180 aaaattccac gcctacatgg gggtagagtc ataatcgtgc atcaggatag ggcggtggtg 33240 ctgcagcagc gcgcgaataa actgctgccg ccgccgctcc gtcctgcagg aatacaacat 33300 ggcagtggtc tcctcagcga tgattcgcac cgcccgcagc ataaggcgcc ttgtcctccg 33360 ggcacagcag cgcaccctga tctcacttaa atcagcacag taactgcagc acagcaccac 33420 aatattgttc aaaatcccac agtgcaaggc gctgtatcca aagctcatgg cggggaccac 33480 agaacccacg tggccatcat accacaagcg caggtagatt aagtggcgac ccctcataaa 33540 cacgctggac ataaacatta cctcttttgg catgttgtaa ttcaccacct cccggtacca 33600 tataaacctc tgattaaaca tggcgccatc caccaccatc ctaaaccaac tggccaaaac 33660 ctgcccgccg gctatacact gcagggaacc gggactggaa caatgacagt ggagagccca 33720 ggactcgtaa ccatggatca tcatgctcgt catgatatca atgttggcac aacacaggca 33780 cacgtgcata cacttcctca ggattacaag ctcctcccgc gttagaacca tatcccaggg 33840 aacaacccat tcctgaatca gcgtaaatcc cacactgcag ggaagacctc gcacgtaact 33900 cacattgtgc attgtcaaag tgttacattc gggcagcagc ggatgatcct ccagtatggt 33960 agcgcgggtt tctgtctcaa aaggaggtag acgatcccta ctgtacggag tgcgccgaga 34020 caaccgagat cgtgttggtc gtagtgtcat gccaaatgga acgccggacg tagtcatatt 34080 tcctgaagca aaaccaggtg cgggcgtgac aaacagatct gcgtctccgg tctcgccgct 34140 taaatcgctc tgtgtagtag ttgtagtata tccactctct caaagcatcc aggcgccccc 34200 tggcttcggg ttctatgtaa actccttcat gcgccgctgc cctgataaca tccaccaccg 34260 cagaataagc cacacccagc caacctacac attcgttctg cgagtcacac acgggaggag 34320 cgggaagagc tggaagaacc atgttttttt ttttattcca aaagattatc caaaacctca 34380 aaatgaagat ctattaagtg aacccgctcc cctccggtgg cgtggtcaaa ctctacagcc 34440 aaagaacaga taatggcatt tgtaagatgt tgcacaatgg cttccaaaag gcaaacggcc 34500 ctcacgtcca agtggacgta aaggctaaac ccttcagggt gaatctcctc tataaacatt 34560 ccagcacctt caaccatgcc caaataattc tcatctcgcc accttctcaa tatatctcta 34620 agcaaatccc gaatattaag tccggccatt gtaaaaatct gctccagagc gccctccacc 34680 ttcagcctca agcagcgaat catgattgca aaaattcagg ttcctcacag acctgtataa 34740 gattcaaaag cggaacatta acaaaaatac cgcgatcccg taggtccctt cgcagggcca 34800 gctgaacata atcgtgcagg tctgcacgga ccagcgcggc cacttccccg ccaggaagct 34860 tgacaaaaga acccacactg attatgacac gcatactcgg agctatgcta accagcgtag 34920 ccccgatgta agctttgttg catgggcggc gatataaaat gcaaggtgct gctcaaaaaa 34980 tcaggcaaag cctcgcgcaa aaaagaaagc acatcgtagt catgctcatg cagataaagg 35040 caggtaagct ccggaaccac cacagaaaaa gacaccattt ttctctcaaa catgtctgcg 35100 ggtttctgca taaacacaaa ataaaataac aaaaaaacat ttaaacatta gaagcctgtc 35160 ttacaacagg aaaaacaacc cttataagca taagacggac tacggccatg ccggcgtgac 35220 cgtaaaaaaa ctggtcaccg tgattaaaaa gcaccaccga cagctcctcg gtcatgtccg 35280 gagtcataat gtaagactcg gtaaacacat caggttgatt catcggtcag tgctaaaaag 35340 cgaccgaaat agcccggggg aatacatacc cgcaggcgta gagacaacat tacagccccc 35400 ataggaggta taacaaaatt aataggagag aaaaacacat aaacacctga aaaaccctcc 35460 tgcctaggca aaatagcacc ctcccgctcc agaacaacat acagcgcttc acagcggcag 35520 cctaacagtc agccttacca gtaaaaaaga aaacctatta aaaaaacacc actcgacacg 35580 gcaccagctc aatcagtcac agtgtaaaaa agggccaagt gcagagcgag tatatatagg 35640 actaaaaaat gacgtaacgg ttaaagtcca caaaaaacac ccagaaaacc gcacgcgaac 35700 ctacgcccag aaacgaaagc caaaaaaccc acaacttcct caaatcgtca cttccgtttt 35760 cccacgttac gtaacttccc attttaagaa aactacaatt cccaacacat acaagttact 35820 ccgccctaaa acctacgtca cgcgccccgt tcccacgccc cgcgccacgt cacaaactcc 35880 accccctcat tatcatattg gcttcaatcc aaaataaggt atattattga tgatg 35935 <210> 10 <211> 5965 <212> DNA
<213> Artificial Sequence <220>
<223> NSsuboptmut <400> 10 gccaccatgg cccccatcac cgcctacagc cagcagacca ggggcctgct gggctgcatc 60 atcaccagcc tgaccggacg cgacaagaac caggtggagg gagaggtgca ggtggtgagc 120 accgctaccc agagcttcct ggccacctgc gtgaacggcg tgtgctggac cgtgtaccac 180 ggagccggaa gcaagaccct ggccggaccc aagggcccta tcacccagat gtacaccaat 240 gtggatcagg atctggtggg ctggcaggcc cctcccggag ccaggagcct gacaccctgt 300 acctgtggaa gcagcgacct gtacctggtg acacgccacg ccgatgtgat ccccgtgagg 360 cgcaggggcg attctcgcgg aagcctgctg agccctaggc ccgtgagcta cctgaagggc 420 agcagcggag gacccctgct gtgtccttct ggccatgccg tgggcatttt tcgcgctgcc 480 gtgtgtacca ggggcgtggc caaagccgtg gattttgtgc ccgtggaaag catggagacc 540 accatgcgca gccctgtgtt caccgacaac agctctcccc ctgccgtgcc ccaatcattc 600 caggtggctc acctgcacgc ccctaccgga tctggcaaga gcaccaaggt gcccgctgcc 660 tacgccgctc agggctacaa ggtgctggtg ctgaacccca gcgtggccgc taccctgggc 720 ttcggcgctt acatgagcaa ggcccatggc atcgacccca acatccgcac aggcgtgcgc 780 accatcacca ccggagctcc cgtgacctac agcacctacg gcaagttcct ggccgatgga 840 ggctgcagcg gaggagccta cgacatcatc atctgcgacg agtgccacag caccgacagc 900 accaccatcc tgggcattgg caccgtgctg gatcaggccg aaacagctgg agccaggctg 960 gtggtgctgg ccacagctac ccctcctggc agcgtgaccg tgccccatcc caatatcgag 1020 gaggtggccc tgagcaacac aggcgagatc cccttctacg gcaaggccat ccccatcgag 1080 gccatccgcg gaggcaggca cctgatcttc tgccacagca agaagaagtg cgacgagctg 1140 gctgccaagc tgagcggact gggcatcaac gccgtggcct actacagggg cctggacgtg 1200 tcagtgatcc ccaccatcgg cgatgtggtg gtggtggcca ccgacgccct gatgacaggc 1260 tacaccggag acttcgacag cgtgatcgac tgcaacacct gcgtgaccca gaccgtggac 1320 ttcagcctgg accccacctt caccatcgaa accaccaccg tgcctcagga tgctgtgagc 1380 aggagccaga ggcgcggacg caccggaagg ggcaggcgcg gaatttatcg ctttgtgacc 1440 cctggcgaaa ggccctctgg catgttcgac agcagcgtgc tgtgcgagtg ctacgacgct 1500 ggctgcgctt ggtacgagct gacacccgct gaaaccagcg tgcgcctgcg cgcttatctg 1560 aatacccctg gcctgccctt gtgtcaggac cacctggagt tctgggagag cgtgttcaca 1620 ggactgaccc acatcgacgc ccatttcctg agccagacca agcaagctgg cgacaacttc 1680 ccctatctgg tggcctataa ggccaccgtg tgtgctagtg cccaagctcc acctccttca 1740 tgggaccaaa tgtggaagtg cctgatccgc cttaagccca ccctgcacgg ccctacccgt 1800 ctgCtgtacc gcctgggagc cttgcagaac gaggtgaccc tgacccaccc catcaccaag 1860 tacatcatgg cctgcattag cgctgatctg gaagtggtga ccagcacctg ggtgctggtg 1920 ggaggcgtgc tggccgctct ggctgcctac tgcctgacca ccgtaagcgt ggtgatcgtg 1980 ggacgcatca tcctgagcgg aaggcccgct atcgtgcccg atcgcgagtt cctgtaccag 2040 gagttcgacg agatggagga gtttgccagc cacctgccct acatcgagca gagcatgaag 2100 ctggccgaac agttaaagca gaaggccctg ggcccggtgc agacagccac caaacaggcc 2160 gaagctgccg ctcccgtggt ggaaagcaag tggagggccc tggagacctt ctgggctaag 2220 cacatgtgga acttcatctc tggcatccag tacctggccg gactgagcac cctgcctggc 2280 aaccccgcta tcgccagcct gatggccttc accgctagca tcacctctcc cctgaccacc 2340 cagagcaccc tgctgttcaa cattctgggc ggatgggtgg cCgctcagct ggcccctcct 2400 tcagctgctt ctgcctttgt gggcgctggc attgccggag ccgctgtggg cagcattggc 2460 ctgggcaaag tgctggtgga tattctggct ggctatggcg ctggcgttgc cggagccctg 2520 gtggccttca aggtgatgag cggagagatg cccagcaccg aggacctcgt gaacctgctg 2580 cctgccattc tgagccttcg agccctgttg gtgggcgtgg tgtgtgctgc cattctgagg 2640 cgccatgtgg gacccggaga gggcgctgtg cagtggatga accgcctgat cgccttcgcc 2700 tctcgcggaa accacgtgag ccctacccac tacgtgcctg agagcgacgc cgctgccagg 2760 gtgacccaga tcctgagcag cctgaccatc acccagctgc tgaagcgcct gcaccagtgg 2820 atcaacgagg actgCagcac accctgcagc ggaagctggc tgagggagat gtgggactgg 2880 atctgcaccg tgctgaccga cttcaagacc tggctgcaga gcaagctgct gccccaactg 2940 cctggcgtgc ccttcttctc atgccagcgc ggatacaagg gcgtgtggag gggcgatggc 3000 atcatgcaca ccacctgtcc ctacggagcc cagatcacag gccacgtgaa gaacggcagc 3060 atgcgcatcg tgggccctaa gacctgcagc aacacctggc acggCacctt ccccatcaac 3120 gcctacacca ccggaccctg cacacccagc cctgctccca actacagcag ggccctgtgg 3180 agggtggctg ccgaggagta cgtggaggtg accagggtgg gagacttcca ctacgtgacc 3240 gaaatgacca ccgacaacgt gaagtgtccc tgtcaggtgc ccgctcccga attttttacc 3300 gaagtggatg gcgtgcgcct gcatcgctat gcccctgcct gtaggcccct gctgcgcgaa 3360 gaagtgacct tccaggtggg cctgaaccag tacctggtgg gcagccagct gccctgcgag 3420 cctgagcccg atgtggccgt gctgaccagc atgctgaccg accccagcca catcacagcc 3480 gaaaccgcta aaaggcgcct ggccaggggc tctcctccaa gcctggcctc aagcagcgct 3540 agccagctgt ctgctcccag cctgaaggcc acctgcacca cccaccacgt gagccccgac 3600 gccgacctga tcgaggccaa cctgctgtgg cgccaggaga tgggCggCaa catcacccgc 3660 gtggagagcg agaaCaaggt ggtggtgctg gacagcttcg accccctgcg cgccgaggag 3720 gacgagcgcg aggtgagcgt gcccgccgag atcctgcgca agagcaagaa gttccccgct 3780 gccatgccca tctgggctag acctgattac aaccctcccc tgctggagag ctggaaggac 3840 cctgattacg tgcctccagt ggtgcatggc tgtcctctgc ctcccattaa agcccctcct 3900 attccacctc ctaggcgcaa aaggaccgtg gtgctgacag aaagcagcgt gagctctgct 3960 ctggccgaac tggccaccaa gacctttggc agcagcgaga gctctgccgt ggacagcgga 4020 acagccaccg ctctgcctga ccaggccagc gacgacggcg ataagggcag cgatgtggag 4080 agctatagca gcatgcctcc cctggaaggc gaacctggcg atcccgatct gagcgatggc 4140 agctggagca ccgtgagcga agagcccagc gaggacgtgg tgtgttgcag catgagctac 4200 acctggacag gcgctctgat cacacccagc gctgccgagg agagcaagct gcccatcaac 4260 gccctgagca acagcctgct gaggcaccac aacatggtgt acgccaccac cagcaggtct 4320 gccggactga ggcagaagaa ggtgaccttc gaccgcctgc aggtgctgga cgaccactac 4380 cgcgatgtgc tgaaggagat gaaggccaag gccagcaccg tgaaggccaa gctgctgagc 4440 gtggaggagg cctgcaagct gacccccccc cacagcgcca agagcaagtt cggctacggc 4500 gccaaggacg tgcgcaacct gagcagcaag gccgtgaacc acatccacag cgtgtggaag 4560 gacctgctgg aggacaccgt gacccccatc gacaccacca tcatggccaa gaacgaggtg 4620 ttctgcgtgc agcccgagaa gggcggccgc aagcccgctc gcctgatcgt gttccccgat 4680 ctgggcgtgc gcgtgtgcga gaagatggcc ctgtacgacg tggtgagcac cctgcctcag 4740 gtggtgatgg gctcaagcta cggcttccag tacagccctg gccagcgcgt ggagttcctg 4800 gtgaacacct ggaagagcaa gaagaacccc atgggcttca gctacgacac acgCtgcttc 4860 gacagcaccg tgaccgagaa cgacatcctc gtggaggaga gcatctacca gtgctgcgac 4920 ctggcccctg agcccaggca ggccatcaag agcctgagcg agcgcctgta catcggaggc 4980 cctctgacca acagcaaggg acagaactgc ggatacaggc gctgtagggc ctctggcgtg 5040 ctgaccacca gctgtggcaa caccctgacc tgctacctga aggccagcgc tgcctgtcgc 5100 gctgccaagc tgcaggactg caccatgctg gtgaacggcg ctggcctggt ggtgatttgt 5160 gaaagcgctg gcacccagga agatgctgcc agcctgcgcg tgttcaccga ggccatgacc 5220 aggtactctg cccctcccgg agacccccct cagcccgaat acgacctgga gctgatcacc 5280 atctgctcaa gcaacgtgag cgtggctcac gacgccagcg gaaagcgctt gtactacctg 5340 acacgcgatc ccaccccccc tctggctcgC gctgcctggg aaaccgctcg ccatacaccc 5400 gtgaacagct ggctgggcaa catcatcatg tacgccccta ccctgtgggc tcgcatcatc 5460 ctgatgaccc acttcttcag catcctgctg gctcaggagc agctggagaa ggccctggac 5520 tgccagattt acggcgcttg ctacagcatc gagcacctgg acctgcccca aatcatcgag 5580 cgcctgcacg gcctgtctgc cttcagcctg cacagctaca gccctggcga aattaatcgc 5640 gtggccagct gtctgcgcaa actgggcgtg cctcctctgc gcgtgtggag gcatagggct 5700 aggagcgtga gggctaggct gctgagccag ggaggcaggg ccgctacctg tggaaagtac 5760 ctgttcaact gggccgtgaa gaccaagctg aagctgaccc ctatccctgc cgctagccag 5820 ctggacctga gcggatggtt cgtggctggc tacagcggag gcgacatcta ccacagcctg 5880 tctcgcgctc gccctcgctg gttcatgctg tgcctgctgc tgctgagcgt gggcgtgggc 5940 agctacctgc tgcccaaccg ctaaa 5965 <210> 11 <211> 5965 <212> DNA
<213> Artificial Sequence <220>
<223> Chimeric NSsuboptmut <400> 11 gccaccatgg cccccatcac cgcctacagc cagcagaccc gcggcctgct gggctgcatc 60 atcaccagcc tgaccggccg cgacaagaac caggtggagg gcgaggtgca ggtggtgagc 120 accgccaccc agagcttcct ggccacctgc gtgaacggcg tgtgctggac cgtgtaccac 180 ggcgccggca gcaagaccct ggccggcccc aagggcccca tcacccagat gtacaccaac 240 gtggaccagg acctggtggg ctggcaggcc ccccccggcg cccgcagcct gaccccctgc 300 acctgcggca gcagcgacct gtacctggtg acccgccacg ccgacgtgat ccccgtgcgc 360 cgccgcggcg acagccgcgg cagcctgctg agcccccgcc ccgtgagcta cctgaagggc 420 agcagcggcg gccccctgct gtgccccagc ggccacgccg tgggcatctt ccgcgccgcc 480 gtgtgcaccc gcggcgtggc caaggccgtg gacttcgtgc ccgtggagag catggagacc 540 accatgcgca gccccgtgtt caccgacaac agcagccccc ccgccgtgcc ccagagcttc 600 caggtggccc acctgcacgc ccccaccggc agcggcaaga gcaccaaggt gcccgccgcc 660 tacgccgccc agggctacaa ggtgctggtg ctgaacccca gcgtggccgc caccctgggc 720 ttcggcgcct acatgagcaa ggcccacggc atcgacccca acatccgcac cggcgtgcgc 780 accatcacca ccggcgcccc cgtgacctac agcacctacg gcaagttcct ggccgacggc 840 ggctgcagcg gcggcgccta cgacatcatc atctgcgacg agtgccacag caccgacagc 900 accaccatcc tgggcatcgg caccgtgctg gaccaggccg agaccgccgg cgcccgcctg 960 gtggtgctgg ccaccgccac cccccccggc agcgtgaccg tgccccaccc caacatcgag 1020 gaggtggccc tgagcaacac cggcgagatc cccttctacg gcaaggccat ccccatcgag 1080 gccatccgcg gcggccgcca cctgatcttc tgccacagca agaagaagtg cgacgagctg 1140 gctgccaagc tgagcggcct gggcatcaac gccgtggcct actaccgcgg cctggacgtg 1200 agcgtgatcc ccaccatcgg cgacgtggtg gtggtggcca ccgacgccct gatgaccggc 1260 tacaccggcg acttcgacag cgtgatcgac tgcaacacct gcgtgaccca gaccgtggac 1320 ttcagcctgg accccacctt caccatcgag accaccaccg tgccccagga cgccgtgagc 1380 cgcagccagc gccgcggccg caccggccgc ggccgccgcg gcatctaccg cttcgtgacc 1440 cccggcgagc gccccagcgg catgttcgac agcagcgtgc tgtgcgagtg ctacgacgcc 1500 ggctgcgcct ggtacgagct gacccccgcc gagaccagcg tgcgcctgcg cgcctacctg 1560 aacacccccg gcctgcccgt gtgccaggac cacctggagt tctgggagag cgtgttcacc 1620 ggcctgaccc acatcgacgc ccacttcctg agccagacca agcaggccgg cgacaacttc 1680 ccctacctgg tggcctacca ggccaccgtg tgcgcctgcg cccaagcccc cccccccagc 1740 tgggaccaaa tgtggaagtg cctgatccgc ctgaagccca ccctgcacgg ccccaccccc 1800 ctgctgtacc gcctgggcgc cgtgcagaac gaggtaacac tgacccaccc catcaccaag 1860 tacatcatgg cctgcatgag cgccgacctg gaggtggtga ccagcacctg ggtgctggtg 1920 ggcggcgtgc tggccgccct ggccgcctac tgcctgacca ccggcagcgt ggtgatcgtg 1980 ggccgcatca tcctgagcgg ccgccccgcc atcgtgcccg accgcgagtt cctgtaccag 2040 gagttcgacg agatggagga gtgcgccagc cacctgccct acatcgagca gggcatgcag 2100 ctggccgagc agttcaagca gaaggccctg ggcctgctgc agaccgccac caagcaggcc 2160 gaggccgccg cccccgtggt ggagagcaag tggcgCgCCC tggagacctt ctgggccaag 2220 cacatgtgga acttcatcag cggcatccag tacctggccg gcctgagcac cctgcccggc 2280 aaccccgcca tcgccagcct gatggccttc accgccagca tcaccagccc cctgaccacc 2340 cagagcaccc tgctgttcaa catcctgggc gtgtgcgtgg ccgcccagct gacccccccc 2400 agcgccgcca gcgccttcgt gggcggcggc atcgccggcg ccgccgtggg cagcatcggc 2460 ctgggcaagg tgctggtgga catcctggcc ggctacggcg ccggcgtggc cggcgccctg 2520 gtggccttca aggtgatgag cggcgagatg cccagcaccg aggacctggt gaacctgctg 2580 cccgccatcc tgagccccgg cgccctggtg gtgggcgtgg tgtgcgccgc catcctgcgc 2640 cgccacgtgg gccccggcga gggcgccgtg cagtggatga accgcctgat cgccttcgcc 2700 agccgcggca accacgtgag ccccacccac tacgtgcccg agagcgacgc cgccgcccgc 2760 gtgacccaga tcctgagcag cctgaccatc acccagctgc tgaagcgcct gcaccagtgg 2820 atcaacgagg actgcagcac cccctgcagc ggcagctggc tgcgcgacgt gtgggactgg 2880 atctgcaccg tgctgaccga cttcaagacc tggctgcaga gcaagctgct gccccagctg 2940 ctcggcgtgc ccttcttcag ctgccagcgc ggctacaagg gcgtgtggcg cggcgagagc 3000 atcatgcaga ccacctgccc ctgcagcgcc cagatcaccg gccacgtgaa gaacggcagc 3060 atgcgcatcg tgggccccaa gaactgcagc aacacctggc acggcacctt ccccatcaac 3120 gcctacacca ccggcccctg cacccccagC cccgcccCCa actacagccg cgccctgtgg 3180 cgcgtggccg ccgaggagta cgtggaagtg acccgcgtgg gcgacttcca ctacgtgacc 3240 ggcatgacca ccgacaacgt gaagtgcccc tgccaggtgc ccgcccccga gttcttcacc 3300 gaggtggacg gcgtgcgcct gcaccgctac gcccccgcct gccgccccct gctgcgcgag 3360 gaggtgacct tccaggtggg cctgaaccag tacctggtgg gcagccagct gcccggcgag 3420 cccgagcccg acgtggccgt gctgaccagc atgctcatcg accccagcca catcagcgcc 3480 gagaccgcca agcgccgcct ggcccgcggc agCCCCCCca gcctgcccag cagcagcgcc 3540 agccagctga gcgcccccag cctgaaggcc acctgCacca cccaccacgt gagccccgac 3600 gccgacctga tcgaggccaa cctgctgtgg cgccaggaga tgggCggcaa catcacccgc 3660 gtggagagcg agaacaaggt ggtggtgctg gacagcttcg accccctgcg cgccgaggag 3720 gacgagcgcg aggtgatcgt gcccgccgag atcctccgca agagcaagaa gttccccgct 3780 gccatcccca tctgggctag acctgattac aaCCCtCCcc tcttggagag ctggaaggac 3840 cctgattacg tgcctccagt ggtgcatggc tgtcctctgc ctcccattaa agcccctcct 3900 attccacctc ctaggcgaaa aaggaccgtg gtgctgacag aaagcagcgt gagctctgct 3960 ctggccgaac tggCCaccaa gacctttggc agcagcgaga gctctgccgt ggacagcgga 4020 acagccaccg ctctgcctga ccaggccagc gacgacggcg ataagggcag cgatgtggag 4080 agctatagca gcatgcctcc cctggaaggc gaacatggcg atcccgatct gagcgatggc 4140 agctggagca ccgtgagcga agaggccagc gaggacgtgg tgtgttgcag catgagctac 4200 acctggacag gcgctctgat cacaccctgc gctgccgagg agagcaagct gcccatcaac 4260 gccctgagca acagcctgct gaggcaccac aacatggtgt acgccaccac cagcaggtCt 4320 gccggactga ggcagaagaa ggtgaccttc gaccgcctgc aggtgctgga cgaccactac 4380 cgcgatgtgc tgaaggagat gaaggccaag gccagcaccg tgaaggccaa gctgctgagc 4440 gtggaggagg cctgcaagct gaCCCCCCcc cacagcgcca agagcaagtt cggctacggc 4500 gccaaggacg tgcgcaacct gagcagcaag gccgtgaacc acatccacag cgtgtggaag 4560 gacctgctgg aggacaccgt gacccccatc gacaccacca tcatggccaa gaacgaggtg 4620 ttctgcgtgc agcccgagaa gggcggccgc aaccccgccc gcctgatcgt gttccccgac 4680 ctgggcgtgc gcgtgtgcga gaagatggcc ctgtacgacg tggtgagcac cctgccccag 4740 gtggtgatgg gcagcagcta cggcttccag tacagccccg gccagcgcgt ggagttcctg 4800 gtgaacacct ggaagagcaa gaagaacccc atgggcttca gctacgacac ccgctgcttc 4860 gacagcaccg tgaccgagaa cgacatccgc gtggaggaga gcatctacca gtgctgcgac 4920 ctggcccccg aggcccgcca ggccatcaag agcctgaccg agcgcctgta catcggcggc 4980 cccctgacca acagcaaggg ccagaactgc ggctaccgcc gctgccgcgc cagcggcgtg 5040 ctgaccacca gctgcggcaa caccctgacc tgctacctga aggccagccc cgcctgccgc 5100 gccgccaagc tgcaggactg caccatgctg gtgaacgccg ccggcctggt ggtgatctgc 5160 gagagcgccg gcacccagga ggacgccgcc agcctgcgcg tgttcaccga ggccatgacc 5220 cgctacagcg ccccccccgg cgacaccccc cagcccgagt acgacctgga gctgatcacc 5280 agctgcagca gcaacgtgag cgtggcccac gacgccagcg gcaagcgcgt gtactacctg 5340 acccgcgacc ccaccacccc cctggcccgc gccgcctggg agaccgCCcg ccacaccccc 5400 gtgaacagct ggctgggcaa catcatcatg tacgccccca ccctgtgggc ccgcatgatc 5460 ctgatgaccc acttcttcag catcctgctg gcccaggagc agctggagaa ggccctggac 5520 tgccagatct acggcgcctg ctacagcatc gagcccctgg acctgcccca gatcatcgag 5580 cgcctgcacg gcctgagcgc cttcagcctg cacagctaca gccccggcga gatcaaccgc 5640 gtggccagct gcctgcgcaa gctgggcgtg ccccccctgc gcgtgtggcg ccaccgcgcc 5700 cgcagcgtgc gcgcccgcct gctgagccag ggcggccgcg ccgccacctg cggcaagtac 5760 ctgttcaact gggccgtgaa gaccaagctg aagctgaccc ccatccccgc cgccagccag 5820 ctgtacctga gcggctggtt cgtggccggc tacagcggcg gcgacatcta ccacagcctg 5880 agccgcgccc gcccccgctg gttcatgctg tgcctgctgc tgctgagcgt gggcgtgggc 5940 atctacctgc tgcccaaccg ctaaa 5965 <210> 12 <211> 10 <212> RNA
<213> Artificial Sequence <220>
<223> Ribosome binding site <400> 12 gccaccaugg 10 <210> 13 <211> 49 <212> RNA
<213> Artificial Sequence <220>
<223> Synthetic polyadenylation signal <400> 13 aauaaaagau cuuuauuuuc auuagaucug uguguugguu uuuugugug 49 <210> 14 <211> 28 <212> DNA
<213> Artificial Sequence <220>
<223> Additional nucleotides present in pVIJns-NS
<400> 14 tctagagcgt ttaaaccctt aattaagg 28 <210> 15 <211> 15 <212> DNA
<213> Artificial Sequence <220>
<223> Additional nucleotides present in pVlJns-NSOPTmut <400> 15 tttaaatgtt taaac 15 <210> 16 <211> 24 <212> DNA
<213> Artificial Sequence <220>
<223> Oligonucleotide primer <400> 16 tcgaatcgat acgcgaacct acgc 24 <210> 17 <211> 37 <212> DNA
<213> Artificial Sequence <220>
<223> Oligonucleotide primer <400> 17 tcgacgtgtc gacttcgaag cgcacaccaa aaacgtc 37

Claims (60)

1. A nucleic acid comprising a nucleotide sequence encoding a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide having an amino acid identity to SEQ ID NO: 1 of at least 85%, provided that said polypeptide has sufficient protease activity to process itself to produce an NS5B protein and said NS5B protein is enzymatically inactive.
2. The nucleic acid of claim 1, wherein said nucleotide sequence has an identity to the coding sequence of SEQ ID NO: 2 of at least 65%.
3. The nucleic acid of claim 1, wherein said nucleotide sequence encodes for the polypeptide of SEQ ID NO: 1.
4. The nucleic acid of claim 3, wherein said nucleotide sequence is the coding sequence of either SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 10, or SEQ ID NO: 11.
5. The nucleic acid of claim 3, wherein said nucleotide sequence is the coding sequence of either SEQ ID NO: 2 or SEQ ID NO: 3.
6. The nucleic acid of any one of claims 3-5, wherein said nucleic acid is an expression vector capable of expressing said polypeptide from said nucleotide sequence in a human cell.
7. A nucleic acid comprising a gene expression cassette able to express a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide having an amino acid identity to SEQ ID NO: 1 of at least 85%, in a human cell, provided that said polypeptide can process itself to produce an NS5B protein and said NS5B
protein is enzymatically inactive, said expression cassette comprising:
a) a promoter transcriptionally coupled to a nucleotide sequence encoding said polypeptide;

b) a 5' ribosome binding site functionally coupled to said nucleotide sequence;
c) a terminator joined to the 3' end of said nucleotide sequence;
and d) a 3' polyadenylation signal functionally coupled to said nucleotide sequence.
8. The nucleic acid of claim 7, wherein said nucleotide sequence has a sequence identity of at least 65% to the coding sequence of either SEQ
ID NO:
2, SEQ ID NO: 3, SEQ ID NO: 10, or SEQ ID NO: 11.
9. The nucleic acid of claim 8, wherein said nucleic acid is a shuttle vector further comprising a selectable marker, an origin of replication, a first adenovirus homology region and a second adenovirus homology region flanking said expression cassette, wherein said first homology region has at least about 100 base pairs substantially homologous to at least right end of a wild-type adenovirus region from about base pairs 1-425, and said second homology region has at least about 100 base pairs substantially homologous to at least the left end of a wild-type adenovirus region from about base pairs 3511-5792 of Ad5 or corresponding region of another adenovirus.
10. The nucleic acid of claim 9, wherein said nucleotide sequence encodes for a polypeptide of SEQ ID NO: 1.
11. The nucleic acid of claim 9, wherein said nucleotide sequence is SEQ ID NO: 2.
12. The nucleic acid of claim 9, wherein said nucleotide sequence is either SEQ ID NO: 3, SEQ ID NO: 10, or SEQ ID NO: 11.
13. The nucleic acid of claim 8, wherein said nucleic acid is a plasmid suitable for administration into a human and further comprises a prokaryotic origin of replication and a gene coding for a selectable marker.
14. The nucleic acid of claim 13, wherein said nucleotide sequence encodes for a polypeptide of SEQ ID NO: 1.
15. The nucleic acid of claim 14, wherein said nucleotide sequence is the coding sequence of either SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 10, or SEQ ID NO: 11.
16. The nucleic acid of claim 14, wherein said nucleotide sequence is the coding sequence of SEQ ID NO: 2 or SEQ ID NO: 3.
17. The nucleic acid of claim 14, wherein said promoter is the human intermediate early cytomegalovirus promoter (intron A), said 5' ribosome binding site consists of SEQ ID NO: 12, and said 3' polyadenylation is the bovine growth hormone (BGH) polyadenylation signal.
18. The nucleic acid of claim 8, wherein said nucleic acid is a adenovirus genome plasmid comprising a selectable marker, an origin of replication, and a recombinant adenovector genome containing an E1 deletion, an E3 deletion, and said expression cassette.
19. The nucleic acid of claim 8, wherein said nucleic acid is a adenovirus genome plasmid comprising a selectable marker, an origin of replication;
and a) a first adenovirus region from about base pair 1 to about base pair 450 corresponding to either Ad5 or Ad6;
b) said gene expression cassette in a E1 parallel or E1 anti-parallel orientation joined to said first region;

c) a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to said expression cassette;

d) a third adenovirus region from about base pair 5549 to about base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair 28156 corresponding to Ad6, joined to said second region;
e) a fourth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, joined to said third region; and f) a fifth adenovirus region from about base pair 33967 to about base pair 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6, joined to said fourth region.
20. The nucleic acid of claim 19, wherein said first region corresponds to Ad5, said second region corresponds to Ad5, said third region corresponds to Ad5, said fourth region corresponds to Ad5, and said fifth region corresponds to Ad5.
21. The nucleic acid of claim 20, wherein said promoter is the human intermediate early cytomegalovirus promoter, said 5' ribosome binding site consists of SEQ ID NO: 12, and said 3' polyadenylation is the BGH
polyadenylation signal.
22. The nucleic acid of claim 21, wherein said expression cassette is in an E1 anti-parallel orientation and said nucleotide sequence is either SEQ ID
NO: 2, SEQ ID NO: 3, SEQ ID NO: 10, or SEQ ID NO: 11.
23. The nucleic acid of claim 19, wherein said first region corresponds to Ad5 or Ad6, said second region corresponds to Ad5 or Ad6, said third region corresponds to Ad6, said fourth region corresponds to Ad6, and said fifth region corresponds to Ad5 or Ad6.
24. The nucleic acid of claim 23, wherein said promoter is the human intermediate early cytomegalovirus promoter, said 5' ribosome binding site consists of SEQ ID NO: 12, and said 3' polyadenylation is the BGH
polyadenylation signal.
25. The nucleic acid of claim 24, wherein said expression cassette is in an E1 anti-parallel orientation and said nucleotide sequence is either SEQ ID
NO: 2, SEQ ID NO: 3, SEQ ID NO: 10, or SEQ ID NO: 11.
26. The nucleic acid of claim 24, wherein said expression cassette is in an E1 anti-parallel orientation and said nucleotide sequence is either SEQ ID
NO: 2 or SEQ ID NO: 3.
27. The nucleic acid of claim 8, wherein said nucleic acid is a adenovirus genome plasmid comprising an origin of replication, a selectable marker, and:

a) a first adenovirus region from about base pair 1 to about base pair 450 corresponding to either Ad5 or Ad6;
b) a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to said first region;
c) a third adenovirus region from about base pair 5549 to about base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair 28156 corresponding to Ad6, joined to said second region;
d) said gene expression cassette in a E3 parallel or E3 anti-parallel orientation joined to said third region;
e) a fourth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, joined to said gene expression cassette; and f) a fifth adenovirus region from about base pair 33967 to about base pair 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6, joined to said fourth region.
28. The nucleic acid of claim 27, wherein said first region corresponds to Ad5, said second region corresponds to Ad5, said third region corresponds to Ad5, said fourth region corresponds to Ad5, and said fifth region corresponds to Ad5.
29. The nucleic acid of claim 28, wherein said promoter is the human intermediate early cytomegalovirus promoter, said 5' ribosome binding site consists of SEQ ID NO: 12, and said 3' polyadenylation is the BGH
polyadenylation signal.
30. The nucleic acid of claim 27, wherein said first region corresponds to Ad5 or Ad6, said second region corresponds to Ad5 of Ad6, said third region corresponds to Ad6, said fourth region corresponds to Ad6, and said fifth region corresponds to Ad5 or Ad6.
31. The nucleic acid of claim 30, wherein said promoter is the human intermediate early cytomegalovirus promoter, said 5' ribosome binding site consists of SEQ ID NO: 12, and said 3' polyadenylation is the BGH
polyadenylation signal.
32. The nucleic acid of claim 8, wherein said nucleic acid is a adenovector consisting of a nucleotide sequence having an identity to SEQ ID
NO. 4 of at least 65% or a derivative thereof, wherein said derivative thereof has the HCV
polyprotein encoding sequence present in SEQ ID NO: 4 replaced with the HCV
polyprotein encoding sequence of either SEQ ID NO: 3, SEQ ID NO: 10, or SEQ ID

NO: 11.
33. The nucleic acid of claim 8, wherein said nucleic acid is an adenovector having an adenovector genome containing an E1 deletion, an E3 deletion, and said expression cassette.
34. The nucleic acid of claim 8, wherein said nucleic acid is an adenovector consisting of:

a) a first adenovirus region from about base pair 1 to about base pair 450 corresponding to either Ad5 or Ad6;
b) said gene expression cassette in a E1 parallel or E1 anti-parallel orientation joined to said first region;
c) a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to said expression cassette;
d) a third adenovirus region from about base pair 5549 to about base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair 28156 corresponding to Ad6, joined to said second region;
e) a fourth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, joined to said third region; and f) a fifth adenovirus region from about base pair 33967 to about base pair 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6, joined to said fourth region.
35. The nucleic acid of claim 34, wherein said first region corresponds to Ad5, said second region corresponds to Ad5, said third region corresponds to Ad5, said fourth region corresponds to Ad5, and said fifth region corresponds to Ad5.
36. The nucleic acid of claim 35, wherein said promoter is the human intermediate early cytomegalovirus promoter, said 5' ribosome binding site consists of SEQ ID NO: 12, and said 3' polyadenylation is the BGH
polyadenylation signal.
37. The nucleic acid of claim 36, wherein said expression cassette is in an E1 anti-parallel orientation and said nucleotide sequence is either SEQ ID
NO: 2, SEQ ID NO: 3, SEQ ID NO: 10, or SEQ ID NO: 11.
38. The nucleic acid of claim 34, wherein said first region corresponds to Ad5 or Ad6, said second region corresponds to Ad5 or Ad6, said third region corresponds to Ad6, said fourth region corresponds to Ad6, and said fifth region corresponds to Ad5 or Ad6.
39. The nucleic acid of claim 37, where said promoter is the human intermediate early cytomegalovirus promoter, said 5' ribosome binding site consists of SEQ ID NO: 12, and said 3' polyadenylation is the BGH polyadenylation signal.
40. The nucleic acid of claim 39, wherein said expression cassette is in an E1 anti-parallel orientation and said nucleotide sequence is SEQ ID
NO: 2, SEQ ID NO: 3, SEQ ID NO: 10, or SEQ ID NO: 11.
41. The nucleic acid of claim 39, wherein said expression cassette is in an E1 anti-parallel orientation and said nucleotide sequence is SEQ ID
NO: 2 or SEQ ID NO: 3.
42. The nucleic acid of claim 8, wherein said nucleic acid is an adenovector consisting of:
a) a first adenovirus region from about base pair 1 to about base pair 450 corresponding to either Ad5 or Ad6;
b) a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to said first region;
c) a third adenovirus region from about base pair 5549 to about base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair 28156 corresponding to Ad6, joined to said second region;
d) said gene expression cassette in a E3 parallel or E3 anti-parallel orientation joined to said third region;
e) a fourth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, joined to said gene expression cassette; and f) a fifth adenovirus region from about base pair 33967 to about base pair 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6, joined to said fourth region.
43. The nucleic acid of claim 42, wherein said first region corresponds to Ad5, said second region corresponds to Ad5, said third region corresponds to Ad5, said fourth region corresponds to Ad5, and said fifth region corresponds to Ad5.
44. The nucleic acid of claim 42, wherein said first region corresponds to Ad5 or Ad6, said second region corresponds to Ad5 or Ad6, said third region corresponds to Ad6, said fourth region corresponds to Ad6, and said fifth region corresponds to Ad5 or Ad6.
45. An adenovector consisting of the nucleic acid sequence of SEQ
ID NO. 4 or a derivative thereof, wherein said derivative thereof has the HCV
polyprotein encoding sequence present in SEQ ID NO: 4 replaced with the HCV
polyprotein encoding sequence of either SEQ ID NO: 3, SEQ ID NO: 10, or SEQ ID

NO: 11.
46. An adenovector produced by a process comprising the steps of:
a) producing an adenovirus genome plasmid by homologous recombination between the shuttle vector of claim 9 and a nucleic acid comprising:
a first adenovirus region from about base pair 1 to about base pair 450 corresponding to either Ad5 or Ad6;
a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to said first region;
a third adenovirus region from about base pair 5549 to about base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair 28156 corresponding to Ad6, joined to said second region;

a fourth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, joined to said third region; and a fifth adenovirus region from about base pair 33967 to about base pair 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6, joined to said fourth region; and b) rescuing said adenovector from said adenovirus plasmid.
47. A cultured recombinant cell comprising the nucleic acid of claim 6.
48. A cultured recombinant cell comprising the nucleic acid of any one of claims 9-46.
49. A method of making an adenovector comprising the steps of:
a) producing an adenovirus genome plasmid comprising a gene expression cassette by homologous recombination between the nucleic acid of claim 9 and a nucleic acid comprising;
a first adenovirus region from about base pair 1 to about base pair 450 corresponding to either Ad5 or Ad6;
a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to said first region;
a third adenovirus region- from about base pair 5549 to about base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair 28156 corresponding to Ad6, joined to said second region;
a fourth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, joined to said third region; and a fifth adenovirus region from about base pair 33967 to about base pair 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6, joined to the fourth region; and b) rescuing said recombinant adenovirus from said recombinant adenovirus plasmid.
50. The nucleic acid of claim 1 or 2, wherein said nucleic acid is an expression vector capable of expressing said polypeptide from said nucleotide sequence.
51. The nucleic acid of any one of claims 7, 8, 13, 32-36, 38, 42-44 or 50 wherein said amino acid identity is at least 95% to SEQ ID NO: 1.
52. The nucleic acid of any one of claims 7, 8, 13, 32-36, 38, 42-44 or 50 wherein the polypeptide differs from SEQ ID NO: 1 by 1-20 amino acids.
53. The nucleic acid of any one of claims 7, 8, 13, 32-36, 38, 42-44 or 50, wherein the polypeptide differs from SEQ ID NO: 1 by 1-5 amino acids.
54. A pharmaceutical composition comprising the nucleic acid of any one of claims 6-8, 13-17, 32-46, and 50-53 and a pharmaceutically acceptable carrier.
55. Use of the nucleic acid of any one of claims 6-8, 13-17, 32-46, and 50-53 for treating a patient.
56. Use of the nucleic acid of any one of claims 6-8, 13-17, 32-46, and 50-53 for the preparation of a medicament for treating a patient.
57. The use of claim 55, wherein the nucleic acid is for treating or preventing HCV.
58. The use of claim 56, wherein the medicament is for treating or preventing HCV.
59. The use of any one of claims 55-58, wherein the patient is a human.
60. The pharmaceutical composition of claim 54, wherein said pharmaceutical composition is for treating or preventing HCV.
CA2461380A 2001-10-11 2002-10-10 Hepatitis c virus vaccine Expired - Lifetime CA2461380C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA2718802A CA2718802C (en) 2001-10-11 2002-10-10 Recombinant nucleic acids comprising regions of ad6

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US32865501P 2001-10-11 2001-10-11
US60/328,655 2001-10-11
US36377402P 2002-03-13 2002-03-13
US60/363,774 2002-03-13
PCT/US2002/032512 WO2003031588A2 (en) 2001-10-11 2002-10-10 Hepatitis c virus vaccine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CA2718802A Division CA2718802C (en) 2001-10-11 2002-10-10 Recombinant nucleic acids comprising regions of ad6

Publications (2)

Publication Number Publication Date
CA2461380A1 CA2461380A1 (en) 2003-04-17
CA2461380C true CA2461380C (en) 2011-03-22

Family

ID=42828995

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2461380A Expired - Lifetime CA2461380C (en) 2001-10-11 2002-10-10 Hepatitis c virus vaccine

Country Status (9)

Country Link
US (3) US7598362B2 (en)
EP (1) EP1436397B1 (en)
JP (1) JP4475561B2 (en)
CN (1) CN1582337B (en)
AT (1) ATE467680T1 (en)
AU (1) AU2002337840B2 (en)
CA (1) CA2461380C (en)
DK (1) DK1436397T3 (en)
WO (1) WO2003031588A2 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003512826A (en) 1999-10-27 2003-04-08 カイロン コーポレイション Activation of HCV-specific T cells
US6680059B2 (en) 2000-08-29 2004-01-20 Tripep Ab Vaccines containing ribavirin and methods of use thereof
US7022830B2 (en) * 2000-08-17 2006-04-04 Tripep Ab Hepatitis C virus codon optimized non-structural NS3/4A fusion gene
AU2001292151B2 (en) 2000-08-17 2006-05-04 Tripep Ab Vaccines containing ribavirin and methods of use thereof
RU2286172C2 (en) 2000-08-17 2006-10-27 Трипеп Аб Ribavirin-containing vaccines and methods for their application
ATE467680T1 (en) * 2001-10-11 2010-05-15 Merck Sharp & Dohme HEPATITIS C VIRUS VACCINE
CN1880457B (en) * 2001-10-11 2010-05-26 麦克公司 Ad6 recombinant nucleic acid
WO2006048215A1 (en) * 2004-11-02 2006-05-11 Istituto Di Ricerche Di Biologia Molecolare P Angeletti Spa Adenoviral amplicon and producer cells for the production of replication-defective adenoviral vectors, methods of preparation and use thereof
US8168771B2 (en) 2005-01-31 2012-05-01 The Johns Hopkins University Use of consensus sequence as vaccine antigen to enhance recognition of virulent viral variants
WO2006088664A2 (en) * 2005-02-17 2006-08-24 The University Of Iowa Research Foundation Flavivirus ns5a proteins for the treatment of hiv
DE102005015005A1 (en) * 2005-04-01 2006-10-05 Qiagen Gmbh Process for treating a sample containing biomolecules
WO2007031867A2 (en) 2005-05-25 2007-03-22 Tripep Ab A hepatitis c virus non-stru tural ns3/4a fusion gene
ES2948791T3 (en) 2005-06-17 2023-09-19 Msd Italia Srl Hepatitis C virus nucleic acid vaccine
CN1887350B (en) * 2005-06-28 2010-10-06 深圳市源兴生物医药科技有限公司 Recombinant vaccine and its use
CN104984352A (en) * 2005-11-21 2015-10-21 圣诺菲·帕斯图尔有限公司 Stabilizing formulations for recombinant viruses
JP2010505433A (en) 2006-10-12 2010-02-25 イステイチユート・デイ・リチエルケ・デイ・ビオロジア・モレコラーレ・ピ・アンジエレツテイ・エツセ・ピー・アー Telomerase reverse transcriptase fusion protein, nucleotide encoding the same, and use thereof
CA2675992A1 (en) 2007-01-24 2008-11-20 Merck & Co., Inc. Polypeptides for inducing a protective immune response against staphylococcus epidermidis
US8071561B2 (en) 2007-08-16 2011-12-06 Chrontech Pharma Ab Immunogen platform
WO2009079834A1 (en) * 2007-12-18 2009-07-02 Peking University People's Hospital An anti-hcv vaccine and preparation methods and uses thereof
EP2313503A4 (en) * 2008-08-01 2014-01-08 Merck Sharp & Dohme Variant hcmv pp65, ie1, and ie2 polynucleotides and uses thereof
JP5753090B2 (en) 2008-10-29 2015-07-22 ザ トラスティーズ オブ ザ ユニバーシティ オブ ペンシルバニア Improved HCV vaccine and method of use thereof
US8921536B2 (en) 2008-10-29 2014-12-30 The Trustees Of The University Of Pennsylvania HCV vaccines and methods for using the same
EP2376111A4 (en) 2008-11-26 2013-01-09 Merck Sharp & Dohme Polypeptides for inducing a protective immune response against staphylococcus aureus
US20110229509A1 (en) 2008-11-26 2011-09-22 Mcneely Tessie B Polypeptides for inducing a protective immune response against staphylococcus aureus
EP3385387B1 (en) 2009-02-02 2021-08-25 GlaxoSmithKline Biologicals SA Simian adenovirus nucleic acid- and amino acid-sequences, vectors containing same, and uses thereof
CN102645534B (en) * 2012-04-26 2015-08-12 杭州市萧山区第一人民医院 Based on the method for quantum point coding microball chip detection hepatitis C virus
WO2014139587A1 (en) 2013-03-15 2014-09-18 Okairòs Ag Improved poxviral vaccines
WO2017025782A1 (en) 2014-09-17 2017-02-16 Glaxosmithkline Biologicals Sa Improved poxviral vaccines
EP3244922A4 (en) * 2015-01-15 2018-06-20 Babita Agrawal Methods of inducing an immune response to hepatitis c virus
CN108277230A (en) * 2018-02-07 2018-07-13 华中科技大学 A kind of fusion dna and its vaccine of preparation

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0173552B1 (en) 1984-08-24 1991-10-09 The Upjohn Company Recombinant dna compounds and the expression of polypeptides such as tpa
US5585362A (en) * 1989-08-22 1996-12-17 The Regents Of The University Of Michigan Adenovirus vectors for gene therapy
EP0933426A1 (en) * 1990-06-25 1999-08-04 The Research Foundation for Microbial Diseases of Osaka University Non-a, non-b hepatitis virus genomic cdna fragments and antigen polypeptides
US5747339A (en) 1990-06-25 1998-05-05 Research Foundation For Microbial Diseases Of Osaka Non-A, non-B hepatitis virus genomic CDNA and antigen polypeptide
IT1270939B (en) 1993-05-11 1997-05-26 Angeletti P Ist Richerche Bio PROCEDURE FOR THE PREPARATION OF IMMUNOGEN AND DIAGNOSTIC REAGENTS, AND IMMUNOGEN AND DIAGNOSTIC REAGENTS SO OBTAINABLE.
US6140087A (en) * 1993-06-24 2000-10-31 Advec, Inc. Adenovirus vectors for gene therapy
IT1272179B (en) 1994-02-23 1997-06-16 Angeletti P Ist Richerche Bio METHODOLOGY TO REPRODUCE IN VITRO THE PROTEOLITHIC ACTIVITY OF THE NS3 PROTEASE OF THE VIRUS HCV.
CA2117668C (en) * 1994-03-09 2005-08-09 Izumu Saito Recombinant adenovirus and process for producing the same
US5505947A (en) 1994-05-27 1996-04-09 The University Of North Carolina At Chapel Hill Attenuating mutations in Venezuelan Equine Encephalitis virus
US6127525A (en) * 1995-02-21 2000-10-03 Cornell Research Foundation, Inc. Chimeric adenoviral coat protein and methods of using same
US5792462A (en) 1995-05-23 1998-08-11 University Of North Carolina At Chapel Hill Alphavirus RNA replicon systems
IT1278077B1 (en) 1995-05-25 1997-11-17 Angeletti P Ist Richerche Bio METHODOLOGY TO REPRODUCE IN VITRO THE ACTIVITIES OF RNA-DEPENDENT RNA POLYMERASE AND OF TERMINAL NUCLEOTIDYLTRANSPHERASE CODED BY THE
ATE278794T1 (en) 1995-06-15 2004-10-15 Crucell Holland Bv PACKAGING SYSTEMS FOR HUMAN, HUMAN ADENOVIRUSES, FOR USE IN GENE THERAPY
US6127116A (en) * 1995-08-29 2000-10-03 Washington University Functional DNA clone for hepatitis C virus (HCV) and uses thereof
EP1009763A4 (en) * 1996-06-11 2002-08-07 Merck & Co Inc Synthetic hepatitis c genes
US7049428B1 (en) * 1998-03-04 2006-05-23 Washington University HCV variants
KR100427786B1 (en) 1997-04-03 2004-04-30 일렉트로우펙트 에이에스 Method and device for introducing pharmaceutical drugs and nucleic acids into skeletal muscle
NZ500656A (en) 1997-05-12 2001-11-30 Tno Vector containing a nucleic acid insertion expressing a hybrid polypeptide with a protease inhibitor domain and a receptor binding domain
US6221646B1 (en) * 1997-07-31 2001-04-24 Chiron Corporation Materials and methods for simplified AAV production
KR20060057653A (en) 1998-01-30 2006-05-26 더 제너럴 하스피탈 코포레이션 Genetic immunization with nonstructural proteins of hepatitis c virus
JP2002511396A (en) 1998-04-14 2002-04-16 メルク エンド カムパニー インコーポレーテッド Needleless administration of polynucleotide preparations
WO1999057296A1 (en) 1998-05-01 1999-11-11 Genzyme Corporation Partially deleted adenoviral vectors
GB9810756D0 (en) 1998-05-19 1998-07-15 Angeletti P Ist Richerche Bio Mimotopes of hypervariable region 1 of the e2 glycoprotein of hcv and uses thereof
US6156588A (en) 1998-06-23 2000-12-05 Vlsi Technology, Inc. Method of forming anti-fuse structure
WO2000011202A1 (en) 1998-08-24 2000-03-02 Genzyme Corporation Cationic complexes of polymer-modified adenovirus
AU772630B2 (en) 1999-01-14 2004-05-06 Novartis Ag Adenovirus vectors, packaging cell lines, compositions, and methods for preparation and use
WO2001002607A1 (en) 1999-07-06 2001-01-11 Merck & Co., Inc. Adenovirus carrying gag gene hiv vaccine
US6627190B2 (en) * 1999-07-12 2003-09-30 Saint Louis University Recombinant adenovirus vectors that are replication-competent in tert-expressing cells
US6511832B1 (en) * 1999-10-06 2003-01-28 Texas A&M University System In vitro synthesis of capped and polyadenylated mRNAs using baculovirus RNA polymerase
JP2003512826A (en) 1999-10-27 2003-04-08 カイロン コーポレイション Activation of HCV-specific T cells
KR100788812B1 (en) 1999-11-24 2007-12-27 노바티스 백신즈 앤드 다이아그노스틱스 인코포레이티드 Novel hcv non-structural polypeptide
CA2393251C (en) 1999-12-01 2012-01-31 Chiron Corporation Eliciting hcv-specific antibodies
US6544780B1 (en) * 2000-06-02 2003-04-08 Genphar, Inc. Adenovirus vector with multiple expression cassettes
CA2422882A1 (en) 2000-09-15 2002-03-21 Merck & Co., Inc. Enhanced first generation adenovirus vaccines expressing codon optimized hiv1-gag, pol, nef and modifications
ATE467680T1 (en) * 2001-10-11 2010-05-15 Merck Sharp & Dohme HEPATITIS C VIRUS VACCINE

Also Published As

Publication number Publication date
DK1436397T3 (en) 2010-08-09
CN1582337A (en) 2005-02-16
US20100129901A1 (en) 2010-05-27
US8530234B2 (en) 2013-09-10
WO2003031588A2 (en) 2003-04-17
US8142794B2 (en) 2012-03-27
EP1436397A4 (en) 2005-02-16
AU2002337840B2 (en) 2007-08-09
US20040247615A1 (en) 2004-12-09
WO2003031588A3 (en) 2003-10-30
JP2005505286A (en) 2005-02-24
EP1436397A2 (en) 2004-07-14
CA2461380A1 (en) 2003-04-17
CN1582337B (en) 2011-12-14
US20090233992A1 (en) 2009-09-17
US7598362B2 (en) 2009-10-06
EP1436397B1 (en) 2010-05-12
JP4475561B2 (en) 2010-06-09
ATE467680T1 (en) 2010-05-15

Similar Documents

Publication Publication Date Title
CA2461380C (en) Hepatitis c virus vaccine
US6733993B2 (en) Enhanced first generation adenovirus vaccines expressing codon optimized HIV1-gag, pol, nef and modifications
ES2388527T3 (en) HIV vaccines based on multiple HIV clade Env
AU2002337840A1 (en) Hepatitis C virus vaccine
CN107849111A (en) There is the oncolytic adenovirus of mutation and its purposes in treatment of cancer in immundominance Adenovirus Antigen epitope
CN1993462A (en) Adenoviral vector compositions
KR20200140848A (en) Oncolytic adenovirus composition with improved replication properties
AU2016333996A1 (en) Synthetic adenoviruses with tropism to damaged tissue for use in promoting wound repair and tissue regeneration
CN1972958A (en) Method of using adenoviral vectors to induce an immune response
AU2003262790A1 (en) Adenovirus serotype 24 vectors, nucleic acids and virus produced thereby
US20040101957A1 (en) Enhanced first generation adenovirus vaccines expressing codon optimized hiv1-gag, pol.nef and modifications
JP2006521089A (en) Adenovirus serotype 34 vector, nucleic acid and virus produced thereby
CN1880457B (en) Ad6 recombinant nucleic acid
CN116348136A (en) Novel coronavirus recombinant spike protein, polynucleotide encoding the recombinant spike protein, vector comprising the polynucleotide, and vaccine for preventing or treating coronavirus infection comprising the vector
RU2816645C1 (en) Novel recombinant coronavirus spike protein encoding its polynucletide, vector containing polynucletide, and vaccine for preventing or treating coronavirus infection containing vector
AU2007231692B8 (en) Hepatitis C virus vaccine
CA2718802C (en) Recombinant nucleic acids comprising regions of ad6
KR20220106072A (en) Novel adenovirus vector not comprising replication-competent adenovirus and use thereof
KR20230061325A (en) Novel coronavirus recombinant spike protein, polynucleotide encoding the protein, vector comprising the polynucleotide, and vaccine for preventing or treating coronavirus infection comprising the vector
KR20230008069A (en) Adenovirus expression vectors and methods and cell lines for their production

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20221011

MKEX Expiry

Effective date: 20221011