CA2471828A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
CA2471828A1
CA2471828A1 CA002471828A CA2471828A CA2471828A1 CA 2471828 A1 CA2471828 A1 CA 2471828A1 CA 002471828 A CA002471828 A CA 002471828A CA 2471828 A CA2471828 A CA 2471828A CA 2471828 A1 CA2471828 A1 CA 2471828A1
Authority
CA
Canada
Prior art keywords
heat exchanger
active surface
heat
fluid
configuration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002471828A
Other languages
French (fr)
Inventor
Jayden David Harman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pax Scientific Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2471828A1 publication Critical patent/CA2471828A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24VCOLLECTION, PRODUCTION OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24V99/00Subject matter not provided for in other main groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/028Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of at least one medium being helically coiled, the coils having a conical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/04Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being formed by spirally-wound plates or laminae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • F28D2021/0029Heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

A heat exchanger having an active surface (1) over which a fluid flows to effect an exchange of heat between the active surface (1) and the fluid. The active surface (1) having a curvature which conforms substantially with at least one logarithmic curve conforming to the Golden Section.

Description

Heat Exchanger Field of the Invention The present invention relates to a heat dispersing structure (heat sink or heat exchanger or radiator) which assists heat energy to be dispersed from or to a s solid material and optimises the transfer of the heat energy to or from a fluid (or vice versa) surrounding the structure more efficiently than in state of the art heat sinks or thermal conductors. It may also be used where two solid or fluid plasma conductors are adjacent to each other and there is a thermal . transfer required from one material to the other. Among other uses, this invention relates to heat to sinks for electronic circuit boards, cooling fins for radiators, compressors and internal combustion engines, fluid carrying tubes for radiators and heat exchangers, air conditioning and refrigeration systems, plasma generators, and fluid or bimetal heat exchangers.
Background Art is A considerable number of structures have been devised to aid the transfer of heat energy between a solid material and a fluid. A few examples, only, of these include heat sinks, radiant heaters, automobile radiators and .air-conditioning heat exchangers. Heat sinks are commonly thought of in relation to the cooling of the solid material and comprise an array of fins associated with the solid material.
2o The principle object of such devices has been to increase the surface area of solid material contacting the fluid to thereby increase the transfer of heat energy to the fluid. Of course, it is Fell known that finned arrays can also be used in heating appliances where the object is to heat a fluid. Automobile radiators are designed to disperse heat from the engine to the atmosphere by transferring heat 2s energy from the coolant to the core of the radiator and then from the core of the radiator to the atmosphere. This latter transfer is again assisted by fins to increase surface area. Similar arrangements are found in a multitude of other applications.
Typically the design of such structures used in the transfer of heat energy between a solid and a fluid has been directed to maximising the surface area made available between the solid and the fluid. Nevertheless, the efficiency of such structures in effecting heat transfer also depends upon the flow of the fluid s over the solid material. Many structures have been devised which provide considerable surface area but are not particularly efficient due to the restricted flow of the fluid past the structure. In many cases, the natural flow is supplemented by a forced fluid flow past the heat exchanger.
Nature is recognised as using the most efficient energy transfer systems known io to man. Invariably, Nature propagates heat in a turbulent motion. At its most efficient, this turbulence is concentrated into a three dimensional singular vortical motion. The shape of this convectional fluid flow is expressed in equiangular logarithmic spirals, where the ratio of contraction or e~epansion is appro~cimately 1:0.618, or the celebrated Golden Proportion. An example of this flow structure in is a fluid is a tornado. Another example is th.e flame and smoke pattern arising from a fire storm. Prior technology pays little regard to such natural flow characteristics.
It has been said that nature always follows the path of least resistance.
Movement and growth in Nature flow in a particular, specific, . logarithmic 2o geometric progression--that of the three dimensional Golden Proportion or equiangular spiral. The intention of the invention is to induce optimum energy transfer by channelling the fluids into their natural flow tendencies by full or partial adherence to Nature's equiangular, logarithmic, path of movement. The invention capitalises on natural vortical flow geometry.
2s Vortical structures act as 'heat pumps' i.e. they can only exist if there is a temperature differential and vice versa. The invention seeks to exploit the exceptional cooling features of vortices. Part of their effectiveness is that vortex geometry can provide high non turbulent rates of adiabatic expansion i.e. heat can be dumped or acquired in an optimum time and distance.
The simplest, essential and most common form of a vortex is a vortex ring or toroid. (Figures 13 and '14).
One of the interesting and exploitable properties of a vortex ring is that is has remarkably low friction and is a rapid and highly energy efFicient transporter of s fluids and heat.
In order to optimise the cooling efficiency of any radiator, heat exchanger, or heat sink, it is beneficial to establish, maintain, and exploit individual vortex structures.
Fluid flow, both internally and externally, may be toroid in shape, Benard cells, the shape of a convection vortex, or a potential vortex. All of the above comply to approximately to the three-dimensional Golden Section or equiangular spiral.
An excellent example of this in prior technology is the Ranque-Hilsch tube.
(Figure 13) Applying the design criteria of the embodiments of this invention, wholly or in part, will improve performance of existing thermal conductor structures.
~s Disclosure of the Invention Accordingly, the invention resides in a heat exchanger having an active surface over which a fluid flows to effect an exchange of heat between the active surface and the fluid, the active surface having a curvature which conforms substantially with at least one logarithmic curve conforming to the Golden Section.
2o According to a further preferred feature the active surface conforms substantially to the vorticity of a natural vortex to generate fluid flow over the active surface conforming to that of a natural vortex.
According to a preferred feature of the invention, the active surface is adapted to cause vortical, rotational motion of the fluid flowing across the active surface.
According to a preferred embodiment, the heat exchanger provides a boundary between two sets of fluid flow to facilitate an exchange of heat from one fluid to another wherein both faces of the boundary comprise the active surface.
According to a preferred embodiment, the heat exchanger comprises one or more s vanes.
According to a preferred feature of the invention the active surface has a configuration conforming to the external configuration of a shell of the phylum Molluscs, class Gastropods or Cephalopods. According to particular forms of the invention the active surface conforms to the external configuration of shells io selected from the genera Volutidea, Argonauta, Nautilus, Conidea or Turbinidea.
- According to a further preferred feature of the invention the active surface has a configuration conforming to the internal configuration of a shell of the phylum Molluscs, class Gastropods or Cephalopods. According to particular forms of the invention the active surface conforms to the internal configuration of shells is selected from the genera Volutidea, Argonauta, Nautilus, Conidea or Turbinidea.
According to a further preferred feature the heat exchanger comprises a duct of generally spherical or ellipsoidal configuration and having an inlet and an outlet, wherein the curvature of the internal face of the structure between the inlet and the outlet conforms to a logarithmic curve substantially or in the greater part 2o conforming to the characteristics of the Golden Section.
According to a preferred feature of the invention the curvature of the active surface is uni-dimensional.
According to a preferred feature of the invention the curvature of the active surface is bi-dimensional.
2s According to a preferred feature of the invention, the active surface has a depth that can vary in accordance with the Golden Section.
According to a preferred embodiment the heat exchanger comprises a heat sink and the active surface comprises one or more vanes extending from a body in respect of which heat is to be exchanged.
According to a preferred embodiment the active surface, has the configuration of s a whorl:-The invention will be more fully understood in the light of the following description of several specific embodiments:
Brief Description of the Drawings Figure 1 is a chart of the Golden Section or Fibonacci Progression;
~o Figure 2 is a schematic side view of a natural- vortex which conforms to the Golden Section;
Figure 3 is a graph depicting the geometric progression ratio of the structure of a Golden Section vortex;
Figure 4. is a side elevation of a heat exchanger according to a first embodiment is of the invention;
Figure 5 is an end view of the heat exchanger of the first embodiment as shown in Figure 4;
Figures 6 is a side elevation of a heat exchanger according to a second embodiment;
2o Figures 7 is an end elevation of the heat exchanger of the second embodiment as shown in Figures 6;
Figures 8 is a side elevation of a heat exchanger according to a third embodiment;
Figures 9 is an end elevation of the heat exchanger of the third embodiment as shown in Figures 8;
Figure 10 is a side view of a fourth embodiment of a heat exchanger according the invention;
s Figure 11 is a sectional side view of the fourth embodiment;
Figure 12 is an end elevation of the fourth embodiment;
Figure 13 is a schematic view of a Ranque-Hillsch tube.
Figure 14 is schematic view of a refrigerating device according to the fifth embodiment.
io Figure 15 is a schematic view of a cooling radiator for internal combustion engines and refrigeration systems.
Figure 16 is a close up schematic view of vanes of one form of the invention as they would appear in the radiator of Figures 14 and 15.
Figure 17 is a schematic view of the centre of a vortex ring showing the mode of is vortical flow of fluid or heat energy.
Detailed Description of Specific Embodiments Each of the embodiments is directed to a heat exchanger which is adapted to effect the transfer of heat between a solid surface and a fluid.
As stated previously all fluids when moving under the influence of the natural 2o forces of Nature, tend to move in spirals or vortices. These spirals or vortices generally comply to a mathematical progression known as the Golden Section or the Fibonacci Progression. Each of the embodiments serves to enable fluids to move in their naturally preferred way, thereby reducing inefficiencies created through turbulence and friction which are normally found in apparatus commonly used in such heat exchangers. Previously developed technologies have generally been less compliant with natural fluid flow tendencies.
The heat exchangers of each of the embodiments described herein are generally designed in all respects, in accordance with the Golden Section and therefore it is s a characteristic of each of the embodiments that the heat exchanger provides a fluid pathway which is of a spiraling configuration and which conforms at least generally to the characteristics of the Golden Section. The characteristics of the Golden Section are illustrated in FIG. 1 which illustrates the unfolding of the spiral curve according to the Golden Section. As the spiral unfolds the order of growth io of the radius of the curve which is measured at equiangular radii (eg E, F, G, H. I
and J) is constant. This can be illustrated from the triangular representation of each radius between each sequence which corresponds to the formula of a:b=b:a+b which conforms to the ratio of 1:0.618 and which is consistent through°
out the curve.
~s It is a characteristic of each of the embodiments that the curvature of the surfaces which form the heat exchanger takes a two dimensional or three dimensional shape and which substantially conform to the characteristics of the Golden Section and that any variation in cross-sectional area of the fluid pathway also, substantially conforms to the characteristics of the Golden Section.
Furthermore 2o it has been found that the characteristics of the Golden Section are found in nature in the form of the external and internal configurations of shells of the phylum Molluscs, classes Gastropods and Cephalopods and it is a common characteristic of at least some of the embodiments that the fluid pathway defined by the heat exchangers corresponds generally to the external or internal 2s configuration of shells of one or more of the genera of the phylum Molluscs, classes Gastropods and Cephalopods.
It has been found that it is a characteristic of fluid flow that, when it is caused to undergo a , fluid flow through a pathway having a curvature substantially conforming to that of the Golden Section that~the fluid flow over the surfaces is 3o substantially non-turbulent and as a result has a decreased tendency to cavitate.

As a result, fluid flow over the surface is more efficient than has been encountered in previous instances where the pathway does not substantially correspond to that of the Golden Section. As a result of the reduced degree of turbulence which is induced in the fluid in its passageway through such a s pathway, the heat exchangers according to the various embodiments transfer heat between the solid material and the fluid with a greater efficiency than has previously been possible with conventional heat exchangers of equivalent dimensional characteristics. Fluid flow over the surface is streamlined and all of the fluid flows. The configuration avoids dead pockets of "stagnant "fluid, which is to a common problem with conventional systems.
The Figures 4, 5, 6, 7, 8, 9, 10, 11, and 12 illustrates various embodiments of heat exchangers in accordance with the invention. While each of the embodiments has a different appearance, they each share features common to their operation as a heat sink. Therefore, in the drawings, like numerals are used is to depict like features.
In each embodiment, the heat exchanger has an active surface which shaped in a similar manner to the cavitation centre of a vortex or to the centre windings or septa of a volute, cone or other sea shell. Each embodiment has a base 2 which is adapted to be attached to a thermal energy source to extend therefrom. As 2o heat is transmitted to the fluid flowing over the active surface of the device from the base (2), the fluid accelerates towards the remote end of the device and as the fluid accelerates, it cools adiabatically which serves to maintain a temperature differential between the active surface of the heat exchanger and the fluid to facilitate further heat exchange.
2s The active surface (1 ) may comprise a single vane or rib, as shown in Figures 6, 7, 10, 11 and 12 or alternatively may comprise multiple vanes. The heat exchanger (1 ) may also increase or decrease in profile width (Figure 6 and 8 in comparison with Figure 4) in full or partial conformance with the Golden Section depending on desired application. The vanes may be solid, hollow, or represent 3o a vortex shaped void as in Figures 14 and 16.

_g_ Heat exchangers according to the invention may be used in a wide variety of applications. For example heat sinks designed in accordance with the embodiments depicted in Figures 4, 6 and 8 may be adapted to provide cooling to a wide range of heat sources such as semiconductors, power transformers, s refrigeration, and heating appliances, to name a few. In such applications, a more efficient heat transfer is effected by the establishment of a vortical fluid flow over the surfaces of the heat exchangers. fihis efficient fluid flow means that more efficient and effective use is made of the heat exchanger which may therefore may be smaller than conventional designs.
io As indicated earlier, beyond the benefit of improving fluid flow across the surfaces of a heat exchanger, the present invention also offers a further mechanism to effect a temperature differential across a body. In the embodiments as shown in Figures 4 to 12, when fluid enters the system at the base 2, it is rapidly accelerated radially in to movement toward the remote end 3 to attain a maximum is speed and minimum pressure. As a result, the temperature of the fluid is reduced adiabatically, causing a temperature differential across the vortex.. This temperature differential is inherent within a vortical flow. By suitable design, a body may be constructed to take advantage of this differential.
Figure 13, illustrates a Ranque-Hilsch tube in which compressed air enters a tube 2o tangentially at 13. A temperature differential is created radially across the tube with the fluid at the central axis being cooler. In addition, the flow of fluid along the tube at the centre is opposite to that of the perimeter. Therefore, cold air exits at one end 14 hot air exits at the other end 15 as a result of the Ranque effect.
Temperatures of - 50 degrees Celsius are readily attainable in these 2s mechanisms. These devices are not presently very energy efficient. Although they are seeking to capitalize' on vortical temperature differentials they have not yet been designed according to Phi vortical geometry. As a result, considerable energy is consumed through turbulence and friction which is generated internally.
The fifth embodiment as shown at Figure 1.4 comprises a refrigeration device 3o similar to a Ranque-Hilsch tube which is designed in accordance with the invention. However, it does not use a parallel-sided pipe as shown in Figure but will be a hollow version of one of the embodiments as shown in Figures 4 to 12 where all surfaces approximate three-dimensional curves according to the Golden Section. Gas is admitted to a hollow spiralling vane 5 through inlet 1 and flows to outlet 3. En-route, it accelerates and experiences a pressure drop with a s consequent temperature drop. As in a Ranque-Hilsch tube. Hot air is expelled through outlet 2 and cold air is delivered through outlet 3:
When such devices are redesigned in accordance with the principles of the present invention, significant efficiency gains are achieved.
Figures 15 and 16 depict a tank of liquid or gas through which vanes or vents (7) io are passed and attached to front and rear walls so that another fluid medium may travel through the tank via the vanes. Alternatively (6) may be a solid block of material such as metal through which vents (7) are cut. The vanes or vents in Figures 14 and 15 may be shaped like an hourglass as in Figure 16, in conformity with the principles described above. The passage of fluid through vents (7) ~s creates a temperature differential between one side (8) of the tank or block (6) and the opposed side (9), thereby causing a heat interchange across the block.
It should be appreciated that the scope of the present invention need not be limited to the particular scope of the embodiments described above.
Throughout the specification, unless the context requires otherwise, the word 20 "comprise" or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.

Claims (18)

The claims defining the invention are as follows:
1. A heat exchanger having an active surface over which a fluid flows to effect an exchange of heat between the active surface and the fluid, the active surface having a curvature which conforms substantially with at least one logarithmic curve conforming to the Golden Section.
2. A heat exchanger as claimed at claim 1 wherein the active surface conforms substantially to the vorticity of a natural vortex to generate fluid flow over the active surface conforming to that of a natural vortex.
3. A heat exchanger as claimed at claim 1 or 2 wherein the active surface is adapted to cause vortical, rotational motion of the fluid flowing across the active surface.
4. A heat exchanger as claimed at any one of the preceding claims wherein heat energy is caused to propagate in a three dimensional logarithmic vortical motion in relationship to the secondary medium to which heat transfer is required.
5. A heat exchanger as claimed at any one of the preceding claims wherein the heat exchanger provides a boundary between two sets of fluid flow to facilitate an exchange of heat from one fluid to another wherein both faces of the boundary comprise the active surface.
6. A heat exchanger as claimed at any one of the preceding claims wherein the heat exchanger conforms substantially to the vorticity lines imagined in the structure of a natural vortex.
7. A heat exchanger as claimed at any one of the preceding claims wherein the curvature of the active surface is uni-dimensional.
8. A heat exchanger as claimed at any one of claims 1 to 7 wherein the curvature of the active surface is bi-dimensional.
9. A heat exchanger as claimed at any one of the preceding claims wherein the active surface has a depth that can vary in accordance with the Golden Section.
10. A heat exchanger as claimed at any one of the preceding claims wherein the heat exchanger comprises one or more vanes.
11. A heat exchanger as claimed at any one of the preceding claims wherein the active surface has a configuration conforming to the external configuration of a shell of the phylum Mollusca, class Gastropoda or Cephalopoda.
12. A heat exchanger as claimed at any one of the preceding claims wherein the active surface conforms to the external configuration of shells selected from the genera Volutidea, Argonauta-Nautilus, Conidea or Turbinidea.
13. A heat exchanger as claimed at any one of the preceding claims wherein the active surface has a configuration conforming to the internal configuration of a shell of the phylum Mollusca, class Gastropoda or Cephalopoda.
14. A heat exchanger as claimed at any one of the preceding claims wherein the active surface conforms to the internal configuration of shells selected from the genera Volutidea, Argonauta, Nautilus, Conidea or Turbinidea.
15. A heat exchanger as claimed at any one of claims 1 to 9 wherein the heat exchanger comprises a duct of generally spherical or ellipsoidal configuration having an inlet and an outlet, wherein the curvature of the internal face of the structure between the inlet and the outlet conforms to a logarithmic curve substantially or in the greater part conforming to the characteristics of the Golden Section.
16. A heat exchanger as claimed at any one of claims 1 to 9 wherein the heat exchanger comprises a heat sink comprising one or more vanes extending from a body in respect of which heat is to be exchanged.
17. A heat exchanger as claimed at any one of claims 1 to 9 wherein the heat exchanger, has the configuration of a whorl.
18. A heat exchanger substantially as herein described.
CA002471828A 2002-01-03 2003-01-03 Heat exchanger Abandoned CA2471828A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AUPR9825 2002-01-03
AUPR9825A AUPR982502A0 (en) 2002-01-03 2002-01-03 A heat exchanger
PCT/AU2003/000006 WO2003056269A1 (en) 2002-01-03 2003-01-03 Heat exchanger

Publications (1)

Publication Number Publication Date
CA2471828A1 true CA2471828A1 (en) 2003-07-10

Family

ID=3833437

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002471828A Abandoned CA2471828A1 (en) 2002-01-03 2003-01-03 Heat exchanger

Country Status (13)

Country Link
US (3) US7287580B2 (en)
EP (1) EP1470380A4 (en)
JP (1) JP2005513410A (en)
KR (1) KR20040078117A (en)
CN (1) CN100370206C (en)
AU (1) AUPR982502A0 (en)
CA (1) CA2471828A1 (en)
DE (1) DE03726970T1 (en)
EA (1) EA006026B1 (en)
IL (2) IL162709A0 (en)
MX (1) MXPA04006592A (en)
WO (1) WO2003056269A1 (en)
ZA (1) ZA200405899B (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE03726967T1 (en) 2002-01-03 2005-05-04 Pax Scient Inc EDDY RING GENERATOR
AUPR982302A0 (en) 2002-01-03 2002-01-31 Pax Fluid Systems Inc. A fluid flow controller
AUPR982502A0 (en) * 2002-01-03 2002-01-31 Pax Fluid Systems Inc. A heat exchanger
US6845523B2 (en) * 2002-08-16 2005-01-25 Roger M. Copp Rescue vest with rollers
AU2003903386A0 (en) 2003-07-02 2003-07-17 Pax Scientific, Inc Fluid flow control device
KR101168098B1 (en) 2003-11-04 2012-07-24 팍스 싸이언티픽 인코퍼레이션 Fluid Circulation System
WO2005073560A1 (en) * 2004-01-30 2005-08-11 Pax Scientific, Inc A vortical flow rotor
AU2005207983A1 (en) 2004-01-30 2005-08-11 Pax Scientific, Inc Housing for a centrifugal fan, pump or turbine
US8328522B2 (en) 2006-09-29 2012-12-11 Pax Scientific, Inc. Axial flow fan
WO2009051790A1 (en) * 2007-10-18 2009-04-23 Pax Scientific, Inc. Water craft
US20100170657A1 (en) * 2009-01-06 2010-07-08 United Technologies Corporation Integrated blower diffuser-fin heat sink
US10103089B2 (en) 2010-03-26 2018-10-16 Hamilton Sundstrand Corporation Heat transfer device with fins defining air flow channels
US9228785B2 (en) 2010-05-04 2016-01-05 Alexander Poltorak Fractal heat transfer device
US10041745B2 (en) * 2010-05-04 2018-08-07 Fractal Heatsink Technologies LLC Fractal heat transfer device
US9140502B2 (en) 2010-07-08 2015-09-22 Hamilton Sundstrand Corporation Active structures for heat exchanger
US8295046B2 (en) 2010-07-19 2012-10-23 Hamilton Sundstrand Corporation Non-circular radial heat sink
WO2012136796A2 (en) * 2011-04-08 2012-10-11 Bhp Billiton Aluminium Technologies Limited Heat exchange elements for use in pyrometallurgical process vessels
US10252784B2 (en) 2013-03-15 2019-04-09 John Ioan Restea Apparatus for propelling fluid, especially for propulsion of a floating vehicle
US11944946B2 (en) 2013-06-28 2024-04-02 Saint-Gobain Performance Plastics Corporation Mixing assemblies including magnetic impellers
JP2015028396A (en) * 2013-07-30 2015-02-12 シャープ株式会社 Heat exchanger and heat exchange system
RO129972B1 (en) * 2014-08-29 2017-09-29 Viorel Micula Modular system of swirling entrainment and controlled orientability of hot air streams
US10048019B2 (en) 2014-12-22 2018-08-14 Hamilton Sundstrand Corporation Pins for heat exchangers
US10273970B2 (en) * 2016-01-27 2019-04-30 John A. Kozel Construction of articles of manufacture of fiber reinforced structural composites
EP3255370B1 (en) * 2016-06-06 2019-12-04 Aerco International, Inc. Fibonacci optimized radial heat exchanger
DE102016119095B4 (en) * 2016-10-07 2018-11-22 Fujitsu Technology Solutions Intellectual Property Gmbh computer system
US11221182B2 (en) 2018-07-31 2022-01-11 Applied Materials, Inc. Apparatus with multistaged cooling
CN113776377B (en) * 2021-09-30 2022-11-18 郑州轻工业大学 Boiling enhanced evaporation heat exchange tube and manufacturing device and manufacturing method thereof
US11703285B1 (en) 2023-02-27 2023-07-18 Helen Skop Apparatus and method for latent energy exchange

Family Cites Families (163)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11544A (en) * 1854-08-22 William
US700785A (en) 1901-03-22 1902-05-27 Albert L Kull Muffler for explosive or other engines.
US794926A (en) 1903-05-04 1905-07-18 Benjamin Crawford Exhaust-muffler.
US879583A (en) 1906-05-16 1908-02-18 Arthur Pratt Exhaust-muffler.
US871825A (en) 1906-09-07 1907-11-26 Ludwig Schupmann Projectile for rifled firearms.
US965135A (en) 1908-12-30 1910-07-19 Hugo C Gibson Internal-combustion engine.
US969101A (en) 1909-02-05 1910-08-30 Hugo C Gibson Muffler.
US943233A (en) 1909-08-28 1909-12-14 John Boyle Exhaust-muffler.
US1023225A (en) 1911-06-22 1912-04-16 Mckenzie Cleland Muffler for automobiles.
US1272180A (en) 1917-06-26 1918-07-09 Vacuum Muffler Corp Muffler.
US1356676A (en) * 1919-01-28 1920-10-26 Automobile-radiator
US1353478A (en) 1919-09-09 1920-09-21 George W Kirk Muffler
US1505893A (en) 1920-03-06 1924-08-19 Hunter William Silencer for internal-combustion engines
US1396583A (en) 1920-05-08 1921-11-08 Krafve William Muffler
US1471697A (en) * 1922-09-09 1923-10-23 Kubes Frantisek Apparatus for making sugar fondant
US1713047A (en) 1924-11-14 1929-05-14 Maxim Silencer Co Means for adjusting oscillation period of exhausts of internal-combustion engines
US1785460A (en) 1925-03-02 1930-12-16 Robert Suczek Pump or the like
US1729018A (en) 1925-11-05 1929-09-24 Siders Wesley Muffler for automobile engines
US1658126A (en) 1926-07-05 1928-02-07 Emanuel Hertz Muffler for internal-combustion engines
US1756916A (en) 1927-01-24 1930-04-29 Gen Motors Corp Muffler
US1667186A (en) 1927-05-31 1928-04-24 William R Bluehdorn Muzzle attachment for guns
US1709217A (en) 1928-03-15 1929-04-16 Francis F Hamilton Exhaust muffler
US1872075A (en) 1929-01-24 1932-08-16 Gen Motors Corp Air cleaner and muffler
US1812413A (en) 1929-01-24 1931-06-30 Maxim Silencer Co Silencer
US1816245A (en) 1929-04-06 1931-07-28 Lester J Wolford Exhaust silencer
US1799039A (en) 1929-09-16 1931-03-31 Conejos Anthony Heat extractor
US1891170A (en) 1930-06-13 1932-12-13 Nose Toichi Aeroplane
US1919250A (en) 1931-11-06 1933-07-25 Joseph W Droll Propeller wheel for fans
US2068686A (en) 1934-11-27 1937-01-26 Lascroux Joseph Louis Apparatus for silencing the exhaust of internal combustion engines
US2210031A (en) * 1936-08-28 1940-08-06 Pfaudler Co Inc Refrigerating apparatus and method
US2139736A (en) 1936-11-19 1938-12-13 Kenneth P Durham Vortical muffling device
US2165808A (en) 1937-05-22 1939-07-11 Murphy Daniel Pump rotor
US2359365A (en) 1943-05-20 1944-10-03 Katcher Morris Muffler
US2912063A (en) 1953-04-13 1959-11-10 Barnes Ralph Glenn Muffler
GB873135A (en) * 1956-08-01 1961-07-19 Marc Marie Paul Rene De La Fou Improvements in or relating to engine exhaust systems
US2879861A (en) 1956-11-16 1959-03-31 Fred J Belsky Flow control unit
US2958390A (en) 1957-03-18 1960-11-01 Owens Illinois Glass Co Sound muffling device
GB873136A (en) 1957-09-02 1961-07-19 Dewrance & Co Improvements in butterfly valves
US2908344A (en) 1958-03-24 1959-10-13 Maruo Hisao Muffler
US3071159A (en) * 1958-04-19 1963-01-01 Coraggioso Corrado Bono Heat exchanger tube
FR1231173A (en) 1959-04-09 1960-09-27 Soc Lab Sarl Improvements to the flow of fluids following non-rectilinear trajectories
US3082695A (en) 1959-06-15 1963-03-26 Klein Schanzlin & Becker Ag Impellers, especially single vane impellers for rotary pumps
US3081826A (en) 1960-01-27 1963-03-19 Loiseau Christophe Ship propeller
US3232341A (en) * 1960-02-01 1966-02-01 Garrett Corp Condenser
US3066755A (en) 1960-04-21 1962-12-04 Diehl William Carl Muffler with spiral partition
US3215165A (en) 1963-05-27 1965-11-02 Cons Paper Bahamas Ltd Method and device for the control of fluid flow
US3371472A (en) 1965-12-08 1968-03-05 John Krizman Jr. Spark arrester
US3339631A (en) * 1966-07-13 1967-09-05 James A Mcgurty Heat exchanger utilizing vortex flow
US3407995A (en) * 1966-10-12 1968-10-29 Lau Blower Co Blower assembly
US3800951A (en) * 1968-12-23 1974-04-02 Bertin & Cie Apparatus for removing a substance floating as a layer on the surface of a body of liquid
US3584701A (en) 1970-04-07 1971-06-15 Michael W Freeman Sound and resonance control device
US3692422A (en) 1971-01-18 1972-09-19 Pierre Mengin Ets Shearing pump
SU431850A1 (en) 1972-07-03 1974-06-15 Специальное Экспериментально-Конструкторское Бюро Промышленного Рыболовства Submersible fish pump
SU850104A1 (en) * 1973-12-24 1981-07-30 Предприятие П/Я Р-6603 Rotor-type film apparatus
US3927731A (en) 1974-04-10 1975-12-23 Carter James B Ltd Muffler with spiral duct and double inlets
US3940060A (en) 1974-08-23 1976-02-24 Hermann Viets Vortex ring generator
US3964841A (en) 1974-09-18 1976-06-22 Sigma Lutin, Narodni Podnik Impeller blades
US3962422A (en) * 1975-02-18 1976-06-08 Syntex (U.S.A.) Inc. Method for immunizing nursing piglets against transmissible gastroenteritis(TGE) virus
US3957133A (en) 1975-09-10 1976-05-18 Scovill Manufacturing Company Muffler
JPS5236219A (en) 1975-09-13 1977-03-19 Teruo Kashiwara Exhaust equipment for internal combustion engine
DE2712443C3 (en) 1977-03-22 1981-08-20 Brombach, Hansjörg, Dr.-Ing., 6990 Bad Mergentheim Vortex chamber device
US4411311A (en) * 1977-05-25 1983-10-25 Francois Touze Heat exchange devices for cooling the wall and refractory of a blast-furnace
US4323209A (en) * 1977-07-18 1982-04-06 Thompson Roger A Counter-rotating vortices generator for an aircraft wing
US4211183A (en) 1977-08-08 1980-07-08 Hoult David P Fish raising
SU738566A1 (en) * 1978-01-23 1980-06-05 Киевский Ордена Ленина Государственный Университет Им.Т.Г.Шевченко Apparatus for keeping aquatic organisms
US4182596A (en) * 1978-02-16 1980-01-08 Carrier Corporation Discharge housing assembly for a vane axial fan
JPS54129699U (en) 1978-02-17 1979-09-08
US4225102A (en) 1979-03-12 1980-09-30 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Aerodynamic side-force alleviator means
GB2057567A (en) 1979-08-24 1981-04-01 Borg Warner Expanding scroll diffuser for radial flow impeller
DE2940773C2 (en) 1979-10-08 1986-08-14 Punker GmbH, 2330 Eckernförde High-performance centrifugal fan
US4317502A (en) 1979-10-22 1982-03-02 Harris Theodore R Engine exhaust muffler
US4299553A (en) 1979-12-14 1981-11-10 The Continental Group, Inc. Hot runner manifold flow distributor plug
SU858896A1 (en) 1979-12-19 1981-08-30 Предприятие П/Я Р-6956 Rotor-type comminuting device
US4331213A (en) 1980-01-28 1982-05-25 Mitsuko Leith Automobile exhaust control system
SU1030631A1 (en) * 1980-05-26 1983-07-23 Сибирский Научно-Исследовательский И Проектный Институт Цементной Промышленности,Научная Часть Heat exchange device
DE3238913C2 (en) 1982-10-21 1985-10-03 Werner Dr. 8972 Sonthofen Röhrs Centrifugal fan housing
IT1235222B (en) 1982-11-26 1992-06-26 Secratary Of State For Defence IMPROVEMENT IN MISSILE AND SIMILAR FUSELETS
EP0114932B1 (en) 1982-12-22 1986-09-03 Martin Stähle Centrifugal pump of the open channel rotor type
JPS59158308A (en) 1983-02-28 1984-09-07 Hisao Kojima Muffler
DE3315258A1 (en) * 1983-04-27 1984-10-31 Etablissement Agura, Vaduz Spiral ring heating boiler
IT1195502B (en) 1983-06-02 1988-10-19 Giuseppe Nieri SILENCER DEVICE PARTICULARLY FOR EXHAUST GAS AND GENERAL GAS IN QUICK MOVEMENT
US4505297A (en) 1983-08-02 1985-03-19 Shell California Production Inc. Steam distribution manifold
US4685534A (en) 1983-08-16 1987-08-11 Burstein A Lincoln Method and apparatus for control of fluids
US4644135A (en) * 1983-08-29 1987-02-17 The Marley Company Wall mounted forced air electric heater
US4699340A (en) 1983-11-07 1987-10-13 Vehicle Research Corporation Laminar vortex pump system
JPS60121115A (en) * 1983-12-01 1985-06-28 Toyota Motor Corp Controller for power-operated convertible roof for car
DE3505789A1 (en) * 1985-02-20 1986-08-21 Grote, Paul, 2901 Friedrichsfehn SPIRAL HEAT EXCHANGER
CN1010799B (en) * 1985-04-01 1990-12-12 F·L·史密斯公司 Heat exchanger
US4996924A (en) 1987-08-11 1991-03-05 Mcclain Harry T Aerodynamic air foil surfaces for in-flight control for projectiles
US5336789A (en) * 1986-03-12 1994-08-09 American Cyanamid Company Macrolide compounds
SE457121B (en) 1986-05-07 1988-11-28 Mosbaeck Handelsbolag I Helsin FLOEDESREGULATOR
US5100242A (en) 1987-03-20 1992-03-31 Brian Latto Vortex ring mixers
US5052558A (en) * 1987-12-23 1991-10-01 Entravision, Inc. Packaged pharmaceutical product
US4823865A (en) * 1988-02-18 1989-04-25 A. O. Smith Corporation Turbulator construction for a heat exchanger
DK122788A (en) 1988-03-08 1989-09-09 Joergen Mosbaek Johannessen DEVICE FOR REGULATING THE FLOW IN A CONTROL SYSTEM
US4993487A (en) * 1989-03-29 1991-02-19 Sundstrand Corporation Spiral heat exchanger
US5058837A (en) 1989-04-07 1991-10-22 Wheeler Gary O Low drag vortex generators
DE3918483A1 (en) * 1989-06-06 1990-12-13 Munters Euroform Gmbh Carl FILLED BODY
GB8918446D0 (en) * 1989-08-12 1989-09-20 Stokes Keith H Heat exchange apparatus
US5181537A (en) 1989-12-12 1993-01-26 Conoco Inc. Outlet collectors that are rate insensitive
US5010910A (en) 1990-05-21 1991-04-30 Mobil Oil Corporation Steam distribution manifold
US5207397A (en) 1990-06-08 1993-05-04 Eidetics International, Inc. Rotatable nose and nose boom strakes and methods for aircraft stability and control
FR2666031B1 (en) 1990-08-27 1993-10-22 Pierre Saget PROCESS FOR THE CENTRIFUGAL SEPARATION OF THE PHASES OF A MIXTURE AND CENTRIFUGAL SEPARATOR WITH LONGITUDINAL BLADES USING THIS PROCESS.
GB2249642B (en) 1990-10-29 1994-09-14 Hydro Int Ltd Vortex valves
US5040558A (en) 1990-10-31 1991-08-20 Mobil Oil Corporation Low thermal stress steam distribution manifold
US5249993A (en) 1991-07-19 1993-10-05 Martin Roland V R Weed resistant boat propeller
US5363909A (en) * 1991-11-27 1994-11-15 Praxair Technology, Inc. Compact contacting device
US5261745A (en) * 1992-04-13 1993-11-16 Watkins James R Mixing apparatus with frusto-conically shaped impeller for mixing a liquid and a particulate solid
JP2649131B2 (en) 1992-11-18 1997-09-03 神鋼パンテツク株式会社 Stirrer and bottom ribbon blade used for it
US5312224A (en) 1993-03-12 1994-05-17 International Business Machines Corporation Conical logarithmic spiral viscosity pump
US5335669A (en) 1993-04-21 1994-08-09 American Medical Systems, Inc. Rectal probe with temperature sensor
DE4331606C1 (en) * 1993-09-17 1994-10-06 Gutehoffnungshuette Man Spiral housing for turbo-engines (rotary engines, turbomachines)
KR960703203A (en) 1994-04-28 1996-06-19 시게후치 마사토시 MULTIVANE RADIAL FAN DESIGNING METHOD AND MULTIVANE RADIAL FAN
AT407772B (en) 1994-11-08 2001-06-25 Habsburg Lothringen Leopold In COMBINED RESONATOR AND MUFFLER SYSTEM
US5787974A (en) * 1995-06-07 1998-08-04 Pennington; Robert L. Spiral heat exchanger and method of manufacture
DE69630303T2 (en) * 1995-07-10 2004-07-29 Harman, Jayden David, South Frementle ROTOR
AU694679B2 (en) 1995-07-10 1998-07-23 Jayden David Harman A rotor
EP0837917A1 (en) * 1995-07-13 1998-04-29 E.I. Du Pont De Nemours And Company Tetrafluoroethylene copolymer coating composition
JP3632789B2 (en) 1995-08-28 2005-03-23 東陶機器株式会社 Multiblade centrifugal fan design method and multiblade centrifugal fan
US5661638A (en) 1995-11-03 1997-08-26 Silicon Graphics, Inc. High performance spiral heat sink
FR2744661B1 (en) 1996-02-08 1998-04-03 Deckner Andre Georges REVERSE HELICOIDAL REAMER
US6179218B1 (en) * 1996-08-30 2001-01-30 Christopher Gates Solar powered water fountain
JP3574727B2 (en) 1997-03-31 2004-10-06 国際技術開発株式会社 Heat exchange equipment
US5943877A (en) * 1997-05-05 1999-08-31 The Joseph Company Space vehicle freezer including heat exchange unit space use
GB2334791B (en) 1998-02-27 2002-07-17 Hydro Int Plc Vortex valves
US5934612A (en) 1998-03-11 1999-08-10 Northrop Grumman Corporation Wingtip vortex device for induced drag reduction and vortex cancellation
CA2263033A1 (en) * 1998-05-21 1999-11-21 Gary L. Wegner Cyclonic liquid circulation system
EP1023981A4 (en) 1998-07-16 2004-06-02 Idemitsu Petrochemical Co Lightweight resin molded product and production method thereof
GB2343741B (en) * 1998-11-11 2002-03-13 Phos Energy Inc Solar energy concentrator and converter
US6834142B2 (en) * 1998-12-04 2004-12-21 Cidra Corporation Optical grating-based filter
GB9828696D0 (en) 1998-12-29 1999-02-17 Houston J G Blood-flow tubing
JP2000257610A (en) 1999-03-10 2000-09-19 Tomotaka Marui Turbulence restraining method by autogenous swirl flow using surface flow of fixed rotor, autogenous swirl flow generating device, autogenous swirl flow generating and maintaining control method and verifying method for turbulence restrain effect
KR100337287B1 (en) * 1999-07-28 2002-05-17 윤종용 centrifugal fan
IL131590A0 (en) 1999-08-25 2001-01-28 Technion Res & Dev Foundation Self-adaptive segmented orifice device and method
US6484795B1 (en) * 1999-09-10 2002-11-26 Martin R. Kasprzyk Insert for a radiant tube
ES2252076T3 (en) 1999-11-25 2006-05-16 Jayden David Harman ROTOR OF SINGLE SHOVEL OR MULTIPLE SHOES.
BG63583B1 (en) * 2000-04-12 2002-05-31 СОРОЧИНСКИ Александр Method for torsion effect of working media and torsion generator realizing the method
US6385967B1 (en) 2000-05-31 2002-05-14 Shun-Lai Chen Exhaust pipe for motor vehicle muffler
KR100378803B1 (en) 2000-06-12 2003-04-07 엘지전자 주식회사 Muffler for compressor
ES2195689B1 (en) 2000-07-26 2005-04-01 Manuel Muñoz Saiz SUSTAINING PROVISION FOR AIRPLANE SIDE SURFACES.
JP4185654B2 (en) * 2000-08-04 2008-11-26 カルソニックカンセイ株式会社 Centrifugal multi-blade blower
US6596170B2 (en) * 2000-11-24 2003-07-22 Wlodzimierz Jon Tuszko Long free vortex cylindrical telescopic separation chamber cyclone apparatus
US6632071B2 (en) * 2000-11-30 2003-10-14 Lou Pauly Blower impeller and method of lofting their blade shapes
US6382348B1 (en) 2001-02-09 2002-05-07 Shun-Lai Chen Twin muffler
FR2823541B1 (en) 2001-04-11 2003-05-23 Christian Hugues CYLINDRICAL WING END WITH HELICOID SLOT
US6684633B2 (en) 2001-04-27 2004-02-03 Marion Barney Jett Exhaust device for two-stroke internal combustion engine
DE10163812A1 (en) 2001-12-22 2003-07-03 Mann & Hummel Filter Device for sound absorption in a pipe duct
AUPR982502A0 (en) 2002-01-03 2002-01-31 Pax Fluid Systems Inc. A heat exchanger
AUPR982302A0 (en) * 2002-01-03 2002-01-31 Pax Fluid Systems Inc. A fluid flow controller
DE03726967T1 (en) 2002-01-03 2005-05-04 Pax Scient Inc EDDY RING GENERATOR
US6959782B2 (en) 2002-03-22 2005-11-01 Tecumseh Products Company Tuned exhaust system for small engines
US6817419B2 (en) * 2002-10-30 2004-11-16 John A. Reid Well production management and storage system controller
USD510998S1 (en) * 2003-03-27 2005-10-25 Research Foundation Of The University Of Central Florida High efficiency air conditioner condenser twisted fan blades and hub
USD487800S1 (en) * 2003-04-16 2004-03-23 Delta Electronics Inc. Fan
AU2003903386A0 (en) 2003-07-02 2003-07-17 Pax Scientific, Inc Fluid flow control device
US7661509B2 (en) 2003-07-14 2010-02-16 Dadd Paul M Devices for regulating pressure and flow pulses
US20050155916A1 (en) * 2003-07-19 2005-07-21 Tuszko Wlodzimierz J. Cylindrical telescopic structure cyclone apparatus
CN1279868C (en) 2003-08-26 2006-10-18 苏州金莱克清洁器具有限公司 Dust-collector noise silencer
USD509584S1 (en) * 2003-10-08 2005-09-13 Datech Technology Co., Ltd. Fan wheel with hub fastener
KR101168098B1 (en) 2003-11-04 2012-07-24 팍스 싸이언티픽 인코퍼레이션 Fluid Circulation System
AU2005207983A1 (en) 2004-01-30 2005-08-11 Pax Scientific, Inc Housing for a centrifugal fan, pump or turbine
WO2005073560A1 (en) 2004-01-30 2005-08-11 Pax Scientific, Inc A vortical flow rotor
TWM287387U (en) 2005-08-24 2006-02-11 Delta Electronics Inc Fan and fan housing with air-guiding static blades

Also Published As

Publication number Publication date
US7287580B2 (en) 2007-10-30
EP1470380A4 (en) 2011-09-28
US7814967B2 (en) 2010-10-19
CN1613000A (en) 2005-05-04
MXPA04006592A (en) 2005-03-31
IL162709A (en) 2008-07-08
CN100370206C (en) 2008-02-20
US20080023188A1 (en) 2008-01-31
WO2003056269A1 (en) 2003-07-10
US20040238163A1 (en) 2004-12-02
KR20040078117A (en) 2004-09-08
AUPR982502A0 (en) 2002-01-31
EA200400902A1 (en) 2005-02-24
US20060249283A1 (en) 2006-11-09
JP2005513410A (en) 2005-05-12
EA006026B1 (en) 2005-08-25
DE03726970T1 (en) 2005-05-04
ZA200405899B (en) 2006-06-28
IL162709A0 (en) 2005-11-20
EP1470380A1 (en) 2004-10-27
US7096934B2 (en) 2006-08-29

Similar Documents

Publication Publication Date Title
US7096934B2 (en) Heat exchanger
US20200149832A1 (en) Fractal heat transfer device
Javed et al. Internal convective heat transfer of nanofluids in different flow regimes: A comprehensive review
Bhattacharyya et al. Thermal performance enhancement in heat exchangers using active and passive techniques: a detailed review
US20090183858A1 (en) Venturi for Heat Transfer
EP2567174A2 (en) Fractal heat transfer device
AU2003201185B2 (en) Heat exchanger
AU2003201185A1 (en) Heat exchanger
Saha et al. Heat transfer enhancement in externally finned tubes and internally finned tubes and annuli
Hamici et al. Numerical study of Mixed convection and thermal Radiation in a Square Cavity with an inside Inclined Heater
Cho et al. Heat transfer and friction loss characteristics of shaped short pin-fin arrays
Biswas et al. Longitudinal vortex generators for enhancement of heat transfer in heat exchanger applications
US20230204308A1 (en) Fractal heat transfer device
Anitha et al. HOW THE ESTIMATION OF ENTROPY GENERATION AND EXERGY LOSS OF HYBRID NANOFLUIDS GOVERNS THE THERMAL PERFORMANCE OF HEAT EXCHANGER
Merdan et al. CFD Analysis for Different Types of Fins to Enhancement the Heat Transfer Rate Through A Cross Flow Heat Exchanger
Saha et al. Numerical Simulation of Integral Roughness, Laminar Flow in Tubes with Roughness and Reynolds Analogy for Heat and Momentum Transfer
Satra et al. Thermal and fluid flow analysis of a Heat Exchanger:“A Comprehensive report”
US20050255420A1 (en) Direct Thermal Transport (DTT)
Pawar et al. Review on Experimental and Numerical Analysis of Heat Transfer and Friction Factor using Almond Dimple in Rectangular Duct
Ponnappan et al. Venturi flow cooling concept for high heat flux applications.
Biswas Enhancement of heat transfer using longitudinal vortices
KUMAR et al. REVIEW ON EXTENDED SURFACES USED IN CONCENTRIC TUBE HEAT EXCHANGER
Pandey Critical assessment of literature in the field of enhanced heat transfer techniques
Rahmani et al. Different aspects of geometrical optimization for compact heat exchangers
Choudhari et al. Heat Transfer Augmentation in Tube Using Various Twisted Tape Inserts: A Review

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued

Effective date: 20130103