CA2477709C - High molecular weight additives for calcined gypsum and cementitious compositions - Google Patents

High molecular weight additives for calcined gypsum and cementitious compositions Download PDF

Info

Publication number
CA2477709C
CA2477709C CA2477709A CA2477709A CA2477709C CA 2477709 C CA2477709 C CA 2477709C CA 2477709 A CA2477709 A CA 2477709A CA 2477709 A CA2477709 A CA 2477709A CA 2477709 C CA2477709 C CA 2477709C
Authority
CA
Canada
Prior art keywords
gypsum
slurry
parts
polycarboxylate
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA2477709A
Other languages
French (fr)
Other versions
CA2477709A1 (en
Inventor
Dennis Mark Lettkeman
Eldon L. Whiteside
William K. Bedwell
Raymond A. Ii Kaligian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United States Gypsum Co
Original Assignee
United States Gypsum Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United States Gypsum Co filed Critical United States Gypsum Co
Publication of CA2477709A1 publication Critical patent/CA2477709A1/en
Application granted granted Critical
Publication of CA2477709C publication Critical patent/CA2477709C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • C04B22/142Sulfates
    • C04B22/143Calcium-sulfate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • C04B28/145Calcium sulfate hemi-hydrate with a specific crystal form
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • C04B28/145Calcium sulfate hemi-hydrate with a specific crystal form
    • C04B28/147Calcium sulfate hemi-hydrate with a specific crystal form beta-hemihydrate
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/12Flooring or floor layers made of masses in situ, e.g. seamless magnesite floors, terrazzo gypsum floors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • B28C5/02Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions without using driven mechanical means effecting the mixing
    • B28C5/026Mixing guns or nozzles; Injector mixers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/10Accelerators; Activators
    • C04B2103/12Set accelerators
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00146Sprayable or pumpable mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00146Sprayable or pumpable mixtures
    • C04B2111/00155Sprayable, i.e. concrete-like, materials able to be shaped by spraying instead of by casting, e.g. gunite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/32Expansion-inhibited materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/60Flooring materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/80Optical properties, e.g. transparency or reflexibility
    • C04B2111/802White cement

Abstract

A mixture is used in conjunction with water is used for preparing a slurry that hydrates to form an exterior gypsum cement. The mixture includes 30-70 % by weight hydraulic cement, 30-70 % by weight calcined gypsum and 0.05-2.5 % polycarboxylate. When the mixture is added to water less than 40 weight % based on the weight of the mixture, a slurry is formed that expands very little while it cures.

Description

HIGH MOLECULAR WEIGHT ADDITIVES FOR
CALCINED GYPSUM AND CEMENTITIOUS COMPOSITIONS
CROSS REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of U.S. Provisional Application 601367,920, filed March 27, 2002.
BACKGROUND
This invention relates to cast materials for outdoor use.
More specifically, it relates to a high strength, low expansion gypsum cement.
Casting of articles is a well known technique for making outdoor lawn and garden products, such as statuary, stepping stones and the like. The casting process, which includes preparing a mold, pouring a slurry of hydraulic material into the mold and allowing it to harden, is less labor intensive, and therefore less expensive, than many other methods of making a shaped article.
Both gypsum and cement are well known hydraulic materials. Gypsum is also known as calcium sulfate dehydrate, terra ?0 alba or landplaster. Plaster of Paris is also known as calcined gypsum, stucco, calcium sulfate semihydrate, calcium sulfate half-hydrate or calcium sulfate hemihydrate. In this form, there are approximately two water molecules of water associated with each molecule of calcium sulfate. In order to produce the hemihydrate form, the gypsum can be calcined to drive off some of the water of hydration by the following equation:
CaS04~2H20-~CaS04~1/2H20 + 3/2H20 Calcium sulfate hemihydrate can produce at least two crystal forms. a-Calcined gypsum is made by a continuous process or a lump rock process whereby the calcium sulfate dehydrate is calcined under pressure. The a-calcined gypsum forms less acicular crystals than ~i-calcined gypsum, allowing the crystals to pack tightly together, making a denser and stronger plaster. The crystal morphology allows water to flow easily between the crystals, requiring less water to form a flowable slurry. More elongated crystals are characteristic of the beta-calcined gypsum. This crysfal structure results in a less dense product because the crystals are more loosely packed. The beta form also requires more water to fluidize the calcined gypsum. If the calcining of the dehydrate is performed at ambient pressure, the beta form is obtained and the cost is relatively low compared to the alpha-gypsum.
When the hemihydrate is added to water, the product slurry is permitted to set by allowing the calcium sulfate hemihydrate to react with sufficient water to convert the hemihydrate into a matrix of interlocking dehydrate crystals. As the matrix forms, the product slurry becomes firm and holds the desired shape.
Hydraulic cement is used in various applications where its hardness, water resistance and durability make it valuable, such as in concrete structures. Products that require wearability, hardness or water resistance are often made of a slurry of calcined gypsum mixed with hydraulic cement. Cements, such as Portland cement, set by the relatively slower hydration reactions of calcium silicate and aluminate materials. Consequently, adding calcium sulfate hemihydrate to cement offers a faster set and the resulting increase in productivity during manufacture cement-containing products. Gypsum is, however, somewhat soluble in water, and mixtures that contain both gypsum and hydrated cement are not as water resistant as cement alone or cement containing a minor amount of gypsum.
Cast articles for outdoor use should be strong to hold up to wind, weather and other outdoor hazards. When no additives are used, the amount of water added to a calcined gypsum slurry determines the density of the set gypsum matrix. As more water is used, the slurry increases in volume. The theoretical water demand of pure calcium sulfate hemihydrate, is 18.6 wt %. The hydrated calcium sulfate matrix forms filling the volume originally occupied by the slurry, trapping the excess water in the crystal interstices of the gypsum matrix. For equal amounts of gypsum,.the interstices are larger and more numerous to take up the excess water as the proportion of water is increased. As the size and number of the spaces increases, both the density and the strength of the matrix decreases compared to a composition with little of no excess water. However, slurries with little excess water are very difficult to mix, particularly if beta-calcined gypsum is used.
However, if water is reduced to increase the strength of cast articles of this type, there is generally an increase in the expansion of the article as the hydraulic materials set. Expansion of hydraulic materials while they set limits the useful life of the molds with which they are used. The expanding article puts pressure on the mold, forming small stress cracks which grow bigger with successive uses. Details in the mold can be lost. The article can become distorted as the mold weakens.
Thus, there is a need in the art for a means to improve the strength of cast articles while creating minimum expansion of the setting slurry material. There is a further need to maintain dimensional stability of cast articles, while extending the life of the molds from which they are made. When these needs are met, products made by casting gypsum or blends of gypsum and hydrated cement can be made stronger, maintain design details andlor be produced at lower cost.
BRIEF DESCRIPTION OF THE INVENTION
These and other needs are met by the present composition which is useful for casting gypsum cement articles for outdoor use.
More specifically, a mixture to be used in conjunction with water is used for preparing a slurry that hydrates to form an exterior gypsum cement. The mixture includes 30 - 70% by weight hydraulic cement, 30 - 70% by weight calcined gypsum and 0.05 2.5% polycarboxylate. When the mixture is added to water less than 40 weight % based on the weight of the mixture, a slurry is formed that expands very little while it cures.
Low expansion leads to products that are more true to the molded design. There is no distortion of the pattern as can occur when there is a high degree of expansion. The small amount of expansion is desirable so that the slurry picks up all of the detail of the mold. However, the expansion is not sufficient to cause the mold to be difficult to remove. Unmolding is difficult when expansion causes the cast article to push outward against the mold walls, holding it in place by friction. The low degree of expansion can also lead to longer mold life.
DETAILED DESCRIPTION OF THE INVENTION
A castable gypsum composition having low expansion includes calcium sulfate hemihydrate, hydraulic cement and polycarboxylate dispersant.
Calcium sulfate hemihydrate or calcined gypsum is the major component of the castable mixture. When water is added to this mixture, it encompasses compositions that transform from an aqueous slurry of calcium sulfate hemihydrate to a crystalline dehydrate matrix by hydration. The components include at least 30% calcium sulfate hemihydrate based upon the weight of the aggregate-free dry components. Preferably the aggregate-free dry components include at least 35%, and most preferably at least 40% hemihydrate by weight.
Preferred alpha-hemihydrates include those made from a slurry process, such as HYDROCAL C-Base, J-Base or E-Base from United States Gypsum Co. (Chicago, IL), by lump rock processes, such as HYDROCAL A-Base or B-Base, or any other method of making alpha-calcined hemihydrate. No. 1 Moulding plaster is a preferred beta-hemihydrate from United States Gypsum Co. (Chicago, IL). Synthetic gypsum, which is a byproduct of flue gas desulfurization processes from power plants, may also be used similarly to beta-calcined gypsum.
When it is mined, raw gypsum is found in the dehydrate form. Whether alpha or beta-calcined gypsum, or a combination of both, is selected for a particular application depends on the desired properties of the product being made, the cost or availability of the calcined gypsum. Preferably, beta-calcined gypsum is used to as large extent as possible. However, in some embodiments, such as the "no dry" casting formulation, or anywhere the cast article requires high strength, the alpha form is preferred. Selection of an appropriate calcined gypsum or mixtures thereof for a particular application, is within the ordinary skill of an artisan in this field.
Like gypsum, hydraulic cement hardens due to chemical hydration with water. Preferred hydraulic cements are Portland cement, Class C cement and other Type 5 cements or their equivalents. These cements are most durable in an outdoor setting and the product will be long-lasting. Other cements are believed to be suitable in forming a low-expansion casting composition, however, Type 1 and other cements age rapidly outdoors. They are suitable in the castable composition if long life of the product is not important, or if chemicals are added to the composition to reduce the effects of aging.
The most widely used cement is Portland cement (Aalsborg Cement, Denmark), which is particularly preferred for use in this invention.
Either gray or white cement can be used.
In the present invention, it has been learned that polycarboxylate dispersants make a castable slurry with improved dimensional stability for longer cast life. Polycarboxylates also improve the flowability of the slurry so that less water is needed to make a flowable slurry. It is advantageous to utilize this property to replace all or a portion of the alpha-gypsum in a formula to the beta form at the same consistency or to reduce the water to make a stronger, denser product. Costs for transportation and shipping time can also be reduced since formulations can be adapted to use either alpha or beta-calcined gypsum, whichever is more readily available.
Water levels can be reduced to at or below the theoretical water demand using polycarboxylate dispersants.
Minimization of water addition has the added benefit of requiring less time and/or energy to dry the products. Additionally, less water is absorbed by the mold upon casting, requiring less time and energy to dry the mold for reuse. When water is reduced to levels at or below that theoretically required for complete hydration, aggregates or fillers can be added wet with no loss in product strength. In the set and dried product, polycarboxylates age better than products with other additives.
Polycarboxylates are polymers obtained by polymerization of a monomer mixture that includes an unsaturated carboxylic acid type monomer. The most preferred polycarboxylate polymer, sold under the trade name Melflux 1641, 1643 or 1643F by SKW Polymers (Kennesaw, GA), is a co-polymer based on oxyalkyleneglycol-alkyl ethers and unsaturated dicarboxylic acid derivatives such as those described in U.S. Patent No. 5,798,425, which is herein incorporated by reference. Other suitable polycarboxylates include acrylic resin latexes, modified acrylic polymers such as those described in EP 1138,698, herein incorporated by reference, co-polymers of acrylic acid and acrylamide, polymers obtained by grafting substituents, such as a polyalkyene oxide, on a polycarboxylate backbone, poly (methyl vinyl ether/maleic acid), or any polycarboxylate as will be known to an artisan.
A wide variety of polycarboxylates can be used in this invention, including, but not limited to polyacrylic acids and acrylic latex polymers. Preferably the polycarboxylates are water soluble.
The polycarboxylate polymer includes at least two carboxylate salt or ion groups, at least two carboxylic acid groups or at least one carboxylate salt or ion group and at least one carboxylate salt or ion group. Molecular weights of from about 100,000 to about 5,000,000 daltons are preferred. Polycarboxylates outside the preferred molecular weight range can be suitable, but lower molecular weights tend to be less effective, while higher molecular weights are extremely viscous and difficult to pump. Methods of making polycarboxylates are well known to those skilled in the art.
The polycarboxylate dispersants can be added in amounts of from about 0.05% to about 2.5% on a dry solids basis Other preferred ranges for the polycarboxylate addition include from 0.05% to 1 % and from 0.05% to .5%, all on a dry solids basis excluding any aggregate that may be present. At the higher end of the range of polycarboxylate addition, retarding of the hydration reactions is observed, as is some reduction in product strength. Efficacy of the additive depends on the exact composition with which it is used. It may be used alone as a superplasticizer or used in combination with other plasticizers including, but not limited to, lignins, sulfonated naphthalene and/or sulfonated melamine dispersants. Use of a pH
control additive, such as, but not limited to, lime and/or Portland cement, to provide the slurry with a basic pH improves performance of the polycarboxylates when the slurry has a high concentration of hemihydrate.
The amount of water addition is selected based on the composition being used and the application for which it is intended.
When polycarboxylates are added to cement or calcined gypsum compositions having a high concentration of a-calcined gypsum, a flowable slurry can be obtained when the consistency is below the theoretical water demand.
The amount of water added to the dry mixture ranges from 13% of the weight of the dry mixture to about 50% by weight.
Preferably, the water content ranges from about 13% to about 40%, and more preferably from about 20% to about 30%. If the hemihydrate is primarily in the beta form, a preferred water range is from 25% to about 40 weight % water based on the weight of the dry ingredients.
For ease of mixing, the preferred water range is from about 20% to about 40%. Low water compositions use water in the range of about 13% to about 25%. The selection of a suitable amount of water to be added is within the skill of an artisan.
Water used to make the slurry should be as pure as practical for best control of the properties of both the slurry and the set plaster. Salts and organic compounds are well known to modify the set time of the slurry, varying widely between accelerators to set inhibitors. Some impurities lead to irregularities in the structure as the interlocking matrix of dehydrate crystals forms, reducing the strength of the set product. Product strength and consistency is thus enhanced by the use of water that is as contaminant-free as practical.
Use of polycarboxylate allows gypsum cements to be made to be mixed with a wet aggregate without a reduction in strength or density. Improved flow properties of gypsum cements with polycarboxylates allow easy mixing even when the consistency is below the theoretical water demand. For example, theoretical water demand for a typical hemihydrate with 93-98% purity is 20-21 wt %.
Theoretical water demand for cements is slightly higher.
Consistencies for the combined hemihydrate/cement mixture as low as 15% can be prepared with the addition of polycarboxylate dispersants.
If the aggregate is added wet to a composition with a consistency below theoretical, the additional water used to help complete the hydration process of the hemihydrate and cement-based materials.
Thus the density and strength of the product is not affected compared to a product at the theoretical consistency.
Set times are often retarded to provide longer working times or accelerated for faster set and finishing. Polycarboxylates have a retarding effect at higher concentrations, but additional retarders or accelerators will often be used to more precisely control the set time. Those skilled in the art of formulating calcined gypsum or cement compositions know how to adjust the level of accelerators and retardants to obtain a desired set time. Preferred retarders include proteinaceous retarders (Industrial SUMA, San Paulo, Brazil), sodium citrate, Cream of Tartar and diethylenetriamine pentaacetic acid (Akzo Nobel, The Netherlands). Additives for accelerating set time include sulfates such as aluminum sulfate or potassium sulfate, acids and proteinacous retarders used in amounts up to 1 wt % on a dry, aggregate-free basis.
Calcium sulfate dihydrate that has been finely ground is a preferred accelerator. When freshly prepared, it has high potency.
However, when stored prior to use, it loses its effectiveness. U. S.
Patent No. 2,078,198, herein incorporated by reference, discloses improved accelerators comprising calcium sulfate dihydrate intermixed with sugar. This mixture renders the calcium sulfate dihydrate less subject to deterioration by aging. Heating the co-ground sugar and calcium sulfate dihydrate mixture so that caramelized sugar forms a coating on the calcium sulfate dihydrate is disclosed in U. S. Patent No. 3,573,947, herein incorporated by reference. The melted sugar coating further stabilizes the calcium sulfate dihydrate, reducing the effects of aging to a greater degree than the unheated sugarldihydrate mixture. Ground calcium sulfate dihydrate prepared in this manner is referenced in the examples as "CSA" (United States Gypsum Co., Chicago, IL) When aggregates are added to the composition, any aggregate known to those skilled in the art may be used. Sand is the most common aggregate used due to its low cost and ready availability. The aggregate can be chosen to modify the density of the finished product. A wide range of sands are applicable with this invention, including Mohawk Medium sand, Rich Mix Fine sand, Atlanta sand, Dothan Sand, Florida sand and the like. Heavier aggregates, such as, but not limited to, rock, gravel and silica fume would increase the density of the product, while the addition of hadite, clay, pumice, foam, vermiculite or hollow microspheres would decrease the density. Any type of filler, such as perlite, flyash or slag, can also be used. The aggregate is added to the composition in amounts up to 300 wt % of the aggregate-free components on a dry basis.
Calcined gypsum compositions of this invention optionally have a number of further additives depending on the specific application. These additives can include defoamers, thickeners, polymeric resins, preservatives, and other additives. Additives for a particular purpose, as well as the appropriate concentrations, are known to those skilled in the art. Coloring agents, such as pigments, dyes or stains are also useful as additives. Defoamers are useful in amounts less than 10 wt%. A preferred defoamer is Foamaster CN
(Astro Chemicals, Kankakee, IL). Any known coloring agents can be used with this invention. Titanium dioxide is particularly useful to whiten the composition. The coloring agents are used in amounts and added by methods conventionally used for compositions of this type.
Polymeric resins, such as Elotex 10184 or 50E200 (National Starch &
Chemical, Bridgewater, NJ) or VINNAPAS RP-226 (Wacker Polymer Systems, LP, Adrian, MI), are optionally added to modify the properties of the slurry.
Use of these additives requires no special mixing steps or process conditions to make a high quality product. Depending on the exact additive selected, it can be available in either liquid form, dry form or both. If used in liquid form, the additive concentration is determined on a dry basis. Typically, wet ingredients are mixed with the water prior to the addition of the dry components. Dry ingredients are often premixed using powder feeders, then the dry composite is added to the mix water that already has the wet ingredients. The additives of this invention are comparable with this common mixing technique, or can be adapted to other mixing methods as will be known by those skilled in the art.
These and other embodiments are demonstrated in the following Examples. In the examples, unless otherwise noted, all amounts listed are in pounds. Concentrations or percentages are calculated on a dry, aggregate-free weight basis.
Unless otherwise noted, a 4000 gram sample was prepared based on the dry components. All dry components, including aggregate, were weighed and dry blended together. The predetermined amount of deionized water was measured and poured into a mixing bowl. The dry blended material was added to the water and the time noted as the starting point to determine the set time. The mixing bowl was placed onto a Hobart mixer and jogged for approximately five seconds. After one minute of soaking, the material was mixed at low speed for two minutes. The bowl was removed from the mixer and the contents stirred for about 15 seconds with a wisk to assure that all material was evenly mixed.
References to set time refer to Vicat set time per ASTM
C-472, herein incorporated by reference. The Vicat set time started from the time the plaster was added to the water for hand mixes and from the time the slurry came off the mixer for machine mixes. A
sample was made up of 50 grams of dry, aggregate-free material and sufficient water to make a normal consistency for the desired application. The sample was poured onto an acrylic sheet to form a patty. A 300 gram Vicat needle was held half way between the center and the outer edge of the patty, perpendicular to the patty surface.
The needle was held to the patty surface and released to fall freely of it's own weight. Set time was determined when the needle failed to penetrate to the bottom of the patty. If the degree of penetration was unclear, the needle was given a little push to determine if it had touched the underlying surface.

A formulated outdoor gypsum cement was prepared according to Table I, to which varying amounts of polycarboxylate was added per Table II.

TABLE I
Formulated Outdoor G~ripsum Cement Component Amount a-Calcined Gypsum 2000 Ibs. (908Kg) White type 5 Cement 2000 Ibs. (908Kg) Potassium Sulfate 10.0 Ibs. (4.5Kg) Aluminum Sulfate 4.5-6.0 Ibs. (2.0-2.7Kg) Plasticizer 19.2-19.5 Ibs. (8.7-8.9Kg) Defoamer 4.OIbs. (l.8Kg) The above base formula was modified by the addition of various amounts of polycarboxylates as shown below in Table II. The amount of aluminum sulfate and potassium sulfate are shown as a range because two batches of material were combined in an unknown ratio. Although the exact amount of these components in the combined dry mix is not known precisely, it is constant, assuring that only the amount of polycarboxylate varies in the data below.
Fifty grams (50g) of the above base gypsum cement was modified by the addition of Melflux 1641 polycarboxylate as indicated in each of the samples below. Water was added to the mixture until a 4-1l4" (10.8cm) patty was formed as described above. The amount of water added to each sample, the patty diameter and the set time of each are included in Table II below:

Table II
Water Demand and Set Times with Varyina Amounts of Polycarboxylate ID Amount of Patty Set Water PolycarboxylateDiameter Time cc/100 A O.Og 4-1/8" (10.5cm) 20 min. 48 B 0.025g 4-1/4" (10.8cm) 18 min. 38 C 0.050g 4-5/16" (ll.Ocm)19 min. 28 D 0.075g 4-7/16" (11.3cm)13 min. 24 E 0.10g 4-1/2" (11.4cm) 13 min. 20 F 0.125g 4-1/2" (11.4cm) 13 min. 19 G 0.150g 4-5116" (ll.Ocm)14.5 min.18 H 0.175g 4-1/4" (10.8cm) 17 min. 17 I 0.208 4-3/16" (10.6cm)20 min. 16 J 0.225g 4-1/2" (11.4cm) 22 min. 16 IC 0.250g 4-1/2" (11.4cm) 23 min. 15.5 As the amount of polycarboxylates were increased, the water demand of the sample decreased. Set time of the test sample initially decreased as the polycarboxylate concentration increased until approximately the theoretical level of water addition, then increased as the amount of polycarboxylates increased, the additive acted as a retarder.

The expansion of cast articles was explored by testing two sample castings in an expansometer. Sample A was made from 2500 grams of the Base Gypsum Cement shown in Table I with 6.25 grams of MVA 1641 polycarboxylate added. Sample B was a 2500 gram sample from a similar formula having 30.75 pounds of a melamine dispersant and 13.0 pounds of aluminum sulfate per batch in place of the plasticizer listed in Table III. 2500 Grams of medium Mohawk sand was added to each sample.
Table III
Expansion Testing Component Sample A Sample B

a-Calcined Gypsum 2000 Ibs. (908Kg)2000 Ibs. (908Kg) White Type V Cement 2000 Ibs. (908Kg)2000 Ibs. (908Kg) Potassium Sulfate 10 Ibs. (4.5Kg) 10 Ibs. (4.5Kg) Aluminum Sulfate 4.5-6.0 Ibs. (2.0-2.7Kg) 13 Ibs. (5.9Kg) Melamine Dispersant 19.2-19.5 Ibs.(8.7-8.9Kg) 30.75 Ibs. (14.OKg) Defoamer 4.0 Ibs. (l.8Kg) 4.0 Ibs. (l.8Kg) Sample Size 2500 g 2500 g Melflux 1641 6.25 g 0 g Water 500g 625g % Expansion 0.006% 0.047%

Expansion was tested in an expansometer. The test slurry was poured into a mold of a standard size and allowed until Vicat Set. The expansometer probe was then placed against the sample and the machine was set to 0. Expansion of the sample was then measured by the probe as the sample continued to cure.
Less expansion was measured in Sample A, the sample that contained the polycarboxylate additive and had a lower consistency. This is particularly surprising because it is generally accepted that lower water demand results in increased expansion.
However, the polycarboxylate additive provided less expansion, which is beneficial because expansion of cast articles results in distortion of the desired pattern, difficulty in unmolding the cast article and can lead to shorter mold life.
The embodiments and examples shown herein are intended to exemplify the invention and are not intended to limit it in any way. Additional embodiments and uses for this invention will be apparent to an artisan in this particular field.

Claims (21)

What is claimed is:
1. A mixture to be employed in conjunction with water for preparing a slurry that hydrates to form an exterior gypsum cement, comprising:
30 - 70% by weight hydraulic cement;
30 - 70% by weight calcined gypsum; and 0.05 - 2.5% polycarboxylate.
2. The gypsum cement mixture of claim 1 wherein said calcined gypsum is alpha-calcined gypsum.
3. The gypsum cement mixture of claim 1 wherein said composition comprises 35 - 65% hydraulic cement.
4. The gypsum cement mixture of claim 1 wherein said composition comprises 35 - 65% calcined gypsum.
5. The gypsum cement mixture of claim 1 wherein said cement comprises a Type 5 cement.
6. The gypsum cement mixture of claim 1 wherein said composition comprises 0.05 - 1 % polycarboxylate.
7. The gypsum cement mixture of claim 1 wherein said polycarboxylate is water-soluble.
8. The gypsum cement mixture of claim 1 wherein said polycarboxylate has a molecular weight range of from about 100,000 to about 5,000,000 Daltons.
9. The gypsum cement mixture of claim 1 wherein said polycarboxylate is based on oxyalkyleneglycol-alkyl ethers and unsaturated dicarboxylic acid derivatives.
10. The gypsum cement mixture of claim 1 wherein said polycarboxylate comprises an acrylic resin latex, modified acrylic polymers, co-polymers of acrylic acid and acrylamide, polymers obtained by grafting polyalkyene oxide on a polycarbonate backbone or poly (methyl vinyl ether/maleic acid).
11. The gypsum cement mixture of claim 1 further comprising at least one of a set accelerating or set retarding additive.
12. The gypsum cement mixture of claim 11 wherein said additive includes at least one of aluminum sulfate, potassium sulfate, acids, proteinaceous retarders and calcium sulfate dehydrate.
13. The gypsum cement mixture of claim 12 wherein said calcium sulfate dehydrate is finely co-ground with a sugar.
14. The gypsum cement mixture of claim 1 wherein when 100 parts of said mixture is mixed with less than 40 parts water to make a slurry, said slurry expands less than 0.01% as it cures.
15. A gypsum cement slurry composition comprising:
hydraulic cement;
calcined gypsum;
polycarboxylate; and, less than 40 parts water per 100 parts by weight of the dry ingredients.
16. The slurry of claim 15 wherein said water comprises less than 25 parts per 100 parts by weight of the dry ingredients.
17. The slurry of claim 15 wherein said hydraulic cement is present in amounts of from 30-70 parts, said calcined gypsum is present in amounts of from 30-70 parts and said polycarboxylate is present in amounts of from 0.10 to 10 parts per 100 parts by weight of the total solids of the composition.
18. The slurry of claim 15 wherein said polycarboxylate is based on oxyalkyleneglycol-alkyl ethers and unsaturated dicarboxylic acid derivatives.
19. The slurry of claim 15 wherein said slurry expands less than 0.01% as it cures.
20. A method of making a cast article comprising:
measuring dry ingredients including from about 30 parts to about 70 parts calcined gypsum, from about 30 parts to about 70 parts hydraulic cement, and from about 0.1 to about 10 parts polycarboxylate measuring less than 40 parts water per 100 parts by weight of the dry ingredients;
blending the dry ingredients into the water;
forming a slurry;
pouring said slurry into a mold having an appropriate shape to form the cast article;
allowing said slurry to cure; and removing the cast article from the mold.
21. The method of claim 20 further comprising adding a wet aggregate to the slurry prior to said pouring step.
CA2477709A 2002-03-27 2003-03-27 High molecular weight additives for calcined gypsum and cementitious compositions Expired - Lifetime CA2477709C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US36792002P 2002-03-27 2002-03-27
US60/367,920 2002-03-27
PCT/US2003/009397 WO2003082765A1 (en) 2002-03-27 2003-03-27 High molecular weight additives for calcined gypsum and cementitious compositions

Publications (2)

Publication Number Publication Date
CA2477709A1 CA2477709A1 (en) 2003-10-09
CA2477709C true CA2477709C (en) 2011-02-01

Family

ID=28675420

Family Applications (3)

Application Number Title Priority Date Filing Date
CA2478323A Expired - Lifetime CA2478323C (en) 2002-03-27 2003-03-27 High strength flooring compositions
CA2478319A Expired - Lifetime CA2478319C (en) 2002-03-27 2003-03-27 Sprayable machinable media
CA2477709A Expired - Lifetime CA2477709C (en) 2002-03-27 2003-03-27 High molecular weight additives for calcined gypsum and cementitious compositions

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CA2478323A Expired - Lifetime CA2478323C (en) 2002-03-27 2003-03-27 High strength flooring compositions
CA2478319A Expired - Lifetime CA2478319C (en) 2002-03-27 2003-03-27 Sprayable machinable media

Country Status (10)

Country Link
US (2) US7056964B2 (en)
EP (3) EP1485330B1 (en)
JP (3) JP2005521622A (en)
AT (2) ATE496013T1 (en)
CA (3) CA2478323C (en)
DE (2) DE60335791D1 (en)
ES (3) ES2432640T3 (en)
HK (1) HK1072592A1 (en)
MX (3) MXPA04009326A (en)
WO (3) WO2003082765A1 (en)

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2827593B1 (en) * 2001-07-23 2004-06-04 Chryso Sas USE OF DISPERSANT FOR AQUEOUS HEMIHYDRATE CALCIUM SULFATE COMPOSITIONS
US7338990B2 (en) * 2002-03-27 2008-03-04 United States Gypsum Company High molecular weight additives for calcined gypsum and cementitious compositions
AU2004283644A1 (en) * 2003-10-29 2005-05-06 Doxa Ab A two-step system for improved initial and final characteristics of a biomaterial
TWI321554B (en) * 2004-08-25 2010-03-11 Rohm & Haas Composition for forming a composite material
US9802866B2 (en) 2005-06-09 2017-10-31 United States Gypsum Company Light weight gypsum board
US7731794B2 (en) 2005-06-09 2010-06-08 United States Gypsum Company High starch light weight gypsum wallboard
US11338548B2 (en) 2005-06-09 2022-05-24 United States Gypsum Company Light weight gypsum board
US9840066B2 (en) 2005-06-09 2017-12-12 United States Gypsum Company Light weight gypsum board
US11306028B2 (en) 2005-06-09 2022-04-19 United States Gypsum Company Light weight gypsum board
USRE44070E1 (en) 2005-06-09 2013-03-12 United States Gypsum Company Composite light weight gypsum wallboard
US7572328B2 (en) * 2005-06-14 2009-08-11 United States Gypsum Company Fast drying gypsum products
US7504165B2 (en) 2005-06-14 2009-03-17 United States Gypsum Company High strength flooring compositions
US20060280898A1 (en) 2005-06-14 2006-12-14 United States Gypsum Company Modifiers for gypsum slurries and method of using them
US7875114B2 (en) 2005-06-14 2011-01-25 United States Gypsum Company Foamed slurry and building panel made therefrom
US7544242B2 (en) 2005-06-14 2009-06-09 United States Gypsum Company Effective use of dispersants in wallboard containing foam
US20060278127A1 (en) 2005-06-14 2006-12-14 United States Gypsum Company Gypsum products utilizing a two-repeating unit dispersant and a method for making them
US20060280899A1 (en) 2005-06-14 2006-12-14 United States Gypsum Company Method of making a gypsum slurry with modifiers and dispersants
US8088218B2 (en) 2005-06-14 2012-01-03 United States Gypsum Company Foamed slurry and building panel made therefrom
KR20080032094A (en) 2005-06-14 2008-04-14 유나이티드 스테이츠 집섬 컴파니 Gypsum products utilizing a two-repeating unit dispersant and a method for making them
US7771851B2 (en) * 2005-08-26 2010-08-10 United States Gypsum Company Gypsum-containing products containing alpha hemihydrate
US20070044687A1 (en) * 2005-08-31 2007-03-01 Blackburn David R Modified landplaster as a wallboard filler
CA2619960C (en) * 2005-08-31 2014-11-04 United States Gypsum Company Modified landplaster as a wallboard filler
AP2008004526A0 (en) * 2005-12-07 2008-08-31 Gypsmix Sarl Method for stabilising metastable soluble anhydrite III, method for producing a hydraulic binder based thereon, the obtained hydraulic binder, the uses thereof and an industrial plant for carrying outsaid method
EP1795171B1 (en) * 2005-12-08 2014-11-19 Doxa AB Powdered CBC system with improved reaction feature
US7682445B2 (en) 2005-12-08 2010-03-23 Doxa Ab Powdered CBC system with improved reaction feature
WO2007101855A2 (en) * 2006-03-06 2007-09-13 Akzo Nobel Coatings International B.V. Method of applying a top layer of a floor
US20070246683A1 (en) * 2006-04-24 2007-10-25 David Paul Miller Reduced dusting gypsum composites and method of making them
US20080120934A1 (en) * 2006-07-26 2008-05-29 Antonio Lategana Scratch board and method of manufacturing and using same
US7503430B2 (en) * 2006-09-07 2009-03-17 Usg Interiors, Inc. Reduced dust acoustic panel
US7261772B1 (en) * 2006-10-17 2007-08-28 Lyondell Chemical Technology, L.P. Gypsum composition
US7754006B2 (en) * 2007-03-20 2010-07-13 United States Gypsum Company Process for manufacturing ready-mixed setting alpha-calcium sulphate hemi-hydrate and kit for same
US20080245276A1 (en) * 2007-04-04 2008-10-09 Massafacil Ind. Com. Argamassa, Ltda Lining mortar
JP5138966B2 (en) * 2007-04-05 2013-02-06 吉野石膏株式会社 Self-leveling composition
US8070878B2 (en) 2007-07-05 2011-12-06 United States Gypsum Company Lightweight cementitious compositions and building products and methods for making same
US7754007B2 (en) * 2007-10-23 2010-07-13 United States Gypsum Company Gypsum mixtures for forming solids
US7861955B2 (en) 2007-11-15 2011-01-04 United States Gypsum Company Wet-grinding gypsum with polycarboxylates
MX2010007052A (en) * 2007-12-28 2011-02-23 United States Gypsum Co Decreased evaporation with retarder for a high water to stucco ratio lightweight board.
US7651564B2 (en) 2008-04-10 2010-01-26 Georgia-Pacific Gypsum Llc Gypsum-based floor underlayment
US20090306251A1 (en) * 2008-06-05 2009-12-10 Georgia-Pacific Gypsum Llc Fly ash-based floor patching composition
US8323429B2 (en) 2009-07-31 2012-12-04 United States Gypsum Company Method for preparing three-dimensional plaster objects
JP2013503926A (en) 2009-09-02 2013-02-04 ビーエーエスエフ コンストラクション ポリマース ゲゼルシャフト ミット ベシュレンクテル ハフツング Formulation and use thereof
US20110054081A1 (en) * 2009-09-02 2011-03-03 Frank Dierschke Formulation and its use
MX2012006055A (en) 2009-11-25 2012-12-05 Basf Constr Polymers Gmbh Dispersant.
DE102010048339B8 (en) * 2010-09-09 2014-05-08 Crupe International (Ip) Gmbh Aqueous gypsum-cement mixture, its use, method of constructing a building using the gypsum-cement mixture and building made by the process
CN107082618A (en) 2010-10-11 2017-08-22 巴斯夫聚合建材有限公司 Gypsum slurry containing dispersant
WO2012077229A1 (en) * 2010-12-10 2012-06-14 吉野石膏株式会社 Dried gypsum composition and gypsum-based coating material
US8747534B2 (en) 2010-12-29 2014-06-10 United States Gypsum Company Antimicrobial size emulsion and gypsum panel made therewith
US9328023B2 (en) 2012-10-09 2016-05-03 United States Gypsum Company Low water drying type joint compound
US9932271B2 (en) * 2013-12-06 2018-04-03 Georgia-Pacific Gypsum Llc Gypsum composites containing cementitious materials and methods
EP2896603A1 (en) * 2014-01-21 2015-07-22 Basf Se Calcium sulphate composition including an additive
FR3018220B1 (en) * 2014-03-07 2020-08-14 Saint-Gobain Placo PLASTER-BASED ACOUSTIC PLATE.
US10065893B2 (en) 2015-04-30 2018-09-04 Basf Se Gypsum-containing composition
RU2716663C2 (en) 2015-06-26 2020-03-13 Констракшн Рисёрч Энд Текнолоджи Гмбх Additive for hydraulically setting compositions
US10099961B2 (en) 2015-08-12 2018-10-16 United States Gypsum Company Fluorescent building product and related detection method
US10655342B2 (en) * 2016-09-21 2020-05-19 Maxxon Corporation Water resistant flooring underlayment
MX2019009675A (en) * 2017-02-15 2019-10-22 Solvay Usa Inc Thickening time aid.
ES2718130B2 (en) * 2017-12-27 2019-11-25 Univ Miguel Hernandez De Elche Dry plaster additive
WO2021075322A1 (en) * 2019-10-15 2021-04-22 吉野石膏株式会社 Self-leveling material composition
DE102020127379A1 (en) * 2020-10-14 2022-04-14 ML7 Entwicklungs-GmbH Building material additive for calcium sulphate-based building materials
WO2024030372A1 (en) * 2022-08-05 2024-02-08 United States Gypsum Company Low-cost, effective phosphate-based lime bucking inhibitor

Family Cites Families (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2078198A (en) 1936-10-02 1937-04-20 United States Gypsum Co Set-stabilized gypsum plaster
US3301848A (en) * 1962-10-30 1967-01-31 Pillsbury Co Polysaccharides and methods for production thereof
US3573947A (en) * 1968-08-19 1971-04-06 United States Gypsum Co Accelerator for gypsum plaster
GB1453447A (en) * 1972-09-06 1976-10-20 Kimberly Clark Co Nonwoven thermoplastic fabric
GB1466772A (en) * 1974-08-07 1977-03-09 Low J Castings of articles containing calcined gypsum
US4028125A (en) * 1976-03-25 1977-06-07 The Dow Chemical Company Cement composition
US4159912A (en) * 1977-03-09 1979-07-03 Acoustical Floors, Inc. Acoustical floor preparation and method
GB1557435A (en) * 1977-07-19 1979-12-12 Pitun Unicrete Ltd Casting of articles from compositions containing calcined gypsum and portland cement
JPS5925876B2 (en) 1978-02-17 1984-06-21 株式会社日立製作所 Exhaust gas recirculation device for diesel engines
US4238239A (en) * 1978-10-25 1980-12-09 Weston Research, Corporation Dry wall joint and finishing compounds
JPS5830257B2 (en) * 1979-09-17 1983-06-28 宇部興産株式会社 Water-resistant gypsum composition
JPS5654263A (en) 1979-10-02 1981-05-14 Kurashiki Boseki Kk Waterrresistant gypsum formed body
DE3260845D1 (en) * 1981-01-16 1984-11-08 Nippon Catalytic Chem Ind Copolymer and method for manufacture thereof
JPS5925876A (en) 1982-08-04 1984-02-09 Nitto Chem Ind Co Ltd Grouting method
US4666971A (en) * 1983-11-03 1987-05-19 General Electric Company Thermal-sensitive insulating composition comprising cured acrylonitrile butadiene carboxylic acid rubbers containing filler materials
JPS60171260A (en) * 1984-02-16 1985-09-04 井上 博之 Hydraulic inorganic composition
JPS6140861A (en) 1984-07-31 1986-02-27 菊水化学工業株式会社 Mortar composition
US5175278A (en) * 1985-06-28 1992-12-29 Merck & Co., Inc. Heteropolysaccharide S-657
US4814014A (en) * 1986-12-09 1989-03-21 W. R. Grace & Co. Hydraulic cement additives and hydraulic cement compositions containing same
US4960465A (en) * 1986-12-09 1990-10-02 W. R. Grace & Co. Hydraulic cement additives and hydraulic cement compositions containing same
US4954440A (en) 1988-06-16 1990-09-04 The Standard Oil Company Production of polysaccharides from filamentous fungi
JPH03285857A (en) * 1989-07-19 1991-12-17 Takeda Chem Ind Ltd Hydraulic composition and molded body of hydraulic inorganic powder
DK0432770T3 (en) * 1989-12-12 1994-01-31 Takeda Chemical Industries Ltd Hydraulic material, designed products thereof and segregation reducer for hydraulic substances
US5169706A (en) * 1990-01-10 1992-12-08 Kimberly-Clark Corporation Low stress relaxation composite elastic material
DE4030638A1 (en) * 1990-09-27 1992-04-02 Wacker Chemie Gmbh DISPERSION POWDER COMPOSITION
US5223036A (en) * 1990-12-12 1993-06-29 W. R. Grace & Co.-Conn. Additive composition for cement admixture
TW210994B (en) * 1991-09-03 1993-08-11 Hoechst Ag
JP3100217B2 (en) * 1992-02-03 2000-10-16 太平洋セメント株式会社 Self-leveling gypsum composition with excellent dimensional accuracy
FR2687161B1 (en) * 1992-02-12 1994-04-01 Elf Aquitaine Ste Nale COMPOSITIONS BASED ON SCLEROGLUCANE AND THEIR USE AS CEMENTING PAD.
US5362323A (en) * 1992-02-14 1994-11-08 W. R. Grace & Co. Conn. Cement admixture composition
US5739212A (en) * 1992-12-08 1998-04-14 Skw Trostberg Aktiengesellschaft Water-soluble graft polymers
AT399340B (en) * 1993-02-01 1995-04-25 Chemie Linz Gmbh COPOLYMERS BASED ON MALEINIC ACID DERIVATIVES AND VINYL MONOMERS, THEIR PRODUCTION AND USE
US5424099A (en) * 1993-03-12 1995-06-13 W.R. Grace & Co.-Conn. High strength pourable gypsum floor underlayments and methods of providing same
GB9319205D0 (en) 1993-09-16 1993-11-03 Brown Jonathon L Cement products and a method of manufacture thereof
CA2172827A1 (en) * 1993-09-29 1995-04-13 W.R. Grace & Co.-Conn. Improved cement admixture product having improved rheological properties and process of forming same
US5393343A (en) * 1993-09-29 1995-02-28 W. R. Grace & Co.-Conn. Cement and cement composition having improved rheological properties
JP3311836B2 (en) * 1993-10-21 2002-08-05 太平洋セメント株式会社 Self-leveling aqueous composition
EP0725044A4 (en) 1993-10-21 1997-07-02 Chichibu Onoda Cement Corp Self-leveling water-base composition
JP3293294B2 (en) * 1993-12-06 2002-06-17 日本油脂株式会社 Additive for cement
JP3433833B2 (en) * 1994-01-26 2003-08-04 武田キリン食品株式会社 Separation reducing agent for hydraulic composition, hydraulic composition and molded product
US5472500A (en) * 1994-04-28 1995-12-05 National Gypsum Company High strength, abrasion resistant veneer plaster
IL113587A (en) * 1994-06-03 1999-05-09 Nat Gypsum Co Cementitious gypsum-containing compositions and materials made therefrom
DE4421722A1 (en) * 1994-06-21 1996-01-04 Sueddeutsche Kalkstickstoff Flow improver for cement binders, esp. self-levelling materials
JP3184728B2 (en) * 1995-02-20 2001-07-09 花王株式会社 Dispersant for gypsum / water slurry
DE19506398A1 (en) * 1995-02-23 1996-08-29 Wacker Chemie Gmbh Process for the hydrophobization of gypsum materials
US5534059A (en) 1995-03-20 1996-07-09 United States Gypsum Co. Machinable plaster
DE19513126A1 (en) * 1995-04-07 1996-10-10 Sueddeutsche Kalkstickstoff Copolymers based on oxyalkylene glycol alkenyl ethers and unsaturated dicarboxylic acid derivatives
US5665158A (en) * 1995-07-24 1997-09-09 W. R. Grace & Co.-Conn. Cement admixture product
US5703174A (en) * 1995-06-21 1997-12-30 W. R. Grace & Co.-Conn. Air controlling superplasticizers
MY114306A (en) 1995-07-13 2002-09-30 Mbt Holding Ag Cement dispersant method for production thereof and cement composition using dispersant
US5556460A (en) * 1995-09-18 1996-09-17 W.R. Grace & Co.-Conn. Drying shrinkage cement admixture
WO1997022564A1 (en) * 1995-12-15 1997-06-26 Monsanto Company Methods for improved rheological control in cementitious systems
TW419447B (en) * 1996-02-22 2001-01-21 Nippon Catalytic Chem Ind Cement composition
US5614017A (en) * 1996-03-26 1997-03-25 Arco Chemical Technology, L.P. Cement additives
US5670578A (en) * 1996-12-10 1997-09-23 Arco Chemical Technology, L.P. Cement additives
GB9607570D0 (en) * 1996-04-12 1996-06-12 Sandoz Ltd Improvements in or relating to organic compounds
US5653797A (en) * 1996-04-26 1997-08-05 National Gypsum Company Ready mixed setting-type joint compound and method of making same
US5725656A (en) * 1996-05-29 1998-03-10 The Trustees Of Colombia University In The City Of New York Gypsum composition
ES2263710T3 (en) * 1996-11-27 2006-12-16 Kao Corporation HYDRAULIC COMPOUND
US6166112A (en) * 1997-03-10 2000-12-26 Nippon Shokubai Co., Ltd. Cement admixture and cement composition
AT404730B (en) * 1997-04-07 1999-02-25 Holderchem Ag ACRYLIC COPOLYMERS AND POLYMER COMPOSITIONS, AND THEIR USE AS ADDITIVES OR ADDITIVES FOR IMPROVING THE PROPERTIES OF DISPERSIONS AND BUILDING MATERIALS
US5985989A (en) * 1997-07-09 1999-11-16 Arco Chemical Technology, Lp Method of making a water reducing additive for cement
US5854386A (en) * 1997-08-25 1998-12-29 Arco Chemical Technology, L.P. Stabilizers for polymer polyols
CA2211984C (en) * 1997-09-12 2002-11-05 Marc-Andre Mathieu Cementitious panel with reinforced edges
US6294015B1 (en) * 1998-01-22 2001-09-25 Nippon Shokubai Co., Ltd. Cement admixture and cement composition
DE19806482A1 (en) * 1998-02-17 1999-08-19 Sueddeutsche Kalkstickstoff Water-soluble or water-swellable copolymers containing sulfo groups, processes for their preparation and their use
JPH11314953A (en) * 1998-05-07 1999-11-16 Nippon Zeon Co Ltd Dispersant for gypsum
US5879446A (en) * 1998-08-21 1999-03-09 National Gypsum Company Gypsum wallboard, and method of making same
DE19905488A1 (en) * 1999-02-10 2000-08-17 Sueddeutsche Kalkstickstoff Powdery polymer compositions based on polyether carboxylates
US6241815B1 (en) * 1999-08-10 2001-06-05 United States Gypsum Company Gypsum-cement system for construction materials
US6273345B1 (en) 2000-02-11 2001-08-14 United States Gypsum Company High performance slurry spray machine
US6673144B2 (en) * 2000-02-11 2004-01-06 United States Gypsum Company Joint compound providing low dusting and good gloss retention
US6379458B1 (en) 2000-02-11 2002-04-30 United States Gypsum Company Efficient set accelerator for plaster
US6355099B1 (en) * 2000-02-11 2002-03-12 United States Gypsum Company Plaster mixture for forming a machinable composition
EP1138696A1 (en) 2000-03-29 2001-10-04 Sika AG, vorm. Kaspar Winkler & Co. Polymers for cement dispersing admixtures
US6409824B1 (en) 2000-04-25 2002-06-25 United States Gypsum Company Gypsum compositions with enhanced resistance to permanent deformation
JP4471457B2 (en) * 2000-06-13 2010-06-02 太平洋セメント株式会社 Gypsum dispersant
JP4502344B2 (en) * 2000-06-15 2010-07-14 太平洋セメント株式会社 Gypsum dispersant
US6406537B1 (en) * 2000-11-22 2002-06-18 United States Gypsum Company High-strength joint compound
US6527850B2 (en) * 2001-04-11 2003-03-04 Arco Chemical Technology L.P. Use of comb-branched copolymers in gypsum compositions
US6767399B2 (en) * 2002-01-08 2004-07-27 The Euclid Chemical Company Admixture for producing cementitious compositions having good fluidity and high early compressive strength

Also Published As

Publication number Publication date
EP1487757A1 (en) 2004-12-22
CA2478323C (en) 2011-01-04
JP2005521621A (en) 2005-07-21
CA2478319C (en) 2010-12-21
US20050250888A1 (en) 2005-11-10
ES2333003T3 (en) 2010-02-16
DE60335791D1 (en) 2011-03-03
DE60328668D1 (en) 2009-09-17
WO2003082765A1 (en) 2003-10-09
WO2003082766A1 (en) 2003-10-09
CA2477709A1 (en) 2003-10-09
EP1487757B1 (en) 2013-07-24
EP1487756B1 (en) 2009-08-05
ATE438598T1 (en) 2009-08-15
JP5173109B2 (en) 2013-03-27
MXPA04009328A (en) 2005-06-08
CA2478323A1 (en) 2003-10-09
EP1487756A1 (en) 2004-12-22
MXPA04009326A (en) 2005-07-05
US7374611B2 (en) 2008-05-20
EP1485330A1 (en) 2004-12-15
JP2005521623A (en) 2005-07-21
HK1072592A1 (en) 2005-09-02
EP1485330B1 (en) 2011-01-19
US7056964B2 (en) 2006-06-06
ES2360209T3 (en) 2011-06-01
US20050235882A1 (en) 2005-10-27
WO2003082766A8 (en) 2004-02-12
WO2003082767A1 (en) 2003-10-09
JP2005521622A (en) 2005-07-21
CA2478319A1 (en) 2003-10-09
ATE496013T1 (en) 2011-02-15
ES2432640T3 (en) 2013-12-04
MXPA04009327A (en) 2005-06-08

Similar Documents

Publication Publication Date Title
CA2477709C (en) High molecular weight additives for calcined gypsum and cementitious compositions
US7338990B2 (en) High molecular weight additives for calcined gypsum and cementitious compositions
CA2605948C (en) High strength flooring compositions
CA2701722C (en) High strength gypsum flooring compositions
JP6997115B2 (en) Architectural chemical composition containing a hydrogen sulfite adduct of glyoxylic acid
CN104788072A (en) Early-strength type aluminate cement based self-leveling material
JPS58145651A (en) Cement superplasticizer
US4046583A (en) Method of producing expansive and high strength cementitious pastes, mortars and concretes
AU2021291334A1 (en) Method for the increase of workability of a binder composition comprising portland cement, calcined clay, and limestone
CN109906210B (en) Additive for construction chemical compositions
RU2364576C1 (en) Complex modifying additive for construction mortar and method for production of construction mortar
US20230110018A1 (en) Gypsum cement compositions with aggregate stabilizers and methods for forming floor underlayment
JP2563468B2 (en) Carbonated cured product
WO2022136620A1 (en) A ternary hydraulic binder composition

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20230327