CA2481426A1 - Disposable sub-microliter volume biosensor with enhanced sample inlet - Google Patents

Disposable sub-microliter volume biosensor with enhanced sample inlet Download PDF

Info

Publication number
CA2481426A1
CA2481426A1 CA002481426A CA2481426A CA2481426A1 CA 2481426 A1 CA2481426 A1 CA 2481426A1 CA 002481426 A CA002481426 A CA 002481426A CA 2481426 A CA2481426 A CA 2481426A CA 2481426 A1 CA2481426 A1 CA 2481426A1
Authority
CA
Canada
Prior art keywords
electrode
strip
layer
base
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002481426A
Other languages
French (fr)
Other versions
CA2481426C (en
Inventor
Xiaohua Cai
Handani Winarta
Andy Vo
Chung Chang Young
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nova Biomedical Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2481426A1 publication Critical patent/CA2481426A1/en
Application granted granted Critical
Publication of CA2481426C publication Critical patent/CA2481426C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3272Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels

Abstract

A disposable electrode strip for testing a fluid sample including a laminate d strip with a first and second end, a vent, an open path for receiving a flui d sample of less than one microliter beginning from the first end and connecti ng to the vent, a working electrode, a reference electrode and a pseudo-working electrode embedded in the laminated strip within the open path and proximate to the first end, a reagent matrix coextensive within the open path and covering the three electrodes, and conductive contacts located at the second end of the laminated strip.

Claims (34)

1. A disposable electrode strip for testing a fluid sample comprising:
a laminated strip having a first strip end, a second strip end and a vent opening spaced from said first strip end, said laminated strip comprising a base layer having a conductive layer disposed thereon, said conductive layer having scribe lines delineated thereon and forming at least two electrode paths, a channel forming layer carried on said base layer, and a cover having an inlet notch at said first strip end;
an enclosed channel between said first strip end and said vent opening, said enclosed channel sized to hold a volume of said fluid sample less than one microliter, said enclosed channel exposing a portion of each of said at least two electrode paths;
a reagent matrix containing at least an enzyme, a stabilizer, wherein said stabilizer is a polyalkylene glycol, and a redox mediator disposed on said base layer in said enclosed channel;
conductive contacts at said second strip end and insulated from said enclosed channel.
2. The electrode strip of Claim 1 wherein said enzyme is selected from the group consisting of glucose oxidase, lactate oxidase, cholesterol oxidase, and creatinine amidohydrolase.
3. The electrode strip of Claim 1 wherein said redox mediator is potassium ferricyanide or other inorganic or organic redox mediators.
4. The electrode strip of Claim 1 wherein said conductive layer is gold or a gold and tin oxide.
5. The electrode strip of Claim 1 wherein said base layer, said channel forming layer and said cover are made of a plastic dielectric material.
6. The electrode strip of Claim 1 wherein said enclosed channel has a volume of about 0.2 microliters.
7. The electrode strip of Claim 1 wherein said cover has a hydrophilic coating on at least one side.
8. The electrode strip of Claim 1 wherein said reagent matrix further contains at least one of a binder, a surfactant, and a buffer.
9. The electrode strip of Claim 8 wherein said stabilizer is a polyalkylene glycol, said binder is a cellulose material, and said surfactant is a polyoxyethylene ether.
10. The electrode strip of Claim 9 wherein said stabilizer is polyethylene glycol, said binder is methyl cellulose, said surfactant is t-octylphenoxypolyethoxyethanol, and said buffer is a citrate buffer.
11. The electrode strip of Claim 10 wherein said reagent matrix is made from a mixture having starting components comprising about 1wt% to about 6.5wt%
of said redox mediator, about 2.5wt% of said stabilizer, about 1wt% of said binder, about 0.03wt% of said surfactant, and about 1wt% of said enzyme in said citrate buffer.
12. The electrode strip of Claim 11 wherein said citrate buffer is about 0.05M.
13. The electrode strip of Claim 1 wherein said channel forming layer has a thickness sufficient to optimize the flow of said fluid sample along said open path.
14. The electrode strip of Claim 11 wherein said potassium ferricyanide is 6.5wt%.
15. The electrode strip of Claim 11 wherein said enzyme is glucose oxidase.
16. The electrode strip of Claim 1 wherein said conductive layer has a third electrode path thereon and wherein said enclosed channel contains a working electrode, a pseudo-working electrode and a reference electrode.
17. The electrode strip of Claim 16 wherein said pseudo-working electrode is a counter electrode.
18. The electrode strip of Claim 16 wherein said pseudo-working electrode is a triggering electrode.
19. The electrode strip of Claim 16 wherein said pseudo-working electrode and said reference electrode pair are a resistance-measuring electrode pair.
20. A disposable electrode strip for detecting or measuring the concentration of an analyte in a fluid sample, said electrode strip comprising:
an insulating base strip having a first base end and a second base end;
a conductive layer disposed on one side of said base strip, said conductive layer having a pattern scribed into said conductive layer, said pattern delineating three electrically-distinct conductive paths insulated from each other;
a middle insulator sized smaller than said insulating base strip and overlaying a substantial portion of said conductive layer, said middle insulator having a cutout portion spaced from said first base end, said cutout portion exposing a limited area of said three conductive paths;
an electrode material comprising an enzyme, a redox mediator, a stabilizer wherein said stabilizer is a polyalkylene glycol, a binder, a surfactant, and a buffer, said electrode material being disposed in said cutout portion; and a covering insulator sized to fit over and be coextensive with said middle insulator creating a sample fluid channel, said covering insulator having an inlet notch at a first covering insulator end, said first covering insulator end being coextensive with said first base end, and a covering insulator aperture spaced from said first base end and configured to expose at least a small portion of said cutout portion of said middle insulator.
21. The strip of Claim 20 wherein said sample fluid channel has a volume of about 0.22 microliters.
22. The strip of Claim 20 wherein said redox mediator is at least one metal complex selected from the group consisting of ferrocene, ferrocene derivatives and potassium ferricyanide, said stabilizer is a polyalkylene glycol, said binder is a cellulose material, said surfactant is a polyoxyethylene ether, and said buffer has a pH of about 5 to about 6.
23. The strip of Claim 22 wherein said mediator is potassium ferricyanide, said stabilizer is polyethylene glycol, said binder is methyl cellulose, said surfactant is t-octylphenoxypolyethoxyethanol, and said buffer is a citrate buffer.
24. The strip of Claim 23 wherein said electrode material is made of a mixture having starting components comprising about 6.5wt% of said potassium ferricyanide, about 2.5wt% of said polyethylene glycol, about 1wt% of said methyl cellulose, and about 0.03wt% of said t-octylphenoxypolyethoxyethanol, and about 1wt% of said enzyme in said citrate buffer.
25. The strip of Claim 34 wherein said enzyme is glucose oxidase.
26. The electrode strip of Claim 20 wherein said sample fluid channel contains a working electrode, a pseudo-working electrode and a reference electrode.
27. The electrode strip of Claim 26 wherein said pseudo-working electrode is a counter electrode.
28. The electrode strip of Claim 26 wherein said pseudo-working electrode is a triggering electrode.
29. The electrode strip of Claim 26 wherein said pseudo-working electrode and said reference electrode pair are a resistance-measuring electrode pair.
30. A method of making a disposable biosensor comprising:
scribing a plurality of scribe lines into a conductive coating disposed on one side of an elongated base layer having an electrode end and an electrical contact end forming at least two elongated electrical conduits along the length of said base layer wherein said plurality of scribe lines delineates a first conduit of said at least two electrical conduits having an L-shape and a second conduit adjacent said first conduit wherein said L-shaped end of said first conduit and the end of said second conduit are in axial alignment with the central axis of the length of said base layer and are located near said electrode end;
disposing a channel forming layer over said conductive coating of said base layer, said channel forming layer having a U-shaped end portion defining a central elongated channel sized to expose a portion said L-shaped end of said first conduit and a portion of said second conduit, said channel forming layer being shorter in length than said base layer such that a portion of each of said at least two elongated conduits is exposed at said electrical contact end;
adding a reagent mixture to said central channel covering said exposed portions of said first and second conduits, said reagent mixture having an enzyme capable of catalyzing a reaction involving a substrate for the enzyme;
drying said reagent mixture forming a reagent matrix; and disposing a top layer over said channel forming layer, said top layer having a vent opening spaced from said electrode end and a notch at said electrode end, said top layer forming an inlet and a capillary space with said U-shaped end portion wherein said vent exposes a portion of said central channel at the end of said capillary space opposite said inlet and said notch exposes a portion of said central channel at said inlet.
31. The method of Claim 30 further comprising creating a notch in said top layer at said electrode end wherein said notch is located at said inlet.
32. The method of Claim 30 further comprising mixing a redox mediator, a stabilizer, a binder, a surfactant and a buffer forming said reagent mixture.
33. A method of making multiple, disposable sensors wherein each sensor has at least a working electrode, a reference electrode and a reagent matrix, wherein said reagent matrix contains an enzyme capable of catalyzing a reaction involving a substrate for the enzyme, said working electrode and said reference electrode being disposed in a fluid sample channel for measuring a fluid sample, said method comprising:
obtaining a base strip of an insulating material having a layer of conductive material disposed thereon, said base strip having a first edge and a second edge;
scribing in said conductive material a plurality of lines in a repetitive pattern wherein said plurality of lines contain a repetitive pattern capable of forming at least two conductive paths in each of said repetitive pattern, said plurality of lines delineates a first conduit of said at least two conductive paths having an L-shape and a second conduit adjacent said first conduit wherein said L-shaped end of said first conduit and the end of said second conduit are in axial alignment with the central axis of the length of said base layer and are located near said electrode end;
disposing a middle layer of insulating material over said base strip, said middle layer having a repetitive pattern of an elongated cutout wherein each cutout of each of said repetitive pattern exposes an electrode portion of each of said at least two conductive paths of each repetitive pattern wherein said repetitive pattern of said elongated cutout are spaced from said first edge of said base strip, and wherein said middle layer is sized to expose a contact portion of each of said at least two conductive paths of each repetitive pattern for a distance from said second edge of said base strip;
disposing a reagent material into each elongated cutout of said repetitive pattern wherein said reagent material contains a polyalkylene glycol stabilizer;
drying said reagent material at a temperature and for a length of time sufficient to solidify said reagent material in each of said elongated cutout;
disposing a top layer of insulating material over and coextensive with said middle layer, said top layer having a plurality of vent openings and notch forming holes in a repetitive pattern wherein each of said vent openings exposes a portion of a corresponding repetitive pattern of said elongated cutout of said middle layer furthest from said first edge of said base strip and wherein each of said notch forming holes exposes a portion of said corresponding repetitive pattern of said elongated cutout portion closest to said first edge of said base strip, said base strip, said middle layer and said top layer forming a laminated strip;
cutting along and parallel to said first edge of said laminated strip a predetermined distance creating a sample inlet port in each of said elongated cutout and an inlet notch in said top layer for each of said repetitive pattern;
cutting along and parallel to said second edge of said laminated strip a predetermined distance creating two separate contacts for each of said repetitive pattern; and separating each of said repetitive pattern at predetermined intervals along said laminated strip.
34. The method of Claim 33 further comprising mixing a redox mediator, said stabilizer, a binder, a surfactant, a buffer, and said enzyme forming said reagent material.
CA2481426A 2002-04-19 2003-04-16 Disposable sub-microliter volume biosensor with enhanced sample inlet Expired - Lifetime CA2481426C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/126,818 2002-04-19
US10/126,818 US6942770B2 (en) 2002-04-19 2002-04-19 Disposable sub-microliter volume biosensor with enhanced sample inlet
PCT/US2003/011647 WO2003089660A1 (en) 2002-04-19 2003-04-16 Disposable sub-microliter volume sensor with enhanced sample inlet

Publications (2)

Publication Number Publication Date
CA2481426A1 true CA2481426A1 (en) 2003-10-30
CA2481426C CA2481426C (en) 2012-02-14

Family

ID=29215113

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2481426A Expired - Lifetime CA2481426C (en) 2002-04-19 2003-04-16 Disposable sub-microliter volume biosensor with enhanced sample inlet

Country Status (8)

Country Link
US (1) US6942770B2 (en)
EP (1) EP1497446B1 (en)
JP (1) JP4620357B2 (en)
AU (1) AU2003221950A1 (en)
CA (1) CA2481426C (en)
DE (1) DE60319516T2 (en)
ES (1) ES2301788T3 (en)
WO (1) WO2003089660A1 (en)

Families Citing this family (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6036924A (en) 1997-12-04 2000-03-14 Hewlett-Packard Company Cassette of lancet cartridges for sampling blood
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
CA2435439A1 (en) * 2001-01-22 2002-07-25 F. Hoffmann-La Roche Ag Lancet device having capillary action
US7344507B2 (en) 2002-04-19 2008-03-18 Pelikan Technologies, Inc. Method and apparatus for lancet actuation
US7033371B2 (en) 2001-06-12 2006-04-25 Pelikan Technologies, Inc. Electric lancet actuator
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US7749174B2 (en) 2001-06-12 2010-07-06 Pelikan Technologies, Inc. Method and apparatus for lancet launching device intergrated onto a blood-sampling cartridge
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US7041068B2 (en) 2001-06-12 2006-05-09 Pelikan Technologies, Inc. Sampling module device and method
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7699791B2 (en) 2001-06-12 2010-04-20 Pelikan Technologies, Inc. Method and apparatus for improving success rate of blood yield from a fingerstick
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
CA2448902C (en) 2001-06-12 2010-09-07 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
DE60234597D1 (en) 2001-06-12 2010-01-14 Pelikan Technologies Inc DEVICE AND METHOD FOR REMOVING BLOOD SAMPLES
US7879211B2 (en) * 2001-07-13 2011-02-01 Arkray, Inc. Analyzing instrument, lancet-integrated attachment for concentration measuring device provided with analyzing instrument, and body fluid sampling tool
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7226461B2 (en) 2002-04-19 2007-06-05 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7297122B2 (en) 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US7291117B2 (en) 2002-04-19 2007-11-06 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US7331931B2 (en) 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7491178B2 (en) 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7371247B2 (en) 2002-04-19 2008-05-13 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
AU2003284512A1 (en) * 2002-12-02 2004-06-23 Arkray, Inc. Analysis instrument
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
WO2004107964A2 (en) 2003-06-06 2004-12-16 Pelikan Technologies, Inc. Blood harvesting device with electronic control
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
WO2005033659A2 (en) 2003-09-29 2005-04-14 Pelikan Technologies, Inc. Method and apparatus for an improved sample capture device
US9351680B2 (en) 2003-10-14 2016-05-31 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a variable user interface
KR100579489B1 (en) * 2003-12-11 2006-05-12 이진우 Biomaterial measuring device and manufacturing method thereof
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
EP1706026B1 (en) 2003-12-31 2017-03-01 Sanofi-Aventis Deutschland GmbH Method and apparatus for improving fluidic flow and sample capture
US7807043B2 (en) * 2004-02-23 2010-10-05 Oakville Hong Kong Company Limited Microfluidic test device
US7413640B2 (en) * 2004-05-11 2008-08-19 Biomedix Taiwan Foldable, electric-current conductivity biosensor
US8828203B2 (en) 2004-05-20 2014-09-09 Sanofi-Aventis Deutschland Gmbh Printable hydrogels for biosensors
US9820684B2 (en) 2004-06-03 2017-11-21 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US20060070878A1 (en) * 2004-10-06 2006-04-06 Shu-Mei Wu Electrochemical biosensor strip
US7488298B2 (en) * 2004-10-08 2009-02-10 Roche Diagnostics Operations, Inc. Integrated lancing test strip with capillary transfer sheet
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
US20060180467A1 (en) * 2005-02-14 2006-08-17 Taidoc Technology Corporation Electrochemical biosensor strip
CA2789262C (en) 2005-04-28 2016-10-04 Proteus Digital Health, Inc. Pharma-informatics system
US8802183B2 (en) 2005-04-28 2014-08-12 Proteus Digital Health, Inc. Communication system with enhanced partial power source and method of manufacturing same
US7316766B2 (en) * 2005-05-27 2008-01-08 Taidoc Technology Corporation Electrochemical biosensor strip
US7922883B2 (en) 2005-06-08 2011-04-12 Abbott Laboratories Biosensors and methods of using the same
US7905999B2 (en) * 2005-06-08 2011-03-15 Abbott Laboratories Biosensor strips and methods of preparing same
US7611621B2 (en) * 2005-06-13 2009-11-03 Nova Biomedical Corporation Disposable oxygen sensor and method for correcting oxygen effect on oxidase-based analytical devices
JP4501793B2 (en) * 2005-06-24 2010-07-14 パナソニック株式会社 Biosensor
US20070017824A1 (en) * 2005-07-19 2007-01-25 Rippeth John J Biosensor and method of manufacture
US7918975B2 (en) * 2005-11-17 2011-04-05 Abbott Diabetes Care Inc. Analytical sensors for biological fluid
US8617366B2 (en) * 2005-12-12 2013-12-31 Nova Biomedical Corporation Disposable urea sensor and system for determining creatinine and urea nitrogen-to-creatinine ratio in a single device
US7811430B2 (en) * 2006-02-28 2010-10-12 Abbott Diabetes Care Inc. Biosensors and methods of making
US20070205114A1 (en) * 2006-03-01 2007-09-06 Mathur Vijaywanth P Method of detecting biosensor filling
US8529751B2 (en) 2006-03-31 2013-09-10 Lifescan, Inc. Systems and methods for discriminating control solution from a physiological sample
KR101165200B1 (en) * 2006-11-10 2012-07-17 주식회사 인포피아 Bio-sensor
KR100829400B1 (en) * 2006-11-30 2008-05-15 주식회사 인포피아 Bio-sensor
JP4811267B2 (en) * 2006-12-22 2011-11-09 パナソニック株式会社 Microchip and analytical device using the same
US20080297169A1 (en) * 2007-05-31 2008-12-04 Greenquist Alfred C Particle Fraction Determination of A Sample
CN101755043B (en) * 2007-07-23 2013-06-19 埃葛梅崔克斯股份有限公司 Electrochemical test strip
JP4904219B2 (en) * 2007-07-24 2012-03-28 株式会社タニタ Liquid component measuring device
US8778168B2 (en) 2007-09-28 2014-07-15 Lifescan, Inc. Systems and methods of discriminating control solution from a physiological sample
EP2235526B1 (en) * 2007-12-10 2018-02-14 Ascensia Diabetes Care Holdings AG Porous particle reagent compositions, devices, and methods for biosensors
US8603768B2 (en) 2008-01-17 2013-12-10 Lifescan, Inc. System and method for measuring an analyte in a sample
WO2009126900A1 (en) 2008-04-11 2009-10-15 Pelikan Technologies, Inc. Method and apparatus for analyte detecting device
US20090294307A1 (en) * 2008-06-02 2009-12-03 Zenghe Liu Redox polymer based reference electrodes having an extended lifetime for use in long term amperometric sensors
US8551320B2 (en) 2008-06-09 2013-10-08 Lifescan, Inc. System and method for measuring an analyte in a sample
JP5204590B2 (en) * 2008-08-28 2013-06-05 株式会社タニタ Glucose sensor and manufacturing method thereof
US20120111739A1 (en) * 2008-10-08 2012-05-10 Pasqua John J Dual Frequency Impedance Measurement of Hematocrit in Strips
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
NZ619375A (en) 2009-04-28 2015-03-27 Proteus Digital Health Inc Highly reliable ingestible event markers and methods for using the same
KR101104400B1 (en) * 2009-06-02 2012-01-16 주식회사 세라젬메디시스 Biosensor for measuring biomaterial
RU2012143791A (en) 2010-04-07 2014-05-20 Проутьюс Диджитал Хэлс, Инк. MINIATURE INGESTED DEVICE
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8308923B2 (en) * 2010-04-29 2012-11-13 R3Dstar Biomedical Corp. Biosensor strip
JP5698085B2 (en) 2010-07-12 2015-04-08 アークレイ株式会社 Biosensor and manufacturing method thereof
JP2014504902A (en) 2010-11-22 2014-02-27 プロテウス デジタル ヘルス, インコーポレイテッド Ingestible device with medicinal product
WO2015112603A1 (en) 2014-01-21 2015-07-30 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
US9322800B2 (en) 2011-09-02 2016-04-26 Lifescan Scotland Limited Hematocrit corrected glucose measurements using phase angles and impedance for electrochemical test strip
US8603309B2 (en) 2011-09-12 2013-12-10 Nova Biomedical Corporation Disposable sensor for electrochemical detection of hemoglobin
US20130098775A1 (en) * 2011-10-20 2013-04-25 Nova Biomedical Corporation Glucose biosensor with improved shelf life
WO2014064978A1 (en) * 2012-10-22 2014-05-01 株式会社村田製作所 Biosensor and manufacturing method therefor
WO2014120669A1 (en) 2013-01-29 2014-08-07 Proteus Digital Health, Inc. Highly-swellable polymeric films and compositions comprising the same
US9523653B2 (en) 2013-05-09 2016-12-20 Changsha Sinocare Inc. Disposable test sensor with improved sampling entrance
US9796576B2 (en) 2013-08-30 2017-10-24 Proteus Digital Health, Inc. Container with electronically controlled interlock
US9518951B2 (en) 2013-12-06 2016-12-13 Changsha Sinocare Inc. Disposable test sensor with improved sampling entrance
US9897566B2 (en) 2014-01-13 2018-02-20 Changsha Sinocare Inc. Disposable test sensor
US9939401B2 (en) 2014-02-20 2018-04-10 Changsha Sinocare Inc. Test sensor with multiple sampling routes
US11051543B2 (en) 2015-07-21 2021-07-06 Otsuka Pharmaceutical Co. Ltd. Alginate on adhesive bilayer laminate film
BR112019000861B1 (en) 2016-07-22 2020-10-27 Proteus Digital Health, Inc electronic device
TWI735689B (en) 2016-10-26 2021-08-11 日商大塚製藥股份有限公司 Methods for manufacturing capsules with ingestible event markers

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5682884A (en) 1983-05-05 1997-11-04 Medisense, Inc. Strip electrode with screen printing
WO1986007632A1 (en) 1985-06-21 1986-12-31 Matsushita Electric Industrial Co., Ltd. Biosensor and method of manufacturing same
DE68924026T3 (en) 1988-03-31 2008-01-10 Matsushita Electric Industrial Co., Ltd., Kadoma BIOSENSOR AND ITS MANUFACTURE.
WO1991009139A1 (en) 1989-12-15 1991-06-27 Boehringer Mannheim Corporation Redox mediator reagent and biosensor
US5508171A (en) 1989-12-15 1996-04-16 Boehringer Mannheim Corporation Assay method with enzyme electrode system
CA2019758C (en) 1990-06-25 2001-09-04 Kevin L. Firth Improved electroporation device and method
JPH0820412B2 (en) 1990-07-20 1996-03-04 松下電器産業株式会社 Quantitative analysis method and device using disposable sensor
JP3118015B2 (en) 1991-05-17 2000-12-18 アークレイ株式会社 Biosensor and separation and quantification method using the same
US5264103A (en) 1991-10-18 1993-11-23 Matsushita Electric Industrial Co., Ltd. Biosensor and a method for measuring a concentration of a substrate in a sample
FR2701117B1 (en) 1993-02-04 1995-03-10 Asulab Sa Electrochemical measurement system with multizone sensor, and its application to glucose measurement.
DE4318519C2 (en) 1993-06-03 1996-11-28 Fraunhofer Ges Forschung Electrochemical sensor
US5762770A (en) 1994-02-21 1998-06-09 Boehringer Mannheim Corporation Electrochemical biosensor test strip
US5437999A (en) 1994-02-22 1995-08-01 Boehringer Mannheim Corporation Electrochemical sensor
US5563067A (en) 1994-06-13 1996-10-08 Matsushita Electric Industrial Co., Ltd. Cell potential measurement apparatus having a plurality of microelectrodes
US5628890A (en) 1995-09-27 1997-05-13 Medisense, Inc. Electrochemical sensor
AUPN661995A0 (en) * 1995-11-16 1995-12-07 Memtec America Corporation Electrochemical cell 2
US5755953A (en) 1995-12-18 1998-05-26 Abbott Laboratories Interference free biosensor
JP3365184B2 (en) 1996-01-10 2003-01-08 松下電器産業株式会社 Biosensor
US5708247A (en) 1996-02-14 1998-01-13 Selfcare, Inc. Disposable glucose test strips, and methods and compositions for making same
US5759364A (en) 1997-05-02 1998-06-02 Bayer Corporation Electrochemical biosensor
US6001239A (en) * 1998-09-30 1999-12-14 Mercury Diagnostics, Inc. Membrane based electrochemical test device and related methods
US5997817A (en) * 1997-12-05 1999-12-07 Roche Diagnostics Corporation Electrochemical biosensor test strip
US6338790B1 (en) * 1998-10-08 2002-01-15 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US6287451B1 (en) * 1999-06-02 2001-09-11 Handani Winarta Disposable sensor and method of making
US6258229B1 (en) * 1999-06-02 2001-07-10 Handani Winarta Disposable sub-microliter volume sensor and method of making
US6645359B1 (en) * 2000-10-06 2003-11-11 Roche Diagnostics Corporation Biosensor
EP2889611B1 (en) * 1999-11-15 2019-09-04 PHC Holdings Corporation Biosensor and measurement apparatus.

Also Published As

Publication number Publication date
EP1497446A1 (en) 2005-01-19
DE60319516D1 (en) 2008-04-17
DE60319516T2 (en) 2009-04-02
JP2005523444A (en) 2005-08-04
US6942770B2 (en) 2005-09-13
JP4620357B2 (en) 2011-01-26
AU2003221950A1 (en) 2003-11-03
US20030196894A1 (en) 2003-10-23
WO2003089660A1 (en) 2003-10-30
ES2301788T3 (en) 2008-07-01
EP1497446B1 (en) 2008-03-05
CA2481426C (en) 2012-02-14

Similar Documents

Publication Publication Date Title
CA2481426A1 (en) Disposable sub-microliter volume biosensor with enhanced sample inlet
CA2481425A1 (en) Disposable sensor with enhanced sample port inlet
CN101014851B (en) Electrochemical cell and method of making an electrochemical cell
KR100741187B1 (en) Electrochemical Sensor
CA2375089C (en) Disposable sub-microliter volume sensor and method of making
EP1212609B1 (en) Low interference disposable sensor and method of making
JP3821685B2 (en) Biosensor
CA2470465C (en) Improved biosensor and method
EP1960771B1 (en) Sensors
ATE299947T1 (en) ELECTROCHEMICAL DISPOSABLE BIOSENSOR FOR THE QUANTITATIVE DETERMINATION OF ANALYTE CONCENTRATIONS IN LIQUIDS
JP5313876B2 (en) Biosensor manufacturing method
JP4318084B2 (en) Analysis tool

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20230417