CA2491749C - Method and apparatus for synchronous semi-automatic parallel sorting - Google Patents

Method and apparatus for synchronous semi-automatic parallel sorting Download PDF

Info

Publication number
CA2491749C
CA2491749C CA002491749A CA2491749A CA2491749C CA 2491749 C CA2491749 C CA 2491749C CA 002491749 A CA002491749 A CA 002491749A CA 2491749 A CA2491749 A CA 2491749A CA 2491749 C CA2491749 C CA 2491749C
Authority
CA
Canada
Prior art keywords
article
destination
destination location
signal
conveyor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002491749A
Other languages
French (fr)
Other versions
CA2491749A1 (en
Inventor
Mark B. Braginsky
Peter R. Gluege
Robert H. Esslinger
William D. Hess
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United Parcel Service of America Inc
Original Assignee
United Parcel Service of America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Parcel Service of America Inc filed Critical United Parcel Service of America Inc
Publication of CA2491749A1 publication Critical patent/CA2491749A1/en
Application granted granted Critical
Publication of CA2491749C publication Critical patent/CA2491749C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C7/00Sorting by hand only e.g. of mail
    • B07C7/005Computer assisted manual sorting, e.g. for mail

Abstract

The present invention reveals a sorting system for use in manual sorting, which presents a detached ephemeral display moving in a manner corresponding to the movement of the article, by which an article to be sorted can be quickly and easily identified. To accomplish its purpose, the device comprises: feed conveyors (12a, 12b); a switching unit (30); optical readers (14a, 14b) positioned to capture destination indicia affixed to each article; a detached moving display (46) which remains close to the article to be sorted and presents information representative of the article~s destination location; a destination location which signals when a related article is approaching; and a controller capable of assigning destination locations and controlling display devices.

Description

METHOD AND APPARATUS FOR SYNCHRONOUS SEMI-AUTOMATIC
PARALLEL SORTING

Technical Field The present invention relates to the semi-automatic sorting of articles, and more particularly relates to a detached display, that is, an illuminated and dynamically moving electronic ticker-tape which transmits a readily visible signal representative of the destination location of an article to be manually sorted. The signal is in human readable forin and remains substantially close to the article to be sorted as the article is conveyed toward a manual sorting operator positioned near a plurality of destination locations.

Background Art Daily, package delivery companies collect millions of packages from thousands of locations scattered over large geographical areas and transport them to sorting facilities for processing. Initially, laborers employed at a sorting facility performed the sorting process, that is, they had to grab, lift, carry and place the packages from one sorting station to another. Presently, extensive use of manual labor has diminished as new sorting facilities are equipped with automated sorting and transfer systems.
However, for various reasons, it may not be practicable or desirable to entirely replace the manual sorting process. Furthermore, it may even be desirable to integrate manual and automated sorting systems to create a semi-automatic sorting process. For example, it is known to mechanically pre-sort objects transported toward a manual sorter; to mechanically divert objects from a feed conveyor into adjacent receiving containers for future manual sorting; and to have a manual sorter scan a machine readable label affixed to a package before the manual sorting process can continue.
U.S. Patent 5,697,504 (Hiramatsu et al.) describes a video coding system which reads and converts alpha-numeric symbols, such as the address and zip code of a mailing, into a bar code which is then printed and affixed to the article.
Thereafter, the bar code is scanned and the mailing is automatically sorted under programmed control according to the destination location represented by the bar code. In the event the alpha-numeric symbols are not decipherable by the video coder, a terminal displays the mailing's addressee to an operator who then deciphers the address to the extent necessary to generate the bar code.
The article handling and routing system described in U.S. Patent 4,776,464 (Miller et al.) includes an automated method and system for optically detecting destination data on a tag affixed to a piece of luggage. There, the tag bears a uniquely configured target symbol positioned adjacent to data representative of the luggage's intended destination. Cameras, positioned upstream of a diverter, capture the target symbol and other pertinent information on the tag as it passes within the camera's field of view. The destination data is then processed and used to direct a diverter under programmed control.
French Patent 2,676,941 (Roch) describes an automatic envelope sorting system which includes a feed conveyor, switching devices, and a series of compartments arranged in rows and columns. These compartments contain modules designed to accept envelopes, sorted according to final destination, until the module is full. Thereafter, the coinpartment is automatically emptied by a mechanism which replaces the full module with an empty one.
The sorting machine disclosed in U.S. Patent 4,615,446 (Pavie) describes an automated sorting system wherein envelopes are transported along parallel feed conveyors toward switching units which read a destination marker affixed to each envelope. Based on the destination marker information, the switching unit either allows the envelope to continue uninterrupted toward a downstream sorting line or directs the envelope to an adjacent parallel conveyor which will transport the envelope toward another downstream sorting line.
Verbex Voice Systems, Inc. (Edison, NJ), manufactures and distributes a portable continuous speech recognizer, Speech CommanderTM Portable, available with a headset and digitized speech response which communicates with a remote computer. An operator engaged in manual sorting and wearing Speech CommanderTM may speak an article's destination location into the headset, which the computer receives and processes. The computer then responds to the operator with a verbal prompt through the headset, which identifies the receiver or bin associated with that article's destination location.
The prior art automated sorting devices rely upon machine readable codes and symbols. The code or symbol affixed to an object is decoded and the resulting signal is used to automatically sort and transfer the object under programmed control. Should the automated sorting process fail to correctly transfer an object, that object must be manually sorted. Currently, manual sorting within or after an automated process requires an operator to decode the machine readable label on each article to be sorted before continuing the sorting process.
Thus, there is a need in the art for a system that improves manual sorting by eliminating repetitive steps such as hand-scanning, marking and labeling each article to be sorted; provides a means by which a manual operator can quickly and easily identify an article to be sorted; decreases sorting errors which arise from misread labels; and, increases the throughput efficiency of manual sorters.

Summary of the Invention The present invention seeks to assist the manual sorting operator by eliminating redundant manual procedures such as hand-scanning, marking, or labeling an article before it can be sorted. The present invention also seeks to assist the manual sorting operator by providing a detached ephemeral signal, which moves in a manner corresponding to the movement of the article, by which an article to be sorted can be quickly and easily identified. Finally, the present invention seeks to assist the manual sorting operator increase throughput speed and reduce mis-sort errors.
In accordance with the present invention, these objectives are accomplished by providing a device which comprises a conveyor positioned to transport articles to a sorting operator, and a detached indicator moving in a manner corresponding to the movement of the article to be sorted, which relates the article to an associated destination location.
The present invention, in one of its embodiments, also seeks to cure the process problems and prior art inadequacies noted above by providing a detached textual display which identifies, in human readable form, an article to be sorted and its related destination location. The display remains substantially close to the related article as that article is conveyed toward a manual sorting operator positioned near a plurality of destination locations.
Here, an indicator is a signal presented in human perceptible form which identifies an article to be sorted and relates the article to a destination location.
Here, a display is a signal presenting textual information in visually perceptible form which identifies an article to be sorted and a related destination location.
Whether an indicator or display, the signal is ephemeral; moving in a manner corresponding to the movement of the article and may be matched with a related destination location signal as part of the manual sorting process. For the purpose of this disclosure, any form of the verb "transmit" is perfectly synonymous with any form of the verb "present" when referencing a signal which is either sent by a device or received by the sorting operator.
In the preferred embodiment, two parallel feed conveyors are positioned to transport articles to be sorted toward a switching unit. The switching unit is configured to transfer the articles between the parallel conveyors and discharge them in ordered sequenced onto sorting conveyors. The sorting conveyors transport the articles toward sorting operators. The detached display, an LED
panel, is positioned adjacent to the sorting conveyors and is configured to present dynamically moving alpha-numeric characters, much like an electronic ticker-tape.
The LED panel presents information representative of the article and related destination location under programmed control, such that the information visually moves in a manner corresponding to the movement of the article. The destination location, positioned adjacent the sorting conveyor and sorting operator, is configured to transmit a perceptible signal when an associated article is approaching. The sorting operator, upon observing the information presented on the display and the signal transmitted from the related destination location, removes the article from the sorting conveyor and places it within the destination location.

In practice, the switching unit, detached indicator, and destination location signal are directed according to destination indicia affixed to the article and input to a programmed logic controller by an optical reader. The controller assigns a destination location for each article and generates a destination signal, later converted and presented in human readable form for the sorting operator. Shaft encoders on each of the conveyors track the position of the articles while photocell sensors immediately before the optical readers and switching unit activate those devices and associate the results with particular articles.

Alternative embodiments incorporating the present invention are readily apparent. For example, a beam of light cast onto a moving article may replace the display, and a stationary display may identify the related destination location. In addition, audible signals may replace the visual signals. Also, because of the flexibility of the detached indicator, the structure of the preferred sorting configuration may be reduced or expanded in response to the number of destination locations or fluctuations in operating volume.

Brief Description of the Drawings Figure 1 is a top diagrammatic view of the sorting system embodying the present invention.
Figure 2 is a perspective view of a sorting conveyor and certain destination locations, from the viewpoint of the sorting operator, which illustrates the display identifying two articles to be sorted.
Figure 3 is a perspective view of a sorting conveyor and certain destination locations, from the viewpoint of the sorting operator, which illustrates a display variation wherein one article is waiting to be sorted and a second article in on the conveyor in error.

Figure 4 is a perspective view of a sorting conveyor and certain destination locations, from the viewpoint of the sorting operator, which illustrates a display variation wherein the related destination location is full.
Figure 5 is a rear elevation view of a typical destination location cluster.
Figure 6 shows an alternative embodiment of the present invention, a detached indicator constructed of an overhead projection unit.
Figure 7 is a block diagram of the control system used for operation of the sorting system, under control of a programmable controller.

Detailed Description Referring now in more detail to the drawings, in which like numerals refer to like parts throughout the several views, Fig. 1 illustrates the present invention --a synchronized parallel sorting system 10. By way of an overview, the sorting system 10 includes powered feed conveyors 12a, 12b; powered transitional conveyors 18a-18d; powered sorting conveyors 20a, 20b; a switching unit 30 for determining which sorting conveyor receives an article; displays 46 perceivable by sorting operators 48; and, destination location clusters 51-58.
The present invention 10 may be reduced or expanded, in whole or in part, to create additional configurations. For example, the embodiment illustrated in Fig. 1 may be reduced by eliminating transitional conveyor 18c, sorting conveyor 20b and destination location clusters 55-58. Alternatively, from the embodiment illustrated in Fig. 1, transitional conveyors 18c,18d may be extended by including additional switching units or destination location clusters to create more complex arrangements.
Turning now to a detailed description of the prefened embodiment shown in Fig. 1, the powered feed conveyors 12a, 12b transfer articles to be sorted, such as parcels Pl-P4, in the direction of arrows A causing the parcels to pass under optical readers 14a, 14b. Each optical reader 14a, 14b, positioned at the beginning of the respective feed conveyors 12a, 12b, scans and captures destination indicia found in the form of alpha-numeric characters, barcode or two-dimensional symbols (such as MaxiCode symbols), affixed to each parcel. The optical readers 14a, 14b supply the programmable logic controller (PLC) 25 with destination indicia captured during scanning.
Suitable optical reader systems for imaging destination indicia in the form of multiple symbologies including alpha-numeric characters are shown in U.S.
Patents 5,291,564; 5,308,960; 5,327,171; and 5,430,282 which may be referred to for further details. Systems for locating and decoding bar codes and the MaxiCode O dense code symbology are described in U.S. Patents 4,874,936;
4,896,029; 5,438,188; 5,412,196; 5,412,197, 5,343,028; 5,352,878, 5,404,003;
5,384,451; 5,515,447; and, European Patent 0764307 which may be referred to for further details. Other systems known in the art may be appropriate.
The present invention 10 requires synchronization of the parcel flow.
Scanning of destination indicia, as well as manual parcel handling, require certain time and spatial intervals between each parcel. Synchronized flow regulators (not shown) maintain a constant ratio of speed between the feed conveyors 12a, 12b, the transitional conveyors 18a-18d and the sorting conveyors 20a, 20b. In a well known manner, the PLC 25 generates a timing signal which synchronizes the package input onto feed conveyors 12a, 12b. These timing signals also dictate the rate by which parcels will be transferred from feeding conveyors 12a, 12b to transitional conveyors 18a, 18b. For example, in the preferred embodiment, parcels are transferred onto each feeding conveyor 12a, 12b at the rate of thirty per minute. In addition, these timing signals help maintain a pre-set time span between parcels.
Synchronized parcel flow also requires parcels be monitored throughout the sorting system 10. Here, the location of each parcel is monitored by beam photocell transmitters 26a-26d. The photocells are a retro-reflective type which provide a signal when a parcel passing immediately in front breaks the beam.
Transmitters 26a mounted immediately upstream of each optical reader 14a, 14b triggers a "start" signal to the respective reader via PLC 25. When appropriate, transmitters 26b mounted immediately upstream of the switching unit 30 trigger a "divert" signal to the switching unit 30 via the PLC 25. Transmitters 26c mounted immediately downstream of the switching unit 30 track exiting parcels.
Transmitters 26d track parcels exiting the transitional conveyors 18c, 18d and entering sorting conveyors 20a, 20b.
Rotary belt encoders 28 (not shown) are positioned to measure the displacement of each conveyor 12a, 12b, 18a-18d, 20a, and 20b. In the preferred embodiment, the conveyors are belt or powered roller conveyors. However, for the purpose of this disclosure "conveyor" is used to include any powered or non-powered device that moves, transports or carries articles from one location to another. The PLC 25, in response to the input signals from the transmitters 26a-b, optical readers 14a, 14b, and encoders 28, regulates the conveyor speeds and controls the switching unit 30 in a well known manner. Once a particular parcel is associated with an encoder count at a particular location, it can be tracked through the system in a well known manner.

It is understood by those skilled in the conveying arts that many of the elements described above may be readily replaced by other elements. By way of illustration and not limitation; it is well known that other conveyors such as slides or rollers may provide the same function as belt or powered roller conveyors;
the parcels may be articles of any size or shape capable of being carried by the conveyors; other characteristics or attributes of the parcels may provide the same function as the destination indicia; other devices or a human operator may provide the same function as the optical readers; other devices or a human operator may provide the same function as the switching unit; and, other devices or a human operator may provide the same function as the PLC.
Feed conveyors 12a, 12b transfer parcels to transitional conveyors 18a, 18b in the direction of arrows A to switching unit 30. Throughout the sorting invention 10, directing parcels from one conveyor to another may be accomplished with well known devices such as the powered belt turn described in U.S. Patent 5,439,098, which may be referred to for further details. Other systems known in the art may be appropriate.

Switching unit 30 is a diverting station configured to transfer parcels between conveyors 18a, 18b and discharge the parcels onto conveyors 18c and 18d. Suitable switching units are shown in US. Patents 3,246,733; 5,620,102;
5,291,564; 5,308,960; and European patent 0438667A2, which patents may be referred to for further details. Other systems known in the art may be appropriate.
PLC 25 is configured to receive input signals from optical readers 14a, 14b, representative of the destination indicia captured during scanning. In a well known manner, the PLC 25 matches the destination indicia with a destination location receiver a-x within a destination location cluster 51-58 and creates a unique destination signal S representative of that match. Each destination signal S
preferably includes at least three parts: a unique parcel number, the city/state destination of the parcel, and the receiver designation. Thus, each destination signal S forms a unique identifier which permits the PLC 25 to track each parcel and control the sorting system 10 according to parcel location.
For example, after optical reader 14a scans parcel P4, PLC 25 selects destination location receiver 52k (receiver k within destination location cluster 52) because that receiver is associated with the destination indicia affixed to parcel N.
PLC 25 then generates and assigns a destination signal S4 representative of the association between the receiver 52k and parcel P4.
Switching unit 30 is configured to receive the destination signal S
transmitted by PLC 25. For example, upon receiving destination signals Sl-S4 from PLC 25 regarding parcels Pl-P4, the switching unit 30 diverts parcel Pl from transitional conveyor 18b to transitional conveyor 18d and transfers parcel P2 from transitional conveyor 18a to transitional conveyor 18c. The result, as illustrated in Fig. 1, yields parcels P2 and P3 on transitional conveyor 18c, while parcels P1 and P4 are on transitional conveyor 18d. The switching unit 30 has placed these parcels on these conveyors because PLC 25 assigned parcels P2 and P? receivers downstream of transitional conveyor 18c. Likewise, PLC 2-f' assigned parcels Pl aYid P4 receivers downstream of transitional conveyor 18d.
From transitional conveyor 18d parcels P1, P4 are transported to sorting conveyor 20a, and from transitional conveyor 18c, parcels P2, P3 are carried to sorting conveyor 20b. Sorting conveyor 20a, spans sequential operating zones 42a, 42b and sorting conveyor 20b spans sequential operating zones 42c, 42d, as indicated by dashed line borders. Each sequential operating zone 42a-42d includes a sorting operator 48, a pair of the destination clusters 51-58 positioned on opposite sides of the sorting conveyors 20a, 20b, and defines the areas wherein parcels are removed from the conveyors 20a, 20b and transferred to the related destination location receiver a-x within its respective destination cluster pair.
As shown in Fig. 1, operating zone 42a includes destination clusters 51, 53;
operating zone 42b includes destination clusters 52, 54; operating zone 42c includes destination clusters 55, 57; and, operating zone 42d includes destination clusters 56, 58. As shown in Fig. 2, typical destination location cluster 52 comprises a matrix of destination locations receivers a-x, which, in the preferred embodiment, is an array of cubicles or cells positioned in front of and behind the sorting operator 48. t The sorting process will now be described with reference to parcels P1 and P4 on sorting conveyor 20a; the sorting of parcels P2 and P3 being identical along sorting conveyor 20b.

Mounted immediately adjacent to the sorting conveyor 20a is a display 46.
As best shown in Fig. 2, the display 46 is a Light Emitting Diode (LED) panel mounted immediately adjacent to the sorting conveyor 20a. The display 46 is configured to transmit dynamically moving alpha-numeric characters under programmed control, much like an electronic ticker-tape. In other words, the display will present characters which visually cascade or appear to travel in succession down the LED panel at the same speed as the articles travel down the conveyor. The display 46 may also be configured to present multiple colors, and to cause the alpha-numeric characters to flash or blink.
The display 46 is also configured to receive a destination signal S from the PLC 25 and, in a well known manner, convert the destination signal S into alpha-numeric characters identifying the parcel that is entering the sorting conveyor 20a.
To accomplish this, immediately upon a parcel entering the sorting conveyor 20a photo-cell transmitter 26d signals the optical readers 44a to again scan the parcel.
This second scanning step triggers the PLC 25, in a well known manner, to transmit the destination signal S to the display 46 where two parts of the destination signal S, the city/state designation and the receiver designation, are presented.

As described below, including possible variations, a parcel's complete city/state designation and receiver designation are presented when the parcel enters the operational zone which contains the associated destination location and is ready to be placed therein. To continue the example presented above, destination signal S4 is representative of the association between destination location receiver 52k and parcel N. As illustrated in Fig. 2, signal S4 received from the PLC 25 is presented on display 46 as the dynamically moving city/state designation and receiver destination "BosMa 52k," designated 47. Here, "BosMa" refers to the city and state captured from the destination indicia and "52k" refers to the destination location receiver wherein parcels destined for Boston, Massachusetts, are deposited. The designation 47, remains alongside and substantially close to each parcel as the parcel is transported along the sorting conveyor 20a. In the preferred embodiment, the designation 47 is flashing to further identify the parcel to be sorted. Only the designation 47 is flashing, although, as described below, other information may appear on the display 46.

Each sorting operator 48 is positioned between each set of opposite facing destination clusters 51, 53, or 52, 54, such that the parcels P1, P4 on conveyor 20a are within comfortable reach, the display 46 is easily visible, and the destination location receivers a-x are within comfortable reach. As parcel P4 enters sequential operating zone 42b it passes in front of photocell 26d, breaking the beam triggers a signal to the optical reader 44a to scan the parcel. Upon scanning the destination indicia affixed to the parcel, a signal is sent to the display 46 via PLC 25 to broadc;ast signal S4, the parcel information "BosMa 52k" 47 representative of parcel N. Simultaneously, the perimeter of destination cell k within cluster 52 is illuminated.

Installed around the perimeter of each destination receiver are illumination strips 59. Each strip, constructed of LED lights encased in a protective covering, may be illuminated by a signal from the PLC 25. When a parcel destined for a specific receiver enters the related operating zone and is ready to be placed within the receiver, the perimeter of that receiver is illuminated by the strips 59.
Those skilled in the art will perceive many suitable alternative marking systems, such as fluorescent lamps, light pipes, fiber optics, or a light at each corner of the receiver.
At this point in the sorting process, where the display 46 presents flashing parcel information 47 and the perimeter of receiver 52k is illuminated, the sorting operator 48 is visually alerted by display 46 that parcel P4 destined for Boston, Massachusetts, should be placed in receiver k within cluster 52. In response, the sorting operator 48 removes the parcel P4 from the conveyor 20a and places it in receiver k within cluster 52.
Receiver 52k will remain illuminated and the parcel identification 47 will remain visible until PLC 25 receives either an appropriate signal from an sorting operator 48, as explained below, or the parcel exits the related operating zone 42b.
For address verification, sorting operator 48 compares designation 47 with the destination indicia on a parcel. The operator places a "wrong" package in a storage area described below, and may stop the entire sort process if there is no match for two sequential parcels. Thus possible system errors are eliminated. Such errors may occur on each sorting stage including label and bar code reading and destination container number computing.
To confirm the parcel P4 has been correctly placed, and to cancel the particular designation "BosMa 52k" 47 from the display 46, the operator 48 presses a code on a keyboard 62. The code, received by PLC 25, cancels the designation 47 and strips 59. Alternatively, a headset having a microphone in communication with the PLC 25, which is capable of both voice recognition and voice synthesis, may be substituted for the keyboard 62. The sorting operator 48 may verbally signal the PLC 25 that the article has been placed by speaking into the microphone, from which the PLC 25 receives and considers an order to cancel the designation 47 and illumination strips 59.

Parcel P1, destined for Danbury, Connecticut, was scaimed at the reader 44a prior to the parcel P4, and has been assigned receiver a within cluster 51 by the PLC 25. In the manner described above for parcel P4, the sorting operator in operating zone 42a places parcel P1 within cel151a and cancels the designation "DanCt51 a" by entering the appropriate code on keyboard 62. Further operation of the system with regard to parcel P1 in zone 42b is described below.
In the preferred embodiment the operator 48 is a human. Thus, the conveyor length within each operating zone 42a, 42b is approximately seven to eight feet long. It will be understood by those skilled in the conveying art that the functions of a human sorting operator 48 and display 46 may be replaced by other elements. By way of illustration and not limitation, an audible signal, beam of light, or some other perceptible signal which can be received by a human or human assisting device may provide the same function as the LED display 46.
Similarly, a mechanical arm or robot may work in conjunction with or under the control of a human operator.
As described above, the sorting operator 48 may place a parcel in the designated receiver a-x. As described below, the sorting operator 48 may permit the parcel to continue to the end of the sorting conveyor 20a where the parcel will be discharged into a storage container 64, shown in Fig. 1, or the parcel may be removed from the sorting conveyor 20a and placed on a storage shelf 66, shown in Fig. 2.
Each destination location cluster 51-54, is accessible from the back by a packing operator 68. As described below, the purpose of the packing operator is to remove parcels from the destination receivers and load them into transportation boxes 116.
Figure 3 further illustrates operation of the display 46 shown in Fig. 2.
Parcels P6 and P8 have entered operating zones 42a and 42b, respectively. For the purpose of this description, parcels P6 and P1 are both addressed to Danbury, Connecticut. Parcel P8 is on conveyor 20a in error, the result of a poorly written address label. Parcel identification number P6' is the designation on display adjacent to parcel P6. Parcel identification number P8' is the designation on display 46 adjacent to parcel P8. As described above, each destination signal S
preferably includes at least three parts: a unique parcel number, the city/state destination of the parcel, and the receiver designation. The parcel identification number is the third part of the destination signal S.
The designations P6' and P8' identify the parcel, but not a related receiver.
The destination locations for neither P6 nor P8 appear on the display 46 because the first parcel P6 is waiting in zone 42a for the previous parcel Pl to be processed. The destination location for parcel P8 does not appear on the display because it does not belong in operating zone 42b. Thus, neither parcel is ready to be placed within an associated receiver. In the case of parcel P6, once parcel P1 is placed and the code entered to cancel the associated designation, the destination location information for P6 will be presented flashing on display 47. As may also be illustrated with parcel P6, the display 46 will not present the destination designation until the parcel P6 has entered the operating zone which includes the related receiver. Once it does enter the associated operating zone, the destination designation will be presented and parcel P6 may then be placed within receiver 51a.
In the case of parcel P8, the operator may permit it to be discharged in storage area 64 or remove and place it on the storage shelf 66. The sorting operator then cancels the designation P8'. Those parcels received by storage area 64 or placed on storage shelf 66 may be scanned with a hand-held bar code scanner (not shown) at a later time to determine the related receiver.
Figure 4 further illustrates operation of the display 46 shown in Fig. 2.
Here, parcel P12 is identified by the designation "XXX52x" 80 instead of the usual parcel designation information. This unique signal means that a predetermined number of parcels in the receiver 52x has been reached, that is, cell 52x is full. As there is no room in 52x, parcel P12 and any subsequent parcels marked in a similar manner must be placed in storage 64 or 66 until receiver 52x has been emptied by the packing operator 68 as described below. In expectation of a full receiver, the sorting operator 48 can send a "receiver is full" message to the PLC 25 by entering the receiver's designation on the keyboard 62.

Figure 5 is an elevation view illustrating the rear of a typical destination location cluster. Location receivers are identified from the back with a label 100.
An LED display screen 102, which may be identical to the display 46 described above, is positioned immediately above the top row of destination receivers a-x.
Also positioned at the rear of each destination location are receiver back door 110 and receiver bar code label 112. There is a keyboard 114 located at the back of each destination location cluster 51-58.

When a specific receiver is full, as described above with regard to 52x, the display 102 presents a receiver designation 104. Here, the designation 104 is limited to the receiver number because the packing operator 68 is concerned only with Which receiver is full. Upon observing the "full" message, the packing operator 68 transfers all the parcels from the full receiver to an adjacent transportation container 116.

In operation, the display 102 presents the numbers of those destination receivers that are f-ull. As shown in Fig. 5, cells s, x, and j are full. But for the purpose of this disclosure, only receiver j is referenced. In response, the packing operator 68 hand-scans the j label 112, with a hand-held bar code scanner (not shown), or enters the j designation on the keyboard 114. The signal generated by the scanner or keyboard is stored by the PLC 25.
The packing operator 68 then opens the j door 110 and removes those parcels into adjacent transportation container 116 while counting the total number of parcels placed therein. The packing operator 68 enters that number on the keyboard 114. In a well known manner, the signal representative of the parcels placed in container 116 is stored by the PLC 25 with the signal representative of cell j.
Packing operator 68 then scans a transportation container bar code label 118 affixed to the transportation container 116. In a well known manner, the signal representative of the transportation container 116 is stored by the PLC

with the two previous signals, namely, the destination location obtained from label 112 and the total number of parcels placed in the container 116. Together, these three signals are stored by the PLC 25 for the purpose of tracking subsequent parcel movement and location. This last scamiing step causes the designation to be deleted from display 102. As noted earlier, the keyboard entry steps may be replaced by voice data entry.

Referring to the block diagram of Fig. 7, the operation of the sorting system 10 is automated by the programmable logic controller (PLC) 25. The PLC may receive input signals from the optical readers 14a, 14b, 44a, 44b that read alpha-numeric characters, barcode or two-dimensional symbols (such as MaxiCode symbols) on the parcels. Such a symbol may contain address information that allows the PLC to determine, in a well known manner, which is the correct conveyor 18c, 18d to transfer the parcel to the appropriate sorting conveyor 20a, 20b. Photocell transmitters are positioned to detect the position of parcels, the output of those photocells is input to the PLC 25. The PLC may also receive information about the parcel P directly from other sensors (not shown), such as a scale or a device for measuring the parcel's dimensions. Rotary belt encoders are positioned to measure the displacement of each conveyor 12a, 12b, 18a-18d, 20a, 20b and the output of these encoders 28 is input to the PLC. Parcel information may also be manually entered at keyboards 62, 114. The PLC, in response to these input signals, sends control signals to the switching unit 30 which transfers articles between conveyors, and to displays 46,102 and strips 59 which identify parcels and location destinations.
Alternative Embodiment Figure 6 illustrates an alternative embodiment of a sorting system 140 with a detached indicator. Generally speaking, an overhead projection unit 150 includes lamps 152 that cast a sharply focused beam of light on a parcel to be sorted.
Like the designation 47 described above, the beam of light acts as a visual indicator to sorting operator 48. A stationary window display 154, mounted at the end of each row of receivers, presents related destination information.
More specifically, mounted immediately above the sorting conveyors 20a, 20b is an overhead projection unit 150. As the sorting conveyors 20a, 20b are identical, the sorting process will now be described with reference to only sorting conveyor 20a. Each projection unit 150 is the length of the conveyor 20a and includes a plurality of small lamps 152. In the preferred embodiment, the lamps are light emitting diodes (LEDs) mounted from one to five inches (1" - 5") apart.
Each LED 152 is positioned so that when illuminated, it casts a beam of light toward the surface of the conveyor 20a.

Like the LED display screen 46 described above, the LEDs 152 are configured to present a dynamically moving sequence of light beams under prograinmed control. Here, each LED 152 will shine on a parcel for a brief time, as that parcel passes beneath on the sorting conveyor 20a. The LEDs 152 are illuminated by the PLC 25 at the same speed as the conveyor 20a. In this manner, the LEDs 152 cooperate to create a visual effect wherein it appears a beam of light remains focused on a parcel as it travels down the conveyor.
Mounted at the end of each row of receivers is a window display 154. As illustrated in Fig. 6, the window display. 154 is a Light Emitting Diode (LED) display panel mounted within a stationary frame extending outwardly from the array of receivers. The display 154 is preferably configured to transmit or present at least three lines of alphanumeric characters. Like display 46 described above, display 154 is also configured to receive a destination signal S from the PLC

and, in a well known manner, convert the destination signal S into alpha-numeric characters which present sorting information.
The first line of display may include the receiver designation. Here, that is cell number nine. As cell nine is associated with Boston, Massachusetts, and more specifically with zip code 02201, the first and second lines present that information under the control of PLC 25. The third line is a dynamically moving list of destination cells in sequential order which reflect the destination cells of the parcels that follow.
In operation, imm.ediately upon a parcel entering the sorting conveyor 20a, optical reader 44a again scans the parcel. For exainple, destination signal S4 is representative of the association between destination location cell nine and parcel N. Upon scanning the destination indicia affixed to parcel P4, a signal is sent to the display 154 via PLC 25 to transmit signal S4, the cell destination number nine and parcel information "Boston MA 02201" representative of parcel N.
Simultaneously, the perimeter of destination cell nine is illuminated by strips 59 in the same manner as described above and the lamp 152a immediately above parcel P4 is illuminated to cast a beam of light onto parcel N.
At this point in the sorting process, when the display 154 presents parcel P4 information and the perimeter of cell nine is illuminated, the sorting operator 48 is visually alerted that parcel P4 destined for Boston, Massachusetts, should be placed in cell nine. In response, the sorting operator 48 removes the parcel from the conveyor 20a and places it in cell nine.

An array of photo-beam sensors 158, of the type described above, are positioned with their transmitters and receptor on opposite sides of the conveyor 20a. In the preferred embodiment, the sensors 158 are located one to five inches (1" - 5") apart, centered directly under a lamp 152. Here, the sensors 158 track the position of parcels within each operating zone 42b, 42a and act as off/on controls for the lamps 152.

Continuing the example of parcel P4 shown in Fig. 6, as parcel P4 is transported along conveyor 20a it breaks the beam of each sensor 158. Each breaking of the photocell beam signals to the LED 152 mounted immediately overhead, via the PLC 25, to become illuminated. In this manner, an almost continuous beam of light remains focused on parcel P4 while it is on the conveyor 20a. Once parcel P4 is removed from the conveyor 20a, the next photocell is not broken. Thus, the LED 152 immediately above the unbroken photocell beam remains off as do all the subsequent LEDs.
In operation, a sorting operator 48 may have before him or her a continuous line of parcels on the sorting conveyor 20a. Each parcel will be tracked by a beam of light cast from a respective LED 152, and the display 154 will include a list of destination cells ordered to correspond to the parcel sequence. Where a photocell beam is broken, the lamp immediately is illuminated. Where a photocell beam is not broken, the lamp immediately above remains in the normally off condition.
Further, when a parcel has been removed from the conveyor, the next photocell beam is unbroken. This unbroken beam causes a signal to be sent to the PLC 25 that the parcel has been placed. In response, the PLC 25 presents the sorting information for the next parcel.

Like the display 46 described above, display 154 presents the destination cluster and sorting information only when a parcel is within the associated destination cluster and ready to be placed in the associated receiver. In the example of Fig. 6, parcels P4 and P5 are within their associated operating zones, 42b, 42a, respectively, and are ready to be placed. Thus, each display 154 presents the sorting information related to those parcels. On the other hand, parcels are designated only by their associated destination receivers, "29," "52," and "12"
respectively. After parcel P4 has been placed, the designation "9 Boston MA
02201" will be replaced with the cell designation number "2" and related destination information for the next parcel following N. Here, it is cell designation "52" or that is the next cell number presented on the third line of display 154. The second parcel following P4 is designated for cell "12" and is processed in the same manner. Parcels P5 and P6 are processed in a like manner.
The alternative embodiment describes one configuration by which a detached indicator moves in a manner corresponding to the movement of a parcel and relates the parcel to an associated destination location. To those skilled in the art, it will be readily apparent that other configurations can fulfill the same purpose. By way of example and not limitation, lamps mounted overhead and attached to an endless drive 35 assembly may individually illuminate and track, that is, remain continuously aimed, on a specific parcel until that parcel is removed from the conveyor. Similarly, lamps mounted overhead may be pivotally mounted and motor controlled to cast a beam of light in an arc. In this manner, each lamp may cast a moving beam of light which follows the parcel for a certain distance until the parcel reaches the beam from the adjacent lamp. In these examples, a detached indicator moves in a manner corresponding to the movement of the parcel to an associated destination location.
In the preferred or alternative embodiment, the sorting systems described above assist the manual sorting operator by eliminating redundant procedures such as hand-scamiing and parcel labeling; by establishing communication between an operator and the control system, as well as between operators; by reducing mis-sort errors; by providing system flexibility in that the number of operators and destination locations can be adjusted to reflect operating volume; and by providing a system which requires only minimum training of the new operator. These systems are particularly well suited for small and middle-size parcel sorting facilities that service many destination locations or have significant fluctuations in operating volume.

Those skilled in the art will understand that the programs, processes, methods, etc., described herein are not related or limited to any particular computer or apparatus. Rather, various types of general purpose machines may be used with programs constructed in accordance with the teaching described herein.
Similarly, it may prove advantageous to construct specialized apparatus to perform the method steps described herein by way of dedicated computer systems with hard-wired logic or programs stored in nonvolatile memory, such as read only memory.
While the present invention in its various aspects has been described in detail with regard to preferred embodiments thereof, and an example of an alternative embodiment has been provided, it should be understood that variations, modifications and enhancements can be made to the disclosed apparatus and procedures without departing from the scope of the present invention as defined in the appended claims.

Claims (35)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. An apparatus for identifying and designating an article for sorting by an operator, comprising:

a conveyor positioned to transport said article to said operator; and an indicator programmed to move along said conveyor with said article and to relate said article to a destination location.
2. The apparatus of claim 1, further comprising an optical reader positioned to capture destination indicia affixed to said article.
3. The apparatus of claim 2, further comprising a controller operative to receive a signal from said optical reader corresponding to said destination indicia, assign a destination location to said article based on said signal, and generate a destination signal associated with said destination location.
4. The apparatus of claim 3, further comprising a plurality of feed conveyors which direct said article to a switching unit.
5. The apparatus of claim 4, wherein said switching unit is configured to divert said article between said feed conveyors in response to said destination signal from said controller.
6. The apparatus of claim 1, wherein said indicator comprises a set of dynamically moving alpha-numeric characters presented on a display device positioned along a length of said conveyor, said characters representative of said destination location associated with said article.
7. The apparatus of claim 1, wherein said destination location is configured to present a perceptible signal in response to approach of said associated article.
8. The apparatus of claim 7, wherein said indicator moving along said conveyor and said perceptible signal presented by said destination location are cancelled after said associated article is transferred to said destination location.
9. The apparatus of claim 1, wherein said indicator comprises a means for illuminating said article, said destination location being marked while said article is illuminated.
10. An apparatus for identifying and designating an article for sorting by an operator, comprising:

a conveyor positioned to transport said article to said operator;
an optical reader positioned to capture destination indicia affixed to said article;
a controller operative to receive a signal from said optical reader corresponding to said destination indicia, assign a destination location to said article based on said signal, and generate a destination signal associated with said destination location;
a switching unit configured to divert said article selectively between said conveyor and an adjacent conveyor in response to said destination signal; and an indicator programmed to move along said conveyor with said article and to relate said article to said destination location;
said destination location being configured to transmit a perceptible signal when said associated article is substantially close to said destination location.
11. The apparatus of claim 10 where said indicator comprises a set of dynamically moving alpha-numeric characters presented on a display device positioned along a length of said conveyor, said characters representative of said destination location associated with said article.
12. The apparatus of claim 10, wherein said indicator moving along said conveyor and said perceptible signal presented by said destination are cancelled when said article is transferred to said destination location.
13. An apparatus for identifying and designating an article for sorting by an operator, comprising:
a conveyor positioned to transport said article to said operator; and a moving display, programmed to move along said conveyor with said article and to relate said article to a destination location.
14. The apparatus of claim 13, wherein said moving display comprises a set of dynamically moving alpha-numeric characters that are representative of said destination location associated with said article.
15. The apparatus of claim 14, wherein said set of moving characters remains substantially within a predetermined distance from said article as said article is conveyed toward said operator.
16. A method of designating and sorting an article, comprising the steps of:
conveying said article toward a plurality of destination locations;
determining a related destination location for said article;
projecting an indicator from an adjacent location toward said article, said indicator programmed to relate said article to said destination location;
moving said indicator along a path followed by said article as said article is conveyed towards said related destination location; and sorting said article to said related destination location.
17. The method of claim 16, wherein said step of sorting further comprises the steps of transferring said article between, and removing said article from, a plurality of conveyors.
18. The method of claim 16, wherein said related destination location is configured to present a perceptible signal when said related article approaches said destination location.
19. The apparatus of claim 1, further comprising:

a second indicator programmed to move along said conveyor with a second article and to relate said second article to a second destination location.
20. The apparatus of claim 19, wherein said articles and said indicators move contemporaneously along said conveyor.
21. An apparatus for identifying and designating an article for sorting by an operator, comprising:

a conveyor positioned to transport said article to said operator; and an indicator programmed to move along said conveyor with said article and to relate said article to a destination location, said indicator remaining substantially within a predetermined distance from said article as said article travels toward said operator.
22. The apparatus of claim 21, wherein said indicator remains substantially close to said article as said article travels toward said operator.
23. An apparatus for identifying and designating an article for sorting by an operator, comprising:
a conveyor positioned to transport said article to said operator;
an optical reader positioned to capture indicia affixed to said article;
a controller operative to receive a reader signal from said optical reader corresponding to said indicia, assign a destination location to said article based on said reader signal, and generate a destination signal associated with said destination location; and a display device positioned along a length of said conveyor and configured to present dynamically moving alpha-numeric characters under programmed control;

said display device operative to receive said destination signal from said controller and to present alpha-numeric characters corresponding to said destination signal in association with said article, said display device programmed to move said alpha-numeric characters corresponding to said destination signal with said article as said article travels toward said operator.
24. The apparatus of claim 23, wherein said display device is operative to receive a second destination signal associated with a second article from said controller and to present alpha-numeric characters corresponding to said second destination signal in association with said second article, said display device programmed to move said alpha-numeric characters corresponding to said second destination signal with said second article as said second article travels toward said operator.
25. The apparatus of claim 24, wherein said articles and said alpha-numeric characters corresponding to said respective destination signals move contemporaneously along said conveyor.
26. The apparatus of claim 23, wherein said destination location is configured to transmit a perceptible signal in response to approach of said associated article.
27. The apparatus of claim 26, wherein the transmission of said perceptible signal comprises illuminating one or more illumination strips positioned around a perimeter of said destination location.
28. An apparatus for identifying and designating an article for sorting by an operator, comprising:
a conveyor positioned to transport said article to said operator;
an optical reader positioned to capture indicia affixed to said article;
a controller operative to receive a reader signal from said optical reader corresponding to said indicia, assign a destination location to said article based on said reader signal, and generate a destination signal associated with said destination location;

a stationary display device operative to receive said destination signal from said controller and to present said destination signal to said operator in human-perceptible form, said stationary display device positioned proximate to said destination location within said operator's field of view; and a projector programmed to project a beam of light moving with said article along said conveyor.
29. The apparatus of claim 28, wherein said destination location is configured to transmit a perceptible signal in response to approach of said article.
30. The apparatus of claim 29, wherein the transmission of said perceptible signal comprises illuminating one or more illumination strips positioned around a perimeter of said destination location.
31. An apparatus for identifying and designating an article for sorting by an operator, comprising:
a conveyor positioned to transport said article to said operator; and a projector programmed to project a beam of light moving with said article along said conveyor and to relate said article to a destination location.
32. A method of designating and sorting an article, comprising the steps of:
conveying said article toward a plurality of destination locations;
determining a related destination location for said article;
displaying a set of alpha-numeric characters on a display device positioned proximate a path followed by said article as said article is conveyed towards said related destination location, said characters programmed to relate said article to said destination location;
moving said set of alpha-numeric characters across said display device in a manner programmed to correspond to the movement of said article along said path followed by said article as said article is conveyed towards said related destination location;
and sorting said article to said related destination location.
33. The method of claim 32, further comprising the step of transmitting a perceptible signal from said related destination location when said article approaches said destination location.
34. The method of claim 33, wherein the step of transmitting said perceptible signal comprises illuminating one or more illumination strips positioned around a perimeter of said destination location.
35. A method of designating and sorting an article, comprising the steps of:
conveying said article toward a plurality of destination locations;
determining a related destination location for said article;
displaying one or more characters on a display device positioned proximate a path followed by said article as said article is conveyed towards said related destination location, said one or more characters programmed to relate said article to said destination location;
moving said one or more characters across said display device in a manner programmed to correspond to the movement of said article along said path followed by said article as said article is conveyed towards said related destination location; and sorting said article to said related destination location.
CA002491749A 2002-07-24 2003-07-23 Method and apparatus for synchronous semi-automatic parallel sorting Expired - Lifetime CA2491749C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/205,016 2002-07-24
US10/205,016 US6878896B2 (en) 2002-07-24 2002-07-24 Synchronous semi-automatic parallel sorting
PCT/US2003/022922 WO2004009257A1 (en) 2002-07-24 2003-07-23 Method and apparatus for synchronous semi-automatic parallel sorting

Publications (2)

Publication Number Publication Date
CA2491749A1 CA2491749A1 (en) 2004-01-29
CA2491749C true CA2491749C (en) 2008-04-01

Family

ID=30769968

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002491749A Expired - Lifetime CA2491749C (en) 2002-07-24 2003-07-23 Method and apparatus for synchronous semi-automatic parallel sorting

Country Status (10)

Country Link
US (1) US6878896B2 (en)
EP (1) EP1531949B1 (en)
JP (1) JP2005533731A (en)
CN (1) CN1287913C (en)
AT (1) ATE507012T1 (en)
AU (1) AU2003254116A1 (en)
CA (1) CA2491749C (en)
DE (1) DE60336905D1 (en)
MX (1) MXPA05000914A (en)
WO (1) WO2004009257A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104859990A (en) * 2010-03-12 2015-08-26 西姆伯蒂克有限责任公司 Replenishment and order fulfillment system

Families Citing this family (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2379662A1 (en) * 1999-07-19 2001-01-25 Sankyo Company Limited Preventive and therapeutic agents for cancer
US6854583B1 (en) * 2001-02-06 2005-02-15 Middlesex General Industries, Inc. Conveyorized storage and transportation system
US20030171948A1 (en) * 2002-02-13 2003-09-11 United Parcel Service Of America, Inc. Global consolidated clearance methods and systems
US7063256B2 (en) * 2003-03-04 2006-06-20 United Parcel Service Of America Item tracking and processing systems and methods
US7090134B2 (en) * 2003-03-04 2006-08-15 United Parcel Service Of America, Inc. System for projecting a handling instruction onto a moving item or parcel
US6944142B2 (en) * 2003-05-13 2005-09-13 Interdigital Technology Corporation Method for soft and softer handover in time division duplex code division multiple access (TDD-CDMA) networks
US7591630B2 (en) 2003-08-29 2009-09-22 Casepick Systems, Llc Materials-handling system using autonomous transfer and transport vehicles
US7201277B2 (en) * 2003-09-03 2007-04-10 Siemens Ag Device for automatically merging manually processable mail flats with a flow according to the distribution sequence of sorted mail items
CA2550852C (en) * 2003-12-30 2018-12-04 United Parcel Service Of America, Inc. Integrated global tracking and virtual inventory system
US7003376B2 (en) * 2004-01-30 2006-02-21 Mailroom Technology, Inc. Method for tracking a mail piece
US7243002B1 (en) * 2004-03-27 2007-07-10 Translogic Corporation System and method for carrier identification in a pneumatic tube system
US20060018996A1 (en) * 2004-07-09 2006-01-26 Pollock Paul W Automatic discovery of a storage configuration method and apparatus
US7221276B2 (en) * 2004-08-02 2007-05-22 United Parcel Service Of America, Inc. Systems and methods for using radio frequency identification tags to communicating sorting information
US7158856B2 (en) * 2004-08-31 2007-01-02 Dell Products L.P. Apparatus for enabling part picking in a manufacturing facility
DE102004051938B4 (en) * 2004-10-25 2008-02-28 Deutsche Post Ag Method and device for checking the loading of a transport device with objects
US7339476B2 (en) 2004-11-10 2008-03-04 Rockwell Automation Technologies, Inc. Systems and methods that integrate radio frequency identification (RFID) technology with industrial controllers
US7551081B2 (en) 2004-11-10 2009-06-23 Rockwell Automation Technologies, Inc. Systems and methods that integrate radio frequency identification (RFID) technology with agent-based control systems
US7278568B2 (en) * 2005-07-01 2007-10-09 United Parcel Service Of America, Inc. Mail sorting systems and methods
US7388491B2 (en) * 2005-07-20 2008-06-17 Rockwell Automation Technologies, Inc. Mobile RFID reader with integrated location awareness for material tracking and management
US7764191B2 (en) 2005-07-26 2010-07-27 Rockwell Automation Technologies, Inc. RFID tag data affecting automation controller with internal database
US8260948B2 (en) 2005-08-10 2012-09-04 Rockwell Automation Technologies, Inc. Enhanced controller utilizing RFID technology
US7510110B2 (en) * 2005-09-08 2009-03-31 Rockwell Automation Technologies, Inc. RFID architecture in an industrial controller environment
US7931197B2 (en) 2005-09-20 2011-04-26 Rockwell Automation Technologies, Inc. RFID-based product manufacturing and lifecycle management
US8025227B2 (en) 2005-09-30 2011-09-27 Rockwell Automation Technologies, Inc. Access to distributed databases via pointer stored in RFID tag
US7551929B2 (en) * 2006-05-08 2009-06-23 Skyhook Wireless, Inc. Estimation of speed and direction of travel in a WLAN positioning system using multiple position estimations
JP4999365B2 (en) * 2006-06-01 2012-08-15 三菱電機株式会社 Article conveying system and display method in article conveying system
US20080013069A1 (en) * 2006-07-07 2008-01-17 Lockheed Martin Corporation Synchronization of strobed illumination with line scanning of camera
US7855348B2 (en) * 2006-07-07 2010-12-21 Lockheed Martin Corporation Multiple illumination sources to level spectral response for machine vision camera
US20080035866A1 (en) * 2006-07-07 2008-02-14 Lockheed Martin Corporation Mail imaging system with UV illumination interrupt
US20080049972A1 (en) * 2006-07-07 2008-02-28 Lockheed Martin Corporation Mail imaging system with secondary illumination/imaging window
US8229455B2 (en) 2006-07-07 2012-07-24 Skyhook Wireless, Inc. System and method of gathering and caching WLAN packet information to improve position estimates of a WLAN positioning device
US20080012981A1 (en) * 2006-07-07 2008-01-17 Goodwin Mark D Mail processing system with dual camera assembly
DE102007004866B4 (en) * 2007-01-31 2010-09-02 Hänel & Co. storage rack
US20080248808A1 (en) * 2007-04-05 2008-10-09 Farshid Alizadeh-Shabdiz Estimation of position, speed and bearing using time difference of arrival and received signal strength in a wlan positioning system
US20080248741A1 (en) * 2007-04-05 2008-10-09 Farshid Alizadeh-Shabdiz Time difference of arrival based estimation of direction of travel in a wlan positioning system
US9440264B2 (en) 2007-04-13 2016-09-13 Siemens Industry, Inc. Method and system for weighing mail pieces
DE112008001754T5 (en) * 2007-07-09 2010-05-20 Middlesex General Industries, Inc., Woburn System and method for improving throughput and vehicle utilization of monorail factory transport systems
US8825200B2 (en) * 2007-11-07 2014-09-02 Siemens Industry, Inc. Method and system for tracking of items
DE102007062341B3 (en) * 2007-12-22 2009-07-30 Metso Lindemann Gmbh Aufstromsichter
FR2931710B1 (en) * 2008-05-27 2016-11-11 Thomas Henry SYSTEM FOR THE CHOTICAL CLASSIFICATION OF PHYSICAL OBJECTS (PARTICULARLY PAPER DOCUMENTS) COMPRISING A PLURALITY OF RECEPTACLES
US8793014B2 (en) 2008-10-09 2014-07-29 Translogic Corporation Pneumatic transport delivery control
US8382401B2 (en) 2008-10-09 2013-02-26 Translogic Corporation Variable diameter pneumatic tube brake
US8317432B2 (en) 2008-10-09 2012-11-27 Translogic Corporation Air valve pneumatic tube carrier system
US8234996B2 (en) * 2008-12-19 2012-08-07 United Parcel Service Of America, Inc. Apparatus and method for a sort station communication system
WO2010089785A1 (en) * 2009-02-09 2010-08-12 Elsag Datamat Spa System and method for sorting postal articles
DE102009021073A1 (en) * 2009-05-13 2010-11-18 Bsautomatisierung Gmbh sorter
DE102009060064A1 (en) * 2009-12-22 2011-06-30 Weber Maschinenbau GmbH Breidenbach, 35236 Device and method for creating product portions
EP3153243B1 (en) * 2010-05-06 2021-07-07 Eurosort B.V. Conveyor for transporting articles
DE102010035472A1 (en) * 2010-08-26 2012-03-01 Siemens Aktiengesellschaft Method and device for transporting objects in several parallel buffer sections
US8732093B2 (en) 2011-01-26 2014-05-20 United Parcel Service Of America, Inc. Systems and methods for enabling duty determination for a plurality of commingled international shipments
CN104272329A (en) 2011-03-17 2015-01-07 P·坎贝尔 On-shelf tracking (OST) system
US10378956B2 (en) * 2011-03-17 2019-08-13 Triangle Strategy Group, LLC System and method for reducing false positives caused by ambient lighting on infra-red sensors, and false positives caused by background vibrations on weight sensors
US10083453B2 (en) 2011-03-17 2018-09-25 Triangle Strategy Group, LLC Methods, systems, and computer readable media for tracking consumer interactions with products using modular sensor units
CN102390701A (en) * 2011-07-27 2012-03-28 山东科技大学 Straight-falling secondary sorting system
US8843231B2 (en) * 2011-09-13 2014-09-23 United Parcel Service Of America, Inc. Sort systems and methods
US9037287B1 (en) * 2012-02-17 2015-05-19 National Presort, Inc. System and method for optimizing a mail document sorting machine
US9139383B2 (en) 2012-09-13 2015-09-22 Translogic Corporation Control of pneumatic carrier system based on carrier or payload identification
FR2996789B1 (en) * 2012-10-11 2015-12-04 Solystic METHOD AND DEVICE FOR HELPING SORT OBJECTS IN A SORT BIN
CN102974548B (en) * 2012-11-27 2014-11-05 北京京东世纪贸易有限公司 Automatic sorting machine and control method and control device thereof
US9650214B2 (en) 2013-03-15 2017-05-16 Translogic Corporation Multiple carrier handling in a pneumatic transport system
ES2710203T3 (en) * 2013-06-14 2019-04-23 Agilent Technologies Inc System and method to facilitate the manual classification of objects
WO2015009660A1 (en) * 2013-07-17 2015-01-22 Laitram, L.L.C. Sorter with double runout lanes in each bullpen and method for sorting
US10024718B2 (en) 2014-01-02 2018-07-17 Triangle Strategy Group Llc Methods, systems, and computer readable media for tracking human interactions with objects using modular sensor segments
US9439996B2 (en) 2014-02-28 2016-09-13 Translogic Corporation Light source disinfection in a pneumatic transport system
FR3023736B1 (en) * 2014-07-21 2016-07-29 Solystic METHOD FOR SORTING POSTAL OBJECTS IN A SORT BIN WITH AUTOMATICALLY INVOLVING SORTED OBJECTS
CN104624508A (en) * 2015-02-16 2015-05-20 北京任我在线电子商务有限公司 Efficient sorting method and efficient sorting system
CN104815800A (en) * 2015-03-17 2015-08-05 成都尚作农业科技有限公司 Rapid light label based sorting system and implementation method thereof
CN104907258B (en) * 2015-04-30 2018-03-02 浙江立镖机器人有限公司 Wrap up go-no-go system and information acquisition method
CN104992202B (en) * 2015-07-08 2017-10-27 深圳市道嘉鲜科技有限公司 It is a kind of to exempt from sorting system and method for warehouse logisticses
EP3347780B1 (en) * 2015-09-11 2023-06-07 Berkshire Grey Operating Company, Inc. Robotic systems and methods for identifying and processing a variety of objects
ITUB20153965A1 (en) * 2015-09-28 2017-03-28 O C M S R L TRACKING SYSTEM OF PACKAGES MOVED THROUGH A TRANSPORTATION SYSTEM
US9937532B2 (en) 2015-12-18 2018-04-10 Berkshire Grey Inc. Perception systems and methods for identifying and processing a variety of objects
JP6646854B2 (en) * 2016-03-23 2020-02-14 パナソニックIpマネジメント株式会社 Projection instruction device, luggage sorting system and projection instruction method
JP6628038B2 (en) * 2016-03-23 2020-01-08 パナソニックIpマネジメント株式会社 Projection instruction device, luggage sorting system and projection instruction method
CN105775550A (en) * 2016-04-14 2016-07-20 福州大学 Order zone picking system based on electronic tags and implementation method thereof
US10217011B2 (en) 2016-04-15 2019-02-26 Agilent Technologies, Inc. Apparatus and method for facilitating manual sorting of slides
CN109070142A (en) * 2016-05-03 2018-12-21 欧佩克斯公司 Utilize the equipment for treating materials and method of dynamically configurable sorting array segregating articles
WO2018203921A1 (en) * 2017-05-03 2018-11-08 Opex Corporation Material handling apparatus and method for automatic and manual sorting of items using a dynamically configurable sorting array
US10639678B2 (en) 2016-05-03 2020-05-05 Opex Corporation Material handling apparatus and method for automatic and manual sorting of items using a dynamically configurable sorting array
CN106111563A (en) * 2016-07-14 2016-11-16 苏州卫捷医药科技有限公司 One manually prepares medicines intelligent sorting system
DE102016116574A1 (en) 2016-09-05 2018-03-08 Jürgen Burkholz System for displaying information at a sorting device
DE102016120132A1 (en) * 2016-10-21 2018-04-26 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Workpiece collection unit and method for supporting the machining of workpieces
WO2018175902A1 (en) * 2017-03-23 2018-09-27 Berkshire Grey, Inc. Systems and methods for processing objects, including automated linear processing stations
US11055504B2 (en) 2017-04-18 2021-07-06 Berkshire Grey, Inc. Systems and methods for separating objects using a vacuum roller with one or more object processing systems
US11080496B2 (en) 2017-04-18 2021-08-03 Berkshire Grey, Inc. Systems and methods for separating objects using vacuum diverts with one or more object processing systems
US11205059B2 (en) 2017-04-18 2021-12-21 Berkshire Grey, Inc. Systems and methods for separating objects using conveyor transfer with one or more object processing systems
US11416695B2 (en) 2017-04-18 2022-08-16 Berkshire Grey Operating Company, Inc. Systems and methods for distributing induction of objects to a plurality of object processing systems
US11301654B2 (en) 2017-04-18 2022-04-12 Berkshire Grey Operating Company, Inc. Systems and methods for limiting induction of objects to one or more object processing systems
WO2018195196A1 (en) 2017-04-18 2018-10-25 Berkshire Grey, Inc. Systems and methods for processing objects including space efficient distribution stations and automated output processing
US11200390B2 (en) 2017-04-18 2021-12-14 Berkshire Grey, Inc. Systems and methods for separating objects using drop conveyors with one or more object processing systems
US10471478B2 (en) * 2017-04-28 2019-11-12 United Parcel Service Of America, Inc. Conveyor belt assembly for identifying an asset sort location and methods of utilizing the same
JP7126066B2 (en) * 2017-06-30 2022-08-26 パナソニックIpマネジメント株式会社 Projection indication device, parcel sorting system and projection indication method
CN108147154A (en) * 2018-01-15 2018-06-12 邯郸市邯钢集团信达科技有限公司 A kind of closed silo isolation cycle discharge control method
DE202018100245U1 (en) * 2018-01-17 2019-04-24 Selmatec Systems Gmbh Display arrangement on a linear conveyor
US10583986B2 (en) 2018-05-04 2020-03-10 Berkshire Grey, Inc. Systems and methods for processing objects, including automated processing stations
WO2019226688A1 (en) 2018-05-22 2019-11-28 Agilent Technologies, Inc. Method and system for implementing augmented reality (ar)-based assistance within work environment
FR3083460B1 (en) * 2018-07-06 2020-07-10 Solystic METHOD FOR SORTING PACKAGES ON CONVEYOR WITH MOBILE LIGHT INDICATORS
CA3126766C (en) 2018-10-23 2023-09-19 Berkshire Grey, Inc. Systems and methods for dynamic processing of objects with data verification
CN110479619B (en) * 2019-08-20 2021-08-03 上海托华机器人有限公司 Quick sorting device, quick sorting system and sorting method
CN110465507A (en) * 2019-08-20 2019-11-19 上海托华机器人有限公司 A kind of package identification projecting method, application and package identification projection arrangement
CN110721914A (en) * 2019-08-21 2020-01-24 北京旷视机器人技术有限公司 Sorting system, sorting method, storage medium and apparatus
US11074708B1 (en) * 2020-01-06 2021-07-27 Hand Held Products, Inc. Dark parcel dimensioning
US11858006B2 (en) * 2020-06-01 2024-01-02 United States Postal Service System for sorting delivery items and methods for the same
JP7400694B2 (en) * 2020-10-29 2023-12-19 株式会社ダイフク Goods sorting system
KR102310889B1 (en) 2020-11-20 2021-10-12 쿠팡 주식회사 Method for providing information and electronic device performing the same
US11724895B1 (en) * 2021-09-23 2023-08-15 Amazon Technologies, Inc. Directed palletization using lights
DE102022120353A1 (en) * 2022-08-11 2024-02-22 Ametras Vision Gmbh Display system to support manual sorting of mail items
CN116899924B (en) * 2023-09-07 2023-11-17 常州创盛智能装备股份有限公司 Lithium battery cross visual inspection device and lithium battery cross visual inspection test method

Family Cites Families (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3576368A (en) * 1969-01-16 1971-04-27 Ibm Imaging system
US3783295A (en) * 1971-09-30 1974-01-01 Ibm Optical scanning system
US3802548A (en) * 1972-09-25 1974-04-09 American Chain & Cable Co Induction loading target display
JPS564870A (en) 1979-06-26 1981-01-19 Taisei Corp Data collection system for goods of many types, many items and a number of quantities
US4268165A (en) * 1979-12-17 1981-05-19 International Business Machines Corporation Apparatus and method for controlling the adjustment of optical elements in an electrophotographic apparatus
US4348097A (en) * 1980-07-10 1982-09-07 Logetronics, Inc. Camera positioning apparatus
DE3227760A1 (en) * 1981-07-28 1983-03-31 George Danny Haslemere Surrey Ealovega METHOD AND DEVICE FOR PRODUCING A PHOTOGRAPHY OF A MOVING OBJECT
DE3204021A1 (en) 1982-02-05 1983-08-18 Gebhardt Fördertechnik GmbH, 6920 Sinsheim DISTRIBUTION SYSTEM FOR MOVING PARTS
US4515455A (en) * 1983-04-04 1985-05-07 Northmore James E Camera movement synchronizing apparatus
FR2555917B1 (en) * 1983-12-02 1988-01-15 Hotchkiss Brandt Sogeme IMPROVED THROUGHPUT SORTING MACHINE
US4711357A (en) * 1984-08-27 1987-12-08 Keith A. Langenbeck Automated system and method for transporting and sorting articles
US4805778A (en) 1984-09-21 1989-02-21 Nambu Electric Co., Ltd. Method and apparatus for the manipulation of products
US4597495A (en) 1985-04-25 1986-07-01 Knosby Austin T Livestock identification system
US4788596A (en) * 1985-04-26 1988-11-29 Canon Kabushiki Kaisha Image stabilizing device
US4776464A (en) * 1985-06-17 1988-10-11 Bae Automated Systems, Inc. Automated article handling system and process
US4760247A (en) 1986-04-04 1988-07-26 Bally Manufacturing Company Optical card reader utilizing area image processing
US4832204A (en) * 1986-07-11 1989-05-23 Roadway Package System, Inc. Package handling and sorting system
US4877949A (en) * 1986-08-08 1989-10-31 Norand Corporation Hand-held instant bar code reader system with automated focus based on distance measurements
US4736109A (en) 1986-08-13 1988-04-05 Bally Manufacturing Company Coded document and document reading system
US4896029A (en) 1988-04-08 1990-01-23 United Parcel Service Of America, Inc. Polygonal information encoding article, process and system
US4874936A (en) 1988-04-08 1989-10-17 United Parcel Service Of America, Inc. Hexagonal, information encoding article, process and system
US5185822A (en) * 1988-06-16 1993-02-09 Asahi Kogaku Kogyo K.K. Focusing structure in an information reading apparatus
US4992649A (en) 1988-09-30 1991-02-12 United States Postal Service Remote video scanning automated sorting system
US5220375A (en) * 1989-06-21 1993-06-15 Minolta Camera Kabushiki Kaisha Camera having blurring correction apparatus
JPH0821056B2 (en) * 1989-09-12 1996-03-04 日本電装株式会社 Bar code reader
IT1237915B (en) * 1989-12-15 1993-06-18 DEVICE FOR THE RECOGNITION AND SORTING OF OBJECTS
DE3942932A1 (en) * 1989-12-23 1991-06-27 Licentia Gmbh METHOD FOR DISTRIBUTING PACKAGES O. AE.
US5115121A (en) * 1990-01-05 1992-05-19 Control Module Inc. Variable-sweep bar code reader
DE4102196C2 (en) * 1990-01-26 2002-08-01 Olympus Optical Co Imaging device for tracking an object
JP2503097B2 (en) * 1990-06-22 1996-06-05 株式会社三電舎 Pallet management system with work vehicle
CA2022289A1 (en) * 1990-07-30 1992-01-31 Karl Hartlepp Sorting machine
US5095204A (en) 1990-08-30 1992-03-10 Ball Corporation Machine vision inspection system and method for transparent containers
FR2666316B1 (en) 1990-09-04 1992-12-11 France Etat DEVICE FOR CONTROLLING A FLOW OF OBJECTS IN CONTINUOUSLY RUNNING, ESPECIALLY PACKAGES OR PACKAGES.
FR2666315B1 (en) 1990-09-04 1992-12-11 France Etat DEVICE FOR CONTROLLING AND REGULARIZING THE SPACING OF PARCELS, PACKAGES OR THE LIKE, PARTICULARLY POSTAL PARCELS.
US5128528A (en) 1990-10-15 1992-07-07 Dittler Brothers, Inc. Matrix encoding devices and methods
JPH04269607A (en) * 1991-02-25 1992-09-25 Mitsui Eng & Shipbuild Co Ltd Apparatus for measuring size of substance
FR2676941B1 (en) 1991-05-30 1993-10-01 Bertin Et Cie CASE MODULE FOR SORTING MACHINE.
JPH04355436A (en) * 1991-05-31 1992-12-09 Ricoh Co Ltd Camera equipped with hand movement compensation function
US5431288A (en) * 1991-08-28 1995-07-11 Nec Corporation Mail sorting apparatus
US5607187A (en) 1991-10-09 1997-03-04 Kiwisoft Programs Limited Method of identifying a plurality of labels having data fields within a machine readable border
JP3211313B2 (en) 1991-11-25 2001-09-25 ソニー株式会社 Cassette autochanger
US5323327A (en) 1992-05-01 1994-06-21 Storage Technology Corporation On-the-fly cataloging of library cell contents in an automated robotic tape library
US5245172A (en) * 1992-05-12 1993-09-14 United Parcel Service Of America, Inc. Voice coil focusing system having an image receptor mounted on a pivotally-rotatable frame
EP0571892B1 (en) 1992-05-26 1999-10-13 United Parcel Service Of America, Inc. Multiple code camera system
US5327171A (en) * 1992-05-26 1994-07-05 United Parcel Service Of America, Inc. Camera system optics
US5308960A (en) * 1992-05-26 1994-05-03 United Parcel Service Of America, Inc. Combined camera system
JP2764224B2 (en) 1993-03-01 1998-06-11 ユナイテツド パーセル サービス オブ アメリカ インコーポレイテツド Method and apparatus for determining the position of a supplementary target
US5566245A (en) 1993-03-09 1996-10-15 United Parcel Service Of America, Inc. The performance of a printer or an imaging system using transform-based quality measures
US5463432A (en) * 1993-05-24 1995-10-31 Kahn; Philip Miniature pan/tilt tracking mount
US5419457A (en) * 1993-08-30 1995-05-30 Electrocom Gard Ltd. System for sorting mail pieces on multiple levels and a method for performing the same
DE4336137A1 (en) * 1993-10-22 1995-04-27 Sick Optik Elektronik Erwin Barcode reader and method for its operation
JP2977431B2 (en) * 1993-12-27 1999-11-15 株式会社東芝 Video coding equipment
GB2289966A (en) * 1994-05-24 1995-12-06 Ibm Mail sorting
DE69504069T2 (en) 1994-06-07 1998-12-10 United Parcel Service Inc METHOD AND DEVICE FOR DECODING TWO-DIMENSIONAL CHARACTERS IN A ROOM AREA
US5515447A (en) 1994-06-07 1996-05-07 United Parcel Service Of America, Inc. Method and apparatus for locating an acquisition target in two-dimensional images by detecting symmetry in two different directions
JPH0812031A (en) * 1994-07-01 1996-01-16 Murata Mach Ltd Picking system
US5567927A (en) * 1994-07-25 1996-10-22 Texas Instruments Incorporated Apparatus for semiconductor wafer identification
US5485263A (en) * 1994-08-18 1996-01-16 United Parcel Service Of America, Inc. Optical path equalizer
DK0787334T3 (en) * 1994-10-14 1999-05-03 United Parcel Service Inc Multistage packet tracking system
US5677834A (en) * 1995-01-26 1997-10-14 Mooneyham; Martin Method and apparatus for computer assisted sorting of parcels
US5620102A (en) * 1995-02-22 1997-04-15 Finch, Jr.; Walter F. Conveyor sorting system for packages
US5642442A (en) 1995-04-10 1997-06-24 United Parcel Services Of America, Inc. Method for locating the position and orientation of a fiduciary mark
EP0820618A1 (en) 1995-04-10 1998-01-28 United Parcel Service Of America, Inc. Two-camera system for locating and storing indicia on conveyed items
US5857029A (en) 1995-06-05 1999-01-05 United Parcel Service Of America, Inc. Method and apparatus for non-contact signature imaging
US6047889A (en) * 1995-06-08 2000-04-11 Psc Scanning, Inc. Fixed commercial and industrial scanning system
US5687850A (en) * 1995-07-19 1997-11-18 White Conveyors, Inc. Conveyor system with a computer controlled first sort conveyor
US5712789A (en) * 1995-08-28 1998-01-27 K&T Ltd. Container monitoring system and method
US5770841A (en) * 1995-09-29 1998-06-23 United Parcel Service Of America, Inc. System and method for reading package information
US5794789A (en) * 1995-12-13 1998-08-18 Payson; William H. Semi-automated integrated sort system
US5720157A (en) * 1996-03-28 1998-02-24 Si Handling Systems, Inc. Automatic order selection system and method of operating
US5943476A (en) 1996-06-13 1999-08-24 August Design, Inc. Method and apparatus for remotely sensing orientation and position of objects
US5881890A (en) * 1996-06-21 1999-03-16 Wiley; Ken Mail sorting system and process
DE69712481T2 (en) 1996-06-28 2002-12-19 T Eric Hopkins IMAGE DETECTION SYSTEM AND METHOD
GB9615057D0 (en) 1996-07-18 1996-09-04 Newman Paul B D Identification and tracking of carcasses and primal cuts of meat
US5781443A (en) * 1996-10-30 1998-07-14 Street; William L. Apparatus for use in parts assembly
DE19646522C2 (en) * 1996-11-12 2000-08-10 Siemens Ag Method and device for recognizing distribution information on shipments
US5923017A (en) * 1997-01-23 1999-07-13 United Parcel Service Of America Moving-light indicia reader system
DE69835840T2 (en) 1997-01-23 2007-04-26 United Parcel Service Of America, Inc. Optically directed character scanning system
US5920056A (en) 1997-01-23 1999-07-06 United Parcel Service Of America, Inc. Optically-guided indicia reader system for assisting in positioning a parcel on a conveyor
US5900611A (en) 1997-06-30 1999-05-04 Accu-Sort Systems, Inc. Laser scanner with integral distance measurement system
US5971587A (en) * 1997-08-01 1999-10-26 Kato; Kiroku Package and mail delivery system
US6076683A (en) * 1997-10-29 2000-06-20 Sandvik Sorting Systems, Inc. Sorter mechanism
US6064476A (en) 1998-11-23 2000-05-16 Spectra Science Corporation Self-targeting reader system for remote identification
US6061644A (en) 1997-12-05 2000-05-09 Northern Digital Incorporated System for determining the spatial position and orientation of a body
US6845508B2 (en) * 1997-12-19 2005-01-18 Microsoft Corporation Stream class driver for computer operating system
FR2773503B1 (en) * 1998-01-12 2000-04-07 Neopost Ind ASSISTANCE DEVICE FOR MANUAL SORTING OF MAIL ITEMS
US6073060A (en) * 1998-04-01 2000-06-06 Robinson; Forest Computerized manual mail distribution method and apparatus
US6185479B1 (en) * 1998-04-15 2001-02-06 John F. Cirrone Article sorting system
US6332098B2 (en) * 1998-08-07 2001-12-18 Fedex Corporation Methods for shipping freight
US6296189B1 (en) 1998-08-26 2001-10-02 Spectra Science Corporation. Methods and apparatus employing multi-spectral imaging for the remote identification and sorting of objects
US6060992A (en) 1998-08-28 2000-05-09 Taiwan Semiconductor Manufacturing Co., Ltd. Method and apparatus for tracking mobile work-in-process parts
JP2000262977A (en) * 1999-03-17 2000-09-26 Hitachi Ltd Article delivery system
AU4209800A (en) 1999-04-07 2000-10-23 Federal Express Corporation Computer-assisted manual sorting system and method
US6665585B2 (en) * 2000-01-31 2003-12-16 Ishikarajima-Harima Jukogyo Kabushiki Kaisha Method and apparatus for container management
EP1396811B8 (en) 2000-02-23 2008-07-16 Datalogic S.P.A. Apparatus and method for reading and decoding optical codes with result indication
US6394278B1 (en) * 2000-03-03 2002-05-28 Sort-It, Incorporated Wireless system and method for sorting letters, parcels and other items
US6352349B1 (en) * 2000-03-24 2002-03-05 United Parcel Services Of America, Inc. Illumination system for use in imaging moving articles
US6356802B1 (en) * 2000-08-04 2002-03-12 Paceco Corp. Method and apparatus for locating cargo containers
JP3379521B2 (en) * 2000-11-27 2003-02-24 株式会社デンソー Logistics management system
US6614351B2 (en) * 2000-12-07 2003-09-02 Sap Aktiengesellschaft Computerized system for automatically monitoring processing of objects
US6600418B2 (en) * 2000-12-12 2003-07-29 3M Innovative Properties Company Object tracking and management system and method using radio-frequency identification tags
US6610954B2 (en) * 2001-02-26 2003-08-26 At&C Co., Ltd. System for sorting commercial articles and method therefor
US6729544B2 (en) * 2001-05-02 2004-05-04 International Business Machines Corporation Fast barcode search
US20030009254A1 (en) * 2001-07-09 2003-01-09 Carlson Steven J. Method for tracking identity traits of commodities
JP3804540B2 (en) * 2002-01-28 2006-08-02 日本電気株式会社 Light mail route assembly sorting device
US20030139847A1 (en) * 2002-01-29 2003-07-24 Taiwan Semiconductor Manufacturing Co., Ltd. Visually enhanced intelligent article tracking system
JP2003281418A (en) * 2002-03-20 2003-10-03 Hitachi Ltd Method and system for article management
US20030233165A1 (en) * 2002-06-13 2003-12-18 Mark Hein Computer controlled order filling system using wireless communications

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104859990A (en) * 2010-03-12 2015-08-26 西姆伯蒂克有限责任公司 Replenishment and order fulfillment system
CN104859990B (en) * 2010-03-12 2017-09-08 西姆伯蒂克有限责任公司 Replenish and order fulfillment system

Also Published As

Publication number Publication date
AU2003254116A1 (en) 2004-02-09
MXPA05000914A (en) 2005-07-22
US6878896B2 (en) 2005-04-12
US20040016684A1 (en) 2004-01-29
ATE507012T1 (en) 2011-05-15
CN1671489A (en) 2005-09-21
DE60336905D1 (en) 2011-06-09
EP1531949A1 (en) 2005-05-25
JP2005533731A (en) 2005-11-10
EP1531949B1 (en) 2011-04-27
WO2004009257A1 (en) 2004-01-29
CN1287913C (en) 2006-12-06
CA2491749A1 (en) 2004-01-29

Similar Documents

Publication Publication Date Title
CA2491749C (en) Method and apparatus for synchronous semi-automatic parallel sorting
US11351575B2 (en) Perception systems and methods for identifying and processing a variety of objects
US11826787B2 (en) Systems and methods for providing singulation of objects for processing using object movement redistribution
US20240025662A1 (en) Systems and methods for providing singulation of objects for processing
US8110052B2 (en) Systems and methods for sorting in a package delivery system
US8560114B2 (en) Storage and commissioning system and method for operating the same in batch mode
CA2299549C (en) Automated shuttle sorter for conveyors
US20140350717A1 (en) Order fulfillment method
US6419782B1 (en) Bar code overlabeling system
WO2010065839A1 (en) Address label re-work station and method
WO1990009849A1 (en) A method of controlling sorting system, and a sorting system thus controlled
KR20120121125A (en) Sorting system for returing goods using image information
EP0954387A1 (en) Optically-guided indicia reader system
JP2012229105A (en) Apparatus and method for handling recognition result, and article processing system
US20210370353A1 (en) System for sorting delivery items and methods for the same
FI128079B (en) A sorting system and a method for sorting mail items
JP2645195B2 (en) Mail sorting device
EP0606124A1 (en) A method and a device for sorting objects according to destination
JPH02215612A (en) Sorting equipment
JPH0814833B2 (en) Bar code reader for transported objects
JPH0824796A (en) Postal matter classifying device

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20230724