CA2494895A1 - Process for manufacturing an analytical device containing lancet and test element - Google Patents

Process for manufacturing an analytical device containing lancet and test element Download PDF

Info

Publication number
CA2494895A1
CA2494895A1 CA002494895A CA2494895A CA2494895A1 CA 2494895 A1 CA2494895 A1 CA 2494895A1 CA 002494895 A CA002494895 A CA 002494895A CA 2494895 A CA2494895 A CA 2494895A CA 2494895 A1 CA2494895 A1 CA 2494895A1
Authority
CA
Canada
Prior art keywords
lancet
needle
tip
analytical device
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002494895A
Other languages
French (fr)
Inventor
Hans-Juergen Kuhr
Michael Fritz
Thomas Weiss
Richard Forster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F Hoffmann La Roche AG
Original Assignee
F. Hoffmann-La Roche Ag
Hans-Juergen Kuhr
Michael Fritz
Thomas Weiss
Richard Forster
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7696937&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CA2494895(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by F. Hoffmann-La Roche Ag, Hans-Juergen Kuhr, Michael Fritz, Thomas Weiss, Richard Forster filed Critical F. Hoffmann-La Roche Ag
Publication of CA2494895A1 publication Critical patent/CA2494895A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/14Devices for taking samples of blood ; Measuring characteristics of blood in vivo, e.g. gas concentration within the blood, pH-value of blood
    • A61B5/1405Devices for taking blood samples
    • A61B5/1411Devices for taking blood samples by percutaneous method, e.g. by lancet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150015Source of blood
    • A61B5/150022Source of blood for capillary blood or interstitial fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150206Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
    • A61B5/150274Manufacture or production processes or steps for blood sampling devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150206Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
    • A61B5/150312Sterilisation of piercing elements, piercing devices or sampling devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150206Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
    • A61B5/150312Sterilisation of piercing elements, piercing devices or sampling devices
    • A61B5/150335Sterilisation of piercing elements, piercing devices or sampling devices by radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150358Strips for collecting blood, e.g. absorbent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150374Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
    • A61B5/150381Design of piercing elements
    • A61B5/150412Pointed piercing elements, e.g. needles, lancets for piercing the skin
    • A61B5/150435Specific design of proximal end
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150374Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
    • A61B5/150381Design of piercing elements
    • A61B5/150503Single-ended needles
    • A61B5/150511Details of construction of shaft
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150374Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
    • A61B5/150534Design of protective means for piercing elements for preventing accidental needle sticks, e.g. shields, caps, protectors, axially extensible sleeves, pivotable protective sleeves
    • A61B5/150572Pierceable protectors, e.g. shields, caps, sleeves or films, e.g. for hygienic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15142Devices intended for single use, i.e. disposable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0295Strip shaped analyte sensors for apparatus classified in A61B5/145 or A61B5/157
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150206Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
    • A61B5/150274Manufacture or production processes or steps for blood sampling devices
    • A61B5/150282Manufacture or production processes or steps for blood sampling devices for piercing elements, e.g. blade, lancet, canula, needle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150374Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
    • A61B5/150534Design of protective means for piercing elements for preventing accidental needle sticks, e.g. shields, caps, protectors, axially extensible sleeves, pivotable protective sleeves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150374Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
    • A61B5/150534Design of protective means for piercing elements for preventing accidental needle sticks, e.g. shields, caps, protectors, axially extensible sleeves, pivotable protective sleeves
    • A61B5/15058Joining techniques used for protective means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150374Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
    • A61B5/150534Design of protective means for piercing elements for preventing accidental needle sticks, e.g. shields, caps, protectors, axially extensible sleeves, pivotable protective sleeves
    • A61B5/15058Joining techniques used for protective means
    • A61B5/150618Integrally moulded protectors, e.g. protectors simultaneously moulded together with a further component, e.g. a hub, of the piercing element
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15186Devices loaded with a single lancet, i.e. a single lancet with or without a casing is loaded into a reusable drive device and then discarded after use; drive devices reloadable for multiple use
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining

Abstract

The device (1) comprises a lancet needle (2) axially movable inside a housing. When the tip of the lancet (2) is retracted the small blood sample is collected in a gap in the bottom of the housing. The lid is made of a test strip (9) with a particular area positioned above the receptacle and to be used for the examination by the laboratory technician. The devices (1) are injection molded in a row (13) beside each other in a first step, covered by the test strip material (14) in a second step, and finally separated for individual use.

Description

PROCESS FOR MANUFACTURING AN ANALYTICAL DEVICE
H1ITH LANCET ArtD TEST ELEMENT
This is a divisional application of Canadian patent application No. 2,399,890.
The invention concerns a process for manufacturing an analytical device which contains a lancet and an analytical test element.
The examination of blood samples in clinical diagnostics enables the early and reliable recognition of pathological states as well as a specific: and well-founded monitoring of physical conditions. Medical blood diagnostics always requires the collection of a blood sample from the individual to be examined. Whereas in hospitals and in doctor's offices several millilitres of blood are usually collected by venepuncture from a person to be examined for analysis in order to carry out many laboratory tests, individual analyses which are directed towards one parameter nowadays often only require blood quantities ranging from a few microlit:res down to less than one microlitre. Such small quantities of blood do not require a laborious and painful v~nepuncture. Instead it is sufficient to push a sterile sharp lancet into a finger pad or earlobe of the perso:l to be examined to collect blood through the skin and thus to obtain a few microlitres of blood or less for analysis. This method is particularly suitable when it is possible to carry out the analysis of the blood sample immediately after blood collection.
Lancets and suitable instruments for them (so-called blood withdrawal instruments, blood lancet devices or-as they are referred to in the following-lancing aids) which enable blood collection that is as painfree and reproducible as possible are available especially for so-called home monitoring i.e. where medical laymen carry out simple analyses of the blood by themselves and are used in particular by diabetics to collect blood regularly and several times daily to monitor the blood glucose concentration. Furthermore the use of lancets with lancing aids is intended to reduce the psychological barrier associated with piercing one's own body which is particularly important for children that suffer from diabetes and need regular blood glucose tests. The commercially available instruments (lancing aids) and lancets Glucolet (R) from Bayer AG and Softclix(R) from Roche Diagnostics GmbH are mentioned as examples of lancets and lancing aids. Such lancets and instruments (lancing aids) are for examp__e the subject matter of WO-A
98/48695, EP-A 0 565 970, U.;3. Pat. No. 4,442,836 or U.S.
Pat. No. 5,554,166.
Personal blood sugar determination (so-called home monitoring) is today a world-wide method in diabetes monitoring. Blood sugar instruments of the prior art such as the Accu-Chek Sensor (f:rom Roche Diagnostics) are composed of a measuring instrument into which a test element (test strip, sensor) is inserted. The test strip is contacted with a drop of blood which has previously been collected from the finger pad by means of a lancing aid. The numerous system comf>onents (lancet, lancing aid, test strip and measuring inst=rument) need a lot of space and require a relatively complex handling. There are now also systems with a high degree of integration which are thus more simple to operate. 'these for example include the AccuCheck Compact (from Roche Diagnostics), the Glucometer Dex (from Bayer Diagnostics; and the Soft-Sense (from Medisense). In the two former systems the test strips are stored in the measuring instrument in magazines and are available for the measurement.
A next step in ininiaturizatian is for example to integrate several functions or functional elements into a single analytical device (disposable,). For example the operating process can be considerably simplified by a suitable combination of the lancing process and sensory analyte concentration detection on ~~ test strip. There are the following examples of this in the prior art:
EP-B 0 199 484 (Audio Bionics) describes an analytical device ("disposable"; abbre~riated dispo) containing an integrated lancet which is actuated by the instrument (see FIG. 9 for example). The lar..cet is retracted again after the puncture by means of a specific spring mounting ("spring-mounted lance means"). The dispo contains a so-called "wick means" through which the sample liquid is passed from the body surface to the analytical area which is an optically analysable te;3t field.
A method is described in L~.S. Pat. No. 6,143,164 (E.
Heller & Comp.) in which a body opening (for example a small puncture or incision through the skin) is made and subsequently body fluid is transported into a sensor and examined there for the presence of an analyte. For this purpose U.S. Pat. No. 6,143,164 discloses an analytical device in which a lancing de~,rice is attached to a sensor test strip. The sample liquid is transported from the body opening to the actual detection element of the sensor for example again by means oi: a wick or a capillary gap/channel.
WO 99/26539 (Mercury Diagnost__cs), U.S. Pat. No. 5,951,492 (Mercury Diagnostics) and U.:.. Pat. No. 6,056,701 (Amira n I - I

Medical) describe, inter alia, collection devices for body fluids comprising an elongate handle; a test field being attached to its head region.
U.S. Pat. No. 6,032,059 (Abbott) and U.S. Pat. No.
6,014,577 (Abbott) describe a disposable containing a needle which is used to pier<:e the skin. Body fluid which is previously sucked into the needle by capillary action is analysed by a sensor integrated into the needle.
U.S. Pat. No. 5,801,057 (Smart et al.) describes a disposable made of silicon containing an integrated hollow needle. A collection chamber for aspirated body fluid is located at one end of this hollow needle. The concentration of a blood component can be determined in the body fluid by a suitable reaction chemistry.
U.S. Pat. No. 5,035,704 (L,~mbert et al.) discloses a system for collecting blood containing a magazine for disposables. It is possible to integrate a lancet element into the dispos . A blood drop is transferred to the test field by direct skin contact and can be increased by applying a vacuum.
U.S. Pat. No. 6,132,449 (Agilent Technologies) discloses an integrated dispo with ~~ puncturing and measuring function. The puncturing element is activated perpendicular to the dispo pli~ne whereby it passes through the dispo. The wound opening is in direct contact with several capillary structures which transport the emerging blood into a separate analytical part of the dispo.
A key problem in collecting blood using a so-called "integrated disposable" (in which the lancet and test element are connected together or form a single unit) is i ~ il I- I

the fact that, after puncture:, the capillary blood usually does not automatically emerge from the wound. This adverse effect is increased by directly contacting a disposable with the wound opening. AftE~r a puncture the blood drop must be actively conveyed to the skin surface by for example mechanically opening the wound and/or applying gentle pressure to the tissue around the wound area (for example by simple "finger milking"). Application of a vacuum can assist this process.
Experiments in the laboratory have shown that it is advantageous to keep the wound open during the period of blood collection. However, this fact results in a complicated movement process of the dispo since a very rapid p~.ercing motion and a slow blood withdrawal movement can only be achieved with a waiting time in the system.
Only a few of the dispo designs proposed in the prior art are suitable for this.
A rigid protruding lancet tip has a tendency to cause unintentional injury when collecting the blood drop. Hence a lancing device which moves relative to the disposable is preferable. However, this requirement in combination with the dispos known in the prior art leads to a complicated and thus expensive dispo design.
A further difficulty with known dispos is to ensure the sterility of the lancet for she period until it is used.
In the prior art it is known that the tip can be protected by a cap which is manually removed before use. However, such a cap impairs the automation of blood sugar measurements. Previously desc=:ibed concepts which would in principle enable an automated blood sugar determination with an integrated disposable: have the disadvantage that there is a latent risk of contaminating the lancet needle tip. Components of the test field (chemicals, biological components, adhesives etc.) can migrate within the dispo via the air or over the surfaces. Thus a sterilization of the needle tip carried oL.t initially is in no way sufficient without further protective measures to meet the requirements for a sterile medical product.
The lancets of the prior art usually have a metal lancet needle with a tip which can he optionally ground. In order to facilitate the handling of the lancet and optionally to attach it in a lancing device, a plastic lancet body made of a rigid, injection-mou=.dable material is usually injected onto the lancet needle in many embodiments. In the unused state the tip of the lancet needle is surrounded by a protective=_ covering to ensure its sterility. This is usually composed of the same rigid material as the actual lance~~ body and usually forms one unit with this body. The protective covering can be separated from the lancet body before using the lancet and removed from the tip of t)ze lancet needle. For this purpose there is usually a weakened point between the lancet body and protective ~~over. After the lancet has been used, the tip of the lan~~et needle is unprotected and is hence a potential source of injury to the user and possibly to other persons.
The object of the present invention was therefore to eliminate the disadvantages of the prior art and in particular the disadvantages mentioned above. In particular the object of the present invention was to provide a process for manufa~~turing an analytical device (synonymous with "disposable", abbreviated: "dispo") which does not have the disadvantages of the prior art. In particular the dispo according to the invention should ensure the sterility of the :.ancets until they have been _ 7 _ used while simultaneously integrating the lancet and test element (test strip, sensor). Another object of the present invention is to provide a process for manufacturing an analytical device containing lancets in which at least the lancet neE~dle tip is kept sterile, i.e.
germ-free, in the unused state until immediately before use and which can be stored hygienically in the used state . This obj ect should be ideally achieved without the user having to employ separ~~te measures for the hygienic storage of the analytical devices being manufactured according to the invention. Moreover the user should be protected from accidental injury by the lancet and in particular by the used la:zcet. Finally it should be preferably possible to simply transfer the sample from the site of blood collection to the site of blood examination.
A first subject matter of the invention is a process for manufacturing an analytical device which contains a lancet. The main components of the lancet are a lancet needle with a tip and a .Lancet body that completely surrounds the lancet needle ~.t least in the region of the tip. The lancet needle can be moved relative to the lancet body. The lancet body is composed of a soft and deformable material at least in the region of the tip of the lancet needle in which the tip of the lancet needle is embedded.
The analytical device additionally contains an analytical test element which is permanently attached to the lancet body.
Another subject matter of the invention is a process for manufacturing a further analytical device which contains a lancet . The lancet in this case comprises a lancet needle with a tip and a lancet bod~~ which is in the form of a hollow body in the region of the tip of the lancet needle and which surrounds the tip of the lancet needle. In this U I I

g _ case the lancet needle is ,also movable relative to the lancet body. The hollow body is composed at least partially of a soft and deformable material which can be pierced by the tip of the lancet needle during the lancing process and after retraction optionally reseals the tip of the lancet needle in the hollow body. The analytical device additionally contain. an analytical test element which is permanently connec~~ed to the lancet body. The process for manufacturing an analytical device of the invention contains the steps of sterilization of the tip of a lancet needle, and afterwards connecting lancet body and test element forming an analytical device.
Finally the invention concerns a process for manufacturing such analytical devices.
The object of the invention is preferably composed of a process for manufacturing a miniaturized dispo which combines the three functions of puncturing, blood transfer from the wound generated by the puncturing to the test element and sensor in one element.
The main body of the analyt=_cal device according to the invention is composed of ~. rigid plastic body whose external shape is preferably adapted for the purpose of holding it in an instrument. A lancet needle is embedded in this plastic in such a manner that its tip preferably does not protrude beyond the front edge of the main body.
The main body can therefore also be referred to as the lancet body. In the preferred embodiment the main body has ridges which are used to fix the needle in the main body and to guide it during the lancing movement. However, most of the needle is preferably not attached to the main body in order to reduce the frictional force during the lancing movement. The contact surfaces between the needle and _ g _ lancet body are preferably kept to a minimum and suitably pretreated, for example siliconized.
The lancets according to the invention are preferably designed to be used once and can therefore be referred to as single-use blood lancets or disposable blood lancets.
The lancet of the invention comprises a needle (lancet needle) with a tip. The needle is usually several millimetres (mm) to a few centimetres (cm) in length and has an elongate shape. Needles are typically cylindrical since this needle shape is particularly easy to manufacture; however, othe:_ needle shapes are also possible. The tip region of the needle comprises the needle tip which is inserted into the tissue when the lancet is used correctly. Consequently the tip of the lancet needle is that part of: the lancet which comes into contact with the skin of the individual to be pricked which optionally injures the skin and thus causes a body fluid and in particular blond or interstitial fluid to flow out.
The tip of the lancet needle can for example be rotationally symmetrical which is generally the case for pins. However, it has also proven to be advantageous to provide the needle tip with one or several ground surfaces. The resulting edges which make an angle with the longitudinal axis of the needle and converge in a tip act as a sharp cutting edge during lancing and make the puncturing process less painful than is the case with rotationally symmetrical needles.
The lancet needle of the lancet according to the invention is manufactured from a matE~rial which is sufficiently rigid to withstand mechanical strain during the lancing process, the processing steps or other strains which may - LD -occur without deformation. The material must also be such that no particles break off or become detached during the lancing process. Finally the needle material must also be sufficiently machinable to enable the needle tip to be sufficiently pointed and th~= edges of the needle to be ground adequately sharply. Very suitable materials for the lancet needle are above all rletals and in particular high-grade steels. However, needles can also conceivably be made of silicon, ceramics cr plastics. High-grade steel needles are particularly preferred.
In one embodiment of the invention at least the tip of the lancet needle of the lancet recording to the invention is surrounded by the lancet bode. The lancet body is composed of a soft and deformable material in the region of the tip of the lancet needle, the material being preferably an elastic material. At least the tip of the lancet needle is completely surrounded on all sides by this elastic material i.e. it is embeddec. in it and thus sealed from the environment . The elastic material of the lancet body, which in the various embodirlents can completely or only partially form the lancet body, is characterized in that it is soft, deformable and can be pierced by the tip of the lancet needle without damaging the tip. During the lancing process the lancet needle is moved along its longitudinal axis relative to the lancet body and its tip emerges from the lancet body in order to pierce the skin of the individual to be examined for blood collection. A
further important and preferred property according to the invention is that the soft and deformable material optionally again makes a tight seal around the tip of the lancet needle when the lancet needle is retracted into the lancet body. After the lancing process the lancet needle is moved in a preferred embodiment into its initial position relative to the lancet body by reversing the - .L1 -movement of the lancing process and in this position the tip is again completely er..closed on all sides by the material of the lancet body.
The material of the lancet body which completely encloses the tip of the lancet needle ensures the sterility of the lancet needle tip before use, preferably until immediately before use and optionally ensures a hygienic enclosure of the lancet needle tip after use. The term "hygienic enclosure" means that biolo<~ical material (tissue, body fluid) which may adhere to the needle after the puncture is essentially encapsulated by the soft and deformable material. This prevents esp<~cially germs and infectious material from reaching the environment or at least greatly reduces this risk. Consequently the material is impervious to germs and thus prevents their penetration or escape depending on whether the lancet needle is unused or used.
In addition the material represents a mechanical protection for the lancet needle tip and thus also prevents accidental injury on the lancet needle tip.
Rubber, coautchouc, silicone, elastomers and in particular thermoplastic elastomers have proven to be suitable as the material for the lancet bod-~ of the present invention.
These have properties that a:re important for the present invention: they are soft, deformable, can be pierced by the lancet needle without damaging the tip and make a tight seal around the used l~.ncet needle tip. Furthermore they can be used for inject:_on moulding processes which allows a mass production of lancets in large numbers.
Thermoplastic elastomers which are also called elastoplasts or thermoplasts or thermoplastic coautchoucs ideally combine the handling properties of elastomers and the processing properties of thermoplasts. Thermoplastic i i v . I I

- :. 2 -elastomers are for example styrene oligoblock copolymers (so-called TPE-S), thermoplastic polyolefins (TPE-O), thermoplastic polyurethanes (TPE-U), thermoplastic copolyesters (TPE-E) and thermoplastic copolyamides (TPE-A). In particular thermoplastic elastomers based on styrene-ethylene-butylene-styrene-polymers (SEBS polymers, e.g. Evoprene (R) from Evode :?lastics or Thermolast K from "Gummiwerk Kraiburg GmbH) h~.ve for example proven to be particularly suitable.
l0 During the lancing process the lancet needle is moved relative to the lancet body. The latter is preferably held in its position by the lancing aid or lancing instrument during this process. The lancet needle can be specially shaped for the purposes of the drive mechanism and for example have a needle head at: the end opposite to the tip or have another lancet body in addition to the lancet body which encloses the tip and can be engaged by a drive element of the lancing aid. The shape of the needle or of the additional lancet body can interact in a suitable manner with a corresponding drive device in the lancing instrument (lancing aid). Such means can generally be referred to as a thickening o~' the needle.
In order to achieve the advantage that the lancet needle tip is enclosed in a sterile manner before use by the material of the lancet body a:~d is hygienically surrounded by the material after use, it is of course necessary that the lancet needle is moved back after use, i.e. after the lancing process, essentially into its original position relative to the lancet body containing the material. This can be achieved by suitable interaction with a correspondingly adapted lanci:zg aid. It is only important that, after use, the lancet needle tip is again enclosed i i - :L 3 -by the material of the lan~~et body which thus prevents accidental injury on the neec.le tip.
In order to increase the stability of the material it is possible to combine it with a stiff material, for example a stiff plastic material. For example the outside of the material which does not come into contact with the tip of the lancet needle can be stabilized with a layer of a stiff material, for example a stiff plastic. It is also possible to manufacture the :lancet body from the soft and deformable material only in the region of the lancet needle tip and to manufacture the remaining lancet body from conventional stiff pla~~tics. In this case the soft and deformable material and the stiff material can be glued together or joined together by an injection moulding process, for example a two component injection moulding process. The stiff material of the lancet body ensures the mechanical stability of the material during the lancing process and facilitates the immobilization of the soft and deformable part of the lan<:et body during the lancing process by the lancing aid. The stiff material can also be a part of the test element, for example a capillary gap test element as described in 1a0 99/29429.
In a further embodiment of: the invention the lancet contains a lancet needle with a tip and a hollow body which surrounds at least the tip of the lancet needle, the lancet needle being movable ~n~ithin the hollow body in the region of its tip and the hollow body being at least partially composed of a soft and deformable material that can be pierced by the tip of the lancet needle during the lancing process and which o~~tionally reseals the tip of the lancet needle in the hollow body when it is retracted.

i i - ._4 -Whereas with the lancet described further above according to the first embodiment, the region of the tip of the lancet needle is completely surrounded on all sides by a soft and deformable material and thus without any remaining hollow space around the tip to ensure sterility before use and hygienic shielding after use, in the second embodiment described above th.e tip of the lancet needle is surrounded by the hollow body which is closed on all sides. The areas of this hcllow body which do not come into contact with the la:zcet needle are preferably manufactured from a stiff material and preferably an injection mouldable material.
During the lancing process the lancet needle is moved relative to the hollow body which represents the lancet body. The holder and drive for the lancet needle and attachment of the lancet bod~~ can be achieved by suitable constructional measures in the lancing aid as described above.
The soft and deformable material which comprises a part of the hollow lancet body is pierced by the lancet needle tip during the lancing process rind optionally reseals after the lancet needle tip is retracted into the hollow body and thus seals the hollow body. Hence the lancet needle tip is thus aseptically pealed in the hollow body immediately before use and i~ hygienically enclosed in it after use.
The lancet of this embodiment can, like the lancet of the alternative inventive embodiment described above, also have an additional lancet body in addition to the lancet body which encloses the tip of the lancet needle which interacts with suitable elements of a lancing device during the lancing process. In addition the lancet needle - ::5 -can have a special shape, far example have a head at the end opposite to the tip.
With regard to the properties of the soft and deformable material and the joining of this material with the stiff material of the lancet body the same applies as that already mentioned above with reference to the first embodiment.
The blood transfer from the wound/puncturing site of the lancet to the measuring site is achieved according to the invention by two basically different methods: On the one hand the operator of the analytical device can manually transfer the blood drop obtained after the lancing process onto the corresponding test element. However, the blood transfer is preferably achieved "automatically" without any assistance by the user of. the dispos according to the invention. For this purpose the dispo can have means for sample liquid transport. These means are preferably capillary active, for examplE~ in the form of~a gap or a channel in a rigid main body or absorbent matrix materials. It is also possible to combine these two basic methods for example in t:zat the blood is firstly transported through a capillary channel, taken up by an absorbent matrix material ;end dispensed onto a test element.
Fleeces, papers, wicks or fabrics have proven to be particularly suitable as absorbent materials in the sense of this invention.
In a preferred embodiment thE. main body (lancet body) of the analytical device contain. the means for sample liquid transport. This may be an absorbent wick recessed into the lancet body or preferably a formed capillary gap which is i i i - :L6 -located directly next to th~~ needle and has an inlet in the proximity of the needle outlet. As a result the dispo does not have to be laterally moved for blood collection (or only slightly). The geometry of the inlet opening is designed such that the blood drop that forms can collect there as easily as possible and has for example a funnel or notch shape. The capillar~~ action then ensures that the required amount of blood, which can be considerably below 1 microlitre, is aspirated. By this means the blood reaches the test field and reacts there with the test chemistry to generate an an<<lysable electrical signal or colour change. The capillary gap can be moulded into the plastic during the injection moulding or be subsequently introduced into the plastic body for example by embossing or milling.
In another preferred variant the means for sample liquid transport (e.g. a capillary chap or a wick) is not moulded into the plastic which forms the lancet body but is produced by the specific structure of the test element.
For example the test element can have a structure similar to WO 99/29429 or EP-A 0 359 x331.
The methods known in the ~>rior art are used for the sensory detection of the an~~lyte in particular of blood glucose. Photometric and electrochemical methods are preferred.
The analytical test element of the inventive analytical device can be composed of a detection film which is directly joined to the lancets body. Such detection films are known in diverse embodiments from the prior art. For example such a detection film is described in WO 99/29429.
Furthermore, as already mentioned above, a complete conventional test element can be joined to the main i i i - 7.7 -body/lancet body of the device according to the invention.
Such test elements are also known to a person skilled in the art.
The test element can be join~:d to the lancet body in many different ways. These include but are not limited to, glueing, welding, clippin~~, attachment via velcro fastening or magnets, sewing, screwing and such like. The test element is preferably clued to the lancet body for example by means of hot-melts adhesive or by means of a double-coated adhesive tape.
In general the operation of the disposables according to the invention can be describe~3 as follows:
1. The dispo is inserted into the holding device of a (blood sugar) measuring instr»ment and is attached there.
2. The drive mechanism of the lancing unit is tensioned and coupled to tree needle thickening of the dispo.
3. When the lancing process is actuated, the needle is moved forwards and in this process emerges at high speed from the soft plastic. The entire lancing process only takes a few milliseconds.
4. After the skin has been punctured the needle is retracted again into the soft. plastic (initial position).
The drive is optionally disengaged.
5. After a suitable drop of blood has formed, the entire collection device i:a moved forward until the suction opening (e. g. capillary) contacts the drop.
Alternatively the blood drop can be manually applied to ~~ i i the appropriate sample ap~~lication zone of the test element.
6. In the variants of the disposable which have means for sample liquid transport, the suction action of these means transports the blood in the dispo to a site where a signal is generated by means of a photometric or electrochemical reaction which depends on the concentration of the blood component.
A disposable according to the invention can in principle be manufactured by the following simple steps:
(1) Injection moulding the main body including embedding the lancet needle loptionally with generation of the "needle head" i.e. a thickening that can be engaged by a lancing instrument) (2) sheathing the needy tip with soft plastic (3) sterilizing the "crude disposables" (which are essentially composed of the lancet optionally together with a capillary channel in the lancet body) for example by means of gamma radiation (4) test assembly i.e. connecting the test element with the main body.
Preferably the "crude dispos" as well as the test elements can be present as a tape matE~rial which is separated into the individual dispos after the test assembly for example by cutting or punching. Irrespective of whether the disposables according to the invention are manufactured as rolls or tape material in a continuous process or batch-wise or individually, it is important that the lancet and - :L9 -test element are not joined together until after the lancet needle has been steri:_ized. A sterilization of the-disposables after final assembly could result in damage to sensitive chemical or bioloc3ical substances in the test field. This can be avoided b~~ the process according to the invention.
Finally a subject matter of ~~he invention is the use of a soft and deformable material as a component of a lancet of an analytical device where the material maintains the sterility of at least the t:_p of a lancet needle in the unused state. In a preferrec. embodiment the material can also be used to hygienically shield at least the tip of the lancet needle in the used state.
The use according to the invention of a soft and deformable material to shield the tip of the lancet needle ensures the sterility of an unused lancet needle tip and optionally hygienically shields the used lancet needle tip.
The lancet needle tip can he sterilized in the unused state by suitable measures such as for example gamma radiation. Once sterilized the lancet needle tips remain sterilized by the correspondi:zg lancet body which includes a soft and deformable material. In contrast to the prior art where no such materials for shielding lancet needle tips have been described, the use of the material according to the invention also enables the hygienic screening or shielding of the used lancet needle tip. The use of the material allows resealing of a channel which may be present for a brief time through which the lancet needle can pass for the purposes of lancing after the lancet needle has been retracted i.e. after completion of the lancing process. Hence contaminants, in particular _ ~>~ _ germs and infectious material which may adhere to the lancet needle tip after the lancing process cannot reach the environment or only to ~ limited extent. This is of particular advantage for disposable lancets which are individually disposed of after use. This property is, however, of outstanding importance for sets of lancets and lancet magazines in which us<sd lancets are stored next to unused lancets which can then be disposed of as a whole.
The invention has the following advantages:
- The tip of the lancet needle is shielded germ-tight in the unused state in all embodiments i.e. germs cannot reach the lancet needle tip until immediately before using the lancet. After suitable sterilization the lancet tips remain sterile for a long period.
- The sterility of the lancet needle is also ensured in the subsequent manufacturing steps such as the joining of lancet and test element. In this process the sensitive needle tip is protected from mechanical influence (bending etc . ) .
- In all embodiments the i:ip of the lancet needle can be hygienically screened in the used state. An accidental contamination of the surrour..dings (user, objects, other lancets) is substantially excluded.
- The user of disposables according to the invention is protected from accidental injury on a used lancet needle.
The same of course also applies to other persons than the actual user.

li I. i _ ,01 _ - The disposables accord~_ng to the invention can be manufactured cost-effective~_y in large numbers using conventional injection moulding processes.
- The disposables according to the invention can be miniaturized to a substantial degree and are therefore suitable for use in compact automated systems.
- All previously known variants of test strips and sensors can be used as analytical test elements.
The invention is further E=lucidated by the following figures:
FIG. 1 shows schematically a first preferred embodiment of the analytical device according to the invention in several views.
FIG. 2 shows schematically a second preferred embodiment of the analytical device according to the invention in several views.
FIG. 3 shows schematically a third preferred embodiment of the analytical device acco:_ding to the invention in several views.
FIG. 4 shows schematically a fourth preferred embodiment of the analytical device acc=ording to the invention in several views.
FIG. 5 shows schematically a j=fifth preferred embodiment of the analytical device according to the invention in several views.

i i - ~2 -FIG. 6 shows schematically ~~he manufacture of analytical devices according to FIG. 2 from tape material.
Although only test elements that can be evaluated optically are shown in each of the individual figures, this should not be limiting to the subject matter of the present invention. Rather it is obvious to a person skilled in the art that the detection reaction of the test element can be monitored by any method. In addition to optical methods (such as reflection photometry, absorption measurement or fluorescence measurement) in particular electrochemical methods are preferred (such as potentiometry, amperometry, voltametry, coulometry for example).
The figures and letters in th~= figures denote:
1, analytical device (di:~posable, dispo) 2. lancet 3. lancet needle 4. lancet body 5. plastic part of the 1«ncet body 6. part of the lancet bocLy made of a soft and deformable material 7. capillary gap 8. thickening of the needle end 9, test element _ ~; 3 _ 10. test field 11. sealing foil 12. thickening in the mi3dle of the needle 13. lancet tape/belt 14. test element tape/be.lt FIG. 1 shows schematically a preferred embodiment of the analytical device in several 3etail figures (lA-1E).
FIG. lA firstly shows the lancet (2). It contains a lancet needle (3) which is embedded in a lancet body (4). The lancet body (4) is composed of a hard plastic part (5) and a part made of a soft and deformable material (6). A
capillary gap (7) is worked into the hard plastic part (5) of the lancet body (4) and is used to transport the sample liquid.
A thickening (8) is attached ~o the rear end of the lancet needle (3) and enables the lancet needle to be easily gripped in the lancing aid or in the lancing instrument.
FIG. 1B shows the final analytical device (1). A strip-shaped test element (9) which contains a test field (10) is attached to the hard pla:~tic part (5) of the lancet body (4) . The test field is accessible for sample liquid through the capillary gap (7).
FIG. 1C shows a perspective ~riew of the underside of the analytical device (1). In this view it is clear that the hard plastic part (5) of the lancet body (4) only touches and holds the lancet needle (3) in the area of two bars.

11 I . I

- ::4 -Furthermore the dashed lines indicate how the tip of the lancet needle (3) is embedded in the material (6) of the lancet body.
FIG. 1D shows a longitudinal section through the analytical device (1).
FIG. lE shows a front view of the analytical device (1).
The drawings (2A-2E) of FI~i. 2 show another preferred embodiment of the analytic,~l device according to the invention.
In FIG. 2A the lancet (2) of the analytical device (1) is first shown in perspective from above. The lancet (2) is composed of a lancet needle (3) which is embedded in a lancet body (4). This is composed of a hard plastic part (5) and a part made of the soft and deformable material (6) . In addition a thickening (8) is attached to the rear end of the lancet A needle (3) which is used to grip the lancet needle (3} by a lancing instrument.
In contrast to FIG. 1 the analytical device in FIG. 2 does not have a capillary gap in the lancet body (4) but as part of the test element (9).
FIG. 2B shows the final assembled analytical device (1} in which a test element (9) is attached to the lancet body (4) . This test element contains a capillar~r gap (7) which makes the test field (10) accE~ssible to a blood sample.
FIG. 2C shows a perspective view of the analytical device (1) according to FIG. 2B from below. As in FIG. 1C, FIG.
2C makes it clear that the lancet needle (3) is only connected to the hard plastic part (5) of the lancet body (4) by bars. The needle tip of the lancet needle (3) is II I I

:>, 5 _ completely embedded in the material (6) of the lancet body.
FIG. 2D represents a longitudinal section through the analytical device (1) of FIG. 2B. FIG. 2E shows a corresponding front view of the analytical device (1) of FIG. 2B. FIGS. 2D and 2E make it clear that the capillary gap (7) is port of the test element (9).
FIG. 3 shows another preferred embodiment of the analytical device (1) of the invention in several detailed drawings (3A-3E).
The embodiment of FIG. 3 contains a capillary gap (7) as part of the hard plastic part (5) of the lancet body (4) similar to the embodiment of FIG. 1. Only the position of the capillary gap (7) and the position of the test element (9) differ from the embodiment of FIG. 1. Whereas in the embodiment of FIG. 1 the te:~t element (9) and capillary gap (7) are arranged on one of the large boundary surfaces of the lancet body (4), these elements are arranged laterally on one of the narrow boundary surfaces of the lancet body (4) in the embodiment of FIG. 3. Otherwise the function and structure of the embodiment of FIG. 3 essentially corresponds to t:zat described in FIG. 1. In this connection FIGS. 3A to :3E correspond to FIGS. lA to lE.
Another preferred embodiment of the analytical device (1) according to the invention is shown in several detailed drawings (FIGS. 4A-4F) in FIG. 4. Whereas in the embodiments according to FIG, 1 to FIG. 3 the capillary gap (7) was either part of the hard plastic part (5) of the lancet body (4) or part caf the test element (9), the capillary gap (7) in the embodiment of FIG. 4 is partially ~i I" i - .26 -disposed in the material (6) of the lancet body (4) and partially in the test element (9) . As shown in particular in FIG. 4D the capillary gap (7) can be divided into three partial regions (7, 7A and 7B) . These are in contact with one another in such a manner that sample liquid transport is possible.
As in the embodiments of FIGS. 1 to 3, the embodiment of FIG. 4 is composed of a lancE~t (2) which contains a lancet needle (3) which is partiall:~ surrounded by a lancet body (4). In this case the lancet body (4) is composed of a hard plastic part (5) and a soft and deformable material (6) which in particular surrounds the lancet needle tip (cf. FIG. 4A) . A thickening (8) is attached to the lancet needle at the rear end of t:he lancet body (3) which in turn is designed to enable a lancing device to grip the needle (3 ) .
As shown in FIGS. 4B and 4~~, a test element (9) which contains a test f field ( 10 ) i:~ attached to the lancet body (4). As already described the test field (10) is accessible to the sample liquid via a system of capillary channels (7, 7A, 7B).
The outlet opening of the lancet needle (3) is closed by a sealing foil (11) in this embodiment. When the lancet is used the sealing foil (11) can either be pierced by the lancet needle (3) or the sealing foil (11) is removed manually before use.
FIG. 4E shows a front view of the outlet opening of the lancet of the analytical device (1).
FIG. 4F shows an enlarged view of the detail labelled X in the front view of FIG. 4E. Th=_s view shows especially that ~ i i - i: 7 -four capillary channels (7) which enable sample transport to the test element (9) are present in the material (6) of the lancet body (4).
A thickening (8) is provided in the rear of the lancet needle (3) in embodiments of FIGS. 1 to 4 which is of major importance for the lancing movement. This thickening (8) is designed such that it can be coupled to a lancing drive. In this case the drive carries out the forwards.and backwards movement of the needle (3). Alternatively a drive coupling is also conceivable in which a plunger carries out the forward movement. It is then moved back by a spring which is pressed together during the forward movement and then subsequently relaxes. The thickening (8) on the needle (3) is important for this as one of the contact points for the spring. This spring can either be a component of the disposable or a component of the instrument or of a cassette or a magazine. The thickening (8) can for example be an attachable plastic or metal part. The needle (3) can a:.so be mechanically deformed (squeezing, bending) to produce a thickening (8).
Another embodiment of the invention is shown in several detailed drawings (5A-5D) of FIG. 5. In this embodiment the thickening (11) of the la:ZCet needle (3) is not at the rear end of the lancet needle (3), but rather in the region of the middle of th~s needle. In this case the thickening is located inside the lancet body (4). In this case an appropriate drive mechanism can only act laterally on the disposable. An advantage of this solution is that disposables are particularly compact and robust.
Otherwise the analytical device (1) corresponds essentially to the embodiment of FIG. 2.

_ : 8 _ Of course it is also possible to combine an embodiment of FIG. 1 i.e. an embodiment in which the capillary gap (7) is part of the lancet body (4) with a thickening (12) in the middle of the needle.
FIG. 5A shows a view of th~~ analytical device (1) from below. FIG. 5B shows a sectional view through the longitudinal axis of the analytical device (1). FIG. 5C
shows a perspective view of the underside of the analytical device (1) in which the lancet needle (3) is in a position in which it is before or after the lancing process. The tip of the lancet needle is embedded in the material (6) of the lancet body. In FIG. 5D-which for the sake of clarity is shown without a test element (9) and the material (6)-the lancet (2) is in the position in which the lancet needle (3) ._s present during the lancing process. The lancet needle tip protrudes from the contours of the lancet body (4) .
FIG. 6 is a greatly simplifie3 schematic representation of how analytical devices (1) according to FIG. 2 are manufactured from tape material. In area A lancets (12) which are assembled to form ~~ tape or belt (13) and test elements (9) are assembled t~~ form a tape or belt (14).
Two tapes are combined in area B and the test element tape (14) is glued to the lancet ~~ape (13). Finally in area C
the combined tapes are cut into individual analytical devices (1) for example by cutting off the terminal device (1) .

Claims (5)

1. Process for manufacturing an analytical device containing i) a lancet with a lancet needle which contains a tip for puncturing the skin generating a wound and with a lancet bode which surrounds the lancet needle at least in the area of the tip, and ii) an analytical test element, with a test field in which a test reagent reacts with a body fluid generating a measurable electrical signal or a colour change and the analytical test element being connected to the lancet body whereas the process for manufacturing contains the steps of a) sterilization of the tip of the lancet needle, and afterwards b) connecting lancet body and test element forming the analytical device.
2. Process for manufacturing an analytical device as claimed in claim 1 wherein the lancet is characterized in that the lancet needle being movable relative to the lancet body.
3. Process for manufacturing an analytical device as claimed in claim 1 or 2, wherein the lancet is characterized in that the lancet body being composed at least in the area of the tip of the lancet needle of a soft and deformable material in which the tip of the lancet needle is embedded.
4. Process for manufacturing an analytical device as claimed in claim 3, wherein the soft and deformable material is elastic.
5. Process for manufacturing an analytical device as claimed in claim 1, 2 or 3, wherein the sterilization of the tip of the lancet needle is done by means of gamma radiation.
CA002494895A 2001-08-29 2002-08-27 Process for manufacturing an analytical device containing lancet and test element Abandoned CA2494895A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10142232.6A DE10142232B4 (en) 2001-08-29 2001-08-29 Process for the production of an analytical aid with a lancet and test element
DE10142232.6 2001-08-29
CA002399890A CA2399890A1 (en) 2001-08-29 2002-08-27 Analytical device with lancet and test element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CA002399890A Division CA2399890A1 (en) 2001-08-29 2002-08-27 Analytical device with lancet and test element

Publications (1)

Publication Number Publication Date
CA2494895A1 true CA2494895A1 (en) 2003-02-28

Family

ID=7696937

Family Applications (2)

Application Number Title Priority Date Filing Date
CA002494895A Abandoned CA2494895A1 (en) 2001-08-29 2002-08-27 Process for manufacturing an analytical device containing lancet and test element
CA002399890A Abandoned CA2399890A1 (en) 2001-08-29 2002-08-27 Analytical device with lancet and test element

Family Applications After (1)

Application Number Title Priority Date Filing Date
CA002399890A Abandoned CA2399890A1 (en) 2001-08-29 2002-08-27 Analytical device with lancet and test element

Country Status (8)

Country Link
US (3) US7396334B2 (en)
EP (2) EP1466558B2 (en)
JP (2) JP2003153885A (en)
AT (2) ATE347858T1 (en)
CA (2) CA2494895A1 (en)
DE (3) DE10142232B4 (en)
DK (2) DK1287785T3 (en)
ES (2) ES2276877T3 (en)

Families Citing this family (170)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6036924A (en) 1997-12-04 2000-03-14 Hewlett-Packard Company Cassette of lancet cartridges for sampling blood
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
EP1113497A3 (en) * 1999-12-29 2006-01-25 Texas Instruments Incorporated Semiconductor package with conductor impedance selected during assembly
DE10010694A1 (en) 2000-03-04 2001-09-06 Roche Diagnostics Gmbh Lancet including tipped needle with body surrounding tip
DE10057832C1 (en) * 2000-11-21 2002-02-21 Hartmann Paul Ag Blood analysis device has syringe mounted in casing, annular mounting carrying needles mounted behind test strip and being swiveled so that needle can be pushed through strip and aperture in casing to take blood sample
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US7310543B2 (en) * 2001-03-26 2007-12-18 Kumetrix, Inc. Silicon microprobe with integrated biosensor
US7041068B2 (en) 2001-06-12 2006-05-09 Pelikan Technologies, Inc. Sampling module device and method
US7749174B2 (en) 2001-06-12 2010-07-06 Pelikan Technologies, Inc. Method and apparatus for lancet launching device intergrated onto a blood-sampling cartridge
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US20070100255A1 (en) * 2002-04-19 2007-05-03 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
DE60234597D1 (en) 2001-06-12 2010-01-14 Pelikan Technologies Inc DEVICE AND METHOD FOR REMOVING BLOOD SAMPLES
US7699791B2 (en) 2001-06-12 2010-04-20 Pelikan Technologies, Inc. Method and apparatus for improving success rate of blood yield from a fingerstick
US7033371B2 (en) 2001-06-12 2006-04-25 Pelikan Technologies, Inc. Electric lancet actuator
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US7344507B2 (en) 2002-04-19 2008-03-18 Pelikan Technologies, Inc. Method and apparatus for lancet actuation
CA2448902C (en) 2001-06-12 2010-09-07 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
DE10134650B4 (en) * 2001-07-20 2009-12-03 Roche Diagnostics Gmbh System for taking small amounts of body fluid
DE10142232B4 (en) 2001-08-29 2021-04-29 Roche Diabetes Care Gmbh Process for the production of an analytical aid with a lancet and test element
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US8372016B2 (en) 2002-04-19 2013-02-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7371247B2 (en) 2002-04-19 2008-05-13 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8360992B2 (en) 2002-04-19 2013-01-29 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7485128B2 (en) * 2002-04-19 2009-02-03 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US7374544B2 (en) * 2002-04-19 2008-05-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7491178B2 (en) 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7331931B2 (en) 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7297122B2 (en) * 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7291117B2 (en) * 2002-04-19 2007-11-06 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7244265B2 (en) * 2002-04-19 2007-07-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7229458B2 (en) * 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7524293B2 (en) * 2002-04-19 2009-04-28 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7226461B2 (en) 2002-04-19 2007-06-05 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US7582099B2 (en) * 2002-04-19 2009-09-01 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US11083841B2 (en) 2002-08-09 2021-08-10 Fenwal, Inc. Needle protector, needle assembly and fluid processing set including the same
ATE324258T1 (en) * 2002-09-17 2006-05-15 Habasit Ag BLUNT WELDABLE CONVEYOR BELT
US7192405B2 (en) * 2002-09-30 2007-03-20 Becton, Dickinson And Company Integrated lancet and bodily fluid sensor
US7024921B2 (en) * 2002-11-06 2006-04-11 Sutton Stephen P Capillary devices for determination of surface characteristics and contact angles and methods for using same
US7244264B2 (en) * 2002-12-03 2007-07-17 Roche Diagnostics Operations, Inc. Dual blade lancing test strip
US20040127818A1 (en) 2002-12-27 2004-07-01 Roe Steven N. Precision depth control lancing tip
US7481777B2 (en) 2006-01-05 2009-01-27 Roche Diagnostics Operations, Inc. Lancet integrated test element tape dispenser
US7815579B2 (en) * 2005-03-02 2010-10-19 Roche Diagnostics Operations, Inc. Dynamic integrated lancing test strip with sterility cover
US8052926B2 (en) * 2002-12-27 2011-11-08 Roche Diagnostics Operations, Inc. Method for manufacturing a sterilized lancet integrated biosensor
DE60332043D1 (en) * 2002-12-30 2010-05-20 Roche Diagnostics Gmbh CAPILLARY TUBE TOP DESIGN TO SUPPORT BLOOD FLOW
US7214200B2 (en) * 2002-12-30 2007-05-08 Roche Diagnostics Operations, Inc. Integrated analytical test element
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US7211052B2 (en) * 2002-12-30 2007-05-01 Roche Diagnostics Operations, Inc. Flexible test strip lancet device
DE10302501A1 (en) * 2003-01-23 2004-08-05 Roche Diagnostics Gmbh Device and method for absorbing a body fluid for analysis purposes
DE10315544B4 (en) * 2003-04-04 2007-02-15 Roche Diagnostics Gmbh Method for producing a piercing and measuring device and device
JP4296035B2 (en) * 2003-05-21 2009-07-15 アークレイ株式会社 Puncture device
ES2347248T3 (en) 2003-05-30 2010-10-27 Pelikan Technologies Inc. PROCEDURE AND APPLIANCE FOR FLUID INJECTION.
WO2004107964A2 (en) 2003-06-06 2004-12-16 Pelikan Technologies, Inc. Blood harvesting device with electronic control
DE10325699B3 (en) * 2003-06-06 2005-02-10 Roche Diagnostics Gmbh System for analyzing a sample to be tested and using such a system
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
DE10345663A1 (en) * 2003-06-27 2005-01-20 Senslab-Gesellschaft Zur Entwicklung Und Herstellung Bioelektrochemischer Sensoren Mbh Diagnostic or analytical disposable with integrated lancet
EP1529488A1 (en) 2003-06-27 2005-05-11 Ehrfeld Mikrotechnik AG Device and method for sampling and analysing body fluids
WO2005033659A2 (en) 2003-09-29 2005-04-14 Pelikan Technologies, Inc. Method and apparatus for an improved sample capture device
JP2005111135A (en) * 2003-10-10 2005-04-28 Asahi Polyslider Co Ltd Lancet cassette, lancet projection device, and lancet assembly constituted with them
US9351680B2 (en) 2003-10-14 2016-05-31 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a variable user interface
EP1706026B1 (en) 2003-12-31 2017-03-01 Sanofi-Aventis Deutschland GmbH Method and apparatus for improving fluidic flow and sample capture
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
EP1725867A4 (en) * 2004-03-18 2009-04-08 Fujifilm Corp Analysis element for use in method of testing specimen
US7909776B2 (en) * 2004-04-30 2011-03-22 Roche Diagnostics Operations, Inc. Lancets for bodily fluid sampling supplied on a tape
US8591436B2 (en) * 2004-04-30 2013-11-26 Roche Diagnostics Operations, Inc. Lancets for bodily fluid sampling supplied on a tape
US9101302B2 (en) * 2004-05-03 2015-08-11 Abbott Diabetes Care Inc. Analyte test device
US7322942B2 (en) * 2004-05-07 2008-01-29 Roche Diagnostics Operations, Inc. Integrated disposable for automatic or manual blood dosing
JP4635002B2 (en) * 2004-05-17 2011-02-16 泉株式会社 Lancet assembly
US8828203B2 (en) 2004-05-20 2014-09-09 Sanofi-Aventis Deutschland Gmbh Printable hydrogels for biosensors
US9775553B2 (en) 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
WO2005120199A2 (en) * 2004-06-03 2005-12-22 Pelikan Technologies, Inc. Methods and apparatus for an integrated sample capture and analysis disposable
US9820684B2 (en) 2004-06-03 2017-11-21 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US7766845B2 (en) 2004-06-21 2010-08-03 Roche Diagnostics Operations, Inc. Disposable lancet and lancing cap combination for increased hygiene
US20060000549A1 (en) * 2004-06-29 2006-01-05 Lang David K Method of manufacturing integrated biosensors
DE102004033219A1 (en) 2004-07-09 2006-02-02 Roche Diagnostics Gmbh Method for the selective sterilization of diagnostic test elements
US7727166B2 (en) * 2004-07-26 2010-06-01 Nova Biomedical Corporation Lancet, lancet assembly and lancet-sensor combination
KR20070058588A (en) * 2004-10-06 2007-06-08 이즈미 가부시키가이샤 Lancet assembly
US7488298B2 (en) * 2004-10-08 2009-02-10 Roche Diagnostics Operations, Inc. Integrated lancing test strip with capillary transfer sheet
DE102004056516A1 (en) * 2004-11-24 2006-06-01 Drägerwerk AG Method for attaching flexible, electrochemical sensors
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
DE102005003789A1 (en) 2005-01-19 2006-07-27 Roche Diagnostics Gmbh Test unit for one-time examinations of a body fluid
US9289161B2 (en) * 2005-01-28 2016-03-22 Stat Medical Divices, Inc. Multi-lancet unit, method and lancet device using the multi-lancet unit, and method of assembling and/or making the multi-lancet unit
US7479118B2 (en) * 2005-02-07 2009-01-20 Roche Diagnostics Operations, Inc. Lancet protective cap
US7695442B2 (en) 2005-04-12 2010-04-13 Roche Diagnostics Operations, Inc. Integrated lancing test strip with retractable lancet
US7935063B2 (en) * 2005-03-02 2011-05-03 Roche Diagnostics Operations, Inc. System and method for breaking a sterility seal to engage a lancet
ATE509570T1 (en) 2005-03-24 2011-06-15 Hoffmann La Roche ANALYTICAL TOOL WITH LANCET AND TEST ELEMENT
EP1714613A1 (en) * 2005-04-22 2006-10-25 F. Hoffmann-La Roche Ag Analyzing means
ATE394992T1 (en) * 2005-05-20 2008-05-15 Hoffmann La Roche LANCET SYSTEM WITH STERILE PROTECTION
EP2229887B1 (en) * 2005-05-20 2011-07-20 F. Hoffmann-La Roche AG Lancet device with sterile protection
US8211036B2 (en) * 2005-05-27 2012-07-03 Stat Medical Devices, Inc. Disposable lancet device cap with integral lancet and/or test strip and testing device utilizing the cap
GB2426709A (en) * 2005-05-31 2006-12-06 Owen Mumford Ltd Lancet
WO2007001001A1 (en) * 2005-06-27 2007-01-04 National Institute Of Advanced Industrial Science And Technology Needle integrating biosensor
JP4547535B2 (en) * 2005-06-27 2010-09-22 独立行政法人産業技術総合研究所 Needle integrated biosensor
JP2007014646A (en) * 2005-07-11 2007-01-25 National Institute Of Advanced Industrial & Technology Integrated needle type biosensor
US8636672B2 (en) * 2007-02-28 2014-01-28 Nipro Diagnostics, Inc. Test strip with integrated lancet
US20100081968A1 (en) * 2005-07-15 2010-04-01 Home Diagnostics, Inc. Test Strip With Integrated Lancet
US8880138B2 (en) * 2005-09-30 2014-11-04 Abbott Diabetes Care Inc. Device for channeling fluid and methods of use
EP1776925A1 (en) * 2005-10-20 2007-04-25 Roche Diagnostics GmbH Analyzing means with lancet and test element
EP1785090A1 (en) * 2005-11-10 2007-05-16 F.Hoffmann-La Roche Ag Lancet device and system for skin detection
DE102005055398A1 (en) * 2005-11-17 2007-05-31 Wittenstein Ag Device for recording diagnostic values in the body
EP1792568A1 (en) 2005-12-05 2007-06-06 F. Hoffmann-La Roche AG Re-usable puncturing aid and method for performing a puncture movement therewith
US8303614B2 (en) 2005-12-21 2012-11-06 Stat Medical Devices, Inc. Double-ended lancet, method and lancet device using the double-ended lancet, and method of assembling and/or making the double-ended lancet
EP1976434B1 (en) 2006-01-25 2016-01-13 Nova Biomedical Corporation Lancet sensor assembly and meter
EP1818014A1 (en) 2006-02-09 2007-08-15 F. Hoffmann-la Roche AG Test element with elastically supported lancet
US7826879B2 (en) * 2006-02-28 2010-11-02 Abbott Diabetes Care Inc. Analyte sensors and methods of use
US20070233013A1 (en) * 2006-03-31 2007-10-04 Schoenberg Stephen J Covers for tissue engaging members
EP1878387B1 (en) * 2006-07-15 2010-11-24 Roche Diagnostics GmbH Lancet, lancet feeder belt and pricking device for creating a puncture wound
EP1878386A1 (en) * 2006-07-15 2008-01-16 Roche Diagnostics GmbH Process to produce lancet; lancet, lancet band and device for pricking the skin
US20080065130A1 (en) * 2006-08-22 2008-03-13 Paul Patel Elastomeric toroidal ring for blood expression
JP4871083B2 (en) * 2006-09-27 2012-02-08 テルモ株式会社 Body fluid collection unit
EP2090227A4 (en) * 2006-11-10 2010-01-27 Nat Inst Of Advanced Ind Scien Biosensor cartridge, biosensor device, specimen sampling method, manufacturing method for biosensor cartridge, and needle-integrated sensor
US20100168616A1 (en) * 2006-11-21 2010-07-01 Stat Medical Devices, Inc. Lancet device utilizing a revolver-type cartridge, revolver-type cartridge, and method of making and/or using the cartridge and the lancet device
JP2008194270A (en) * 2007-02-14 2008-08-28 National Institute Of Advanced Industrial & Technology Biosensor cartridge and its manufacturing method
EP1972267A1 (en) 2007-03-20 2008-09-24 Roche Diagnostics GmbH System for in vivo measurement of an analyte concentration
EP2363062B1 (en) 2007-04-21 2017-11-22 Roche Diabetes Care GmbH Analytical system for detecting an analyte in a body fluid
EP1992284A1 (en) * 2007-05-15 2008-11-19 F.Hoffmann-La Roche Ag Method for storing piecing elements and belt magazine
ATE488178T1 (en) * 2007-05-16 2010-12-15 Hoffmann La Roche STICKING SYSTEM
US8454534B2 (en) * 2007-06-18 2013-06-04 Thais Russomano Blood collector device and blood analysis procedure
WO2009051901A2 (en) * 2007-08-30 2009-04-23 Pepex Biomedical, Llc Electrochemical sensor and method for manufacturing
US8702932B2 (en) 2007-08-30 2014-04-22 Pepex Biomedical, Inc. Electrochemical sensor and method for manufacturing
EP2039607A1 (en) * 2007-09-19 2009-03-25 Roche Diagnostics GmbH Joining foils with laser for sterile lancets
US20090099437A1 (en) * 2007-10-11 2009-04-16 Vadim Yuzhakov Lancing Depth Adjustment Via Moving Cap
US9392968B2 (en) * 2008-01-23 2016-07-19 Stat Medical Devices, Inc. Lancet needle cartridge, cartridge lancet device, and method of using and making the same
US7766846B2 (en) 2008-01-28 2010-08-03 Roche Diagnostics Operations, Inc. Rapid blood expression and sampling
ES2803431T3 (en) * 2008-03-05 2021-01-26 Becton Dickinson Co Capillary Action Collection Container Assembly
WO2009126900A1 (en) 2008-04-11 2009-10-15 Pelikan Technologies, Inc. Method and apparatus for analyte detecting device
WO2010009172A1 (en) 2008-07-14 2010-01-21 Abbott Diabetes Care Inc. Closed loop control system interface and methods
WO2010076663A2 (en) * 2008-08-14 2010-07-08 Moran Antonio Jr Bone tissue extracting device and method
US9445755B2 (en) 2008-11-14 2016-09-20 Pepex Biomedical, Llc Electrochemical sensor module
US8951377B2 (en) 2008-11-14 2015-02-10 Pepex Biomedical, Inc. Manufacturing electrochemical sensor module
WO2010056876A2 (en) 2008-11-14 2010-05-20 Pepex Biomedical, Llc Manufacturing electrochemical sensor module
US20100187132A1 (en) * 2008-12-29 2010-07-29 Don Alden Determination of the real electrochemical surface areas of screen printed electrodes
EP2210558A1 (en) 2009-01-21 2010-07-28 Roche Diagnostics GmbH Lancet with capillary canal and sterile protection and method for producing such a lancet
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
EP4252639A3 (en) * 2009-02-26 2024-01-03 Abbott Diabetes Care Inc. Method of calibrating an analyte sensor
EP2241252A1 (en) * 2009-03-17 2010-10-20 F. Hoffmann-La Roche AG Testing device, in particular for blood sugar tests
US8758267B2 (en) * 2009-03-17 2014-06-24 Nova Biomedical Corporation Modified lancet carrier for single-use lancet sensor assembly
WO2010127052A1 (en) * 2009-04-28 2010-11-04 Abbott Diabetes Care Inc. Dynamic analyte sensor calibration based on sensor stability profile
ES2776474T3 (en) 2009-07-23 2020-07-30 Abbott Diabetes Care Inc Continuous analyte measurement system
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
EP2661616B1 (en) * 2011-01-06 2015-11-18 Pepex Biomedical, Inc. Sensor module with enhanced capillary flow
US8647357B2 (en) 2011-02-05 2014-02-11 Birch Narrows Development Llc Lancet device with flexible cover
US20120209306A1 (en) * 2011-02-15 2012-08-16 Tyco Healthcare Group Lp Elastomeric trocar safety shield
WO2012151307A1 (en) * 2011-05-02 2012-11-08 Ibis Biosciences, Inc. Multiple- analyte assay device and system
WO2012162151A2 (en) 2011-05-20 2012-11-29 Pepex Biomedical, Inc. Manufacturing electrochemical sensor modules
GB2498772A (en) * 2012-01-27 2013-07-31 Owen Mumford Ltd Lancing device moving lancet needle in longitudinal and lateral directions, lancet needle and lancing device with anti-recocking means
JP6001300B2 (en) * 2012-04-02 2016-10-05 南部化成株式会社 Blood sampling puncture device
US11224367B2 (en) 2012-12-03 2022-01-18 Pepex Biomedical, Inc. Sensor module and method of using a sensor module
GB2509076A (en) * 2012-12-19 2014-06-25 4A Medicom Gmbh Blood sampling device comprising lancet and capillary tube
US9237866B2 (en) 2013-04-29 2016-01-19 Birch Narrows Development, LLC Blood glucose management
EP3007623B1 (en) 2013-06-10 2019-02-20 Facet Technologies, LLC Lancet needle with alignment and retention notch
CN107003264B (en) 2014-06-04 2020-02-21 普佩克斯生物医药有限公司 Electrochemical sensor and method of manufacturing an electrochemical sensor using advanced printing techniques

Family Cites Families (241)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH289191A (en) 1952-10-14 1953-02-28 Georges Dr Guye Scarification vaccination device.
US2714890A (en) 1953-08-06 1955-08-09 Vang Alfred Vibratory surgical instruments
US3086288A (en) * 1955-04-20 1963-04-23 Cavitron Ultrasonics Inc Ultrasonically vibrated cutting knives
DE1079275B (en) 1958-09-05 1960-04-07 Praemeta Praez Smetall Und Kun Schnepper, especially for taking blood
US3030959A (en) * 1959-09-04 1962-04-24 Praemeta Surgical lancet for blood sampling
US3208452A (en) 1960-09-08 1965-09-28 Panray Parlam Corp Surface treating device
GB1080986A (en) 1964-09-02 1967-08-31 Allen And Hanburys Surgical En Multiple puncture apparatus
US3673475A (en) * 1970-09-15 1972-06-27 Fred M Hufnagel Pulse drive circuit for coils of dental impact tools and the like
DE2131297A1 (en) 1971-06-24 1973-01-11 Richard Philipp LOOKING APPARATUS FOR BLOOD COLLECTION
US3832776A (en) 1972-11-24 1974-09-03 H Sawyer Electronically powered knife
DE2461273A1 (en) 1974-12-23 1976-09-23 Baumgartner Skin lancet for tissue compatibility tests - has set of spring loaded lancet blades in holder released by trigger
US4077406A (en) * 1976-06-24 1978-03-07 American Cyanamid Company Pellet implanter for animal treatment
US4154228A (en) * 1976-08-06 1979-05-15 California Institute Of Technology Apparatus and method of inserting a microelectrode in body tissue or the like using vibration means
DE2642896C3 (en) * 1976-09-24 1980-08-21 7800 Freiburg Precision snapper for setting standard stab wounds in the skin for diagnostic purposes
GB1599654A (en) 1977-08-05 1981-10-07 Holman R R Automatic lancet
DE2803345C2 (en) * 1978-01-26 1980-02-14 Emil 7507 Pfinztal Eisinger Blood sampling device
US4223674A (en) 1978-06-29 1980-09-23 Arthur J. McIntosh Implant gun
JPS584982B2 (en) 1978-10-31 1983-01-28 松下電器産業株式会社 enzyme electrode
US4356826A (en) 1979-05-09 1982-11-02 Olympus Optical Co., Ltd. Stabbing apparatus for diagnosis of living body
DE3011211A1 (en) * 1980-03-22 1981-10-01 Clinicon Mannheim GmbH, 6800 Mannheim BLOOD PLANT DEVICE FOR TAKING BLOOD FOR DIAGNOSTIC PURPOSES
US4553541A (en) 1981-03-23 1985-11-19 Becton, Dickinson And Co. Automatic retractable lancet assembly
US4398544A (en) 1981-10-15 1983-08-16 Becton Dickinson And Company Single and multiple sample needle assembly with vein entry indicator
US4449529A (en) * 1981-11-18 1984-05-22 Becton Dickinson And Company Automatic retractable lancet assembly
US4535773A (en) 1982-03-26 1985-08-20 Inbae Yoon Safety puncturing instrument and method
US4548201A (en) 1982-04-20 1985-10-22 Inbae Yoon Elastic ligating ring clip
US4462405A (en) 1982-09-27 1984-07-31 Ehrlich Joseph C Blood letting apparatus
US4518384A (en) * 1983-06-17 1985-05-21 Survival Technology, Inc. Multiple medicament cartridge clip and medicament discharging device therefor
EP0166574A3 (en) 1984-06-28 1987-06-16 Mitchell P. Dombrowski, M.D. Fetal blood sampling instrument
US4635633A (en) * 1984-12-17 1987-01-13 Hufnagle Douglas R Combination sterile pad support and lancet
US4627445A (en) * 1985-04-08 1986-12-09 Garid, Inc. Glucose medical monitoring system
US5279294A (en) * 1985-04-08 1994-01-18 Cascade Medical, Inc. Medical diagnostic system
US4787398A (en) 1985-04-08 1988-11-29 Garid, Inc. Glucose medical monitoring system
US4653513A (en) * 1985-08-09 1987-03-31 Dombrowski Mitchell P Blood sampler
US4750489A (en) * 1985-08-29 1988-06-14 Coopervision, Inc. Radial keratotomy knife and system using same
IL80628A0 (en) * 1985-11-18 1987-02-27 Bajada Serge Apparatus for testing the sensory system in humans or animals
US4695274A (en) * 1986-01-31 1987-09-22 Fox Richard L Protected hypodermic needle
US5001054A (en) * 1986-06-26 1991-03-19 Becton, Dickinson And Company Method for monitoring glucose
US5029583A (en) 1986-07-22 1991-07-09 Personal Diagnostics, Inc. Optical analyzer
US5059394A (en) 1986-08-13 1991-10-22 Lifescan, Inc. Analytical device for the automated determination of analytes in fluids
US4794926A (en) * 1986-11-24 1989-01-03 Invictus, Inc. Lancet cartridge
US4883068A (en) 1988-03-14 1989-11-28 Dec In Tech, Inc. Blood sampling device and method
DE68924026T3 (en) * 1988-03-31 2008-01-10 Matsushita Electric Industrial Co., Ltd., Kadoma BIOSENSOR AND ITS MANUFACTURE.
US5320808A (en) * 1988-08-02 1994-06-14 Abbott Laboratories Reaction cartridge and carousel for biological sample analyzer
US4924879A (en) * 1988-10-07 1990-05-15 Brien Walter J O Blood lancet device
US4995402A (en) 1988-10-12 1991-02-26 Thorne, Smith, Astill Technologies, Inc. Medical droplet whole blood and like monitoring
JP2743404B2 (en) 1988-10-19 1998-04-22 株式会社ニコン Ultrasonic motor drive controller
US4983178A (en) * 1988-11-14 1991-01-08 Invictus, Inc. Lancing device
DE3842317A1 (en) 1988-12-16 1990-06-21 Medico S A Arrangement with a sterile cannula
US4889117A (en) 1989-02-17 1989-12-26 Stevens Peter A Disposable lancet
US5035704A (en) * 1989-03-07 1991-07-30 Lambert Robert D Blood sampling mechanism
US5054499A (en) 1989-03-27 1991-10-08 Swierczek Remi D Disposable skin perforator and blood testing device
US5145565A (en) 1989-05-01 1992-09-08 Spacelabs, Inc. Contamination-free method and apparatus for measuring body fluid chemical parameters
US5207699A (en) * 1989-10-30 1993-05-04 Coe Frederick L Lancet handling and disposal assembly
US5415169A (en) * 1989-11-21 1995-05-16 Fischer Imaging Corporation Motorized mammographic biopsy apparatus
US5097810A (en) * 1990-04-06 1992-03-24 Henry Fishman Allergy testing apparatus and method
US5152775A (en) 1990-10-04 1992-10-06 Norbert Ruppert Automatic lancet device and method of using the same
US5188118A (en) * 1990-11-07 1993-02-23 Terwilliger Richard A Automatic biopsy instrument with independently actuated stylet and cannula
JPH04194660A (en) 1990-11-27 1992-07-14 Omron Corp Device for measuring concentration of component in blood
US5360410A (en) 1991-01-16 1994-11-01 Senetek Plc Safety syringe for mixing two-component medicaments
US5122123A (en) 1991-01-30 1992-06-16 Vaillancourt Vincent L Closed system connector assembly
US5189751A (en) * 1991-03-21 1993-03-02 Gemtech, Inc. Vibrating toothbrush using a magnetic driver
US5231993A (en) * 1991-11-20 1993-08-03 Habley Medical Technology Corporation Blood sampler and component tester with guide member
DE4142795C1 (en) 1991-12-23 1993-04-22 Steinweg, Friedhelm, Dr.Med., 4750 Unna, De
US5324302A (en) * 1992-10-13 1994-06-28 Sherwood Medical Company Lancet with locking cover
US5222504A (en) * 1992-02-11 1993-06-29 Solomon Charles L Disposable neurological pinwheel
US5593391A (en) * 1992-02-13 1997-01-14 Stanners; Sydney D. Ampule safety syringe
JPH07108290B2 (en) 1992-03-24 1995-11-22 株式会社ニッショー Blood collection device adapter
DE4212315A1 (en) 1992-04-13 1993-10-14 Boehringer Mannheim Gmbh Blood lancet device for drawing blood for diagnostic purposes
IL101720A (en) 1992-04-29 1998-09-24 Mali Tech Ltd Needle for syringe or the like
US5318583A (en) * 1992-05-05 1994-06-07 Ryder International Corporation Lancet actuator mechanism
JP2561697Y2 (en) 1992-08-28 1998-02-04 アプルス株式会社 Lancet
CA2079192C (en) * 1992-09-25 1995-12-26 Bernard Strong Combined lancet and multi-function cap and lancet injector for use therewith
US5290254A (en) 1992-11-16 1994-03-01 Vaillancourt Vincent L Shielded cannula assembly
US5313969A (en) * 1992-12-08 1994-05-24 Hsieh Ch Ing Lung Instant pressure-reducing process and device for a blood-gathering tube
JP3701966B2 (en) 1993-01-26 2005-10-05 ウェイナー,デービッド・ビー Compositions and methods for delivery of genetic material
US5395387A (en) * 1993-02-26 1995-03-07 Becton Dickinson And Company Lancet blade designed for reduced pain
US5529074A (en) * 1993-02-26 1996-06-25 Greenfield; Jon B. Uniform pressure diagnostic pinwheel
EP1130383B1 (en) * 1993-04-23 2004-09-15 Roche Diagnostics GmbH Diskette with circular arranged test elements
JP2630197B2 (en) 1993-04-28 1997-07-16 株式会社ニッショー Blood suction device
US5414267A (en) * 1993-05-26 1995-05-09 American International Technologies, Inc. Electron beam array for surface treatment
US5358489A (en) * 1993-05-27 1994-10-25 Washington Biotech Corporation Reloadable automatic or manual emergency injection system
DE4320463A1 (en) * 1993-06-21 1994-12-22 Boehringer Mannheim Gmbh Blood lancet device for drawing blood for diagnostic purposes
HU219921B (en) 1993-10-20 2001-09-28 Ervin Lipscher Device for making blood test, especially from fingers
US5472427A (en) 1993-10-22 1995-12-05 Rammler; David H. Trocar device
US5885211A (en) * 1993-11-15 1999-03-23 Spectrix, Inc. Microporation of human skin for monitoring the concentration of an analyte
FR2715071B1 (en) * 1994-01-17 1996-03-01 Aguettant Lab Automatic drug injector.
US5474084A (en) 1994-03-15 1995-12-12 Cunniff; Joseph G. Algesimeter with detachable pin wheel
AU2373695A (en) 1994-05-03 1995-11-29 Board Of Regents, The University Of Texas System Apparatus and method for noninvasive doppler ultrasound-guided real-time control of tissue damage in thermal therapy
JP3368985B2 (en) 1994-05-10 2003-01-20 バイエルコーポレーション Automatic feeding device
US5591139A (en) * 1994-06-06 1997-01-07 The Regents Of The University Of California IC-processed microneedles
US5700695A (en) 1994-06-30 1997-12-23 Zia Yassinzadeh Sample collection and manipulation method
GB9414143D0 (en) 1994-07-13 1994-08-31 Owen Mumford Ltd Improvements relating to blood sampling devices
US5514152A (en) * 1994-08-16 1996-05-07 Specialized Health Products, Inc. Multiple segment encapsulated medical lancing device
US5504011A (en) 1994-10-21 1996-04-02 International Technidyne Corporation Portable test apparatus and associated method of performing a blood coagulation test
DE4438360C2 (en) * 1994-10-27 1999-05-20 Schott Glas Pre-fillable, low-particle, sterile disposable syringe for the injection of preparations and methods for their manufacture
US5628765A (en) * 1994-11-29 1997-05-13 Apls Co., Ltd. Lancet assembly
US5630986A (en) * 1995-01-13 1997-05-20 Bayer Corporation Dispensing instrument for fluid monitoring sensors
US5575403A (en) * 1995-01-13 1996-11-19 Bayer Corporation Dispensing instrument for fluid monitoring sensors
US5655542A (en) 1995-01-26 1997-08-12 Weilandt; Anders Instrument and apparatus for biopsy and a method thereof
US5636640A (en) * 1995-02-06 1997-06-10 Volunteers For Medical Engineering Liquid sampling and test apparatus
CA2170560C (en) * 1995-04-17 2005-10-25 Joseph L. Moulton Means of handling multiple sensors in a glucose monitoring instrument system
US5510266A (en) * 1995-05-05 1996-04-23 Bayer Corporation Method and apparatus of handling multiple sensors in a glucose monitoring instrument system
JPH08317918A (en) * 1995-05-25 1996-12-03 Advance Co Ltd Blood drawing device
US5860922A (en) * 1995-09-07 1999-01-19 Technion Research And Development Foundation Ltd. Determining blood flow by measurement of temperature
US5879367A (en) 1995-09-08 1999-03-09 Integ, Inc. Enhanced interstitial fluid collection
ATE221338T1 (en) 1995-09-20 2002-08-15 Texas Heart Inst YINDICATION OF THERMAL DISCONTINUITY ON VESSEL WALLS
ATE396644T1 (en) * 1995-12-19 2008-06-15 Abbott Lab DEVICE FOR DETECTING AN ANALYTE AND ADMINISTERING A THERAPEUTIC SUBSTANCE
US5662127A (en) * 1996-01-17 1997-09-02 Bio-Plas, Inc. Self-contained blood withdrawal apparatus and method
DE19604156A1 (en) 1996-02-06 1997-08-07 Boehringer Mannheim Gmbh Skin cutting device for taking pain-free small amounts of blood
US5916229A (en) 1996-02-07 1999-06-29 Evans; Donald Rotating needle biopsy device and method
US5801057A (en) * 1996-03-22 1998-09-01 Smart; Wilson H. Microsampling device and method of construction
JP3729553B2 (en) 1996-04-09 2005-12-21 大日本印刷株式会社 Body fluid analyzer
US6332871B1 (en) 1996-05-17 2001-12-25 Amira Medical Blood and interstitial fluid sampling device
US5879311A (en) * 1996-05-17 1999-03-09 Mercury Diagnostics, Inc. Body fluid sampling device and methods of use
DE19758808B4 (en) 1996-05-17 2009-11-26 Roche Diagnostics Operations Inc. (N.D.Ges.D.Staates Delaware), Indianapolis Sampling device for body fluid
EP1579814A3 (en) * 1996-05-17 2006-06-14 Roche Diagnostics Operations, Inc. Methods and apparatus for sampling and analyzing body fluid
US5951493A (en) 1997-05-16 1999-09-14 Mercury Diagnostics, Inc. Methods and apparatus for expressing body fluid from an incision
US5951492A (en) * 1996-05-17 1999-09-14 Mercury Diagnostics, Inc. Methods and apparatus for sampling and analyzing body fluid
ES2121564B1 (en) 1996-05-17 2001-02-01 Mercury Diagnostics Inc METHODS AND APPLIANCES TO EXTRACT BODY FLUID FROM AN INCISION.
US5810199A (en) 1996-06-10 1998-09-22 Bayer Corporation Dispensing instrument for fluid monitoring sensor
US5758643A (en) 1996-07-29 1998-06-02 Via Medical Corporation Method and apparatus for monitoring blood chemistry
FI112029B (en) * 1996-09-02 2003-10-31 Nokia Corp Device for taking and analyzing samples in liquid form, such as blood samples
GB9619462D0 (en) 1996-09-18 1996-10-30 Owen Mumford Ltd Improvements relating to lancet devices
US5776157A (en) 1996-10-02 1998-07-07 Specialized Health Products, Inc. Lancet apparatus and methods
US5714390A (en) * 1996-10-15 1998-02-03 Bio-Tech Imaging, Inc. Cartridge test system for the collection and testing of blood in a single step
US6071249A (en) * 1996-12-06 2000-06-06 Abbott Laboratories Method and apparatus for obtaining blood for diagnostic tests
US6063039A (en) 1996-12-06 2000-05-16 Abbott Laboratories Method and apparatus for obtaining blood for diagnostic tests
ATE227844T1 (en) 1997-02-06 2002-11-15 Therasense Inc SMALL VOLUME SENSOR FOR IN-VITRO DETERMINATION
US5830219A (en) 1997-02-24 1998-11-03 Trex Medical Corporation Apparatus for holding and driving a surgical cutting device using stereotactic mammography guidance
JP3706946B2 (en) 1997-04-24 2005-10-19 有限会社勝製作所 Strand feeding / drawing speed adjusting device
DE19718081A1 (en) * 1997-04-29 1998-11-05 Boehringer Mannheim Gmbh Disposable blood lancet
US5968063A (en) 1997-05-14 1999-10-19 Jennifer Chu Intramuscular stimulation therapy facilitating device and method
FI111217B (en) 1997-06-19 2003-06-30 Nokia Corp Apparatus for sampling
AU745352B2 (en) 1997-07-30 2002-03-21 Cook Medical Technologies Llc Medical fluid flow control valve
US5829589A (en) 1997-09-12 1998-11-03 Becton Dickinson And Company Pen needle magazine dispenser
US6090078A (en) 1997-09-30 2000-07-18 Becton, Dickinson And Company Dampening devices and methods for needle retracting safety vascular access devices
US5938679A (en) 1997-10-14 1999-08-17 Hewlett-Packard Company Apparatus and method for minimally invasive blood sampling
US6013513A (en) 1997-10-30 2000-01-11 Motorola, Inc. Molecular detection apparatus
DE19751219A1 (en) 1997-11-19 1999-05-27 Vetter & Co Apotheker Syringe, especially prefilled syringe, or carpule
US5964718A (en) * 1997-11-21 1999-10-12 Mercury Diagnostics, Inc. Body fluid sampling device
DE19824036A1 (en) * 1997-11-28 1999-06-02 Roche Diagnostics Gmbh Analytical measuring device with lancing device
US6155992A (en) 1997-12-02 2000-12-05 Abbott Laboratories Method and apparatus for obtaining interstitial fluid for diagnostic tests
DE19753847A1 (en) * 1997-12-04 1999-06-10 Roche Diagnostics Gmbh Analytical test element with capillary channel
US5971941A (en) 1997-12-04 1999-10-26 Hewlett-Packard Company Integrated system and method for sampling blood and analysis
US6071294A (en) 1997-12-04 2000-06-06 Agilent Technologies, Inc. Lancet cartridge for sampling blood
US6036924A (en) * 1997-12-04 2000-03-14 Hewlett-Packard Company Cassette of lancet cartridges for sampling blood
US5954596A (en) 1997-12-04 1999-09-21 Karsten Manufacturing Corporation Golf club head with reinforced front wall
US5871494A (en) * 1997-12-04 1999-02-16 Hewlett-Packard Company Reproducible lancing for sampling blood
US5997817A (en) 1997-12-05 1999-12-07 Roche Diagnostics Corporation Electrochemical biosensor test strip
US6022324A (en) * 1998-01-02 2000-02-08 Skinner; Bruce A. J. Biopsy instrument
DE69918266T2 (en) * 1998-01-12 2005-08-04 Alsensa A.p.S. INJECTION UNIT
US6306347B1 (en) 1998-01-21 2001-10-23 Bayer Corporation Optical sensor and method of operation
JP3902875B2 (en) 1998-10-19 2007-04-11 テルモ株式会社 Puncture device
JP2000014662A (en) 1998-01-22 2000-01-18 Terumo Corp Humor examination device
US6193673B1 (en) * 1998-02-20 2001-02-27 United States Surgical Corporation Biopsy instrument driver apparatus
US6261241B1 (en) 1998-03-03 2001-07-17 Senorx, Inc. Electrosurgical biopsy device and method
US6139562A (en) * 1998-03-30 2000-10-31 Agilent Technologies, Inc. Apparatus and method for incising
US6391005B1 (en) * 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
SG102538A1 (en) 1998-04-24 2004-03-26 Roche Diagnostics Gmbh Storage container for analytical devices
US6086545A (en) 1998-04-28 2000-07-11 Amira Medical Methods and apparatus for suctioning and pumping body fluid from an incision
US5951582A (en) 1998-05-22 1999-09-14 Specialized Health Products, Inc. Lancet apparatus and methods
US6022366A (en) 1998-06-11 2000-02-08 Stat Medical Devices Inc. Lancet having adjustable penetration depth
US6338790B1 (en) 1998-10-08 2002-01-15 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
JP4250692B2 (en) 1998-10-15 2009-04-08 アークレイ株式会社 Body fluid measuring device and wearing body
US6285454B1 (en) 1998-12-07 2001-09-04 Mercury Diagnostics, Inc. Optics alignment and calibration system
CN1191786C (en) 1999-01-04 2005-03-09 泰尔茂株式会社 Assembly having lancet and means for collecting and detecting body fluid
US6210420B1 (en) * 1999-01-19 2001-04-03 Agilent Technologies, Inc. Apparatus and method for efficient blood sampling with lancet
US6132449A (en) * 1999-03-08 2000-10-17 Agilent Technologies, Inc. Extraction and transportation of blood for analysis
US6306152B1 (en) 1999-03-08 2001-10-23 Agilent Technologies, Inc. Lancet device with skin movement control and ballistic preload
US6402701B1 (en) 1999-03-23 2002-06-11 Fna Concepts, Llc Biopsy needle instrument
US6120462A (en) 1999-03-31 2000-09-19 Ethicon Endo-Surgery, Inc. Control method for an automated surgical biopsy device
US6231531B1 (en) * 1999-04-09 2001-05-15 Agilent Technologies, Inc. Apparatus and method for minimizing pain perception
US6152942A (en) 1999-06-14 2000-11-28 Bayer Corporation Vacuum assisted lancing device
GB9913869D0 (en) 1999-06-16 1999-08-11 Owen Mumford Ltd Improvements relating to lancets
EP1211979A1 (en) 1999-06-30 2002-06-12 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO Pricking device, carrier and cassette comprising a plurality of lancets
JP2001043796A (en) 1999-07-30 2001-02-16 Sony Corp Heat-sensitive transfer film and using method for the same
DE19945828B4 (en) * 1999-09-24 2011-06-01 Roche Diagnostics Gmbh Analysis element and method for the determination of an analyte in liquid
DE19948759A1 (en) 1999-10-09 2001-04-12 Roche Diagnostics Gmbh Blood lancet device for drawing blood for diagnostic purposes
JP4210782B2 (en) * 1999-10-13 2009-01-21 アークレイ株式会社 Blood sampling position indicator
US6228100B1 (en) * 1999-10-25 2001-05-08 Steven Schraga Multi-use lancet device
US6537257B1 (en) * 1999-11-01 2003-03-25 Abraham Wien Syringe with reciprocating, leak-proof needle guard
JP3985022B2 (en) 1999-11-08 2007-10-03 アークレイ株式会社 Body fluid measuring device and insertion body used by being inserted into the body fluid measuring device
US6364889B1 (en) * 1999-11-17 2002-04-02 Bayer Corporation Electronic lancing device
US6849052B2 (en) * 1999-12-13 2005-02-01 Arkray, Inc. Body fluid measuring apparatus with lancet and lancet holder used for the measuring apparatus
US6706159B2 (en) * 2000-03-02 2004-03-16 Diabetes Diagnostics Combined lancet and electrochemical analyte-testing apparatus
US6379969B1 (en) * 2000-03-02 2002-04-30 Agilent Technologies, Inc. Optical sensor for sensing multiple analytes
US6375627B1 (en) * 2000-03-02 2002-04-23 Agilent Technologies, Inc. Physiological fluid extraction with rapid analysis
DE10010694A1 (en) * 2000-03-04 2001-09-06 Roche Diagnostics Gmbh Lancet including tipped needle with body surrounding tip
US6612111B1 (en) * 2000-03-27 2003-09-02 Lifescan, Inc. Method and device for sampling and analyzing interstitial fluid and whole blood samples
US6402704B1 (en) 2000-04-18 2002-06-11 Sonexxus Incorporated Prothrombin test apparatus for home use
US6561989B2 (en) * 2000-07-10 2003-05-13 Bayer Healthcare, Llc Thin lance and test sensor having same
US6358265B1 (en) * 2000-07-18 2002-03-19 Specialized Health Products, Inc. Single-step disposable safety lancet apparatus and methods
DE10047419A1 (en) 2000-09-26 2002-04-11 Roche Diagnostics Gmbh Lancet system
EP1203563A3 (en) * 2000-10-31 2004-01-02 Boehringer Mannheim Gmbh Analyzing mean with integrated lancet
DE10053974A1 (en) * 2000-10-31 2002-05-29 Roche Diagnostics Gmbh Blood collection system
US9302903B2 (en) 2000-12-14 2016-04-05 Georgia Tech Research Corporation Microneedle devices and production thereof
US6491709B2 (en) 2000-12-22 2002-12-10 Becton, Dickinson And Company Alternate-site lancer
EP1285629B1 (en) * 2001-01-19 2013-05-22 Panasonic Corporation Lancet-integrated sensor and measurer for lancet-integrated sensor
WO2002056760A1 (en) 2001-01-19 2002-07-25 Tufts University Method for measuring venous oxygen saturation
CA2435439A1 (en) * 2001-01-22 2002-07-25 F. Hoffmann-La Roche Ag Lancet device having capillary action
US6530892B1 (en) * 2001-03-07 2003-03-11 Helen V. Kelly Automatic skin puncturing system
US6783502B2 (en) * 2001-04-26 2004-08-31 Phoenix Bioscience Integrated lancing and analytic device
US20030032681A1 (en) * 2001-05-18 2003-02-13 The Regents Of The University Of Clifornia Super-hydrophobic fluorine containing aerogels
US20020177763A1 (en) * 2001-05-22 2002-11-28 Burns David W. Integrated lancets and methods
CA2448902C (en) 2001-06-12 2010-09-07 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
AU2002315179A1 (en) * 2001-06-12 2002-12-23 Pelikan Technologies, Inc. Blood sampling device with diaphragm actuated lancet
US7033371B2 (en) 2001-06-12 2006-04-25 Pelikan Technologies, Inc. Electric lancet actuator
WO2002101359A2 (en) * 2001-06-12 2002-12-19 Pelikan Technologies, Inc. Integrated blood sampling analysis system with multi-use sampling module
US7041068B2 (en) * 2001-06-12 2006-05-09 Pelikan Technologies, Inc. Sampling module device and method
US8323212B2 (en) * 2001-08-03 2012-12-04 Arkray, Inc. Attachment for body fluid sampling device and method of making the same
DE10142232B4 (en) 2001-08-29 2021-04-29 Roche Diabetes Care Gmbh Process for the production of an analytical aid with a lancet and test element
US7177850B2 (en) 2001-10-16 2007-02-13 Infineon Technologies Ag Method and apparatus for determining a portion of total costs of an entity
WO2003038808A1 (en) 2001-10-31 2003-05-08 Koninklijke Philips Electronics N.V. Method of and system for transcribing dictations in text files and for revising the texts
DE10163646A1 (en) 2001-12-21 2003-07-03 Hermsdorfer Inst Tech Keramik A surface modified hard and wear resistant compound inorganic material containing a substrate, a porous ceramic or metal coating structure, and an inorganic nanocomposite material useful for external coating of buildings
US7297122B2 (en) 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7485128B2 (en) 2002-04-19 2009-02-03 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7410468B2 (en) 2002-04-19 2008-08-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7374544B2 (en) 2002-04-19 2008-05-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7481776B2 (en) 2002-04-19 2009-01-27 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7582099B2 (en) 2002-04-19 2009-09-01 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7141058B2 (en) * 2002-04-19 2006-11-28 Pelikan Technologies, Inc. Method and apparatus for a body fluid sampling device using illumination
US8267870B2 (en) * 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US7524293B2 (en) 2002-04-19 2009-04-28 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US7331931B2 (en) 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7563232B2 (en) 2002-04-19 2009-07-21 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7244265B2 (en) 2002-04-19 2007-07-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7491178B2 (en) 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
WO2003088835A2 (en) 2002-04-19 2003-10-30 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7371247B2 (en) 2002-04-19 2008-05-13 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7226461B2 (en) * 2002-04-19 2007-06-05 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US20030143113A2 (en) * 2002-05-09 2003-07-31 Lifescan, Inc. Physiological sample collection devices and methods of using the same
US20030212344A1 (en) * 2002-05-09 2003-11-13 Vadim Yuzhakov Physiological sample collection devices and methods of using the same
US20030211619A1 (en) 2002-05-09 2003-11-13 Lorin Olson Continuous strip of fluid sampling and testing devices and methods of making, packaging and using the same
NZ526334A (en) 2002-06-25 2003-10-31 Bayer Healthcare Llc Sensor with integrated lancet for monitoring blood by colorometric or electrochemical test method
EP1562470A4 (en) 2002-11-01 2009-01-14 Pelikan Technologies Inc Method and apparatus for body fluid sampling
US20040120848A1 (en) 2002-12-20 2004-06-24 Maria Teodorczyk Method for manufacturing a sterilized and calibrated biosensor-based medical device
JP4809705B2 (en) 2006-03-28 2011-11-09 富士通セミコンダクター株式会社 Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
US9215993B2 (en) 2015-12-22
DE10142232B4 (en) 2021-04-29
JP2005185852A (en) 2005-07-14
EP1466558A3 (en) 2004-11-10
US20130239390A1 (en) 2013-09-19
ATE406839T1 (en) 2008-09-15
EP1287785A1 (en) 2003-03-05
EP1466558B2 (en) 2019-02-27
JP2003153885A (en) 2003-05-27
EP1287785B1 (en) 2006-12-13
DE50212744D1 (en) 2008-10-16
ES2276877T3 (en) 2007-07-01
EP1466558A2 (en) 2004-10-13
DK1466558T3 (en) 2009-01-12
EP1466558B1 (en) 2008-09-03
DK1287785T3 (en) 2007-04-10
US8523784B2 (en) 2013-09-03
DE50208937D1 (en) 2007-01-25
US7396334B2 (en) 2008-07-08
DE10142232A1 (en) 2003-03-20
ES2312888T3 (en) 2009-03-01
US20030050573A1 (en) 2003-03-13
CA2399890A1 (en) 2003-02-28
US20050021066A1 (en) 2005-01-27
ATE347858T1 (en) 2007-01-15

Similar Documents

Publication Publication Date Title
US7396334B2 (en) Analytical device with lancet and test element
US20180160957A1 (en) Blood lancet with hygienic tip protection
US8814808B2 (en) Body fluid sampling device
EP1725169B1 (en) Body fluid sampling device
US7803123B2 (en) Lancet device having capillary action
US20050283094A1 (en) Disposable lancet and lancing cap combination for increased hygiene
US20080243032A1 (en) Analytical device including sterile protection
US8172866B2 (en) Medical aid

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued