CA2495549C - Acid-capped quaternised polymer and compositions comprising such polymer - Google Patents

Acid-capped quaternised polymer and compositions comprising such polymer Download PDF

Info

Publication number
CA2495549C
CA2495549C CA2495549A CA2495549A CA2495549C CA 2495549 C CA2495549 C CA 2495549C CA 2495549 A CA2495549 A CA 2495549A CA 2495549 A CA2495549 A CA 2495549A CA 2495549 C CA2495549 C CA 2495549C
Authority
CA
Canada
Prior art keywords
polymer
groups
acid
coating composition
quaternary ammonium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA2495549A
Other languages
French (fr)
Other versions
CA2495549A1 (en
Inventor
Robert Lines
Clayton Price
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akzo Nobel Coatings International BV
Original Assignee
Akzo Nobel Coatings International BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akzo Nobel Coatings International BV filed Critical Akzo Nobel Coatings International BV
Publication of CA2495549A1 publication Critical patent/CA2495549A1/en
Application granted granted Critical
Publication of CA2495549C publication Critical patent/CA2495549C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/52Amides or imides
    • C08F20/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F20/60Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing nitrogen in addition to the carbonamido nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F30/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F30/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1656Antifouling paints; Underwater paints characterised by the film-forming substance
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1656Antifouling paints; Underwater paints characterised by the film-forming substance
    • C09D5/1662Synthetic film-forming substance
    • C09D5/1668Vinyl-type polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1811C10or C11-(Meth)acrylate, e.g. isodecyl (meth)acrylate, isobornyl (meth)acrylate or 2-naphthyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/60Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing nitrogen in addition to the carbonamido nitrogen
    • C08F220/603Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing nitrogen in addition to the carbonamido nitrogen and containing oxygen in addition to the carbonamido oxygen and nitrogen

Abstract

The invention relates to a polymer comprising quaternary ammonium and/or quaternary phosphonium groups bound to the backbone of the polymer, said quaternary ammonium groups and/or quaternary phosphonium groups being neutralised by counter-ions, wherein the counter-ions consist of the anionic residue of an acid having an aliphatic, aromatic, or alkaryl hydrocarbon group comprising 6 or more carbon atoms. The invention further relates to the preparation of this polymer, its use in anti-fouling compositions, and to anti-fouling compositions comprising the polymer.

Description

ACID-CAPPED QUATERNISED POLYMER AND COMPOSITIONS
COMPRISING SUCH POLYMER
This invention relates to anti-fouling paint, especially for marine applications.
Man-made structures such as boat hulls, buoys, drilling platforms, oil production rigs, and pipes which are immersed in water are prone to fouling by aquatic organisms such as green and brown algae, barnacles, mussels, and the like.
Such structures are commonly of metal, but may also comprise other structural io materials such as concrete. This fouling is a nuisance on boat hulls, because it increases frictional resistance during movement through the water, the consequence being reduced speeds and increased fuel costs. It is a nuisance on static structures such as the legs of drilling platforms and oil production rigs, firstly because the resistance of thick layers of fouling to waves and currents Is can cause unpredictable and potentially dangerous stresses in the structure, and, secondly, because fouling makes it difficult to inspect the structure for defects such as stress cracking and corrosion. It is a nuisance in pipes such as cooling water intakes and outlets, because the effective cross-sectional area is reduced by fouling, with the,consequence that flow rates are reduced.
It is known to use anti-fouling paint, for instance as a top coat on ships' hulls, to inhibit the settlement and growth of marine organisms such as barnacles and algae, generally by release of a biocide for the marine organisms.
2s Traditionally, anti-fouling paints have comprised a relatively inert binder with a biocidal pigment that is leached from the paint. Among the binders which have been used are vinyl resins and rosin. Vinyl resins are seawater-insoluble and paints based on them use a high pigment concentration so as to have contact between the pigment particles to ensure leaching. Rosin is a hard brittle resin that is very slightly soluble in seawater. Rosin-based anti-fouling paints have been referred to as soluble matrix or eroding paints. The biocidal pigment is very gradually leached out of the matrix of rosin binder in use, leaving a skeletal matrix of rosin, which becomes washed off the hull surface to allow leaching of the biocidal pigment from deep within the paint film.
Many successful anti-fouling paints in recent years have been "self-polishing copolymer" paints based on a polymeric binder to which biocidal tri-organotin moieties are chemically bound and from which the biocidal moieties are gradually hydrolysed by seawater. In such binder systems, the side groups of a io linear polymer unit are split off in a first step by reaction with seawater, the polymer framework that remains becoming water-soluble or water-dispersible as a result. In a second step, the water-soluble or water-dispersible framework at the surface of the paint layer on the ship is washed out or eroded. Such paint systems are described for example in GB-A-1 457 590. As the use of tri-es organotin has been restricted by legislation and will become prohibited world-wide, there is a need for alternative anti-fouling substances that can be used in anti-fouling compositions.
GB-A-2 273 934 describes a binder system that is an alternative to organotin-2o based anti-fouling systems. One of the hydrolysable polymeric binders described comprises quaternary ammonium groups bound to a polymeric backbone: Such a polymeric binder is prepared by co-polymerisation of halide-capped quaternary ammonium monomers of which one of the R groups has a (meth)acrylamide functionality. These polymeric binders are partially soluble in 2s seawater due to the halide-capped quaternary ammonium groups. However, as the whole binder is to some extent seawater-soluble from the start, the paint erodes relatively quickly.
Self-polishing copolymer paints, which release non-biocidal moieties, are described in EP-A-69 559, EP-A-204 456, EP-A-529 693, EP-A-779 304, WO-A-91/14743, WO-A-91/09915, GB-A-231 070, and JP-A-9-286933.
s US-A-4,675,051 describes a marine anti-fouling paint which is gradually dissolved in seawater and which comprises a binder in the form of a resin produced by the reaction of rosin and an aliphatic polyamine containing at least one primary or secondary amine group. EP-A-802 243 describes a coating composition comprising a rosin compound, a polymer containing organisilyl to ester groups, and an anti-foulant.
WO-A-02/02698 describes an anti-fouling paint which is gradually dissolved in seawater. The paint comprises a binder and an ingredient having marine biocide properties. The binder comprises a rosin material and an auxiliary film-ls forming resin. The auxiliary film-forming resin comprises a non-hydrolysing, water-insoluble film-forming polymer and an acid-functional film-forming polymer the acid groups of which are blocked by quaternary ammonium groups or quaternary phosphonium groups. In a first step, the blocking groups are hydrolysed, dissociated or exchanged with seawater species, the polymer 2o framework that remains becoming soluble or dispersible in seawater as a result.
In a second step, the soluble or dispersible framework at the surface of the paint layer on the ship is washed out or eroded.
The structure of the quaternary ammonium groups or quaternary phosphonium groups that are used as blocking groups on the acid-functional polymer 2s influences the rate at which the paint dissolves or erodes. Although longer-chain quaternary ammonium groups ensure a slow degradation of the paint, these groups are more toxic with increasing size. This toxicity is for instance used in the mildew-proofing coating composition described in JP-A-2-120372.
Consequently, there is a need for a binder polymer comprising blocked functional groups of which the blocking groups can be hydrolysed, dissociated or exchanged with seawater species, the polymer framework that remains becoming soluble or dispersible in seawater as a result, of which said blocking s groups are of low toxicity, preferably non-biocidal.
The present invention relates to a polymer which provides a solution to the above-mentioned problems/disadvantages. The invention further relates to the preparation of this polymer, its use in anti-fouling compositions, to anti-fouling Io compositions comprising the polymer, and to the use of such anti-fouling compositions for the protection of man-made structures immersed in water such as boat hulls, buoys, drilling platforms, oil production rigs, and pipes.
The binder polymer of the present invention is a polymer comprising quaternary is ammonium groups and/or quaternary phosphonium groups bound (pendant) to the backbone of the polymer, said quaternary ammonium groups and/or quaternary phosphonium groups being neutralised, in other words blocked or capped, by counter-ions. These counter-ions consist of the anionic residue of an acid having an aliphatic, aromatic, or alkaryl hydrocarbon group comprising 2o at least 6 carbon atoms.
The present invention further relates to a process for preparing such a long-chain, carboxylate-capped quaternary-functional ammonium or phosphonium polymer, which process comprises the steps of:
2s - . Quaternisation of an amine- or phosphine-functional monomer of formula (I):

R O
H2C=C C Y R Z \

R
wherein Y is O or NH, Z is N or P, R' is a hydrogen atom or a C~-C4 alkyl group, preferably hydrogen or a C~-C2 alkyl group.
R2 is a C2 or a C3-C~2 divalent hydrocarbon group, preferably a C2 or a C3-C$
s divalent hydrocarbon group, more preferably a C2 or a C3-C4 divalent hydrocarbon group.
R3 and R4 independently represent a C~-C6 alkyl group, preferably methyl, or an optionally substituted phenyl group.
io - Replacement of the counter-ion of the quaternised ammonium or phosphonium monomer by a carboxylate group derived from an acid having an aliphatic, aromatic, or alkaryl hydrocarbon group comprising 6 or more carbon atoms. This results in a quaternised monomer that is capped with a counter-ion, wherein the counter-ion consists of the anionic residue of an is acid having an aliphatic hydrocarbon group comprising 6 or more carbon atoms.
- Polymerisation of at least one type of long-chain acid-capped quaternary ammonium monomer and/or at least one type of long-chain acid-capped 2o quaternary phosphonium-functional monomer.
The quaternisation of an amine- or phosphine-functional monomer of formula (I) can be performed by reacting the monomer (I) with a carbonic acid diester, preferably a carbonic acid diester with up to 6 carbon atoms such as dimethyl carbonate, ethymethyl carbonate, diethyl carbonate, and dipropyl carbonate.
Most preferred is a reaction using dimethyl carbonate.
For example, quaternisation of an amine-functional monomer of formula (I) s using a carbonic acid diester results in . a quaternary ammonium-functional monomer of formula (II):
R O
R (N) ~ R X(_) H2C=C C Y

R -wherein Y, R', R2, R3, and R4 are as specified above, R5 is a C~-C5 alkyl group, io preferably R5 is methyl, and X is an anionic residue of the carbonic acid diester.
The reaction conditions can be as described in. EP-A-291 074 for the quaternisation of a tertiary amine R"RyRZN wherein R", Ry, and RZ represent hydrocarbon residues. For instance, the amine-functional monomer of formula (I) and the carbonic acid diester can be used in a mol ratio of from 0.2 to 5.
is Normally, the reaction can take place in the presence or absence of a solvent, at a reaction temperature of from 20°C to 200°C.
Preferably, the reaction is performed at a temperature of from 115°C
to 135°C
in the presence of an alcohol, preferably methanol, under an increased pressure of about 90 psi to100 psi (6.1 105 Pa to 6.8 105 Pa).
The replacement of the carbonate counter-ion of the quaternary ammonium or quaternary phosphonium monomer can be performed using an acid having an aliphatic, aromatic, or alkaryl hydrocarbon group comprising 6 or more carbon atoms. For example, the acid may be a carbonic acid, a sulphonic acid, or a 2s sulphate acid. Preferably, the acid comprises 6 or more carbon atoms, more preferably 8 or more carbon atoms. The acid preferably comprises up to 50 carbon atoms, even more preferably up to 30 carbon atoms, and most preferred up to 20 carbon atoms.
The polymerisation of the long-chain, acid-capped quaternary ammonium- or s quaternary phosphonium-functional monomer, or of a mixture of quaternary-functional monomers, can be performed using a variety of co-monomers, optionally mixtures of co-monomers. For example, addition co-polymerisation can be performed with an unsaturated monomer prepared by reacting an ester or amide of an alkyl, alkoxyalkyl, carbocylic or heterocyclic alcohol or amine to with an unsaturated carboxylic acid, such as methyl acrylate or methacrylate, butyl acrylate or methacrylate, isobutylacrylate or methacrylate, and isobornyl acrylate or methacrylate. Alternatively, the unsaturated co-monomer can be a vinylic compound, for example styrene, vinyl pyrrolidone or vinyl acetate.
is The polymer comprising quaternary ammonium groups and/or quaternary phosphonium groups having counter-ions derived from acids having an aliphatic, aromatic, or alkaryl hydrocarbon group comprising 6 or more carbon atoms can be prepared by polymerisation of at least one type of long-chain, acid-capped quaternary-functional monomer as described above. Alternatively, 2o it can be prepared by reaction of a polymer containing quaternary ammonium groups and/or quaternary phosphonium groups with an acid having an aliphatic, aromatic, or alkaryl hydrocarbon group comprising 6 or more carbon atoms.
The present invention further relates to the use of a polymer comprising 2s quaternary ammonium groups and/or quaternary phosphonium groups bound to the backbone of the polymer, said quaternary ammonium groups and/or quaternary phosphonium groups being neutralised by counter-ions, wherein the counter-ions consist of the anionic residue of an acid having an aliphatic, aromatic, or alkaryl hydrocarbon group comprising 6 or more carbon atoms in 3o anti-fouling coating compositions.

The present ~ invention further relates to anti-fouling coating compositions comprising an ingredient having marine biocidal properties and a polymer comprising quaternary ammonium groups and/or quaternary phosphonium s groups bound to the backbone of the polymer, said quaternary ammonium groups and/or quaternary phosphonium groups being neutralised by counter-ions, wherein the counter-ions consist of the anionic residue of an acid having an aliphatic, aromatic, or alkaryl hydrocarbon group comprising 6 or more carbon atoms.
io The rate at which the paint according to the current invention dissolves or erodes in seawater can be adjusted by the structure of the blocking groups, substantially without problems related to the toxicity of the released groups.
Preferably, the blocking groups comprise anionic residues of one or more acids is having an aliphatic hydrocarbon group comprising 6 to 50 carbon atoms, more preferably 6 to 20 carbon atoms.
According to another embodiment of the invention, the paint comprises a rosin material in addition to the ingredient having marine biocidal properties and the 2o polymer comprising quaternary ammonium groups and/or quaternary phosphonium groups, said quaternary ammonium groups and/or quaternary phosphonium groups being neutralised by counter-ions consisting of the anionic residue of an acid having an aliphatic, aromatic, or alkaryl hydrocarbon group comprising 6 or more carbon atoms.
Rosin is not a very good film former, and it is known to add other film-forming resins to rosin-based anti-fouling paints. Consequently, an anti-fouling coating composition according to the present invention comprising a rosin material preferably additionally comprises a non-hydrolysing, water-insoluble film-3o forming polymer. The ratio between the rosin material and the long-chain, acid-capped quaternary-functional polymer, and optionally one or more other film-forming resins, influences the strength of the paint film and/or the reliable eroding of the rosin-based paint matrix after the ingredient having marine biocidal properties has been leached from the paint.
s According to a preferred embodiment of the invention, the anti-fouling paint has a binder comprising a blend of a rosin material and an auxiliary film-forming resin in a weight ratio of 20:80 to 95:5, the auxiliary film-forming resin comprising 20-100% by weight of a quaternary ammonium- and/or quaternary Io phosphonium-functional film-forming polymer (A), the quaternised groups of which are blocked by groups capable of hydrolysing, dissociating or exchanging with seawater species to leave a polymer soluble in seawater, the blocking groups being anionic residues of acids having an aliphatic, aromatic, or alkaryl hydrocarbon group comprising 6 or more carbon atoms, and 80-20% of a non-is hydrolysing, water-insoluble film-forming polymer (B).
The rosin material, which can be added to a composition comprising a ingredient having marine biocidal properties and a long-chain, acid-capped quaternary-functional polymer, preferably is rosin, more particularly wood rosin 20 or alternatively tall rosin or gum rosin. The main chemical constituent of rosin is abietic acid. The rosin can be any of the grades sold commercially, preferably that sold as W1N (water white) rosin. The rosin material can alternatively be a rosin derivative, for example a maleinised or fumarised rosin, hydrogenated rosin, formylated rosin or polymerised rosin, or a rosin ,metal salt such as 2s calcium, magnesium, copper or zinc rosinate.
The non-hydrolysing, water-insoluble film-forming polymer (B) can for example be a vinyl ether polymer, for example a polyvinyl alkyl ether) or a copolymer of a vinyl alkyl ether with vinyl acetate or vinyl chloride, an acrylate ester polymer 3o such as a homopolymer or copolymer of one or more alkyl acrylates or methacrylates which preferably contain 1. to 6 carbon atoms in the alkyl group and may contain a co-monomer such as acrylonitrile or styrene, or a vinyl acetate polymer such as polyvinyl acetate or a vinyl acetate vinyl chloride copolymer. Polymer (B) can alternatively be a polyamine, particularly a s polyamide having a plasticising effect such as a polyamide of a fatty acid dimer or the polyamide sold under the Trademark "Santiciser".
We have found that the paints of the invention have the optimum combination of film-forming and eroding properties when the non-hydrolysing, water insoluble film-forming polymer (B) is present in the composition. Most preferably, the io weight ratio of rosin to total auxiliary film-forming resin is from 25:75, 50:50 or 55:45 up to 80:20. The hydrolysing or dissociating film-forming polymer (A) preferably forms at least 30, most preferably at least 50, up to 80 or 90% by weight of the auxiliary film-forming resin, the non-hydrolysing water-insoluble polymer (B) being the remainder.
Is The rosin and the polymers forming the auxiliary film-forming resin can be mixed in a common solvent which forms at least part of the paint solvent, for example, an aromatic hydrocarbon such as xylene, toluene, or trimethyl-benzene, an alcohol such as n-butanol, an ether alcohol such as butoxyethanol or methoxypropanol, an ester such as butyl acetate or isoamyl acetate, an ether-ester such as ethoxyethyl acetate or methoxypropyl acetate, a ketone such as methyl isobutyl ketone or methyl isoamyl ketone, an aliphatic hydrocarbon such as white spirit, or a mixture of two or more of these solvents.
2s An anti-fouling paint according to the present invention, either with or without rosin, can include a non-polymeric plasticiser. Such a plasticiser can for example be present at up to 50% by weight based on the total binder polymer, most preferably at at least 10% and up to 35% by weight based on the binder polymer. Examples of such plasticisers are phthalate esters such as dibutyl phthalate, butyl benzyl phthalate or dioctyl phthalate, phosphate triesters such as tricresyl or tris(isopropyl)phenyl phosphate, or chlorinated paraffins.
The ingredient having marine biocidal properties usually is a biocide for aquatic s organisms or a pigment, or a mixture thereof. This biocide and/or pigment can be mixed with the binder using conventional paint-blending techniques. When the ingredient having marine biocidal properties is a : pigment, it can be all or part of the pigment of the paint. The coating composition preferably has a pigment volume concentration of, for example, 15 to 55%.
io When the ingredient having marine biocidal properties is a pigment, the pigment can comprise a metalliferous pigment, for example a metalliferous pigment having a solubility in seawater of from 0.5 to 10 parts per million by weight.
Examples of such pigments which also behave as aquatic biocides include is copper or zinc compounds, such as cuprous oxide, cuprous thiocyanate, cuprous sulphate, zinc ethylene bis(dithiocarbamate), zinc dimethyl dithio-carbamate, zinc pyrithione, copper pyrithione, .zinc diethyl dithiocarbamate, copper resfnate or cuprous ethylene bis(dithiocarbamate). Other sparingly soluble pigments having a solubility in seawater of 0.5 to 10 parts per million 2o include barium sulphate, calcium sulphate, dolomite, and zinc oxide.
Mixtures of sparingly soluble pigments can be used; for example cuprous oxide, cuprous thiocyanate or zinc ethylene bis(dithiocarbamate), which are highly effective biocidal pigments, can be mixed with zinc oxide, which is not effective as a biocide but dissolves slightly more rapidly in seawater. Copper metal can be 2s present as an aquatic biocide, for example in the flake or powder form.
The anti-fouling coating composition can contain a non-metalliferous biocide for marine organisms, i.e. an ingredient having marine biocidal properties that is a biocide, but not a pigment. Examples of such compounds are tetramethyl 3o thiuram disulphide, methylene bis(thiocyanate), captan, pyridinium triphenylboron, a substituted isothiazolone such as 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one, 2-methylthio-4-t.butylamino-6-cyclopropylamino-s-triazine, N-3,4-dichlorophenyl-N',N'-dimethyl-urea ("Diuron"), 2-(thio-cyanomethylthio)benzothiazole, 2,4,5,6-tetrachloro-isophthalonitrile, s dichlorofluanid, tolylfluanid, 2-(p-chlorophenyl)-3-cyano-4-bromo-5-trifluoromethyl pyrrole, 3-butyl-5-(dibromomethylidene)-2(5H)-furanone and 2,3,5,6-tetrachloro-4-(methyl-sulphonyl)pyridine. Such a non-metalliferous biocide can be used as the only biocide of the coating in a copper-free, or even metal-free or pigment-free, anti-fouling coating.
io Optionally, the anti-fouling composition comprises one or more acid-functional biocides, for example, (9E)-4-(6,10-dimethylocta-9,11-dienyl) furan-2-carboxylic acid and p-(sulphooxy) cinnamic acid (zosteric acid). Such a (mixture of) non-metalliferous acid-functional biocide(s) can be used as the only biocide of the is coating in a copper-free, or even metal-free or pigment-free, anti-fouling coating.
In addition to the ingredient having marine biocidal properties, which usually is a biocide for aquatic organisms or a pigment or a mixture thereof, the coating 2o composition can contain (other) pigments. For instance pigments which are not reactive with seawater and may be highly insoluble in seawater (solubility below 0.5 part per million by weight), such as titanium dioxide or ferric oxide or an organic pigment such as phthalocyanine or azo pigment. Such highly insoluble pigments are preferably used at less than.60% by weight of the total pigment 2s component of the paint, most preferably less than 40%.
The coating composition can additionally contain other additives, for instance conventional thickeners, particularly thixotropes such as silica or bentonite and/or stabilisers, for example zeolites or aliphatic or aromatic amines such as 3o dehydroabietylamine.

The invention will be elucidated with reference to the following examples.
These are intended to illustrate the invention but are not to be construed as limiting in any manner the scope thereof.
s Example 1 The methyl carbonate salt of trimethylammonium propylmethacrylamide was neutralised using palmitic acid in the following way.
io Solid palmitic acid (60.26 g, 0.235 mole) was added to a methanolic solution (300 ml) of trimethylammonium propylmethacrylamide methylcarbonate salt (61.18 g, 0.235 mole). The bubbling suspension (C02 gas evolved) was stirred overnight at room temperature under an atmosphere of N2. The resultant solution was heated to 35°C for a further hour to ensure complete reaction.
is Evaporative removal of the solvent under reduced pressure, yielded an off-white solid/semi-solid that was confirmed to be the desired product by ' H-NMR and used without further purification.
The above-described experiment was performed under the conditions routinely 2o employed for this reaction. Variations on these reaction conditions are possible.
For example, alternative solvents such as ethanol, propanol, isopropanol, butanol, or blends of these with xylene, can be employed to yield a monomer solution which can be carried forward directly (without isolation) to the polymerisation step. In addition, the reaction can be carried out at elevated 2s temperatures for shorter time periods.
Example 2 The trimethylammonium propylmethacrylamide palmitate salt prepared in Example 1 was polymerised with isobornylmethacrylate (iBoMA) (20:80) such 3o that a 50% solids polymer solution was obtained.

A ~ feed solution was prepared comprising trimethylammonium propylmethacrylamide palmitate (103.57 g, 0.235 mole) in (3:1) xylene:butanol (50 g), iBoMA (208.96 g, 0.940 mole), and 2,2'-azobis-(2-methylbutyronitrile) s AMBN initiator (2.26 g, 0.118 mole, 1 mol%). This feed solution was added dropwise over 3 '/2 h, with mechanical stirring and under an atmosphere of N2, to a reaction vessel containing (3:1) xylene:butanol (265 g) at 85°C.
After the monomer addition was complete, the temperature was raised to 95°C and a booster amount of AMBN (1.13 g, 0.0059 mole, '/ mol%) was added. The io reaction was maintained at this elevated temperature for 1 h. The polymer solution was transferred to a storage vessel on cooling.
The above-described experiment was performed under the conditions routinely employed for this reaction, although variations on these conditions are possible:
is Other solvents or.solvent blends comprised of common paint solvents can be used as alternatives. Other co-monomers are, for example, methyl (meth)acrylate, butyl (meth)acrylate, isobutyl (meth)acrylate, styrene, and other vinylic monomers. Also the ratio of monomers can be changed. Usually, the quaternary-functional acid-capped monomer will be present in an amount of 15 2o to 30 mol%. The viscosities of the polymer solutions are such that materials can usually be formulated at percentage solids for example above 30%, or above 45%, and, for example, below 75%. In addition, alternative initiators such as a,a'-azoisobutyronitrile (AIBN), can be used.
2s Example 3 The following materials were mixed in the stated % by weight using a high-speed disperser to form copper containing anti-fouling paints according to the invention.

Name Descri tion D Film Vol. Wt Palmitate-capped Resin solution 21.61 16.37 Resin H dro uinone Inhibitor 0.24 0.10 Tixo el MP~ Organoclay gellant2.42 1.36 Silica-Wacker HDK- Thixotrope 1.47 1.01.
N20~

X lene Solvent - 3.05 Hansa-Scarlet RN-C~Pigment 5.10 2.27 Co er Omadine~ Biocide 6.77 3.89 Zinc Oxide Pi ment 6.76 11.63 Cu rows Oxide Biocide 20.25 36.73 Lutonal A25~ Plasticiser 11.93 3.54 of vin I eth I ether Meth I iso-am I Solvent - 2.27 ketone Example 4 The following materials were mixed in the stated % by weight using a high-s speed dispenser to form copper-free anti-fouling paints according to the invention.
Name Descri tion D Film Vol Wt Palmitate-capped Resin solution 43.24 36.29 Resin X lene Solvent - 5.09 Bentone SD1~ Organoclay gellant1.01 0.52 Silica-Wacker Thixotrope 0.68 0.52 HDK-N20~

Anti-Terra 203~ Dispersant 0.76 0.46 Ir arol 1051 ~ Biocide 12.94 4.93 Zinc Oxide Pi ment 21.45 40.88 Zinc Omadine~ Biocide 6.33 3.91 Lutonal A25~ Plasticiser 10.81 3.56 (polyvinyl ethyl ether Titanium dioxide Pigment 2.77 3.84 Rutile Example 5 The following materials were mixed in the stated % by weight using a high-speed disperses to form zinc- and copper-free anti-fouling paints according to the invention.
s Name Descri tion D Film Vol Wt Palmitate-capped Resin solution 34.61 28.87 Resin X lene Solvent - 4.63 Tixo el MP~ Organoclay gellant1.43 1.01 Silica-blacker Thixotrope 0.35 0.30 HDK-N20~

Sea-Nine 211 ~ Biocide 6.89 9.94 Preventol A5~ Biocide 8.69 5.12 Iron Oxide (BayferroxPigment , 3.32 6.53 Red 130BM~

Lutonal A25~ Plasticises 8.65 3.23 of in I eth I ether Dolomite Microdol Filler 36.06 40.36 H
extra~

Claims (15)

Claims:
1. Anti-fouling coating composition comprising an ingredient having marine biocidal properties and a polymer comprising quaternary ammonium groups bound to the backbone of the polymer;

said quaternary ammonium groups and/or quaternary phosphonium groups being neutralised by counter-ions that consist of the anionic residue of an acid having an aliphatic, aromatic, or alkaryl hydrocarbon group comprising 6 or more carbon atoms.
2. Coating composition according to claim 1, wherein the counter-ions comprise 8 to 50 carbon atoms.
3. Coating composition according to claim 1 or 2, wherein the coating composition additionally comprises a rosin material.
4. Coating composition according to claim 3, wherein the coating composition has a binder comprising a blend of a rosin material and an auxiliary film-forming resin in a weight ratio of 20:80 to 95:5, the auxiliary film-forming resin comprising:

(i) 20-100% by weight of a quaternary ammonium- and/or quaternary phosphonium-functional film-forming polymer (A), the quaternised groups of which are blocked by groups which hydrolyse, dissociate or exchange with seawater species to leave a polymer soluble in seawater, the blocking groups being anionic residues of acids having an aliphatic, aromatic, or alkaryl hydrocarbon group comprising 6 or more carbon atoms, and (ii) up to 80% of a non-hydrolysing, water-insoluble film-forming polymer (B).
5. Coating composition according to claim 4, wherein the binder comprises a blend of the rosin material and the auxiliary film-forming resin in a weight ratio of 55:45 to 80:20.
6. Coating composition according to claim 4 or 5, wherein the auxiliary film-forming resin comprises 30-90% by weight of the film-forming polymer (A) which hydrolyses or dissociates to a polymer soluble in sea water and 70-10% by weight of the non-hydrolysing, water-insoluble film-forming polymer (B).
7. Coating composition according to any one of claims 4 to 6, wherein the non-hydrolysing, water-insoluble film-forming polymer (B) is an acrylate ester polymer or a vinyl ether polymer.
8. Coating composition according to any one of claims 4 to 7, wherein the binder comprises a non-polymeric plasticiser present at up to 50% by weight based on the total binder polymer.
9. Use of a coating composition according to any one of claims 1 to 8 for protection of a man-made structure immersed in water.
10. The use according to claim 9, wherein said man-made structure is selected from boat hulls, buoys, drilling platforms, oil production rigs and pipes.
11. Process for the preparation of a polymer comprising quaternary ammonium groups and/or quaternary phosphonium groups bound to the backbone of the polymer, said quaternary ammonium groups and/or quaternary phosphonium groups being neutralised by and counter-ions consisting of the anionic residue of an acid having an aliphatic, aromatic or alkaryl hydrocarbon group comprising 6 or more carbon atoms, said process comprising the steps of:

- quaternising an amine- or phosphine-functional monomer of formula (II):

wherein Y is O or NH, Z is N or P, R1 is a hydrogen atom or a C1-C4 alkyl group, R2 is a C2 or a C3-C12 alkylene group, R3 and R4 independently represent a C1-C6 alkylene group or a phenyl group, - replacing the counter-ion of the quaternised ammonium or phosphonium monomer with a carboxylate group derived from an acid having an aliphatic, aromatic, or alkaryl hydrocarbon group comprising 6 or more carbon atoms, and - polymerising at least one type of long-chain acid-capped quaternary ammonium monomer and/or at least one type of long-chain, acid-capped quaternary phosphonium-functional monomer.
12. A process according to claim 11, wherein the counter-ion of the quaternised ammonium or phosphonium monomer is replaced by a carboxylate group derived from an acid having an aliphatic, aromatic, or alkaryl hydrocarbon group comprising 8 or more carbon atoms.
13. A process according to claim 11 or 12, wherein the amine- or phosphine-functional monomer is the amine-functional monomer and is quaternized with a carbonic acid diester, resulting in a quaternary ammonium-functional monomer of formula (II):

wherein Y, R1, R2, R3 and R4 are as defined in claim 11 or 12, R5 is a C1-C5 alkyl group and X is an anionic residue of the carbonic acid diester.
14. A polymer obtained by the process of claim 13.
15. Use of the polymer of claim 14 in an anti-fouling composition.
CA2495549A 2002-08-09 2003-07-16 Acid-capped quaternised polymer and compositions comprising such polymer Expired - Fee Related CA2495549C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP02255612 2002-08-09
EP02255612.0 2002-08-09
PCT/EP2003/007693 WO2004018533A1 (en) 2002-08-09 2003-07-16 Aci-capped quaternised polymer and compositions comprising such polymer

Publications (2)

Publication Number Publication Date
CA2495549A1 CA2495549A1 (en) 2004-03-04
CA2495549C true CA2495549C (en) 2011-09-20

Family

ID=31896953

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2495549A Expired - Fee Related CA2495549C (en) 2002-08-09 2003-07-16 Acid-capped quaternised polymer and compositions comprising such polymer

Country Status (23)

Country Link
US (2) US7001933B2 (en)
EP (1) EP1534760B9 (en)
JP (1) JP4695390B2 (en)
KR (1) KR101045922B1 (en)
CN (1) CN1330677C (en)
AU (1) AU2003250076B2 (en)
BR (1) BRPI0313260B1 (en)
CA (1) CA2495549C (en)
CY (1) CY1113438T1 (en)
DK (1) DK1534760T3 (en)
ES (1) ES2394636T3 (en)
HK (1) HK1079535A1 (en)
MX (1) MXPA05001535A (en)
MY (1) MY148366A (en)
NO (1) NO333476B1 (en)
NZ (1) NZ538655A (en)
PL (1) PL211454B1 (en)
PT (1) PT1534760E (en)
RU (1) RU2333920C2 (en)
TW (1) TWI335930B (en)
UA (1) UA81258C2 (en)
WO (1) WO2004018533A1 (en)
ZA (1) ZA200501975B (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004003246T2 (en) 2003-07-07 2007-06-14 Akzo Nobel Coatings International B.V. SILYLESTERCOPOLYMERZUSAMMENSETZUNGEN
EP1753829B1 (en) * 2004-02-03 2008-03-12 Akzo Nobel Coatings International BV Antifouling compositions comprising a polymer with salt groups
US7893047B2 (en) * 2006-03-03 2011-02-22 Arch Chemicals, Inc. Biocide composition comprising pyrithione and pyrrole derivatives
US20070254109A1 (en) * 2006-04-28 2007-11-01 Albemarle Corporation Coatings, coating formulations, and compositions containing quaternary ammonium compounds
US9365460B2 (en) * 2006-11-09 2016-06-14 Akzo Nobel N.V. Pigment dispersion
PT2313466E (en) * 2008-08-13 2014-01-07 Akzo Nobel Coatings International Bv Polymer with salt groups and antifouling coating composition comprising said polymer
BRPI0916476A2 (en) * 2008-12-01 2016-02-16 Invasc Therapeutics Inc composition, treatment method for a renin-angiotensin-aldosterone system-related disorder, method for reducing insulin resistance, method for treating a metabolic syndrome-related disorder
EP2468825A1 (en) 2010-12-21 2012-06-27 Akzo Nobel Coatings International B.V. Antifouling coating composition
JP5529832B2 (en) * 2010-12-22 2014-06-25 ダウ グローバル テクノロジーズ エルエルシー Synergistic combination of one of DCOIT or OIT or BBIT and glyphosate compound
RU2476206C1 (en) 2011-11-22 2013-02-27 Виктор Львович Лимонов Pharmaceutical composition for preparing infusion solutions of antimicrobial preparations, method for preparing it (versions)
WO2012150360A2 (en) 2011-12-02 2012-11-08 Akzo Nobel Coatings International B.V. Waterborne antifouling coating composition
EP2794774B8 (en) 2011-12-22 2021-09-08 Akzo Nobel Coatings International B.V. A process of selecting and applying a protective coating
CN102775870A (en) * 2012-06-14 2012-11-14 天长市银狐漆业有限公司 Biocidal antifouling paint
MX2017000444A (en) 2014-07-15 2017-05-01 Akzo Nobel Coatings Int Bv Antifouling coating composition comprising at least two salt-containing copolymers.
US9580608B1 (en) * 2014-08-08 2017-02-28 Sandia Corporation Switchable antifouling coatings and uses thereof
US20170355861A1 (en) * 2014-10-28 2017-12-14 Akzo Nobel Coatings International B.V. Fouling Control Coating Composition Comprising a Polymer Containing Silyl Ester Groups, and a Polymer Comprising Quaternary Ammonium/Phosphonium Sulphonate Groups
WO2016066567A1 (en) * 2014-10-28 2016-05-06 Akzo Nobel Coatings International B.V. A fouling control compositon comprising a polymer comprising silyl ester functional groups and quaternary ammonium/phosphonium groups
US10064273B2 (en) 2015-10-20 2018-08-28 MR Label Company Antimicrobial copper sheet overlays and related methods for making and using
CN108473796B (en) 2016-01-20 2020-01-03 阿克佐诺贝尔国际涂料股份有限公司 Coating composition for substrates immersed in water
MX2018016384A (en) * 2016-06-22 2019-09-18 Lubrizol Corp Gas hydrate inhibitors.
CN110139903B (en) 2016-11-11 2022-01-28 汉伯公司 Antifouling coating composition comprising novel carbon-based hydrolysable polymers
CN111263793A (en) 2017-10-23 2020-06-09 汉伯公司 Self-polishing antifouling coating composition containing alkoxysilane
SG11202003629WA (en) 2017-11-06 2020-05-28 Hempel As A method for improving a fluid dynamic profile of a marine vessel, a marine vessel having an improved fluid dynamic profile, and a coating system for improving the fluid dynamic profile
KR20200098579A (en) 2017-12-14 2020-08-20 헴펠 에이/에스 Controlled release antifouling coating composition through biocide interaction
GB2592921B (en) 2020-03-09 2024-04-17 Jotun As Hull cleaning robot
WO2022200430A1 (en) 2021-03-23 2022-09-29 Jotun A/S Monitoring the cleanliness of an underwater surface of a stationary object
GB202107159D0 (en) 2021-03-23 2021-06-30 Jotun As Monitoring a vessel

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB231070A (en) 1924-08-06 1925-03-26 Carl Julius Baer Improvements in the method and apparatus for dredging and cutting channels
GB751129A (en) 1953-03-10 1956-06-27 Basf Ag Improvements in the production of quaternary ammonium salts
NL296183A (en) 1963-01-30
US3522066A (en) 1966-12-06 1970-07-28 Lithium Corp Process for preparing aqueous mixed lithium and sodium (and/or potassium) silicate solutions
US3620784A (en) 1968-01-24 1971-11-16 Nasa Potassium silicate-zinc coatings
US3721574A (en) 1968-08-06 1973-03-20 R Schneider Silicate coatings compositions
US4012437A (en) * 1972-02-07 1977-03-15 Rohm And Haas Company Method of producing betaines, monomers and polymers containing betaine-type units and novel and useful copolymers thereby obtained
GB1457590A (en) 1974-04-03 1976-12-08 Int Paint Co Marine paint
US4161169A (en) * 1977-07-07 1979-07-17 Solar Energy Systems, Inc. Focussing flat plate solar collector device
US4162169A (en) 1977-12-21 1979-07-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Alkali-metal silicate binders and methods of manufacture
US4230496A (en) 1978-09-22 1980-10-28 Pq Corporation Zinc rich paint vehicle
US4180643A (en) 1978-11-16 1979-12-25 Texaco Development Corp. Acrylamide or methacrylamide quaternary compounds
US4212820A (en) 1979-04-23 1980-07-15 Texaco Development Corporation Acrylamide or methacrylamide alkoxypropyl quaternary compounds
GB2056997B (en) 1979-07-12 1983-04-07 Kuraray Co Copolymers containing cationic groups
US4426464A (en) 1981-07-03 1984-01-17 International Paint Public Limited Company Marine paint
US4594365A (en) 1983-01-17 1986-06-10 M&T Chemicals Inc. Erodible ship-bottom paints for control of marine fouling
FR2540127B1 (en) 1983-01-28 1985-03-29 Rhone Poulenc Spec Chim
US4479824A (en) 1983-05-04 1984-10-30 Schutt John B Silicate binders and coatings
GB8511144D0 (en) 1985-05-02 1985-06-12 Int Paint Plc Marine anti-fouling paint
DE204456T1 (en) 1985-05-17 1987-09-03 Nippon Paint Co., Ltd., Osaka, Jp MIXTURE BASED ON HYDROLIZABLE RESIN AND ANTI-GROWING PAINT COMPOSITION CONTAINING IT.
US4745214A (en) 1986-06-20 1988-05-17 Norsolor Process for the preparation of an aqueous solution of unsaturated quaternary ammonium salts
EP0346385B1 (en) 1987-02-13 1994-01-26 Fina Research S.A. Process for preparing an improved shop primer composition
US4892944A (en) 1987-05-13 1990-01-09 Mitsubishi Petrochemical Co., Ltd. Process for producing quaternary salts
US5260480A (en) 1988-02-11 1993-11-09 Norsolor Quaternization process
US5246488A (en) 1988-03-31 1993-09-21 Nippon Paint Co., Ltd. Temporary rust resisting coating composition
DE3816328A1 (en) 1988-05-13 1989-11-23 Hoechst Ag METHOD FOR PRODUCING QUATERNAUS AMMONIUM SALTS LONG-CHAIN ALIPHATIC CARBONIC ACIDS AND USE OF THESE AMMONIUM SALTS
US5116407A (en) * 1988-10-13 1992-05-26 Courtaulds Coatings Limited Antifouling coatings
US4902442A (en) 1988-10-24 1990-02-20 The Dow Chemical Company Stabilized mixtures of colloidal silica and soluble silicate and a method of producing porous silica compositions therefrom
JP2582418B2 (en) 1988-10-28 1997-02-19 花王株式会社 Antifungal coating composition
US4910325A (en) 1989-01-25 1990-03-20 Hoechst Celanese Corporation Polymerizable quaternary ammonium methyl carbonates
US4973639A (en) 1989-01-25 1990-11-27 Hoechst Celanese Corporation Polymerizable quaternary ammonium methyl carbonates
ATE141317T1 (en) 1989-12-22 1996-08-15 Courtaulds Coatings Holdings ANTI-POLLUTION COATING COMPOSITIONS
GB9006318D0 (en) 1990-03-21 1990-05-16 Courtaulds Coatings Ltd Coating compositions
DE4242082A1 (en) 1992-12-14 1994-06-16 Witco Gmbh Hydrolysable polymeric resins and binders for antifouling paints
US5641726A (en) 1993-06-09 1997-06-24 Lonza, Inc. Quaternary ammonium carboxylate and borate compositions and preparation thereof
ZA943999B (en) 1993-06-09 1995-02-03 Lonza Ag Quaternary ammonium and waterproofing/preservative compositions
DE69413790T2 (en) * 1993-07-14 1999-02-25 Nippon Chemical Ind ANTIBACTERIAL POLYMER, CONTACT LENS AND CONTACT LENS CARE PRODUCT
JP3062917B2 (en) 1994-09-01 2000-07-12 日本ペイント株式会社 Hydrolyzable metal-containing resin and antifouling paint composition
JPH09286933A (en) 1996-02-21 1997-11-04 Kansai Paint Co Ltd Antifouling coating composition
US5674934A (en) * 1996-02-23 1997-10-07 The Dow Chemical Company Reversible and irreversible water-based coatings
SG60054A1 (en) 1996-04-17 1999-02-22 Nof Corp Coating composition
FR2757866B1 (en) * 1996-12-30 2004-12-17 Catalyse POLYMERS COMPRISING QUATERNARY AMMONIUM GROUPS, THEIR USE FOR THE MANUFACTURE OF AN ANTIBACTERIAL PROPERTY MATERIAL AND THEIR PREPARATION METHODS
JP2919419B2 (en) 1997-02-07 1999-07-12 三菱化学株式会社 Electrolyte for electrolyte
US7166328B1 (en) 1999-03-18 2007-01-23 International Coatings Ltd. Primer coating of steel
JP2000290317A (en) * 1999-04-12 2000-10-17 Hokko Chem Ind Co Ltd Ammonium-tetraarylborate polymer, its production, and underwater antifouling agent containing it
DE19921904A1 (en) 1999-05-12 2000-11-16 Creavis Tech & Innovation Gmbh Preparation of antimicrobial polymer for medical and hygiene articles, varnishes, paints and coatings comprises polymerizing monomers that have been functionalized by a quat. amino group
AU6564600A (en) 1999-08-27 2001-03-26 Creavis Gesellschaft Fur Technologie Und Innovation Mbh Copolymers of acryloyloxyalkylamino compounds
JP2001329124A (en) * 2000-05-25 2001-11-27 Dai Ichi Kogyo Seiyaku Co Ltd Water-based composition and antistatic film using the same
KR100821049B1 (en) * 2000-07-06 2008-04-08 인터내셔널 페인트 리미티드 Antifouling paint
JP5207575B2 (en) 2000-09-13 2013-06-12 アクゾ ノーベル ナムローゼ フェンノートシャップ Steel primer coating
DE60107702T2 (en) 2000-09-13 2005-12-15 Akzo Nobel Coatings International B.V. FOUNDATION OF STEEL

Also Published As

Publication number Publication date
ZA200501975B (en) 2006-08-30
USRE41208E1 (en) 2010-04-06
KR20060009226A (en) 2006-01-31
RU2005106212A (en) 2005-07-20
JP4695390B2 (en) 2011-06-08
CY1113438T1 (en) 2016-06-22
WO2004018533A1 (en) 2004-03-04
NZ538655A (en) 2006-09-29
CN1330677C (en) 2007-08-08
RU2333920C2 (en) 2008-09-20
BRPI0313260B1 (en) 2015-10-20
MY148366A (en) 2013-04-15
CN1675266A (en) 2005-09-28
CA2495549A1 (en) 2004-03-04
HK1079535A1 (en) 2006-04-07
MXPA05001535A (en) 2005-04-19
AU2003250076B2 (en) 2009-02-19
AU2003250076A1 (en) 2004-03-11
PL211454B1 (en) 2012-05-31
UA81258C2 (en) 2007-12-25
EP1534760B1 (en) 2012-09-05
NO333476B1 (en) 2013-06-17
ES2394636T3 (en) 2013-02-04
DK1534760T3 (en) 2013-01-02
ES2394636T9 (en) 2013-10-17
PT1534760E (en) 2012-12-06
TWI335930B (en) 2011-01-11
NO20050536L (en) 2005-03-08
EP1534760B9 (en) 2013-07-10
US7001933B2 (en) 2006-02-21
BR0313260A (en) 2005-06-14
EP1534760A1 (en) 2005-06-01
JP2006510748A (en) 2006-03-30
TW200407406A (en) 2004-05-16
KR101045922B1 (en) 2011-07-01
PL373870A1 (en) 2005-09-19
US20040138331A1 (en) 2004-07-15

Similar Documents

Publication Publication Date Title
USRE41208E1 (en) Acid-capped quaternized polymer and compositions comprising such polymer
EP1753829B1 (en) Antifouling compositions comprising a polymer with salt groups
AU2001266093B2 (en) Antifouling paint
AU2001266093A1 (en) Antifouling paint
AU762573B2 (en) Antifouling paint
MXPA06008727A (en) Antifouling compositions comprising a polymer with salt groups

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20190716