CA2519507A1 - Forming evacuation channels during single and multi-layer extrusion process - Google Patents

Forming evacuation channels during single and multi-layer extrusion process Download PDF

Info

Publication number
CA2519507A1
CA2519507A1 CA002519507A CA2519507A CA2519507A1 CA 2519507 A1 CA2519507 A1 CA 2519507A1 CA 002519507 A CA002519507 A CA 002519507A CA 2519507 A CA2519507 A CA 2519507A CA 2519507 A1 CA2519507 A1 CA 2519507A1
Authority
CA
Canada
Prior art keywords
layer
pattern
film
vacuum packaging
recited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002519507A
Other languages
French (fr)
Inventor
Hongyu Wu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tilia International Inc USA
Original Assignee
Tilia International Inc USA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tilia International Inc USA filed Critical Tilia International Inc USA
Publication of CA2519507A1 publication Critical patent/CA2519507A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/06Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using vacuum drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B13/00Feeding the unshaped material to moulds or apparatus for producing shaped articles; Discharging shaped articles from such moulds or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0013Extrusion moulding in several steps, i.e. components merging outside the die
    • B29C48/0014Extrusion moulding in several steps, i.e. components merging outside the die producing flat articles having components brought in contact outside the extrusion die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • B29C48/307Extrusion nozzles or dies having a wide opening, e.g. for forming sheets specially adapted for bringing together components, e.g. melts within the die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0023Combinations of extrusion moulding with other shaping operations combined with printing or marking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1007Running or continuous length work
    • Y10T156/1023Surface deformation only [e.g., embossing]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/17Surface bonding means and/or assemblymeans with work feeding or handling means
    • Y10T156/1702For plural parts or plural areas of single part
    • Y10T156/1712Indefinite or running length work
    • Y10T156/1737Discontinuous, spaced area, and/or patterned pressing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1334Nonself-supporting tubular film or bag [e.g., pouch, envelope, packet, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1334Nonself-supporting tubular film or bag [e.g., pouch, envelope, packet, etc.]
    • Y10T428/1341Contains vapor or gas barrier, polymer derived from vinyl chloride or vinylidene chloride, or polymer containing a vinyl alcohol unit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/2457Parallel ribs and/or grooves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24612Composite web or sheet

Abstract

A method for making a vacuum packaging film includes flowing a plastic melt, from a multi-layer extruder (302), onto a rotating roller (308). The plastic melt is then cooled while simultaneously imparting a pattern, via a pattern imparting means, onto the plastic melt resulting in the vacuum packaging film.

Description

FORMING EVACUATION CHANNELS DURING
SINGLE AND MULTI-LAYER EXTRUSION PROCESS
FIELD OF THE INVENTION
The present invention relates generally to manufacturing of vacuum packaging film, and more particularly to manufacturing patterned vacuum packaging film.
BACKGROUND OF THE INVENTION
Vacuum packaging film is used for vacuum sealing of perishable items. Due to the film's versatility in producing vacuum-sealed packages of various sizes, its popularity has increased in recent years. As a result, continuous product improvement is required on the part of manufacturers in order to stay competitive. However, current methods for producing vacuum packaging film economically fail to meet the requirements of today's demanding marketplace:
Some of these requirements include the ability to produce a multi-layered product embedded with a pattern. Those skilled in the art will readily recognize that the combination of multi-layers and a pattern help to produce a vacuum packaging film that is gas-impermeable, in relation to the contents inside a package, as well as flee of trapped air-zones. The presence of the pattern helps to prevent trapped-air-zones when contents are sealed therein.
FIG. 1 illustrates a prior art production line 100 for manufacturing vacuum packaging film.
Included is a roll of unprocessed vacuum packaging film I02, roller 104 and patterned wheel 106. Directional arrow 108 indicates how roll 102 is unfurled as roller 104 turns in the direction of arrow 110. As an unfurled sheet 111 of roll 102 passes between roller 104 and patterned wheel 106, wheel 106 also turns as indicated by direction arrow 112. As a result of mechanical pressure, the unfurled portion 111 is embossed with the pattern on patterned wheel 106 and formed into a patterned vacuum packaging film 114.
The process described in FIG. 1 is the typical process for producing vacuum packaging film of a simple nature, it is incapable of producing advanced multi-layered films.
Additionally, the pressure and mechanical tear in the embossing process of FIG. 1 generates flaws in the patterned vacuum packaging film 114 that are not desirable.
FIG. 2 illustrates another prior art manufacturing line 200 for manufacturing vacuum packaging film. Included in the manufacturing line 200 is a roll of substrate 202, a single layer extruder 204, a roller 206 and a cooling roller 208 embedded with a reverse pattern. As unfurled substrate 1.

2luus drawn out rrom rou ~u~ ny rovers X06 and 208, indicated by directional arrows 212, 214 and 216, a plastic melt 218 is exuded from single layer extruder 204 onto the unfurled substrate 210. As the melt 218 and unfurled substrate 210 passes over cooling roller 208, the melt 218 solidifies and is simultaneously embedded, along with the unfurled substrate 210, by the inverse pattern located on cooling roller 208. As a result, multi-layered/patterned vacuum packaging film 220 emerges.
While manufacturing line 200 is capable of producing a two-layered patterned film.. In order to produce additional layers, further manufacturing steps must be taken.
Additionally, flowing a patterned layer onto an already formed layer may still result in structural flaws within the patterned film 220. The process of FIG. 2 is disclosed in more detail in Lee's commonly assigned published patent application US 2003/0155269, which publication is incorporated herein by reference in its entirety.
Accordingly, what is needed is a method and apparatus to manufacture vacuum packaging film having multiple layers of substantially improved structure in an easy to manufacture and therefore economical process.
SU1~IARY OF THE INVENTION
The present invention fills these needs by providing a mufti-layer extruder that is capable of producing a plastic melt that congeals into multiple layers. In combination with a pattern producing tool, a pattern can then be imprinted as the melt passes over it. As a result, a multi layer patterned vacuum packaging film can be produced.
A method for making a vacuum packaging film, in accordance with an embodiment of the present invention, includes flowing a plastic melt, from a mufti-layer extruder, onto a rotating roller. The plastic melt is then cooled while simultaneously imparting a pattern, via a pattern imparting means, onto the plastic melt resulting in the vacuum packaging film.
A method for making a vacuum packaging film, in accordance with another embodiment of the present invention, includes flowing a plastic melt, from a mufti-layer extruder, onto a rotating cooling roller. The plastic melt is then cooled, on the rotating cooling roller, into the vacuum packaging film.
A method for making vacuum packaging film, in accordance with yet another aspect of the present invention, includes flowing a plastic melt, from a mufti-layer extruder, onto a cooling plank. The plastic melt is then cooled, as it flows over the cooling plank, into a vacuum packaging film.
A method for making vacuum packaging film, in accordance with yet another embodiment of the present invention, includes flowing a plastic melt, from a mufti-layer extruder, in the vicinity of an air-knife. The plastic melt is then cooled, as it flows in the vicinity of the air-knife, into a vacuum packaging film.
An apparatus for producing a vacuum packaging film, in accordance with a final embodiment of the present invention, includes a mufti-layer extruder for producing a plastic melt. Also included is a pattern imparting means for imprinting a pattern onto the plastic melt as it congeals into the vacuum packaging film.
An advantage of the present invention is that a mufti-layer, patterned vacuum packaging film can be produced economically and yet still meet necessary demanding technical requirements.
Additionally, the use of an air-knife, or conversely the inverse vacuum, enables custom patterns to be easily implemented as opposed to changing a roller embedded with an inverse pattern.
These aiid otlier~'advaritages' o~~ tYie present invention will become apparent to those skilled in the art after reading the following descriptions and studying the various figures of the drawings.
BRIEF~.~DESCnTP''TIOI~1° OF°TH~ 1'~R.AWINGS
FIG. 1 illustrates a prior art method for manufacturing vacuum packaging film.
FIG. 2 illustrates another prior art method for manufacturing vacuum packaging film.
FIG. 3 illustrates an apparatus for manufacturing vacuum packaging film utilizing a multi-layer extruder, in accordance with the present invention.
FIG. 4 is a flowchart illustrating a method for manufacturing vacuum packaging film utilizing a multi-layer extruder, in accordance with the present invention.
FIG. 5 is a flowchart illustrating a method for manufacturing vacuum packaging film utilizing a mufti-layer extruder, in accordance with the present invention.
FIG. 6 illustrates an apparatus for manufacturing vacuum packaging film utilizing a mufti-layer extruder and a cooling plank, in accordance with the present invention.
FIG. 7 is a flowchart illustrating a method for manufacturing vacuum packaging film utilizing a mufti-layer extruder and a cooling plank, in accordance with the present invention.
FIG. 8 is a flowchart illustrating a method for manufacturing vacuum packaging film utilizing a mufti-layer extruder and a cooling plank, in accordance with the present invention.
FIG. 9 illustrates an apparatus for manufacturing vacuum packaging film utilizing a mufti-layer extruder and an air-knife, in accordance with the present invention.
FIG. 10 is a flowchart illustrating a method for manufacturing vacuum packaging film utilizing a ~0 mufti-layer extruder and an air-knife, in accordance with the present invention.
FIG. 11 is a flowchart illustrating a method for manufacturing vacuum packaging film utilizing a mufti-layer extruder and an air-knife, in accordance with the present invention.
FIG. 12 illustrates an apparatus for manufacturing vacuum packaging film utilizing a mufti-layer extruder and an inverse-vacuum, in accordance with the present invention.
ZS FIG. 13 is a flowchart illustrating a method for manufacturing vacuum packaging film utilizing a mufti-layer extruder and an inverse-vacuum, in accordance with the present invention.

FIG'. 14 is a flowchart illustrating a method for manufacturing vacuum packaging film utilizing a multi-layer extruder and an inverse-vacuum, in accordance with the present invention.
FIG. 15 is a flowchart illustrating a method for manufacturing vacuum packaging film utilizing a mufti-layer extruder, a rotating roller and a pattern imparting means, in accordance with the present invention.
FIG. 16 illustrates a cross-section of a vacuum packaging film sheet in accordance with one embodiment of the present invention.
FIG. 17 illustrates a vacuum packaging film sheet having a zigzag pattern in accordance with yet another embodiment of the present invention.
FIG. 18 illustrates a bag roll of vacuum packaging material having a zigzag pattern in accordance with the present invention.
FIG. 19 illustrates a preformed vacuum packaging receptacle having a zigzag pattern in accordance with the present invention.

DETAILED DE~C;1Z1YT1UN OF THE 1NVENTION
FIGS. 1-2 were described in reference to the prior art. The present invention provides a method and apparatus for economically producing a mufti-layer, patterned vacuum packaging film. By utilizing a mufti-layer extruder, as opposed to the single-layer extruder of the prior art, with a variety of patterning techniques, the desired vacuum packaging film is achieved. The patterning techniques include using a patterned cooling roll, a patterned cooling plank, an air-knife and an inverse-vacuum. These techniques will be now be described. It should be kept in mind that certain extraneous details Were left out of the subsequent description in an effort to not unnecessarily obscure the true spirit and scope of present invention.
FIG. 3 illustrates an apparatus 300 for manufacturing vacuum packaging film in accordance with one embodiment of the present invention. The apparatus 300 includes a mufti-layer extruder 302 and a patterned cooling roller 308 embedded with a reverse pattern. The mufti-layer extruder 302 is capable of extruding layers as required by the specific application.
One suitable layer configuration is described below in more detail with reference to FIG. 15.
although at least one improved pattern is described below with reference to FIG. 16. As the mufti-layer extruder 302 extrudes a plastic melt 304, the plastic melt 304 flows into contact with the cooling roller 208 turning in the direction of an arrow 214. As the melt 304 is cooled, a pattern is also formed on the melt 304 at the same time due to the presence of the inverse-pattern. As a result, a mufti-layer vacuum packaging film 306 emerges.
~?0 As will be appreciated, the apparatus 300 may include a variety of other mechanisms useful in facilitating manufacture. For example, the apparatus 300 may include a temperature control device for controlling the cooling temperature of the cooling roller 208. The apparatus 300 may include motor controls for adjusting and controlling rotation speed of the cooling roller 208.
The apparatus 300 may include a laminating roll that through mechanical pressure applies the ~?5 melt 304 onto the pattern of the cooling roller 208. Generally a cooling roll diameter is larger than a laminating roll diameter, 150% to 300% is suitable, but this may be implemented as desired.
The pattern may take on a variety of shapes including an uneven pattern, a random pattern, a wave pattern, a striped pattern, or a zigzag pattern. This pattern may be formed in any manner 30 on the cooling roller 208, including on the entirety of the cooling roller 208, or may be disposed in stripes or randomly. The zigzag pattern in particular is described in more detail below with reference to FIG. 17.

FIG. 4 is a flowchart illustrating a method 310 for manufacturing vacuum packaging film utilizing a multi-layer extruder, in accordance with the present invention. As will be appreciated, mufti-layer films of the prior art were formed through embossing multiple layers together. In the method 310, mufti-layer films are formed through a mufti-layer extrusion process. After a start operation 312 prepares material as necessary, a plastic melt is flowed from a mufti-layer extruder onto a rotating cooling roller, at step 314. At step 316, the plastic cools on the rotating cooling roller and turns into the vacuum packaging film. The process then ends at a step 318 where additional manufacturing may be performed. As will be appreciated, patterning can be performed later if desired, or as next described in FIG. 5, the cooling roller can be patterned and thus the film is formed with a pattern during the extrusion process.
FIG. 5 is a flowchart illustrating a method 320 for manufacturing a patterned vacuum packaging film utilizing a mufti-layer extruder, in accordance with the present invention. After a start step 322, a plastic melt, generated by a mufti-layer extruder, is flowed onto a patterned rotating cooling roller at step 324. The rotating roller has an inverse pattern embedded on it. As the melt is cooled on the cooling roller, the inverse pattern imparts a pattern onto the congealing melt that solidifies into a patterned mufti-Layer vacuum packaging film, at step 326.
The process then ends at step 328.
FIG. 6 illustrates an apparatus 400 for manufacturing a mufti-layer patterned vacuum packaging film in accordance with another embodiment of the present invention. The apparatus 400 ~?0 includes a mufti-layer extruder 302, a patterned cooling plank 402, and a cooling roller 404 that rotates in the direction of arrow 406. As the plastic melt 304 flows along cooling plank 402, the melt 304 congeals and is simultaneously imprinted with the inverse of the pattern present on the cooling plank 402. As a result, a mufti-Layered, patterned vacuum packaging film 306 emerges, as roller 404 pulls along the film 306. Again, the apparatus 400 may include a laminating roll ~ ~ 5 applied on the plank 402 andlor on the cooling roller 404. There may also be additional temperature and/or speed controls.
FIG. 7 is a flowchart illustrating a method 408 for manufacturing vacuum packaging film utilizing a mufti-layer extruder and a cooling plank, in accordance with the present invention.
After a beginning step 410, a plastic melt is flowed from a mufti-layer extruder onto a cooling -30 plank at step 412. The melt cools as it flows over the cooling plank and forms a vacuum packaging, at step 414. As will be appreciated, a roller or other source of motion must be used to maintain flow of the plastic melt across the cooling plank. The process finishes at step 416.

FIG: 8 is a flowchart illustratirig~~a method 418 for manufacturing a mufti-layer patterned vacuum packaging film utilizing a mufti-layer extruder and a cooling plank, in accordance with the present invention. After start 420, a mufti-layer extruder forms a plastic melt that flows out onto a patterned cooling plank, at step 422. The cooling plank has an inverse pattern on it that imparts a pattern onto the melt as it flows over the planlc and forms a vacuum packaging film, at step 424. The process terminates at step 426.
FIG. 9 illustrates an apparatus 500 for manufacturing vacuum packaging film utilizing a single or mufti-layer extruder and an air-knife, in accordance with the present invention. The apparatus 500 includes a single or mufti layer extruder 508, an airknife 504, and a cooling roller 404 that turns in the direction of arrow 406. As the plastic melt 304 flows onto roller 404, the air-knife 504 selectively etches a pattern onto the melt 304 with controlled blasts of air 506. Additionally, blasts of air 506 also cause the melt 304 to congeal into mufti-layered, patterned vacuum packaging film 306 that is pulled along by roller 404, in the instance where extruder 508 is a mufti-layer extruder 508. If a single layer extruder 508 is used, a single layer, patterned vacuum packaging film 306 is produced.
FIG. 10 is a flowchart illustrating a method 510 for manufacturing vacuum packaging film utilizing a mufti-layer extruder and an air-knife, in accordance with the present invention. The method begins at step 512 and proceeds to step 514 where a plastic melt is flowed from a multi-layer extruder, in the vicinity of an air-knife. At step 516, the air-knife cools the plastic melt and ~ ;0 a vacuum packaging film results. Step 518 terminates the process.
FIG. 11 is a flowchart illustrating a method 520 for manufacturing patterned mufti-layer vacuum packaging film utilizing a mufti-layer extruder and an air-knife, in accordance with the present invention. After start 522, a plastic melt flows from a mufti-layer extruder in the vicinity of an air-knife at step 524. A pattern is then formed in the melt by the air-knife as it is cooled into a ~!5 vacuum packaging film, at step 526. The process then ends at 528.
FIG. 12 illustrates an apparatus 600 for manufacturing vacuum packaging film utilizing in accordance with one embodiment of the present invention. The apparatus 600 includes a multi-layer extruder 302 and a cooling roller 404 having an inverse-vacuum 602. As the plastic melt 304 flows onto the cooling roller 404, the inverse-vacuum 602 selectively "pulls" a pattern onto SO the melt 304. Additionally, inverse vacuum 602 causes the melt 304 to congeal into multi-layered, patterned vacuum packaging film 306 that is pulled along by roller 404 in the direction of the rotation 406. Alternatively, the pattern may be formed geometrically on the cooling roller 404~and the inverse vacuum 602 may simply hold the plastic melt 304 onto the patterned roller 404.
FIG. 13 is a flowchart illustrating a method 604 for manufacturing vacuum packaging film utilizing a multi-layer extruder and an inverse-vacuum, in accordance with the present invention.
After start 606, a plastic melt is flowed from a mufti-layer extruder onto a roller with an inverse vacuum at step 608. The melt then cools as it flows over the roller and turns into a vacuum packaging film at step 610. At 612, the process ends.
FIG. 14 is a flowchart 614 illustrating a method for manufacturing vacuum packaging film utilizing a mufti-layer extruder and an inverse-vacuum, in accordance with the present invention.
The method begins at 616 and proceeds to step 618 where a plastic melt is produced from a mufti-layer extruder onto a roller with an inverse-vacuum. The melt then cools as it flows over the roller and is simultaneously imprinted with a pattern due to the presence of the inverse vacuum at selected points of the roller. As a result of the preceding, a vacuum packaging film is formed at step 622. The process then terminates at step 622.
FIG. 15 is a flowchart 700 illustrating a method for manufacturing vacuum packaging film utilizing a mufti-layer extruder, a rotating roller and a pattern imparting means, in accordance with the present invention. After start 702, a mufti-layer extruder forms a plastic melt that is flowed over a roller at step 704. The melt is then cooled and simultaneously imprinted with a pattern, at step 706, to form a vacuum packaging film. The pattern is delivered via a pattern ~ ;0 imprinting means. The process then ends at step 708.
Turning next to FIG. 16, a vacuum packaging film 750 in accordance with one embodiment of the present invention will now be described. The vacuum packaging film 750 includes a structural layer 752, a bonding resin layer 754, a gas impermeable layer 756, a bonding resin layer 758, and a heat-sealable resin layer 760. The structural layer 752 acts to provide strength ~!5 to the vacuum paclcaging film 750. The gas impermeable layer 756 acts as a barrier layer to prevent gas entry once the vacuum packaging film 750 has been converted into a bag. The heat-sealable resin layer 760 is the internal bag layer which when coupled with an opposing layer and heated can form a vacuum seal.
With reference to FIG. 17, a vacuum packaging film 800 in accordance with one embodiment of 30 the present invention will now be described. The notable feature of vacuum packaging film 800 is the zigzag pattern 802 formed on or within the vacuum packaging film 800.
The zigzag pattern 802 consists of opposing zigzag channels or ridges having an opposing patter such as lines 804 and. 806. The zigzag pattern 802 can be formed onto the vacuum packaging film 800 through actually forming additional film material onto the vacuum packaging film 800. This can be accomplished by any suitable mechanism such as the extrusion processes described above in more detail. Alternately, a pressure embossing process may be utilized to form the zigzag pattern 802 into the vacuum packaging film 800.
The zigzag pattern 802 provides a variety of benefits. In particular, the varying size of channels formed by the zigzag pattern 802 retards fluid flow during vacuum evacuation of a vacuum packaging bag formed from the vacuum packaging film 800.
FIG. 18 illustrates a bag roll 820 of vacuum packaging material in accordance with yet another embodiment of the present invention. The bag roll 820 includes a first sheet of patterned film 800, a second sheet of film 822, and heat sealed opposing sides 824. The bag roll 820 is useful by those such as end consumers in creating vacuum packaging bags of varying sizes. The patterned film sheet 800 may have a zigzag or other type of pattern. The second film sheet 822 may be formed with or without patterns, either way the pattern of the film sheet 800 aids in evacuation by forming airchannels during vacuum evacuation.
FIG. 19 illustrates vacuum packaging receptacle 830 in accordance with yet another embodiment of the present invention. The vacuum packaging receptacle 830 includes a patterned film sheet 800, a second film sheet 832, and three sealed edges 834. The patterned film sheet 800 may have a zigzag or other type of pattern. The second film sheet 832 may be formed with or without ~!0 patterns, either way the pattern of the film sheet 800 aids in evacuation by forming airchannels during vacuum evacuation.
In view of the foregoing, it will be appreciated by one skilled in the art that a pattern imprinting means can include the cooling roller with the inverse pattern, a cooling plank with an inverse pattern, an air-knife, an inverse-vacuum and the like.
5 An advantage of the present invention is that a multi-layer, patterned vacuum packaging film can be produced economically and yet still meet necessary demanding technical requirements.
Additionally, the use of an air-knife, or conversely the inverse vacuum, enables custom patterns to be easily implemented as opposed to changing a roller embedded with an inverse pattern.
While this invention has been described in terms of certain preferred embodiments, it will be =30 appreciated by those skilled in the art that certain modifications, permutations and equivalents thereof are within the inventive scope of the present invention. It is therefore intended that the following appended"cl'aims "include- all such modifications, permutations and equivalents as fall within the true spirit and scope of the present invention.

Claims (65)

1. A method for manufacturing a multi-layer film for use in vacuum packaging applications, said multi-layer film having a pattern that operates to form channels suitable for evacuation of gas when said multi-layer film is used in the creation of a vacuum packaging bag, said method comprising the acts of:
heat-extruding a first material onto a spinning cooling roll;
heat-extruding a second material onto said spinning cooling roll such that said first and second extruded materials bond and form first and second layers of said multi-layer film during a cooling of said first and second extruded materials; and applying a pattern to said first and second layers in conjunction with said extrusion and said cooling of said first and second extruded materials such that said pattern is defined during said cooling of said first and second materials, said pattern operable to form channels suitable for evacuation of gas from said vacuum packaging bag made of said multi-layer film.
2. A method for manufacturing a multi-layer film as recited in claim 1, wherein said first material is a heat-sealable resin.
3. A method for manufacturing a multi-layer film as recited in claim 2, wherein said second material is a gas impermeable material.
4. A method for manufacturing a multi-layer film as recited in claim 3, further including the act of heat-extruding a first bonding material in between said first and second material, said first bonding material forming a first bonding layer between said first and second layers.
5. A method for manufacturing a multi-layer film as recited in claim 4, further comprising the act of heat-extruding a second bonding material and a structural material to form a second bonding layer and a structural layer, said second bonding layer bonding said structural layer to said second layer, said structural layer intended to provide additional strength to said multi-layer film.
6. A method for manufacturing a multi-layer film as recited in claim 5, wherein said act of applying a pattern operates to apply said pattern to all five layers of said multi-layer film.
7. A method for manufacturing a multi-layer film as recited in claim 1, wherein the act of applying a pattern to said first and second layers is accomplished by providing said pattern on the circumferential surface of said cooling roll.
8. A method for manufacturing a multi-layer film as recited in claim 7, further including the act of positioning a laminating roll to apply pressure to the extruded materials in order to apply said pattern formed on the circumferential surface of said cooling roll onto said multi-layer film.
9. A method for manufacturing a multi-layer film as recited in claim 8 further including the act of controlling a temperature of said cooling roll in order to properly effectuate cooling and formation of said first and second layers.
10. A method for manufacturing a multi-layer film as recited in claim 1, wherein the act of applying a pattern to said extruded layers is accomplished by extruding said materials over a patterned cooling plank which in turn directs said extruded materials to flow over said cooling roll.
11. A method for manufacturing a multi-layer film as recited in claim 2, further including the act of controlling a temperature of said cooling plank to properly effectuate cooling and formation of said first and second layers.
12. A method for manufacturing a multi-layer film as recited in claim 1, wherein said pattern is a zigzag pattern.
13. A method for manufacturing a multi-layer film as recited in claim 1, wherein said channels formed by said pattern have a varying width thereby retarding fluid flow therethrough.
14. A method for manufacturing a vacuum packaging bag, said method comprising:
a) forming a first patterned film sheet including:
i) heat-extruding a first material onto a spinning cooling roll;
ii) heat-extruding a second material onto said spinning cooling roll such that said first and second extruded materials bond and form first and second layers of said first patterned film during a cooling of said first and second extruded materials; and iii) applying a pattern to said first and second layers in conjunction with said extrusion and said cooling of said first and second extruded materials such that said pattern is defined during said cooling of said first and second materials, said pattern operable to form channels suitable for evacuation of gas from said vacuum packaging bag made of said first patterned film sheet;
b) bonding a second film sheet onto said first film sheet via sealing opposing sides to form a pouch with two open ends;
c) sizing said pouch to a desired size; and d) bonding a one of said open ends to form a vacuum packaging bag.
15. A method of manufacturing a vacuum packaging bag as recited in claim 14, wherein said pattern is a zigzag pattern.
16. A method of manufacturing a vacuum packaging bag as recited in claim 14, wherein said second film sheet is patterned.
17. A method of manufacturing a vacuum packaging bag as recited in claim 14, wherein said bonding includes applying heat along said opposing sides.
18. A method of manufacturing a vacuum packaging bag as recited in claim 14, wherein said bonding includes applying pressure along said opposing sides.
19. A method for manufacturing a roll of vacuum packaging bag material, said method comprising:
a) forming a first patterned film sheet including:
i) heat-extruding a first material onto a spinning cooling roll;
ii) heat-extruding a second material onto said spinning cooling roll such that said first and second extruded materials bond and form first and second layers of said first patterned film during a cooling of said first and second extruded materials; and iii) applying a pattern to said first and second layers in conjunction with said extrusion and said cooling of said first and second extruded materials such that said pattern is defined during said cooling of said first and second materials, said pattern operable to form channels suitable for evacuation of gas from said vacuum packaging bag made of said first patterned film sheet;
b) bonding a second film sheet onto said first film sheet via sealing opposing sides to form a pouch with two open ends;
c) forming said pouch into said roll of vacuum packaging material.
20. A method for manufacturing a roll as recited in claim 19, wherein said pattern is a zigzag pattern.
21. An apparatus for manufacturing a multi-layer film for use in vacuum packaging applications, said multi-layer film having a pattern that operates to form channels suitable for evacuation of gas when said multi-layer film is used in the creation of a vacuum packaging bag, said apparatus comprising:
a multi-layer extruder for extruding a first material and a second material;
a cooling roll positioned with respect to said extruder such that said extruder applies said first and second materials onto a circumferential surface of said cooling roll such that said first and second extruded materials bond and form first and second layers of said multi-layer film during a cooling of said first and second extruded materials; and a pattern forming mechanism arranged to pattern said first and second layers during said extrusion and cooling of said first and second materials.
22. An apparatus as recited in claim 21, wherein said extruder is a melt-extrusion extruder.
23. An apparatus as recited in claim 21, wherein said extruder further includes a nozzle arranged to apply said first and second materials.
24. An apparatus as recited in claim 21, wherein said first material is a heat-sealable resin and said apparatus further includes a source of said heat-sealable resin coupled to said multi-layer extruder.
25. An apparatus as recited in claim 21, wherein said second material is a gas impermeable material and said apparatus further includes a source of said gas impermeable material coupled to said multi-layer extruder.
26. An apparatus as recited in claim 21, wherein said pattern forming mechanism includes a patterned formed on said circumferential surface of said cooling roll.
27. An apparatus as recited in claim 26, wherein said pattern on said circumferential surface of said cooling roll is an uneven pattern.
28. An apparatus as recited in claim 26, wherein said pattern on said circumferential surface of said cooling roll is a wave pattern.
29. An apparatus as recited in claim 26, wherein said pattern on said circumferential surface of said cooling roll is a striped pattern.
30 An apparatus as recited in claim 26, wherein said pattern is a zigzag pattern.
31. An apparatus as recited in claim 21, wherein said pattern forming mechansim includes a patterned cooling ramp disposed between said multi-layer extruder and said cooling roll.
32. An apparatus as recited in claim 21, wherein said pattern forming mechansim includes an airknife operable to shape said first and second materials subsequent to extrusion such that said first and second materials form said patterned first and second layers on said cooling roll.
33. An apparatus as recited in claim 21, said apparatus further comprising a temperature controller for controlling a temperature of said cooling roll in order to properly effectuate cooling and formation of said first and second layers.
34. An apparatus as recited in claim 21 further comprising a laminating roll arranged to assist in holding said first material onto said cooling roll.
35. An apparatus as recited in claim 34, wherein said laminating roll includes rubber.
36. An apparatus as recited in claim 34, wherein a cooling roll diameter is about 1.5 to 3 times larger than a laminating roll diameter.
37. An apparatus as recited in claim 34 wherein said extruder, cooling roll, and laminating roll axe arranged to accept an muter layer in conjunction with said extruded first material, such that said inner layer and said outer layer are laminated in between the cooling roll and the laminating roll to form said multi-layer film.
38. An apparatus for manufacturing a multi-layer film for use in vacuum packaging applications, said multi-layer film including an inner layer having a plurality of grooves which operate to form channels suitable for evacuation of gas when said multi-layer film is used in the creation of a vacuum packaging bag, said apparatus comprising:
a single layer heat-extruder having a nozzle for melt extruding a heat-sealable resin suitable for forming said inner layer of said multi-layer film;
a cooling roll positioned with respect to said extruder nozzle such that said extruder applies said heat-sealable resin onto a circumferential surface of said cooling roll, said cooling roll formed having a pattern on said circumferential surface of said cooling roll which gives shape to said plurality of grooves on said inner layer, said cooling roll including steel;
a temperature controller for controlling a temperature of said cooling roll in order to properly effectuate cooling and formation of said heat-sealable resin into said grooved inner layer;
a laminating roll arranged to assist in holding said first material onto said cooling roll, said laminating roll having a diameter smaller than a diameter of said cooling roll; and wherein said extruder, cooling roll, and laminating roll are arranged to accept an outer layer in conjunction with said extruded first material, such that said inner layer and said outer layer are laminated in between the cooling roll and the laminating roll to form said multi-layer film.
39. A multi-layer film suitable for use in forming a vacuum packaging bag, said multi-layer film comprising:
a patterned inner layer formed of a first material, said patterned inner layer having a plurality of grooves which operate to form channels suitable for evacuation of gas when said multi-layer film is used to form a vacuum packaging bag, said inner layer formed through heat extrusion of said first material onto a patterned cold roll, whereby said inner layer has a substantially uniform distribution of material, whereby said inner layer substantially lacks deformities typically present in an embossed film having a similar pattern formed by an embossing process;
and an outer layer laminated onto said patterned layer.
40. A multi-layer film as recited in claim 39, wherein said first material is a heat-sealable resin.
41. A multi-layer film as recited in claim 40, wherein said heat-sealable resin is a polyethylene resin.
42. A multi-layer film as recited in claim 39, wherein said outer layer includes a gas impermeable layer.
43. A multi-layer film as recited in claim 39, wherein said pattern is a wave pattern.
44. A multi-layer film as recited in claim 39, wherein said pattern is a criss-cross pattern.
45. A multi-layer film as recited in claim 39, wherein said pattern is a straight-line pattern.
46. A multi-layer film as recited in claim 39, wherein said pattern is an uneven pattern.
47. A multi-layer film as recited in claim 39, wherein said pattern is a zigzag pattern.
48. A heat-sealable vacuum packaging bag for holding food or other product, said heat-sealable vacuum packaging bag comprising:
a first sheet formed of a multi-layer plastic film, said multi-layer plastic film including:
a patterned inner layer formed of a heat-sealable resin, said patterned inner layer having a plurality of grooves which operate to form channels suitable for evacuation of gas when said multi-layer film is used to form said vacuum packaging bag, said inner layer formed through heat extrusion of said first material onto a patterned cold roll, whereby said inner layer has a substantially uniform distribution of material substantially lacking deformities normally present in an embossed film having a pattern formed by an embossing process; and an outer layer laminated onto said patterned inner layer, said outer layer including a gas impermeable material;
a second sheet formed of said multi-layer plastic film, said second sheet having a footprint substantially similar to said first sheet; and said first and second sheets arranged with respective patterned inner layers facing one another, said first and second sheets heat-sealed on opposing lateral sides and at an end side, whereby said first and second sheet form said vacuum packaging bag having an opening for insertion of food or other product, said vacuum packaging bag heat-sealable at said opening for insertion of food.
49. A heat-sealable vacuum packaging bag for holding food or other product, said heat-sealable vacuum packaging bag comprising:
a first sheet formed of a multi-layer plastic film, said multi-layer plastic film including:
a patterned inner layer formed of a heat-sealable resin, said patterned inner layer having an opposing zigzag pattern operable to form varying width channels suitable for evacuation of gas when said multi-layer film is used to form said vacuum packaging bag, whereby said varying width channels tend to retard fluid flow during vacuum evacuation of said vacuum packaging bag; and an outer layer coupled to said patterned inner layer, said outer layer including a gas impermeable material;
a second sheet having a footprint substantially similar to said first sheet;
and said first and second sheets arranged with said patterned inner layer internal to said heat-sealable vacuum packaging bag, said first and second sheets sealed on opposing lateral sides and at an end side, whereby said first and second sheet form said vacuum packaging bag having an opening for insertion of food or other product, said vacuum packaging bag heat-sealable at said opening for insertion of food.
50. A vacuum packaging bag as recited in claim 49, wherein said second sheet is also patterned.
51. A vacuum packaging bag as recited in claim 49, wherein said first and second sheets are sealed via heat sealing.
52. A vacuum packaging bag as recited in claim 49, wherein said first and second sheets are sealed via pressure sealing.
53. A heat-sealable vacuum packaging bag for holding food or other product, said heat-sealable vacuum packaging bag comprising:
a first sheet formed of a multi-layer plastic film, said multi-layer plastic film including:
a patterned inner layer formed of a heat-sealable resin, said patterned inner layer having a plurality of grooves which operate to form channels suitable for evacuation of gas when said multi-layer film is used to form said vacuum packaging bag, said inner layer formed through heat extrusion of said first material onto a patterned cold roll, whereby said inner layer has a substantially uniform distribution of material substantially lacking deformities normally present in an embossed film having a pattern formed by an embossing process; and an outer layer laminated onto said patterned inner layer, said outer layer including a gas impermeable material;
a second sheet including a gas impermeable material, said second sheet having a footprint substantially similar to said first sheet, said second sheet having an unpatterned inner layer made of a heat-sealable resin; and said first and second sheets arranged with respective inner layers facing one another, said first and second sheets heat-sealed on opposing lateral sides and at an end side, whereby said first and second sheet form said vacuum packaging bag having an opening for insertion of food or other product, said vacuum packaging bag heat-sealable at said opening for insertion of food.
54. A bag roll suitable for forming heat-sealable vacuum packaging bags for holding food or other product, said bag roll comprising:
a first sheet formed of a multi-layer plastic film, said multi-layer plastic film including:
a patterned inner layer formed of a heat-sealable resin, said patterned inner layer having a plurality of grooves which operate to form channels suitable for evacuation of gas when said multi-layer film is used to form said vacuum packaging bag, said inner layer formed through heat extrusion of said first material onto a patterned cold roll, whereby said inner layer has a substantially uniform distribution of material substantially lacking deformities normally present in a film having a pattern formed by an embossing process; and an outer layer laminated onto said patterned inner layer, said outer layer including a gas impermeable material;
a second sheet formed of said multi-layer plastic film and having a shape and size substantially similar to said first sheet; and said first and second sheets arranged with respective patterned inner layers facing one another, said first and second sheets heat-sealed on opposing lateral sides, whereby portions of said bag roll may be cut from said bag roll, thereby creating a partially formed bag having opposing open ends that are heat-sealable.
55. A method for making a multi-layer vacuum packaging film comprising:
flowing a plastic melt, from a multi-layer extruder, onto a rotating roller;
and cooling said plastic melt while simultaneously imparting a pattern, via a pattern imparting means, onto said plastic melt resulting in said vacuum packaging film.
56. A method for making a vacuum packaging film comprising:
flowing a plastic melt, from a multi-layer extruder, onto a rotating cooling roller; and cooling said plastic melt, on said rotating cooling roller, into said vacuum packaging film.
57. Said method as recited in claim 56 wherein said rotating cooling roller contains an inverse-pattern that imparts a pattern onto said vacuum packaging film.
58. A method for making vacuum packaging film comprising:
flowing a plastic melt, from a multi-layer extruder, onto a cooling plank;
cooling said plastic melt, as it flows over said cooling plank, into a vacuum packaging film.
59. Said method as recited in claim 58 wherein said cooling plank contains an inverse-pattern that imparts a pattern onto said vacuum packaging film.
60. A method for making vacuum packaging film comprising:
flowing a plastic melt, from a multi-layer extruder, in said vicinity of an air-knife;
and cooling said plastic melt, as it flows in said vicinity of said air-knife, into a vacuum packaging film.
61. A method as recited in claim 60 wherein said air-knife is an inverse-vacuum.
62. A method as recited in claim 60 wherein said air-knife imparts a pattern onto said vacuum packaging film.
63. A method as recited in claim 61 wherein said inverse-vacuum imparts a pattern onto said vacuum packaging film.
64. A method as recited in claim 60 wherein said multi-layer extruder is a single layer extruder.
65. An apparatus for producing a vacuum packaging film comprising:

a pattern imparting means for imprinting a pattern onto said plastic melt as it congeals into said vacuum packaging film.
CA002519507A 2003-03-24 2004-03-18 Forming evacuation channels during single and multi-layer extrusion process Abandoned CA2519507A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US45749603P 2003-03-24 2003-03-24
US60/457,496 2003-03-24
US10/801,950 2004-03-15
US10/801,950 US7517484B2 (en) 2003-03-24 2004-03-15 Forming evacuation channels during single and multi-layer extrusion process
PCT/US2004/008594 WO2004085128A2 (en) 2003-03-24 2004-03-18 Forming evacuation channels during single and multi-layer extrusion process

Publications (1)

Publication Number Publication Date
CA2519507A1 true CA2519507A1 (en) 2004-10-07

Family

ID=33101290

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002519507A Abandoned CA2519507A1 (en) 2003-03-24 2004-03-18 Forming evacuation channels during single and multi-layer extrusion process

Country Status (9)

Country Link
US (1) US7517484B2 (en)
EP (1) EP1610936A2 (en)
JP (1) JP2006521256A (en)
KR (1) KR20050116829A (en)
AU (1) AU2004223876A1 (en)
CA (1) CA2519507A1 (en)
MX (1) MXPA05010187A (en)
TW (1) TW200508014A (en)
WO (1) WO2004085128A2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050106536A (en) * 2004-05-04 2005-11-10 바프렉스 주식회사 Process for fabricating embossed multi-film for vacuum packaging and embossed multi-film for vacuum packaging fabricated by the method
WO2006118374A1 (en) * 2005-05-02 2006-11-09 Joongdon Kim Manufacturing device of film for vacuum packaging the film
US7857514B2 (en) 2006-12-12 2010-12-28 Reynolds Foil Inc. Resealable closures, polymeric packages and systems and methods relating thereto
US7784160B2 (en) 2007-03-16 2010-08-31 S.C. Johnson & Son, Inc. Pouch and airtight resealable closure mechanism therefor
US7886412B2 (en) 2007-03-16 2011-02-15 S.C. Johnson Home Storage, Inc. Pouch and airtight resealable closure mechanism therefor
US7874731B2 (en) 2007-06-15 2011-01-25 S.C. Johnson Home Storage, Inc. Valve for a recloseable container
US7857515B2 (en) 2007-06-15 2010-12-28 S.C. Johnson Home Storage, Inc. Airtight closure mechanism for a reclosable pouch
US7967509B2 (en) 2007-06-15 2011-06-28 S.C. Johnson & Son, Inc. Pouch with a valve
US7946766B2 (en) 2007-06-15 2011-05-24 S.C. Johnson & Son, Inc. Offset closure mechanism for a reclosable pouch
US7887238B2 (en) 2007-06-15 2011-02-15 S.C. Johnson Home Storage, Inc. Flow channels for a pouch
JP2012001248A (en) * 2010-06-17 2012-01-05 Nippon Suritto Kogyo Kk Sheet material and suspended bag
US8550716B2 (en) 2010-06-22 2013-10-08 S.C. Johnson & Son, Inc. Tactile enhancement mechanism for a closure mechanism
US8974118B2 (en) 2010-10-29 2015-03-10 S.C. Johnson & Son, Inc. Reclosable bag having a sound producing zipper
US9327875B2 (en) 2010-10-29 2016-05-03 S.C. Johnson & Son, Inc. Reclosable bag having a loud sound during closing
US11180286B2 (en) 2010-10-29 2021-11-23 S. C. Johnson & Son, Inc. Reclosable bag having a loud sound during closing
US8469593B2 (en) 2011-02-22 2013-06-25 S.C. Johnson & Son, Inc. Reclosable bag having a press-to-vent zipper
US8568031B2 (en) 2011-02-22 2013-10-29 S.C. Johnson & Son, Inc. Clicking closure device for a reclosable pouch
KR101716186B1 (en) * 2014-03-11 2017-03-14 한화테크윈 주식회사 Apparatus for transferring graphene
JP2016199299A (en) * 2015-04-13 2016-12-01 住友ベークライト株式会社 Production method of packing sheet and packing material
EP3313750A1 (en) 2015-06-29 2018-05-02 Dow Global Technologies LLC Flexible pouch with microcapillary dispensing system
BR112017025931A2 (en) 2015-06-29 2018-08-14 Dow Global Technologies Llc process for producing flexible container with microcapillary dispensing system
JP6690292B2 (en) * 2016-02-23 2020-04-28 大日本印刷株式会社 Resin films, laminates and packaging materials

Family Cites Families (162)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US274447A (en) * 1883-03-20 William-kentish
NL22408C (en) 1927-06-02
US2085766A (en) 1934-09-29 1937-07-06 Potdevin Machine Co Method of making bags and the like
US2105376A (en) * 1936-12-18 1938-01-11 Chase Bag Company Valve bag
US2429482A (en) 1939-04-06 1947-10-21 Munters Carl Georg Method and means for the production of foil material
US2265075A (en) 1939-12-06 1941-12-02 Thomas M Royal & Company Method of making bags
US2387812A (en) 1941-12-18 1945-10-30 Stokes & Smith Co System of producing evacuated packages
US2480316A (en) 1944-11-11 1949-08-30 Mishawaka Rubber & Woolen Mfg Method of making laminated cushion material
US2609314A (en) 1946-10-30 1952-09-02 Glenn L Martin Co Machine for making honeycomb core material
US2633442A (en) * 1949-03-08 1953-03-31 Albert E Caldwell Method of making tufted material
US2642372A (en) * 1950-02-02 1953-06-16 Chittick Charles Yardley Flexible corrugated sheet material and method of fabricating same
US2778173A (en) * 1950-11-29 1957-01-22 Wilts United Dairies Ltd Method of producing airtight packages
US2670501A (en) * 1951-08-24 1954-03-02 Us Rubber Co Method of forming plastic material
US2607712A (en) 1952-01-28 1952-08-19 Frank W Egan & Company Extrusion coating machine
US2789609A (en) * 1952-03-14 1957-04-23 Flexigrip Inc Actuator for zippers and pouch embodying the same
US2772712A (en) 1952-03-14 1956-12-04 Flexigrip Inc Actuator for zippers and pouch embodying the same
GB719152A (en) * 1952-04-07 1954-11-24 Wilts United Dairies Ltd Improvements in the production of airtight packages
US2776452A (en) * 1952-09-03 1957-01-08 Chavannes Ind Synthetics Inc Apparatus for embossing thermoplastic film
US2759866A (en) 1952-12-17 1956-08-21 Gen Tire & Rubber Co Method of making wall covering
US2690206A (en) 1953-03-23 1954-09-28 Marathon Corp Extrusion coating machine
US2695741A (en) 1953-06-16 1954-11-30 Stephen L Haley Air evacuator for plastic bags
US2821338A (en) * 1954-10-21 1958-01-28 Melvin R Metzger Valve-equipped container
US2858247A (en) 1955-08-04 1958-10-28 Swart Dev Company De Panel material
US2916411A (en) 1955-11-03 1959-12-08 Fiammiferi Ed Affini Spa Fab Composite packing paper
US2856323A (en) 1955-11-09 1958-10-14 Jack C Gordon Indented resilient matted fibrous pad
US3077428A (en) * 1956-06-29 1963-02-12 Union Carbide Corp Heat sealable polyethylene laminate and method of making same
US2913030A (en) 1956-10-22 1959-11-17 Arnold J Fisher Moisture-free bag
NL275557A (en) * 1957-12-23
US2960144A (en) 1958-05-21 1960-11-15 Edwards Eng Corp Corrugating machines
US3039182A (en) * 1959-03-31 1962-06-19 Warren H F Schmieding Method of repairing cracked elements
US3142599A (en) 1959-11-27 1964-07-28 Sealed Air Corp Method for making laminated cushioning material
US3102676A (en) 1960-02-16 1963-09-03 Montedison Spa Self-closing containers
US3060985A (en) 1960-08-05 1962-10-30 John R Vance Bag closure
US3098563A (en) 1960-10-03 1963-07-23 Hugh B Skees Inflatable heat insulating material
US3149772A (en) 1960-12-07 1964-09-22 Technipak Proprietary Ltd Self sealing sachets or containers
US3113715A (en) 1961-02-03 1963-12-10 Dow Chemical Co Anti-block edge for plastic bags and the like
US3077262A (en) * 1961-03-22 1963-02-12 Poly Sil Inc Novel container
CH385718A (en) * 1961-11-04 1964-12-15 Bodet Jean Method and device for packaging solid articles of small volume, and assembly obtained by this method
US3141221A (en) 1962-11-13 1964-07-21 Amtec Inc Closure for flexible bags
US3160323A (en) 1963-04-05 1964-12-08 Leonard R Weisberg Containers with internal, interlocking protrusions
US3135411A (en) * 1963-05-09 1964-06-02 Wiley W Osborne Vacuum sealing means
GB1066487A (en) * 1963-10-07 1967-04-26 Ici Ltd Vented bags
US3595722A (en) 1964-04-17 1971-07-27 Thiokol Chemical Corp Process for forming a thermoplastic product
US3224574A (en) 1964-06-10 1965-12-21 Scott Paper Co Embossed plastic bag
US3423231A (en) * 1965-05-20 1969-01-21 Ethyl Corp Multilayer polymeric film
US3325084A (en) 1965-10-18 1967-06-13 Ausnit Steven Pressure closable fastener
US3334805A (en) 1965-10-22 1967-08-08 Robert W Halbach Plastic bag closure
US3411698A (en) 1966-09-09 1968-11-19 Reynolds Metals Co Bag-like container means
US3381887A (en) * 1967-04-14 1968-05-07 Nat Distillers Chem Corp Sealing patch valve for plastic bags
US3595467A (en) 1968-01-23 1971-07-27 Luigi Goglio Flexible sealed container provided with a one-way safety valve
US3516217A (en) 1968-03-07 1970-06-23 Bemis Co Inc Compression packaging
US3595740A (en) 1968-05-08 1971-07-27 Du Pont Hydrolyzed ethylene/vinyl acetate copolymer as oxygen barrier layer
US3533548A (en) 1968-10-17 1970-10-13 Bard Inc C R Method of ascertaining validity of heat seal and product of said method
US3565147A (en) * 1968-11-27 1971-02-23 Steven Ausnit Plastic bag having reinforced closure
US3600267A (en) 1969-04-14 1971-08-17 Dow Chemical Co Packaging film
US3575781A (en) * 1969-05-16 1971-04-20 Stauffer Hoechst Polymer Corp Plastic film wrapping material
US3809217A (en) * 1969-07-22 1974-05-07 Franklin Mint Corp Packaging for flat objects
US3661677A (en) * 1969-10-10 1972-05-09 Allied Chem Post-heat treatment for polyvinylidene chloride-coated film
US3904465A (en) * 1970-02-20 1975-09-09 Mobil Oil Corp Process and apparatus for the manufacture of embossed film laminations
CA984346A (en) 1971-03-24 1976-02-24 Canadian Industries Limited Valve bag
US3785111A (en) * 1972-02-04 1974-01-15 Schneider W Method of forming containers and packages
US3908070A (en) * 1972-04-24 1975-09-23 Dow Chemical Co Multilayer thermoplastic barrier structure
IT971505B (en) * 1972-12-04 1974-05-10 Goglio L DEGASSING VALVE FOR FLEXIBLE COUNTERS WITH HERMIC CLOSURE AND CONTAINER FITTED WITH THE VALVE
US4098404A (en) 1973-02-23 1978-07-04 Sonoco Products Company Vacuum package with flexible end
GB1457429A (en) * 1973-07-30 1976-12-01 British Visqueen Ltd Vented bags
US3895153A (en) 1973-10-05 1975-07-15 Minnesota Mining & Mfg Friction-surface sheet
US3958693A (en) * 1975-01-20 1976-05-25 E-Z-Em Company Inc. Vacuum X-ray envelope
JPS5159593A (en) * 1974-11-21 1976-05-24 Furukawa Seisakusho Kk Shinkuhosohoho oyobisono shinkuhosoki
US4105491A (en) 1975-02-21 1978-08-08 Mobil Oil Corporation Process and apparatus for the manufacture of embossed film laminations
US3997383A (en) 1975-03-10 1976-12-14 W. R. Grace & Co. Cross-linked amide/olefin polymeric laminates
US3980226A (en) 1975-05-05 1976-09-14 Franz Charles F Evacuateable bag
US4018253A (en) * 1975-10-09 1977-04-19 Seth Ian Kaufman Home vacuum apparatus for freezer bags
US3998499A (en) 1975-12-18 1976-12-21 Forniture Industriali Padova - S.P.A. Steel bearings with polychloroprene and fluorocarbon resin
US4340558A (en) 1976-05-05 1982-07-20 Colgate-Palmolive Company Scrim reinforced plastic film
US4066167A (en) * 1976-07-08 1978-01-03 Keebler Company Recloseable package
IT1067343B (en) 1976-11-19 1985-03-16 Bernardo P Di METHOD AND DEVICE FOR THE VACUUM PACKAGING OF PRODUCTS
FR2409205A2 (en) 1977-11-17 1979-06-15 Est Imprimerie Papeterie DEAERATION VALVE FOR BAGGING PULVERULENT PRODUCTS
US4155453A (en) * 1978-02-27 1979-05-22 Ono Dan D Inflatable grip container
US4212337A (en) 1978-03-31 1980-07-15 Union Carbide Corporation Closure fastening device
US4179862A (en) 1978-06-19 1979-12-25 Inauen Maschinen Ag Vacuum packing machine with bag end retractor
DE2934126A1 (en) 1978-09-07 1980-03-20 Matburn Holdings Ltd SEALING DEVICE FOR A BAG, SACK OR THE LIKE.
US4186786A (en) * 1978-09-29 1980-02-05 Union Carbide Corporation Colored interlocking closure strips for a container
JPS592655Y2 (en) * 1979-08-10 1984-01-25 シ−アイ化成株式会社 Carbon body for rubber compounding
JPS6051438B2 (en) * 1979-12-21 1985-11-13 三井化学株式会社 Method for manufacturing laminate and extrusion die used therein
US4372921A (en) * 1980-01-28 1983-02-08 Sanderson Roger S Sterilized storage container
US4295566A (en) 1980-05-07 1981-10-20 Becton, Dickinson And Company Air-evacuated package with vacuum integrity indicator means
FR2512424A1 (en) * 1981-09-10 1983-03-11 Collet Cafes VACUUM PACKAGING BAG
GB2152897B (en) * 1984-01-19 1987-10-21 Grace W R & Co Heat shrink packaging
US4626574A (en) * 1982-07-21 1986-12-02 Clopay Corporation Linear low density polyethylene film and method of making
US4583347A (en) * 1982-10-07 1986-04-22 W. R. Grace & Co., Cryovac Div. Vacuum packaging apparatus and process
JPS5998822A (en) * 1982-11-12 1984-06-07 Sanyo Kokusaku Pulp Co Ltd Manufacture of support for forming polyurethane-based resin film
FR2539709A1 (en) * 1983-01-25 1984-07-27 Fafournoux Bernard PRE-EMPTY VACUUM BAG FOR CONSERVATION OF MISCELLANEOUS PRODUCTS
US4576285A (en) * 1983-05-20 1986-03-18 Fres-Co System Usa, Inc. Sealed flexible container with non-destructive peelable opening and apparatus and method for forming same
US4747702A (en) * 1983-06-30 1988-05-31 First Brands Corporation Interlocking closure device having controlled separation and improved ease of occlusion
US4917506A (en) * 1983-06-30 1990-04-17 First Brands Corporation Interlocking closure device having controlled separation and improved ease of occlusion
US4551379A (en) 1983-08-31 1985-11-05 Kerr Stanley R Inflatable packaging material
NZ209507A (en) 1983-10-06 1986-07-11 Canadian Ind Thermoplastic valve bag:perforated outer wall with mesh inner liner
CA1295582C (en) * 1983-10-17 1992-02-11 Debra Cheryl Boone Conduit member for collapsible container
US4532652A (en) 1983-11-16 1985-07-30 Mobil Oil Corporation Plastic bag with air exhaustion valve
US4705174A (en) 1984-02-29 1987-11-10 Fres-Co System Usa, Inc. Sealed flexible container with non-destructive peelable opening
US4669124A (en) * 1984-05-23 1987-05-26 Yoken Co., Ltd. Beverage container with tamperproof screwthread cap
IT1176180B (en) 1984-05-23 1987-08-18 Eurodomestici Ind Riunite METHOD FOR THE VACUUM PACKAGING OF FINALLY DIVIDED MATERIALS AND CONTAINER FOR THE IMPLEMENTATION OF THE METHOD
US4579756A (en) * 1984-08-13 1986-04-01 Edgel Rex D Insulation material with vacuum compartments
US4812056A (en) * 1985-03-25 1989-03-14 The Dow Chemical Company Reclosable, flexible container having an externally operated fastener
USRE34929E (en) * 1985-09-23 1995-05-09 Tilia, Inc. Plastic bag for vacuum sealing
US4658434A (en) * 1986-05-29 1987-04-14 Grain Security Foundation Ltd. Laminates and laminated articles
JPH0745181B2 (en) * 1987-04-01 1995-05-17 富士写真フイルム株式会社 Laminated product manufacturing method
US4712574A (en) 1987-04-23 1987-12-15 C. H. Perrott, Inc. Vacuum-breaking valve for pressurized fluid lines
US4834554A (en) * 1987-11-16 1989-05-30 J. C. Brock Corp. Plastic bag with integral venting structure
GB2218669B (en) * 1988-05-20 1992-07-08 Grace W R & Co Multi-layer packaging film and process
US4892414A (en) * 1988-07-05 1990-01-09 Minigrip, Inc. Bags with reclosable plastic fastener having automatic sealing gasket means
US5097956A (en) * 1988-09-07 1992-03-24 Paramount Packaging Corporation Vacuum package with smooth surface and method of making same
US4903718A (en) * 1988-10-19 1990-02-27 Ipco Corporation Flexible ultrasonic cleaning bag
US4913561A (en) * 1988-11-15 1990-04-03 Fres-Co System Usa, Inc. Gussetted flexible package with presealed portions and method of making the same
US4890637A (en) * 1988-12-12 1990-01-02 Flavorcoffee Co. Inc. One way valve
CA2025977C (en) * 1990-09-21 1996-01-23 Charles E. Brinley Process for preparing embossed, coated paper
US4906108A (en) * 1989-03-08 1990-03-06 Mobil Oil Corporation Corrugated sticky tape bag tie closure
US5006056A (en) * 1989-09-01 1991-04-09 The Black Clawson Company Film extrusion apparatus including a quickly replaceable chill roll
US5254073A (en) * 1990-04-27 1993-10-19 Kapak Corporation Method of making a vented pouch
US5080155A (en) * 1990-12-28 1992-01-14 Hooleon Corporation Keyboard enclosure
US5116444A (en) * 1991-05-30 1992-05-26 Sealed Air Corporation Apparatus and method for enhancing lamination of plastic films
JPH0639179Y2 (en) * 1991-07-05 1994-10-12 株式会社柏原製袋 Check valve
US5111838A (en) * 1991-11-25 1992-05-12 Shipping Systems, Inc. Dunnage bag air valve and coupling
US5203458A (en) * 1992-03-02 1993-04-20 Quality Containers International, Inc. Cryptoplate disposable surgical garment container
US5402906A (en) * 1992-07-16 1995-04-04 Brown; Richard S. Fresh produce container system
US5397182A (en) * 1993-10-13 1995-03-14 Reynolds Consumer Products Inc. Write-on profile strips for recloseable plastic storage bags
US5480030A (en) * 1993-12-15 1996-01-02 New West Products, Inc. Reusable, evacuable enclosure for storage of clothing and the like
DK0659531T3 (en) * 1993-12-24 2000-08-07 Roehm Gmbh Process for Extrusion of Plastic Sheets and Fresnel Lenses Made Therefrom
US5445275A (en) * 1994-06-08 1995-08-29 Lazy Pet Products, Inc. Full recovery reduced-volume packaging system
US5592697A (en) * 1995-04-18 1997-01-14 Young; Russell Waterproof pocket
US5874155A (en) * 1995-06-07 1999-02-23 American National Can Company Easy-opening flexible packaging laminates and packaging materials made therefrom
JP3154931B2 (en) * 1995-09-22 2001-04-09 凸版印刷株式会社 Embossed sheet, laminate using the same, and method of manufacturing the same
US5665456A (en) * 1995-12-06 1997-09-09 Sealed Air Corporation Heat-shrinkable flexible cushioning material and method of forming the same
US5709467A (en) * 1996-06-18 1998-01-20 Galliano, Ii; Carol J. Device and apparatus for mixing alginate
US5735395A (en) * 1996-06-28 1998-04-07 Lo; Luke Airtight garment hanging bag
US6077373A (en) * 1996-09-11 2000-06-20 Du Pont Canada Inc. Manufacture of multilayer polymer films
JP3624927B2 (en) * 1996-10-07 2005-03-02 セイコーエプソン株式会社 ink cartridge
US5971613A (en) * 1997-04-11 1999-10-26 Kapak Corp. Bag constructions having inwardly directed side seal portions
JP3001195B2 (en) * 1997-04-16 2000-01-24 光金属工業株式会社 Preservation method of cooked food and vacuum sealed storage container used for it
US5873217A (en) * 1997-05-09 1999-02-23 Smith; George E. Vacuum sealing methods and apparatus
US5881881A (en) * 1997-06-16 1999-03-16 Carrington; Thomas Evacuateable bag
JP3932610B2 (en) * 1997-07-23 2007-06-20 凸版印刷株式会社 Embossed decorative sheet
US5898113A (en) * 1997-07-30 1999-04-27 Bellaire Industries, Inc. Multi-ply material sealed container
US6030652A (en) * 1997-08-05 2000-02-29 Hanus; John Food bag featuring gusset opening, method of making the food bag, and method of using the food bag
US6029810A (en) * 1997-10-17 2000-02-29 Chen; Shu-Ling Dress bag and hanger assembly
US5893822A (en) * 1997-10-22 1999-04-13 Keystone Mfg. Co., Inc. System for vacuum evacuation and sealing of plastic bags
US6059457A (en) * 1998-01-02 2000-05-09 Com-Pac International, Inc. Evacuable storage bag with integral zipper seal
US6045264A (en) * 1998-01-29 2000-04-04 Miniea; Stephen H. Self-sealing, disposable storage bag
USD425786S (en) * 1998-05-04 2000-05-30 Voller Ronald L Multi ply reinforced dunnage bag and valve therefor
US6231234B1 (en) * 1998-05-13 2001-05-15 Tc Manufacturing Co., Inc. One piece snap closure for a plastic bag
US6231236B1 (en) * 1998-07-28 2001-05-15 Reynolds Consumer Products, Inc. Resealable package having venting structure and methods
ATE353764T1 (en) * 1998-12-24 2007-03-15 Seiko Epson Corp INK SAG FOR INK JET RECORDING APPARATUS AND PACKAGE FOR PACKAGING SUCH A SAG
DK1053945T3 (en) * 1999-05-21 2004-03-01 Aracaria Bv Handheld suction pump
US6202849B1 (en) * 1999-07-07 2001-03-20 David B. Graham Evacuatable rigid storage unit for storing compressible articles therein
US6357915B2 (en) * 1999-08-13 2002-03-19 New West Products, Inc. Storage bag with one-way air valve
US6227706B1 (en) * 2000-06-26 2001-05-08 Thoai S. Tran Two piece, compressible storage satchel for compressible articles
US20030070751A1 (en) * 2001-09-27 2003-04-17 Kevin Bergevin Method of manufacture for fluid handling polymeric barrier tube
US6799680B2 (en) * 2002-04-05 2004-10-05 The Holmes Group, Inc. Vacuum sealed containers
US20040000503A1 (en) * 2002-06-28 2004-01-01 Shah Ketan N. Recloseable storage bag with porous evacuation portal
US6932509B2 (en) * 2002-06-28 2005-08-23 S. C. Johnson Home Storage, Inc. Recloseable storage bag with secondary closure members
US6983845B2 (en) * 2002-06-28 2006-01-10 S.C. Johnson Home Storage, Inc. Recloseable storage bag with user-deformable air vent
US20040007494A1 (en) * 2002-07-15 2004-01-15 Popeil Ronald M. Apparatus and method to more effectively vacuum package foods and other objects

Also Published As

Publication number Publication date
KR20050116829A (en) 2005-12-13
JP2006521256A (en) 2006-09-21
EP1610936A2 (en) 2006-01-04
AU2004223876A1 (en) 2004-10-07
US7517484B2 (en) 2009-04-14
WO2004085128A3 (en) 2005-07-21
US20040256050A1 (en) 2004-12-23
MXPA05010187A (en) 2005-11-08
TW200508014A (en) 2005-03-01
WO2004085128A2 (en) 2004-10-07

Similar Documents

Publication Publication Date Title
CA2519507A1 (en) Forming evacuation channels during single and multi-layer extrusion process
US7022058B2 (en) Method for preparing air channel-equipped film for use in vacuum package
US5874155A (en) Easy-opening flexible packaging laminates and packaging materials made therefrom
US20060072860A1 (en) Multi-layer film for forming a vacuum packaging bag and method of manufacture
EP1419046B1 (en) Integrated process for making inflatable article
EP0089680B1 (en) Reclosable container having anti-slip flanges facilitating opening and handling
AU2002234998A1 (en) Method for preparing air channel-equipped film for use in vacuum package
AU5178500A (en) Multi-layered freezer storage bag
US20180264796A1 (en) Gas filled crosslaminate and method for its manufacture
JPS6043301B2 (en) Multilayer laminated film and its manufacturing method
CA2121165C (en) Production of cross-laminated film from tube
WO2006076917A1 (en) A stretch hood packaging
CN1445084A (en) Method for manufacturing multiplayer composite packaging material of keeping liquid foodstuffs fresh
CA1297648C (en) Method and apparatus for extruding a fastening profile onto a traveling film web
JP2002211584A (en) Packaging bag
CN1764525A (en) Forming evacuation channels during single and multi-layer extrusion process
WO1998052751A1 (en) A method of producing a well-integrated packaging material comprising layers of aluminium and plastic

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued