CA2548629A1 - Medium chain peroxycarboxylic acid compositions - Google Patents

Medium chain peroxycarboxylic acid compositions Download PDF

Info

Publication number
CA2548629A1
CA2548629A1 CA002548629A CA2548629A CA2548629A1 CA 2548629 A1 CA2548629 A1 CA 2548629A1 CA 002548629 A CA002548629 A CA 002548629A CA 2548629 A CA2548629 A CA 2548629A CA 2548629 A1 CA2548629 A1 CA 2548629A1
Authority
CA
Canada
Prior art keywords
acid
composition
medium chain
carboxylic acid
chain peroxycarboxylic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002548629A
Other languages
French (fr)
Other versions
CA2548629C (en
Inventor
Victor F. Man
Steven E. Lentsch
Joshua P. Magnuson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ecolab Inc
Original Assignee
Ecolab Inc.
Victor F. Man
Steven E. Lentsch
Joshua P. Magnuson
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/754,426 external-priority patent/US7771737B2/en
Application filed by Ecolab Inc., Victor F. Man, Steven E. Lentsch, Joshua P. Magnuson filed Critical Ecolab Inc.
Publication of CA2548629A1 publication Critical patent/CA2548629A1/en
Application granted granted Critical
Publication of CA2548629C publication Critical patent/CA2548629C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/18Liquid substances or solutions comprising solids or dissolved gases
    • A61L2/186Peroxide solutions
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/16Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing the group; Thio analogues thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3454Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
    • A23L3/3463Organic compounds; Microorganisms; Enzymes
    • A23L3/3481Organic compounds containing oxygen
    • A23L3/3508Organic compounds containing oxygen containing carboxyl groups
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3454Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
    • A23L3/358Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/18Liquid substances or solutions comprising solids or dissolved gases
    • A61L2/183Ozone dissolved in a liquid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/22Phase substances, e.g. smokes, aerosols or sprayed or atomised substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/23Solid substances, e.g. granules, powders, blocks, tablets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/23Solid substances, e.g. granules, powders, blocks, tablets
    • A61L2/235Solid substances, e.g. granules, powders, blocks, tablets cellular, porous or foamed
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/18Aseptic storing means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • A61L2202/23Containers, e.g. vials, bottles, syringes, mail
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • A61L2202/24Medical instruments, e.g. endoscopes, catheters, sharps

Abstract

The present invention relates to compositions including medium chain peroxycarboxylic acid, methods for making these compositions, and methods for reducing the population of a microorganism. The compositions can include advantageously high levels of the medium chain peroxycarboxylic acid, can be readily made, and/or can exhibit reduced odor.

Description

MEDIUM CHAIN PEROXYCARBOXYLIC ACID COMPOSITIONS
Field of the Invention The present invention relates to compositions including medium chain peroxycarboxylic acid, methods for making these compositions, and methods for reducing the population of a microorganism. The compositions can include advantageously high levels of the medium chain peroxycarboxylic acid, can be readily made, and/or can exhibit reduced odor.
Background of the Invention Conventional peroxycarboxylic acid compositions typically include short chain peroxycarboxylic acids or mixtures of short chain peroxycarboxylic acids and medium chain peroxycarboxylic acids (see, e.g., U.S. Patent Nos. 5,200,189, 5,314,687, 5,409,713, 5,437,868, 5,489,434, 6,674,538, 6,010,729, 6,111,963, and 6,514,556).
Typically, conventional mixed peroxycarboxylic acid compositions include large amounts of short chain carboxylic acid and only limited amounts of medium chain peroxycarboxylic acid relative to the corresponding medium chain peroxycarboxylic acid.
Ongoing research efforts have strived for improved peroxycarboxylic acid compositions. In particular, these efforts have strived for compositions that have increased levels of medium chain peroxycarboxylic acid, that can be readily made, or that have reduced odor compared to conventional compositions including short chain peroxycarboxylic and carboxylic acids.
Summary of the Invention The present invention relates to compositions including medium chain peroxycarboxylic acid, methods for malting these compositions, and methods for reducing the population of a microorganism. In certain embodiments, the compositions can include advantageously high levels of the medium chain peroxycarboxylic acid, can be readily made, and/or can exhibit reduced odor.
In an embodiment, the present compositions can include medium chain peroxycarboxylic .acid, medium chain carboxylic acid, carrier, and solubilizer. In certain embodiments, the present compositions include about 2 or more parts of medium chain peroxycarboxylic acid for each 7 parts of medium chain carboxylic acid;
about 2 or more parts of medium chain peroxycarboxylic acid for each 5 parts of medium chain carboxylic acid; about 2 or more parts of medium chain peroxycarboxylic acid for each 4 parts of medium chain carboxylic acid; or about 2 parts of medium chain peroxycarboxylic acid for each 3 parts of medium chain carboxylic acid.
In an embodiment, the solubilizer includes solvent, surfactant, or mixture thereof. In an embodiment, the surfactant solubilizer includes a microemulsion forming surfactant, e.g., an anionic surfactant. In an embodiment, the composition includes a microemulsion. In an embodiment, the solubilizer includes polyalkylene oxide, capped polyalkylene oxide, nonionic surfactant, anionic surfactant, or mixture thereof. In an embodiment, the solvent solubilizer includes polyalkylene oxide, capped polyalkylene oxide, nonionic surfactant, or mixture thereof.
In an embodiment, the present compositions include no, only insignificant, or relatively small amounts of short chain peroxycarboxylic acid, short chain carboxylic acid, or mixture thereof. For example, in an embodiment, the composition can be substantially free of added short chain carboxylic acid, short chain peroxycarboxylic acid, or mixture thereof. For example, in an embodiment, the composition can include short chain carboxylic acid, short chain peroxycarboxylic acid, or mixture thereof at a level insufficient to solubilize medium chain peroxycarboxylic acid. For example, in an embodiment, the composition can include short chain carboxylic acid, short chain peroxycarboxylic acid, or mixture thereof at a level insufficient to cause objectionable odor. For example, in an embodiment, the composition can include about 1 or more parts of medium chain peroxycarboxylic acid for each 8 parts of short chain carboxylic acid, short chain peroxycarboxylic acid, or mixture thereof.
In an embodiment, the composition also includes oxidizing agent, inorganic acid, stabilizing agent, another adjuvant or additive, or mixture thereof.
In an embodiment, the present invention includes'a method of making a medium chain peroxycarboxylic acid composition. The method can include reacting medimn chain carboxylic acid and oxidizing agent in the presence of carrier, solubilizer, acidulant, stabilizing agent, or mixture thereof. The method can form advantageously high levels of medium chain peroxycarboxylic acids in advantageously
2 short times. For example, in an embodiment, the present method includes converting 20% or more of the medium chain carboxylic acid to medium chain peroxycarboxylic acid in about 24 or fewer hours. For example, in an embodiment, the present method includes converting about 25% or more of the medium chain carboxylic acid to medium chain peroxycarboxylic acid in about 24 or fewer hours. For example, in an embodiment, the present method includes converting about 30% or more of the medium chain carboxylic acid to medium chain peroxycarboxylic acid in about 24 or fewer hours. For example, in an embodiment, the present method includes converting about 35% or more of the medium chain carboxylic acid to medium chain peroxycarboxylic acid in about 24 or fewer hours. For example, in an embodiment, the present method includes converting about 40% of the medimn chain carboxylic acid to medium chain peroxycarboxylic acid in about 24 or fewer hours.
In an embodiment, the present invention includes a method of using a medium chain peroxycarboxylic acid composition. The method can include contacting an object with the present composition (e.g., a use composition) and can result in reducing the population of one or more microorganisms on the object.
Brief Description of the Figures Figure 1 is a diagram of a beverage plant, including a cold aseptic filling plant, in which either carbonated or non-carbonated beverages can be prepared and bottled.
Detailed Description of the Invention Definitions As used herein, the phrase "medium chain carboxylic acid" refers to a carboxylic acid that: 1) has reduced or is lacking odor compared to the bad, pungent, or acrid odor associated with an equal concentration of small chain carboxylic acid, and 2) has a critical micellar concentration greater than 1 mM in aqueous buffers at neutral pH. Medium chain carboxylic acids exclude carboxylic acids that are infinitely soluble in or miscible with water at 20 °C. Medium chain carboxylic acids include carboxylic acids with boiling points (at 760 mm Hg pressure) of 180 to 300 °C. In an embodiment, medium chain carboxylic acids include carboxylic acids with boiling points (at 760 mm Hg pressure) of 200 to 300 °C. In an embodiment, medium chain carboxylic acids include those with solubility in water of less than 1 g/L at 25 °C.
Examples of medium chain carboxylic acids include pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, and dodecanoic acid.
As used herein, the phrase "medium chain peroxycarboxylic acid" refers to the peroxycarboxylic acid form of a medium chain carboxylic acid.
As used herein, the phrase "short chain carboxylic acid" refers to a carboxylic acid that: 1) has characteristic bad, pungent, or acrid odor, and 2) is infinitely soluble in or miscible with water at 20 °C. Examples of short chain carboxylic acids include formic acid, acetic acid, propionic acid, and butyric acid.
As used herein, the phrase "short chain peroxycarboxylic acid" refers to the peroxycarboxylic acid form of a short chain carboxylic acid.
As used herein, the term "solubilizer" refers to a component of the present compositions to that makes soluble or increases the solubility in a carrier (e.g., water) of the medium chain carboxylic acid, medium chain peroxycarboxylic acid, or mixture thereof. For example, in an embodiment, the solubilizer can keep a composition including medium chain carboxylic acid, medium chain peroxycarboxylic acid, or mixture thereof in solution or can keep the composition remain finely and evenly dispersed under ordinary storage conditions without forming a separate layer.
The solubilizer can, for example, solubilize a medium chain carboxylic acid to an extent sufficient to allow it to react with an oxidizing agent, such as hydrogen peroxide. A
solubilizer can be identified by a test that measures phase separation under ordinary storage conditions, such as room temperature, 100 °F, or 60 °C.
As used herein, the term "solubilizer" does not include short chain carboxylic acids.
As used herein, the term "microemulsion" refers to a thermodynamically stable dispersion of one liquid phase into another stabilized by an interfacial film of surfactant. The dispersion can be oil-in-water or water-in-oil. Microemulsions are typically clear solutions when the droplet diameter is approximately 100 manometers or less. In an embodiment, the present microemulsion composition is a shear thinning viscoelastic gel or liquid that has a blue tyndall appearance.
As used herein, the phrases "blue tyndall appearance" or "blue tyndall" refer to a bluish hue due to scattering of blue light or the blue region of the light spectrum.

As used herein, the phrases "viscoelastic gel" and "viscoelastic liquid" refer to a liquid composition that exhibits both viscous and elastic characteristics or responses, which is indicative of long range order or structure.
As used herein, a composition or combination "consisting essentially" of certain ingredients refers to a composition including those ingredients and lacking any ingredient that materially affects the basic and novel characteristics of the composition or method. The phrase "consisting essentially of excludes from the claimed compositions and methods short chain carboxylic acids, short chain peroxycarboxylic acids, or mixtures thereof; unless such an ingredient is specifically listed after the phrase.
As used herein, a composition or combination "substantially free off' one or more ingredients refers to a composition that includes none of that ingredient or that includes only trace or incidental amounts of that ingredient. Trace or incidental amounts can include the amount of the ingredient found in another ingredient as an impurity or that is generated in a minor side reaction during formation or degradation of the medium chain peroxycarboxylic acid.
As used herein, the phrase "a level insufficient to solubilize" refers to a concentration of an ingredient at which the ingredient is not sufficient to solubilize an insoluble material and to keep the composition substantially in one phase.
As used herein, the phrases "objectionable odor", "offensive odor", or "malodor" refer to a sharp, pungent, or acrid odor or atmospheric enviromnent from which a typical person withdraws if they are able to. Hedonic tone provides a measure of the degree to which an odor is pleasant or unpleasant. An "objectionable odor", "offensive odor", or "malodor" has an hedonic tone rating it as unpleasant as or more unpleasant than a solution of 5 wt-% acetic acid, propionic acid, butyric acid, or mixtures thereof.
As used herein, the term "microorganism" refers to any noncellular or unicellular (including colonial) organism. Microorganisms include all prokaryotes.
Microorganisms include bacteria (including cyanobacteria), lichens, fungi, protozoa, virinos, viroids, viruses, phages, and some algae. As used herein, the term "microbe" is synonymous with microorganism.

As used herein, the term "object" refers to a something material that can be perceived by the senses, directly andlor indirectly. Objects include a surface, including a hard surface (such as glass, ceramics, metal, natural and synthetic rock, wood, and polymeric), an elastomer or plastic, woven and non-woven substrates, a food processing surface, a health care surface, and the like. Objects also include a food product (and its surfaces); a body or stream of water or a gas (e.g., an air stream); and surfaces and articles employed in hospitality and industrial sectors. Objects also include the body or part of the body of a living creature, e.g., a hand.
As used herein, the phrase "food product" includes any food substance that might require treatment with an antimicrobial agent or composition and that is edible with or without further preparation. Food products include meat (e.g. red meat and pork), seafood, poultry, fruits and vegetables, eggs, living eggs, egg products, ready to eat food, wheat, seeds, roots, tubers, leafs, stems, corms, flowers, sprouts, seasonings, or a combination thereof. The term "produce" refers to food products such as fruits and vegetables and plants or plant-derived materials that are typically sold uncooked and, often, unpaclcaged, and that can sometimes be eaten raw.
As used herein, the phrase "plant product" includes any plant substance or plant-derived substance that might require treatment with an antimicrobial agent or composition. Plant products include seeds, nuts, nut meats, cut flowers, plants or crops grown or stored in a greenhouse, house plants, and the like. Plant products include many animal feeds.
As used herein, a processed fruit or vegetable refers to a fruit or vegetable that has been cut, chopped, sliced, peeled, ground, milled, irradiated, frozen, cooked (e.g., blanched, pasteurized), or homogenized. As used herein a fruit or vegetable that has been washed, colored, waxed, hydro-cooled, refrigerated, shelled, or had leaves, stems or husks removed is not processed.
As used herein, the phrase "meat product" refers to all forms of animal flesh, including the carcass, muscle, fat, organs, skin, bones and body fluids and like components that form the animal. Animal flesh includes the flesh of mammals, birds, fishes, reptiles, amphibians, snails, clams, crustaceans, other edible species such as lobster, crab, etc., or other forms of seafood. The forms of animal flesh include, for example, the whole or part of animal flesh, alone or in combination with other ingredients. Typical forms include, for example, processed meats such as cured meats, sectioned and formed products, minced products, finely chopped products, ground meat and products including ground meat, whole products, and the like.
As used herein the term "poultry" refers to all forms of any bird kept, harvested, or domesticated for meat or eggs, and including chicken, turkey, ostrich, game hen, squab, guinea fowl, pheasant, quail, duck, goose, emu, or the like and the eggs of these birds. Poultry includes whole, sectioned, processed, cooked or raw poultry, and encompasses all forms of poultry flesh, by-products, and side products. The flesh of poultry includes muscle, fat, organs, skin, bones and body fluids and like components that form the animal. Forms of animal flesh include, for example, the whole or part of animal flesh, alone or in combination with other ingredients. Typical forms include, for example, processed poultry meat, such as cured poultry meat, sectioned and formed products, minced products, finely chopped products and whole products.
As used herein, the phrase "poultry debris" refers to any debris, residue, material, dirt, offal, poultry part, poultry waste, poultry viscera, poultry organ, fragments or combinations of such materials, and the lilce removed from a poultry carcass or portion during processing and that enters a waste stream.
As used herein, the phrase "food processing surface" refers to a surface of a tool, a machine, equipment, a structure, a building, or the like that is employed as part of a food processing, preparation, or storage activity. Examples of food processing surfaces include surfaces of food processing or preparation equipment (e.g., slicing, camiing, or transport equipment, including flumes), of food processing wares (e.g., utensils, dishware, wash ware, and bar glasses), and of floors, walls, or fixtures of structures in which food processing occurs. Food processing surfaces are found and employed in food anti-spoilage air circulation systems, aseptic packaging sanitizing, food refrigeration and cooler cleaners and sanitizers, ware washing sanitizing, blancher cleaning and sanitizing, food packaging materials, cutting board additives, third-sink sanitizing, beverage chillers and warmers, meat chilling or scalding waters, autodish sanitizers, sanitizing gels, cooling towers, food processing antimicrobial garment sprays, and non-to-low-aqueous food preparation lubricants, oils, and rinse additives.

As used herein, the phrase "air streams" includes food anti-spoilage air circulation systems. Air streams also include air streams typically encountered in hospital, surgical, infirmity, birthing, mortuary, and clinical diagnosis rooms.
As used herein, the term "waters" includes food process or transport waters.
Food process or transport waters include produce transport waters (e.g., as found in flumes, pipe transports, cutters, slicers, blanchers, retort systems, washers, and the like), belt sprays for food transport lines, boot and hand-wash dip-pans, third-sink rinse waters, and the like. Waters also include domestic and recreational waters such as pools, spas, recreational flumes and water slides, fountains, and the like.
As used herein, the phrase "health care surface" refers to a surface of an instrument, a device, a cart, a cage, furniture, a structure, a building, or the like that is employed as part of a health care activity. Examples of health care surfaces include surfaces of medical or dental instruments, of medical or dental devices, of electronic apparatus employed for monitoring patient health, and of floors, walls, or fixtures of structures in which health care occurs. Health care surfaces are found in hospital, surgical, infirmity, birthing, mortuary, and clinical diagnosis rooms. These surfaces can be those typified as "hard surfaces" (such as walls, floors, bed-pans, etc.,), or fabric surfaces, e.g., knit, woven, and non-woven surfaces (such as surgical garments, draperies, bed linens, bandages, etc.,), or patient-care equipment (such as respirators, diagnostic equipment, shunts, body scopes, wheel chairs, beds, etc.,), or surgical and diagnostic equipment. Health care surfaces include articles and surfaces employed in animal health care.
As used herein, the term "instrument" refers to the various medical or dental instruments or devices that can benefit from cleaning with a stabilized composition according to the present invention.
As used herein, the phrases "medical instrument", "dental instrument", "medical device", "dental device", "medical equipment", or "dental equipment" refer to instruments, devices, tools, appliances, apparatus, and equipment used in medicine or dentistry. Such instruments, devices, and equipment can be cold sterilized, soaked or washed and then heat sterilized, or otherwise benefit from cleaning in a composition of the present invention. These various instruments, devices and equipment include, but are not limited to: diagnostic instruments, trays, pans, holders, racks, forceps, scissors, shears, saws (e.g. bone saws and their blades), hemostats, knives, chisels, rongeurs, files, nippers, drills, drill bits, rasps, burrs, spreaders, breakers, elevators, clamps, needle holders, carriers, clips, hooks, gouges, curettes, retractors, straightener, punches, extractors, scoops, keratomes, spatulas, expressors, trocars, dilators, cages, glassware, tubing, catheters, cannulas, plugs, stems, scopes (e.g., endoscopes, stethoscopes, and axthoscopes) and related equipment, and the like, or combinations thereof.
As used herein, "agricultural" or "veterinary" objects or surfaces include animal feeds, animal watering stations and enclosures, animal quarters, animal veterinarian clinics (e.g. surgical or treatment areas), animal surgical areas, and the like.
As used herein, "residential" or "institutional" objects or surfaces include those found in structures inhabited by humans. Such objects or surfaces include bathroom surfaces, drains, drain surfaces, kitchen surfaces, and the like.
As used herein, the phrase "densified fluid" refers to a fluid in a critical, subcritical, near critical, or supercritical state. The fluid is generally a gas at standard conditions of one atmosphere pressure and 0 °C. As used herein, the phrase "supercritical fluid" refers to a dense gas that is maintained above its critical temperature, the temperature above which it cannot be liquefied by pressure.
Supercritical fluids are typically less viscous and diffuse more readily than liquids. In an embodiment, a densified fluid is at, above, or slightly below its critical point. As used herein, the phrase "critical point" is the transition point at which the liquid and gaseous states of a substance merge into each other and represents the combination of the critical temperature and critical pressure for a substance. The critical pressure is a pressure just sufficient to cause the appearance of two phases at the critical temperature. Critical temperatures and pressures have been reported for numerous organic and inorganic compounds and several elements.
As used herein, the terms "near critical" fluid or "subcritical" fluid refer to a fluid material that is typically below the critical temperature of a supercritical fluid, but remains in a fluid state and denser than a typical gas due to the effects of pressure on the fluid. In an embodiment, a subcritical or near critical fluid is at a temperature and/or pressure just below its critical point. For example, a subcritical or near critical fluid can be below its critical temperature but above its critical pressure, below its critical pressure but above its critical temperature, or below both its critical temperature and pressure. The terms near critical and subcritical do not refer to materials in their ordinary gaseous or liquid state.
As used herein, weight percent (wt-%), percent by weight, % by weight, and the like are synonyms that refer to the concentration of a substance as the weight of that substance divided by the weight of the composition and multiplied by 100.
Unless otherwise specified, the quantity of an ingredient refers to the quantity of active ingredient.
As used herein, the terms "mixed" or "mixture" when used relating to "peroxycarboxylic acid composition" or "peroxycarboxylic acids" refer to a composition or mixture including more than one peroxycarboxylic acid, such as a composition or mixture including peroxyacetic acid and peroxyoctanoic acid.
As used herein, the term "about" modifying the quantity of an ingredient in the compositions of the invention or employed in the methods of the invention refers to variation in the numerical quantity that can occur, for example, through typical measuring and liquid handling procedures used for making concentrates or use solutions in the real world; through inadvertent error in these procedures;
through differences in the manufacture, source, or purity of the ingredients employed to make the compositions or carry out the methods; and the like. The term about also encompasses amounts that differ due to different equilibrium conditions for a composition resulting from a particular initial mixture. Whether or not modified by the term "about", the claims include equivalents to the quantities.
For the purpose of this patent application, successful microbial reduction is achieved when the microbial populations are reduced by at least about 50%, or by significantly more than is achieved by a wash with water. Larger reductions in microbial population provide greater levels of protection.
As used herein, the term "sanitizes" refers to an agent that reduces the number of bacterial contaminants to safe levels as judged by public health requirements. In an embodiment, sa~iitizers for use in this invention will provide at least a 99.999%
reduction (5-log order reduction). These reductions can be evaluated using a procedure set out in Geynnicidal ahd DetergefZt Sanitizing Action of Disi~fectahts, Official Methods of Analysis of the Association of Official Analytical Chemists, paragraph 960.09 and applicable sections, 15th Edition, 1990 (EPA Guideline 91-2,).
According to this reference a sautizer should provide a 99.999% reduction (5-log order reduction) within 30 seconds at room temperature, 252°C, against several test organisms.
As used herein, the term "disinfectant" refers to an agent that kills all vegetative cells including most recognized pathogenic microorganisms, using the procedure described in A.O.A. C. Use Dilution Methods, Official Methods of Analysis of the Association of Official Analytical Chemists, paragraph 955.14 and applicable sections, 15th Edition, 1990 (EPA Guideline 91-2).
As used in this invention, the term "sporicide" refers to a physical or chemical agent or process having the ability to cause greater than a 90% reduction (1-log order reduction) in the population of spores of Bacillus cep°eus or Bacillus subtilis within 10 seconds at 60° C. In certain embodiments, the sporicidal compositions of the invention provide greater than a 99% reduction (2-log order reduction), greater than a 99.99%
reduction (4-log order reduction), or greater than a 99.999% reduction (5-log order reduction) in such population within 10 seconds at 60° C.
Differentiation of antimicrobial "-cidal" or "-static" activity, the definitions which describe the degree of efficacy, and the official laboratory protocols for measuring this efficacy are considerations for understanding the relevance of antimicrobial agents and compositions. Antimicrobial compositions can effect two kinds of microbial cell damage. The first is a lethal, irreversible action resulting in complete microbial cell destruction or incapacitation. The second type of cell damage is reversible, such that if the organism is rendered free of the agent, it can again multiply. The former is termed microbiocidal and the later, microbistatic. A
sanitizer and a disinfectant are, by definition, agents which provide antimicrobial or microbiocidal activity. In contrast, a preservative is generally described as an inhibitor or microbistatic composition.
Medium Chain Peroxycarboxylic Acid Antimicrobial Compositions The present invention includes medium chain peroxycarboxylic acid compositions. The present medium chain peroxycarboxylic acid compositions can include increased levels of medium chain peroxycarboxylic acid compared to conventional peroxycarboxylic acid compositions. The inventive compositions can include medium chain peroxycarboxylic acid and a solubilizer. The solubilizer can increase or maintain the solubility of the medium chain peroxycarboxylic acid.
The present medium chain peroxycarboxylic acid compositions can include a microemulsion or a surfactant that can form a microemulsion. The present medium chain peroxycarboxylic acid compositions need not include substantial amounts of short chain carboxylic acid, short chain peroxycarboXylic acid, or mixture thereof. It is believed that, in conventional mixed peroxycarboxylic acid compositions, the short chain carboxylic acid, short chain peroxycarboxylic acid, or mixture thereof can solubilize medium chain peroxycarboxylic acid.
In an embodiment, the present compositions include medium chain peroxycarboxylic acid. These) compositions can also include medium chain carboxylic acid. Such compositions can include advantageously high levels of medium chain peroxycarboxylic acid. In an embodiment, the present compositions include about 2 or more parts by weight of medium chain peroxycarboxylic acid for each 7 parts by weight of medium chain carboxylic acid. In an embodiment, the present compositions include about 2 or more parts by weight of medium chain peroxycarboxylic acid for each 6 parts by weight of medium chain carboxylic acid. In an embodiment, the present compositions include about 2 or more parts by weight of medium chain peroxycarboxylic acid for each 5 parts by weight of medium chain carboxylic acid. In an embodiment, the present compositions include about 2 or more parts by weight of medium chain peroxycarboxylic acid for each 4 parts by weight of medium chain carboxylic acid. In an embodiment, the present compositions include about 2 parts by weight of medium chain peroxycarboxylic acid for each 3 parts by weight of medium chain carboxylic acid.
In an embodiment, the present compositions include medium chain peroxycarboxylic acid and solubilizer. The solubilizer can include a solvent, a surfactant, or a mixture thereof. Suitable solvents include any of a variety of solvents that solubilize and do not significantly degrade the medium chain peroxycarboxylic acid. In certain embodiments, suitable solvents include polyalkylene oxide, capped polyallcylene oxide, mixtures thereof, or the like. Suitable solvents include nonionic surfactant, such as alkoxylated surfactant. Suitable alkoxylated surfactants include, for example, EO/PO copolymer, capped EO/PO copolymer, alcohol alkoxylate, capped alcohol allcoxylate, mixtures thereof, or the like. When employed as a solvent a surfactant, such as a nonionic surfactant, can be at concentrations higher than those conventionally employed.
The solubilizer can include surfactant (e.g., microemulsion forming surfactant).
Suitable surfactants include anionic surfactant, nonionic surfactant, cationic surfactant, amphoteric surfactant, zwitterionic surfactant, mixtures thereof, or the like.
The solubilizer can include a microemulsion forming surfactant. Suitable microemulsion forming surfactants include anionic surfactant, cationic surfactant, amphoteric surfactant, zwitterionic surfactant, mixtures thereof, or the like. Suitable microemulsion forming surfactants include anionic surfactants, such as sulfate surfactant, sulfonate surfactant, phosphate surfactant (phosphate ester surfactant), and carboxylate surfactant, mixtures thereof, or the like.
In an embodiment, the present composition need not include substantial amounts of short chain peroxycarboxylic acid. For example, the present compositions can be free of added short chain peroxycarboxylic acid. As used herein, free of added material refers to a composition that includes the material only as a incidental or trace quantity found, for example, as an ingredient of or impurity in another named ingredient or incidentally generated from a minor side reaction.
In an embodiment, the present composition includes only relatively small amounts of short chain peroxycarboxylic acid. For example, the present composition can include about 1 or more parts of medium chain peroxycarboxylic acid for each 8 parts of short chain carboxylic acid, short chain peroxycarboxylic acid, or mixture thereof. For example, the present composition can include short chain peroxycarboxylic acid at a level insufficient to cause odor offensive to a typical person.
In certain embodiments, the present composition does not include substantial amounts of peroxyacetic acid, is free of added peroxyacetic acid, includes about 1 or more parts of medium chain peroxycarboxylic acid for each 8 parts of peroxyacetic acid, or includes peroxyacetic acid at a level insufficient to cause odor offensive to a typical person.
In an embodiment, the present composition need not include substantial amounts of short chain carboxylic acid. For example, the present compositions can be free of added short chain carboxylic acid. In an embodiment, the present composition includes only relatively small amounts of short chain carboxylic acid. By way of further example, the present composition can include about 1 or more parts of medium chain peroxycarboxylic acid for each 8 parts of short chain carboxylic acid.
For example, the present composition can include short chain carboxylic acid at a level insufficient to cause odor offensive to a typical person.
In certain embodiments, the present composition does not include substantial amounts of acetic acid, is free of added acetic acid, includes about 1 or more parts of medium chain peroxycarboxylic acid for each 8 parts of acetic acid, or includes acetic acid at a level insufficient to cause odor offensive to a typical person. In certain embodiments, the present compositions include, for example, less than 10 wt-%, less than less than 5 wt-%, less than 2 wt-%, or less than 1 wt-% acetic acid. In certain embodiments, the present use compositions include, for example, less than 40 ppm, less than 20 ppm, less than 10 ppm, or less than 5 ppm acetic acid.
In an embodiment, the present composition need not include substantial amounts of short chain peroxycarboxylic acid, short chain carboxylic acid, or mixture thereof. For example, the present compositions can be free of added short chain peroxycarboxylic acid, short chain carboxylic acid, or mixture thereof. For example, the present composition can include short chain carboxylic acid, short chain peroxycarboxylic acid, or mixture thereof at a level insufficient to cause odor offensive to a typical person. In certain embodiments, the present composition does not include substantial amounts of acetic acid, peroxyacetic acid, or mixtures thereof; is free of added acetic acid, peroxyacetic acid, or mixtures thereof; includes about 1 or more parts of medium chain peroxycarboxylic acid for each 8 parts of acetic acid, peroxyacetic acid, or mixtures thereof; or includes acetic acid, peroxyacetic acid, or mixtures thereof at a level insufficient to cause odor offensive to a typical person.
In an embodiment, the present composition includes about 1 or more parts of medium chain peroxycarboxylic acid for each 8 parts of short chain carboxylic acid, short chain peroxycarboxylic acid, or mixture thereof. In an embodiment, the present composition includes about 1 or more parts of medium chain peroxycarboxylic acid for each 7 parts of short chain carboxylic acid, short chain peroxycarboxylic acid, or mixture thereof. In an embodiment, the present composition includes about 1 or more parts of medium chain peroxycarboxylic acid for each 6 parts of short chain carboxylic acid, short chain peroxycarboxylic acid, or mixture thereof. In an embodiment, the present composition includes about 1 or more parts of medium chain peroxycarboxylic acid for each 5 parts of short chain carboxylic acid, short chain peroxycarboxylic acid, or mixture thereof. In an embodiment, the present composition includes about 1 or more parts of medium chain peroxycarboxylic acid for each 4 parts of short chain carboxylic acid, short chain peroxycarboxylic acid, or mixture thereof. In an embodiment, the present composition includes about 1 or more parts of medium chain peroxycarboxylic acid for each 3 parts of short chain carboxylic acid, short chain peroxycarboxylic acid, or mixture thereof. In an embodiment, the present composition includes about 1 or more parts of medium chain peroxycarboxylic acid for each 2 parts of short chain carboxylic acid, short chain peroxycarboxylic acid, or mixture thereof.
In an embodiment, the present composition includes about 1 or more parts of medium chain peroxycarboxylic acid for each 1 part of short chain carboxylic acid, short chain peroxycarboxylic acid, or mixture thereof.
In an embodiment, the present composition has an odor less unpleasant than (e.g., as measured by an hedonic tone rating) than 5, 4, 3, 2, or 1 wt-%
acetic acid in water. In an embodiment, the present composition has an odor less unpleasant than (e.g., as measured by an hedonic tone rating) than 5 wt-% acetic acid in water. In an embodiment, the present composition has an odor less unpleasant than (e.g., as measured by an hedonic tone rating) than 4 wt-% acetic acid in water. In an embodiment, the present composition has an odor less unpleasant than (e.g., as measured by an hedonic tone rating) than 3 wt-% acetic acid in water. In an embodiment, the present composition has an odor less unpleasant than (e.g., as measured by an hedonic tone rating) than 2 wt-% acetic acid in water. In an embodiment, the present composition has an odor with an odor less unpleasant than (e.g., as measured by an hedonic tone rating) than 1 wt-% acetic acid in water.
In certain embodiments, the present composition includes one or more (e.g., at least one) of oxidizing agent, acidulant, stabilizing agent, mixtures thereof, or the like.
The present composition can include any of a variety of oxidizing agents, for example, hydrogen peroxide. The oxidizing agent can be effective to convert a medium chain carboxylic acid to a medium chain peroxycarboxylic acid. The oxidizing agent can also have antimicrobial activity, although it may not be present at a concentration sufficient to exhibit such activity. The present composition can include any of a variety of acidulants, for example, an inorganic acid. The acidulant can be effective to bring the pH of the present concentrate composition to less than 1, or to bring the pH
of the present use composition to about 5 or below, about 4 or below, or about 3 or below.
The acidulant can augment the antimicrobial activity of the present composition. The present composition can include any of a variety of stabilizing agents, for example, sequestrant, for example, phosphonate sequestrant. The sequestrant can be effective to stabilize the peroxycarboxylic acid.
In an embodiment, the present composition exhibits advantageous stability of the peroxycarboxylic acid. It is believed that in approximately one year at ambient conditions or room temperature (or 1 week at 60 °C) the amount of peroxycarboxylic acid in the compositions can be about 80% or more, about 85 % or more, about 90% or more, or about 95% or more of the initial values or use composition levels.
Such aged compositions are included in the scope of the present invention.
In an embodiment, the present composition exhibits advantageous efficacy compared to other antimicrobial compositions at the same level of active. In an embodiment, the present composition has reduced or no volatile organic compounds compared to conventional peroxycarboxylic acid compositions. In an embodiment, the present composition has a higher flash point compared to conventional peroxycarboxylic acid compositions. In an embodiment, the present composition exhibits improved operator or user safety compared to conventional peroxycarboxylic acid compositions. In an embodiment, the present composition exhibits improved storage or transportation safety compared to conventional peroxycarboxylic acid compositions.
In certain embodiments, the present composition includes about 0.0005 to about 5 wt-% medium chain peroxycarboxylic acid, about 0.3 to about 7 wt-% medium chain peroxycarboxylic acid, about 0.5 to about 5 wt-% medium chain peroxycarboxylic acid, about 0.5 to about 4 wt-% medium chain peroxycarboxylic acid, about 0.8 to about 3 wt-% medium chain peroxycarboxylic acid, about 1 to about 3 wt-% medium chain peroxycarboxylic acid, or about 1 to about 2 wt-% medium chain peroxycarboxylic acid. The composition can include any of these ranges or amounts not modified by about.

In certain embodiments, the present composition includes about 0.001 to about 8 wt-% medium chain carboxylic acid, about 1 to about 10 wt-% medium chain carboxylic acid, about 1 to about 8 tut-% medium chain carboxylic acid, about 1.5 to about 6 wt-% medium chain carboxylic acid, about 2 to about 8 wt-% medium chain carboxylic acid, about 2 to about 6 wt-% medium chain carboxylic acid, about 2 to about 4 wt-% medium chain carboxylic acid, about 2.5 to about 5 wt-% medium chain carboxylic acid, about 3 to about 6 wt-% medium chain carboxylic acid, or about 3 to about 5 wt-% medium chain carboxylic acid. The composition can include any of these ranges or amounts not modified by about.
In certain embodiments, the present composition includes about 0 to about 98 wt-% carrier, about 0.001 to about 99.99 wt-% carrier, about 0.2 to about 60 wt-carrier, about 1 to about 98 wt-% carrier, about 5 to about 99.99 wt-%
carrier, about 5 to about 97 wt-% carrier, about 5 to about 90 wt-% carrier, about 5 to about 70 wt-carrier, about 5 to about 20 wt-% carrier, about 10 to about 90 wt-% carrier, about 10 to about 80 wt-% carrier, about 10 to about 50 wt-% carrier, about 10 to about 20 wt-%
carrier, about 15 to about 70 wt-% carrier, about 15 to about 80 wt-% carrier, about 20 to about 70 wt-% carrier, about 20 to about 50 wt-% carrier, about 20 to about 40 wt-carrier, about 20 to about 30 wt-% carrier, about 30 to about 75 wt-% carrier, about 30 to about 70 wt-% carrier, about 40 to about 99.99 wt-% carrier, about 40 to about 90 wt-% carrier, or about 60 to about 70 wt-% carrier. The composition can include any of these ranges or amounts not modified by about.
In certain embodiments, the present composition includes about 0.001 to about 80 wt-% solubilizer, about 0.001 to about 60 wt-% solubilizer, about 1 to about 80 wt solubilizer, about 1 to about 25 wt-% solubilizer, about 1 to about 20 wt solubilizer, about 2 to about 70 wt-% solubilizer, about 2 to about 60 wt-%
solubilizer, about 2 to about 20 wt-% solubilizer, about 3 to about 65 wt-% solubilizer, about 3 to about 15 wt-% solubilizer, about 4 to about 10 wt-% solubilizer, about 4 to about 20 wt-% solubilizer, about 5 to about 70 wt-% solubilizer, about 5 to about 60 wt-solubilizer, about 5 to about 20 wt-% solubilizer, about 10 to about 70 wt-%
solubilizer, about 10 to about 65 wt-% solubilizer, about 10 to about 20 wt-% solubilizer, about 20 to about 60 wt-% solubilizer, or about 40 to about 60 wt-% solubilizer. The composition can include any of these ranges or amounts not modified by about.

In certain embodiments, the present composition includes about 0.001 to about 30 wt-% oxidizing agent, about 0.001 to about 10 wt-% oxidizing agent, 0.002 to about wt-% oxidizing agent, about 2 to about 30 wt-% oxidizing agent, about 2 to about 25 wt-% oxidizing agent, about 2 to about 20 wt-% oxidizing agent, about 4 to about 20 5 wt-% oxidizing agent, about 5 to about 10 wt-% oxidizing agent, or about 6 to about 10 wt-% oxidizing agent. The composition can include any of these ranges or amounts not modified by about.
In certain embodiments, the present composition includes about 0.001 to about 50 wt-% acidulant, about 0.001 to about 30 wt-% acidulant, about 1 to about 50 wt-10 acidulant, about 1 to about 30 wt-% acidulant, about 2 to about 40 wt-%
acidulant, about 2 to about 10 wt-% acidulant, about 3 to about 40 wt-% acidulant, about S to about 40 wt-% acidulant, about 5 to about 25 wt-% acidulant, about 10 to about 40 wt-acidulant, about 10 to about 30 wt-% acidulant, about l5 to about 35 wt-%
acidulant, about 15 to about 30 wt-% acidulant, or about 40 to about 60 wt-% acidulant.
The composition can include any of these ranges or amounts not modified by about.
In certain embodiments, the present composition includes about 0.001 to about 50 wt-% stabilizing agent, about 0.001 to about 5 wt-% stabilizing agent, about 0.5 to about 50 wt-% stabilizing agent, about 1 to about 50 wt-% stabilizing agent, about 1 to about 30 wt-% stabilizing agent, about 1 to about 10 wt-% stabilizing agent, about 1 to about 5 wt-% stabilizing agent, about 1 to about 3 wt-% stabilizing agent, about 2 to about 10 wt-% stabilizing agent, about 2 to about 5 wt-% stabilizing agent, or about 5 to about 15 wt-% stabilizing agent. The composition can include any of these ranges or amounts not modified by about.
Compositions of Medium Chain Carboxylic Acids and/or Peroxycarboxylic Acids Peroxycarboxylic (or percarboxylic) acids generally have the formula R(C03H)", where, for example, R is an alkyl, arylalkyl, cycloalkyl, aromatic, or heterocyclic group, and n is one, two, or three, and named by prefixing the parent acid with peroxy. The R group can be saturated or unsaturated as well as substituted or unsubstituted. The composition and methods of the invention can employ medium chain peroxycarboxylic acids containing, for example, 6 to 12 carbon atoms.
For example, medium chain peroxycarboxylic (or percarboxylic) acids can have the formula R(C03H)", where R is a CS-C11 alkyl group, a CS-Cn cycloalkyl, a CS-Cl arylalkyl group, CS-C11 aryl group, or a CS-C11 heterocyclic group; and n is one, two, or three.
Peroxycarboxylic acids can be made by the direct action of an oxidizing agent on a carboxylic acid, by autoxidation of aldehydes, or from acid chlorides, and hydrides, or carboxylic anhydrides with hydrogen or sodium peroxide. In an embodiment, the medium chain percarboxylic acids can be made by the direct, acid catalyzed equilibrium action of hydrogen peroxide on the medium chain carboxylic acid. Scheme 1 illustrates an equilibrium between carboxylic acid and oxidizing agent (Ox) on one side and peroxycarboxylic acid and reduced oxidizing agent (Oxrea) on the other:
RCOOH + Ox ~ RCOOOH + Ox,.ed (1) Scheme 2 illustrates an embodiment of the equilibrium of scheme 1 in which the oxidizing agent is hydrogen peroxide on one side and peroxycarboxylic acid and water on the other:
RCOOH + HZO2 ~ RCOOOH + H20 (2) In conventional mixed peroxycarboxylic acid compositions it is believed that the equilibrium constant for the reaction illustrated in scheme 2 is about 2.5, which may reflect the equilibrium for acetic acid. Although not limiting to the present invention, it is believed that the present compositions have an equilibrium constant of about 4.
Peroxycarboxylic acids useful in the compositions and methods of the present invention include peroxypentanoic, peroxyhexanoic, peroxyheptanoic, peroxyoctanoic, peroxynonanoic, peroxydecanoic, peroxyundecanoic, peroxydodecanoic, peroxyascorbic, peroxyadipic, peroxycitric, peroxypimelic, or peroxysuberic acid, mixtures thereof, or the like. The alkyl backbones of these medium chain peroxycarboxylic acids can be straight chain, branched, or a mixture thereof.
Peroxy forms of carboxylic acids with more than one carboxylate moiety can have one or more (e.g., at least one) of the carboxyl moieties present as peroxycarboxyl moieties.
Peroxyoctanoic (or peroctanoic) acid is a peroxycarboxylic acid having the formula, for example, of n-peroxyoctanoic acid: CH3(CHZ)6COOOH. Peroxyoctanoic acid can be an acid with a straight chain alkyl moiety, an acid with a branched alkyl moiety, or a mixture thereof. Peroxyoctanoic acid is surface active and can assist in wetting hydrophobic surfaces, such as those of microbes.
The composition of the present invention can include a carboxylic acid.
Generally, carboxylic acids have the formula R-COOH wherein the R can represent any S number of different groups including aliphatic groups, alicyclic groups, aromatic groups, heterocyclic groups, all of which can be saturated or unsaturated as well as substituted or unsubstituted. Carboxylic acids can have one, two, three, or more carboxyl groups. The composition and methods of the invention typically employ medium chain carboxylic acids containing, for example, 6 to 12 carbon atoms.
For example, medium chain carboxylic acids can have the formula R-COOH in which R
can be a CS-CI1 alkyl group, a CS-C11 cycloalkyl group, a CS-C11 arylalkyl group, CS-C11 aryl group, or a CS-C11 heterocyclic group.
Suitable medium chain carboxylic acids include pentanoic, hexanoic, heptanoic, octanoic, nonanoic, decanoic, undecanoic, dodecanoic, ascorbic, citric, adipic, pimelic, and suberic acid. The alkyl backbones of these medium chain carboxylic acids can be straight chain, branched, or a mixture thereof. Carboxylic acids which are generally useful are those having one or two carboxyl groups where the R group is a primary alkyl chain having a length of C4 to C11. The primary alkyl chain is that carbon chain of the molecule having the greatest length of carbon atoms and directly appending carboxyl functional groups.
The present compositions and methods include a medium chain peroxycarboxylic acid. The medium chain peroxycarboxylic acid can include or be a C6 to C12 peroxycarboxylic acid. The C6 to C12 peroxycarboxylic acid can include or be peroxyhexanoic acid, peroxyheptanoic acid, peroxyoctanoic acid, peroxynonanoic acid, peroxydecanoic acid, peroxyundecanoic acid, peroxydodecanoic acid, or mixture thereof. The medium chain peroxycarboxylic acid can include or be a C7 to C12 peroxycarboxylic acid. The C7 to C 12 peroxycarboxylic acid can include or be peroxyheptanoic acid, peroxyoctanoic acid, peroxynonanoic acid, peroxydecanoic acid, peroxyundecanoic acid, peroxydodecanoic acid, or mixture thereof. The medium chain peroxycarboxylic acid can include or be a C6 to C10 peroxycarboxylic acid. The C6 to C 10 peroxycarboxylic acid can include or be peroxyhexanoic acid, peroxyheptanoic acid, peroxyoctanoic acid, peroxynonanoic acid, peroxydecanoic acid, or mixture thereof. The medium chain peroxycarboxylic acid can include or be a C8 to C10 peroxycarboxylic acid. The C8 to C10 peroxycarboxylic acid can include or be peroxyoctanoic acid, peroxynonanoic acid, peroxydecanoic acid, or mixture thereof. In certain embodiments, the medium chain peroxyoctanoic acid includes or is peroxyoctanoic acid, peroxydecanoic acid, or mixture thereof. In an embodiment, the medium chain peroxycarboxylic acid includes or is peroxyoctanoic 'acid.
In certain embodiments, the present composition includes about 0.0005 to about 5 wt-% medium chain peroxycarboxylic acid, about 0.3 to about 7 wt-% medium chain peroxycarboxylic acid, about 0.5 to about 5 wt-% medium chain peroxycarboxylic acid, about 0.5 to about 4 wt-% medium chain peroxycarboxylic acid, about 0.8 to about 3 wt-% medium chain peroxycarboxylic acid, about 1 to about 3 wt-% medium chain peroxycarboxylic acid, or about 1 to about 2 wt-% medium chain peroxycarboxylic acid. The composition can include any of these ranges or amounts not modified by about.
In an embodiment, the present compositions and methods include a medium chain carboxylic acid. The medium chain carboxylic acid can include or be a C6 to C 12 carboxylic acid. The C6 to C 12 carboxylic acid can include or be hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, or mixture thereof. The medium chain carboxylic acid can include or be a C7 to C 12 carboxylic acid. The C7 to C 12 carboxylic acid can include or be heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, or mixture thereof. The medium chain peroxycarboxylic acid can include or be a C6 to C10 carboxylic acid. The C6 to C10 carboxylic acid can include or be hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, or mixture thereof. The medium chain carboxylic acid can include or be a C8 to carboxylic acid. The C8 to C10 carboxylic acid can include or be octanoic acid, nonanoic acid, decanoic acid, or mixture thereof. In certain embodiments, the medium chain carboxylic acid includes or is octanoic acid, decanoic acid, or mixture thereof. In an embodiment, the medium chain carboxylic acid includes or is octanoic acid.
In certain embodiments, the present composition includes about 0.001 to about 8 wt-% medium chain carboxylic acid, about 1 to about 10 wt-% medium chain carboxylic acid, about 1 to about 8 wt-% medium chain carboxylic acid, about 1.5 to about 6 wt-% medium chain carboxylic acid, about 2 to about 8 wt-% medium chain carboxylic acid, about 2 to about 6 wt-% medium chain carboxylic acid, about 2 to about 4 wt-% medium chain carboxylic acid, about 2.5 to about 5 wt-% medium chain carboxylic acid, about 3 to about 6 wt-% medium chain carboxylic acid, or about 3 to about 5 wt-% medium chain carboxylic acid. The composition can include any of these ranges or amounts not modified by about.
In an embodiment, the compositions and methods include a medium chain peroxycarboxylic acid and the corresponding medium chain carboxylic acid.
In an embodiment, the present composition includes an amount of medium chain peroxycarboxylic acid effective for killing one or more (e.g., at least one) of the food-borne pathogenic bacteria associated with a food product, such as Salmonella typhirnur~ium, Salmonella javiafza, Campylobaoter jejuni, Liste~~ia naonocytogenes, and Escherichia coli 0157:H7, yeast, mold, and the like. In an embodiment, the present composition includes an amount of medium chain peroxycarboxylic acid effective for lcilling one or more (e.g., at least one) of the pathogenic bacteria associated with a health care surfaces and environments, such as Salmonella typhinzurium, Staphylococcus auy°eus, Salmonella chole~aesurws, Pseudomonas aef°uginosa, EscheraclZia coli, mycobacteria, yeast, mold, and the like. The compositions and methods of the present invention have activity against a wide variety of microorganisms such as Gram positive (for example, Listeria monocytogerZes or Staphylococcus au~eus) and Gram negative (for example, Esche~ichia coli or Pseudomonas aef°ugitzosa) bacteria, yeast, molds, bacterial spores, viruses, etc. The compositions and methods of the present invention, as described above, have activity against a wide variety of human pathogens. The present compositions and methods can kill a wide variety of microorganisms on a food processing surface, on the surface of a food product, in water used for washing or processing of food product, on a health care surface, or in a health care environment.
Embodiments of the present invention include medium chain carboxylic acid and medium chain peroxycarboxylic acid, and certain embodiments specifically exclude short chain peroxycarboxylic acid, short chain carboxylic acid, or mixture thereof. Nonetheless embodiments of the present compositions can include short chain peroxycarboxylic acid, short chain carboxylic acid, or mixture thereof. It is not intended that addition of short chain peroxycarboxylic acid, short chain carboxylic acid, or mixture thereof to a composition should necessarily take a composition outside the spirit and scope of the present invention.
Solubilizers The present compositions can include a solubilizer. The present invention relates to solubilizers for medium chain carboxylic acids and medium chain peroxycarboxylic acids. In an embodiment, the solubilizer can increase or maintain the solubility in the composition of the medium chain peroxycarboxylic acid or the medium chain carboxylic acid. The present compositions and methods can include any of a variety of suitable solubilizers. For example, the solubilizer can include a solvent, a surfactant, or a mixture thereof. In an embodiment, the surfactant can be employed as a solvent. In an embodiment, the surfactant can form a microemulsion. In an embodiment, the composition including the present solubilizer takes the form of a viscoelastic gel or liquid. In an embodiment, the solubilizer is effective to dissolve octanoic acid at a concentration of 5 wt-% in water. In an embodiment, the solubilizer is effective to dissolve octanoic acid at a concentration of 4 wt-% in water.
In an embodiment, the solubilizer is effective to dissolve octanoic acid at a concentration of 3 wt-% in water. In an embodiment, the solubilizer is effective to dissolve octanoic acid at a concentration of 2 wt-% in water.
In certain embodiments, the present composition includes about 0.001 to about 80 wt-% solubilizer, about 0.001 to about 60 wt-% solubilizer, about 1 to about 80 wt solubilizer, about 1 to about 25 wt-% solubilizer, about 1 to about 20 wt solubilizer, about 2 to about 70 wt-% solubilizer, about 2 to about 60 wt-%
solubilizer, about 2 to about 20 wt-% solubilizer, about 3 to about 65 wt-% solubilizer, about 3 to about 15 wt-% solubilizer, about 4 to about 10 wt-% solubilizer, about 4 to about 20 wt-% solubilizer, about 5 to about 70 wt-% solubilizer, about 5 to about 60 wt-solubilizer, about 5 to about 20 wt-% solubilizer, about 10 to about 70 wt-%
solubilizer, about 10 to about 65 wt-% solubilizer, about 10 to about 20 wt-% solubilizer, about 20 to about 60 wt-% solubilizer, or about 40 to about 60 wt-% solubilizer. The composition can include any of these ranges or amounts not modified by about.

Solvent Solubilizers and Compositions Including Them In an embodiment, the present compositions and methods can include as solubilizer one or more (e.g., at least one) solvents. Suitable solvents include any of a variety of solvents that solubilize but do not significantly degrade the medium chain peroxycarboxylic acid. Suitable solvents include polyalkylene oxide, capped polyalkylene oxide, glycol ether, nonionic surfactant, mixtures thereof, or the like.
In an embodiment, the present composition includes medium chain peroxycarboxylic acid; medium chain carboxylic acid; carrier; and polyalkylene oxide, capped polyalkylene oxide, nonionic surfactant, or mixture thereof. For example, the present composition can include about 0.5 to about 5 wt-% medium chain peroxycarboxylic acid; about ~1 to about 10 wt-% medium chain carboxylic acid;
about 1 to about 98 wt-% carrier; and about 1 to about 80 wt-% polyalkylene oxide, capped polyalkylene oxide, nonionic surfactant, or mixture thereof. For example, the present composition can include about 0.5 to about 5 wt-% medium chain peroxycarboxylic acid; about 1 to about 10 wt-% medium chain carboxylic acid; about 5 to about 35 wt-carrier; and about 20 to about 65 wt-% polyalkylene oxide, capped polyalkylene oxide, nonionic surfactant, or mixture thereof. For example, the present composition can include about 0.5 to about 5 wt-% medium chain peroxycarboxylic acid;
about 1 to about 10 wt-% medium chain carboxylic acid; about 10 to about 35 wt-% carrier;
and about 40 to about 60 wt-% polyalkylene oxide,.capped polyalkylene oxide, nonionic surfactant, or mixture thereof. In an embodiment, the present composition includes solvent solubilizer and less than or equal to 35 wt-% carrier (e.g., water).
The composition can include any of these ranges or amounts not modified by about.
In an embodiment, the present composition includes C8 peroxycarboxylic acid;
C8 carboxylic acid; water; and polyallcylene oxide, capped polyalkylene oxide, nonionic surfactant, or mixture thereof. For example, the present composition can include about 0.5 to about 5 wt-% C8 peroxycarboxylic acid; about 1 to about 10 wt-%
C8 carboxylic acid; about 1 to about 98 wt-% water; and about 1 to about 80 wt-polyalkylene oxide, capped polyalkylene oxide, nonionic surfactant, or mixture thereof.
For example, the present composition can include about 0.5 to about 5 wt-% C8 peroxycarboxylic acid; about 1 to about 10 wt-% C8 carboxylic acid; about 5 to about wt-% water; and about 20 to about 65 wt-% polyallcylene oxide, capped polyalkylene oxide, nonionic surfactant, or mixture thereof. For example, the present composition can include about 0.5 to about 5 wt-% C8 peroxycarboxylic acid;
about 1 to about 10 wt-% C8 carboxylic acid; about 10 to about 35 wt-% water; and about 40 to about 60 wt-% polyalkylene oxide, capped polyalkylene oxide, nonionic surfactant, or mixture thereof. The composition can include any of these ranges or amounts not modified by about.
In certain embodiments, the present composition includes about 0.001 to about 80 wt-% solvent as solubilizer, about 0.001 to about 60 wt-% solvent as solubilizer, about 1 to about 80 wt-% solvent as solubilizer, about 5 to about 70 wt-%
solvent as solubilizer, about 10 to about 65 wt-% solvent as solubilizer, or about 20 to about 60 wt-% solvent as solubilizer. The composition can include any of these ranges or amounts not modified by about.
In an embodiment, when the present compositions and methods include a solvent as solubilizer, they need not include a significant amount, or even any, of a short chain peroxycarboxylic acid, a shoat chain carboxylic acid, or a mixture thereof.
Examples of short chain carboxylic acids include formic acid, acetic acid, propionic acid, and butanoic acid. Shoat chain carboxylic acids and peroxycarboxylic acids include those with 4 or fewer carbon atoms. In an embodiment, the present compositions and methods including a solvent solubilizer need not include substantial amounts of short chain peroxycarboxylic acid. In an embodiment, the present compositions and methods including a solvent solubilizer can be free of added short chain peroxycarboxylic acid.
In an embodiment, the present compositions and methods including a solvent solubilizer can include medium chain peroxycarboxylic acid in greater proportion compared to the short chain peroxycarboxylic acid than found in conventional compositions. For example, the present compositions and methods can include solvent solubilizer and about 1 or more parts of medium chain peroxycarboxylic acid for each 8 parts of short chain carboxylic acid, short chain peroxycarboxylic acid, or mixture thereof. For example, the present compositions and methods can include solvent solubilizer and short chain carboxylic acid, short chain peroxycarboxylic acid, or mixture thereof at a level insufficient to cause odor offensive to a typical person.

Polyalkylene Oxide Solubilizers Suitable polyalkylene oxides include polyethylene glycol, polypropylene glycol, polybutylene glycol, mixtures thereof, or the like. Suitable capped polyalkylene oxides include mono-alkyl and di-alkyl ethers of the respective polyalkylene oxides, such as mono- and di-methyl ethers of polyalkylene glycol, mono- and di-ethyl ethers of polyalkylene glycol, mono- and di-propyl ethers of polyalkylene glycol, mono-and di-butyl ethers of polyalkylene glycol, mixtures thereof, or the like. Suitable capped polyallcylene oxides include methyl polyethylene glycol (e.g., the monomethyl ether of polyethylene glycol), dimethyl polyethylene glycol (e.g., the dimethyl ether of polyethylene glycol), mixtures thereof, or the like.
Glycol Ether Solubilizers Suitable solvent solubilizers include glycol ethers. Suitable glycol ethers include diethylene glycol n-butyl ether, diethylene glycol n-propyl ether, diethylene glycol ethyl ether, diethylene glycol methyl ether, diethylene glycol t-butyl ether, dipropylene glycol n-butyl ether, dipropylene glycol methyl ether, dipropylene glycol ethyl ether, dipropylene glycol propyl ether, dipropylene glycol tert-butyl ether, ethylene glycol butyl ether, ethylene glycol propyl ether, ethylene glycol ethyl ether, ethylene glycol methyl ether, ethylene glycol methyl ether acetate, propylene glycol n-butyl ether, propylene glycol ethyl ether, propylene glycol methyl ether, propylene glycol n-propyl ether, tripropylene glycol methyl ether and tripropylene glycol n-butyl ether, ethylene glycol phenyl ether (commercially available as DOWANOL EPHT""
from Dow Chemical Co.), propylene glycol phenyl ether (commercially available as DOWANOL PPHT"~ from Dow Chemical Co.), and the like, or mixtures thereof.
Additional suitable commercially available glycol ethers (all of which are available from Union Carbide Corp.) include Butoxyethyl PROPASOLTM, Butyl CARBITOLTM
acetate, Butyl CARBITOLTM, Butyl CELLOSOLVETM acetate, Butyl CELLOSOLVETM, Butyl DIPROPASOLTM, Butyl PROPASOLTM, CARBITOLTM PM-600, CARBITOLTM
Low Gravity, CELLOSOLVETM acetate, CELLOSOLVET~', Ester EEPTM, FILMER
IBTTM, Hexyl CARBITOLTM, Hexyl CELLOSOLVE'~', Methyl CARBITOLTM, Methyl CELLOSOLVET~' acetate, Methyl CELLOSOLVETM, Methyl DIPROPASOLTM, Methyl PROPASOLTM acetate, Methyl PROPASOLT~~, Propyl CARBITOLTM, Propyl CELLOSOLVETM, Propyl DIPROPASOLTM and Propyl PROPASOLTM.
Nonionic Surfactants Suitable nonionic surfactants for use as solvents include alkoxylated surfactants.
Suitable alkoxylated surfactants include EO/PO copolymers, capped EO/PO
copolymers, alcohol alkoxylates, capped alcohol alkoxylates, mixtures thereof, or the like. Suitable alkoxylated surfactants for use as solvents include EO/PO block copolymers, such as the Pluronic and reverse Pluronic surfactants; alcohol alkoxylates, such as Dehypon LS-54 (R-(EO)5(PO)4) and Dehypon LS-36 (R-(EO)3(PO)6); and capped alcohol alkoxylates, such as Plurafac LF221 and Tegoten EC11; mixtures thereof, or the like. When employed as a solvent a surfactant, such as a nonionic surfactant, can be at concentrations higher than those conventionally employed as surfactant.
Semi-Polar Nonionic Surfactants The semi-polar type of nonionic surface active agents are another class of nonionic surfactant useful in compositions of the present invention. Semi-polar nonionic surfactants include the amine oxides, phosphine oxides, sulfoxides and their alkoxylated derivatives.
Amine oxides are tertiary amine oxides corresponding to the general formula:

R~-(OR4)ri N ~O

wherein the arrow is a conventional representation of a semi-polar bond; and, R1, R2, and R3 may be aliphatic, aromatic, heterocyclic, alicyclic, or combinations thereof.
Generally, for amine oxides of detergent interest, Rl is an alkyl radical of from about 8 to about 24 carbon atoms; R2 and R3 are alkyl or hydroxyalkyl of 1-3 carbon atoms or a mixture thereof; RZ and R3 can be attached to each other, e.g. through an oxygen or nitrogen atom, to form a ring structure; R4 is an alkylene or a hydroxyalkylene group containing 2 to 3 carbon atoms; and n ranges from 0 to about 20.

Useful water soluble amine oxide surfactants are selected from the octyl, decyl, dodecyl, isododecyl, coconut, or tallow alkyl di-(lower alkyl) amine oxides, specific examples of which are octyldimethylamine oxide, nonyldimethylamine oxide, decyldimethylamine oxide, undecyldimethylamine oxide, dodecyldimethylamine oxide, iso-dodecyldimethyl amine oxide, tridecyldimethylamine oxide, tetradecyldimethylamine oxide, pentadecyldimethylamine oxide, hexadecyldimethylamine oxide, heptadecyldimethylamine oxide, octadecyldimethylaine oxide, dodecyldipropylamine oxide, tetradecyldipropylamine oxide, hexadecyldipropylamine oxide, tetradecyldibutylamine oxide, octadecyldibutylamine oxide, bis(2-hydroxyethyl)dodecylamine oxide, bis(2-hydroxyethyl)-3-dodecoxy-1-hydroxypropylamine oxide, dimethyl-(2-hydroxydodecyl)amine oxide, 3,6,9-trioctadecyldimethylamine oxide and 3-dodecoxy-2-hydroxypropyldi-(2-hydroxyethyl)amine oxide.
Surfactant Solubilizers and Compositions Including Them In an embodiment, the present compositions and methods can include as solubilizer one or more (e.g., at least one) surfactants, e.g., a microemulsion forming surfactant. Suitable surfactants include anionic surfactant, cationic surfactant, amphoteric surfactant, zwitterionic surfactant, mixtures thereof, or the like.
Suitable microemulsion forming surfactants include anionic surfactant, cationic surfactant, amphoteric surfactant, zwitterionic surfactant, mixtures thereof, or the like.
Suitable microemulsion forming surfactants include anionic surfactant. A microemulsion forming surfactant can form a microemulsion in a composition including a medimn chain peroxycarboxylic acid, a medium chain carboxylic acid, or a mixture thereof. In an embodiment, the present composition includes a microemulsion.
In an embodiment, the present composition can be determined to be a microemulsion by testing the composition for being a shear thinning viscoelastic gel or liquid that has a blue tyndall appearance. Although not limiting to the present invention, blue tyndall appearance is believed to indicate a heterogeneous system of a small, suspended dispersion (e.g., a microemulsion), which is effective in scattering blue light.

In an embodiment, the present composition can be determined to be a microemulsion by testing the ability to form a physically stable composition at different concentrations of surfactant solubilizer. A microemulsion can yield a curve with a maximum of physical stability at a concentration with unstable compositions at higher and lower concentrations. Typically, mixtures of solvents and surfactants (e.g., acetic acid and surfactant) do not form microemulsions.
In an embodiment, the composition including surfactant solubilizer takes the form of a viscoelastic gel or liquid. Increasing the concentration of the medium chain carboxylic acid, medium chain peroxycarboxylic acid, or mixture thereof can increase the degree to which the composition is a viscoelastic gel or liquid.
Increasing the concentration of the surfactant solubilizer can increase the degree to which the composition is a viscoelastic gel or liquid. In an embodiment, the gel can be sufficiently viscoelastic to hold its molded shapes. Alkyl benzene sulfonate surfactant (e.g., LAS) can be employed to form a viscoelastic gel or liquid that can hold its molded shape. In an embodiment, the alkyl benzene sulfonate surfactant containing viscoelastic gel can hold its shape even at 60 °C.
Although not limiting to the present invention, the present compositions may include medium chain peroxycarboxylic acid sequestered in the surfactant of the microemulsion. This can stabilize the peroxycarboxylic acid by keeping it away from impurities or reducing agents in the bulk water. This can increase the production of peroxycarboxylic acid by pulling it out of solution. Although not limiting to the present invention, it is believed that one explanation for the viscoelastic properties of gels of the present compositions is that they are due to repulsive forces between the dispersions/droplets that are stabilized by the microemulsion-forming surfactant.
Surfactants that are charged may increase the electrostatic repulsion.
Suitable charged surfactants include anionic surfactants.
In an embodiment, the present composition includes anionic surfactant and another surfactant or surfactants. For example, the present compositions can include anionic surfactant and nonionic surfactant or semi-polar nonionic surfactant.
In an embodiment, the present composition includes medium chain peroxycarboxylic acid; medium chain carboxylic acid; carrier; and one or more (e.g., at least one) surfactants, e.g., microemulsion forming surfactants. For example, the present composition can include about 0.5 to about 5 wt-% medium chain peroxycarboxylic acid; about 1 to about 10 wt-% medium chain carboxylic acid;
about to about 97 wt-% carrier; and about 1 to about 20 wt-% surfactant, e.g., microemulsion forming surfactant. For example, the present composition can include 5 about 0.5 to about 5 wt-% medium chain peroxycarboxylic acid; about 1 to about 10 wt-% medium chain carboxylic acid; about 15 to about 80 wt-% carrier; and about 1 to about 20 wt-% surfactant, e.g., microemulsion forming surfactant. For example, the present composition can include about 0.5 to about 5 wt-% medium chain peroxycarboxylic acid; about 1 to about 10 wt-% medium chain carboxylic acid;
about 30 to about 70 wt-% carrier; and about 2 to about 20 wt-% surfactant, e.g., microemulsion forming surfactant. In an embodiment, the present composition includes surfactant or microemulsion former solubilizer and greater than or equal to 35 wt-carrier (e.g., water). The composition can include any of these ranges or amounts not modified by about.
In an embodiment, the present composition includes C8 peroxycarboxylic acid;
C8 carboxylic acid; water; and one or more (e.g., at least one) surfactants, e.g., microemulsion forming surfactants. For example, the present composition can include about 0.5 to about 5 wt-% C8 peroxycarboxylic acid; about 1 to about 10 wt-%

carboxylic acid; about 5 to about 97 wt-% water; and about 1 to about 20 wt-surfactant, e.g., microemulsion forming surfactant. For example, the present composition can include about 0.5 to about 5 wt-% C8 peroxycarboxylic acid;
about 1 to about 10 wt-% C8 carboxylic acid; about 15 to about 80 wt-% water; and about 1 to about 20 wt-% surfactant, e.g., microemulsion forming surfactant. For example, the present composition can include about 0.5 to about 5 wt-% C8 peroxycarboxylic acid;
about 1 to about 10 wt-% C8 carboxylic acid; about 30 to about 70 wt-% water;
and about 2 to about 20 wt-% surfactant, e.g., microemulsion forming surfactant.
The composition can include any of these ranges or amounts not modified by about.
In certain embodiments, the present composition includes about 0.001 to about 60 wt-% surfactant, e.g., microemulsion forming surfactant, as solubilizer, about 1 to about 25 wt-% surfactant, e.g., microemulsion forming surfactant, as solubilizer, about 1 to about 20 wt-% surfactant, e.g., microemulsion forming surfactant, as solubilizer, about 2 to about 20 wt-% surfactant, e.g., microemulsion forming surfactant, as solubilizer, about 3 to about 15 wt-% surfactant, e..g., microemulsion forming surfactant, as solubilizer, about 4 to about 20 wt-% surfactant, e.g., microemulsion forming surfactant, as solubilizer, about 4 to about 10 wt-% surfactant, e.g., microemulsion forming surfactant, as solubilizer, about 5 to about 20 wt-%
surfactant, e.g., microemulsion forming surfactant, as solubilizer, or about 10 to about 20 wt-surfactant, e.g., microemulsion forming surfactant, as solubilizer. The composition can include any of these ranges or amounts not modified by about.
Anionic Surfactants The present composition can include an anionic surfactant as solubilizer.
Suitable anionic. surfactants include organic sulfonate surfactant, organic sulfate surfactant, phosphate ester surfactant, carboxylate surfactant, mixtures thereof, or the like. In an embodiment, the anionic surfactant includes alkyl sulfonate, alkylaryl sulfonate, allcylated diphenyl oxide disulfonate, alkylated naphthalene sulfonate, alcohol allcoxylate carboxylate, sarcosinate, taurate, acyl amino acid, alkanoic ester, phosphate ester, sulfuric acid ester, salt or acid form thereof, or mixture thereof. The particular salts will be suitably selected depending upon the particular formulation and the needs therein.
Suitable anionic surfactants include sulfonic acids (and salts), such as isethionates (e.g. acyl isethionates), alkylaryl sulfonic acids and salts thereof, alkyl sulfonates, secondary alkane sulfonates, and the like.
Examples of suitable synthetic, water soluble anionic detergent compounds include the ammonium and substituted ammonium (such as mono-, di- and triethanolamine) and alkali metal (such as sodium, lithium and potassium) salts of the alkyl mononuclear aromatic sulfonates such as the alkyl benzene sulfonates containing from about 5 to about 18 carbon atoms in the alkyl group in a straight or branched chain, e.g., the salts of alkyl benzene sulfonates or of alkyl toluene, xylene, cumene and phenol sulfonates; alkyl naphthalene sulfonate, diamyl naphthalene sulfonate, and dinonyl naphthalene sulfonate and alkoxylated derivatives or their free acids.
Suitable sulfonates include olefin sulfonates, such as long chain allcene sulfonates, long chain hydroxyalkane sulfonates or mixtures of alkenesulfonates and hydroxyalkane-sulfonates. Suitable sulfonates include secondary alkane sulfonates.

In certain embodiments, the present compositions including an anionic surfactant, such as a normal C8 sulfonate, can be non-foam or low foam compositions.
Such compositions can be advantageous for applications such as clean in place, machine warewashing, destaining, and sanitizing, laundry washing, destaining, and sanitizing, etc.
For applications in which foaming is desirable, a foaming agent can be added as part of the present composition or separately. In a two-step offering, a foaming agent can be combined with a dilution of the non-foam or low foam composition to form a foaming use solution. In a one-step offering, the foaming agent can be incorporated into the concentrated composition. One suitable foaming agent is LAS acid. LAS
acid can form a microemulsion in the present compositions. LAS acid can form a viscoelastic gel or liquid in the present compositions. Additional suitable foaming agents include secondary alkane sulfonate, alkylated diphenyl oxide disulfonate (e.g., C12 alkyl diphenyl oxide disulfonate), alkyl ether sulfate (e.g., with n=1-3) (e.g., sodium laureth sulfate (with n=1, 2, or 3)), sodium lauryl sulfate, or the like.
In an embodiment, such foaming agents provide a foaming composition with one or more desirable foaming characteristics. Desirable foaming characteristics include, for example, foam being visible for about 5 min after forming the foam; foam with continuous and good drainage (e.g., when applied to a vertical surface);
foam that dries to a clear appearance, e.g., that leaves no visible residue on a stainless steel surface; and/or foam that can be applied with a moderate or low odor compared to a conventional foam containing peroxyacetic acid.
Anionic sulfate surfactants suitable for use in the present compositions include alkyl ether sulfates, alkyl sulfates, the linear and branched primary and secondary alkyl sulfates, alkyl ethoxysulfates, fatty oleyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, the CS -C1~ acyl-N-(C1 -C4 alkyl) and -N-(C1 -CZ hydroxyalkyl) glucamine sulfates, and sulfates of alkylpolysaccharides such as the sulfates of alkylpolyglucoside, and the like. Also included are the alkyl sulfates, alkyl poly(ethyleneoxy) ether sulfates and aromatic poly(ethyleneoxy) sulfates such as the sulfates or condensation products of ethylene oxide and nonyl phenol (usually having 1 to 6 oxyethylene groups per molecule).

Anionic carboxylate surfactants suitable for use in the present compositions include carboxylic acids (and salts), such as alkanoic acids (and alkanoates), ester carboxylic acids (e.g. alkyl succinates), ether carboxylic acids, and the like. Such carboxylates include alkyl ethoxy carboxylates, alkyl aryl ethoxy carboxylates, alkyl polyethoxy polycarboxylate surfactants and soaps (e.g. alkyl carboxyls).
Secondary carboxylates useful in the present compositions include those which contain a carboxyl unit connected to a secondary carbon. The secondary carbon can be in a ring structure, e.g. as in p-octyl benzoic acid, or as in alkyl-substituted cyclohexyl carboxylates. The secondary carboxylate surfactants typically contain no ether linkages, no ester linkages and no hydroxyl groups. Further, they typically lack nitrogen atoms in the head-group (amphiphilic portion). Suitable secondary soap surfactants typically contain 11-13 total carbon atoms, although more carbons atoms (e.g., up to 16) can be present.
Suitable carboxylates also include acylamino acids (and salts), such as acylgluamates, acyl peptides, sarcosinates (e.g. N-acyl sarcosinates), taurates (e.g. N-acyl taurates and fatty acid amides of methyl tauride), and the lilce.
Suitable anionic surfactants include alkyl or alkylaryl ethoxy carboxylates of Formula 3:
R - O - (CH~,CH20)"(CH2)", - C02X (3) Ri in which R is a C8 to Ca2 alkyl group or ~ , in which R1 is a C4-C16 alkyl group; n is an integer of 1-20; m is an integer of 1-3; and X is a counter ion, such as hydrogen, sodium, potassium, lithium, ammonium, or an amine salt such as monoethanolamine, diethanolamine or triethanolamine. In an embodiment, in Formula
3, n is an integer of 4 to 10 and m~is 1. In an embodiment, in Formula 3, R is a C$-C16 alkyl group. In an embodiment, in Formula 3, R is a C12-Ci4 alkyl group, n is
4, and m is 1.
RI ~ I
I
In an embodiment, in Formula 3, R is ~ and R1 is a C6-C12 alkyl group. In an embodiment, in Formula 3, Rl is a C9 alkyl group, n is 10 and m is 1.
5 PCT/US2005/000151 Such alkyl and alkylaryl ethoxy carboxylates are commercially available. These ethoxy carboxylates are typically available as the acid fornis, which can be readily converted to the anionic or salt form. Commercially available carboxylates include, Neodox 23-4, a Cia-i3 alkyl polyethoxy (4) carboxylic acid (Shell Chemical), and Emcol CNP-110, a C9 alkylaryl polyethoxy (10) carboxylic acid (Witco Chemical). Carboxylates. are also available from Clariant, e.g. the product Sandopan° DTC, a C13 alkyl polyethoxy (7) carboxylic acid.
Amphoteric Surfactants Amphoteric, or ampholytic, surfactants contain both a basic and an acidic hydrophilic group and an organic hydrophobic group. These ionic entities may be any of anionic or cationic groups described herein for other types of surfactants.
A basic nitrogen and an acidic carboxylate group are the typical functional groups employed as the basic and acidic hydrophilic groups. In a few surfactants, sulfonate, sulfate, phosphonate or phosphate provide the negative charge.
Amphoteric surfactants can be broadly described as derivatives of aliphatic secondary and tertiary amines, in which the aliphatic radical may be straight chain or branched and wherein one of the aliphatic substituents contains from about 8 to 18 carbon atoms and one contains an anionic water solubilizing group, e.g., carboxy, sulfo, sulfato, phosphato, or phosphono. Amphoteric surfactants are subdivided into two major classes known to those of skill in the art and described in "Surfactant Encyclopedia" Cosmetics & Toiletries, Vol. 104 (2) 69-71 (1989). The first class includes acyl/dialkyl ethylenediamine derivatives (e.g. 2-alkyl hydroxyethyl imidazoline derivatives) and their salts. The second class includes N-allcylamino acids and their salts. Some amphoteric surfactants can be envisioned as fitting into both classes.
Amphoteric surfactants can be synthesized by methods known to those of skill in the art. For example, 2-alkyl hydroxyethyl imidazoline is synthesized by condensation and ring closure of a long chain carboxylic acid (or a derivative) with diallcyl ethylenediamine. Commercial amphoteric surfactants are derivatized by subsequent hydrolysis and ring-opening of the imidazoline ring by alkylation --for example with chloroacetic acid or ethyl acetate. During alkylation, one or two carboxy-alkyl groups react to form a tertiary amine and an ether linkage with differing alkylating agents yielding different tertiary amines.
Long chain imidazoline derivatives having application in the present invention generally have the general formula:
(MONO)ACETATE (DI)PROPIONATE AMPHOTERIC
SULFONATE
CHZCOOO CHZCHZCOO~ OH
RCONHCHZCHZN~H RCONHCHZCHZI~CHZCHzCOOH CHZCHCHZS030Na~
CHzCHZOH CHZCHZOH RCONHCHZCHZN~
~CHZCHZOH
Neutral pH - Zwitterion wherein R is an acyclic hydrophobic group containing from about 8 to 18 carbon atoms and M is a canon to neutralize the charge of the anion, generally sodium.
Commercially prominent imidazoline-derived amphoterics that can be employed in the present compositions include for example: Cocoamphopropionate, Cocoamphocarboxy-propionate, Cocoamphoglycinate, Cocoamphocarboxy-glycinate, Cocoamphopropyl-sulfonate, and Cocoamphocarboxy-propionic acid.
Amphocarboxylic acids can be produced from fatty imidazolines in which the dicarboxylic acid functionality of the amphodicarboxylic acid is diacetic acid and/or dipropionic acid.
The carboxymethylated compounds (glycinates) described herein above frequently are called betaines. Betaines are a special class of amphoteric discussed herein below in the section entitled, Zwitterion Surfactants.
Long chain N-allcylamino acids are readily prepared by reaction RNH2, in which R=C~-C18 straight or branched chain alkyl, fatty amines with halogenated carboxylic acids. Allcylation of the primary amino groups of an amino acid leads to secondary and tertiary amines. Alkyl substituents may have additional amino groups that provide more than one reactive nitrogen center. Most commercial N-alkylamine acids are alkyl derivatives of beta-alanine or beta-N(2-carboxyethyl) alanine.
Examples of commercial N-alkylamino acid ampholytes having application in this invention include alkyl beta-amino dipropionates, RN(C2H4COOM)Z and RNHC2H4COOM. In an embodiment, R can be an acyclic hydrophobic group containing from about 8 to about 18 carbon atoms, and M is a cation to neutralize the charge of the anion.
Suitable amphoteric surfactants include those derived from coconut products such as coconut oil or coconut fatty acid. Additional suitable coconut derived surfactants include as part of their structure an ethylenediamine moiety, an alkanolamide moiety, an amino acid moiety, e.g., glycine, or a combination thereof;
and an aliphatic substituent of from about 8 to 18 (e.g., 12) carbon atoms.
Such a surfactant can also be considered an alkyl amphodicarboxylic acid. These amphoteric surfactants can include chemical structures represented as: G12-alkyl-C(O)-NH-CH2-N+(CHZ-CH2-C02Na)Z-CH2-CH2-OH or Clz-alkyl-C(O)-N(H)-CH2-CHZ-N+(CHZ-COZNa)2-CH2-CHZ-OH. Disodium cocoampho dipropionate is one suitable amphoteric surfactant and is commercially available under the tradename MiranolTM FBS
from Rhodia Inc., Cranbury, N.J. Another suitable coconut derived amphoteric surfactant with the chemical name disodium cocoampho diacetate is sold under the tradename MirataineTM JCHA, also from Rhodia Inc., Cranbury, N.J.
A typical listing of amphoteric classes, and species of these surfactants, is given in U.S. Pat. No. 3,929,678 issued to Laughlin and Heuring on Dec. 30, 1975.
Further examples are given in "Surface Active Agents and Detergents" (Vol. I and II by Schwartz, Perry and Berch).
Zwitterionic Surfactants Zwitterionic surfactants can be thought of as a subset of the amphoteric surfactants and can include an anionic charge. Zwitterionic surfactants can be broadly described as derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds. Typically, a zwitterionic surfactant includes a positive charged quaternary ammonium or, in some cases, a sulfonium or phosphonium ion; a negative charged carboxyl group; and an alkyl group.
Zwitterionics generally contain cationic and anionic groups which ionize to a nearly equal degree in the isoelectric region of the molecule and which can develop strong"
inner-salt" attraction between positive-negative charge centers. Examples of such zwitterionic synthetic surfactants include derivatives of aliphatic quaternary ammonium, phosphonium, and sulfonium compounds, in which the aliphatic radicals can be straight chain or branched, and wherein one of the aliphatic substituents contains from 8 to 18 carbon atoms and one contains an anionic water solubilizing group, e.g., carboxy, sulfonate, sulfate, phosphate, or phosphonate. Betaine and sultaine surfactants are exemplary zwitterionic surfactants for use herein.
A general formula for these compounds is:
(Ra)x Rl Y~ CH2-R-Z
wherein Rl contains an alkyl, allcenyl, or hydroxyallcyl radical of from 8 to 18 carbon atoms having from 0 to 10 ethylene oxide moieties and from 0 to 1 glyceryl moiety; Y
is selected from the group consisting of nitrogen, phosphorus, and sulfur atoms; R2 is an alkyl or monohydroxy alkyl group containing 1 to 3 carbon atoms; x is 1 when Y is a sulfur atom and 2 when Y is a nitrogen or phosphorus atom, R3 is an alkylene or hydroxy allcylene or hydroxy alkylene of from 1 to 4 carbon atoms and Z is a radical selected from the group consisting of carboxylate, sulfonate, sulfate, phosphonate, and phospliate groups.
Examples of zwitterionic surfactants having the structures listed above include:
4-[N,N-di(2-hydroxyethyl)-N-octadecylammonio]-butane-1-carboxylate; 5-[S-3-hydroxypropyl-S-hexadecylsulfonio]-3-hydroxypentane-1-sulfate; 3-[P,P-diethyl-P-3,6,9-trioxatetracosanephosphonio]-2-hydroxypropane-1-phosphate; 3-[N,N-dipropyl-N-3-dodecoxy-2-hydroxypropyl-ammonio]-propane-1-phosphonate; 3-(N,N-dimethyl-N-hexadecyla.mmonio)-propane-1-sulfonate; 3-(N,N-dimethyl-N-hexadecylammonio)-2-hydroxy-propane-1-sulfonate; 4-[N,N-di(2(2-hydroxyethyl)-N(2-hydroxydodecyl)ammonio]-butane-1-carboxylate; 3-[S-ethyl-S-(3-dodecoxy-2-hydroxypropyl)sulfonio]-propane-1-phosphate; 3-[P,P-dimethyl-P-dodecylphosphonio]-propane-1-phosphonate; and S[N,N-di(3-hydroxypropyl)-N-hexadecylammonio]-2-hydroxy-pentane-1-sulfate. The alkyl groups contained in said detergent surfactants can be straight or branched and saturated or unsaturated.
The zwitterionic surfactant suitable for use in the present compositions includes a betaine of the general structure:

R R R
R~ N~ CH2-C02 R S-CH2-C02 R~ P~ CH2-CO2 These surfactant betaines typically do not exhibit strong cationic or anionic characters at pH extremes nor do they show reduced water solubility in their isoelectric range.
Unlike "external" quaternary ammonium salts, betaines are compatible with anionics.
Examples of suitable betaines include coconut acylamidopropyldimethyl betaine;
hexadecyl dimethyl betaine; Cla-i4 acylamidopropylbetaine; C8_14 acylamidohexyldiethyl betaine; 4-Ci4-i6 acylmethylamidodiethylammonio-1-carboxybutane; C16-la acylamidodimethylbetaine; Ci2-16 acylamidopentanediethylbetaine; and C12_16 acylmethylamidodimethylbetaine.
Sultaines useful in the present invention include those compounds having the formula (R(Rl)2 N+ R2SO3-, in which R is a C6 -C18 hydrocarbyl group, each Rl is typically independently C1-C3 alkyl, e.g. methyl, and R2 is a C1-C6 hydrocarbyl group, e.g. a C1-C3 alkylene or hydroxyalkylene group.
A typical listing of zwitterionic classes, and species of these surfactants, is given in U.S. Pat. No. 3,929,678 issued to Laughlin and Heuring on Dec. 30, 1975.
Further examples are given in "Surface Active Agents and Detergents" (Vol. I
and II by Schwai~tz, Perry and Berch).
In an embodiment, the composition of the present invention includes a betaine.
For example, the composition can include cocoamidopropyl betaine.
Embodiments of Compositions Some examples of representative constituent concentrations for embodiments of the present compositions can be found in Tables A-C, in which the values are given in wt-% of the ingredients in reference to the total composition weight. In certain embodiments, the proportions and amounts in Tables A-C can be modified by "about".

Table A
Ingredient wt-% wt-% wt-% wt-%

medium chain peroxycarboxylic0.3-7 0.5-5 0.5-4 1-3 acid medium chain 1-10 2-8 2-6 2.5-5 carboxylic acid solubilizer 1-80 2-70 3-65 5-60 carrier 0-98 5-90 10-80 20-70 Table B
Ingredient wt-% wt-% wt-% wt-medium chain peroxycarboxylic0.3-70.5-5 0.5-4 1-3 acid medium chain 1-10 2-8 3-6 3-5 carboxylic acid solubilizer 1-80 5-70 10-65 20-60 carrier 0-98 0.2-60 5-20 20-40 Table C
Ingredient wt-% wt-% wt-% wt-medium chain peroxycarboxylic0.3-70.5-5 0.5-41-2 acid medium chain 1-10 1-8 1.5-62-4 carboxylic acid solubilizer 1-25 2-20 3-15 4-10 carrier 5-97 10-90 15-7030-75 Some examples of representative constituent concentrations for additional embodiments of the present compositions can be found in Tables D-F, in which the values are given in wt-% of the ingredients in reference to the total composition weight.
In certain embodiments, the proportions and amounts in Tables D-F can be modified by "about".

Table D
Ingredient wt-% wt-% wt-% wt-medium chain peroxycarboxylic0.3-7 0.5-5 0.5-4 1-3 acid medium chain 1-10 2-8 2-6 2.5-5 carboxylic acid solubilizer 1-80 2-70 3-65 5-60 carrier 0-98 5-90 10-80 20-70 oxidizing 2-30 2-25 4-20 6-10 agent acidulant 1-50 2-40 3-40 5-40 stabilizing 1-50 1-10 1-5 1-3 agent Table E
Ingredient wt-% wt-% wt-% wt-medium chain peroxycarboxylic0.3-70.5-5 0.5-4 1-3 acid medium chain 1-10 2-8 3-6 3-5 carboxylic acid solubilizer 1-80 5-70 10-65 20-60 caimier 0-98 0.2-60 5-20 20-40 oxidizing 2-30 2-25 4-20 6-10 agent acidulant 1-50 2-40 3-40 5-40 stabilizing 1-50 1-10 1-5 1-3 agent Table F
Ingredient wt-% wt-% wt-% wt-medium chain peroxycarboxylic0.3-70.5-5 0.5-4 1-2 acid medium chain 1 1-8 1.5-6 2-4 carboxylic _ acid 10 solubilizer 1-25 2-20 3-15 4-10 carrier 5-97 10-90 15-70 30-75 oxidizing agent2-30 2-25 4-20 6-10 acidulant 1-50 2-40 3-35 5-30 stabilizing 1-50 1-15 1-5 1-3 agent In an embodiment, the compositions of the present invention include only ingredients that can be employed in food products or in food wash, handling, or processing, for example, according to government (e.g. FDA or USDA) rules acid regulations, 21 CFR ~ 170-178. In an embodiment, the compositions of the present invention can include only ingredients at the concentrations approved for incidental food contact by the USEPA, 40 CFR ~ 180.940.
The present compositions can take the form of a liquid, solid, gel, paste, unit dose, gel pack, or the like. The present compositions can be supplied in any of a variety of containers or media, such as in a 2 compartment dispenser or as a pre-moistened wipe, towelette, or sponge.
Carrier The composition of the invention can also include a carrier. The carrier provides a medium which dissolves, suspends, or carries the other components of the composition. For example, the carrier can provide a medium for solubilization, suspension, or production of peroxycarboxylic acid and for forming an equilibrium mixture. The carrier can also function to deliver and wet the antimicrobial composition of the invention on an object. To this end, the carrier can contain any component or components that can facilitate these functions.

Generally, the carrier includes primarily water which can promote solubility and work as a medium for reaction and equilibrium. The carrier can include or be primarily an organic solvent, such as simple alkyl alcohols, e.g., ethanol, isopropanol, n-propanol, and the lilce. Polyols are also useful carriers, including glycerol, sorbitol, and the like.
Suitable carriers include glycol ethers. Suitable glycol ethers include diethylene glycol n-butyl ether, diethylene glycol n-propyl ether, diethylene glycol ethyl ether, diethylene glycol methyl ether, diethylene glycol t-butyl ether, dipropylene glycol n-butyl ether, dipropylene glycol methyl ether, dipropylene glycol ethyl ether, dipropylene glycol propyl ether, dipropylene glycol tert-butyl ether, ethylene glycol butyl ether, ethylene glycol propyl ether, ethylene glycol ethyl ether, ethylene glycol methyl ether, ethylene glycol methyl ether acetate, propylene glycol n-butyl ether, propylene glycol ethyl ether, propylene glycol methyl ether, propylene glycol n-propyl ether, tripropylene glycol methyl ether and tripropylene glycol n-butyl ether, ethylene glycol phenyl ether (commercially available as DOWANOL EPHT"" from Dow Chemical Co.), propylene glycol phenyl ether (commercially available as DOWANOL
PPHT"" from Dow Chemical Co.), and the like, or mixtures thereof. Additional suitable commercially available glycol ethers (all of which are available from Union Carbide Corp.) include Butoxyethyl PROPASOLTM, Butyl CARBITOLTM acetate, Butyl CARBITOLTM, Butyl CELLOSOLVETM acetate, Butyl CELLOSOLVETM, Butyl DIPROPASOLTM, Butyl PROPASOLTM, CARBITOLTM PM-600, CARBITOLTM Low Gravity, CELLOSOLVETM acetate, CELLOSOLVETM, Ester EEPTM, FILMER IBTTM, Hexyl CARBITOLTM, Hexyl CELLOSOLVETM, Methyl CARBITOLTM, Methyl CELLOSOLVETM acetate, Methyl CELLOSOLVETM, Methyl DIPROPASOLTM, Methyl PROPASOLTM acetate, Methyl PROPASOLTM, Propyl CARBITOLTM, Propyl CELLOSOLVETM, Propyl DIPROPASOLTM and Propyl PROPASOLTM.
Generally, the carrier makes up a large portion of the composition of the invention and may be the balance of the composition apart from the active antimicrobial components, solubilizer, oxidizing agent, adjuvants, and the like. Here again, the carrier concentration and type will depend upon the nature of the composition as a whole, the environmental storage, and method of application including concentration of the medium chain peroxycarboxylic acid, among other factors. Notably the carrier should be chosen and used at a concentration which does not inhibit the antimicrobial efficacy of the medium chain peroxycarboxylic acid in the composition of the invention.
In certain embodiments, the present composition includes about 0 to about 98 wt-% carrier, about 0.001 to about 99.99 wt-% carrier, about 0.2 to about 60 wt-carrier, about 1 to about 98 wt-% carrier, about 5 to about 99.99 wt-%
carrier, about 5 to about 97 wt-% carrier, about 5 to about 90 wt-% carrier, about 5 to about 70 wt-carrier, about 5 to about 20 wt-% carrier, about 10 to about 90 wt-% carrier, about 10 to about 80 wt-% carrier, about 10 to about 50 wt-% carrier, about 10 to about 20 wt-carrier, about 15 to about 70 wt-% carrier, about 15 to about 80 wt-% carrier, about 20 to about 70 wt-% carrier, about 20 to about 50 wt-% carrier, about 20 to about 40 wt-carrier, about 20 to about 30 wt-% carrier, about 30 to about 75 wt-% carrier, about 30 to about 70 wt-% carrier, about 40 to about 99.99 wt-% carrier, about 40 to about 90 wt % carrier, or about 60 to about 70 wt-% carrier. The composition can include any of these ranges or amounts not modified by about.
Oxidizing Agent The present compositions and methods can include any of a variety of oxidizing agents. The oxidizing agent can be used for maintaining or generating peroxycarboxylic acids.
Examples of inorganic oxidizing agents include the following types of compounds or sources of these compounds, or alkali metal salts including these types of compounds, or forming an adduct therewith:
hydrogen peroxide;
group 1 (IA) oxidizing agents, for example lithium peroxide, sodium peroxide, and the like;
group 2 (IIA) oxidizing agents, for example magnesium peroxide, calcium peroxide, strontium peroxide, barium peroxide, and the like;
group 12 (IIB) oxidizing agents, for example zinc peroxide, and the like;
group 13 (IIIA) oxidizing agents, for example boron compounds, such as perborates, for example sodium perborate hexahydrate of the formula Na2[Br2(02)2(OH)~] ~ 6H20 (also called sodium perborate tetrahydrate and formerly written as NaBO3~4H20); sodium peroxyborate tetrahydrate of the formula Na2Br2(O2)Z[(OH)4]~ 4H20 (also called sodium perborate trihydrate, and formerly written as NaB03~3H20); sodium peroxyborate of the formula Na2[B2(OZ)Z(OH)4]
(also called sodium perborate monohydrate and formerly written as NaB03~H20); and the like; in an embodiment, perborate;
group 14 (IVA) oxidizing agents, for example persilicates and peroxycarbonates, which are also called percarbonates, such as persilicates or peroxycarbonates of alkali metals; and the like; in an embodiment, percarbonate; in an embodiment, persilicate;
group 15 (VA) oxidizing agents, for example peroxynitrous acid and its salts;
peroxyphosphoric acids and their salts, for example, perphosphates; and the like; in an embodiment, perphosphate;
group 16 (VIA) oxidizing agents, for example peroxysulfuric acids and their salts, such as peroxymonosulfuric and peroxydisulfuric acids, and their salts, such as persulfates, for example, sodium persulfate; and the like; in an embodiment, persulfate;
group VIIa oxidizing agents such as sodium periodate, potassium perchlorate and the like.
Other active inorganic oxygen compounds can include transition metal peroxides; and other such peroxygen compounds, and mixtures thereof.
In an embodiment, the compositions and methods of the present invention employ one or more (e.g., at least orie) of the inorganic oxidizing agents listed above.
Suitable inorganic oxidizing agents include ozone, hydrogen peroxide, hydrogen peroxide adduct, group IIIA oxidizing agent, group VIA oxidizing agent, group VA
oxidizing agent, group VIIA oxidizing agent, or mixtures thereof. Suitable examples of such inorganic oxidizing agents include percarbonate,~perborate, persulfate, perphosphate, persilicate, or mixtures thereof.
Hydrogen peroxide presents one suitable example of an inorganic oxidizing agent. Hydrogen peroxide can be provided as a mixture of hydrogen peroxide and water, e.g., as liquid hydrogen peroxide in an aqueous solution. Hydrogen peroxide is commercially available at concentrations of 35%, 70%, and 90% in water. For safety, the 35% is commonly used. The present compositions can include, for example, about 2 to about 30 wt-% or about 5 to about 20 wt-% hydrogen peroxide.

In an embodiment, the inorganic oxidizing agent includes hydrogen peroxide adduct. For example, the inorganic oxidizing agent can include hydrogen peroxide, hydrogen peroxide adduct, or mixtures thereof. Any of a variety of hydrogen peroxide adducts are suitable for use in the present compositions and methods. For example, suitable hydrogen peroxide adducts include percarbonate salt, urea peroxide, peracetyl borate, an adduct of H202 and polyvinyl pyrrolidone, sodium percarbonate, potassium percarbonate, mixtures thereof, or the like. Suitable hydrogen peroxide adducts include percarbonate salt, urea peroxide, peracetyl borate, an adduct of HZOZ and polyvinyl pyrrolidone, or mixtures thereof. Suitable hydrogen peroxide adducts include sodium percarbonate, potassium percarbonate, or mixtures thereof, for example sodium percarbonate.
In an embodiment, the present compositions and methods can include hydrogen peroxide as oxidizing agent. Hydrogen peroxide in combination with the percarboxylic acid can provide certain antimicrobial action against microorganisms.
Additionally, hydrogen peroxide can provide an effervescent action which can irrigate any surfaceito which it is applied. Hydrogen peroxide can work with a mechanical flushing action once applied which further cleans the surface of an object. An additional advantage of hydrogen peroxide is the food compatibility of this composition upon use and decomposition.
In certain embodiments, the present composition includes about 0.001 to about wt-% oxidizing agent, about 0.001 to about 10 wt-% oxidizing agent, 0.002 to about 10 wt-% oxidizing agent, about 2 to about 30 wt-% oxidizing agent, about 2 to about 25 wt-% oxidizing agent, about 2 to about 20 wt-% oxidizing agent, about 4 to about 20 wt-% oxidizing agent, about 5 to about 10 wt-% oxidizing agent, or about 6 to about 10 25 wt-% oxidizing agent. The composition can include any of these ranges or amounts not modified by about.
Acidulant In an embodiment, tk~e present composition can include an acidulant. The 30 acidulant can act as a catalyst for conversion of carboxylic acid to peroxycarboxylic acid. The acidulant can be effective to form a concentrate composition with pH
of about 1 or less. The acidulant can be effective to form a use composition with pH of about 5, about 5 or less, about 4, about 4 or less; about 3, about 3 or less, about 2, about 2 or less, or the like. In an embodiment, the acidulant includes an inorganic acid.
Suitable inorganic acids include sulfuric acid, phosphoric acid, nitric acid, hydrochloric acid, methane sulfonic acid, ethane sulfonic acid, propane sulfonic acid, butane sulfonic acid, xylene sulfonic acid, benzene sulfonic acid, mixtures thereof, or the like.
In an embodiment, the acidulant includes a carboxylic acid with pKa less than 4.
Suitable carboxylic acids with pKa less than 4 include hydroxyacetic acid, hydroxypropionic acid, other hydroxycarboxylic acids, mixtures thereof, or the like.
Such an acidulant is present at a concentration where it does not act as a solubilizer.
In certain embodiments, the present composition includes about 0.001 to about 50 wt-% acidulant, about 0.001 to about 30 wt-% acidulant, about 1 to about 50 wt-acidulant, about 1 to about 30 wt-% acidulant, about 2 to about 40 wt-%
acidulant, about 2 to about 10 wt-% acidulant, about 3 to about 40 wt-% acidulant, about 5 to about 40 wt-% acidulant, about 5 to about 25 wt-% acidulant, about 10 to about 40 wt-% acidulant, about 10 to about 30 wt-% acidulant, about 15 to about 35 wt-%
acidulant, about 15 to about 30 wt-% acidulant, or about 40 to about 60 wt-% acidulant.
The composition can include any of these ranges or amounts not modified by about.
Stabilizing Agent One or more stabilizing agents can be added to the composition of the invention, for example, to stabilize the peracid and hydrogen peroxide and prevent the premature oxidation of this constituent within the composition of the invention.
Suitable stabilizing agents include chelating agents or sequestrants. Suitable sequestrants include organic chelating compounds that sequester metal ions in solution, particularly transition metal ions. Such sequestrants include organic amino-or hydroxy-polyphosphonic acid complexing agents (either in acid or soluble salt forms), carboxylic acids (e.g., polymeric polycarboxylate), hydroxycarboxylic acids, or aminocarboxylic acids.
The sequestrant can be or include phosphonic acid or phosphonate salt.
Suitable phosphonic acids and phosphonate salts include 1-hydroxy ethylidene-1,1-diphosphonic acid (CH3C(P03H2)20H) (HEDP); ethylenediamine tetrakis methylenephosphonic acid (EDTMP); diethylenetriamine pentakis methylenephosphonic acid (DTPMP); cyclohexane-1,2-tetramethylene phosphonic acid; amino[tri(methylene phosphonic acid)]; (ethylene diamine[tetra methylene-phosphonic acid)]; 2-phosphene butane-1,2,4-tricarboxylic acid; or salts thereof, such as the alkali metal salts, ammonium salts, or alkyloyl amine salts, such as mono, di, or tetra-ethanolamine salts; or mixtures thereof.
Suitable organic phosphonates include HEDP.
Commercially available food additive chelating agents include phosphonates sold under the trade name DEQUEST~ including, for example, 1-hydroxyethylidene-l,l-diphosphonic acid, available from Monsanto Industrial Chemicals Co., St.
Louis, MO, as DEQUEST~ 2010; amino(tri(methylenephosphonic acid)), (N[CHZPO3H2]3), available from Monsanto as DEQUEST~ 2000;
ethylenediamine[tetra(methylenephosphonic acid)] available from Monsanto as DEQUEST~ 2041; and 2-phosphonobutane-1,2,4-tricarboxylic acid available from Mobay Chemical Corporation, Inorganic Chemicals Division, Pittsburgh, PA, as Bayhibit AM.
The sequestrant can be or include aminocarboxylic acid type sequestrant.
Suitable aminocarboxylic acid type sequestrants include the acids or alkali metal salts thereof, e.g., amino acetates and salts thereof. Suitable aminocarboxylates include N-hydroxyethylaminodiacetic acid; hydroxyethylenediaminetetraacetic acid, nitrilotriacetic acid (NTA); ethylenediaminetetraacetic acid (EDTA); N-hydroxyethyl-ethylenediaminetriacetic acid (HEDTA); diethylenetriaminepentaacetic acid (DTPA);
and alanine-N,N-diacetic acid; and the like; and mixtures thereof.
The sequestrant can be or include a polycarboxylate. Suitable polycarboxylates include, for example, polyacrylic acid, maleic/olefm copolymer, acrylic/maleic copolymer, polymethacrylic acid, acrylic acid-methacrylic acid copolymers, hydrolyzed polyacrylamide, hydrolyzed polymethacrylamide, hydrolyzed polyamide-methacrylamide copolymers, hydrolyzed polyacrylonitrile, hydrolyzed polymethacrylonitrile, hydrolyzed acrylonitrile-methacrylonitrile copolymers, polymaleic acid, polyfumaric acid, copolymers of acrylic and itaconic acid, phosphino polycarboxylate, acid or salt forms thereof, mixtures thereof, and the like.

In certain embodiments, the present composition includes about 0.5 to about 50 wt-% sequestrant, about 1 to about 50 wt-% sequestrant, about 1 to about 30 wt-sequestrant, about 1 to about 15 wt-% sequestrant, about 1 to about 5 wt-%
sequestrant, about 1 to about 4 wt-% sequestrant, about 2 to about 10 wt-% sequestrant, about 2 to about 5 wt-% sequestrant, or about 5 to about 15 wt-% sequestrant. The composition can include any of these ranges or amounts not modified by about.
In certain embodiments, the present composition includes about 0.001 to about 50 wt-% stabilizing agent, about 0.001 to about 5 wt-% stabilizing agent, about 0.5 to about 50 wt-% stabilizing agent, about 1 to about 50 wt-% stabilizing agent, about 1 to about 30 wt-% stabilizing agent, about 1 to about 10 wt-% stabilizing agent, about 1 to about 5 wt-% stabilizing agent, about 1 to about 3 wt-% stabilizing agent, about 2 to about 10 wt-% stabilizing agent, about 2 to about 5 wt-% stabilizing agent, or about 5 to about 15 wt-% stabilizing agent. The composition can include any of these ranges or amounts not modified by about.
Adjuvants The antimicrobial composition of the invention can also include any number of adjuvants. Specifically, the composition of the invention can include antimicrobial solvent, antimicrobial agent, wetting agent, defoaming agent, thickener, a surfactant, foaming agent, solidification agent, aesthetic enhancing agent (i.e., colorant (e.g., pigment), odorant, or perfume), among any number of constituents which can be added to the composition. Such adjuvants can be preformulated with the antimicrobial composition of the invention or added to the system simultaneously, or even after, the addition of the antimicrobial composition. The composition of the invention can also contain any number of other constituents as necessitated by the application, which are known and which can facilitate the activity of the present invention.
Antimicrobial Solvent Any of a variety of solvents can be useful as antimicrobial solvents in the present compositions. Antimicrobial solvent can be added to use compositions before use. Suitable antimicrobial solvents include acetamidophenol; acetanilide;
acetophenone; 2-acetyl-1-methylpyrrole; benzyl acetate; benzyl alcohol; benzyl benzoate; benzyloxyethanol; essential oils (e.g., benzaldehyde, pinenes, terpineols, terpinenes, carvone, cinnamealdehyde, borneol and its esters, citrals, ionenes, jasmine oil, limonene, dipentene, linalool and its esters); diester dicarboxylates (e.g., dibasic esters) such as dimethyl adipate, dimethyl succinate, dimethyl glutarate (including products available under the trade designations DBE, DBE-3, DBE-4, DBE-5, DBE-
6, DBE-9, DBE-IB, and DBE-ME from DuPont Nylon), dimethyl malonate, diethyl adipate, diethyl succinate, diethyl glutarate, dibutyl succinate, and dibutyl glutarate;
dimethyl sebacate, dimethyl pimelate, dimethyl suberate; dialkyl carbonates such as dimethyl carbonate, diethyl carbonate, dipropyl carbonate, diisopropyl carbonate, and dibutyl carbonate; organo-nitriles such as acetonitrile and benzonitrile; and phthalate esters such as dibutyl phthalate, diethylhexyl phthalate, and diethyl phthalate. Mixtures of antimicrobial solvents can be used if desired.
The antimicrobial solvent can be selected based upon the characteristics of the surface and microbes to which the antimicrobial composition will be applied and upon the nature of any coating, soil or other material that will be contacted by the antimicrobial composition and optionally removed from the surface. Polar solvents, and solvents that are capable of hydrogen bonding typically will perform well on a variety of surfaces and microbes and thus, for such applications, can be selected. In certain applications, the antimicrobial solvent can be selected for a high flashpoint (e.g., greater than about 30°C, greater than about 50°C, or greater than about 100°C), low odor, and low human and animal toxicity.
In an embodiment, the antimicrobial solvent is compatible as an indirect or direct food additive or substance; especially those described in the Code of Federal Regulations (CFR), Title 21--Food and Drugs, parts 170 to 186. The compositions of the invention should contain sufficient antimicrobial solvent to provide the desired rate and type of microbial reduction.
The present composition can include an effective amount of antimicrobial solvent, such as about 0.01 wt-% to about 60 wt-% antimicrobial solvent, about 0.05 wt-% to about 15 wt-% antimicrobial solvent, or about 0.08 wt-% to about 5 wt-antimicrobial solvent.

Additional Antimicrobial Agent The antimicrobial compositions of the invention can contain an additional antimicrobial agent. Additional antimicrobial agent can be added to use compositions before use. Suitable antimicrobial agents include carboxylic esters (e.g., p-hydroxy alkyl benzoates and alkyl cinnamates), sulfonic acids (e.g., dodecylbenzene sulfonic acid), iodo-compounds or active halogen compounds (e.g., elemental halogens, halogen oxides (e.g., NaOCI, HOCI, HOBr, C102), iodine, interhalides (e.g., iodine monochloride, iodine dichloride, iodine trichloride, iodine tetrachloride, bromine chloride, iodine monobromide, or iodine dibromide), polyhalides, hypochlorite salts, hypochlorous acid, hypobromite salts, hypobromous acid, chloro- and bromo-hydantoins, chlorine dioxide, and sodium chlorite), organic peroxides including benzoyl peroxide, alkyl benzoyl peroxides, ozone, ringlet oxygen generators, and mixtures thereof, phenolic derivatives (e.g., o-phenyl phenol, o-benzyl-p-chlorophenol, test-amyl phenol and C1-C6 alkyl hydroxy benzoates), quaternary ammonium compounds (e.g., alkyldimethylbenzyl ammonium chloride, diallcyldimethyl ammonium chloride and mixtures thereof), and mixtures of such antimicrobial agents, in an amount sufficient to provide the desired degree of microbial protection.
The present composition can include an effective amount of antimicrobial agent, such as about 0.001 wt-% to about 60 wt-% antimicrobial agent, about 0.01 wt-% to about 15 wt-% antimicrobial agent, or about 0.08 wt-% to about 2.5 wt-antimicrobial agent.
Wetting or Defoaming Agents Also useful in the composition of the invention are wetting and defoaming agents. Wetting agents function to increase the surface contact or penetration activity of the antimicrobial composition of the invention. Wetting agents which can be used in the composition of the invention include any of those constituents lmown within the art to raise the surface activity of the composition of the invention.
Generally, defoamers which can be used in accordance with the invention include silica and silicones; aliphatic acids or esters; alcohols; sulfates or sulfonates;
amines or amides; halogenated compounds such as fluorochlorohydrocarbons;
vegetable oils, waxes, mineral oils as well as their sulfated derivatives;
fatty acid soaps such as alkali, alkaline earth metal soaps; and phosphates and phosphate esters such as alkyl and alkaline diphosphates, and tributyl phosphates among others; and mixtures thereof.
In an embodiment, the present compositions can include antifoaming agents or defoamers which are of food grade quality given the application of the method of the invention. To this end, one of the more effective antifoaming agents includes silicones.
Silicones such as dimethyl silicone, glycol polysiloxane, methylphenol polysiloxane, trialkyl or tetralkyl silanes, hydrophobic silica defoamers and mixtures thereof can all be used in defoaming applications. Commercial defoamers commonly available include silicones such as Ardefoam~ from Armour Industrial Chemical Company which is a silicone bound in an organic emulsion; Foam Kill~ or Kresseo~
available from Krusable Chemical Company which are silicone and non-silicone type defoamers as well as silicone esters; and Anti-Foam A~ and DC-200 from Dow Corning Corporation which are both food grade type silicones among others. These defoamers can be present at a concentration range from about 0.01 wt-% to 5 wt-%, from about 0.01 wt-% to 2 wt-%, or from about 0.01 wt-% to about 1 wt-%.
Thickening or Gelling Agents The present compositions can include any of a variety of known thickeners.
Suitable thickeners include natural gums such as xanthan gum, guar gum, or other gums from plant mucilage; polysaccharide based thickeners, such as alginates, starches, and cellulosic polymers (e.g., carboxymethyl cellulose); polyacrylates thickeners; and hydrocolloid thiclceners, such as pectin. In an embodiment, the thickener does not leave contaminating residue on the surface of an object. For example, the thickeners or gelling agents can be compatible with food or other sensitive products in contact areas.
Generally, the concentration of thickener employed in the present compositions or methods will be dictated by the desired viscosity within the final composition.
However, as a general guideline, the viscosity of thickener within the present composition ranges from about 0.1 wt-% to about 1.5 wt-%, from about 0.1 wt-%
to about 1.0 wt-%, or from about 0.1 wt-% to about 0.5 wt-%.

Solidification A-gent The present compositions can include a solidification agent, which can participate in maintaining the compositions in a solid form. Suitable solidification agents include a solid polyethylene glycol (PEG), a solid EO/PO block copolymer, and the like; an amide, such as stearic monoethanolamide, lauric diethanolamide, an alkylamide, or the like; starches that have been made water-soluble through an acid or alkaline treatment process; celluloses that have been made water-soluble; an inorganic agent, or the like; poly(maleic anhydride/methyl vinyl ether); polymethacrylic acid;
other generally functional or inert materials with high melting points; and the like.
In certain embodiments, the solidification agent includes solid PEG, for example PEG 1500 up to PEG 20,000. In certain embodiments, the PEG includes PEG
1450, PEG 3350, PEG 4500, PEG 8000, PEG 20,000, and the like. Additional suitable solidification agents include EO/PO block copolymers such as those sold under the tradenames Platonic 108, Platonic F68; amides such as lauric diethanolamide or cocodiethylene amide; and the like. In certain embodiments, the solidification agent includes a combination of solidification agents, such as combination of PEG
and an EO/PO block copolymer (such as a Platonic) and combination of PEG and an amide (such as lauric diethanolamide amide or stearic monoethanol amide).
Fragrance In an embodiment, the present composition includes a fragrance. The fragrance can be selected to avoid undesirable effects on the stability or efficacy of the composition. Suitable fragrances include amyl acetate, iso-bornyl acetate, and alkyl salicylates, such as methyl salicylate. In an embodiment, the fragrance can include an allcylsalicylate.
Use Compositions The present compositions include concentrate compositions and use compositions. For example, a concentrate composition can be diluted, for example with water, to form a use composition. In an embodiment, a concentrate composition can be diluted to a use solution before to application to an object. For reasons of economics, the concentrate can be marketed and an end user can dilute the concentrate with water or an aqueous diluent to a use solution.
The level of active components in the concentrate composition is dependent on the intended dilution factor and the desired activity of the medium chain peroxycarboxylic acid compound. Generally, a dilution of about 1 fluid ounce to about 20 gallons of water to about 5 fluid ounces to about 1 gallon of water is used for aqueous antimicrobial compositions. Higher use dilutions can be employed if elevated use temperature (greater than 25 °C) or extended exposure time (greater than 30 seconds) can be employed. In the typical use locus, the concentrate is diluted with a major proportion of water using commonly available tap or service water mixing the materials at a dilution ratio of about 3 to about 20 ounces of concentrate per 100 gallons of water.
For example, a use composition can include about 0.01 to about 4 wt-% of a concentrate composition and about 96 to about 99.99 wt-% diluent; about 0.5 to about 4 wt-% of a concentrate composition and about 96 to about 99.5 wt-% diluent;
about 0.5, about 1, about 1.5, about 2, about 2.5, about 3, about 3.5, or about 4 wt-% of a concentrate composition; about 0.01 to about 0.1 wt-% of a concentrate composition; or about 0.01, about 0.02, about 0.03, about 0.04, about 0.05, about 0.06, about 0.07, about 0.08, about 0.09, or about 0.1 wt-% of a concentrate composition.
Amounts of an ingredient in a use composition can be calculated from the amounts listed above for concentrate compositions and these dilution factors. .
The present methods can employ medium chain peroxycarboxylic acid at a concentration effective for reducing the population of one or more microorganisms.
Such effective concentrations include about 2 to about 500 ppm medium chain peroxycarboxylic acid, about 2 to about 300 ppm medium chain peroxycarboxylic acid, about 5 to about 100 ppm medium chain peroxycarboxylic acid, about 5 to about ppm medium chain peroxycarboxylic acid, about 5 to about 45 ppm medium chain peroxycarboxylic acid, about 5 to about 35 ppm medium chain peroxycarboxylic acid, about 5 to about 25 ppm medium chain peroxycarboxylic acid, about 8 to about 50 ppm medium chain peroxycarboxylic acid, about 10 to about 500 ppm medium chain peroxycarboxylic acid, about 10 to about 50 ppm medium chain peroxycarboxylic acid, about 40 to about 140 ppm medium chain peroxycarboxylic acid, about 100 to about 250 ppm medium chain peroxycarboxylic acid, or about 200 to about 300 ppm medium chain peroxycarboxylic acid. In an embodiment, the use composition can include about 2 to about 500 ppm medium chain peroxycarboxylic acid, about 5 to about 2000 ppm medium chain carboxylic acid, about 95 to about 99.99 wt-% carrier and/or diluent (e.g., water); and about 2 to about 23,000 ppm polyalkylene oxide, capped polyalkylene oxide, alkoxylated surfactant, anionic surfactant, or mixture thereof.
The level of reactive species, such as peroxycarboxylic acids and/or hydrogen peroxide, in a use composition can be affected, typically diminished, by organic matter that is found in or added to the use composition. For example, when the use composition is a bath or spray used for washing an object, soil on the object can consume peroxy acid and peroxide. Thus, the present amounts of ingredients in the use compositions refer to the composition before or early in use, with the understanding that the amounts will diminish as organic matter is added to the use composition.
In an embodiment, the present use composition can be made more acidic by passing the concentrate through an acidifying column, or by adding additional acidulant to the use composition.
Other Fluid Compositions The present and compositions can include a critical, near critical, or supercritical (densified) fluid and an antimicrobial agent or a gaseous composition of an antimicrobial agent. The densified fluid can be a near critical, critical, supercritical fluid, or another type of fluid with properties of a supercritical fluid.
Fluids suitable for densification include carbon dioxide, nitrous oxide, ammonia, xenon, krypton, methane, ethane, ethylene, propane, certain fluoroalkanes (e.g., chlorotrifluoromethane and monofluoromethane), and the like, or mixtures thereof. Suitable fluids include carbon dioxide.
In an embodiment, the present compositions or methods include densified carbon dioxide, medium chain peroxycarboxylic acid, and medium chain carboxylic acid. Such a composition can be referred to as a densified fluid medium chain peroxycarboxylic acid composition. In another embodiment, the antimicrobial composition includes the fluid, an antimicrobial agent, and any of the optional or added ingredients, but is in the form of a gas.

Densified fluid antimicrobial compositions can be applied by any of several methods known to those of skill in the art. Such methods include venting at an object a vessel containing densified fluid and antimicrobial agent. The aqueous phase, which includes hydrogen peroxide, is advantageously retained in the device. The vented gas includes an effective amount of antimicrobial agent making the densified fluid peroxycarboxylic acid compositions effective antimicrobial agents.
Because of the high pressure nature of the densified fluid compositions of the invention, these compositions are typically applied by venting a vessel containing the composition through a pressure relief device that is designed to promote rapid efficient coverage of an object. Devices including such a pressure relief device include sprayers, foggers, foamers, foam pad applicators, brush applicators or any other device that can permit the expansion of the fluid materials from high pressure to ambient pressure while applying the material to an object. The densified fluid peroxycarboxylic acid composition can also be applied to an object by any of a variety of methods known for applying gaseous agents to an object.
Densified fluid antimicrobial compositions can be made by reacting an oxidizable substrate with an oxidizing agent in a medium comprising a densified fluid to form an antimicrobial composition. This reaction is typically carried out in a vessel suitable for containing a densified fluid. Reacting can include adding to the vessel the oxidizable substrate and the oxidizing agent, and adding fluid to the vessel to form the densified fluid. In an embodiment, the reaction is between a medium chain carboxylic acid and hydrogen peroxide to form the corresponding peroxycarboxylic acid.
The hydrogen peroxide is commonly supplied in the form of an aqueous solution of hydrogen peroxide.
Supercritical, subcritical, near supercritical, and other dense fluids and solvents that can be employed with such fluids are disclosed in U.S. Patent No.
5,306,350, issued April 26, 1994 to Hoy et al., which is incorporated by reference herein for such disclosure. Supercritical and other dense forms of carbon dioxide, and cosolvents, co-surfactants, and other additives that can be employed with these forms of carbon dioxide are disclosed in U.S. Patent No. 5,66,005, issued February 2, 1999 to DeSimone et al., which is incorporated by reference herein for such disclosure.

Making Medium Chain Peroxycarboxylic Acid Compositions The compositions of or used in the methods of the invention can be made by combining or reacting the medium chain carboxylic acid and the oxidizing agent, such as hydrogen peroxide. Combining or reacting medium chain carboxylic acid and oxidizing agent results in production of medium chain peroxycarboxylic acid. In an embodiment, combining includes mixing. The formulation combined for making the present compositions can also include the solubilizer, the acidulant, the carrier, stabilizing agent, mixtures thereof, or the like. In an embodiment, the formulation includes solubilizer.
Alternatively, one or more (e.g., at least one) of the solubilizer, the acidulant, the carrier, or mixtures thereof, can be added after production of some or all of the peroxycarboxylic acid.
In an embodiment, the present invention includes a method of making a medium chain peroxycarboxylic acid. The method can include combining or reacting medium chain carboxylic acid, carrier (e.g., water), oxidizing agent (e.g., hydrogen peroxide), solubilizer, acidulant, and stabilizing agent. The method can include mixing the ingredients at concentrations of about 1 to about 10 wt-% medium chain carboxylic acid, about 0 to about 98 wt-% carrier, about 2 to about 30 wt-% oxidizing agent, about 1 to about 80 wt-% solubilizer, about 1 to about 50 wt-% acidulant, and about 0.5 to about 50 wt-% stabilizing agent. The method can include mixing the ingredients at concentrations about 1 to about 10 wt-% medium chain carboxylic acid, about 5 to about 97 wt-% carrier, about 2 to about 30 wt-% oxidizing agent, about 1 to about 20 wt-% solubilizer (e.g., microemulsion forming surfactant), about 1 to about 50 wt-acidulant, and about 0.5 to about 50 wt-% stabilizing agent. The present compositions also include compositions in which these combinations of ingredients have come to equilibrium forming medium chain peroxycarboxylic acid.
In an embodiment, the present method produces advantageously high levels of medium chain peroxycarboxylic acid in advantageously short times.
Advantageously short times include, for example, about 24 or fewer hours, about 6 or fewer hours, about 3 or fewer hours, or about 0.5 hr. In an embodiment, high levels of medium chain peroxycarboxylic acid can be achieved nearly instantaneously. High levels of medium chain peroxycarboxylic acid be achieved by converting 20% or more, 25%
or more, 30% or more, 35% or more, or 40% of the medium chain carboxylic acid to medium chain peroxycarboxylic acid. Such conversions can be achieved at room temperature or in a reaction started at room temperature and warmed by an exotherm.
Lower temperatures can require a longer time to reach the same amount of conversion.
The amount of time is typically measured from the time that the carboxylic acid, oxidizing agent, solubilizer, and acidulant are combined or reacted.
For example, in an embodiment, the present method can convert 20% or more of the medium chain carboxylic acid to medium chain peroxycarboxylic acid in about 24 or fewer hours. For example, in an embodiment, the present method can convert about 25% or more of the medium chain carboxylic acid to medium chain peroxycarboxylic acid in about 24 or fewer hours. For example, in an embodiment, the present method can convert about 30% or more of the medium chain carboxylic acid to medium chain peroxycarboxylic acid in about 24 or fewer hours. For example, in an embodiment, the present method can convert about 35% or more of the medium chain carboxylic acid to medium chain peroxycarboxylic acid in about 24 or fewer hours.
For example, in an embodiment, the present method can convert about 40% of the medium chain carboxylic acid to medium chain peroxycarboxylic acid in about 24 or fewer hours.
In an embodiment, making the present compositions includes forming a microemulsion. A microemulsion can be formed by mixing the desired ingredients including a microemulsion forming surfactant. The method can include combining or mixing the ingredients at concentration of about 1 to about 10 wt-% medium chain carboxylic acid, about 5 to about 97 wt-% carrier (e.g., water), about 2 to about 30 wt-oxidizing agent, about 1 to about 20 wt-% microemulsion forming surfactant, and about 1 to about 50 wt-% stabilizer. The present compositions also include compositions in which these combinations of ingredients have come to equilibrium forming medium chain peroxycarboxylic acid. The components can be added in any of a variety of orders. In an embodiment, formation of the medium chain peroxy carboxylic acid can proceed rapidly after the addition of the microemulsion forming surfactant. Although not limiting to the present invention, it is believed that the formation of the microemulsion can significantly increase the effective surface area of the medium chain carboxylic acid (as micro-droplets) for reaction.

The present compositions can be made in a plant as a concentrate and shipped to an end user who need only dilute the concentrate to form a use composition.
The present medium chain peroxycarboxylic acid compositions can also be made at the site of use. For example, the product can be shipped as a two or more part composition or as a kit. The user can then combine the two or more compositions or components of the kit to produce the present medium chain peroxycarboxylic acid compositions.
Alternatively, a system of formulating equipment and containers of raw materials can be provided at the site of use, and programmed or operated to mix and disperse the present medium chain peroxycarboxylic acid compositions.
In an embodiment, the product can be supplied as a two or more part composition. One composition can include carboxylic acid and one or more (e.g., at least one) of solubilizer, acidulant, carrier, stabilizing agent, mixtures thereof, or the like. The second composition can include oxidizing agent and one or more (e.g., at least one) of solubilizer, acidulant, carrier, stabilizing agent mixtures thereof, or the like. Alternatively, the solubilizer, acidulant, carrier, stabilizing agent mixtures thereof, or the like can be supplied as additional composition(s).
In an embodiment, the pH of a concentrate composition can be less than about 1 or about 2. In an embodiment, the pH of a 1 % or 1.5% solution of the mixture in water is about 1 or 2 to about 7, depending on the other components of the 1 %
solution. In an embodiment, the pH of a use composition can be from about 2 to about 7 depending on the other components.
Some examples of representative concentrations of ingredients useful in the present methods of malting medium chain peroxycarboxylic acid compositions can be found in Tables G and H, in which the values are given in wt-% of the ingredients in reference to the total composition weight. In certain embodiments, the proportions and amounts in Tables G-H can be modified by "about". The present compositions also include compositions in which these combinations of ingredients have come to equilibrium forming medium chain peroxycarboxylic acid.

Table G
Ingredient wt-% wt-% wt-% wt-% wt-% wt-% wt-% wt-medium chain 1-10 3-8 4-6 2-8 3-6 1-10 3-8 3-6 carboxylic acid solubilizer 1-80 2-70 3-65 5-70 10-65 1-25 3-15 4-10 carrier 0-98 5-90 10-80 0.2-605-20 5-97 15-70 30-75 I

Table H
Ingredient wt-% wt-% wt-% wt-% wt-% wt-% wt-% wt-medium chain 1-10 3-8 4-6 2-8 3-6 1-10 3-8 3-6 carboxylic acid solubilizer 1-80 2-70 3-65 5-70 10-65 1-25 3-15 4-10 carrier 0-98 5-90 10-80 0.2-605-20 5-97 15-70 30-75 oxidizing 2-30 2-25 4-20 2-25 4-20 2-30 4-20 6-10 agent acidulant 1-50 2-40 3-40 2-40 3-40 1-50 3-35 5-30 stabilizing 1-50 1-10 1-5 1-10 1-5 1-50 1-5 1-3 agent Methods Emnloyin~ the Medium Chain Peroxycarboxylic Acid Compositions The present invention includes methods employing the medium chain peroxycarboxylic acid compositions. Typically, these methods employ the antimicrobial or bleaching activity of the peroxycarboxylic acid. For example, the invention includes a method for reducing a microbial population, a method for reducing the population of a microorganism on slcin, a method for treating a disease of skin, a method for reducing an odor, or a method for bleaching. These methods can operate on an object, surface, in a body or stream of water or a gas, or the like, by contacting the object, surface, body, or stream with a stabilized ester peroxycarboxylic acid composition of the invention. Contacting can include any of numerous methods for applying a composition, such as spraying the composition, immersing the object in the composition, foam or gel treating the object with the composition, or a combination thereof.
The compositions of the invention can be used for a variety of domestic or industrial applications, e.g., to reduce microbial or viral populations on a surface or object or in a body or stream of water. The compositions can be applied in a variety of areas including kitchens, bathrooms, factories, hospitals, dental offices and food plants, and can be applied to a variety of hard or soft surfaces having smooth, irregular or porous topography. Suitable hard surfaces include, for example, architectural surfaces (e.g., floors, walls, windows, sinks, tables, counters and signs); eating utensils; hard-y surface medical or surgical instruments and devices; and hard-surface packaging. Such hard surfaces can be made from a variety of materials including, for example, ceramic, metal, glass, wood or hard plastic. Suitable soft surfaces include, for example paper;
filter media, hospital and surgical linens and garments; soft-surface medical or surgical instruments and devices; and soft-surface packaging. Such soft surfaces can be made from a variety of materials including, for example, paper, fiber, woven or nonwoven fabric, soft plastics and elastomers. The compositions of the invention can also be applied to soft surfaces such as food and slcin (e.g., a hand). The present compositions can be employed as a foaming or nonfoaming environmental sanitizer or disinfectant.
The antimicrobial compositions of the invention can be included in products such as sterilants, sanitizers, disinfectants, preservatives, deodorizers, antiseptics, fungicides, germicides; sporicides, virucides, detergents, bleaches, hard surface cleaners, hand soaps, waterless hand sanitizers, and pre- or post-surgical scrubs.
The antimicrobial compositions can also be used in veterinary products such as mammalian skin treatments or in products for sanitizing or disinfecting animal enclosures, pens, watering stations, and veterinary treatment areas such as inspection tables and operation rooms. The present compositions can be employed in an antimicrobial foot bath for livestock or people.
The present compositions can be employed for reducing the population of pathogenic microorganisms, such as pathogens of humans, animals, and the lilce. The compositions can exhibit activity against pathogens including fungi, molds, bacteria, spores, and viruses, for example, S. auy~eus, E. coli, Sty°eptococci, Legionella, Pseudomovcas aenugifzosa, mycobacteria, tuberculosis, phages, or the like.
Such pathogens can cause a varieties of diseases and disorders, including Mastitis or other mammalian milking diseases, tuberculosis, and the like. The compositions of the present invention can reduce the population of microorganisms on skin or other external or mucosal surfaces of an animal. In addition, the present compositions can kill pathogenic microorganisms that spread through transfer by water, air, or a surface substrate. The composition need only be applied to the skin, other external or mucosal surfaces of an animal water, air, or surface.
The antimicrobial compositions can also be used on foods and plant species to reduce surface microbial populations; used at manufacturing or processing sites handling such foods and plant species; or used to treat process waters around such sites.
For example, the compositions can be used on food transport lines (e.g., as belt sprays);
boot and hand-wash dip-pans; food storage facilities; anti-spoilage 'air circulation systems; refrigeration and cooler equipment; beverage chillers and warmers, blanchers, cutting boards, third sink areas, and meat chillers or scalding devices. The compositions of the invention can be used to treat produce transport waters such as those found in flumes, pipe transports, cutters, slicers, blanchers, retort systems, washers, and the like. Particular foodstuffs that can be treated with compositions of the invention include eggs, meats, seeds, leaves, fruits and vegetables.
Particular plant surfaces include both harvested and growing leaves, roots, seeds, skins or shells, stems, stalks, tubers, corms, fruit, and the like. The compositions may also be used to treat animal carcasses to reduce both pathogenic and non-pathogenic microbial levels.
The present composition is useful in the cleaning or sanitizing of containers, processing facilities, or equipment in the food service or food processing industries.
The antimicrobial compositions have particular value for use on food packaging materials and equipment, and especially for cold or hot aseptic packaging.
Examples of process facilities in which the composition of the invention can be employed include a mills line dairy, a continuous brewing system, food processing lines such as pumpable food systems and beverage lines, etc. Food service wares can be disinfected with the composition of the invention. For example, the compositions can also be used on or in ware wash machines, dishware, bottle washers, bottle chillers, warmers, third sink washers, cutting areas (e.g., water knives, dicers, cutters and saws) and egg washers.
Particular treatable surfaces include packaging such as cartons, bottles, films and resins; dish ware such as glasses, plates, utensils, pots and pans; ware wash machines;
exposed food preparation area surfaces such as sinks, counters, tables, floors and walls;
processing equipment such as tanks, vats, lines, pumps and hoses (e.g., dairy processing equipment for processing milk, cheese, ice cream and other dairy products);
and transportation vehicles. Containers include glass bottles, PVC or polyolefm film sacks, cans, polyester, PEN or PET bottles of various volumes (100 ml to 2 liter, etc.), one gallon milk containers, paper board juice or milk containers, etc.
The antimicrobial compositions can also be used on or in other industrial equipment and in other industrial process streams such as heaters, cooling towers, boilers, retort waters, rinse waters, aseptic paclcaging wash waters, and the like. The compositions can be used to treat microbes and odors in recreational waters such as in pools, spas, recreational flumes and water slides, fountains, and the like.
A filter containing the composition can reduce the population of microorganisms in air and liquids. Such a filter can remove water and air-born pathogens such as Legionella.
The present compositions can be employed for reducing the population of microbes, fruit flies, or other insect larva on a drain or other surface.
The composition may also be employed by dipping food processing equipment into the use solution, soaking the equipment for a time sufficient to sanitize the equipment" and wiping or draining excess solution off the equipment, The composition may be further employed by spraying or wiping food processing surfaces with the use solution, keeping the surfaces wet for a time sufficient to sanitize the surfaces, and removing excess solution by wiping, draining vertically, vacuuming, etc.
The composition of the invention may also be used in a method of sanitizing hard surfaces such as institutional type equipment, utensils, dishes, health care equipment or tools, and other hard surfaces. The composition may also be employed in sanitizing clothing items or fabric which have become contaminated. The use solution is contacted with any of the above contaminated surfaces or items at use temperatures in the range of about 4°C to 60°C, for a period of time effective to sanitize, disinfect, or sterilize the surface or item. For example, the concentrate composition can be injected into the wash or rinse water of a laundry machine and contacted with contaminated fabric for a time sufficient to sanitize the fabric. Excess solution can then be removed by rinsing or centrifuging the fabric.
The antimicrobial compositions can be applied to microbes or to soiled or cleaned surfaces using a variety of methods. These methods can operate on an object, surface, in a body or stream of water or a gas, or the like, by contacting the object, surface, body, or stream with a composition of the invention. Contacting can include any of numerous methods for applying a composition, such as spraying the composition, immersing the object in the composition, foam or gel treating the object with the composition, or a combination thereof.
A concentrate or use concentration of a composition of the present invention can be applied to or brought into contact with an object by any conventional method or apparatus for applying an antimicrobial or cleaning composition to an object.
For example, the object can be wiped with, sprayed with, foamed on, andlor immersed in the composition, or a use solution made from the composition. The composition can be sprayed, foamed, or wiped onto a surface; the composition can be caused to flow over the surface, or the surface can be dipped into the composition.
Contacting can be manual or by machine. Food processing surfaces, food products, food processing or transport waters, and the like can be treated with liquid, foam, gel, aerosol, gas, wax, solid, or powdered stabilized compositions according to the invention, or solutions containing these compositions.
Additional methods employing the present compositions can be found in U.S.
Patent Applications Serial No. entitled METHODS FOR WASHING
POULTRY DURING PROCESSING WITH MEDIUM CHAIN
PEROXYCARBOXYLIC ACID COMPOSITIONS; Serial No. entitled METHODS FOR WASHING CARCASSES, MEAT, OR MEAT PRODUCTS WITH
MEDIUM CHAIN PEROXYCARBOXYLIC ACID COMPOSITIONS; and Serial No.
entitled METHODS FOR WASHING AND PROCESSING FRUITS, VEGETABLES, AND OTHER PRODUCE WITH MEDIUM CHAIN
PEROXYCARBOXYLIC ACID COMPOSITIONS; each of which was filed evendate herewith; each of which is incorporated herein by reference.
Clean in Place Other hard surface cleaning applications for the antimicrobial compositions of the invention include clean-in-place systems (CIP), clean-out-of place systems (COP), washer-decontaminators, sterilizers, textile laundry machines, ultra and nano-filtration systems and indoor air filters. COP systems can include readily accessible systems including wash tanks, soaking vessels, mop buckets, holding tanks, scrub sinks, vehicle parts washers, non-continuous batch washers and systems, and the like.

Generally, the actual cleaning of the in-place system or other surface (i.e., removal of unwanted offal therein) is accomplished with a different material such as a formulated detergent which is introduced with heated water. After this cleaning step, the instant composition would be applied or introduced into the system at a use solution concentration in unheated, ambient temperature water. CIP typically employ flow rates on the order of about 40 to about 600 liters per minute, temperatures from ambient up to about 70°C, and contact times of at least about 10 seconds, for example, about 30 to about 120 seconds. The present composition can remain in solution in cold (e.g., 40°F./4°C.) water and heated (e.g., 140°F.160° C.) water. Although it is not normally necessary to heat the aqueous use solution of the present composition, under some circumstances heating may be desirable to further enhance its antimicrobial activity.
These materials are useful at any conceivable temperatures.
A method of sanitizing substantially fixed in-place process facilities includes the following steps. The use solution of the invention is introduced into the process facilities at a temperature in the range of about 4 °C to 60 °C.
After introduction of the use solution, the solution is held in a container or circulated throughout the system for a time sufficient to sanitize the process facilities (i.e., to kill undesirable microorganisms). After the surfaces have been sanitized by means of the present composition, the use solution is drained. Upon completion of the sanitizing step, the system optionally may be rinsed with other materials such as potable water.
The composition can be circulated through the process facilities for 10 minutes or less.
The present method can include delivering the present composition via air delivery to the clean-in-place or other surfaces such as those inside pipes and tanks.
This method of air delivery can reduce the volume of solution required.
Contacting a Food Product with the Medium Chain Peroxycarboxylic Acid Composition The present method and system provide for contacting a food product with a medium chain composition employing any method or apparatus suitable for applying such a composition. For example, the method and system of the invention can contact the food product with a spray of the composition, by immersion in the composition, by foam or gel treating with the composition, or the like. Contact with a spray, a foam, a gel, or by immersion can be accomplished by a variety of methods known to those of skill in the art for applying antimicrobial agents to food. Contacting the food product can occur in any location in which the food product might be found, such as field, processing site or plant, vehicle, warehouse, store, restaurant, or home.
These same methods can also be adapted to apply the stabilized compositions of the invention to other obj ects.
The present methods require a certain minimal contact time of the composition with food product for occurrence of significant antimicrobial effect. The contact time can vary with concentration of the use composition, method of applying the use composition, temperature of the use composition, amount of soil on the food product, number of microorganisms on the food product, type of antimicrobial agent, or the like.
The exposure time can be at least about 5 to about 15 seconds.
In an embodiment, the method for washing food product employs a pressure spray including the composition. During application of the spray solution on the food product, the surface of the food product can be moved with mechanical action, e.g., agitated, rubbed, brushed, etc. Agitation can be by physical scrubbing of the food product, through the action of the spray solution under pressure, through sonication, or by other methods. Agitation increases the efficacy of the spray solution in killing micro-organisms, perhaps due to better exposure of the solution into the crevasses or small colonies containing the micro-organisms. The spray solution, before application, can also be heated to a temperature of about 15 to 20 °C, for example, about 20 to 60 °C
to increase efficacy. The spray stabilized composition can be left on the food product for a sufficient amount of time to suitably reduce the population of microorganisms, and then rinsed, drained, or evaporated off the food product.
Application of the material by spray can be accomplished using a manual spray wand application, an automatic spray of food product moving along a production line using multiple spray heads to ensure complete contact, or other spray apparatus. One automatic spray application involves the use of a spray booth. The spray booth substantially confines the sprayed composition to within the booth. The production line moves the food product through the entryway into the spray booth in which the food product is sprayed on all its exterior surfaces with sprays within the booth.
After a complete coverage of the material and drainage of the material from the food product within the booth, the food product can then exit the booth. The spray booth can include steam jets that can be used to apply the stabilized compositions of the invention. These steam jets can be used in combination with cooling water to ensure that the treatment reaching the food product surface is less than 65°C, e.g., less than 60°C. The temperature of the spray on the food product is important to ensure that the food product is not substantially altered (cooked) by the temperature of the spray.
The spray pattern can be virtually any useful spray pattern.
Immersing a food product in a liquid stabilized composition can be accomplished by any of a variety of methods known to those of skill in the art. For example, the food product can be placed into a tank or bath containing the stabilized composition. Alternatively, the food product can be transported or processed in a flume of the stabilized composition. The washing solution can be agitated to increase the efficacy of the solution and the speed at which the solution reduces micro-organisms accompanying the food product. Agitation can be obtained by conventional methods, including ultrasonics, aeration by bubbling air through the solution, by mechanical methods, such as strainers, paddles, brushes, pump driven liquid jets, or by combinations of these methods. The washing solution can be heated to increase the efficacy of the solution in killing micro-organisms. After the food product has been immersed for a time sufficient for the desired antimicrobial effect, the food product can be removed from the bath or flume and the stabilized composition can be rinsed, drained, or evaporated off the food product.
In another alternative embodiment of the present invention, the food product can be treated with a foaming version of the composition. The foam can be prepared by mixing foaming surfactants with the washing solution at time of use. The foaming ~ surfactants can be nonionic, anionic or cationic in nature. Examples of useful surfactant types include, but are not limited to the following: alcohol ethoxylates, alcohol ethoxylate carboxylate, amine oxides, alkyl sulfates, alkyl ether sulfate, I
sulfonates, quaternary ammonium compounds, alkyl sarcosines, betaines and alkyl amides. The foaming surfactant is typically mixed at time of use with the washing solution. Use solution levels of the foaming agents is from about 50 ppm to about 2.0 wt-%. At time of use, compressed air can be injected into the mixture, then applied to the food product surface through a foam application device such as a tank foamer or an aspirated wall mounted foamer.
In another alternative embodiment of the present invention, the food product can be treated with a thickened or gelled version of the composition. In the thickened or gelled state the washing solution remains in contact with the food product surface for longer periods of time, thus increasing the antimicrobial efficacy. The thickened or gelled solution will also adhere to vertical surfaces. The composition or the washing solution can be thickened or gelled using existing technologies such as:
xanthan gum, polymeric thickeners, cellulose thickeners, or the like. Rod micelle forming systems such as amine oxides and anionic counter ions could also be used. The thickeners or gel forming agents can be used either in the concentrated product or mixing with the washing solution, at time of use. Typical use levels of thickeners or gel agents range from about 100 ppm to about 10 wt-%.
Aseptic Packa ing In the method of the present invention, aseptic paclcaging includes contacting the container with a composition according to the present invention. Such contacting can be accomplished using a spray device or soaking tank or vessel to intimately contact the inside of the container with the composition for sufficient period of time to clean or reduce the microbial population in the container. The container is then emptied of the amount of the present composition used. After emptying the container can then be rinsed with potable water or sterilized water (which can include a rinse additive) and again emptied. After rinsing, the container can be filled with the liquid beverage. The container is then sealed, capped or closed and then packed for shipment for ultimate sale.
The Figure shows a schematic for an embodiment of a bottle spraying/bottling operation using a composition according to the present invention. The operation can be a cold aseptic operation. The Figure shows a plant 100 that can contact beverage bottles with a medium chain peroxycarboxylic acid composition for a sanitizing regime.
In the Figure, bottles 110 are passed through a sterilizing tunnel 102. The sanitized bottles 1 10a then pass through a rinsing tunnel 103 and emerge as sanitized rinsed bottles 110b.

In the process, bulk medium chain peroxycarboxylic acid composition is added to a holding tank 101. Commonly, the materials are maintained at a temperature of about 22°C in tank 101. To obtain the effective use concentration of the medium chain peroxycarboxylic acid composition, make-up water 105 is combined with the concentrated medium chain peroxycarboxylic acid composition into the tank 101.
The medium chain peroxycarboxylic acid use composition is passed through a heater 108 to reach a temperature of about 45-50 °C. The heated medium chain peroxycarboxylic acid use composition is sprayed within sterilizing tunnel 102 into and onto all surfaces of the bottle 110. An intimate contact between the medium chain peroxycarboxylic acid composition and the bottle 110 is essential for reducing microbial populations to a sanitizing level.
After contact with the medium chain peroxycarboxylic acid use composition and after dumping any excess composition from the bottles, the sanitized bottles 110 are then passed to a fresh water rinse tunnel 103. Fresh water 108 is provided from a fresh water make-up into a spray rinsing tumlel 103. The flesh water can include a rinse additive. Excess spray drains from rinsing tunnel 103 to drain 106.
Within the tunnel 103, sanitized bottles 110a are thoroughly rinsed with fresh water. The complete removal of the medium chain peroxycarboxylic acid composition from the bottles 1 10a is important for maintaining high quality of the beverage product. The rinsed and sanitized bottles 110b are then removed from the rinsing tunnel.
The day tank 101, the sterilizing tunnel 102 and the rinsing tunnel 103 are all respectively vended to wet scrubber or vent 111 a, 11 1b or 111 c to remove vapor or fumes from the system components. The sanitizer material that has been sprayed and drained from the bottles 11 Oa accumulate in the bottom of the spray tunnel 102 and is then recycled through recycle line and heater 107 into the day tank 101.
The contact between the bottles and the medium chain peroxycarboxylic acid antimicrobial composition can be at a temperature of greater than about 0 °C , greater than 25 °C, or greater than about 40 °C. Temperatures between about 40 °C and 90 °C
can be used. In certain embodiments, contact at 40 °C to 60 °C
for at least 5 sec, for example at least about preferably 10 sec, contact time is employed.
In the cold aseptic filling of 16 ounce polyethylene terephthalate (PET
bottle), or other polymeric, beverage containers, a process has been adopted using a medium chain peroxycarboxylic acid composition. The medium chain peroxycarboxylic acid composition can be diluted to a use concentration of about 0.1 to about 10 wt%
and maintained at an effective elevated temperature of about 25°C to about 70°C, e.g., about 40°C to about 60°C. The spray or flood of the bottle with the material ensures contact between the bottle and the sanitizer material for at least 5, e.g., about 10, seconds.
After flooding is complete, the bottle can be drained of all contents for a minimum of 2 seconds and optionally followed by a 5 second water rinse with sterilized water using about 200 milliliters of water at 38°C (100°F). If optionally filled with the rinse water, the bottle is then drained of the sterilized water rinse for at least 2 seconds and is immediately filled with liquid beverage. The rinse water can include a rinse additive.
After the rinse is complete, the bottles usually maintain less than 10, preferably 3, milliliters of rinse water after draining.
The present invention may be better miderstood with reference to the following examples. These examples are intended to be representative of specific embodiments of the invention, and are not intended as limiting the scope of the invention.
EXAMPLES
Example 1 - - Compositions Including Medium Chain Peroxycarboxylic Acid and Solubilizer Tables 1-5 present illustrative examples of the present compositions including medium chain peroxycarboxylic acid and solubilizer. Quantities in the tables are in wt-%.

Table 1 - Examples of Compositions Including Solvent Solubilizer Ingredient A B C D E

Medium Chain l , 1.6 1.4 1.6 2.9 Peroxycarboxylic g Acid Medium Chain 3.4 3.6 3.7 3.6 2.4 Carboxylic Acid Solubilizer 60 40 60 60 40 Carrier 25 22 25 22 22 Oxidizing Agent 7.0 6.6 7.0 6.9 6.9 ' Acidulant 2 25 2 5 25 Stabilizing Agent 1.2 1.2 1.2 1.2 1.2 In each of compositions A=Q: the medium chain peroxycarboxylic acid was peroxyoctanoic acid; the medium chain carboxylic acid was octanoic acid; the carrier was water; the oxidizing agent was hydrogen peroxide (supplied from a 35%
solution);
and the stabilizing agent was HEDP (supplied as bequest 2010 which includes 60 wt-HEDP).
In each of compositions A-L, O, P, and Q: the acidulant was concentrated sulfuric acid. In compositions M and N, the acidulant was phosphoric acid (supplied as 85% and 75% phosphoric acid, respectively).
The solubilizer was varied among these compositions. In compositions A and B, the solubilizer was polyethyleneglycol 300. In compositions C, D, and E, the solubilizer was monomethyl ether of polyethyleneglycol (MPEG S50). In composition F, the solubilizer was nonionic surfactant, specifically Pluronic 1784 an (PO)X(EO)y(PO)X reverse tribloclc copolymer with 40% EO and 60% PO. In composition G, the solubilizer was polyethyleneglycol 300 plus LAS acid (98%
linear dodecylbenzene sulfonic acid). In composition H, the solubilizer was polyethyleneglycol 300 plus 1-octane sulfonate (supplied under the tradename NAS-FAL as 38% active). In composition I, the solubilizer was polyethyleneglycol 300 plus Dowfax Hydrotrope acid (C6 alkylated diphenyl oxide disulfonic acid). In composition J, the solubilizer was dimethyl ether of polyethyleneglycol (PoIyDME250) and LAS
acid. In composition K, the solubilizer was dimethyl ether of polyethyleneglycol (PoIyDME250) and NAS-FAL. In composition L, the solubilizer was dimethyl ether of polyethyleneglycol (PoIyDME250) and Dowfax Hydrotrope acid. In V7 O N ~-'N ~p N ,-i "d N

V1 00 ~p l~ V~ N
N ~ N pp N ,-i N
N

N
.
r, ,.flO O N pp~ 00 01 t/~N
O N N ~p N ,-i O

01d. oo ~ ~O N
O d- N N ~p N

l~ d-M ~ N ~ ~-'N

O ~ ~p N

~, N
N

-~ N l~ d- ~n ~n N
M '~' N ~p ,- y.;

O

'"' N d-~ ,--~d',~ N
N d- d' N ~p -~ ,.-i O

d1 N N
O d= d' N ~p r., U

O
v~,-, O V'~O ~ l~ ~O
d' d' M ~O

O
..., +~

N M ~ l~ l0 O

U

0 o O~
O d: d'~ M ~ l~ \O

M o m ~ o ~ c~
O d- d' M [v ,...., N

N

E"'' U N ...-.~- +, .~~a~ ~ O

b A

U U o .~, ~, bn .
~

+~ N

.-~ .->C "d ~ ~+-~~ ;'d; , "C~ ~ d O

~ n O i U

~ c U ~ c ~

N ~ ~ 00 ,_,~ O
M

N

- . r, . r, M o, p N M N O ~ M
N N 0 ~ -, --, . ~ ,-i M ~ \O l~
O
V~

~ O d- ~ 01 d' O
M ~j N N oo M N ~

s~ , N 01 00 N ~ -i cV

~, l~ p d- l~ d' O

M N N N oo a1 cV
M

O 01 ~ ~p O

fV

00 \O O d- ~p 01 d' O
N N o +~ M N o N

(i~ o0 N a1 .,~ N ~ ~ l~
w O ~ M ~ d.
O M N N p~ M

by U

'+-' W 'd; ~n o ~O
' O t~ N 0o d' ~ (~,-~ N ~ ~D l~

U .-.~ M N N p~ M N
U

O .--a O
O O l~ N oo d' ~ (~M ~ p~ O
-i i N N M . -. ,- mY a1 cV ~ .- nj ~n o0 bA

O -~ O 01 M l0 d' 'd O 'cr N N 0o M N ~ U d; ~n ~ N o0 v U ,-a c~i O ~ ~n ~O ~ N O ~p d' O d' ~ M 00 M N O ~ N 01 V'701 M

N ~ ~O

O

W :~ ~ O p U ~ O ~ tI~d;

M ~ ~ U ~ N N '~'l~

U ~ 4-a ~ ' ~ O

, ; , ~ N
d U
bA ~ ~ ~n ~O ~ ,-~t~

U U ~ ~ ~ -~ M
,..o ~

.

>C U ~. ~ d $.N.'d ,.O 4cld.-aN ~ ~ W :
O .9 ,-a'~ ~ U

0. ~U ~ ~ O

~ ~ ci~,a? _~
a c d c~ CCi bA
~

O U i U ~
~

a~
N

'CS 'C3 O ~

~ U O
U

r N N ~ d: d; N O~

'' p ~-r~ N M ~ ,-~N

d. 00 -i r'~-O o0 O ,--,O oo l~

,~ ,-a cy r' ~nop ,-,N

'-''~ [-,N ~O d-00 00 ~

E-~o M v~l~ ,-~N

d--~ -' U~ ~ V~ O M l0 ~O M

M O r"''~ ~n N N

M

N , ~ M pp~n ~p M
N

l~ N N

pp M

N a ~ M ~ ~ 'p M
N

a o M tnl~ N N

M
N N p..,d1 .-~ ~ O ,-,~p M

O M ~ l~ N N

"d M N

0o in o 00 ~O M

V O V N (V

+~ ~

M

N N

M [w~ ~p M
~

N ~ ~O N N

~

, ~ I~ [w01 ~p M
, d' i N V~~O N N

M

N

d' ~p i N ~ I~ N N

'p d:

M N

U

b~A

bA ,~ ,~ ~ d' ~ ~

by N N ~ ~ .,-N-i ..rte,' ..i ~ ~ U ~

' ~r .-i .-i ..D.
.-N,'-~ i.~-~5C O Q~
''C 'rJ d O ~

~ ~ U O ~
U

~

d' H

compositions M, N, O and P, the solubilizer was dimethyl ether of polyethyleneglycol (PoIyDME250) and NAS-FAL. In composition Q, the solubilizer was dimethyl ether of polyethyleneglycol (PoIyDME250) and NAS acid (supplied as 93% 1-octane sulfonic acid).
These compositions were made from a composition including 5 wt-% medium chain carboxylic acid.
In each of compositions R-Z: the medium chain peroxycarboxylic acid was peroxyoctanoic acid; the medium chain carboxylic acid was octanoic acid; the carrier was water; the oxidizing agent was hydrogen peroxide (supplied from a 35%
solution);
and the stabilizing agent was HEDP (supplied as bequest 2010 which includes 60 wt-HEDP).
In compositions R and S, the acidulant was phosphoric acid (supplied as 75%
phosphoric acid). In each of compositions T, U, and V, the acidulant was reagent grade, 98%, concentrated sulfuric acid (15 wt-%) and phosphoric acid (23 wt-%) (supplied as 75% phosphoric acid). In compositions W, X, Y, and Z, the acidulant was concentrated sulfuric acid (25 wt-%) and phosphoric acid (14 wt-%) (supplied as 75%
phosphoric acid).
The solubilizer was varied among these compositions. In composition R, the solubilizer was 1-octane sulfonate (1.9 wt-%) and Tegotens EC-11 (a butoxy capped alcohol ethoxylate, a fast wetting surfactant) (15 wt-%). In compositions S, T, and W
the solubilizer was Tegotens EC-11. In compositions U and Y, the solubilizer was Dehypon LS-54 (R(EO)5(PO)4, a fast wetting surfactant). In compositions V and Z, the solubilizer was Dehypon LT-104 (a butyl capped alcohol ethoxylate). In composition X, the solubilizer was LF-221 (a butoxy capped alcohol ethoxylate).
In each of compositions AA-VV: the medium chain peroxycarboxylic acid was peroxyoctanoic acid; the medium chain carboxylic acid was octanoic acid; the carrier was water; the oxidizing agent was hydrogen peroxide (supplied as 35% hydrogen peroxide in water); and the stabilizing agent was HEDP (supplied as bequest 2010, which includes 60 wt-% HEDP).
In each of compositions AA, AA-O, DD, EE, GG, KK, LL, MM, NN, 00, PP, QQ, RR, SS, TT, UU, and VV the acidulant was phosphoric acid (supplied as 75%
phosphoric acid). In composition BB, HH the acidulant was concentrated sulfuric acid (reagent grade, 98%). In composition CC, the acidulant was methane sulfonic acid (99.5 % + Aldrich). In composition FF, the acidulant was nitric acid (supplied as 70%
nitric acid). In composition II, the acidulant was concentrated sulfuric acid (technical grade, 93%). In composition JJ, the acidulant was sulfuric acid (supplied as 50%
sulfuric acid).
The solubilizer was varied among these compositions. In compositions AA, AA-O, BB, CC, DD, FF, LL, HH, II, and JJ, the solubilizer was 1-octane sulfonate. In compositions EE and GG, the solubilizer was 1-octane sulfonate (3.8 wt-%) and Dehypon LS-54 (0.2 wt-%). In composition KK, the solubilizer was 1-octane sulfonate (NAS-FAL). In composition MM, the solubilizer was 1-octane sulfonate (3.8 wt-%) and Barlox 12 (dodecyldimethyl amine oxide, 30% active) (0.25 wt-%). In composition NN, the solubilizer was 1-octane sulfonate (3.8 wt-%) and Barlox 12 (0.5 wt-%). In composition 00, the solubilizer was 1-octane sulfonate (3.8 wt-%) and Barlox 12 (1 wt-%). In compositions PP, QQ, RR, and SS, the solubilizer was LAS-acid. In composition TT, the solubilizer was disodium cocoampho dipropionate (supplied under the tradename Miranol~ FBS, which includes 39% solids). In composition UU, the solubilizer was an aminoproprionate betaine (supplied under the tradename Mirataine~ JC-HA, which includes 42% solids). In composition VV, the solubilizer C12-13 alcohol 4 mole EO carboxylic acid (supplied under the tradename Neodox 23-4, which includes 90% active).
The quantities of medium chain peroxycarboxylic acid were determined in compositions PP, QQ, RR, and SS after 7.5 days at 60 °C.

Table 5 - Examples of Compositions Including Anionic Surfactant and/or Microemulsion Solubilizer plus Strong Organic Acidulant Ingredient WW XX YY ZZ BA

Medium Chain 1.5 1.3 0.5 0.5 0.8 Peroxycarboxylic Acid Medium Chain , 2.5 2.7 3.5 3.5 3.2 Carboxylic Acid Solubilizer 4 4 4 4 4 Carrier 58 58 56 57 71 Oxidizing Agent 7.7 7.6 7.7 8.1 8.2 Acidulant 24 24 26 25 11 Stabilizing Agent 1.8 1.8 1.8 1.8 1.8 In each of compositions WW, XX, YY, ZZ, and BA: the medium chain peroxycarboxylic acid was peroxyoctanoic acid; the medium chain carboxylic acid was octanoic acid; the carrier was water; the oxidizing agent was hydrogen peroxide (supplied as 35% hydrogen peroxide in water); the stabilizing agent was HEDP
(supplied as bequest 2010, which includes 60 wt-% HEDP); and the solubilizer was NAS-FAL.
The acidulant was varied among these compositions. In composition WW, the acidulant was hydroxyacetic acid (supplied as 75% hydroxyacetic acid) (19 wt-%) and sulfuric acid (reagent grade, 98%) (5 wt-%). In composition XX, the acidulant was hydroxyacetic acid (supplied as 75% hydroxyacetic acid) (19 wt-%) and methane sulfonic acid (99.5 % + Aldrich) (5 wt-%). In composition YY, the acidulant was hydroxyacetic acid (supplied as 75% hydroxyacetic acid). In composition ZZ, the acidulant was purified hydroxyacetic acid. In composition BA, the acidulant was hydroxypropionic acid (supplied as 22% 3-hydroxypropionic acid).
In these compositions the hydroxycarboxylic acids contributed virtually no solubilization of the medium chain carboxylic acid. The compositions required solubilizer.

M_ akin the Exemplified Compositions Table 6 shows the rapid generation of peroxyoctanoic acid achieved in making composition ILK.
Table 6 - Generation of Peroxyoctanoic Acid with Time at Room Temperature and at 120 °F (Composition I~I~) Minutes [POOA] Minutes [POOA]
at wt-% at wt-11 0.61 30 1.46 53 1.09 45 1.38 97 1.11 60 1.23 130 1.1 90 1.47 235 1.24 120 1.31 293 1.27 330 1.46 366 1.39 395 1.5 When a high level of sulfuric acid was used as the acidulant (Examples include B, E, O, and Q), a strong exotherm was obtained, and the medium chain peroxy carboxylic acid was generated rapidly, for example, virtually instantaneously.
For some of these compositions, the sulfuric acid needed to be added slowly and with cooling to keep the temperature below 170 °F or below 120 °F.
Such formulas that can generate medium chain peroxy carboxylic acids, rapidly or almost instantaneously can be employed for on site generation at the use location.
The concentrations of peroxyoctanoic acid reported in the present examples were determined by a well established and standardized titration protocol.
First, hydrogen peroxide content was determined by an oxidation-reduction titration with ceric sulfate. After the endpoint of this titration was reached, an excess of potassium iodide was added to the solution. The potassium iodide reacts with peroxycarboxylic acids to liberate iodine. The liberated iodine was titrated with a standard solution of sodium thiosulfate to yield the concentration of peroxycarboxylic acid. The remaining level of carboxylic acid can be calculated.
The octanoic acid employed in the present examples was obtained from sources including Procter & Gamble Chemicals and includes a minimum of 95% octanoic acid with minor amounts of hexanoic acid (ca. 2%), decanoic acid (ca. 2%), and dodecanoic acid (<0.5%).
Example 2 - - Stability of Compositions Including Medium Chain Peroxycarboxylic Acid and Solubilizer Compositions according to the present invention were evaluated and demonstrated physical stability and advantageous stability of the medium chain peroxycarboxylic acid.
Materials and Methods Several of the present medium chain peroxycarboxylic acid compositions were evaluated for stability of the medium chain peroxycarboxylic acid. A sealed container including the composition was placed in an oven at an elevated temperature or was left at room temperature for a period of time. The temperatures and times are reported in the tables below. One week at 60 °C can be considered equivalent to a year at room temperature (RT). The quantity of peroxycarboxylic acid was determined by titration.
Several of the present medium chain peroxycarboxylic acid compositions were also evaluated for physical stability. The sample were visually inspected at intervals at which peroxycarboxylic acid level was also determined.
Results The results obtained for determinations of stability of the medimn chain peroxycarboxylic acid and of physical stability are reported below in Tables 7 and 8.
The results presented in Table 7 for compositions M and N indicate that stability of the medium chain peroxycarboxylic acid decreases when phosphoric acid increases from 25 % to 35%. This suggests that the compositions including solvent solubilizer are susceptible to degradation caused by impurities present in the technical grade phosphoric acid.
The results presented in Table 8, specifically the blue tyndall appearance, indicates that each of these compositions was in the form of a microemulsion.
A study of accelerated aging of a mixed peroxycarboxylic acid composition demonstrated that peroxyoctanoic acid in a mixed peracid composition underwent significant degradation at 60 °C in 7 days. After 7 days, three samples underwent 20, 23, and 54 % degradation.
The microemulsion compositions were less susceptible to degradation by impurities. For example, compositions KK and LL included technical grade phosphoric acid and exhibited good stability. In contrast, if phosphoric acid is to be used in conventional formulations of peroxycarboxylic acids, high purity grade is required to avoid unacceptable degradation.
Compositions A, B, C, D, and E were two phase compositions.
Table 7 - Advantageous Stability of Medium Chain Peroxycarboxylic Acid in the Present Compositions Including Solvent Solubilizer Starting Wt-% Wt-Days at Composition[POOA] Remaining,Days at Remaining, F

%) 100 F RT

1.8 A (after 1 22 1 46 2.3 day at 100 F) B 1.6 37 0.8 37 2.1 C 1.4 36 0.9 36 1.3 D 1.6 36 0.7 36 1.4 E 2.9 36 0.4 36 1.8 F 0.8 31 1.1 31 0.9 0.9 (after 3 33 1.2 13 1.2 days at RT) 2.1 R (after 3 33 1.1 17 2.0 days at RT) 1.6 (after 3 22 1.2 13 1.5 days at RT) M 0.7 28 1 8 1.1 N 0.9 28 0.7 7 1.4 Table 8 - Stability of Compositions Including Anionic Surfactant and/or Microemulsion Solubilizer Starting [POOA]Days Wt Composition at Appearance (~_%) 60 Remaining C

1.4 1 phase, hazy blue LL (after 1 day 7 1.4 tyndall at 60 C) 1.2 Blue tyndall gel with no HH (after 3 days 7 1.2 bubbles in solution.
at 60 C) Slightly hazy.

1 phase, hazy blue 1.3 7 1.3 tyndall Example 3 - - Shear Thinning Viscosity of Compositions Including Medium Chain Peroxycarboxylic Acid and Solubilizer Compositions according to the present invention were evaluated and demonstrated to have advantageous shear thinning viscosity, which is characteristic of microemulsions.
Materials and Methods Several of the present medium chain peroxycarboxylic acid compositions were evaluated for viscosity as a function of rate of spindle rotation using an LVT
viscometer and an N2 spindle. The temperature of the compositions was room temperature (about 75 °F) Results The results obtained for determinations of viscosity of the present compositions are reported below in Table 7. Decreasing viscosity with increasing spindle rotation rate indicates shear thinning, which is characteristic of a microemulsion.
Each of the compositions tested showed shear thinning viscosity.

Table 9 - Shear Thinning Viscosity of Composition LL
Viscosity Viscosity (cp) ~m (cp) 0.6 3875 2 2260 1.5 2600 2.5 1952 Table 10 - Shear Thirming Viscosity of Composition HH
rpm Viscosity rpm Viscosity (cp) (cp) 0.6 7000 2 3500 1.5 3500 2.5 2848 Table 11 - Shear Thinning Viscosity of Composition KK
Viscosity ~m (cp) 0.5 4080 2.5 2016 Conclusions The shear thimiing viscosity of the present compositions is characteristic of a 5 structured composition, such as a microemulsion.
Example 4 - - Antimicrobial Efficacy of the Present Compositions Including Medium Chain Peroxycarboxylic Acid and Solubilizer Compositions according to the present invention were evaluated and 10 demonstrated advantageous antimicrobial activity against microbes such as gram negative bacteria, gram positive bacteria, fungi, spores, viruses, and mycobacteria.
Materials and Methods Antimicrobial activity was determined according to two well established 15 methods. The first method was the procedure set out in Ge~~aicidal a~zd Deter~geizt Sanitizing Action of Disinfectants, Official Methods of Analysis of the Association of Official Analytical Chemists, paragraph 960.09 and applicable sections, 15th Edition, 1990 (EPA Guideline 91-2). The second method was the procedure described in A.O.A. C. Use Dilution Methods, Official Methods of Analysis of the Association of 20 Official Analytical Chemists, paragraph 955.14 and applicable sections, 15th Edition, 1990 (EPA Guideline 91-2). Briefly, antimicrobial activity of the present compositions was determined by exposing a one mL aliquot containing the target microorganism to 99 mL of the desired concentration of the test substance at the desired temperature.
After the specified contact time, one mL of the test solution containing the microorganism was neutralized and enumerated for survivors.
The hospital disinfectant efficacy of the present compositions was determined by drying the target microorganism on a stainless steel carrier and exposing the carrier to 10 mL of the desired concentration of test composition at the desired temperature for the specified contact time. Then, the carrier was aseptically transferred to a neutralizer/subculture medium.
Antiviral activity against Herpes Simplex Virus Type 1 was determined by known procedures. Briefly: Herpes Simplex Virus Type 1 was dried on a glass surface. The film of virus was exposed to test substance for 10 min at room temperature. Then, the mixture of film and test substance were subjected to gel filtration to separate small molecules from virus particles. The recovered virus was assayed for infectivity by an accepted assay method.
Antiviral activity against Poliovirus Type 1 was determined by known procedures. Briefly: Poliovirus Type 1 was dried on a glass surface. The film of virus was exposed to test substance for 5 min at room temperature. Then, the mixture of film and test substance were subjected to gel filtration to separate small molecules from virus particles. The recovered virus was assayed for infectivity by an accepted assay method.
Results Tables 12-21 include data showing that the present medium chain peroxycarboxylic acid compositions had antimicrobial activity when tested against bacteria, fungi, and spores in several different types of tests.
The data presented in Table 12 demonstrate that the present compositions exhibited significant antimicrobial activity when diluted with a diluent to pH
less than 4. Efficacy was not as great if the composition was diluted and then the pH
was brought to less than or equal to 4. These results illustrate that present compositions with significant levels of acidulant exhibited, under certain circumstances, advantageous activity.

The data presented in Table 13 demonstrate that the present compositions exhibited significant antimicrobial activity at pH of 2.6 to 3.5. These results indicate that at a pH of 6.1, 11 ppm of peroxyoctanoic acid (POOA) is still effective at reducing S. au~eus by >7.04 log. The data presented in Table 14 demonstrate that efficacy of this composition was not as great against E. coli if it was diluted and then the pH was brought to less than 4.
The data presented in Table 15 demonstrate that the present compositions exhibited significant antimicrobial activity. All formulas tested achieved >5 log reductions of Esche~ichia coli in 30 seconds at 0.069% when diluted in 500 ppm synthetic hard water. Also, these compositions achieved complete kill (>7 log reduction) of Pseudomonas aeruginosa in 30 seconds at 0.082% when diluted in ppm synthetic hard water. The combination of higher pH and lower ppm in one composition may have contributed to the lower log reduction.
The data presented in Table 16 demonstrate that the present compositions exhibited significant antimicrobial activity against several fungi and bacteria. The present compositions exhibited broad spectrum antimicrobial activity against bacteria and fungi at low levels of medium chain peroxycarboxylic acid. These results indicate that composition 106 is more effective that composition DD. Composition BB
achieved higher reductions of A. uiger and P. ae~uginosa at similar levels of peroxycarboxylic acid.
The data presented in Table 17 demonstrate that the present compositions exhibited significant antimicrobial activity against several fungi and several bacteria.
The data presented in Table 18 demonstrate that one of the present compositions (KK) exhibited significant antimicrobial activity against E. coli 0157:H7, S.
typhimurium, and L. monocytogeues. This composition achieved more than 99.999%
reduction within a 30 second exposure time.
The data presented in Table 19 demonstrate that the present compositions exhibited significant antimicrobial activity against several bacteria in a hospital disinfectant test. The hospital disinfectant test measures whether the composition killed all of the microbes on a stainless steel carrier. A composition listed as 10/10 killed all of the bacteria on each of 10 carriers. Likewise a result of 60/60 indicates that a composition kills all of the bacteria on each of 60 carriers. These results present a greater challenge for an antimicrobial agent because it requires activity in the presence of 5% fetal bovine serum. Therefore, it indicates that the present compositions were effective as a hospital disinfectant in the presence of blood soil.
The data presented in Table 20 demonstrate that one of the present compositions exhibited superior antimicrobial activity against several bacteria in a hospital disinfectant test compared to a conventional, commercially available antimicrobial i agent. The hospital disinfectant test measures whether the composition killed all of the microbes on a particular carrier. The composition according to the present invention, AA-O, passed the hospital disinfectant test, with complete kill on 59 of 60 carriers.
The conventional antimicrobial agent (containing hydrogen peroxide as active) did not pass the test. It yielded complete kill on only 58 of 60 carriers. These results indicate that in the presence of fetal bovine serum and when diluted in synthetic hard water the current composition was more effective than the commercially available hospital disinfectant.
The data presented in Table 21 demonstrate that the present compositions exhibited significant antimicrobial activity against bacterial spores.
Bacterial spores are difficult to kill. These results indicate that at elevated temperatures the effectiveness of the present compositions increased, which provided for effective kill at reduced contact times.
The data presented in Table 22 demonstrate that the present compositions exhibited superior antimicrobial activity against bacterial spores compared to conventional peroxide and peroxycarboxylic acid antimicrobials. The present composition resulted in greater kill at equal or lower concentrations of antimicrobial active. These results indicate that the present compositions exhibited superior antimicrobial activity compared to conventional antimicrobials.
The data presented in Table 23 demonstrate that the present compositions exhibited effective antimicrobial activity against Mycobactet°iunZ
bovas. The present composition (B) provided complete lcill of M. bovis BCG at dilutions of 1 oz per 4 gal and 1 oz per 6 gal with exposure times as short as 6 min. These results indicate that the compositions of the present invention can be employed as a tuberculocidal agent.
Tests against Herpes Simplex Virus Type 1 resulted in complete kill of this virus. The virus was dried onto a hard surface. The virus on the hard surface was contacted for 10 min with composition B diluted at 1 oz per 6 gallons or 1 oz per 8 gallons. Both dilutions resulted in complete kill, a greater than 5.3 log reduction in virus. Virus and cells survived in appropriate controls. These results indicate that the present compositions are effective virucides.
Tests against Poliovirus Type 1 resulted in nearly complete kill of this virus.
The virus was dried onto a hard surface. The virus on the hard surface was contacted for 10 min with composition LL diluted at 1 oz per 1 gallon or 1 oz per 0.5 gallons.
The dilution of 1 oz to 1 gallon completely killed the poliovirus at 5 different titers, killed no virus at the highest titer, and resulted in incomplete kill at the second and third highest titers. This dilution exhibited 1.5 log reduction in virus titer. The dilution of 1 oz to 0.5 gallons completely killed poliovirus at all titers tested. This dilution resulted in >4 log reduction in virus titer. Virus and cells survived in appropriate controls.
These results indicate that the present compositions are effective general virucides.
The data presented in Table 24 demonstrate that the present compositions exhibited antimicrobial activity superior to that of compositions including synthetic medium chain peroxycarboxylic acid that had been added to a composition.
Better efficacy was found in the solutions with the lower pH, which were made up with Milli-Q water. The 60 ppm sample almost achieved a 5 log reduction in 30 seconds.
However, this data indicates that the pH of the test solution can be more important than the ppm of active POOA.
The data presented in Table 25 demonstrate that the present compositions exhibited antimicrobial activity superior to that of compositions including synthetic medium chain peroxycarboxylic acid that had been added to a composition. These data further suggest that POOA exhibited greater activity against Escherichia coli a pH of ~4.0 and a concentration >5 ppm no matter what diluent is used. Against Staphylococcus aureus POOA achieved 5 log reductions at a concentration of 5 ppm and at a pH of ~5. There was no difference between the reductions seen in Milli-Q
water and soft water for either organism.

Table 12 - Antimicrobial Activity of Compositions Including Solvent Solubilizer Against E. eoli and S. au~°eus with 30 Second Exposure at Room Temperature Composition~POOA] Diluent pH Log ReductionLog Reduction ~ppm~ of E. coliof S. aur~eus HW - H 5.0 3.19 2.45 6.10 5 HW - pH 7.8 7.74 0.10 3.52 HW - adjusted to pH 4.0 3.98 0.10 5.62 after dosing F stored HW - pH 5.0 3.03 7.15 >6.70 at RT

for 31 8 HW - H 7.8 6.16 0.07 5.62 days R HW - adjusted to H 4.0 4.00 0.65 >6.40 after dosing 0.92% POO HW - pH 5.0 2.86 >7.15 >6.70 12 HW - H 7.8 4.41 0.59 6.70 HW - adjusted to H 4.0 3.96 2.84 6.40 after dosing HW - pH 5.0 3.19 1.39 5.80
7 HW - pH 7.8 6.80 0.15 2,09 HW - adjusted to pH 4.0 3.89 0.15 5.24 after dosin F stored HW - pH 5.0 3.01 >6.84 6.70 at 100 F for 31 10 HW - pH 7.8 6.14 0.10 5.24 days HW - adjusted to pH 4.0 3.89 0.39 5.49 after dosing 1.13% POOA HW - H 5.0 2.85 >7.15 >6,70 14 HW - H 7.8 4.28 0.28 >6.40 HW - adjusted to pH 4.0 4.07 1.40 6.22 after dosing HW = 500 ppm synthetic hard water Table 13 - Antimicrobial Activity of Compositions Including Solvent Solubilizer Against E. coli and S. auf°eus with a 30 Second Exposures at Room Temperature - Tests Conducted Using pH Adjusted Synthetic Hard Water CompositionpH of pH of Test Log ReductionLog Reduction DiluentSubstance of E. coliof S. aureus 3.9 2.64 >7.11 >7.04 - 4.0 K
4.9 2.74 >7.11 >7.04 - 5.1 (0.086 wt-%) 5.9 2.75 >7.11 >7.04 - 6.1 16 ppm POOA 7.7 3.50 >7.11 >7.04 - 7.9 3.9 2.80 >7.11 >7.04 - 4.0 K
4.9 2.83 >7.11 >7.04 - 5.1 (0.057 wt-%) 5.9 2.97 >7.11 >7.04 - 6.1 11 ppm POOA 7.7 6.12 0.21 >7.04 - 7.9 Table 14 - Antimicrobial Activity of Compositions Including Solvent Solubilizer Against E. coli and S. aureus with 30 Second Exposure at Room Temperature -Tests Conducted With pH is Adjustment After Dosing Natural Log ReductionLog Reduction Composition pH Adjusted of E. colt of S. aufeus pH

K (0.050 wt-%) 5.09 3.91 * 2.84 >6.84 K (0.057 wt-%) 4.92 3.85** 4.61 >6.84 * 2 drops of 1.0 N HCl * * 5 drops of 1.0 N HCl Table 15 - Antimicrobial Activity of Compositions Including Anionic Surfactant and/or Microemulsion Solubilizer Against Pseudoy~aonas aef°ugi~osa and Esche~ichia coli with 30 Second Exposure at Room Temperature to a Composition Made with 500 ppm Synthetic Hard Water at pH 7.60 CompositionUse-SolutionpH Log ReductionLog Reduction [POOA] of E. coli of P. aerwginosa ppm T 13 2.9 5.16*

U 13 3.1 >7.28 Not Tested V 12 3.0 >7.28 T 16 2.8 >7.15 U 16 2.8 Not tested >7.15 V 15 2.9 4.75 * = Duplicate plate counts were not consistent Table 16 - Antimicrobial Activity of Compositions Including Anionic Surfactant and/or Microemulsion Solubilizer Against Several Fungi and Pseudomonas aerugifZOSa with a 30 Second Exposure at Room Temperature [POOA] Log Kill Log Kill Log Kill Log Kill Composition(ppm) of of of of S. ce~evisiae,C. albica~s,A. yZiger, P. aeruginosa (30 sec, (30 sec, (5 min, (30 sec, RT) RT) RT) RT) BB 22 >5.6 >6.1 1.6 20 5.1 >6.1 1.4 18 4.7 >6.1 1.2 >7.2 17 >7.2 16 >7.2 15 4.1 4.2 1.0 >7.2 14 >7.2 13 4.7 DD 16 0 5.6 15 0 3.5 14 0 1.8 13 0 0.73 aA

~ ~ . d; m a~ o ~ o a~

m N

'~
H

o ~

n n n n o a H

~ x _ n n 0 ~

o awo~

0 0.' ~ off o ~ ~

_ n n ~ ~ O

N c~.-~

U O u ~

~
~ ~ E-~ o m t~ d; d;N d:

tip ~' c~ N ~ ,--~ m N

, a~ ~

c~
~
~

_ n n n n n ~

o ~o~
~

'v 0 .

.

W ~ ~ H
o .
U ~~ ~' w o vo ~;
~

,_-. ~ N ,~

~ ~ ~ n n n ~ n v ' o ~t o a~

U

~

,.O n +~ _ o '~ d' O l' M ,--i l0.-i~
' N N N N ~

M c N
~

N

U .

,O

cad ' "'' ._-~-~
a ~, a O

O

-d U

H *' ~

Table 18 - Antimicrobial Activity of Composition Including Anionic Surfactant andlor Microemulsion Solubilizer Against Several Bacteria 30 and 60 Second Exposure at Room Temperature Log Kill Log Kill of Log Kill of of E. S. L.

[POOA] coli 0157:H7typhimuriurn, Composition m~ocytogenes, (ppm) (30 and 60 (30 and 60 (30 and 60 sec, sec, sec, RT) RT) RT) KK 17 >6.9 >7.2 >6.6 Table 19 - Antimicrobial Activity of Compositions Including Anionic Surfactant and/or Microemulsion Solubilizer Against Several Bacteria in a Hospital Disinfectant Test S. aureus E. faecalas P. aefugiraosa(methicillin(vancomycin om osition POOA] resistant) resistant) p (ppm) (kill tubes/total tubes) (kill tubes/total(kill tubes/total tubes) tubes) Table 20 - Antimicrobial Activity of Composition Including Anionic Surfactant and/or Microemulsion Solubilizer and of Conventional Antimicrobial Composition Against Several Bacteria in a Hospital Disinfectant Test P. ae~ugifzosaS. aur~eus Com osition ~POOA]
P (ppm) (kill tubes/total(kill tubes/total tubes) tubes) AA-O

(0.98 wt-%) Virox 5 (1:16 dilution) Table 21 - Antimicrobial Activity of Compositions Including Anionic Surfactant and/or Microemulsion Solubilizer Against Bacterial Spores Composition~POOA~ Log Kill of Baeillus~ce~eusLog Kill of Bacillusce~eus (ppm) spores (30 sec at spores (10 sec at 40 C) 60 C) BB 200 2.1 4.7 150 0.21 2.0 HH 240 4.2 5.6 180 0.94 2.6 DD 200 4.5 6.0 150 0.53 4.1 LL 290 4.7 5.7 220 0.88 4.3 Table 22 - Antimicrobial Activity of Compositions Including Anionic Surfactant and/or Microemulsion Solubilizer and of Conventional Compositions Against Bacterial Spores Concentration Exposure E T mereLog Composition of pH Temperature Reduction Antimicrobial ( C) (sec) 30 1.19 40 60 2.94 120 >6.30 10 1.59 HZOz 35% 3.3260 20 4.85 30 4.89 10 >6.30 80 20 >6.30 30 >6.30 . 30 2.33 40 60 6.30 250 ppm POOA 120 >6.30 1400 ppm 10 5.30 KK
520 ppm OA 1.8560 20 >6.30 (2.0 wt-%) 30 >6.30 10 >6.30 80 20 >6.30 30 >6.30 30 1.02 40 60 2.80 Conventional750 ppm peracid 120 4.22 Mixed 1000 ppm 10 3.96 Peroxycarboxylic555 ppm OA 3.0660 20 5.22 Acid 30 >6.30 (1.5 wt-%) 10 >6.30 80 20 >6.30 30 >6.30 Concentration Exposure E T mereLog Composition of pH Temperature o Reduction Antimicrobial ( C) sec) 30 0.30 40 60 0.30 120 0.75 Conventional2610 ppm 10 0.58 POAA

Peroxyacetic Acid 1.26% H2O2 2.6160 20 1.85 (4.5 wt-%) 30 2.64 10 4.70 80 20 >6.30 30 >6.30 Table 23 - Antimicrobial Activity of Compositions Including Solvent Solubilizer Against Mycobacteria Exposure Time [POOAJ at Log Kill omposition(ppm) of Room TemperatureM. bovas (min) B 39 5 >6.5 10 >6.5 15 >6.5 20 >6.5 B 26 5 6.2 10 6.2 15 >6.5 20 >6.5 Table 24 - Antimicrobial Activity of Compositions Including POOA from Pure Crystals at 60, 40 and 20 ppm in Milli-Q and Synthetic Hard Water Test ConcentrationDiluent pH Log Reduction Substance of E. coli 60 ppm 7.54 1.12 40 ppm 500 ppm Synthetic7,61 0.93 Hard Water pH 7 Pure POOA20 ppm , 7.68 0.62 .

Crystals 60 ppm 5.08 4.68 40 ppm Milli-Q water 5.28 2.61 20 ppm 5.58 0.55 Table 25 - Antimicrobial Activity of Compositions Including of POOA from Pure Crystals in Milli-Q and Soft Water at Differing pH Values Against Two Bacteria with a 30 Second Exposure at Room Temperature Test ConcentrationDiluent Post Log ReductionLog Reduction Substance Test of E. colicof S. au~eus pH

Milli-Q water 6.24 0.09 6.04 pH 6.60 Milli-Q water 5.89 0.11 4.44 pH 5.98 Milli-Q water 5.03 0.07 5.01 pH 5.00 Milli-Q water 4.09 1.34 6.28 pH 4.04 5 ppm Soft water pH 9.12 0.07 0.1 9.29 Soft water pH 6.68 0.08 4.19 5.91 *

Soft water pH 5.79 0.09 5.16 5.08*

Pure POOA Soft water pH 4.01 1.26 5.82 3.91 Crystals Milli-Q water 5.80 0.06 >6.82 pH 6.60 Milli-Q water 5.90 0.1 6.52 pH 5.98 Milli-Q water 4.98 0.07 >6.82 pH 5.00 Milli-Q water 4.08 6.04 >6.82 pH 4.04 10 ppm Soft water pH 9.09 0.07 0.26 9.29 Soft water pH 6.68 0.24 >6.82 5.91 Soft water pH 5.67 0.55 6.12 5.08 Soft water pH 4.01 6.34 6.28 3.91 *Indicates a pH drift of ~0.7 pH units during the 5 hours the test was performed.

Example 5 - - Comuositions Including Medium Chain Peroxycarboxylic Acid and Solubilizer Table 26 presents additional illustrative examples of the present compositions including medium chain peroxycarboxylic acid and solubilizer. Quantities in the tables are in wt-%.
In each of compositions AB-AQ: the medium chain peroxycarboxylic acid was peroxyoctanoic acid; the medium chain carboxylic acid was octanoic acid; the carrier was water; the oxidizing agent was hydrogen peroxide (supplied from a 35%
solution);
the stabilizing agent was HEDP (supplied as bequest 2010 which includes 60 wt-HEDP); and the acidulant was phosphoric acid (supplied as 75% phosphoric acid).
Composition AC included fragrance (1 wt-%), specifically a mint apple fragrance.
The solubilizer was varied among these compositions. In each of compositions AB-AD, AH, AI, AN, the solubilizer was LAS acid. In compositions AE and AJ, the solubilizer was LAS acid plus n-octyl amine. In composition AG, the solubilzer was LAS plus C8-dimethyl amine. In composition AF, the solubilizer was LAS acid plus C8 dimethyl amine. In composition AID, the solubilizer was LAS acid plus alkylated diphenyl oxide disulfonate (acid form). In composition AL, the solubilizer was alkylated diphenyl oxide disulfonate (acid form). In composition AM, the solubilizer was LAS acid plus allcylated diphenyl oxide disulfonate (acid form) and C8 amine oxide. In composition AO, the solubilizer was sodium laureth sulfate; suitable sodium laureth sulfates tested include those with n=1 and 3. In composition AP, the solubilizer was allcylated diphenyl oxide disulfonate (salt form). In composition AQ, the solubilizer was alkylated diphenyl oxide disulfonate (salt form) plus NAS-FAL.
In each of compositions AR-AW: the carrier was water; the oxidizing agent was hydrogen peroxide (supplied from a 35% solution); the stabilizing agent was HEDP (supplied as bequest 2010 which includes 60 wt-% HEDP); the acidulant was phosphoric acid (supplied as 75% phosphoric acid), and the solubilizer was LAS
acid.
The medium chain peroxycarboxylic acid and medium chain carboxylic acid were varied among these compositions. In composition AR, the medium chain peroxycarboxylic acid was peroxynonanoic acid and the medium chain carboxylic acid was nonanoic acid (straight chain nonanoic acid). In compositions AS-AW, the medium chain Table 26 - Examples of Compositions Including Surfactant Solubilizer (quantities in wt_%) Ingredient AB AC AD AE AF AG AH AI AJ AIDAL AM AN

Medium Chain Peroxycarboxylic1.01.1 3.1 1.2 1.50.9 1.2 1.1 nd 0.90.9 nd 0.9 Acid Medium Chain 2.82.7 2.0 2.6 2.32.9 2.6 2.7 <3.8 2.92.9 <3.8 2.6 Carboxylic Acid Solubilizer 7.89.7 11 8.2 7.97.9 7 6.5 ~2 5.76.3 8.6 7.8 Carrier 52 51 34 52 52 52 . 53 52 54 54 52 52 Oxidizing Agent8.08.1 11 8.1 8.28.1 8.0 8.1 8 8.18.1 8 7.9 Acidulant 27 27 36 27 27 27 27 27 27 27 27 27 27 Stabilizing 2.02.0 2.7 2.0 2.02.0 2.0 2.0 2.0 2.02.0 2.0 2.0 Agent Table 26, continued - Examples of Compositions Including Surfactant Solubilizer Ingredient AO AP AQ AR AS AT AU AV AW AX AY AZ BC

Medium Chain Peroxycarboxylic1.0 , 0.9 1.0 ~ nd 1.0 1.0 nd nd nd 0.7 0.7 Acid 0.9 nd Medium Chain 2.8 2.9 2.9 2.8 <4.3<4.8 2.9 3.0 <3.8<3.8 <3.83.1 3.1 Carboxylic Acid Solubilizer 8-9 4.5 4.3 7.8 7.8 7.8 7.8 7.8 8 8.3 8.6 7.4 7.8 Carrier 52 56 56 52 52 52 52 52 52 52 52 53 52 Oxidizing 8.1 8.2 8.2 8.0 8 8 8.2 8.2 8 8 8 8.2 8.2 Agent Acidulant 27 27 27 27 27 27 27 27 27 27 27 27 27 Stabilizing 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Agent Table 26, continued - Examples of Compositions Including Surfactant Solubilizer Ingredient BD BE BF BG BH BI BJ BK

Medium Chain 1.0 1.0 1.0 0.9 0.9 1.0 1.0 1.1 Peroxycarboxylic Acid Medium Chain 2.g 2.8 2.9 2.9 2.9 2.8 2.8 2.7 Carboxylic Acid ~

Solubilizer 12 10 9 10 13 15 14 16 Carrier 48 50 51 50 47 45 46 44 Oxidizing Agent 7.8 8.2 7.6 8.3 8.3 8.3 8.2 8.1 Acidulant 27 27 27 14 14 14 14 14 Stabilizing Agent 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 peroxycarboXylic acid was peroxyoctanoic acid and peroxynonanoic acid and the medium chain carboxylic acid was octanoic acid and nonanoic acid; nonanoic acid (as isononanoic acid (which is believed to be a 6 carbon main chain with three pendant methyl groups)) was present at 0.5, 1, 0.1, 0.2, and 0.3 wt-% for AS-AW, respectively.
In each of compositions AX-AZ and BC-BF: the medium chain peroxycarboxylic acid was peroxyoctanoic acid; the medium chain carboxylic acid was octanoic acid; the carrier was water; the oxidizing agent was hydrogen peroxide (supplied from a 35% solution); the stabilizing agent was HEDP (supplied as bequest 2010 which includes 60 wt-% HEDP); and the acidulant was phosphoric acid (supplied as 75% phosphoric acid).
The solubilizer was varied among these compositions. In composition AX, the solubilizer was LAS acid plus sodium lauryl sulfate. In composition AY, the solubilizer was LAS acid plus sodium lauryl sulfate and C8 dimethyl amine. In compositions AZ and BC-BF, the solubilizer was secondary alkane sulfonate (a mixture of sulfonated paraffins sold under the tradename Hostapur SAS).
In each of compositions BG-BK: the medium chain peroxycarboxylic acid was peroxyoctanoic acid; the medium chain carboxylic acid was octanoic acid; the carrier was water; the oxidizing agent was hydrogen peroxide (supplied from a 35%
solution);
the stabilizing agent was HEDP (supplied as bequest 2010 which includes 60 wt-HEDP); the solubilizer was secondary alkane sulfonate (a mixture of sulfonated paraffins sold under the tradename Hostapur SAS) plus NAS-FAL; and the acidulant was sulfuric acid.
The compositions that included LAS, secondary alkane sulfonate, alkylated diphenyl oxide disulfonate, or sodium lauryl sulfate as solubilizer were foaming compositions. Specifically, compositions AB and AC are foaming compositions Most of the compositions were phase stable. In particular: Compositions AX
and AY were determined to be phase stable at 60 °C. For example, several of the compositions for which the wt-% of medium chain peroxycarboxylic acid was not determined (nd) were not phase stable. That is, they separated into more than one phase after a predetermined time at one or more (e.g., at least one) of 40 °F, room temperature, 100 °F, or 140 °F (60 °C).
The concentrations of peroxyoctanoic acid reported in the present examples were determined by a well established and standardized titration protocol.
First, hydrogen peroxide content was determined by an oxidation-reduction titration with potassium permanganate. After the endpoint of this titration was reached, an excess of potassium iodide was added to the solution. The potassium iodide reacts with peroxycarboxylic acids to liberate iodine. The liberated iodine was titrated with a standard solution of sodium thiosulfate to yield the concentration of peroxycarboxylic acid. The remaining level of carboxylic acid can be (and was) calculated.
The peroxycarboxylic acid was titrated at a time after formulation that was practical in the laboratory. For example, the peroxycarboxylic acid was titrated for compositions AB, AD, AE, AF, AG, AH, AK, AL, AO, AP, AQ, AU, AV, AZ, BC, and BD after the sample had sat at room temperature for 0, 2 (BD), or 3 (AP, AU, and AV) days. For example, the peroxycarboxylic acid was titrated for compositions AC
and BG-BK after the sample had sat at 100 °F for 4 days (AC) or 7 days (BG-BK). For example, the peroxycarboxylic acid was titrated for compositions AI, AN, AR, BE and BF after the sample had sat at 140 °F (60 °C) for 1 day (AI, AR, and BE) or 4 days (AN
and BF) For composition AB, no decomposition of peroxycarboxylic acid was observed upon aging the composition for 7 days at 140 °F (60 °C). For composition AC, no decomposition of peroxycarboxylic acid was observed upon aging the composition for 34 days at 100 °F. Other compositions were also observed to include stable peroxycarboxylic acid.
The octanoic acid employed in the present examples was obtained from sources including Procter & Gamble Chemicals and includes a minimum of 95% octanoic acid with minor amounts of hexanoic acid (ca. 2%), decanoic acid (ca. 2%), and dodecanoic acid (<0.5%).
Fragrance Certain of the compositions were evaluated for phase stability and for smell after addition of a fragrance. In particular, compositions AB and AG were evaluated.
Fragrances evaluated included Green Meadow (Klabin); Vinegar Mask I (J&E
Sozio);
Vinegar Mask II (J&E Sozio); amyl acetate; iso-bornyl acetate; and methyl salicylate.
Composition AC included fragrance (1 wt-%), specifically a mint apple fragrance which is believed to be or include an alkyl salicylate. Composition AC
altered to include 10 wt-% LAS remained single phase at 40 °F, room temperature, and 70 °F.
Foaming The results in Table 27 show that the present medium chain peroxycarboxylic acid composition produced foam with desirable qualities. This study employed a "FOAM IT" brand tank foamer set to produce slightly wet foam, 2 turns from the mid point. The foam was dispensed from use composition at 95-98 °F. The foam was sprayed on a vertical stainless steel surface (approximately 15 ft by 15 ft) from a distance of about 10 ft. The results of Table 27 demonstrate that the present compositions provided foam with desirable hang time and density. Each of the compositions tested at 1 oz/ 6 gal. provided foam with desirable characteristics, such as the breaking foam was visible for about 5 min, the foam drained well from the vertical surface, exhibited good sheeting down vertical surface, and dried evenly to no visible residue.

Example 6 - - Antimicrobial Efficacy of the Present Compositions Including Medium Chain Peroxycarboxylic Acid and Solubilizer Additional compositions according to the present invention were evaluated and demonstrated advantageous antimicrobial activity against microbes such as gram negative bacteria, gram positive bacteria, fungi, spores, viruses, and mycobacteria.

Table 27 - Foaming by the Present Medium Chain Peroxycarboxylic Acid Compositions.
Amount Foam Initial in Use Break Dry Composition Odor Appearance Comments SolutionTime Time of Foam (oz/gal) (min) realcs Covers well,ott slow wet to s ' about p y AB 0 about >10 moderate, foam, dries . 2 min 1/16 inch to no visible thick residue reaks Covers well, slow about to s ott wet AG 0.17 about >10 moderate, foam, dries 1/16 inch 2 min to no visible thick residue foam breaks 95% Covers well,to spotty faster , dry AH 0,17 < 2 at moderatewetter thanfoam, dries min 10 above to no visible min residue fast 95%

, dry Wetter thanno visible AK 17 about at moderate . 10 above residue 1 min min fast 95%

AY 0.17 , dry strong Very wet, no visible about at 10 lays flat residue 10 sec min fast, about AB 0.13 < 1 10 low Covers, spotty foam wet min min fast, about AG 0.13 < 1 10 low Covers, streaky wet foam min min very about AH 0 fast, 10 low Extremely very spotty . < 1 wet foam min min very about fast Extremely very spotty AK 0 ' 10 low . < 1 wet foam min min fast 95%

Ay 0.13 , dry strong Very wet, no visible about at 10 lays flat residue 10 sec min Materials and Methods Antimicrobial activity was determined as described above in Example 4.
Results Tables 27-28 include data showing that the present medium chain peroxycarboxylic acid compositions had antimicrobial activity when tested against bacteria, fungi, and spores in several different types of tests.
The data presented in Table 28 demonstrate that the present compositions exhibited significant antimicrobial activity. Test 1 included 5 min exposure of the microbe to composition AB at room temperature. The microbes in test 1 included E.
aeroge~es ATCC 13048 and S. aur~eus ATCC 6538. Test 2 included 30 sec exposure of the microbe to composition AB at room temperature. The microbes in test 2 included S. auf°eus ATCC 6538, E. coli ATCC 11229, and P. ae~uginosa ATCC 13442.
The data presented in Table 29 demonstrate sporicidal activity of a composition according to the present invention.
Tests against Poliovirus Type 1 resulted in complete kill of this virus. The virus was dried onto a hard surface. The virus on the hard surface was contacted for 10 min with composition AG diluted at 1 oz per 1 gallon or 1 oz per 0.5 gallons.
Composition AG demonstrated complete inactivation of Poliovirus type 1 following either 3 min or 5 min exposure at 20 °C. The composition produced >6 and >5.3 log reduction in 3 and 5 min, respectively. Virus and cells survived in appropriate controls. These results indicate that the present compositions are effective general virucides.
The compositions that included fragrance showed no negative effect on antimicrobial efficacy from the fragrance. Several additional compositions were tested for antimicrobial activity and exhibited results similar to those reported in this Example.

Table 28 - Activity of Composition AB against Several Microorganisms Log Log Log Log Reduction Test Dilution Reduction Reduction Reduction of P.
of of of E. aef~ogey~esS. aureus E. coli aer~ugihosa 500 ppm in 1 synthetic 4.5 5.4 hard water 2 1 oz/9 gal >6.7 >7.3 5.8 water 1 oz/9.5 >6.7 >7.3 5.7 gal water 2 1 oz/10 gal >6.7 >7.3 ~ 5.2 water 2 1 oz/10.5 >6.7 >7.3 1.7 gal water Table 29 - Activity of Composition KK against Spores of B. subtilis ATCC 49760 Composition Dilution Exposure TimeLog Reduction of B.

(min) subtilis spores KK plus 8 1 oz/6 al 30 0.5 wt- g NAS FAL

60 0.6 120 0.6 KK plus 10 1 oz/6 al 30 0.8 wt- g LAS

60 1.5 120 3.0 It should be noted that, as used in this specification and the appended claims, the singular forms "a," "an," and "the" include plural referents unless the content clearly dictates otherwise. Thus, for example, reference to a composition containing "a compound" includes a mixture of two or more compounds. It should also be noted that the term "or" is generally employed in its sense including "and/or" unless the content clearly dictates otherwise.
All publications and patent applications in this specification are indicative of the level of ordinary skill in the art to which this invention pertains.
The invention has been described with reference to various specific and preferred embodiments and techniques. However, it should be understood that many variations and modifications may be made while remaining within the spirit and scope of the invention.

Claims (140)

WE CLAIM:
1. A composition comprising:
about 0.5 to about 5 wt-% peroxyoctanoic acid;
about 1 to about 10 wt-% octanoic acid;
about 5 to about 97 wt-% water;
about 1 to about 20 wt-% anionic surfactant;
about 5 to about 10 wt-% oxidizing agent;
about 15 to about 35 wt-% inorganic acid; and about 1 to about 5 wt-% sequestrant;
the composition forming a microemulsion.
2. The composition of claim 1, comprising:
about 15 to about 80 wt-% water; and about 3 to about 20 wt-% anionic surfactant.
3. The composition of claim 2, comprising:
about 30 to about 70 wt-% water; and about 4 to about 20 wt-% anionic surfactant.
4. The composition of claim 1, comprising at least about 2 parts by weight of peroxyoctanoic acid for each 7 parts by weight of octanoic acid.
5. The composition of claim 1, further comprising at least one of short chain carboxylic acid and short chain peroxycarboxylic acid;
the composition comprising at least about 1 part by weight of peroxyoctanoic acid for each 8 parts by weight of short chain carboxylic acid, short chain peroxycarboxylic acid, or mixture thereof.
6. The composition of claim 1, wherein the oxidizing agent comprises hydrogen peroxide.
7. The composition of claim 1, wherein the inorganic acid comprises at least one of sulfuric acid, phosphoric acid, methanesulfonic acid, and nitric acid.
8. The composition of claim 1, wherein the sequestrant comprises HEDP.
9. The composition of claim 1, wherein after 1 week at 60°C
the concentration of medium chain peroxycarboxylic acid is greater than about 80% of the level on the first day of storage.
10. A composition comprising:
about 0.0005 to about 5 wt-% medium chain peroxycarboxylic acid;
about 0.001 to about 10 wt-% medium chain carboxylic acid;
about 0.001 to about 99.99 wt-% carrier; and about 0.001 to about 80 wt-% solubilizer effective for solubilizing the medium chain peroxycarboxylic acid and the medium chain carboxylic acid;
the composition comprising about 2 or more parts by weight of medium chain peroxycarbaxylic acid for each 7 parts by weight of medium chain carboxylic acid;
wherein the composition forms a microemulsion.
11. The composition of claim 10, comprising:
about 0.5 to about 5 wt-% medium chain peroxycarboxylic acid;
about 1 to about 10 wt-% medium chain carboxylic acid;
about 1 to about 98 wt-% carrier; and about 1 to about 80 wt-% solubilizer;
the solubilizer comprising at least one of polyalkylene oxide, capped polyalkylene oxide, alkoxylated surfactant, nonionic surfactant, anionic surfactant, amphoteric surfactant, cationic surfactant, and zwitterionic surfactant.
12. The composition of claim 11, wherein the solubilizer comprises at least one of polyalkylene oxide, capped polyalkylene oxide, and nonionic surfactant;
the composition comprising:
about 2 to about 60 wt-% carrier; and about 10 to about 70 wt-% solubilizer.
13. The composition of claim 11, wherein the solubilizer comprises at least one of anionic surfactant and amphoteric surfactant;
the composition comprising:
about 30 to about 70 wt-% carrier; and about 2 to about 20 wt-% solubilizer.
14. The composition of claim 10, comprising:
about 2 to about 500 ppm medium chain peroxycarboxylic acid;
about 5 to about 2000 ppm medium chain carboxylic acid;
about 95 to about 99.99 wt-% carrier; and about 2 to about 23,000 ppm solubilizer.
15. The composition of claim 10, comprising about 2 or more parts by weight of medium chain peroxycarboxylic acid for each 4 parts by weight of medium chain carboxylic acid.
16. The composition of claim 15, comprising about 2 parts by weight of medium chain peroxycarboxylic acid for each 3 parts by weight of medium chain carboxylic acid.
17. The composition of claim 10, wherein the medium chain peroxycarboxylic acid comprises at least one of peroxypentanoic acid, peroxyhexanoic acid, peroxyheptanoic acid, peroxyoctanoic acid, peroxynonanoic acid, peroxydecanoic acid, peroxyundecanoic acid, and peroxydodecanoic acid.
18. The composition of claim 10, wherein the medium chain carboxylic acid comprises at least one of pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, and dodecanoic acid.
19. The composition of claim 10, wherein the medium chain peroxycarboxylic acid comprises C6 to C12 peroxycarboxylic acid; and the medium chain carboxylic acid comprises C6 to C12 carboxylic acid.
20. The composition of claim 19, wherein the medium chain peroxycarboxylic acid comprises at least one of peroxyhexanoic acid, peroxyheptanoic acid, peroxyoctanoic acid, peroxynonanoic acid, peroxydecanoic acid, peroxyundecanoic acid, and peroxydodecanoic acid.
21. The composition of claim 19, wherein the medium chain carboxylic acid comprises at least one of hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, and dodecanoic acid.
22. The composition of claim 10, wherein the medium chain peroxycarboxylic acid comprises C7 to C12 peroxycarboxylic acid; and the medium chain carboxylic acid comprises C7 to C12 carboxylic acid.
23, The composition of claim 22, wherein the medium chain peroxycarboxylic acid comprises at least one of peroxyheptanoic acid, peroxyoctanoic acid, peroxynonanoic acid, peroxydecanoic acid, peroxyundecanoic acid, and peroxydodecanoic acid.
24. The composition of claim 22, wherein the medium chain carboxylic acid comprises at least one of heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, and dodecanoic acid.
25. The composition of claim 10, wherein the medium chain peroxycarboxylic acid comprises C6 to C10 peroxycarboxylic acid; and the medium chain carboxylic acid comprises C5 to C10 carboxylic acid.
26. The composition of claim 25, wherein the C6 to C10 peroxycarboxylic acid comprises at least one of peroxyhexanoic acid, peroxyheptanoic acid, peroxyoctanoic acid, peroxynonanoic acid, and peroxydecanoic acid.
27. The composition of claim 25, wherein the C6 to C10 carboxylic acid comprises at least one of hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, and decanoic acid.
28. The composition of claim 10, wherein the medium chain peroxycarboxylic acid comprises at least one of peroxyoctanoic acid and peroxydecanoic acid; and the medium chain carboxylic acid comprises at least one of octanoic acid and decanoic acid.
29. The composition of claim 10, wherein the medium chain peroxycarboxylic acid comprises at least one of peroxyoctanoic acid and peroxydecanoic acid.
30. The composition of claim 10, wherein the medium chain carboxylic acid comprises at least one of octanoic acid and decanoic acid.
31. The composition of claim 10, wherein the medium chain peroxycarboxylic acid comprises peraxyoctanoic acid.
32. The composition of claim 10, wherein the medium chain carboxylic acid comprises octanoic acid.
33. The composition of claim Z0, wherein the solubilizer comprises at least one of polyalkylene oxide, capped polyalkylene oxide, and nonionic surfactant.
34. The composition of claim 33, wherein the solubilizer comprises at least one of polyethylene glycol, monomethyl ether of polyethyleneglycol, and dimethyl ether of polyethyleneglycol.
35. The composition of claim 10, wherein the solubilizer comprises nonionic surfactant.
36. The composition of claim 35, wherein the nonionic surfactant comprises at least one of alkoxylated surfactant and amine oxide surfactant.
37. The composition of claim 36, wherein the alkoxylated surfactant comprises at least one of EO/PO copolymer, capped EO/PO
copolymer, alcohol alkoxylate, and capped alcohol alkoxylate.
38. The composition of claim 10, wherein the solubilizer comprises anionic surfactant.
39. The composition of claim 38, wherein the anionic surfactant comprises at least one of alkyl sulfonate, alkyl benzene sulfonic acid, secondary alkane sulfonate, alkylated diphenyl oxide disulfonate, and alkyl ether sulfate.
40. The composition of claim 38, further comprising at least one of nonionic surfactant and semipolar nonionic surfactant.
41. The composition of claim 10, wherein the solubilizer comprises at least one of anionic surfactant, cationic surfactant, amphoteric surfactant, and zwitterionic surfactant.
42. The composition of claim 10, further comprising at least one of short chain carboxylic acid and short chain peroxycarboxylic acid;
the composition comprising about 1 or more parts by weight of medium chain peroxycarboxylic acid for each 8 parts by weight of short chain carboxylic acid, short chain peroxycarboxylic acid, or mixture thereof.
43. The composition of claim 10, further comprising at least one of short chain carboxylic acid and short chain peroxycarboxylic acid;
the composition comprising short chain carboxylic acid, short chain peroxycarboxylic acid, or mixture thereof at a level insufficient to cause objectionable odor.
44. The composition of claim 10, wherein the composition is substantially free of at least one of added short chain carboxylic acid and added short chain peroxycarboxylic acid.
45. The composition of claim 10, further comprising at least one of oxidizing agent, inorganic acid, and stabilizing agent.
46. The composition of claim 45, wherein the oxidizing agent comprises at least one of ozone, hydrogen peroxide, percarbonate, perborate, persulfate, perphosphate, and persilicate.
47. The composition of claim 45, wherein the acidulant comprises at least one of sulfuric acid, phosphoric acid, nitric acid, hydrochloric acid, methane sulfonic acid, ethane sulfonic acid, propane sulfonic acid, butane sulfonic acid, xylene sulfonic acid, and benzene sulfonic acid.
48. The composition of claim 45, wherein the stabilizing agent comprises at least one of phosphonic acid, polymeric polycarboxylate, and aminocarboxylic acid.
49. The composition of claim 45, further comprising at least one of antimicrobial solvent, additional antimicrobial agent, wetting agent, defoaming agent, thickener, foaming agent, solidification agent, and aesthetic enhancing agent.
50. The composition of claim 45, comprising oxidizing agent;
the oxidizing agent comprising hydrogen peroxide.
51. The composition of claim 45, comprising about 2 to about 30 wt-% oxidizing agent.
52. The composition of claim 45, comprising inorganic acid; the inorganic acid comprising at least one of sulfuric acid, nitric acid, phosphoric acid, and methanesulfonic acid.
53. The composition of claim 45, comprising about 1 to about 54 wt-% inorganic acid.
54. The composition of claim 45, comprising sequestrant; the sequestrant comprising HEDP.
55. The composition of claim 45, comprising about 0.5 to about 50 wt-% stabilizing agent.
56. The composition of claim 45, comprising:

about 2 to about 30 wt-% oxidizing agent;
about 1 to about 50 wt-% inorganic acid; and about 0.5 to about 50 wt-% stabilizing agent.
57. The composition of claim 10, comprising:
about 0.5 to about 4 wt-% medium chain peroxycarboxylic acid;
about 2 to about 6 wt-% medium chain carboxylic acid;
about 10 to about 80 wt % carrier; and about 3 to about 65 wt-% solubilizer.
58. The composition of claim 57, comprising:
about 1 to about 3 wt-% medium chain peroxycarboxylic acid;
about 2.5 to about 5 wt-% medium chain carboxylic acid;
about 20 to about 70 wt-% carrier; and about 5 to about 60 wt-% solubilizer.
59. The composition of claim 12, the composition comprises:
about 5 to about 50 wt-% carrier; and about 10 to about 65 wt-% solubilizer.
60. The composition of claim 59, wherein the composition comprises:
about 20 to about 40 wt-% carrier; and about 20 to about 60 wt-% solubilizer.
61. The composition of claim 13, wherein the composition comprises:
about 15 to about 70 wt-% carrier; and about 3 to about 15 wt-% solubilizer.
62. The composition of claim 61, wherein the composition comprises:

about 30 to about 75 wt-% carrier; and about 4 to about 10 wt-% solubilizer.
63. The composition of claim 10, wherein the composition has pH less than about 4.
64. The composition of claim 10, further comprising organic acid with pKa less than 4.
65. The composition of claim 64, wherein the organic acid with pKa less than 4 comprises at least one of hydroxyacetic acid, hydroxypropanoic acid, and hydroxybutyric acid.
66. The composition of claim 14, wherein after 1 week at 60 °C
the concentration of medium chain peroxycarboxylic acid is greater than about 80% of the level on the first day of storage.
67. A composition comprising:
about 0.3 to about 7 wt-% medium chain peroxycarboxylic acid;
about 1 to about 10 wt-% medium chain carboxylic acid;
about 5 to about 97 wt-% carrier; and about 1 to about 25 wt-% microemulsion former;
the composition forming a microemulsion.
68. The composition of claim 67, wherein the microemulsion former comprises anionic surfactant;
the composition comprising:
about 15 to about 70 wt-% carrier; and about 3 to about 15 wt-% anionic surfactant.
69. The composition of claim 68, comprising:
about 30 to about 75 wt-% carrier; and about 4 to about 10 wt-% anionic surfactant.
70. The composition of claim 67, wherein the composition exhibits blue tyndall appearance and shear thinning viscosity.
71. The composition of claim 67, comprising about 2 or more parts by weight of medium chain peroxycarboxylic acid for each 7 parts by weight of medium chain carboxylic acid.
72. The composition of claim 71, comprising about 2 or more parts by weight of medium chain peroxycarboxylic acid for each 4 parts by weight of medium chain carboxylic acid.
73. The composition of claim 72, comprising about 2 parts by weight of medium chain peroxycarboxylic acid for each 3 parts by weight of medium chain carboxylic acid.
74. The composition of claim 67, wherein the medium chain peroxycarboxylic acid comprises at least one of peroxyhexanoic acid, peroxyheptanaic acid, peroxyoetanoic acid, peroxyr~onanoic acid, peroxydecanoic acid, peroxyundecanoic acid, and peroxydodecanoic acid.
75. The composition of claim b7, wherein the medium chain carboxylic acid comprises at least one of hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoie acid, undecanoic acid, and dodecanoic acid.
75. The composition of claim 67,, wherein the medium chain peroxycarboxylic acid comprises C7 to C12 peroxycarboxylic acid; and the medium chain carboxylic acid comprises C7 to C12 carboxylic acid.
161
77. The composition of claim 76, wherein the medium chain peroxycarboxylic acid comprises at least one of peroxyheptanoic acid, peroxyoctanoic acid, peroxynonanoic acid, peroxydecanoic acid, peroxyundecanoic acid, and peroxydodecanoic acid.
75. The composition of claim 76, wherein the medium chain carboxylic acid comprises at least one of heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, and dodecanoic acid.
79. The composition of claim 67, wherein the medium chain peroxycarboxylic acid comprises C6 to C10 peroxycarboxylic acid; and the medium chain carboxylic acid comprises C6 to C10 carboxylic acid.
80. The composition of claim 79, wherein the C6 to C10 peroxycarboxylic acid comprises at least one of peroxyhexanoic acid, peroxyheptanoic acid, peroxyoctanoic acid, peroxynonanoic acid, and peroxydecanoic acid.
81. The composition of claim 79, wherein the C6 to C10 carboxylic acid comprises at least one of hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, and decanoic acid.
82. The composition of claim 67, wherein the medium chain peroxycarboxylic acid comprises at least one of peroxyoctanoic acid and peroxydecanoic acid; and the medium chain carboxylic acid comprises at least one of octanoic acid and decanoic acid.
83. The composition of claim 67, wherein the medium chain peroxycarboxylic acid comprises at least one of peroxyoctanoic acid and peroxydecanoic acid.
84. The composition of claim 67, wherein the medium chain carboxylic acid comprises at least one of octanoic acid and decanoic acid.
85. The composition of claim 67, wherein the medium chain peroxycarboxylic acid comprises peroxyoctanoic acid.
86. The composition of claim 67, wherein the medium chain carboxylic acid comprises octanoic acid.
87. The composition of claim 67, wherein the microemulsion forming surfactant comprises at least one of anionic surfactant and amphoteric surfactant.
88. The composition of claim 87, wherein the anionic surfactant comprises at least one of alkyl sulfonate, alkyl benzene sulfonic acid, secondary alkane sulfonate, alkylated diphenyl oxide disulfonate, and alkyl ether sulfate.
89. The composition of claim 87, further comprising at least one of nonionic surfactant and semipolar nonionic surfactant.
90. The composition of claim 67, wherein the microemulsion former comprises at least one of anionic surfactant, cationic surfactant, amphoteric surfactant, and zwitterionic surfactant.
91. The composition of claim 67, further comprising at least one of short chain carboxylic acid and short chain peroxycarboxylic acid;
the composition comprising about 1 or more parts by weight of medium chain peroxycarboxylic acid for each 8 parts by weight of short chain carboxylic acid, short chain peroxycarboxylic acid, or mixture thereof.
92. The composition of claim 67, further comprising at least one of short chain carboxylic acid and short chain peroxycarboxylic acid;
the composition comprising at least one of short chain carboxylic acid and short chain peroxycarboxylic acid at a level insufficient to cause objectionable odor.
93. The composition of claim 67, wherein the composition is substantially free of at least one of added short chain carboxylic acid and added short chain peroxycarboxylic acid.
94. The composition of claim 67, further comprising at least one of oxidizing agent, inorganic acid, and stabilizing agent.
95. The composition of claim 94, wherein the oxidizing agent comprises at least one of ozone, hydrogen peroxide, percarbonate, perborate, persulfate, perphosphate, and persilicate.
96, The composition of claim 94, wherein the acidulant comprises at least one of sulfuric acid, phosphoric acid, nitric acid, hydrochloric acid, methane sulfonic acid, ethane sulfonic acid, propane sulfonic acid, butane sulfonic acid, xylene sulfonic acid, and benzene sulfonic acid.
97. The composition of claim 94, wherein the stabilizing agent comprises at least one of phosphonic acid, polymeric polycarboxylate, and aminocarboxylic acid.
98. The composition of claim 94, further comprising at least one of antimicrobial solvent, additional antimicrobial agent, wetting agent, defoaming agent, thickener, foaming agent, solidification agent, and aesthetic enhancing agent.
99. The composition of claim 94, comprising oxidizing agent;
the oxidizing agent comprising hydrogen peroxide.
100. The composition of claim 94, comprising about 2 to about 30 wt-% oxidizing agent.
101. The composition of claim 94, comprising inorganic acid; the inorganic acid comprising at least one of sulfuric acid, phosphoric acid, and methane sulfonic acid.
102. The composition of claim 94, comprising about 1 to about 50 wt-% inorganic acid.
103. The composition of claim 94, comprising sequestrant; the sequestrant comprising HEDP.
104. The composition of claim 94, comprising about 1 to abort 50 wt-% stabilizing agent.
105. The composition of claim 94, comprising;
about 2 to about 30 wt-% oxidizing agent;
about 1 to about 50 wt-% inorganic acid; and about 0.5 to about 50 wt-% stabilizing agent.
106. The composition of claim 57, comprising:
about 15 to about 70 wt-% carrier; and about 3 to about 15 wt-% solubilizer.
107. The composition of claim 106, comprising:
about 30 to about 75 wt-% carrier; and about 4 to about 10 wt-% solubilizer.
165 105. The composition of claim 67, wherein the composition has pH less than about 4.
109. The composition of claim 67, further comprising organic acid with pKa less than 4.
110. The composition of claim 67, wherein the organic acid with pKa less than 4 comprises at least one of hydroxyacetic acid, hydroxypropanoic acid, and hydroxybutyric acid.
111. The composition of claim 67, wherein after 1 weak at 60°C
the concentration of medium chain peroxycarboxylic acid is greater than about 80%a of the level on the fast day of storage.
112. A method of making a medium chain peroxycarboxylic acid composition, the method comprising:
combining:
about 1 to about 10 wt-% medium chain carboxylic aced;
about 5 to about 97 wt-% carrier;
about 2 to about 30 wt-% oxidizing agent; and about 1 to about 25 wt-% microemulsion former;
forming a microemulsion; and converting 20% or more of the medium chain carboxylic acid to medium chain peroxycarboxylic acid in about 24 or fewer hours.
113. The method of claim 112, wherein the microemulsion former comprises at least one of anionic surfactant and amphoteric surfactant.
114. The method of claim 112, comprising converting about 25%
or more of the medium chain carboxylic acid to medium chain peroxycarboxylic acid in about 24 or fewer hours.
115. The method of claim 114, comprising converting about 30%
or more of the medium chain carboxylic acid to medium chain peroxycarboxylic acid in about 24 or fewer hours,
116. The method of claim 115, comprising converting about 35%
or more of the medium chain carboxylic acid to medium chain peroxycarboxylic acid in about 24 or fewer hours.
117. The method of claim 116, comprising converting about 40%
of the medium chain carboxylic acid to medium chain peroxycarboxylic acid in about 24 or fewer hours.
118. The method of claim 112, further comprising adding to the mixture no more than about 2 parts by weight of short chain carboxylic and, short chain peroxycarboxylic acid, or mixture thereof for each part by weight of medium chain carboxylic acid.
119. The method of claim 112, wherein mixing further comprises mixing inorganic acid, stabilizing agent, or mixture thereof.
120. The method of claim 112, wherein the medium chain peroxycarboxylic acid comprises at least one of peroxyhexanoic acid, peroxyheptanoic acid, peroxyoctanoic acid, peroxynonanaic acid, peroxydecanoic acid, peroxyundecanoic acid, and peroxydodecanoic acid.
121. The method of claim 112, wherein the medium chain carboxylic acid comprises at least one of hexanoic acid, heptanoic acid, oetanoic acid, nonanoic acid, decanoic acid, undecanoic acid, and dodecanoic acid.
122. The method of claim 112, wherein the medium chain peroxycarboxylic acid comprises C7 to C12 peroxycarboxylic acid; and the medium chain carboxylic acid comprises C7 to C12 carboxylic acid.
123. The method of claim 122, wherein the medium chain peroxycarboxylic acid comprises at least one of peroxyheptanoic acid, peroxyoctanoic acid, peroxynonanoic acid, peroxydecanoic acid, peroxyundecanoic acid, and peroxydodecanoic acid.
124. The method of claim 122, wherein the medium chain carboxylic acid comprises at least one of heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, and dodecanoic acid.
125, The method of claim 112, wherein the medium chain peroxycarboxylic acid comprises C8 to C10 peroxycarboxylic acid; and the medium chain carboxylic acid comprises C8 to C10 carboxylic acid.
126. The method of claim 125, wherein the C8 to C10 peroxycarboxylic acid comprises at least one of peroxyoctanoic acid, peroxynonanoic acid, and peroxydecanoic acid.
127. The method of claim 125, wherein the C8 to C10 carboxylic acid comprises at least one of octanoic acid, nonanoic acid, and decanoic acid.
128. The method of claim 112, wherein the medium chain peroxycarboxylic acid comprises at least one of peroxyoctanoic acid and peroxydecanoic acid; and the medium chain carboxylic acid comprises at least one of octanoic acid and decanoic acid.
129. The method of claim 112, wherein the medium chain peroxycarboxylic acid comprises at least one of peroxyoctanoic acid and peroxydecanoic acid.
130. The method of claim 112, wherein the medium chain carboxylic acid comprises at least one of octanoic acid and decanoic acid.
131. The method of claim 112, wherein the medium chain peroxycarboxylic acid comprises peroxyoctanoic acid.
132. The method of claim 112, wherein the medium chain carboxylic acid comprises octanoic acid.
133. The method of claim 112, wherein the anionic surfactant comprises normal alkyl sulfonate.
134. The method of claim 112, wherein the microemulsion former comprises at least one of anionic surfactant, cationic surfactant, amphoteric surfactant, and zwitterionic surfactant.
135. A method of reducing population of microorganism on an object, the method comprising:
contacting the object with a medium chain peroxycarboxylic acid composition;
the composition comprising:
about 2 to about 500 ppm medium chain peroxycarboxylic acid;
about 5 to about 2,000 ppm medium chain carboxylic acid;
about 95 to about 99.99 wt-% carrier; and about 2 to about 4,000 ppm microemulsion former.
136. The method of claim 135, wherein the object comprises ax least one of food product, food processing surface, health care surface, plant product, body or stream of water, body or stream of gas, hospitality sector surface, industrial sector surface, agricultural surface, and veterinary surface.
137. The method of claim 135, wherein the object comprises a hard surface.
138. The method of claim 135, wherein the object comprises an air stream.
139. The method of claim 135, wherein the object comprises at least one of elastomer, plastic, woven substrate, and non-woven substrate.
140. The method of claim 135, wherein contacting comprises at least one of spraying the composition, immersing the object in the composition, and foam or gel treating the object with the composition.
CA2548629A 2004-01-09 2005-01-05 Medium chain peroxycarboxylic acid compositions Active CA2548629C (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US10/754,426 US7771737B2 (en) 2004-01-09 2004-01-09 Medium chain peroxycarboxylic acid compositions
US10/754,426 2004-01-09
US11/030,641 US7569232B2 (en) 2004-01-09 2005-01-04 Medium chain peroxycarboxylic acid compositions
US11/030,641 2005-01-04
PCT/US2005/000151 WO2005070205A1 (en) 2004-01-09 2005-01-05 Medium chain peroxycarboxylic acid compositions

Publications (2)

Publication Number Publication Date
CA2548629A1 true CA2548629A1 (en) 2005-08-04
CA2548629C CA2548629C (en) 2015-04-28

Family

ID=34810451

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2548629A Active CA2548629C (en) 2004-01-09 2005-01-05 Medium chain peroxycarboxylic acid compositions

Country Status (7)

Country Link
US (1) US9511161B2 (en)
EP (1) EP1703791B1 (en)
JP (1) JP2007520479A (en)
AU (1) AU2005206690B2 (en)
BR (1) BRPI0506713A (en)
CA (1) CA2548629C (en)
WO (1) WO2005070205A1 (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7754670B2 (en) * 2005-07-06 2010-07-13 Ecolab Inc. Surfactant peroxycarboxylic acid compositions
NZ573767A (en) * 2006-07-18 2011-12-22 Glaxo Group Ltd Anti-viral face mask and filter material
US7718594B1 (en) * 2006-10-11 2010-05-18 The United States Of America As Represented By The Secretary Of The Navy Aqueous based chemical and biological warfare decontaminating system for extreme temperature applications
JP5132930B2 (en) * 2006-12-27 2013-01-30 花王株式会社 Liquid detergent composition
JP5060791B2 (en) * 2007-01-26 2012-10-31 独立行政法人森林総合研究所 Method for drying wood, method for penetrating chemicals into wood and drying apparatus
US9259006B2 (en) 2008-01-30 2016-02-16 Smartwash Solutions, Llc Antimicrobial compositions and methods of use thereof
US8809392B2 (en) 2008-03-28 2014-08-19 Ecolab Usa Inc. Sulfoperoxycarboxylic acids, their preparation and methods of use as bleaching and antimicrobial agents
JP5584194B2 (en) 2008-03-28 2014-09-03 エコラボ インコーポレイティド Sulfoperoxycarboxylic acids, methods for their production and use as bleaches and fungicides.
US8871807B2 (en) 2008-03-28 2014-10-28 Ecolab Usa Inc. Detergents capable of cleaning, bleaching, sanitizing and/or disinfecting textiles including sulfoperoxycarboxylic acids
US20100093596A1 (en) * 2008-04-07 2010-04-15 Ecolab Inc. Ultra-concentrated liquid degreaser composition
FR2931687B1 (en) * 2008-05-27 2017-11-24 Commissariat A L'energie Atomique AQUEOUS DECONTAMINANT AND FOAMING SOLUTION.
US20100147889A1 (en) * 2008-12-09 2010-06-17 Green Source Automated, Llc System and method for the delivery of a sanitizing foam
US20110021401A1 (en) * 2009-07-27 2011-01-27 Osprey Biotechnics, Inc. Method of treating drains using fungus cultures
GB201003763D0 (en) * 2010-03-05 2010-04-21 Dodd Jeff Evaluation of an anti microbial agent
US8722607B2 (en) * 2010-03-24 2014-05-13 University Of South Carolina Methods and compositions for eliminating allergens and allergen-producing organisms
US10563153B2 (en) 2010-05-20 2020-02-18 Ecolab Usa Inc. Rheology modified low foaming liquid antimicrobial compositions and methods of use thereof
JP5641868B2 (en) * 2010-10-19 2014-12-17 大日本除蟲菊株式会社 Aqueous insecticide
US8883848B2 (en) 2011-07-14 2014-11-11 Ecolab Usa Inc. Enhanced microbial peracid compositions and methods of use at reduced temperatures in aseptic cleaning
US8906963B2 (en) 2011-07-14 2014-12-09 Ecolab Usa Inc Deodorization of peracids
CA3202964A1 (en) 2011-12-06 2013-06-13 Delta Faucet Company Ozone distribution in a faucet
US9321664B2 (en) 2011-12-20 2016-04-26 Ecolab Usa Inc. Stable percarboxylic acid compositions and uses thereof
JP6061627B2 (en) * 2012-02-20 2017-01-18 大日本除蟲菊株式会社 Fly larvae control agent and fly larvae control method using the same
GB201204981D0 (en) * 2012-03-21 2012-05-02 Natural Biotechnology Sprl Pre-harvest treatment
MX360142B (en) 2012-03-30 2018-10-24 Ecolab Usa Inc Use of peracetic acid/hydrogen peroxide and peroxide-reducing agents for treatment of drilling fluids, frac fluids, flowback water and disposal water.
US9062277B1 (en) * 2012-04-16 2015-06-23 ZAP! Holdings, LLC Composition and method for treating surfaces
US10165774B2 (en) 2013-03-05 2019-01-01 Ecolab Usa Inc. Defoamer useful in a peracid composition with anionic surfactants
US8822719B1 (en) 2013-03-05 2014-09-02 Ecolab Usa Inc. Peroxycarboxylic acid compositions suitable for inline optical or conductivity monitoring
US20140256811A1 (en) 2013-03-05 2014-09-11 Ecolab Usa Inc. Efficient stabilizer in controlling self accelerated decomposition temperature of peroxycarboxylic acid compositions with mineral acids
US10253277B2 (en) * 2015-09-28 2019-04-09 Ecolab Usa Inc. DEA-free pot and pan cleaner for hard water use
US20170156391A1 (en) 2015-12-08 2017-06-08 Smartwash Solutions, Llc Short-term wash treatment of produce
CN108463437B (en) 2015-12-21 2022-07-08 德尔塔阀门公司 Fluid delivery system comprising a disinfection device
MA45743A (en) * 2016-02-25 2019-01-02 Ecolab Usa Inc ETHER AMINES FOR BETTER SPORICIDE PERFORMANCE
JP6945281B2 (en) * 2016-06-30 2021-10-06 ライオンハイジーン株式会社 Detergent composition for aeration-type foreign matter removal and cleaning of vegetables and foreign matter removal and cleaning method for vegetables
WO2019040953A1 (en) * 2017-08-21 2019-02-28 Log Six Pty Ltd A method and apparatus for decontamination
US11937602B2 (en) 2017-09-26 2024-03-26 Ecolab Usa Inc. Solid acid/anionic antimicrobial and virucidal compositions and uses thereof
CN111110892B (en) * 2019-11-25 2022-02-08 刘�文 Small-size biological medicine bottle disinfection atomizing machine
US20220167613A1 (en) * 2020-12-01 2022-06-02 Stratacor, Inc. Choline chloride adjuvant for fatty acid based biopesticide
CN114742414B (en) * 2022-04-14 2022-12-13 中国科学院西北生态环境资源研究院 Assessment method for monitoring degradation degree of alpine grassland by utilizing soil arthropods

Family Cites Families (193)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2512640A (en) * 1949-07-25 1950-06-27 Buffalo Electro Chem Co Treatment of raw plant tissue
NL130828C (en) * 1959-06-03
US3248281A (en) * 1963-06-26 1966-04-26 Dow Chemical Co Iodine-peroxide-bisulfate antimicrobial composition
US3350265A (en) 1966-01-04 1967-10-31 Grace W R & Co Aqueous polymeric latex with silver and sodium hypochlorite, hydrogen peroxide, or formaldehyde germicides
US3514278A (en) * 1968-01-08 1970-05-26 Betz Laboratories Slime control agent and methods of application
US3895116A (en) * 1971-11-29 1975-07-15 Eastman Kodak Co Mixtures of volatile fatty acids having anti-fungal and anti-bacterial activity
US3996386A (en) 1971-12-15 1976-12-07 Yrjo Malkki Method for preventing microbial surface deterioration of foods and feeds
DE2365172A1 (en) 1973-12-29 1975-07-10 Hoechst Ag BLEACHING AGENTS FOR DETERGENTS AND DETERGENTS
US3929678A (en) 1974-08-01 1975-12-30 Procter & Gamble Detergent composition having enhanced particulate soil removal performance
NL7608265A (en) 1975-08-16 1977-02-18 Henkel & Cie Gmbh STABLE CONCENTRATES OF FUNCTIONAL RESOURCES IN STORAGE.
NL7608266A (en) 1975-08-16 1977-02-18 Henkel & Cie Gmbh CONCENTRATES OF MICROBICIDE AGENTS.
FR2324626A1 (en) 1975-09-19 1977-04-15 Anvar Percarboxylic acids prepn. from acid chlorides in soln. - using conc. hydrogen peroxide, opt. with pyridine
US4041149A (en) * 1976-01-12 1977-08-09 Colgate-Palmolive Company Composition and method of controlling and preventing mouth odor
DE2654164C2 (en) 1976-11-30 1978-08-10 Schuelke & Mayr Gmbh, 2000 Norderstedt Aqueous perglutaric acid solution and its use
GB1570492A (en) 1976-12-14 1980-07-02 Metal Box Co Ltd Sterilization of articles
DE2725067A1 (en) 1977-06-03 1978-12-14 Schuelke & Mayr Gmbh ALCOHOLIC DISINFECTANT WITH SPORICIDAL EFFECT
US4191660A (en) * 1978-02-27 1980-03-04 International Flavors & Fragrances Inc. Organoleptic uses of 1-(3,3-dimethyl-2-norbornyl)-2-propanone in cationic, anionic and nonionic detergents and soaps
CA1146851A (en) 1978-05-01 1983-05-24 Donald F. Greene Hydrogen peroxide disinfecting and sterilizing compositions
IN153503B (en) 1979-01-11 1984-07-21 Nat Res Dev
DK145779A (en) * 1979-04-09 1980-10-10 Novo Industri As PROCEDURE FOR THERMAL DESTABILIZATION OF MICROBIAL OSTELOEBE
US4244884A (en) * 1979-07-12 1981-01-13 The Procter & Gamble Company Continuous process for making peroxycarboxylic acids
DE3003875A1 (en) 1980-02-02 1981-08-13 Norddeutsche Affinerie, 2000 Hamburg FLOOR TREATMENT AGENTS
US4404040A (en) 1981-07-01 1983-09-13 Economics Laboratory, Inc. Short chain fatty acid sanitizing composition and methods
US4370199A (en) * 1981-11-09 1983-01-25 Westvaco Corporation Enzymatic catalyzed biocide system
US4478683A (en) 1981-11-09 1984-10-23 Westvaco Corporation Enzymatic catalyzed biocide system
CH651314A5 (en) * 1981-12-23 1985-09-13 Colgate Palmolive Co DETERGENT COMPOSITION FOR DISHWASHER.
US4529534A (en) * 1982-08-19 1985-07-16 The Procter & Gamble Company Peroxyacid bleach compositions
US4477438A (en) 1982-11-12 1984-10-16 Surgikos, Inc. Hydrogen peroxide composition
GB8307036D0 (en) 1983-03-15 1983-04-20 Interox Chemicals Ltd Peroxygen compounds
DE3465334D1 (en) 1983-04-14 1987-09-17 Interox Chemicals Ltd Peroxygen compounds
GB8328654D0 (en) 1983-10-26 1983-11-30 Interox Chemicals Ltd Hydrogen peroxide compositions
US4655781A (en) * 1984-07-02 1987-04-07 The Clorox Company Stable bleaching compositions
DE3437629A1 (en) * 1984-10-13 1986-04-17 Henkel KGaA, 4000 Düsseldorf CARPET CLEANER
FR2574424B1 (en) 1984-12-12 1987-01-16 Interox PROCESS FOR ACTIVATION OF HYDROGEN PEROXIDE IN WASHING OR DISINFECTING BATHS, SOLID WASHING AND DISINFECTING COMPOSITIONS AND USE OF SUCH COMPOSITIONS IN BATHS FOR WASHING OR DISINFECTING TEXTILES
GB8500116D0 (en) * 1985-01-03 1985-02-13 Unilever Plc Liquid bleaching compositions
US4566980A (en) * 1985-01-16 1986-01-28 Creative Products Resource Associates, Ltd. Carpet treating composition
GB8506735D0 (en) 1985-03-15 1985-04-17 Diversey Corp Sanitising & rinsing process
FR2578988B1 (en) 1985-03-18 1988-10-28 Henkel France METHOD FOR REGULATING THE CONCENTRATION OF DISINFECTION SOLUTIONS, IN PARTICULAR OXIDIZING, CONTAINING DISINFECTANT MOLECULES
US4592488A (en) * 1985-05-24 1986-06-03 Simon Gilbert I Method for the preparation of chemotherapeutic compositions for the treatment of periodontal disease, compositions therefor and use thereof
US4923677A (en) * 1985-08-07 1990-05-08 Roy T. Witkin Chemical sterilization
US4997625A (en) * 1985-08-07 1991-03-05 Simon Gilbert I Chemical sterilization
GB2182051A (en) 1985-09-10 1987-05-07 Interox Chemicals Ltd Stabilisation of peroxyacids in detergent compositions containing nonionic surfactant
DE3543500A1 (en) 1985-12-10 1987-06-11 Schuelke & Mayr Gmbh Aqueous solution of aromatic percarboxylic acids and its use
GB8603960D0 (en) 1986-02-18 1986-03-26 Interox Chemicals Ltd Disinfection process
US4738840A (en) * 1986-03-03 1988-04-19 Simon Gilbert I Presurgical sterilization method
US4715980A (en) 1986-03-17 1987-12-29 Diversey Wyandotte Corporation Antimicrobial sanitizing composition containing n-alkyl and n-alkenyl succinic acid and methods for use
GB8607035D0 (en) 1986-03-21 1986-04-30 Albright & Wilson Crop treatment processes
DE3702983A1 (en) * 1986-06-09 1987-12-10 Henkel Kgaa DISINFECTANT AND THEIR USE FOR SKIN AND MUCUS SKIN DISINFECTION
US4802994A (en) * 1986-07-17 1989-02-07 Nalco Chemical Company Biocide treatment to control sulfate-reducing bacteria in industrial process waste waters
US4683618A (en) * 1986-07-28 1987-08-04 Brien Gerard T O Reduction of bacteria count on poultry being processed into food at a poultry processing plant
JPS6390586A (en) * 1986-09-29 1988-04-21 リ−・フア−マス−テイカルズ・インコ−ポレイテツド Improved adhesive tab system
FR2604357B1 (en) * 1986-09-30 1988-12-02 Oreal PHARMACEUTICAL AND ANTI-ACNE COSMETIC COMPOSITION
DE3707409A1 (en) * 1987-03-07 1988-09-15 Henkel Kgaa METHOD FOR REMOVING TEXTILES
US5656302A (en) 1987-05-14 1997-08-12 Minntech Corporation Stable, shippable, peroxy-containing microbicide
US4908306A (en) * 1987-06-12 1990-03-13 Life Technologies, Inc. Human papillomavirus 56 nucleic acid hybridization probes and methods for employing the same
US4945110A (en) * 1987-06-15 1990-07-31 Quali Tech, Inc. Membrame-forming veterinary antibacterial teat dip
GB2207354A (en) 1987-07-23 1989-02-01 Interox Chemicals Ltd Compositions containing chlorine and/or hypochlorite together with an aliphatic peracid for use in disinfection
US4943414A (en) * 1987-07-30 1990-07-24 Johnson & Johnson Medical, Inc. Method for vapor sterilizaton of articles having lumens
DE3812693A1 (en) * 1988-03-19 1989-09-28 Reckitt Gmbh CLEANING TABLET FOR DENTAL PROSTHESIS
US4917815A (en) * 1988-06-10 1990-04-17 Sterling Drug Inc. Stable aqueous aromatic percarboxylic acid solution
US5292447A (en) * 1988-06-14 1994-03-08 Ausimont S.R.L. Heterocyclic peroxides having n-amidic heteroatoms
JPH0211501A (en) * 1988-06-30 1990-01-16 Chisso Corp Antimicrobial composition
US5093140A (en) * 1988-07-20 1992-03-03 Eisai Co., Ltd. Aqueous bactericide for animal treatment
US5639871A (en) * 1988-09-09 1997-06-17 Roche Molecular Systems, Inc. Detection of human papillomavirus by the polymerase chain reaction
GB8822908D0 (en) 1988-09-29 1988-11-02 Albright & Wilson Hydroponic crop production
US4996062A (en) * 1988-10-28 1991-02-26 Stabra Ag Glucose oxidase food treatment and storage method
FR2639233B1 (en) 1988-11-23 1994-05-06 Air Liquide HEMODIALYSIS HYGIENE AGENT
US4865752A (en) 1988-12-05 1989-09-12 Jacobs Albert L Separation and filtration membranes and their regeneration
US5512309A (en) * 1989-02-09 1996-04-30 Rhone-Poulenc Inc. Process for treating poultry carcasses to increase shelf-life
DE3906044A1 (en) 1989-02-27 1990-08-30 Henkel Kgaa BLEACHING LIQUID DETERGENT
US5114178A (en) * 1989-03-13 1992-05-19 Baxter David A Suspension apparatus
US5149463A (en) 1989-04-21 1992-09-22 The Clorox Company Thickened acidic liquid composition with sulfonate fwa useful as a bleaching agent vehicle
US4937066A (en) * 1989-06-22 1990-06-26 David G. Vlock Zinc containing oral compositions
ES2081912T3 (en) * 1989-08-08 1996-03-16 Akzo Nobel Nv AQUEOUS PEROXIDE COMPOSITIONS WITH IMPROVED SAFETY PROFILE.
US5139788A (en) * 1989-10-17 1992-08-18 Ecolab Inc. Noncontaminating antimicrobial composition
US5129824A (en) * 1989-12-21 1992-07-14 Keller Duane C Method for treating periodontal disease
WO1991009843A1 (en) 1989-12-23 1991-07-11 Interox Chemicals Limited Peroxycarboxylic acids
US4997571A (en) * 1990-01-05 1991-03-05 Mogul Corporation Method of treating water
US5004760A (en) * 1990-02-16 1991-04-02 The Dow Chemical Company Biocidal foams
US5069286A (en) 1990-04-30 1991-12-03 The Mogul Corporation Method for prevention of well fouling
GB9012790D0 (en) 1990-06-08 1990-08-01 Interox Chemicals Ltd Food storage
EP0461700A1 (en) 1990-06-12 1991-12-18 Akzo Nobel N.V. Aqueous disinfectant compositions, and concentrates for preparing the same
US5043176A (en) * 1990-06-13 1991-08-27 Haarmann & Reimer Corp. Synergistic antimicrobial compositions
US5122538A (en) * 1990-07-23 1992-06-16 Ecolab Inc. Peroxy acid generator
US5084239A (en) * 1990-08-31 1992-01-28 Abtox, Inc. Plasma sterilizing process with pulsed antimicrobial agent treatment
US5114718A (en) * 1990-09-20 1992-05-19 The Procter & Gamble Company Sustained release compositions for treating periodontol disease
TW230784B (en) * 1990-10-22 1994-09-21 Procter & Gamble
US5306350A (en) * 1990-12-21 1994-04-26 Union Carbide Chemicals & Plastics Technology Corporation Methods for cleaning apparatus using compressed fluids
TW291496B (en) * 1991-02-01 1996-11-21 Hoechst Ag
JPH0731210Y2 (en) 1991-04-20 1995-07-19 耕作 上田 binoculars
US5130124A (en) * 1991-05-01 1992-07-14 Isp Investments Inc. Stabilized, aqueous, film-forming antimicrobial compositions of hydrogen peroxide
GB9109929D0 (en) 1991-05-08 1991-07-03 Interox Chemicals Ltd Thickened compositions
US5320805A (en) * 1991-05-15 1994-06-14 Sterilex Corporation Methods of using a cleaner, sanitizer, disinfectant, fungicide, sporicide, chemical sterilizer
NZ240355A (en) 1991-06-04 1994-09-27 Ecolab Inc Sanitising composition comprising sorbic and benzoic acids
US5234719A (en) 1991-06-04 1993-08-10 Ecolab Inc. Food additive sanitizing compositions
US5184471A (en) * 1991-07-08 1993-02-09 Ocs Industries, Inc. Food products chiller and method of using the same
GB2257630A (en) 1991-07-13 1993-01-20 Interox Chemicals Ltd Activated biocidal compositions
DE69231686T2 (en) * 1991-07-15 2001-08-30 Minntech Corp STABLE, ANTICORROSIVE PERESSIG- / PEROXID-STERILI-SATIONAL
US5437868A (en) 1991-07-23 1995-08-01 Ecolab Inc. Peroxyacid antimicrobial composition
US5200189A (en) * 1991-07-23 1993-04-06 Ecolab Inc. Peroxyacid antimicrobial composition
US5658595A (en) 1991-09-10 1997-08-19 Kon-Des Milieutechnologie B.V. Method, composition and device for the treatment of raw materials, products and production means, in particular in the foodstuffs industry
GB9122048D0 (en) 1991-10-17 1991-11-27 Interox Chemicals Ltd Compositions and uses thereof
US5208057A (en) * 1991-11-12 1993-05-04 Rohm And Haas Company Process for butchering and disinfecting fowl
GB9124160D0 (en) * 1991-11-14 1992-01-08 Interox Chemicals Ltd Stabilised peracid solutions
US5176899A (en) * 1991-11-25 1993-01-05 Montgomery Robert E Antimicrobial dentifrice
US5268003A (en) 1992-03-31 1993-12-07 Lever Brothers Company, Division Of Conopco, Inc. Stable amido peroxycarboxylic acids for bleaching
EP0569066B1 (en) 1992-04-16 1995-10-25 Unilever N.V. Disinfectant compositions
GB9219465D0 (en) 1992-09-15 1992-10-28 Solvay Interox Ltd Microbicidal compositions and methods
NL9201631A (en) 1992-09-21 1994-04-18 Phytocare Cv Method and apparatus for disinfecting drain water
US5234703A (en) 1992-10-31 1993-08-10 Guthery B Eugene Disinfecting product and process
US5436008A (en) * 1992-12-11 1995-07-25 Ecolab Inc. Sanitizing compositions
GB9227020D0 (en) 1992-12-24 1993-02-17 Solvay Interox Ltd Microbicidual compositions
GB9300366D0 (en) * 1993-01-09 1993-03-03 Solvay Interox Ltd Compositions and uses thereof
US5409713A (en) 1993-03-17 1995-04-25 Ecolab Inc. Process for inhibition of microbial growth in aqueous transport streams
US5683724A (en) 1993-03-17 1997-11-04 Ecolab Inc. Automated process for inhibition of microbial growth in aqueous food transport or process streams
FR2704726B1 (en) * 1993-05-05 1995-06-16 Chemoxal Sa Aqueous composition comprising an organic peroxyacid and its uses as disinfecting agents.
GB9316027D0 (en) * 1993-08-03 1993-09-15 Solvay Interox Ltd Egg washing and disinfection process
US5785867A (en) * 1993-08-05 1998-07-28 Nalco Chemical Company Method and composition for inhibiting growth of microorganisms including peracetic acid and a non-oxidizing biocide
US5658467A (en) 1993-08-05 1997-08-19 Nalco Chemical Company Method and composition for inhibiting growth of microorganisms including peracetic acid and a non-oxidizing biocide
CA2129489C (en) * 1993-08-05 2000-10-10 Judy G. Lazonby Method and composition for inhibiting growth of microorganisms including peracetic acid and a non-oxidizing biocide
US5435808A (en) * 1993-09-03 1995-07-25 Birko Corporation Hide raceway treatment and improved method of curing hides
US5632676A (en) * 1993-10-12 1997-05-27 Fmc Corporation Use of peracetic acid to sanitize processed fowl
DK9300538U3 (en) 1993-12-10 1994-02-11 Phoenix Contractors As Roofing for low slope roofing
GB2286603B (en) 1994-02-14 1998-03-25 Jeyes Group Plc Bleach compositions
CA2185100C (en) * 1994-03-09 2006-10-31 Tapio Mattila A method for preparation of aqueous solutions containing performic acid as well as their use
JPH07258005A (en) 1994-03-16 1995-10-09 Otsuka Chem Co Ltd Antimicrobial agent for agriculture and horticulture
US5578134A (en) 1994-04-19 1996-11-26 Ecolab Inc. Method of sanitizing and destaining tableware
US6257253B1 (en) * 1994-04-19 2001-07-10 Ecolab Inc. Percarboxylic acid rinse method
US6302968B1 (en) 1994-04-19 2001-10-16 Ecolab Inc. Precarboxylic acid rinse method
US5616616A (en) * 1994-06-01 1997-04-01 Minntech Corporation Room Temperature sterilant
DE4420127C1 (en) 1994-06-09 1995-05-11 Jun Heinz Stemmler Means for improving carcass keeping quality
GB9412051D0 (en) 1994-06-16 1994-08-03 Solvay Interox Ltd Novel peroxygen compounds
DK173485B1 (en) * 1994-12-02 2000-12-18 Thure Barsoee Carnfeldt Process for disinfecting or sterilizing food, feed, machinery and equipment for food and feedstuffs
GB9425882D0 (en) * 1994-12-21 1995-02-22 Solvay Interox Ltd Thickened peracid compositions
GB9425881D0 (en) 1994-12-21 1995-02-22 Solvay Interox Ltd Thickened peracid compositions
US5534179A (en) * 1995-02-03 1996-07-09 Procter & Gamble Detergent compositions comprising multiperacid-forming bleach activators
WO1996030474A1 (en) 1995-03-27 1996-10-03 The Procter & Gamble Company Use of amine oxide surfactants for improved stain removal performance
US5830839A (en) * 1995-05-17 1998-11-03 Sunburst Chemicals, Inc. Solid detergents with active enzymes and bleach
FR2736936B1 (en) 1995-07-19 1997-08-14 Air Liquide DEGREASING PROCESS BASED ON HYDROGEN PEROXIDE AND APPLICATIONS TO METAL ARTICLES
US5783082A (en) * 1995-11-03 1998-07-21 University Of North Carolina Cleaning process using carbon dioxide as a solvent and employing molecularly engineered surfactants
US5641530A (en) * 1995-11-27 1997-06-24 Eka Nobel Inc. Method of disinfection
EP0881877B1 (en) 1995-12-01 2005-01-26 Minntech Corporation Room temperature sterilant for medical devices
EP0779357A1 (en) 1995-12-16 1997-06-18 The Procter & Gamble Company Stable emulsions comprising a hydrophobic liquid ingredient
US5827542A (en) 1996-02-12 1998-10-27 Healthpoint, Ltd. Quick acting chemical sterilant
EP0794245B1 (en) * 1996-03-04 2003-07-09 The Procter & Gamble Company Laundry pretreatment process and bleaching compositions
US5712239A (en) * 1996-04-08 1998-01-27 Lever Brothers Company, Division Of Conopco, Inc. Aqueous liquid compositions comprising peracid compounds and substituted phenolic compounds
US5674828A (en) 1996-04-08 1997-10-07 Lever Brothers Company, Division Of Conopco, Inc. Aqueous liquid compositions comprising peracid compounds and defined N-oxide compounds
US5855940A (en) * 1996-04-12 1999-01-05 University Of Arkansas Method for the broad spectrum prevention and removal of microbial contamination of poultry and meat products by quaternary ammonium compounds
EP0805198A1 (en) 1996-05-03 1997-11-05 The Procter & Gamble Company Cleaning compositions
RU2102447C1 (en) 1996-08-29 1998-01-20 Борис Алексеевич Ильин Detergent biocide agent
WO1998011189A1 (en) * 1996-09-13 1998-03-19 The Procter & Gamble Company Laundry pretreatment process and bleaching compositions
WO1998011777A1 (en) * 1996-09-18 1998-03-26 Cottrell, Ltd. Hydrogen peroxide disinfecting and sterilizing compositions
GB2319179A (en) * 1996-11-12 1998-05-20 Reckitt & Colman Inc Cleaning and disinfecting compositions
ATE238408T1 (en) 1996-11-13 2003-05-15 Procter & Gamble AQUEOUS ALKALINE PEROXIDE BLEACHING COMPOSITIONS
GB9626637D0 (en) 1996-12-21 1997-02-12 Solvay Interox Ltd Percarboxyilic acid solutions
US6028104A (en) * 1997-01-30 2000-02-22 Ecolab Inc. Use of peroxygen compounds in the control of hairy wart disease
GB9705448D0 (en) 1997-03-15 1997-04-30 Solvay Interox Ltd Stabilised peracid solutions
US5968539A (en) 1997-06-04 1999-10-19 Procter & Gamble Company Mild, rinse-off antimicrobial liquid cleansing compositions which provide residual benefit versus gram negative bacteria
DE19812591A1 (en) 1998-03-23 1999-09-30 Degussa Process for the control of plant pathogenic microorganisms in water circuits in greenhouses
DE19812590A1 (en) * 1998-03-23 2000-01-20 Degussa Process for controlling and killing pathogenic small animals, especially insects and worms
US6165483A (en) * 1998-04-06 2000-12-26 Ecolab Inc. Peroxy acid treatment to control pathogenic organisms on growing plants
EP0967203A1 (en) 1998-06-22 1999-12-29 SOLVAY (Société Anonyme) Process for the production of an aqueous monoester peroxycarboxylic acid solution, the solution obtainable by this process, and its use as disinfectant
US6033705A (en) * 1998-07-08 2000-03-07 Isaacs; Charles E. Method for treating foodstuffs to reduce or prevent microbial activity
US6096266A (en) 1998-07-10 2000-08-01 Box 03 International Method for disinfecting and sterilizing microbial contaminated materials
AU758625B2 (en) * 1998-08-20 2003-03-27 Ecolab Inc. The treatment of meat products
US6010729A (en) 1998-08-20 2000-01-04 Ecolab Inc. Treatment of animal carcasses
EP0984057A1 (en) * 1998-09-01 2000-03-08 The Procter & Gamble Company The use of an aliphatic-aromatic diacyl peroxide in a bleaching composition
CN1322242A (en) 1998-09-25 2001-11-14 宝洁公司 Detergent compositions
US6630439B1 (en) 1998-09-25 2003-10-07 The Procter & Gamble Company Solid detergent compositions comprising sesquicarbonate
US6326032B1 (en) * 1998-11-18 2001-12-04 Ecolab Inc. Beverage manufacture and cold aseptic bottling using peroxyacid antimicrobial composition
EP1143799B1 (en) 1999-01-19 2003-04-02 SteriFx, Inc. Multi-purpose acid compositions
US5998358A (en) 1999-03-23 1999-12-07 Ecolab Inc. Antimicrobial acid cleaner for use on organic or food soil
US6024986A (en) * 1999-05-24 2000-02-15 Ecolab Inc. Method of protecting growing plants from the effects of plant pathogens
GB2353800A (en) 1999-09-02 2001-03-07 Procter & Gamble Antibacterial detergent compositions
DE19962342A1 (en) 1999-12-23 2001-07-12 Henkel Ecolab Gmbh & Co Ohg Peracids with good adhesion to surfaces
US6756046B2 (en) 2000-02-18 2004-06-29 Ava Chemical Ventures L.L.C. Polyol ester insecticides
US6627657B1 (en) * 2000-03-22 2003-09-30 Ecolab Inc. Peroxycarboxylic acid compositions and methods of use against microbial spores
WO2001082694A1 (en) * 2000-04-28 2001-11-08 Ecolab Inc. Antimicrobial composition
US20030060379A1 (en) * 2000-05-26 2003-03-27 The Procter & Gamble Company Pesticides
US7150884B1 (en) 2000-07-12 2006-12-19 Ecolab Inc. Composition for inhibition of microbial growth
US6451746B1 (en) 2000-11-03 2002-09-17 Chemlink Laboratories, Llc Carrier for liquid ingredients to be used in effervescent products
US6514556B2 (en) * 2000-12-15 2003-02-04 Ecolab Inc. Method and composition for washing poultry during processing
US6638902B2 (en) 2001-02-01 2003-10-28 Ecolab Inc. Stable solid enzyme compositions and methods employing them
US6964787B2 (en) 2001-02-01 2005-11-15 Ecolab Inc. Method and system for reducing microbial burden on a food product
WO2002088076A2 (en) 2001-03-09 2002-11-07 Ecolab Inc. Stabilized ester peroxycarboxylic acid compositions
US6635286B2 (en) 2001-06-29 2003-10-21 Ecolab Inc. Peroxy acid treatment to control pathogenic organisms on growing plants
US6627593B2 (en) * 2001-07-13 2003-09-30 Ecolab Inc. High concentration monoester peroxy dicarboxylic acid compositions, use solutions, and methods employing them
JP2003292996A (en) * 2002-03-29 2003-10-15 Asahi Denka Kogyo Kk Sterilizing cleanser composition
EP1382666A1 (en) 2002-06-21 2004-01-21 Tevan B.V. Aqueous disinfecting compositions with rapid bactericidal effect
US7537778B2 (en) * 2002-09-26 2009-05-26 W. Neudorff Gmbh Kg Pesticidal compositions and methods
JP2006509499A (en) 2002-11-12 2006-03-23 セーフ・フーズ・コーポレイション Application system for applications related to recycling of antibacterial quaternary ammonia compounds
US20040191290A1 (en) 2003-03-28 2004-09-30 Redline, Inc. Solid pest control system
US7771737B2 (en) * 2004-01-09 2010-08-10 Ecolab Inc. Medium chain peroxycarboxylic acid compositions

Also Published As

Publication number Publication date
BRPI0506713A (en) 2007-05-02
AU2005206690B2 (en) 2010-09-23
US20050288204A1 (en) 2005-12-29
EP1703791B1 (en) 2014-07-23
JP2007520479A (en) 2007-07-26
AU2005206690A1 (en) 2005-08-04
US9511161B2 (en) 2016-12-06
CA2548629C (en) 2015-04-28
WO2005070205A1 (en) 2005-08-04
EP1703791A1 (en) 2006-09-27

Similar Documents

Publication Publication Date Title
US10568322B2 (en) Medium chain peroxycarboxylic acid compositions
CA2548629C (en) Medium chain peroxycarboxylic acid compositions
US9167814B2 (en) Surfactant peroxycarboxylic acid compositions
US7498051B2 (en) Methods for washing poultry during processing with medium chain peroxycarboxylic acid compositions
WO2010049892A2 (en) Enhanced stability peracid compositions
AU2005204629B2 (en) Methods for washing poultry during processing with medium chain peroxycarboxylic acid compositions
AU2012201801C1 (en) Sulfoperoxycarboxylic acids, their preparation and methods of use as bleaching and antimicrobial agents
MXPA06007794A (en) Medium chain peroxycarboxylic acid compositions

Legal Events

Date Code Title Description
EEER Examination request