CA2580492C - Optical scanners having dual surface optical elements for dual working ranges - Google Patents

Optical scanners having dual surface optical elements for dual working ranges Download PDF

Info

Publication number
CA2580492C
CA2580492C CA002580492A CA2580492A CA2580492C CA 2580492 C CA2580492 C CA 2580492C CA 002580492 A CA002580492 A CA 002580492A CA 2580492 A CA2580492 A CA 2580492A CA 2580492 C CA2580492 C CA 2580492C
Authority
CA
Canada
Prior art keywords
assembly
light
scanning
mirror
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002580492A
Other languages
French (fr)
Other versions
CA2580492A1 (en
Inventor
Paul Dvorkis
Edward Barkan
Howard Shepard
Vladimir Gurevich
Mark Krichever
Boris Metlitsky
David Tsi
Raj Bridgelall
Duanfeng He
Joseph Katz
Richard Isaac
Joel Kahn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Symbol Technologies LLC
Original Assignee
Symbol Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23604288&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CA2580492(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Symbol Technologies LLC filed Critical Symbol Technologies LLC
Publication of CA2580492A1 publication Critical patent/CA2580492A1/en
Application granted granted Critical
Publication of CA2580492C publication Critical patent/CA2580492C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10792Special measures in relation to the object to be scanned
    • G06K7/10801Multidistance reading
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10554Moving beam scanning
    • G06K7/10594Beam path
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10554Moving beam scanning
    • G06K7/10594Beam path
    • G06K7/10603Basic scanning using moving elements
    • G06K7/10613Basic scanning using moving elements by rotation, e.g. polygon
    • G06K7/10623Constructional details
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10554Moving beam scanning
    • G06K7/10594Beam path
    • G06K7/10603Basic scanning using moving elements
    • G06K7/10633Basic scanning using moving elements by oscillation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10792Special measures in relation to the object to be scanned
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10821Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum further details of bar or optical code scanning devices
    • G06K7/10881Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum further details of bar or optical code scanning devices constructional details of hand-held scanners
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/14Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using light without selection of wavelength, e.g. sensing reflected white light

Abstract

The invention relates to optical scanners. The invention comprises a multi-range scanner assembly for electro-optically reading indicia having parts of differing light reflectivity on a target located at a variable distance from the assembly, comprising: (a) a first light source for producing a first beam for short range scanning operations; (b) a second light source for producing a second beam for long range scanning operations; (c) a scanning element including a scanning mirror for causing the first and second beams to be alternately scanned over a field of view; (d) a collection optical system for collecting light reflected from the field of view; and (e) an optical detector for detecting light directed thereto by the collection optical system and for generating electrical signals corresponding to the reflected light.

Description

OPTICAL SCANNERS HAVING DUAL SURFACE OPTICAL
ELEMENTS FOR DUAL WORKING RANGES
This application is a division of application number 2,170,934 filed in Canada on March 4, 1996.
Field of the Invention The invention relates generally to optical scanners, and in particular to scanners having dual or multiple working ranges.
Description of the Related Prior Art I Most optical scanners such as bar code scanners are adapted for use at a particular distance, or a range of distances, from an indicia to be scanned. If the user holds the scanner too close to the indicia, or too far away, the indicia and/or the flying spot beam will not be in focus, and decoding will not be possible.
Such scanners may not be particularly convenient in environments where a series of indicia to be read are presented to the scanner at various distances, and where it is difficult or impossible for the user to alter the distance between the scanner and the indicia. To deal with such situations, attempts have been made to expand the acceptable working range of conventional scanners, to give the user as much leeway as possible, and also to provide multi-distance scanners which can operate, for example, at a first working range or at a second working range according to the user's preference or requirements. One possibility is for the provision of a two-position switch on the scanner, with the scanner operating at a first working distance in a first position of the switch and at a second working distance in a second position. A disadvantage of such scanners is that they require additional moving parts to provide for operation at the two separate working ranges. Such systems are also not "automatic" in the sense that the user has manually to select the correct working range, according to the distance of the current indicia to be read; if the incorrect working range is chosen, a decode will not result.
One of the difficulties that bar code reader designers face when attempting to produce increased working ranges is that the greater the working range, and the greater the range of possible indicia that might be read, the lower tends to be the resultant signal to noise ratio in light that is reflected from the indicia. One approach for dealing with this involves the provision of non-conventional optics, in which the optics associated with either the laser or with the photodetector have two distinct focal points. An example of this is shown in U.S. Patent No. 5,332,892, which is commonly assigned with the present application. In the device shown in that document, the two focal points are associated with corresponding circuitry to provide two separate channels of data derived from the scanned bar code. The two channels have differing resolutions. As the working angle and density vary, at least one of the resolutions is likely to be appropriate for sensing all or most of the bar coded data, regardless of the distance of the bar code with respect to the scanner and/or the size or density of the code. The scanning beams of bar code readers are typically derived from laser diodes.
Such diodes are robust and relatively inexpensive, but they do suffer from the disadvantage that the beam emerging from a laser diode is astigmatic. The astigmatic laser diode can be characterised as having two apparent light sources spaced apart from each other along the optical path. One of the light sources lies in a horizontal plane, appears to be coming from inside the laser diode chip, and has a low angular divergence. The other apparent light source lies in a vertical plane, appears to be coming from a facet of the chip, and has a high angular divergence. The two apparent light sources, which are spaced apart from each other by typically about 20 micrometers, form two beam waists in different planes and in different directions, as measured relative to the planar junction of the chip.
The resultant relatively complex beam profile may need selective shaping before it can efficiently be used in an optical scanner. Some methods of providing such beam shaping are described in our U.S. Patent No. 5,742,038, issued April 21, 1998, and entitled "Beam Shaping for Optical Scanners".
A further difficulty that arises in current prior art scanners is that the signal may be drowned out by specular reflections from the surface on which the indicia to be read is printed.

Summary of the Invention It is an object of the present invention at least to alleviate the problems of the prior art.

It is a further object to provide a simple and inexpensive means of adjusting the beam profile (cross section at a particular distance from the light source) as desired in either the X direction, or in the Y direction, or both.

It is a further object to provide a scanner which can operate at at least two distinct working distances, without the user having to select the appropriate working distance in advance.

It is a further object to provide a simple and inexpensive scanner which is capable of reading indicia at at least two separate, and distinct, distances.

It is a further object to provide a scanner in which problems due to specular reflections are reduced or eliminated.

According to a first aspect of the present invention there is provided a multi-range scanner assembly for electro-optically reading indicia having parts of differing light reflectivity on a target located at a variable distance from the assembly, comprising: (a) a first light source for producing a first beam for short range scanning operations;
(b) a second light source for producing a second beam for long range scanning operations; (c) a scanning element including a scanning mirror for causing the first and second beams to be alternately scanned over a field of view; (d) a collection optical system for collecting light reflected from the field of view; and (e) an optical detector for detecting light directed thereto by the collection optical system and for generating electrical signals corresponding to the reflected light.

According to a second aspect of the present invention there is provided a multi-range scanner assembly for electro-optically reading indicia having parts of differing light reflectivity on a target located at a variable distance from the assembly, the scanner comprising: (a) a light source for selectively producing a first beam for short range scanning operations and a second beam for long range scanning operations; (b) a scanning element for causing the first and second beams to be scanned over a field of view; (c) a collection optical system for collecting light reflected from the field of view; and (d) an optical detector for detecting light directed thereto by the collection optical system and for generating electrical signals corresponding to the reflected light.

According to a third aspect of the present invention there is provided a multi-laser scanner assembly for electro-optically reading indicia having parts of differing light reflectivity on a target located at a variable distance from the assembly, the scanner comprising: (a) a visible laser light source for selectively producing a first beam for first scanning operations, and an IR laser light source for producing a second beam for second scanning operations; (b) a scanning element for causing the first and second beams to be scanned over a field of view; (c) a collection optical system for collecting light reflected from the field of view; and (d) an optical detector for detecting light directed thereto by the collection optical system and for generating electrical signals corresponding to the reflected light.
Since the scanning beam is reflected from both first and 5 second surfaces of the reflector, the resultant dynamic focus, or multi-focus, improves the working range of the scanner without the need for additional moving parts.
Furthermore, no additional lenses or apertures are required.
The preferred device of the present invention allows one to obtain an increase in scan rate without changing the scan element. This provides increased aggressiveness (the ability to decode in a single scan) which would otherwise be lost by conventional methods of achieving dynamic focus using apertures or lenses.

By using a different profile for each of the reflector sections, the beam may be shaped as required at the various different working distances.

The laser source is preferably a VLD (visible laser diode). The VLD may have a lens in front of it, possibly a cylindrical lens, to provide some initial shaping of the beam.
The invention extends to any individual feature described above or set out in the specific description, and to any compatible combination of features. It is to be understood, in particular, that features shown in relation to one figure may be combined, where compatible, with features shown in connection with any other figure.

Brief Description of the Drawings The invention may be carried into practice in a number of ways and several specific embodiments will now be described, by way of example, with reference to the accompanying drawings, in which:
Figure 1 shows a multiple-range laser scanner according to one embodiment of the present invention, utilising multiple-fold mirrors;
Figure 2 shows another embodiment, namely a dual-range scanner with a scanning collector;
Figure 3 shows yet another embodiment, namely a dual-range scanner having a separate collector;
Figure 4 shows yet another embodiment, namely a dual-range scanner using dual laser beams;
Figure S shows in more detail a segmented scan mirror used in the embodiment of Figure 4;
Figure 6 shows yet a further embodiment, namely a scanner having a segmented collector mirror which directs the light to two separate photodetectors;
Figure 7 is a central section through the segmented collector mirror of Figure 6;
Figure 8 is yet a further embodiment in which beam shaping is provided by a cylindrical scan mirror;
Figure 9 is yet a further embodiment in which beam shaping in both the X and Y direction is provided by means of two cylindrical mirrors;
Figure 10 shows a typical hand-held scanner within which any of the previous embodiments may be incorporated;
Figure 11 shows an arrangement of dual photodetectors according to the present invention;
Figure 12 is a circuit diagram of the dual photodetector arrangement of Figure 11;
Figure 13a is an arrangement of dual photodetectors illustrating a first embodiment of a collector/reflector positioning;
Figure 13b is an arrangement of dual photodetectors illustrating a second embodiment of a collector/reflector positioning; and Figure 13c is an arrangement of dual photodetectors illustrating a third embodiment of a collector/reflector positioning.
Detailed Description of the Preferred Embodiments Figure 1 shows a multiple-range laser scanner, for example for a bar code reader, comprising a first embodiment of the present invention. In the embodiment shown a laser diode 10 produces a light beam which is directed to a scanning mirror 12 via a small central hole 13 in a fold mirror 14.
The fold mirror 14 is a segmented or multiple mirror comprising three separate mirror portions 16, 18, 20. The mirror portion 16 is convex, the mirror portion 14 is planar and the mirror portion 18 is concave. As the scanning light beam produced by the scanning mirror 12 moves across the fold mirror 14 it strikes each of the mirror portions 16, 18, 20 in turn. The light reflected from the fold mirror passes out of the scanner housing 22 through a window or aperture 24 to impinge upon an indicia 26 to be read.
The indicia 26 is shown at three possible positions, a near position 28 corresponding to the working distance of the mirror portion 20, a middle distance 30 corresponding to the working distance of the mirror portion 18, and a far distance 32 corresponding to the working portion of the mirror portion 16. It will be appreciated, of course, that in a practical embodiment there will be considerably greater spacing between the positions 28, 30 and 32: in the drawing the spacings are shown closer than they would be in reality, merely for the sake of clarity.
The result of the three separate mirror portions is that three separate scan lines are produced, the first at the position 28, the second at the position 30 and the third at the position 32. The intention is, accordingly, that whatever the distance of the indicia 26 from the scanner, it has a very good chance of being read by at least one of the scan lines.
It will be appreciated of course that the indicia does not need to be exactly at one of the distances 28, 30, 32 in order to be decodable; there is in each case a substantial depth of field, and depending upon the actual distances these depths of field may even overlap so that they effectively merge into one complete "working region" within which the bar code symbol will almost certainly be decodable.
The mirror portions are suitably angled so that the respective scan lines lie on top of one another, but are merely focused at different distances.
It is not essential that there are exactly three mirror portions; there could be two, or more than three, according to the requirements of the particular application. The exact mirror profiles may also be chosen according to the particular application. The profiles chosen will depend upon the required working ranges and also upon the profile of the scanning mirror 12. The scanning mirror 12 may preferably be flat, but may in some circumstances be aplanar, for example cylindrical or spherical. The mirror 12 could also be replaced by a rotating prism, polygon,, hologram, lens, zone plate, or any other convenient optical scanning element. If the scanning element comprises a polygon, each facet of the polygon may have a different curvature. In that case, the mirror portions 16, 18, 20 may (but need not) all have the same profile since the multiple working distances may then be determined by the curvature of the polygon facets. An exemplary polygon suitable for use with three planar fold mirror portions is shown at 36.
Further shaping of the beam may be achieved by the use of optics 38 in front of the laser 10.
In the embodiment of Figure 1, light reflected back from the indicia 26 may either follow substantially the same path, in the reverse direction, to a photodetector (not shown) or alternatively there may be separate light collector optics (not shown) for that purpose.
A further embodiment, this time comprising a dual-range scanner with a scanning detector, is shown in Figure 2. A
laser diode 110 directs a beam to a scanning mirror generally indicated at 112, which is arranged for oscillation about an axis 114. The mirror has four separate mirror portions the outer two of which 116, 118 have a spherical profile, and the inner two of which 120, 122 are planar. Laser light reflected from the mirror 112 takes the form of two separate scan lines which, because of the beam profile, have different working ranges from the bar code reader or other optical scanner.
In this embodiment, light reflected back from an indicia (not shown) impinges for a second time on the scanning mirror from where it is reflected back to a photodetector such as a photodiode 124. The photodiode of course has to be out of the way of the laser 110, and it is accordingly either positioned out of the plane of the paper or off to one side, as shown by the dotted lines 126.
It will be appreciated that the mirror 112 could have any required number of facets, each facet being of a different profile. The number of facets required, and the exact profiles, depend upon the application and the details are well within the expertise of a skilled artisan in the field.
A further embodiment is shown in Figure 3. This illustrates a dual-range scanner having a separate collector mirror.
A laser 210 produces a light beam which passes through a small aperture 211 in a collector mirror 214. The beam impinges upon a scanning mirror 212 which has two separate surfaces, a first surface 216 of flat profile and a second surface 218 of cylindrical profile. The light is reflected from the mirror 212 to the collector mirror 214 and from there to an indicia to be read (not shown), off to the right of the drawing. Light reflected from the indicia is collected by the collector mirror 214 and is directed to a photodiode or other photodetector 220. This may be positioned either beneath the mirror 212 or offset to one side as shown by the dotted lines 222.
The two mirror portions 216, 218 produce alternate scans having different working ranges.
Turning now to Figure 4, there is shown a further embodiment incorporating dual laser assemblies 310, 311 emitting parallel beams. The laser assembly 310 is focused for short-range operation. This will be referred to, for shorthand, as the "short-range laser". Similarly, the laser assembly 311 is focused for long-range operation. This will be referred to, for shorthand, as the "long-range laser".
5 Appropriate optics 312, 314 define the working range and different beam profile characteristics of the lasers.
Alternatively, the short-range laser, and its optics, may be identical with the long-range laser and its optics.
In another embodiment, the laser assemblies 310, 311 have 10 lasers of different frequencies. Visible laser diodes are now available in two different wavelengths, 635 nm and 670 nm.
The shorter wavelength device (635 nm) is more visible to the eye, and may preferably be used in high ambient light conditions or for aiming. Thus, in the preferred implementation, the 670 nm laser diode could be focused as the "short-range laser" and the 635 nm diode focused as the "long-range laser" since at long range the brightest beam is desirable for visibility and aiming. In high ambient light conditions, it is possible to use both lasers on, rather than alternate between the lasers. Although there will be two beams, if the beams are properly focused at the target plane so the spots are overlapping or very closely adjacent, the bar code symbol can be effectively read.
In still another embodiment, one of the laser assemblies 310, 311 is a visible laser and the other assembly an IR
laser, whose beam is generally not visible to the eye. IR
lasers are suitable use in applications such as reading security badges that require an IR reading beam, reading direct thermal printed bar codes; and reading certain colored bar codes. The same arrangement as shown in Fig. 4 may be used, except there is no limitation that the optics be "short range" or "long range". As in the previous embodiment, one can alternate scans between lasers or use both lasers on.
The beam from the long-range laser 311 is reflected by a pair of parallel angled mirrors (or by an appropriately shaped prism) so that the two resultant laser beams are closely parallel to each other. The beams impinge upon a scanning mirror 322 from which they are reflected onto an indicia to be read (not shown, but off to the left of the drawing in Figure 4).
Instead of there being separate long-range and short-range lasers, a single laser could be used instead with appropriate optics (for example a beam splitter).
Light reflected back from the indicia is collected by the mirror 322 (which acts as a collection mirror as well as a scanning mirror) and is directed to a photodetector 324.
Details of the mirror 322 are shown in Figure S. As will be seen, the mirror is generally curved, and includes a large area of collecting surface 324 with a central section which is split into two. The left side of the central section 326 has a cylindrical profile, and the right hand section 328 a flat profile. The light beam from the short-range laser 310 impinges upon the portion 326, and the light from the long-range laser 310 impinges upon the portion 328.
In use, a laser control operates the lasers so that they are switched on and off alternately. The system is controlled so that two scans (left to right, then right to left) are performed with the long-range laser on, and then two scans with the short-range laser on. The alternation continues until a successful decode has been achieved.
The system also provides for an aiming mode which is initiated by a user selecting a first position of a trigger 328 on the scanner housing 330. In this mode, the controller 326 causes the long-range laser 311 to blink on and off while moving the mirror 322. In this mode the user can easily see the scanning beam and he can align the indicia accordingly. As soon as the indicia has been properly aligned with respect to the scanner, the user moves the trigger 328 to a second position to commence scanning proper.
Figures 6 and 7 show a further embodiment in which the scanner includes a segmented collector mirror 410. The mirror has a first portion 412 which directs incoming light 416 from an indicia (not shown) to a first photodetector 418. A second portion 414 receives the reflected light 416 and directs it to a second photodetector 420.
The portions 412, 414 may be of any convenient profile (for example planar or cylindrical) and are preferably angled at a common angle a from the general direction of the incoming reflected light 416.
The provision of two separate spaced apart photodetectors may enable the system to avoid being flooded by specular reflections from the indicia or from the surface on which the indicia is printed. A specular reflection may drown out one of the photodetectors, but not the other.
The embodiment of spaced photodetectors Dl and D2 is illustrated in Figure 11, and the corresponding circuit for processing the signal in Figure 12.
Systems having large optical field of view (such as non-retro reflective optics) generally suffer from background noise generated by ambient and artificial light sources. The front-end detector is flooded with signal power due to the background noise and renders the system inoperable.
Background noise from artificial light sources will become more prominent as the trend towards high efficiency lighting sources continues. One common technique is to minimize the optical field of view by using a retro reflective optical system. However, non-retro reflective optical systems are usually required for small scan engines. A technique that solves the problem of detector background noise corruption for ID scanning systems is described with reference to Figures 11 - 13.
Figure 11 shows the general configuration of a system that provides an optoelectrical transducer front-end with the desired signal plus noise power from the first detector, and noise power only from the second detector. The invention provides a circuit, Figure 12, to subtract these signals in order to yield only the desired signal power. Both collectors' field of view are designed to be rectangular, and as narrow as possible in order to keep the same background plane for noise matching. Optical filters and electronic gain matching may be used on each detector in order to match the background noise levels of each detector more closely.
In order for the laser source path to be on axis to the first collector's field of view, several arrangements are proposed. The reflector (which may also be the scanning means) may be placed behind the collector as shown in Figure 13a. However, the collector must have a narrow slit (or split in two) in order to permit passage of the laser beam.
In order to avoid a split collector or collector with a slit, the reflector may be placed in front of it as shown in Figure 13b. The reflector is designed so that it will obstruct only a small portion of the collected signal.
Another approach is to mount the reflector inside a collector mirror as shown in Figure 13c. The reflector is designed long enough so as to accommodate a normal single line scan pattern.
Figure 12 shows an implementation of an optoelectrical receiver circuit that is optimized for this noise cancellation technique. The two photodiode current sources may have their own front-end amplifiers each of whose signals are then sent to a subtractor. However, the topology shown avoids early saturation of the front-end circuit had there been separate amplifiers.
If the sensitivity of each detector is represented by S, then the photodiode currents are given by:

I sn = S( PS + Pni ) In = S (Pn2) where PS and Pni are the signal and ambient noise power respectively, as seen by the first detector, and Pn2 is the noise power seen by the second detector. The resultant signal to be amplified is given by:
Ig = I9R - In = S (Ps + Pni ) - S ( Pnz ) = S ( P$ + Pni - P112 ) = IS + (Ini - In2) = I. + It where Ini and In2 are the noise currents in the photodiodes due to the background light noise power seen by detectors one and two respectively.
If the two noise sources are highly correlated (true or artificial light background noise), then It = 0 and the resultant voltage produced by the front-end receiver will be all signal subject to the front-end frequency transfer function:

V0 ( au ) I sRf 1 + jwRfCf Note that for uncorrelated noise such as photodiode shot noise due to DC currents, the noise will be ~2 larger than with the usual single photodiode front-end.

The noise from background illumination usually remains dominant in a non-retro system even with this increase in shot noise. SNR may be improved if the second detector is turned off adaptively for cases where no artificial light noise sources are present.

It will be understood that the segmented collector mirror shown in Figures 6 and 7 may be used in conjunction with any one of the other embodiments described in which a separate collector mirror is used. It would also be possible to use a 5 segmented mirror of this type in a scanner in which the scanning mirror also acts as the collector. A further scanner embodiment is shown in Figure B. In this embodiment, the beam from a laser 510 is shaped by a cylindrical scanning mirror 512 before being directed to an indicia to be read (not 10 shown). The cylindrical surface of the scanning mirror 512 allows the beam to be shaped, as desired, in the X direction.
Another embodiment is shown in Figure 9. Here, light fr m a laser 610 impinges upon a first scanning mirror 612 and a second scanning mirror 614. Both of the mirrors 15 have a cylindrical surface, thereby shaping the beam as required in both the X direction and in the Y direction.
The exact mirror profile in Figures 8 and 9 may be chosen according to the beam shaping that is required. It may, for example, in some circumstances be useful to have a toroidal surface rather than a cylindrical surface. In addition, the shaping may be carried out by reflecting the light beam from one or more stationary mirrors either after or before the light has impinged upon a scanning element. In its most general form, beam shaping is carried out by reflecting the beam from one or more aplanar surfaces.
It will be understood that the embodiments described and illustrated with reference to Figures 8 and 9 above may be used in conjunction with any of the other embodiments.
Figure 10 illustrates, as an example, a suitable type of hand-held laser scanner into which any one of the previously described embodiments may be incorporated. The specific features incorporated within the scanner of Figure 10 differ slightly in detail from the features already described with reference to Figures 1 to 9, but it will of course be understood that any of the embodiments described in connection with Figure 9 could be incorporated within a hand-held scanner of the type shown in Figure 10.
The scanner of Figure 10 comprises a main body 735 having a graspable hand portion 736 which carries a trigger 739.
Within the body 735 is a laser module 715. Light from the laser module 715 is arranged to shine onto an oscillating mirror 710, which may for example be a mirror of the form shown in Figure 2, Figure 3, or Figure 5. The resulting beam 737 passes out of the housing via a window 738. The mirror 710 is arranged to oscillate in such a way that the beam 737 traces out a scan line 713 across an indicia 714 to be recorded. Light reflected back from the indicia passes through the window 738, is collected by a collecting mirror 726, and is reflected to a photodetector 725. The optical signal is then converted into an electrical signal and the features of the indicia 714 determined.
While the invention has been illustrated and described with reference to a number of particular embodiments, it is not intended to be limited to any of the details shown, since various modifications and structural changes may be made without departing in any way from the spirit of the present invention.
Without further analysis, the foregoing will so fully reveal the gist of the present invention that others can, by applying current knowledge, readily adapt it for various applications without omitting features that, from the standpoint of prior art, fairly constitute essential characteristics of the generic or specific aspects of this invention. Accordingly, such adaptations should be and are intended to be comprehended within the meaning and range of equivalence of the following claims.

Claims (11)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A multi-range scanner assembly for electro-optically reading indicia having parts of differing light reflectivity on,a target located at a variable distance from the assembly, comprising:
(a) a first light source for producing a first beam for short range scanning operations;
(b) a second light source for producing a second beam for long range scanning operations;
(c) a scanning element including a scanning mirror for causing the first and second beams to be alternately scanned over a field of view;
(d) a collection optical system for collecting light reflected from the field of view; and (e) an optical detector for detecting light directed thereto by the collection optical system and for generating electrical signals corresponding to the reflected light.
2. A multi-range scanner assembly for electro-optically reading indicia having parts of differing light reflectivity on a target located at a variable distance from the assembly, the scanner comprising:
(a) a light source for selectively producing a first beam for short range scanning operations and a second beam for long range scanning operations;
(b) a scanning element for causing the first and second beams to be scanned over a field of view;
(c) a collection optical system for collecting light reflected from the field of view; and (d) an optical detector for detecting light directed thereto by the collection optical system and for generating electrical signals corresponding to the reflected light.
3. An assembly as claimed in claim 2 in which the light source includes an optical switch for selectively producing the first and second beams.
4. An assembly as claimed in claim 2 in which the light source includes a beam splitter for producing the first and second beams.
5. An assembly as claimed in claim 2 in which the light source comprises a first laser diode light source with wavelength 670 nm for producing the first beam and a second laser light source with wavelength 635 nm for producing the second beam.
6. An assembly as claimed in claim 2 in which the scanning element includes a scanning mirror.
7. An assembly as claimed in claim 6 in which the scanning mirror has a first surface of a first profile and a second surface of a second profile, the first beam being directed onto the first surface and the second beam being directed onto the second surface.
8. An assembly as claimed in claim 2 in which the first and second beams are alternately scanned over the field of view.
9. An assembly as claimed in claim 5 including a switch for alternately switching between the first and second sources.
10. An assembly as claimed in claim 2 in which the scanning element includes a scanning mirror having a central section with a first surface of a first profile and a second surface of a second profile, and an outer section, the outer section of the scanning mirror acting as a collection mirror for the collection optical system.
11. A multi-laser scanner assembly for electro-optically reading indicia having parts of differing light reflectivity on a target located at a variable distance from the assembly, the scanner comprising:
(a) a visible laser light source for selectively producing a first beam for first scanning operations, and an IR laser light source for producing a second beam for second scanning operations;
(b) a scanning element for causing the first and second beams to be scanned over a field of view;
(c) a collection optical system for collecting light reflected from the field of view; and (d) an optical detector for detecting light directed thereto by the collection optical system and for generating electrical signals corresponding to the reflected light.
CA002580492A 1995-03-17 1996-03-04 Optical scanners having dual surface optical elements for dual working ranges Expired - Fee Related CA2580492C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US40558595A 1995-03-17 1995-03-17
US405,585 1995-03-17
CA002170934A CA2170934C (en) 1995-03-17 1996-03-04 Optical scanners having dual surface optical elements for dual working ranges

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CA002170934A Division CA2170934C (en) 1995-03-17 1996-03-04 Optical scanners having dual surface optical elements for dual working ranges

Publications (2)

Publication Number Publication Date
CA2580492A1 CA2580492A1 (en) 1996-09-18
CA2580492C true CA2580492C (en) 2007-10-09

Family

ID=23604288

Family Applications (3)

Application Number Title Priority Date Filing Date
CA002170934A Expired - Fee Related CA2170934C (en) 1995-03-17 1996-03-04 Optical scanners having dual surface optical elements for dual working ranges
CA 2580841 Expired - Fee Related CA2580841C (en) 1995-03-17 1996-03-04 System and method for reading optically encoded information
CA002580492A Expired - Fee Related CA2580492C (en) 1995-03-17 1996-03-04 Optical scanners having dual surface optical elements for dual working ranges

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CA002170934A Expired - Fee Related CA2170934C (en) 1995-03-17 1996-03-04 Optical scanners having dual surface optical elements for dual working ranges
CA 2580841 Expired - Fee Related CA2580841C (en) 1995-03-17 1996-03-04 System and method for reading optically encoded information

Country Status (4)

Country Link
US (3) US5988502A (en)
EP (2) EP0752680B1 (en)
CA (3) CA2170934C (en)
DE (1) DE69623202T2 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5742038A (en) 1990-09-28 1998-04-21 Symbol Technologies, Inc. Beam shaping for optical scanners
US6382513B1 (en) * 1991-07-25 2002-05-07 Symbol Technologies, Inc. Optical scanner with segmented collection mirror
US6948662B2 (en) 1991-07-25 2005-09-27 Symbol Technologies, Inc. Two-dimensional optical code scanner with scanning pattern having region of greater apparent brightness for assisting alignment of scanning pattern
US6170749B1 (en) * 1995-05-31 2001-01-09 Symbol Technologies, Inc. Method of scanning indicia using selective sampling
US6811086B1 (en) * 1995-07-20 2004-11-02 Fujitsu Limited Stand for pivotably mounting an optical reading device
US6658144B1 (en) * 1997-05-23 2003-12-02 Micron Technology, Inc. Diffraction tomography for monitoring latent image formation
NL1006454C2 (en) * 1997-07-02 1999-02-15 Scantech Bv Device and method for reading a code on an article.
JP3580676B2 (en) 1997-08-01 2004-10-27 富士通株式会社 Optical scanning device and light source module
EP1001297A1 (en) 1998-11-10 2000-05-17 Datalogic S.P.A. Optical device and method for focusing a laser beam
US6433907B1 (en) * 1999-08-05 2002-08-13 Microvision, Inc. Scanned display with plurality of scanning assemblies
US6515781B2 (en) * 1999-08-05 2003-02-04 Microvision, Inc. Scanned imaging apparatus with switched feeds
US7137555B2 (en) 2000-02-28 2006-11-21 Psc Scanning, Inc. Multi-format bar code reader
US6612496B1 (en) * 2000-03-16 2003-09-02 Symbol Technologies, Inc. Scan module
US6761316B2 (en) 2001-03-27 2004-07-13 Symbol Technologies, Inc. Compact auto ID reader and radio frequency transceiver data collection module
JP2003329944A (en) * 2002-05-09 2003-11-19 Olympus Optical Co Ltd Dispersion compensator and dispersion compensation system
US20040210277A1 (en) * 2003-04-16 2004-10-21 Hans Becker Laser and light emitting diode body irradiator method and apparatus
US6880759B2 (en) * 2003-05-23 2005-04-19 Symagery Microsystems Inc. Optical reader station
US20050245998A1 (en) * 2004-04-30 2005-11-03 Led Healing Light, Llc Hand held pulse laser for therapeutic use
US20080117055A1 (en) * 2006-11-20 2008-05-22 Metrologic Instruments, Inc. Light activated radio frequency identification conveyance system
US8177134B2 (en) * 2010-07-21 2012-05-15 Hand Held Products, Inc. Multiple range indicia reader with single trigger actuation
US8523074B2 (en) * 2011-08-26 2013-09-03 Honeywell International Inc. Bar code imagers
US9818009B2 (en) 2012-06-01 2017-11-14 The Boeing Company Multi-spectral enhancements for scan cameras
CN103743345B (en) * 2014-01-20 2016-09-21 长春理工大学 Movement locus of object measuring method
CN103743344B (en) * 2014-01-20 2016-06-15 长春理工大学 Movement locus of object measures system
DE102014105759A1 (en) * 2014-04-24 2015-10-29 Sick Ag Camera and method for detecting a moving stream of objects
US9530037B1 (en) * 2015-07-20 2016-12-27 Datalogic ADC, Inc. Toggling activation of lasers in scanner systems
SE1730299A1 (en) * 2017-11-02 2019-05-03 Gl Dev Ab Flexible scanner holder

Family Cites Families (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3051051A (en) 1958-07-11 1962-08-28 Caps Ltd Optical justifying means
GB1040792A (en) 1964-02-24 1966-09-01 Nat Res Dev Optical systems for lasers
GB1392086A (en) 1972-03-29 1975-04-23 Rank Organisation Ltd Lenses
US3780270A (en) 1972-06-20 1973-12-18 Recognition Equipment Inc Bar/half-bar optical code reader
US3790756A (en) 1972-11-08 1974-02-05 Fmc Corp Bar code reading circuitry
US4360798A (en) 1978-05-31 1982-11-23 Symbol Technologies, Inc. Portable laser scanning arrangement for and method of evaluating and validating bar code symbols
US4199816A (en) 1978-06-28 1980-04-22 Humphrey Instruments, Inc. Optical calibration apparatus and procedure
US4369361A (en) 1980-03-25 1983-01-18 Symbol Technologies, Inc. Portable, stand-alone, desk-top laser scanning workstation for intelligent data acquisition terminal and method of scanning
US4508686A (en) 1980-12-03 1985-04-02 Probex, Inc. Film strip for rapid test of a film processor
US4570057A (en) 1981-12-28 1986-02-11 Norand Corporation Instant portable bar code reader
US5047617A (en) 1982-01-25 1991-09-10 Symbol Technologies, Inc. Narrow-bodied, single- and twin-windowed portable laser scanning head for reading bar code symbols
US4500776A (en) 1982-11-08 1985-02-19 Vadim Laser Method and apparatus for remotely reading and decoding bar codes
US4555164A (en) 1983-03-03 1985-11-26 Designs For Vision, Inc. Anamorphic lens system increasing the field of view for the visually handicapped
US4538895A (en) 1983-03-07 1985-09-03 International Business Machines Corporation Scanning optical system for use with a semiconductor laser generator
US4560862A (en) 1983-04-26 1985-12-24 Skan-A-Matic Corp. System for optical scanning over a large depth of field
US4652750A (en) 1983-08-22 1987-03-24 Optel Systems Inc Optical device for detecting coded symbols
US4606660A (en) 1984-07-12 1986-08-19 System Development Corporation Printer kit for letter sorting machines
US4721860A (en) 1984-09-20 1988-01-26 Skan-A-Matic Corp. Laser scanner for bar code reader
US4705939A (en) 1984-09-28 1987-11-10 Rjs Enterprises, Inc. Apparatus and method for optically measuring bar code dimensions
US4641018A (en) 1984-11-09 1987-02-03 Ncr Corporation Bar code and reading and decoding device
US4795281A (en) 1984-11-30 1989-01-03 Tohoku Ricoh Co., Ltd. Self-correcting printer-verifier
JPS62111367A (en) 1985-11-11 1987-05-22 Hitachi Ltd Bar code reader
DE3602008A1 (en) * 1986-01-23 1987-07-30 Sick Optik Elektronik Erwin OPTICAL SCANNER WITH A MIRROR WHEEL
EP0236738A3 (en) 1986-02-05 1988-12-21 OMRON Corporation Input method for reference printed circuit board assembly data to an image processing printed circuit board assembly automatic inspection apparatus
US4820911A (en) 1986-07-11 1989-04-11 Photographic Sciences Corporation Apparatus for scanning and reading bar codes
US5640001A (en) 1986-08-08 1997-06-17 Norand Technology Corporation Hand-held instant bar code reader having automatic focus control for operation over a range of distances
US5576529A (en) 1986-08-08 1996-11-19 Norand Technology Corporation Hand-held optically readable information set reader focus with operation over a range of distances
US4860226A (en) 1986-09-09 1989-08-22 Martin Edward L Method and apparatus for bar code graphics quality control
US4766298A (en) * 1986-11-10 1988-08-23 Ncr Corporation Low-profile portable UPC optical scanner
US4822986A (en) 1987-04-17 1989-04-18 Recognition Equipment Incorporated Method of detecting and reading postal bar codes
DE3878718T2 (en) 1987-04-22 1993-09-02 Abbott Lab SENSOR AND FORMAT OF AN OPTICAL CODE.
DE3725814A1 (en) 1987-08-04 1989-02-16 Bauerhin I G Elektro Tech SEAT HEATING FOR INTEGRATED INSTALLATION IN VEHICLE SEATS
US4826269A (en) 1987-10-16 1989-05-02 Spectra Diode Laboratories, Inc. Diode laser arrangement forming bright image
FR2622992B1 (en) 1987-11-06 1990-02-09 Thomson Semiconducteurs METHOD FOR READING BAR CODES
US5448046A (en) * 1987-12-28 1995-09-05 Symbol Technologies, Inc. Arrangement for and method of expediting commercial product transactions at a point-of-sale site
US5034904A (en) 1988-01-27 1991-07-23 Storage Technology Corporation Vision system illumination calibration apparatus
US5170277A (en) 1988-05-11 1992-12-08 Symbol Technologies, Inc. Piezoelectric beam deflector
US4992649A (en) 1988-09-30 1991-02-12 United States Postal Service Remote video scanning automated sorting system
US5235167A (en) * 1988-10-21 1993-08-10 Symbol Technologies, Inc. Laser scanning system and scanning method for reading bar codes
US5229591A (en) 1988-10-21 1993-07-20 Symbol Technologies, Inc. Scanning system with adjustable light output and/or scanning angle
US5600119A (en) * 1988-10-21 1997-02-04 Symbol Technologies, Inc. Dual line laser scanning system and scanning method for reading multidimensional bar codes
US4933538A (en) 1988-10-21 1990-06-12 Symbol Technologies, Inc. Scanning system with adjustable light output and/or scanning angle
US4896026A (en) 1988-10-31 1990-01-23 Symbol Technologies, Inc. Laser diode scanner with improved shock mounting
US5304788A (en) * 1988-10-31 1994-04-19 Symbol Technologies, Inc. Laser diode scanner with enhanced visibility at an aiming distance relative to the reading distance
US5280161A (en) 1988-11-18 1994-01-18 West Electric Company, Ltd. Apparatus for optically reading a bar code
US5064258A (en) 1988-12-09 1991-11-12 Ricoh Company, Ltd. Information reading device
DE3842333C1 (en) 1988-12-16 1990-04-12 Daimler-Benz Aktiengesellschaft, 7000 Stuttgart, De
US5073954A (en) 1989-02-28 1991-12-17 Electrocom Automation, Inc. Bar code location and recognition processing system
US5013895A (en) 1989-10-23 1991-05-07 Iggulden Jerry R Personal postnet barcode printers
US5067093A (en) 1990-01-24 1991-11-19 Eastman Kodak Company Reference reading in an analyzer
JPH03290609A (en) 1990-04-09 1991-12-20 Ricoh Co Ltd Optical scanner
US5250791A (en) 1990-04-09 1993-10-05 Symbol Technologies, Inc. Scanning system with adjustable light output and/or scanning angle
US5149948A (en) * 1990-07-16 1992-09-22 Computer Identics Improved bar code reader system for reading bar codes under high specular reflection conditions with a variety of surface effects
US5756982A (en) * 1990-09-11 1998-05-26 Metrologic Instruments, Inc. Body-wearable automatic laser scanner with power-conserving control subsystem
US5742038A (en) 1990-09-28 1998-04-21 Symbol Technologies, Inc. Beam shaping for optical scanners
US5081639A (en) 1990-10-01 1992-01-14 The United States Of America As Represented By The United States Department Of Energy Laser diode assembly including a cylindrical lens
US5200597A (en) 1991-02-07 1993-04-06 Psc, Inc. Digitally controlled system for scanning and reading bar codes
US5194720A (en) 1991-04-25 1993-03-16 Eastman Kodak Company Method and apparatus for performing on-line integrated decoding and evaluation of bar code data
US5859417A (en) * 1991-06-14 1999-01-12 Symbol Technologies, Inc. Optical scanners having dual surface optical elements for dual working ranges
CA2056272C (en) * 1991-06-14 2001-10-16 Patrick Salatto, Jr. Combined range laser scanner
US5332892A (en) 1991-07-25 1994-07-26 Symbol Technologies, Inc. Optical systems for bar code scanners
US5179271A (en) * 1991-09-19 1993-01-12 Ncr Corporation Compact optical scan pattern generator for bar code reading systems
EP0533383A3 (en) * 1991-09-19 1993-04-14 Ncr International Inc. Optical scanner apparatus
EP0539054A1 (en) * 1991-10-23 1993-04-28 Ncr International Inc. Optical scanner apparatus
JP2789282B2 (en) 1992-07-10 1998-08-20 富士通株式会社 Optical mark reader
US5327451A (en) 1992-08-07 1994-07-05 Spectra-Physics Scanning Systems, Inc. Laser diode assembly for laser scanner system
JP2826240B2 (en) 1992-11-16 1998-11-18 富士通株式会社 Barcode reader
US5484990A (en) * 1993-12-15 1996-01-16 Ncr Corporation Information Solutions Company Multiple depth of field laser optical scanner
JP3265775B2 (en) * 1993-12-16 2002-03-18 株式会社デンソー Optical information reader
US5475208A (en) * 1994-01-27 1995-12-12 Symbol Technologies, Inc. Barcode scanner having a dead zone reducing system and a multifocal length collector
JP3213669B2 (en) * 1994-05-30 2001-10-02 東芝テック株式会社 Checkout system
US5591954A (en) 1995-02-23 1997-01-07 At&T Global Information Solutions Company Apparatus and method for equalizing the signal strengths of different scan lines

Also Published As

Publication number Publication date
EP0752680B1 (en) 2002-08-28
USRE40102E1 (en) 2008-02-26
EP1204068A3 (en) 2003-02-19
DE69623202D1 (en) 2002-10-02
EP0752680A1 (en) 1997-01-08
CA2170934C (en) 2007-06-19
EP1204068A2 (en) 2002-05-08
US6220514B1 (en) 2001-04-24
DE69623202T2 (en) 2003-05-28
CA2580841C (en) 2008-08-05
CA2580841A1 (en) 1996-09-18
US5988502A (en) 1999-11-23
CA2170934A1 (en) 1996-09-18
CA2580492A1 (en) 1996-09-18

Similar Documents

Publication Publication Date Title
CA2580492C (en) Optical scanners having dual surface optical elements for dual working ranges
US5859417A (en) Optical scanners having dual surface optical elements for dual working ranges
US5723851A (en) Combined range, turn parallel beam assembly with common focusing element for scanning systems
US6188500B1 (en) Method for generating multiple scan lines in a thin scanner
US5361158A (en) Multiple source optical scanner
EP0449490B1 (en) Optical scanning apparatus
US5202784A (en) Optical system for data reading applications
USRE40101E1 (en) Electro-optical scanner having selectable scan pattern
JP3056590B2 (en) Optical scanner with increased depth of focus
US7255278B2 (en) Dense pattern optical scanner
CA2058669C (en) Laser beam scanner
EP0779591A3 (en) Bar code reader
EP0575894B1 (en) Retro-reflective scanner with return path free of collection optics
JP3580676B2 (en) Optical scanning device and light source module
JPH06333080A (en) Optical bar code scanner
EP0572685B1 (en) A symbol reading device for varying the focal point of a scanning laser beam through variance of scanning laser beam optical path length
US7178734B1 (en) Barcode scanner including a multitasking pattern mirror
WO2008042777A2 (en) Mems-based electro-optical reader and method with extended working range
JP3866321B2 (en) Optical scanner
EP1110167B1 (en) Quasi-coaxial optical bar code reader
JPH02101595A (en) Bar-code scanner
JPH05342400A (en) Hologram scanner
JPH09129916A (en) Optical sensor
JPH05108859A (en) Optical scanner

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed