CA2580773A1 - Synthetic nucleic acid molecule and methods of preparation - Google Patents

Synthetic nucleic acid molecule and methods of preparation Download PDF

Info

Publication number
CA2580773A1
CA2580773A1 CA002580773A CA2580773A CA2580773A1 CA 2580773 A1 CA2580773 A1 CA 2580773A1 CA 002580773 A CA002580773 A CA 002580773A CA 2580773 A CA2580773 A CA 2580773A CA 2580773 A1 CA2580773 A1 CA 2580773A1
Authority
CA
Canada
Prior art keywords
nucleic acid
seq
sequence
codons
acid molecule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002580773A
Other languages
French (fr)
Inventor
Keith V. Wood
Monika G. Wood
Brian Almond
Aileen Paguio
Frank Fan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Promega Corp
Original Assignee
Promega Corporation
Keith V. Wood
Monika G. Wood
Brian Almond
Aileen Paguio
Frank Fan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Promega Corporation, Keith V. Wood, Monika G. Wood, Brian Almond, Aileen Paguio, Frank Fan filed Critical Promega Corporation
Publication of CA2580773A1 publication Critical patent/CA2580773A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43595Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from coelenteratae, e.g. medusae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/65Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Abstract

A method to prepare synthetic nucleic acid molecules having reduced inappropriate or unintended transcriptional characteristics when expressed in a particular host cell.

Description

DEMANDE OU BREVET VOLUMINEUX

LA PRESENTE PARTIE DE CETTE DEMANDE OU CE BREVET COMPREND
PLUS D'UN TOME.

NOTE : Pour les tomes additionels, veuillez contacter le Bureau canadien des brevets JUMBO APPLICATIONS/PATENTS

THIS SECTION OF THE APPLICATION/PATENT CONTAINS MORE THAN ONE
VOLUME

NOTE: For additional volumes, please contact the Canadian Patent Office NOM DU FICHIER / FILE NAME:

NOTE POUR LE TOME / VOLUME NOTE:

SYNTHETIC NUCLEIC ACID MOLECULE AND METHODS OF
PREPARATION

Background Transcription, the synthesis of an RNA molecule from a sequence of DNA is the first step in gene expression. Sequences which regulate DNA
transcription include promoter sequences, polyadenylation signals, transcription factor binding sites and enhancer elements. A promoter is a DNA sequence capable of specific initiation of transcription and consists of three general regions. The core promoter is the sequence where the RNA polymerase and its cofactors bind to the DNA. Immediately upstream of the core promoter is the proximal promoter which contains several transcription factor binding sites that are responsible for the assembly of an activation complex that in turn recruits the polymerase complex. The distal promoter, located further upstream of the proximal promoter also contains transcription factor binding sites.
Transcription termination and polyadenylation, like transcription initiation, are site specific and encoded by defined sequences. Enhancers are regulatory regions, containing multiple transcription factor binding sites, that can significantly increase the level of transcription from a responsive promoter regardless of the enhancer's orientation and distance with respect to the promoter as long as the enhancer and promoter are located within the same DNA molecule. The amount of transcript produced from a gene may also be regulated by a post-transcriptional mechanism, the most important being RNA splicing that removes intervening sequences (introns) from a primary transcript between splice donor and splice acceptor sequences.

Natural selection is the hypothesis that genotype-environment interactions occurring at the phenotypic level lead to differential reproductive success of individuals and therefore to modification of the gene pool of a population. Some properties of nucleic acid molecules that are acted upon by natural selection include codon usage frequency, RNA secondary structure, the efficiency of intron splicing, and interactions with transcription factors or other nucleic acid binding proteins. Because of the degenerate nature of the genetic code, these properties can be optimized by natural selection without altering the corresponding amino acid sequence.

Under some conditions, it is useful to synthetically alter the natural nucleotide sequence encoding a polypeptide to better adapt the polypeptide for alternative applications. A common example is to alter the codon usage frequency of a gene when it is expressed in a foreign host cell. Although redundancy in the genetic code allows amino acids to be encoded by multiple codons, different organisms favor some codons over others. It has been found that the efficiency of protein translation in a non-native host cell can be substantially increased by adjusting the codon usage frequency but maintaining the same gene product (U.S. Patent Nos. 5,096,825, 5,670,356, and 5,874,304).
However, altering codon usage may, in turn, result in the unintentional introduction into a synthetic nucleic acid molecule of inappropriate transcription regulatory sequences. This may adversely effect transcription, resulting in anomalous expression of the synthetic DNA. Anomalous expression is defined as departure from normal or expected levels of expression. For example, transcription factor binding sites located downstream from a promoter have been demonstrated to effect promoter activity (Michael et al., 1990; Lamb et al., 1998;
Johnson et al., 1998; Jones et al., 1997). Additionally, it is not uncommon for an enhancer element to exert activity and result in elevated levels of DNA
transcription in the absence of a promoter sequence or for the presence of transcription regulatory sequences to increase the basal levels of gene expression in the absence of a promoter sequence.

Thus, what is needed is a method for making synthetic nucleic acid molecules with altered codon usage without also introducing inappropriate or unintended transcription regulatory sequences for expression in a particular host cell.

Summary of the Invention The invention provides an isolated nucleic acid molecule (a polynucleotide) comprising a synthetic nucleotide sequence having reduced, for instance, 90% or less, e.g., 80%, 78%, 75%, or 70% or less, nucleic acid sequence identity relative to a parent nucleic acid sequence, e.g., a wild-type nucleic acid sequence, and having fewer regulatory sequences such as transcription regulatory sequences. In one embodiment, the synthetic nucleotide sequence has fewer regulatory sequences than would result if the sequence differences between the synthetic nucleotide sequence and the parent nucleic acid sequence, e.g., optionally the result of differing codons, were randomly selected. In one embodiment, the synthetic nucleotide sequence encodes a polypeptide that has an amino acid sequence that is at least 85%, 90%, 95%, or 99%, or 100%, identical to the amino acid sequence of a naturally-occurring (native or wild-type) corresponding polypeptide (protein). Thus, it is recognized that some specific amino acid changes may also be desirable to alter a particular phenotypic characteristic of a polypeptide encoded by the synthetic nucleotide sequence. Preferably, the amino acid sequence identity is over at least 100 contiguous amino acid residues. In one embodiment of the invention, the codoris in the synthetic nucleotide sequence that differ preferably encode the same amirio acids as the corresponding codons in the parent nucleic acid sequence.
Hence, in one embodiment, the invention provides an isolated nucleic acid molecule comprising a synthetic nucleotide sequence having a coding region for a selectable or screenable polypeptide, wherein the synthetic nucleotide sequence has 90%, e.g., 80%, or less nucleic acid sequence identity to a parent nucleic acid sequence encoding a corresponding selectable or screenable polypeptide, and wherein the synthetic nucleotide sequence encodes a selectable or screenable polypeptide with at least 85% amino acid sequence identity to the corresponding selectable or screenable polypeptide encoded by the parent nucleic acid sequence. The decreased nucleotide sequence identity may be a result of different codons in the synthetic nucleotide sequence relative to the codons in the parent nucleic acid sequence. The synthetic nucleotide sequence of the invention has a reduced number of regulatory sequences relative to the parent nucleic acid sequence, for example, relative to the average number of regulatory sequences resulting from random selections of codons or nucleotides at the sequences which differ between the synthetic nucleotide sequence and the parent nucleic acid sequence. In one embodiment, a nucleic acid molecule may include a synthetic nucleotide sequence which together with other sequences encodes a selectable or screenable polypeptide. For instance, a synthetic nucleotide sequence which forms part of an open reading frame for a selectable or screenable polypeptide may include at least 100, 150, 200, 250, 300 or more nucleotides of the open reading, which nucleotides have reduced nucleic acid sequence identity relative to corresponding sequences in a parent nucleic acid sequence. In one embodiment, the parent nucleic acid sequence is SEQ ID
NO:1, SEQ ID NO:6, SEQ ID NO:15 or SEQ ID NO:41, the complement thereof, or a sequence that has 90%, 95% or 99% nucleic acid sequence identity thereto.
In one embodiment, the nucleic acid molecule of the invention comprises sequences which have been optimized for expression in mammalian cells, and more preferably, in human cells (see, e.g., WO 02/16944 which discloses methods to optimize sequences for expression in a cell of interest). For instance, nucleic acid molecules may be optimized for expression in eukaryotic cells by introducing a Kozak sequence and/or one or more introns or decreasing the number of other regulatory sequences, and/or altering codon usage to codons employed more frequently in one or more eukaryotic organisms, e.g., codons employed more frequently in an eukaryotic host cell to be transformed with the nucleic acid molecule.

In one embodiment, the synthetic nucleotide sequence is present in a vector, e.g., a plasmid, and such a vector may include other optimized sequences.
In one embodiment, the synthetic nucleotide sequence encodes a polypeptide comprising a selectable polypeptide, which synthetic nucleotide sequence has at least 90% or more nucleic acid sequence identity to an open reading frame in a sequence comprising, for example, SEQ ID NO:5, SEQ ID NO:9, SEQ ID
NO:10, SEQ ID NO:11, SEQ ID NO:30, SEQ ID NO:38, SEQ ID NO:39, SEQ
ID NO:42, SEQ ID NO:44, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:80, SEQ ID NO:81, SEQ ID
NO:82, SEQ ID NO:83, SEQ ID NO:84, the complement thereof, or a fragment thereof that encodes a polypeptide with substantially the same activity as the corresponding full-length and optionally wild-type (functional) polypeptide, e.g., a polypeptide encoded by SEQ ID NO:1, SEQ ID NO:6, SEQ ID NO:15 or SEQ
ID NO:41, or a portion thereof which together with other parent or wild-type sequences encodes a polypeptide with substantially the same activity as the corresponding full-length and optionally wild-type polypeptide. As used herein, "substantially the same activity" is at least about 70%, e.g., 80%, 90% or more, the activity of a corresponding full-length and optionally wild-type (functional) polypeptide. In one embodiment, an isolated nucleic acid molecule encodes a fusion polypeptide comprising a selectable polypeptide.

Also provided is an isolated nucleic acid molecule comprising a synthetic nucleotide sequence having a coding region for a firefly luciferase, wherein the nucleic acid sequence identity of the synthetic nucleic acid molecule is 90%
or less, e.g., 80%, 78%, 75% or less, compared to a parent nucleic acid sequence encoding a firefly luciferase, e.g., a parent nucleic acid sequence having SEQ
ID
NO:14 or SEQ ID NO:43, which synthetic nucleotide sequence has fewer regulatory sequences including transcription regulatory sequences than would result if the sequence differences, e.g., differing codons, were randomly selected.
Preferably, the synthetic nucleotide sequence encodes a polypeptide that has an amino acid sequence that is at least 85%, preferably 90%, and most preferably 95% or 99% identical to the amino acid sequence of a naturally-occurring or parent polypeptide. Thus, it is recognized that some specific amino acid changes may be desirable to alter a particular phenotypic characteristic of the luciferase encoded by the synthetic nucleotide sequence. Preferably, the amino acid sequence identity is over at least 100 contiguous amino acid residues. In one embodiment, the synthetic nucleotide sequence encodes a polypeptide comprising a firefly luciferase, which synthetic nucleotide sequence has at least 90% or more nucleic acid sequence identity to an open reading frame in a sequence comprising, for example, SEQ ID NO:21, SEQ ID NO:22, SEQ ID

NO:23, the complement thereof, or a fragment thereof that encodes a polypeptide with substantially the same activity as the corresponding full-length and optionally wild-type (functional) polypeptide, e.g., a polypeptide encoded by SEQ ID NO:14 or SEQ ID NO:43, or a portion thereof which together with other sequences encodes a firefly luciferase. For instance, a synthetic nucleotide sequence which forms part of an open reading frame for a firefly luciferase may include at least 100, 150, 200, 250, 300 or more nucleotides of the open reading, which nucleotides have reduced nucleic acid sequence identity relative to corresponding sequences in a parent nucleic acid sequence.
In another embodiment, the invention provides an isolated nucleic acid molecule comprising a synthetic nucleotide sequence which does not include an open reading frame encoding a peptide or polypeptide of interest, e.g., the synthetic nucleotide sequence may have an open reading frame but it does not include sequences that encode a functional or desirable peptide or polypeptide, but may include one or more stop codons in one or more reading frames, one or more poly(A) adenylation sites, and/or a contiguous sequence for two or more restriction endonucleases (restriction enzymes), i.e., a multiple cloning region (also referred to as a multiple cloning site, "MCS"), and which is generally at least 20, e.g., at least 30, nucleotides in length and up to 1000 or more nucleotides, e.g., up to 10,000 nucleotides, which synthetic nucleotide sequence has fewer regulatory sequences such as transcription regulatory sequences relative to a corresponding parent nucleic acid sequence. In one embodiment, the synthetic nucleotide sequence which does not encode a peptide or polypeptide has 90% or less, e.g., 80%, or less nucleic acid sequence identity to a parent nucleic acid sequence, wherein the decreased sequence identity is a result of a reduced number of regulatory sequences in the synthetic nucleotide sequence relative to the parent nucleic acid sequence.

The regulatory sequences which are reduced in the synthetic nucleotide sequence include, but are not limited to, any combination of transcription factor binding sequences, intron splice sites, poly(A) adenylation sites (poly(A) sequences or poly(A) sites hereinafter), enhancer sequences, promoter modules, and/or promoter sequences, e.g., prokaryotic promoter sequences. Generally, a synthetic nucleic acid molecule lacks at least 10%, 20%, 50% or more of the regulatory sequences, for instance lacks substantially all of the regulatory sequences, e.g., 80%, 90% or more, for instance, 95% or more, of the regulatory sequences, present in a corresponding parent or wild-type nucleotide sequence.
Regulatory sequences, e.g., transcription regulatory sequences, are well known in the art. The synthetic nucleotide sequence may also have a reduced number of restriction enzyme recognition sites, and may be modified to include selected sequences, e.g., sequences at or near the 5' and/or 3' ends of the synthetic nucleotide sequence such as Kozak sequences and/or desirable restriction enzyme recognition sites, for instance, restriction enzyme recognition sites useful to introduce a synthetic nucleotide sequence to a specified location, e.g., in a multiple cloning region 5' and/or 3' to a nucleic acid sequence of interest.

In one embodiment, the synthetic nucleotide sequence of the invention has a codon composition that differs from that of the parent or wild-type nucleic acid sequence. Preferred codons for use in the invention are those which are employed more frequently than at least one other codon for the same amino acid in a particular organism and/or those that are not low-usage codons in that organism and/or those that are not low-usage codons in the organism used to clone or screen for the expression of the synthetic nucleotide sequence (for example, E. coli). Moreover, codons for certain amino acids (i.e., those amino acids that have three or more codons), may include two or more codons that are employed more frequently than the other (non-preferred) codon(s). The presence of codons in a synthetic nucleotide sequence that are employed more frequently in one organism than in another organism results in a synthetic nucleotide sequence which, when introduced into the cells of the organism that employs those codons more frequently, has a reduced risk of aberrant expression and/or is expressed in those cells at a level that may be greater than the expression of the wild type (unmodified) nucleic acid sequence in those cells under some conditions. For example, a synthetic nucleic acid molecule of the invention which encodes a selectable or screenable polypeptide may be expressed at a level that is greater, e.g., at least about 2, 3, 4, 5, 10-fold or more relative to that of the parent or wild-type (unmodified) nucleic acid sequence in a cell or cell extract under identical conditions (such as cell culture conditions, vector backbone, and the like). In one embodiment, the synthetic nucleotide sequence of the invention has a codon composition that differs from that of the parent or wild-type nucleic acid sequence at more than 10%, 20% or more, e.g., 30%, 35%, 40% or more than 45%, e.g., 50%, 55%, 60% or more of the codons.
In one embodiment of the invention, the codons that are different are those employed more frequently in a mammal, while in another embodiment the codons that are different are those employed more frequently in a plant. A

particular type of mammal, e.g., human, may have a different set of preferred codons than another type of mammal. Likewise, a particular type of plant may have a different set of preferred codons than another type of plant. In one embodiment of the invention, the majority of the codons which differ are ones that are preferred codons in a desired host cell and/or are not low usage codons in a particular host cell. Preferred codons for mammals (e.g., humans) and plants are known to the art (e.g., Wada et al., 1990). For example, preferred human codons include, but are not limited to, CGC (Arg), CTG (Leu), AGC (Ser), ACC
(Thr), CCC (Pro), GCC (Ala), GGC (Gly), GTG (Val), ACT (Ile), AAG (Lys), AAC (Asn), CAG (Gln), CAC (His), GAG (Glu), GAC (Asp), TAC (Tyr), TGC
(Cys) and TTC (Phe) (Wada et al., 1990). Thus, synthetic nucleotide sequences of the invention have a codon composition which differs from a wild type nucleic acid sequence by having an increased number of preferred human codons, e.g. CGC, CTG, TCT, AGC, ACC, CCC, GCC, GGC, GTG, ACT, AAG, AAC, CAG, CAC, GAG, GAC, TAC, TGC, TTC, or any combination thereof. For example, the synthetic nucleotide sequence of the invention may have an increased number of AGC serine-encoding codons, CCC proline-encoding codons, and/or ACC threonine-encoding codons, or any combination thereof, relative to the parent or wild-type nucleic acid sequence. Similarly, synthetic nucleotide sequences having an increased number of codons that are employed more frequently in plants, have a codon composition which differs from a wild-type nucleic acid sequence by having an increased number of the plant codons including, but not limited to, CGC (Arg), CTT (Leu), TCT (Ser), TCC (Ser), ACC (Thr), CCA (Pro), CCT (Pro), GCT (Ser), GGA (Gly), GTG
(Val), ATC (Ile), ATT (Ile), AAG (Lys), AAC (Asn), CAA (Gln), CAC (His), GAG (Glu), GAC (Asp), TAC (Tyr), TGC (Cys), TTC (Phe), or any combination thereof (Murray et al., 1989). Preferred codons may differ for different types of plants (Wada et al., 1990).

The nucleotide substitutions in the synthetic nucleic acid sequence may be influenced by many factors such as, for example, the desire to have an increased number of nucleotide substitutions such as those resulting in a silent nucleotide substitution (encodes the same amino acid) and/or decreased number of regulatory sequences. Under some circumstances (e.g., to permit removal of a transcription factor binding site) it may be desirable to replace a non-preferred codon with a codon other than a preferred codon or a codon other than the preferred codon in order to decrease the number of regulatory sequences.
The invention also provides an expression cassette or vector. The expression cassette or vector of the invention comprises a synthetic nucleotide sequence of the invention operatively linked to a promoter that is functional in a cell or comprises a synthetic nucleotide sequence, respectively. Preferred promoters are those functional in mammalian cells and those functional in plant cells. Optionally, the expression cassette may include other sequences, e.g., one or more restriction enzyme recognition sequences 5' and/or 3' to an open reading frame for a selectable polypeptide or luciferase and/or a Kozak sequence, and be a part of a larger polynucleotide molecule such as a plasmid, cosmid, artificial chromosome or vector, e.g., a viral vector, which may include a multiple cloning region for other sequences, e.g., promoters, enhancers, other open reading frames and/or poly(A) sites. In one embodiment, a vector of the invention includes SEQ
ID NO:88, SEQ ID NO:89, SEQ ID NO:90, the complement thereof, or a sequence which has at least 80% nucleic acid sequence identity thereto and encodes a selectable and/or screenable polypeptide.

In one embodiment, the synthetic nucleotide sequence encoding a selectable or screenable polypeptide is introduced into a vector backbone, e.g., one which optionally has a poly(A) site 3' to the synthetic nucleotide sequence, a gene useful for selecting transformed prokaryotic cells which optionally is a synthetic sequence, a gene useful for selecting transformed eukaryotic cells which optionally is a synthetic sequence, a noncoding region for decreasing transcription and/or translation into adjacent linked desirable open reading frames, and/or a multiple cloning region 5' and/or 3' to the synthetic nucleotide sequence encoding a selectable or screenable polypeptide which optionally includes one or more protein destabilization sequences (see U.S. application Serial No. 10/664,341, filed September 16, 2003, the disclosure of which is incorporated by reference herein). In one embodiment, the vector having a synthetic nucleotide sequence encoding a selectable or screenable polypeptide may lack a promoter and/or enhancer which is operably linked to that synthetic sequence. In another embodiment, the invention provides a vector comprising a promoter, e.g., a prokaryotic or eukaryotic promoter, operably linked to a synthetic nucleotide sequence encoding a selectable or screenable polypeptide.
Such vectors optionally include one or more multiple cloning regions, such as ones that are useful to introduce an additional open reading frame and/or a promoter for expression of the open reading frame which promoter optionally is different than the promoter for the selectable or screenable polypeptide, and/or a prokaryotic origin of replication. A "vector backbone" as used herein may include sequences (open reading frames) useful to identify cells with those sequences, e.g., in prokaryotic cells, their promoters, an origin of replication for vector maintenance, e.g_, in prokaryotic cells, and optionally one or more other sequences including multiple cloning regions e.g., for insertion of a promoter and/or open reading frame of interest, and sequences which inhibit transcription and/or translation.
Also provided is a host cell comprising the synthetic nucleotide sequence of the invention, an isolated polypeptide (e.g., a fusion polypeptide encoded by the synthetic nucleotide sequence of the invention), and compositions and kits comprising the synthetic nucleotide sequence of the invention, a polypeptide encoded thereby, or an expression cassette or vector comprising the synthetic nucleotide sequence in suitable container means and, optionally, instruction means. The host cell may be an eukaryotic cell such as a plant or vertebrate cell, e.g., a manunalian cell, including but not limited to a human, non-human primate, canine, feline, bovine, equine, ovine or rodent (e.g., rabbit, rat, ferret, hamster, or mouse) cell or a prokaryotic cell.

The invention also provides a method to prepare a synthetic nucleotide sequence of the invention by genetically altering a parent, e.g., a wild-type or synthetic, nucleic acid sequence. The method comprises altering (e.g., decreasing or eliminating) a plurality of regulatory sequences in a parent nucleic acid sequence, e.g., one which encodes a selectable or screenable polypeptide or one which does not encode a peptide or polypeptide, to yield a synthetic nucleotide sequence which has a decreased number of regulatory sequences and, if the synthetic nucleotide sequence encodes a polypeptide, it preferably encodes the same amino acids as the parent nucleic acid molecule. The transcription regulatory sequences which are reduced include but are not limited to any of transcription factor binding sequences, intron splice sites, poly(A) sites, enhancer sequences, promoter modules, and/or promoter sequences. Preferably, the alteration of sequences in the synthetic nucleotide sequence does not result in an increase in regulatory sequences. In one embodiment, the synthetic nucleotide sequence encodes a polypeptide that has at least 85%, 90%, 95% or 99%, or 100%, contiguous amino acid sequence identity to the amino acid sequence of the polypeptide encoded by the parent nucleic acid sequence.
Thus, in one embodiment, a rnethod to prepare a synthetic nucleic acid molecule comprising an open reading frame is provided. The method includes altering the codons and/or regulatory sequences in a parent nucleic acid sequence which encodes a reporter protein such, as a firefly luciferase or a selectable polypeptide such as one encoding resistance to ampicillin, puromycin, hygromycin or neomycin, to yield a synthetic nucleotide sequence which encodes a corresponding reporter polypeptide and which has for instance at least 10%
or more, e.g., 20%, 30%, 40%, 50% or rnore, fewer regulatory sequences relative to the parent nucleic acid sequence. The synthetic nucleotide sequence has 90%, e.g., 85%, 80%, or 78%, or less nucleic acid sequence identity to the parent nucleic acid sequence and encodes a polypeptide with at least 85% amino acid sequence identity to the polypeptide encoded by the parent nucleic acid sequence. The regulatory sequences which are altered include transcription factor binding sequences, intron splice sites, poly(A) sites, promoter modules, and/or promoter sequences. In one ern.bodiment, the synthetic nucleic acid sequence hybridizes under medium stringency hybridization but not stringent conditions to the parent nucleic acid sequence or the complement thereof. In one embodiment, the codons which differ encode the same amino acids as the corresponding codons in the parent nucleic acid sequence.

Also provided is a synthetic (including a further synthetic) nucleotide sequence prepared by the methods of the invention, e.g., a further synthetic nucleotide sequence in which introduced regulatory sequences or restriction endonuclease recognition sequences axe optionally removed. Thus, the method of the invention may be employed to alter the codon usage frequency and/or decrease the number of regulatory sequences in any open reading frame or to decrease the number of regulatory sequences in any nucleic acid sequence, e.g., a noncoding sequence. Preferably, the codon usage frequency in a synthetic nucleotide sequence which encodes a selectable or screenable polypeptide is altered to reflect that of the host organism desired for expression of that nucleotide sequence while also decreasing the number of potential regulatory sequences relative to the parent nucleic acid molecule.
Also provided is a method to prepare a synthetic nucleic acid molecule which does not code for a peptide or polypeptide. The method includes altering the nucleotides in a parent nucleic acid sequence having at least 20 nucleotides which optionally does not code for a fiinctional or desirable peptide or polypeptide and which optionally may include sequences which inhibit transcription and/or translation, to yield a synthetic nucleotide sequence which does not include an open reading frame encoding a pepticie or polypeptide of interest, e.g., the synthetic nucleotide sequence may have an open reading frame but it does not include sequences that encode a functional or desirable peptide or polypeptide, but may include one or more stop codons in one or more reading frames, one or more poly(A) adenylation sites, and/or a c(>ntiguous sequence for two or more restriction endonucleases, i.e., a multiple cloning region. The synthetic nucleotide sequence is generally at least 20, e.g., at least 30, nucleotides in length and up to 1000 or more nucleotides, e.g., up to 10,000 nucleotides, and has fewer regulatory sequences such as transcription regulatory sequences relative to a corresponding parent nucleic acid sequence which does not code for a peptide or polypeptide, e.g., a parent nucleic acid sequence which optionally includes sequences which inhibit transcription and/or translation.
The nucleotides are altered to reduce one or more regulatory sequences, e.g., transcription factor binding sequences, intron splice sites, poly(A) sites, enhancer sequences, promoter modules, and/or promoter sequences, in the parent nucleic acid sequence.

The invention also provides a method to prepare an expression vector.
The method includes providing a linearized plasmid having a nucleic molecule including a synthetic nucleotide seqtience of the invention which encodes a selectable or screenable polypeptide which is flanked at the 5' and/or 3' end by a multiple cloning region. The plasmid is linearized by contacting the plasmid with at least one restriction endonuclease which cleaves in the multiple cloning region. The linearized plasmid and an expression cassette having ends compatible with the ends in the linearized plasmid are annealed, yielding an expression vector. In one embodiment, the plasmid is lineaxized by cleavage by at least two restriction endonucleases, only one of which cleaves in the multiple cloning region.
Also provided is a method to clone a promoter or open reading frame.
The method includes comprising providing a linearized plasmid having a multiple cloning region and a synthetic sequence of the invention which encodes a selectable or screenable polypeptide and/or a synthetic sequence of the invention which does not encode a peptide or polypeptide, which is plasmid is linearized by contacting the plasmid with at least two restriction endonucleases at least one of which cleaves in the multiple cloning region; and annealing the linearized plasmid with DNA having a promoter or an open reading frame with ends compatible with the ends of the linearized plasmid.

Exemplary methods to prepare synthetic sequences for firefly luciferase and a number of selectable polypeptide nucleic acid sequences, as well as non-coding regions present in a vector backbone, are described hereinbelow. For instance, the methods may produce synthetic selectable polypeptide nucleic acid molecules which exhibit similar or significantly enhanced levels of mamma.lian expression without negatively effecting other desirable physical or biochemical properties and which were also largely devoid of regulatory elements.

Clearly, the present invention has applications with many genes and across many fields of science including, but not limited to, life science resea.rch, agrigenetics, genetic therapy, developmental science and pharmaceutical development.

Brief Description of the Figures Figure 1. Codons and their corresponding amino acids.
Figure 2. Design scheme for the pGL4 vector.
Detailed Description of the Invention Definitions The term "nucleic acid molecule" or "nucleic acid sequence" as used herein, refers to nucleic acid, DNA or RNA, that comprises noncoding or coding sequences. Coding sequences are necessary for the production of a polypeptide or protein precursor. The polypeptide can be encoded by a full-length coding sequence or by any portion of the coding sequence, as long as the desired protein activity is retained. Noncoding sequences refer to nucleic acids which do not code for a polypeptide or protein precursor, and may include regulatory elements such as transcription factor binding sites, poly(A) sites, restriction endonuclease sites, stop codons and/or promoter sequences.

A "synthetic" nucleic acid sequence is one which is not found in nature, i.e., it has been derived using molecular biological, chemical and/or informatic techniques.

A "nucleic acid", as used herein, is a covalently linked sequence of nucleotides in which the 3' position of the pentose of one nucleotide is joined by a phosphodiester group to the 5' position of the pentose of the next, and in which the nucleotide residues (bases) are linked in specific sequence, i.e., a linear order of nucleotides. A "polynucleotide", as used herein, is a nucleic acid containing a sequence that is greater than about 100 nucleotides in length. An "oligonucleotide" or "primer", as used herein, is a short polynucleotide or a portion of a polynucleotide. An oligonucleotide typically contains a sequence of about two to about one hundred bases. The word "oligo" is sometimes used in place of the word "oligonucleotide".

Nucleic acid molecules are said to have a "5'-terminus" (5' end) and a "3'-terminus" (3' end) because nucleic acid phosphodiester linkages occur to the 5' carbon and 3' carbon of the pentose ring of the substituent mononucleotides.
The end of a polynucleotide at which a new linkage would be to a 5' carbon is its 5' terminal nucleotide. The end of a polynucleotide at which a new linkage would be to a 3' carbon is its 3' terminal nucleotide. A terminal nucleotide, as used herein, is the nucleotide at the end position of the 3'- or 5'-terminus.
DNA molecules are said to have "5' ends" and "3' ends" because mononucleotides are reacted to make oligonucleotides in a manner such that the 5' phosphate of one mononucleotide pentose ring is attached to the 3' oxygen of its neighbor in one direction via a phosphodiester linkage. Therefore, an end of an oligonucleotides referred to as the "5' end" if its 5' phosphate is not linked to the 3' oxygen of a mononucleotide pentose ring and as the "3' end" if its 3' oxygen is not linked to a 5' phosphate of a subsequent mononucleotide pentose ring.
As used herein, a nucleic acid sequence, even if internal to a larger oligonucleotide or polynucleotide, also may be said to have 5' and 3' ends. In either a linear or circular DNA molecule, discrete elements are referred to as being "upstream" or 5' of the "downstream" or 3' elements. This terminology reflects the fact that transcription proceeds in a 5' to 3' fashion along the DNA
strand. Typically, promoter and enhancer elements that direct transcription of a linked gene (e.g., open reading frame or coding region) are generally located 5' or upstream of the coding region. However, enhancer elements can exert their effect even when located 3' of the promoter element and the coding region.
Transcription termination and polyadenylation signals are located 3' or downstream of the coding region.
The term "codon" as used herein, is a basic genetic coding unit, consisting of a sequence of three nucleotides that specify a particular amino acid to be incorporation into a polypeptide chain, or a start or stop signal. The term "coding region" when used in reference to structural genes refers to the nucleotide sequences that encode the amino acids found in the nascent polypeptide as a result of translation of a mRNA molecule. Typically, the coding region is bounded on the 5' side by the nucleotide triplet "ATG" which encodes the initiator methionine and on the 3' side by a stop codon (e.g., TAA, TAG, TGA). In some cases the coding region is also known to initiate by a nucleotide triplet "TTG".
By "protein", "polypeptide" or "peptide" is meant any chain of amino acids, regardless of length or post-translational modification (e.g., glycosylation or phosphorylation). The nucleic acid molecules of the invention may also encode a variant of a naturally-occurring protein or a fragment thereof.
Preferably, such a variant protein has an amino acid sequence that is at least 85%, preferably 90%, and most preferably 95% or 99% identical to the amino acid sequence of the naturally-occurring (native or wild-type) protein from which it is derived.
Polypeptide molecules are said to have an "amino terminus" (N-terminus) and a "carboxy terminus" (C-terminus) because peptide linkages occur between the backbone amino group of a first amino acid residue and the backbone carboxyl group of a second amino acid residue. The terms "N-terminal" and "C-terminal" in reference to polypeptide sequences refer to regions of polypeptides including portions of the N-terminal and C-terminal regions of the polypeptide, respectively. A sequence that includes a portion of the N-terminal region of a polypeptide includes amino acids predominantly from the N-terminal half of the polypeptide chain, but is not limited to such sequences. For example, an N-terminal sequence may include an interior portion of the polypeptide sequence including bases from both the N-terminal and C-terminal halves of the polypeptide. The same applies to C-terminal regions. N-terminal and C-terminal regions may, but need not, include the amino acid defining the ultimate N-terminus and C-terminus of the polypeptide, respectively.
The term "wild-type" as used herein, refers to a gene or gene product that has the characteristics of that gene or gene product isolated from a naturally occurring source. A wild-type gene is that which is most frequently observed in a population and is thus arbitrarily designated the "wild-type" form of the gene.
In contrast, the term "mutant" refers to a gene or gene product that displays modifications in sequence and/or functional properties (i.e., altered characteristics) when coinpared to the wild-type gene or gene product. It is noted that naturally-occurring mutants can be isolated; these are identified by the fact that they have altered characteristics when compared to the wild-type gene or gene product.
The term "recombinant protein" or "recombinant polypeptide" as used herein refers to a protein molecule expressed from a recombinant DNA
molecule. In contrast, the term "native protein" is used herein to indicate a protein isolated from a naturally occurring (i.e., a nonrecombinant) source.
Molecular biological techniques may be used to produce a recombinant form of a protein with identical properties as compared to the native form of the protein.

The term "fusion polypeptide" refers to a chimeric protein containing a protein of interest (e.g., luciferase) joined to a heterologous sequence (e.g., a non-luciferase amino acid or protein).

The terms "cell," "cell linea""host cell," as used herein, are used interchangeably, and all such designations include progeny or potential progeny of these designations. By "transformed cell" is meant a cell into which (or into an ancestor of which) has been introduced a nucleic acid molecule of the invention, e.g., via transient transfection. Optionally, a nucleic acid molecule synthetic gene of the invention may be introduced into a suitable cell line so as to create a stably-transfected cell line capable of producing the protein or polypeptide encoded by the synthetic gene. Vectors, cells, and methods for constructing such cell lines are well known in the art. The words "transformants" or "transformed cells" include the primary transformed cells derived from the originally transformed cell without regard to the number of transfers. All progeny may not be precisely identical in DNA content, due to deliberate or inadvertent mutations. Nonetheless, mutant progeny that have the same functionality as screened for in the originally transformed cell are included in the definition of transformants.

Nucleic acids are known to contain different types of mutations. A
"point" mutation refers to an alteration in the sequence of a nucleotide at a single base position from the wild type sequence. Mutations may also refer to insertion or deletion of one or more bases, so that the nucleic acid sequence differs from the wild-type sequence.

The term "homology" refers to a degree of complementarity between two or more sequences. There may be partial homology or complete homology (i.e., identity). Homology is often measured using sequence analysis software (e.g., EMBOSS, the European Molecular Biology Open Software Suite available at http://www.hgmp.mrc.ac.uk/Software/EMBOSS/overview/html). Such software matches similar sequences by assigning degrees of homology to various substitutions, deletions, insertions, and other modifications. Conservative substitutions typically include substitutions within the following groups:
glycine, alanine; valine, isoleucine, leucine; aspartic acid, glutamic acid, asparagine, glutamine; serine, threonine; lysine, arginine; and phenylalanine, tyrosine.

The term "isolated" when used in relation to a nucleic acid, as in "isolated oligonucleotide" or "isolated polynucleotide" refers to a nucleic acid sequence that is identified and separated from at least one contaminant with which it is ordinarily associated in its source. Thus, an isolated nucleic acid is present in a form or setting that is different from that in which it is found in nature. In contrast, non-isolated nucleic acids (e.g., DNA and RNA) are found in the state they exist in nature. For example, a given DNA sequence (e.g., a gene) is found on the host cell chromosome in proximity to neighboring genes; RNA sequences (e.g., a specific mRNA sequence encoding a specific protein), are found in the cell as a mixture with numerous other mRNAs that encode a multitude of proteins. However, isolated nucleic acid includes, by way of example, such nucleic acid in cells ordinarily expressing that nucleic acid where the nucleic acid is in a chromosomal location different from that of natural cells, or is otherwise flanked by a different nucleic acid sequence than that found in nature.

The isolated nucleic acid or oligonucleotide may be present in single-stranded or double-stranded form. When an isolated nucleic acid or oligonucleotide is to be utilized to express a protein, the oligonucleotide contains at a minimum, the sense or coding strand (i.e., the oligonucleotide may be single-stranded), but may contain both the sense and anti-sense strands (i.e., the oligonucleotide may be double-stranded).

The term "isolated" when used in relation to a polypeptide, as in "isolated protein" or "isolated polypeptide" refers to a polypeptide that is identified and separated from at least one contaminant with which it is ordinarily associated in its source. Thus, an isolated polypeptide is present in a form or setting that is different from that in which it is found in nature. In contrast, non-isolated polypeptides (e.g., proteins and enzymes) are found in the state they exist in nature.

The term "purified" or "to purify" means the result of any process that removes some of a contaminant from the component of interest, such as a protein or nucleic acid. The percent of a purified component is thereby increased in the sample.

The term "operably linked" as used herein refer to the linkage of nucleic acid sequences in such a manner that a nucleic acid molecule capable of directing the transcription of a given gene and/or the synthesis of a desired protein molecule is produced. The term also refers to the linkage of sequences encoding amino acids in such a manner that a functional (e.g., enzymatically active, capable of binding to a binding partner, capable of inhibiting, etc.) protein or polypeptide is produced.

The term "recombinant DNA molecule" means a hybrid DNA sequence comprising at least two nucleotide sequences not normally found together in nature.
The term "vector" is used in reference to nucleic acid molecules into which fragments of DNA may be inserted or cloned and can be used to transfer DNA segment(s) into a cell and capable of replication in a cell. Vectors may be derived from plasmids, bacteriophages, viruses, cosmids, and the like.

The terms "recombinant vector" and "expression vector" as used herein refer to DNA or RNA sequences containing a desired coding sequence and appropriate DNA or RNA sequences necessary for the expression of the operably linked coding sequence in a particular host organism. Prokaryotic expression vectors include a promoter, a ribosome binding site, an origin of replication for autonomous replication in a host cell and possibly other sequences, e.g. an optional operator sequence, optional restriction enzyme sites. A promoter is defined as a DNA sequence that directs RNA polymerase to bind to DNA and to initiate RNA synthesis. Eukaryotic expression vectors include a promoter, optionally a polyadenlyation signal and optionally an enhancer sequence.
A polynucleotide having a nucleotide sequence encoding a protein or polypeptide means a nucleic acid sequence comprising the coding region of a gene, or in other words the nucleic acid sequence encodes a gene product. The coding region may be present in either a cDNA, genomic DNA or RNA form.
When present in a DNA form, the oligonucleotide may be single-stranded (i.e., the sense strand) or double-stranded. Suitable control elements such as enhancers/promoters, splice junctions, polyadenylation signals, etc. may be placed in close proximity to the coding region of the gene if needed to permit proper initiation of transcription and/or correct processing of the primary RNA
transcript. Alternatively, the coding region utilized in the expression vectors of the present invention may contain endogenous enhancers/promoters, splice junctions, intervening sequences, polyadenylation signals, etc. In further embodiments, the coding region may contain a combination of both endogenous and exogenous control elements.

The term "regulatory element" or "regulatory sequence" refers to a genetic element or sequence that controls some aspect of the expression of nucleic acid sequence(s). For example, a promoter is a regulatory element that facilitates the initiation of transcription of an operably linked coding region.
Other regulatory elements include, but are not limited to, transcription factor binding sites, splicing signals, polyadenylation signals, termination signals and enhancer elements.
Transcriptional control signals in eukaryotes comprise "promoter" and "enhancer" elements. Promoters and enhancers consist of short arrays of DNA
sequences that interact specifically with cellular proteins involved in transcription. Promoter and enhancer elements have been isolated from a variety of eukaryotic sources including genes in yeast, insect and mammalian cells.
Promoter and enha.ncer elements have also been isolated from viruses and analogous control elements, such as promoters, are also found in prokaryotes.
The selection of a particular promoter and enhancer depends on the cell type used to express the protein of interest. Some eukaryotic promoters and enhancers have a broad host range while others are functional in a limited subset of cell types. For example, the SV40 early gene enhancer is very active in a wide variety of cell types from many mammalian species and has been widely used for the expression of proteins in inainmalian cells. Two other examples of promoter/enhancer elements active in a broad range of mammalian cell types are those from the human elongation factor 1 gene (LTetsuki et al., 1989; Kim et al., 1990; and Mizushima and Nagata, 1990) and the long terminal repeats of the Rous sarcoma virus (Gorman et al., 1982); and the human cytomegalovirus (Boshart et al., 1985).
The term "promoter/enhancer" denotes a segment of DNA containing sequences capable of providing both promoter and enhancer functions (i.e., the functions provided by a promoter element and an enhancer element as described above). For example, the long terminal repeats of retroviruses contain both promoter and enhancer functions. The enhancer/promoter may be "endogenous"
or "exogenous" or "heterologous." An "endogenous" enhancer/promoter is one that is naturally linked with a given gene in the genome. An "exogenous" or "heterologous" enhancer/promoter is one that is placed in juxtaposition to a gene by means of genetic manipulation (i.e., molecular biological techniques) such that transcription of the gene is directed by the linked enhancer/promoter.

The presence of "splicing signals" on an expression vector often results in higher levels of expression of the recombinant transcript in eukaryotic host cells.
Splicing signals mediate the removal of introns from the primary RNA
transcript and consist of a splice donor and acceptor site (Sambrook et al., 1989).
A commonly used splice donor and acceptor site is the splice junction from the 16S RNA of SV40.

Efficient expression of recombinant DNA sequences in eukaryotic cells requires expression of signals directing the efficient termination and polyadenylation of the resulting transcript. Transcription termination signals are generally found downstream of the polyadenylation signal and are a few hundred nucleotides in length. The term "poly(A) site" or "poly(A) sequence" as used herein denotes a DNA sequence which directs both the termination and polyadenylation of the nascent RNA transcript. Efficient polyadenylation of the recombinant transcript is desirable, as transcripts lacking a poly(A) tail are unstable and are rapidly degraded. The poly(A) signal utilized in an expression vector may be "heterologous" or "endogenous." An endogenous poly(A) signal is one that is found naturally at the 3' end of the coding region of a given gene in the genome. A heterologous poly(A) signal is one which has been isolated from one gene and positioned 3' to another gene. A commonly used heterologous poly(A) signal is the SV40 poly(A) signal. The SV40 poly(A) signal is contained on a 237 bp BamH I/Bcl I restriction fragment and directs both termination and polyadenylation (Sambrook et al., 1989).

Eukaryotic expression vectors rnay also contain "viral replicons "or "viral origins of replication." Viral replicons are viral DNA sequences which allow for the extrachromosomal replication of a vector in a host cell expressing the appropriate replication factors. Vectors containing either the SV40 or polyoma virus origin of replication replicate to high copy number (up to 104 copies/cell) in cells that express the appropriate viral T antigen. In contrast, vectors containing the replicons from bovine papillomavirus or Epstein-Barr virus replicate extrachromosomally at low copy number (about 100 copies/cell).
The term "in vitro" refers to an artificial environment and to processes or reactions that occur within an artificial environment. In vitro environments include, but are not limited to, test tubes and cell lysates. The term "in vivo"

refers to the natural environment (e.g., an animal or a cell) and to processes or reactions that occur within a natural environment.
The term "expression system" refers to any assay or system for determining (e.g., detecting) the expression of a gene of interest. Those skilled in the field of molecular biology will understand that any of a wide variety of expression systems may be used. A wide range of suitable mammalian cells are available from a wide range of sources (e.g., the American Type Culture Collection, Rockland, MD). The method of transformation or transfection and the choice of expression vehicle will depend on the host system selected.

Transformation and transfection methods are described, e.g., in Ausubel et al., 1992. Expression systems include in vitro gene expression assays where a gene of interest (e.g., a reporter gene) is linked to a regulatory sequence and the expression of the gene is monitored following treatment with an agent that inhibits or induces expression of the gene. Detection of gene expression can be through any suitable means including, but not limited to, detection of expressed mRNA or protein (e.g., a detectable product of a reporter gene) or througli a detectable change in the phenotype of a cell expressing the gene of interest.
Expression systems may also comprise assays where a clea.vage event or other nucleic acid or cellular change is detected.

All amino acid residues identified herein are in the natural L-configuration. In keeping with standard polypeptide nomenclature, abbreviations for a.inino acid residues are as shown in the following Table of Correspondence.

TABLE OF CORRESPONDENCE
1-Letter 3-Letter AMINO ACID
Y Tyr L-tyrosine G Gly L-glycine F Phe L-phenylalanine M Met L-methionine A Ala L-alanine S Ser L-serine I Ile L-isoleucine L Leu L-leucine T Thr L-threonine V Val L-valine P Pro L-proline K Lys L-lysine H His L-histidine Q Gln L-glutamine E Glu L-glutamic acid W Trp L-tryptophan R Arg L-arginine D Asp L-aspartic acid N Asn L-asparagine C Cys L-cysteine The terms "complementary" or "complementarity" are used in reference to a sequence of nucleotides related by the base-pairing rules. For example, for the sequence 5' "A-G-T" 3', is coinplementary to the sequence 3' "T-C-A" 5'.
Complementarity may be "partial," in which only some of the nucleic acids' bases are matched according to the base pairing rules. Or, there may be "complete" or "total" complementarity between the nucleic acids. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of hybridization between nucleic acid strands. This is -of particular importance in amplification reactions, as well as detection methods which depend upon hybridization of nucleic acids.
When used in reference to a double-stranded nucleic acid sequence such as a cDNA or a genomic clone, the term "substantially homologous" refers to any probe which can hybridize to either or both strands of the double-stranded nucleic acid sequence under conditions of low stringency as described herein.
"Probe" refers to an oligonucleotide designed to be sufficiently complementary to a sequence in a denatured nucleic acid to be probed (in relation to its length) and is bound under selected stringency conditions.
"Hybridization" and "binding" in the context of probes and denatured nucleic acids are used interchangeably. Probes that are hybridized or bound to denatured nucleic acids are base paired to complementary sequences in the polynucleotide. Whether or not a particular probe remains base paired with the polynucleotide depends on the degree of complementarity, the length of the probe, and the stringency of the binding conditions. The higher the stringency, the higher must be the degree of complementarity and/or the longer the probe.
The term "hybridization" is used in reference to the pairing of complementary nucleic acid strands. Hybridization and the strength of hybridization (i.e., the strength of the association between nucleic acid strands) is impacted by many factors well known in the art including the degree of complementarity between the nucleic acids, stringency of the conditions involved such as the concentration of salts, the Tm (melting temperature) of the formed hybrid, the presence of other components (e.g., the presence or absence of polyethylene glycol), the molarity of the hybridizing strands and the G:C
content of the nucleic acid strands.
The term "stringency" is used in reference to the conditions of temperature, ionic strength, and the presence of other compounds, under which nucleic acid hybridizations are conducted. With "high stringency" conditions, nucleic acid base pairing will occur only between nucleic acid fragments that have a high frequency of complementary base sequences. Thus, conditions of "medium" or "low" stringency are often required when it is desired that nucleic acids that are not completely complementary to one another be hybridized or annealed together. The art knows well that numerous equivalent conditions cali be employed to comprise medium or low stringency conditions. The choice of hybridization conditions is generally evident to one skilled in the art and is usually guided by the purpose of the hybridization, the type of hybridization (DNA-DNA or DNA-RNA), and the level of desired relatedness between the sequences (e.g., Sambrook et al., 1989; Nucleic Acid Hybridization, A
Practical Approach, IRL Press, Washington D.C., 1985, for a general discussion of the methods).
The stability of nucleic acid duplexes is known to decrease with increasing numbers of mismatched bases, and further to be decreased to a greater or lesser degree depending on the relative positions of mismatches in the hybrid duplexes. Thus, the stringency of hybridization can be used to maximize or minimize stability of such duplexes. Hybridization stringency can be altered by:

adjusting the temperature of hybridization; adjusting the percentage of helix destabilizing agents, such as formamide, in the hybridization mix; and adjusting the temperature and/or salt concentration of the wash solutions. For filter hybridizations, the final stringency of hybridizations often is determined by the salt concentration and/or temperature used for the post-hybridization washes.
"High stringency conditions" when used in reference to nucleic acid hybridization comprise conditions equivalent to binding or hybridization at 42 C
in a solution consisting of 5X SSPE (43.8 g/1 NaCl, 6.9 g/1 NaH2PO4 H20 and 1.85 g/1 EDTA, pH adjusted to 7.4 with NaOH), 0.5% SDS, 5X Denhardt's reagent and 100 g/ml denatured salmon sperm DNA followed by washing in a solution comprising 0. 1X SSPE, 1.0% SDS at 42 C when a probe of about 500 nucleotides in length is employed.

"Medium stringency conditions" when used in reference to nucleic acid hybridization comprise conditions equivalent to binding or hybridization at 42 C
in a solution consisting of 5X SSPE (43.8 g/1 NaCI, 6.9 g/1 NaH2PO4 H20 and 1.85 g/1 EDTA, pH adjusted to 7.4 with NaOH), 0.5% SDS, 5X Denhardt's reagent and 100 g/ml denatured salmon sperm DNA followed by washing in a solution comprising 1.OX SSPE, 1.0% SDS at 42 C when a probe of about 500 nucleotides in length is employed.

"Low stringency conditions" comprise conditions equivalent to binding or hybridization at 42 C in a solution consisting of 5X SSPE (43.8 g/1 NaCI, 6.9 g/1 NaH2PO4 H20 and 1.85 g/1 EDTA, pH adjusted to 7.4 with NaOH), 0.1%
SDS, 5X Denhardt's reagent [50X Denhardt's contains per 500 ml: 5 g Ficoll (Type 400, Pharmacia), 5 g BSA (Fraction V; Sigma)] and 100 g/ml denatured salmon sperm DNA followed by washing in a solution comprising 5X SSPE, 0.1% SDS at 42 C when a probe of about 500 nucleotides in length is employed.
The term "Tm" is used in reference to the "melting temperature". The melting temperature is the temperature at which 50% of a population of double-stranded nucleic acid molecules becomes dissociated into single strands.
The equation for calculating the T,,, of nucleic acids is well-known in the art.

The Tm of a hybrid nucleic acid is often estimated using a formula adopted from hybridization assays in 1 M salt, and commonly used for calculating Tm for PCR
primers: [(number of A + T) x 2 C + (number of G+C) x 4 C]. (C.R. Newton et al., PCR, 2nd Ed., Springer-Verlag (New York, 1997), p. 24). This formula was found to be inaccurate for primers longer than 20 nucleotides. (Id.) Another simple estimate of the T,,, value may be calculated by the equation: T= 81.5 +
0.41(% G + C), when a nucleic acid is in aqueous solution at 1 M NaCl. (e.g., Anderson and Young, Quantitative Filter Hybridization, in Nucleic Acid Hybridization, 1985). Other more sophisticated computations exist in the art which take structural as well as sequence characteristics into account for the calculation of Tm. A calculated Tis merely an estimate; the optimum temperature is commonly determined empirically.

The term "promoter/enhancer" denotes a segment of DNA containing sequences capable of providing both promoter and enhancer functions (i.e., the functions provided by a promoter element and an enhancer element as described above). For example, the long terminal repeats of retroviruses contain both promoter and enhancer functions. The enhancer/promoter may be "endogenous"
or "exogenous" or "heterologous." An "endogenous" enhancer/promoter is one that is naturally linked with a given gene in the genome. An "exogenous" or "heterologous" enhancer/promoter is one that is placed in juxtaposition to a gene by means of genetic manipulation (i.e., molecular biological techniques) such that transcription of the gene is directed by the linked enhancer/promoter.

The term "sequence homology" means the proportion of base matches between two nucleic acid sequences or the proportion of amino acid matches between two amino acid sequences. When sequence homology is expressed as a percentage, e.g., 50%, the percentage denotes the proportion of matches over the length of sequence from one sequence that is compared to some other sequence.
Gaps (in either of the two sequences) are permitted to maximize matching; gap lengths of 15 bases or less are usually used, 6 bases or less are preferred with 2 bases or less more preferred. When using oligonucleotides as probes or treatments, the sequence homology between the target nucleic acid and the oligonucleotide sequence is generally not less than 17 target base matches out of 20 possible oligonucleotide base pair matches (85%); preferably not less than matches out of 10 possible base pair matches (90%), and more preferably not less than 19 matches out of 20 possible base pair matches (95%).

Two amino acid sequences are homologous if there is a partial or complete identity between their sequences. For example, 85% homology means that 85% of the amino acids are identical when the two sequences are aligned for maximum matching. Gaps (in either of the two sequences being matched) are allowed in maximizing matching; gap lengths of 5 or less are preferred with 2 or less being more preferred. Alternatively and preferably, two protein sequences (or polypeptide sequences derived from them of at least 100 amino acids in length) are homologous, as this term is used herein, if they have an alignment score of at more than 5 (in standard deviation units) using the program ALIGN

with the mutation data matrix and a gap penalty of 6 or greater. See Dayhoff, M.
0., in Atlas of Protein Sequence and Structure, 1972, volume 5, National Biomedical Research Foundation, pp. 101-110, and Supplement 2 to this volume, pp. 1-10. The two sequences or parts thereof are more preferably homologous if their amino acids are greater than or equal to 85% identical when optimally aligned using the ALIGN program.

The following terms are used to describe the sequence relationships between two or more polynucleotides: "reference sequence", "comparison window", "sequence identity", "percentage of sequence identity", and "substantial identity". A "reference sequence" is a defined sequence used as a basis for a sequence comparison; a reference sequence may be a subset of a larger sequence, for example, as a segment of a full-length cDNA or gene sequence given in a sequence listing, or may comprise a complete cDNA or gene sequence. Generally, a reference sequence is at least 20 nucleotides in length, frequently at least 25 nucleotides in length, and often at least 50 or 100 nucleotides in length. Since two polynucleotides may each (1) comprise a sequence (i.e., a portion of the complete polynucleotide sequence) that is similar between the two polynucleotides, and (2) may further comprise a sequence that is divergent between the two polynucleotides, sequence comparisons between two (or more) polynucleotides are typically performed by comparing sequences of the two polynucleotides over a "comparison window" to identify and compare local regions of sequence similarity.

A "comparison window", as used herein, refers to a conceptual segment of at least 20 contiguous nucleotides and wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) of 20 percent or less as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences.
Methods of alignment of sequences for comparison are well known in the art. Thus, the determination of percent identity between any two sequences can be accomplished using a mathematical algorithm. Preferred, non-limiting examples of such mathematical algorithms are the algorithm of Myers and Miller (1988); the local homology algorithm of Smith and Waterman (1981); the homology alignment algorithm of Needleman and Wunsch (1970); the search-for-similarity-method of Pearson and Lipman (1988); the algorithm of Karlin and Altschul (1990), modified as in Karlin and Altschul (1993).
Computer implementations of these mathematical algorithms can be utilized for comparison of sequences to determine sequence identity. Such implementations include, but are not limited to: ClustalW (available, e.g., at http://www.ebi.ac.uk/clustalw/); the ALIGN program (Version 2.0) and GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Version 8. Alignments using these programs can be performed using the default parameters. The CLUSTAL program is well described by Higgins et al. (1988); Higgins et al. (1989); Corpet et al. (1988); Huang et al. (1992);
and Pearson et al. (1994). The ALIGN program is based on the algorithm of Myers and Miller, supra. The BLAST programs of Altschul et al. (1990), are based on the algorithm of Karlin and Altschul supra. To obtain gapped alignments for comparison purposes, Gapped BLAST (in BLAST 2.0) can be utilized as described in Altschul et al. (1997). Alternatively, PSI-BLAST (in BLAST 2.0) can be used to perform an iterated search that detects distant relationships between molecules. See Altschul et al., supra. When utilizing BLAST, Gapped BLAST, PSI-BLAST, the default parameters of the respective programs (e.g.
BLASTN for nucleotide sequences, BLASTX for proteins) can be used. See http://www.ncbi.nlm.nih.gov. Alignment may also be performed manually by inspection The term "sequence identity" means that two polynucleotide sequences are identical (i.e., on a nucleotide-by-nucleotide basis) over the window of comparison. The term "percentage of sequence identity" means that two polynucleotide sequences are identical (i.e., on a nucleotide-by-nucleotide basis) for the stated proportion of nucleotides over the window of comparison. The term "percentage of sequence identity" is calculated by comparing two optimally aligned sequences over the window of comparison, determining the number of positions at which the identical nucleic acid base (e.g., A, T, C, G, U, or I) occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison (i.e., the window size), and multiplying the result by 100 to yield the percentage of sequence identity. The terms "substantial identity" as used herein denote a characteristic of a polynucleotide sequence, wherein the polynucleotide comprises a sequence that has at least 60%, preferably at least 65%, more preferably at least 70%, up to about 85%, and even more preferably at least 90 to 95%, more usually at least 99%, sequence identity as compared to a reference sequence over a comparison window of at least 20 nucleotide positions, frequently over a window of at least 20-50 nucleotides, and preferably at least 300 nucleotides, wherein the percentage of sequence identity is calculated by comparing the reference sequence to the polynucleotide sequence which may include deletions or additions which total 20 percent or less of the reference sequence over the window of comparison. The reference sequence may be a subset of a larger sequence.
As applied to polypeptides, the term "substantial identity" means that two peptide sequences, when optimally aligned, such as by the programs GAP or BESTFIT using default gap weights, share at least about 85% sequence identity, preferably at least about 90% sequence identity, more preferably at least about 95 % sequence identity, and most preferably at least about 99 % sequence identity.
Synthetic Nucleotide Sequences and Methods of the Invention The invention provides compositions comprising synthetic nucleotide sequences, as well as methods for preparing those sequences which yield synthetic nucleotide sequences that are efficiently expressed as a polypeptide or protein with desirable characteristics including reduced inappropriate or unintended transcription characteristics, or do not result in inappropriate or unintended transcription characteristics, when present in a particular cell type.
Natural selection is the hypothesis that genotype-environment interactions occurring at the phenotypic level lead to differential reproductive success of individuals and hence to modification of the gene pool of a population. It is generally accepted that the amino acid sequence of a protein found in nature has undergone optimization by natural selection. However, amino acids exist within the sequence of a protein that do not contribute significantly to the activity of the protein and these amino acids can be changed to other amino acids with little or no consequence. Furthermore, a protein may be useful outside its natural environment or for purposes that differ from the conditions of its natural selection. In these circumstances, the amino acid sequence can be synthetically altered to better adapt the protein for its utility in various applications.
Likewise, the nucleic acid sequence that encodes a protein is also optimized by natural selection. The relationship between coding DNA and its transcribed RNA is such that any change to the DNA affects the resulting RNA.
Thus, natural selection works on both molecules simultaneously. However, this relationship does not exist between nucleic acids and proteins. Because multiple codons encode the same amino acid, many different nucleotide sequences can encode an identical protein. A specific protein composed of 500 amino acids can theoretically be encoded by more than 10150 different nucleic acid sequences.

Natural selection acts on nucleic acids to achieve proper encoding of the corresponding protein. Presumably, other properties of nucleic acid molecules are also acted upon by natural selection. These properties include codon usage frequency, RNA secondary structure, the efficiency of intron splicing, and interactions with transcription factors or other nucleic acid binding proteins.
These other properties may alter the efficiency of protein translation and the resulting phenotype. Because of the redundant nature of the genetic code, these other attributes can be optimized by natural selection without altering the corresponding amino acid sequence.

Under some conditions, it is useful to synthetically alter the natural nucleotide sequence encoding a protein to better adapt the protein for alternative applications. A common example is to alter the codon usage frequency of a gene when it is expressed in a foreign host. Although redundancy in the genetic code allows amino acids to be encoded by multiple codons, different organisms favor some codons over others. The codon usage frequencies tend to differ most for organisms with widely separated evolutionary histories. It has been found that when transferring genes between evolutionarily distant organisms, the efficiency of protein translation can be substantially increased by adjusting the codon usage frequency (see U.S. Patent Nos. 5,096,825, 5,670,356 and 5,874,304).

In one embodiment, the sequence of a reporter gene is modified as the codon usage of reporter genes often does not correspond to the optimal codon usage of the experimental cells. In another embodiment, the sequence of a reporter gene is modified to rernove regulatory sequences such as those which may alter expression of the reporter gene or a linked gene. Examples include (3-galactosidase ((3-gal) and chloramphenicol acetyltransferase (cat) reporter genes that are derived from E. coli and are commonly used in mammalian cells; the (3-glucuronidase (gus) reporter gene that is derived from E. coli and commonly used in plant cells; the firefly luciferase (luc) reporter gene that is derived from an insect and commonly used in plant and mammalian cells; and the Renilla luciferase, and green fluorescent protein (gfp) reporter genes which are derived from coelenterates and are coininonly used in plant and mammalian cells. To achieve sensitive quantitation of reporter gene expression, the activity of the gene product must not be endogenous to the experimental host cells. Thus, reporter genes are usually selected from organisms having unique and distinctive phenotypes. Consequently, these organisms often have widely separated evolutionary histories from the experimental host cells.

Previously, to create genes having a more optimal codon usage frequency but still encoding the same gene product, a synthetic nucleic acid sequence was made by replacing existing codons with codons that were generally more favorable to the experimental host cell (see U.S. Patent Nos. 5,096,825, 5,670,356 and 5,874,304.) The result was a net improvement in codon usage frequency of the synthetic gene. However, the optimization of other attributes was not considered and so these synthetic genes likely did not reflect genes optimized by natural selection.

In particular, improvenlents in codon usage frequency are intended only for optimization of a RNA sequence based on its role in translation into a protein. Thus, previously described methods did not address how the sequence of a synthetic gene affects the role of DNA in transcription into RNA. Most notably, consideration had not been given as to how transcription factors may interact with the synthetic DNA and consequently modulate or otherwise influence gene transcription. For genes found in nature, the DNA would be optimally transcribed by the native host cell arnd would yield an RNA that encodes a properly folded gene product. In corntrast, synthetic genes have previously not been optimized for transcriptional characteristics. Rather, this property has been ignored or left to chance.
This concern is important for all genes, but particularly important for reporter genes, which are most commonly used to quantitate transcriptional behavior in the experimental host cells, and vector backbone sequences for genes. Hundreds of transcription factors have been identified in different cell types under different physiological conditions, and likely more exist but have not yet been identified. All of these transcription factors can influence the transcription of an introduced gene or sequences linked thereo. A useful synthetic reporter gene or vector backbone of the invention has a minimal risk of influencing or perturbing intrinsic transcriptional characteristics of the host cell because the structure of that gene or vector backbone has been altered. A
particularly useful synthetic reporter gene or vector backbone will have desirable characteristics under a new set and/or a wide variety of experimental conditions.
To best achieve these characteristics, the structure of the synthetic gene or synthetic vector backbone should have minimal potential for interacting with transcription factors within a broad range of host cells and physiological conditions. Minimizing potential interactions b etween a reporter gene or vector backbone and a host cell's endogenous transcription factors increases the value of a reporter gene or vector backbone by reducing the risk of inappropriate transcriptional characteristics of the gene or vector backbone within a particular experiment, increasing applicability of the gene or vector backbone in various environments, and increasing the acceptance of the resulting experimental data.

In contrast, a reporter gene comprising a native nucleotide sequence, based on a genomic or cDNA clone from the original host organism, or a vector backbone comprising native sequences found in one or a variety of different organisms, may interact with transcription factors when present in an exogenous host. This risk stems from two circumstances. First, the native nucleotide sequence contains sequences that were optimized through natural selection to influence gene transcription within the native host organism. However, these sequences might also influence transcription when the sequences are present in exogenous hosts, i.e., out of context, thus interfering with its performance as a reporter gene or vector backbone. Second, the nucleotide sequence may inadvertently interact with transcription factors that were not present in the native host organism, and thus did not participate in its natural selection.
The probability of such inadvertent interactions increases with greater evolutionary separation between the experimental cells and the native organism of the reporter gene or vector backbone.

These potential interactions with transcription factors would likely be disrupted when using a synthetic reporter gene having alterations in codon usage frequency. However, a synthetic reporter gene sequence, designed by choosing codons based only on codon usage frequency, or randomly replacing sequences or randomly juxtaposing sequences in a vector backbone, is likely to contain other unintended transcription factor binding sites since the resulting sequence has not been subjected to the benefit of natural selection to correct inappropriate transcriptional activities. Inadvertent interactions with transcription factors could also occur whenever an encoded amino acid sequence is artificially altered, e.g., to introduce amino acid substitutions. Similarly, these changes have not been subjected to natural selection, and thus may exhibit undesired characteristics.

Thus, the invention provides a method for preparing synthetic nucleotide sequences that reduce the risk of undesirable interactions of the nucleotide sequence with transcription factors and other trans-acting factors ~vhen expressed in a particular host cell, thereby reducing inappropriate or unintended characteristics. Preferably, the method yields synthetic genes containing improved codon usage frequencies for a particular host cell and with a reduced occurrence of regulatory sequences such as transcription factor binding sites and/or vector backbone sequences with a reduced occurrence of regulatory sequences. The invention also provides a method of preparing synthetic genes containing improved codon usage frequencies with a reduced occurrence of transcription factor binding sites and additional beneficial structural attributes.
Such additional attributes include the absence of inappropriate RNA splicing junctions, poly(A) addition signals, undesirable restriction enzyme recognition sites, ribosomal binding sites, and/or secondary structural motifs such as hairpin loops.
In one embodiment, a parent nucleic acid sequence encoding a polypeptide is optimized for expression in a particular cell. For example, the nucleic acid sequence is optimized by replacing codons in the wild-type sequence with codons which are preferentially employed in a particular (selected) cell, which codon replacement also reduces the number of regulatory sequences. Preferred codons have a relatively high codon usage frequency in a selected cell, and preferably their introduction results in the introduction of relatively few regulatory sequences such as transcription factor binding sites, and relatively few other undesirable structural attributes. Thus, the optimized nucleotide sequence may have an improved level of expression due to improved codon usage frequency, and a reduced risk of inappropriate transcriptional behavior due to a reduced number of undesirable transcription regulatory sequences. In another embodiment, a parent vector backbone sequence is altered to remove regulatory sequences and optionally restriction endonuclease sites, and optionally retain or add other desirable characteristics, e.g., the presence of one or more stop codons in one or more reading frames, one or more poly(A) sites, and/or restriction endonuclease sites.
The invention may be employed with any nucleic acid sequence, e.g., a native sequence such as a cDNA or one that has been manipulated in vitro.
Exemplary genes include, but are not limited to, those encoding lactamase ((3-gal), neomycin resistance (Neo), hygromycin resistance (Hyg), puromycin resistance (Puro), ampicillin resistance (Amp), CAT, GUS, galactopyranoside, GFP, xylosidase, thymidine kinase, arabinosidase, luciferase and the like. As used herein, a "reporter gene" is a gene that imparts a distinct phenotype to cells expressing the gene and thus permits cells having the gene to be distinguished from cells that do not have the gene. Such genes may encode either a selectable or screenable polypeptide, depending on whether the marker confers a trait which one can 'select' for by chemical means, i.e., through the use of a selective agent (e.g., a herbicide, antibiotic, or the like), or whether it is simply a "reporter" trait that one can identify through observation or testing, i.e., by 'screening'. Included within the terms selectable or screenable marker genes are also genes which encode a "secretable marker" whose secretion can be detected as a means of identifying or selecting for transformed cells. Examples include markers that encode a secretable antigen that can be identified by antibody interaction, or even secretable enzymes which can be detected by their catalytic activity. Secretable proteins fall into a number of classes, including small, diffusible proteins detectable, e.g., by ELISA, and proteins that are inserted or trapped in the cell membrane.

Elements of the present disclosure are exemplified in detail through the use of particular genes and vector backbone sequences. Of course, many examples of suitable genes and vector backbones are known to the art and can be employed in the practice of the invention. Therefore, it will be understood that the following discussion is exemplary rather than exhaustive. In light of the techniques disclosed herein and the general recombinant techniques that are known in the art, the present invention renders possible the alteration of any gene or vector backbone sequence.

Exemplary genes include, but are not limited to, a neo gene, apuro gene, an amp gene, a(3-gal gene, a gus gene, a cat gene, a gpt gene, a hyg gene, a hisD
gene, a ble gene, a mprt gene, a bar gene, a nitrilase gene, a mutant acetolactate synthase gene (ALS) or acetoacid synthase gene (AAS), a methotrexate-resistant dhfr gene, a dalapon dehalogenase gene, a mutated anthranilate synthase gene that confers resistance to 5-methyl tryptophan (WO 97/26366), an R-locus gene, a(3-lactamase gene, a xylE gene, an a-amylase gene, a tyrosinase gene, a luciferase (luc) gene (e.g., a Renilla reniformis luciferase gene, a firefly luciferase gene, or a click beetle luciferase (Pyrophorus plagiophthalarnus gene), an aequorin gene, or a fluorescent protein gene.

The method of the invention can be performed by, although it is not limited to, a recursive process. The process includes assigning preferred codons to each amino acid in a target molecule, e.g., a native nucleotide sequence, based on codon usage in a particular species, identifying potential transcription regulatory sequences such as transcription factor binding sites in the nucleic acid sequence having preferred codons, e.g., using a database of such binding sites, optionally identifying other undesirable sequences, and substituting an alternative codon (i.e., encoding the same amino acid) at positions where undesirable transcription factor binding sites or other sequences occur. For codon distinct versions, alternative preferred codons are substituted in each version. If necessary, the identification and elimination of potential transcription factor or other undesirable sequences can be repeated until a nucleotide sequence is achieved containing a maximum number of preferred codons and a minimum number of undesired sequences including transcription regulatory sequences or other undesirable sequences. Also, optionally, desired sequences, e.g., restriction enzyme recognition sites, can be introduced. After a synthetic nucleotide sequence is designed and constructed, its properties relative to the parent nucleic acid sequence can be determined by methods well known to the art. For example, the expression of the synthetic and target nucleic acids in a series of vectors in a particular cell can be compared.

Thus, generally, the method of the invention comprises identifying a target nucleic acid sequence, and a host cell of interest, for example, a plant (dicot or monocot), fungus, yeast or mammalian cell. Preferred host cells are mammalian host cells such as CHO, COS, 293, Hela, CV-1 and NIH3T3 cells.
Based on preferred codon usage in the host cell(s) and, optionally, low codon usage in the host cell(s), e.g., high usage mammalian codons and low usage E.
coli and mammalian codons, codons to be replaced are determined. Concurrent, subsequent or prior to selecting codons to be replaced, desired and undesired sequences, such as undesired transcriptional regulatory sequences, in the target sequence are identified. These sequences, including transcriptional regulatory sequences and restriction endonuclease sites, can be identified using databases and software such as TRANSFAC (Transcription Factor Database, hgp://www.gene-regulation.conl/), MatchTM (htt-D://www.gene-regulation.com/), Matlnspector (Genomatix, http://www.genomatix.de), EPD (Eukaryotic Promoter Database, http://www.epd.isb-sib.ch/), REBASE (Restriction Enzyme Database, NEB, httn://rebase.neb.com), TESS (Transcription Element Search System, http://www.cbil.upenn.edu/tess/), MAR-Wiz (Futuresoft, http://www.futuresoft.org), Lasergene (DNASTAR, http://www.dnastar.com), Vector NTITM (Invitrogen, http://www.invitrogen.com), and Sequence Manipulation Suite (http://www.bioinformatics.org/SMS/index.html).

Links to other databases and sequence analysis software are listed at bgp://www.gxpasy.org/alinks.html. After one or more sequences are identified, the modification(s) may be introduced. Once a desired synthetic nucleotide sequence is obtained, it can be prepared by methods well known to the art (such as nucleic acid amplification reactions with overlapping primers), and its structural and functional properties compared to the target nucleic acid sequence, including, but not limited to, percent homology, presence or absence of certain sequences, for example, restriction sites, percent of codons changed (such as an increased or decreased usage of certain codons) and/or expression rates.

As described below, the method was used to create synthetic reporter genes encoding firefly luciferases and selectable polypeptides, and synthetic sequences for vector backbones. Synthetic sequences may support greater levels of expression and/or reduced aberrant expression than the corresponding native or parent sequenes for the protein. The native and parent sequences may demonstrate anomalous transcription characteristics when expressed in mammalian cells, which are likely not evident in the synthetic sequences.

Exemplary Uses of the Synthetic Nucleotide Sequences The synthetic genes of the invention preferably encode the same proteins as their native counterpart (or nearly so), but have improved codon usage while being largely devoid of regulatory elements in the coding (it is recognized that a small number of amino acid changes may be desired to enhance a property of the native counterpart protein, e.g. to enhance luminescence of a luciferase) and noncoding regions. This increases the level of expression of the protein the synthetic gene encodes and reduces the risk of anomalous expression of the protein. For example, studies of many important events of gene regulation, which may be mediated by weak promoters, are limited by insufficient reporter signals from inadequate expression of the reporter proteins. Also, the use of some selectable markers may be limited by the expression of that marker in an exogenous cell. Thus, synthetic selectable marker genes which have improved codon usage for that cell, and have a decrease in other undesirable sequences, (e.g., transcription factor binding sites), can permit the use of those markers in cells that otherwise were undesirable as hosts for those markers.

Promoter crosstalk is another concern when a co-reporter gene is used to normalize transfection efficiencies. With the enhanced expression of synthetic genes, the amount of DNA containing strong promoters can be reduced, or DNA
containing weaker promoters can be employed, to drive the expression of the co-reporter. In addition, there may be a reduction in the background expression from the synthetic reporter genes of the invention. This characteristic makes synthetic reporter genes more desirable by minimizing the sporadic expression from the genes and reducing the interference resulting from other regulatory pathways.
The use of reporter genes in imaging systems, which can be used for in vivo biological studies or drug screening, is another use for the synthetic genes of the invention. Due to their increased level of expression, the protein encoded by a synthetic gene is more readily detectable by an imaging system. In fact, using a synthetic Renilla luciferase gene, luminescence in transfected CHO cells was detected visually without the aid of instrumentation.
In addition, the synthetic genes may be used to express fusion proteins, for example fusions with secretion leader sequences or cellular localization sequences, to study transcription in difficult-to-transfect cells such as primary cells, and/or to improve the analysis of regulatory pathways and genetic elements. Other uses include, but are not limited to, the detection of rare events that require extreme sensitivity (e.g., studying RNA recoding), use with IRES, to improve the efficiency of in vitro translation or in vitro transcription-translation coupled systems such as TnT (Promega Corp., Madison, WI), study of reporters optimized to different host organisms (e.g., plants, fungus, and the like), use of multiple genes as co-reporters to monitor drug toxicity, as reporter molecules in multiwell assays, and as reporter molecules in drug screening with the advantage of minimizing possible interference of reporter signal by different signal transduction pathways and other regulatory mechanisms.
Additionally, uses for the synthetic nucleotide sequences of the invention include fluorescence activated cell sorting (FACS), fluorescent microscopy, to detect and/or measure the level of gene expression in vitro and in vivo, (e.g., to determine promoter strength), subcellular localization or targeting (fusion protein), as a marker, in calibration, in a kit (e.g., for dual assays), for in vivo imaging, to analyze regulatory pathways and genetic elements, and in multi-well formats.
Further, although reporter genes are widely used to measure transcription events, their utility can be limited by the fidelity and efficiency of reporter expression. For example, in U.S. Patent No. 5,670,356, a firefly luciferase gene (referred to as luc+) was modified to improve the level of luciferase expression.
While a higher level of expression was observed, it was not determined that higher expression had improved regulatory control.
The invention will be further described by the following nonlimiting exainples. In particular, the synthetic nucleic acid molecules of the invention may be derived by other methods as well as by variations on the methods described herein.

Example 1 Synthetic Click Beetle (RD and GR) Luciferase Nucleic Acid Molecules LucPpZYG is a wild-type click beetle luciferase that emits yellow-green luminescence (Wood, 1989). A mutant of LucPplYG named YG#81-6G01 was envisioned. YG#81-6G01 lacks a peroxisome targeting signal, has a lower KM
for luciferin and ATP, has increased signal stability and increased temperature stability when compared to the wild type (PCT/W09914336). YG #81-6G01 was mutated to emit green luminescence by changing Ala at position 224 to Val (A224V is a green-shifting mutation), or to emit red luminescence by simultaneously introducing the amino acid substitutions A224H, S247H, N3461, and H348Q (red-shifting mutation set) (PCT/W09518853) Using YG #81-6G01 as a parent gene, two synthetic gene sequences were designed. One codes for a luciferase emitting green luminescence (GR) and one for a luciferase emitting red luminescence (RD). Both genes were designed to 1) have optimized codon usage for expression in mammalian cells, 2) have a reduced number of transcriptional regulatory sites including mammalian transcription factor binding sites, splice sites, poly(A) sites and promoters, as well as prokaryotic (E. coli) regulatory sites, 3) be devoid of unwanted restriction sites, e.g., those which are likely to interfere with standard cloning procedures, and 4) have a low DNA sequence identity compared to each other in order to minimize genetic rearrangements when both are present inside the same cell. In addition, desired sequences, e.g., a Kozak sequence or restriction enzyme recognition sites, may be identified and introduced.
Not all design criteria could be met equally well at the same time. The following priority was established for reduction of transcriptional regulatory sites: elimination of transcription factor (TF) binding sites received the highest priority, followed by elimination of splice sites and poly(A) sites, and finally prokaryotic regulatory sites. When removing regulatory sites, the strategy was to work from the lesser important to the most important to ensure that the most important changes were made last. Then the sequence was rechecked for the appearance of new lower priority sites and additional changes made as needed.
Thus, the process for designing the synthetic GR and RD gene sequences, using computer programs described herein, involved 5 optionally iterative steps that are detailed below 1. Optimized codon usage and changed A224V to create GRverl, separately changed A224H, S247H, H348Q and N3461 to create RDverl. These particular amino acid changes were maintained throughout all subsequent manipulations to the sequence.

2. Rernoved undesired restriction sites, prokaryotic regulatory sites, splice sites, poly(A) sites thereby creating GRver2 and RDver2.
3. Removed transcription factor binding sites (first pass) and removed any newly created undesired sites as listed in step 2 above thereby creatingGRver3 and RDver3.

4. Rernoved transcription factor binding sites created by step 3 above (second pass) and removed any newly created undesired sites as listed in step 2 above thereby creating GRver4 and RDver4.

5. Removed transcription factor binding sites created by step 4 above (third Pass) and confirmed absence of sites listed in step 2 above thereby creating GRver5 and RDver5.
6. Constructed the actual genes by PCR using synthetic oligonucleotides corresponding to fragrnents of GRver5 and RDver5 designed sequences thereby creating GR6 and RD7. GR6, upon sequencing was found to have the serine residue at amino acid position 49 mutated to an asparagine and the proline at amino acid position 230 mutated to a serine (S49N, P230S). RD7, upon sequencing was found to have the histidine at amino acid position 36 mutated to a tyrosine (H36Y). These changes occurred during the PCR process.
4. The mutations described in step 6 above (S49N, P230S for GR6 and H36Y for RD7) were reversed to create GRver5.1 and RDver5.1.
5. RDver5.1 was further modified by changing the arginine codon at position 351 to a glycine codon (R351G) thereby creating RDver5.2 with improved spectral properties compared to RDver5.1.
6. RDver5.2 was further mutated to increase luminescence intensity thereby creating RD156-1H9 which encodes four additional amino acid changes (M21, S349T, K488T, E538V) and three silent single base changes (see U.S. application Serial No. 09/645,706, filed August 24, 2000, the disclosure of which is incorporated by reference herein).

1. Optimize codon usage and introduce mutations deter7nining luminescence color The starting gene sequence for this design step was YG #81-6G01.
a) Optimize codon usage:
The strategy was to adapt the codon usage for optimal expression in human cells and at the same time to avoid E. coli low-usage codons. Based on these requirements, the best two codons for expression in human cells for all amino acids with more than two codons were selected (see Wada et al., 1990).

In the selection of codon pairs for amino acids with six codons, the selection was biased towards pairs that have the largest number of mismatched bases to allow design of GR and RD genes with minimum sequence identity (codon distinction):
Arg: CGC/CGT Leu: CTG/TTG Ser: TCT/AGC
Thr: ACC/ACT Pro: CCA/CCT Ala: GCC/GCT

Gly: GGC/GGT Val: GTC/GTG Ile: ATC/ATT
Based on this selection of codons, two gene sequences encoding the YG#81-6G01 luciferase protein sequence were computer generated. The two genes were designed to have minimum DNA sequence identity and at the same time closely similar codon usage. To achieve this, each codon in the two genes was replaced by a codon from the limited list described above in an alternating fashion (e.g., Arg(õ) is CGC in gene 1 and CGT in gene 2, Arg(n+i) is CGT in gene 1 and CGC
in gene 2).
For subsequent steps in the design process it was anticipated that changes had to be made to this limited optimal codon selection in order to meet other design criteria, however, the following low-usage codons in mammalian cells were not used unless needed to meet criteria of higher priority:
Arg: CGA Leu: CTA Ser: TCG
Pro: CCG Val: GTA Ile: ATA
Also, the following low-usage codons in E. coli were avoided when reasonable (note that 3 of these match the low-usage list for rnammalian cells):
Arg: CGA/CGG/AGA/AGG
Leu: CTA Pro: CCC Ile: ATA

b) Introduce mutations determining luminescence color:
Into one of the two codon-optimized gene sequences was introduced the single green-shifting mutation and into the other -were introduced the 4 red-shifting mutations as described above.
The two output sequences from this first design step were named GRverl (version 1 GR) and RDverl (version 1 RD). Their DNA sequences are 63%
identical (594 mismatches), while the proteins tlhey encode differ only by the amino acids that determine luminescence color (see Figures 2 and 3 for an alignment of the DNA and protein sequences).
Tables 1 and 2 show, as an example, the codon usage for valine and leucine in human genes, the parent gene YG#81-6G01, the codon-optimized synthetic genes GRverl and RDverl, as well as the final versions of the synthetic genes after completion of step 5 in the design process (GRver5 and RDver5).
Table 1: Valine Codon Human Parent GR verl RD verl GR ver5 RD ver5 Table 2: Leucine Codon Human Parent GR verl RD verl GR ver5 RD ver5 2. Remove undesired restriction sites, prokaryotic regulatory sites, splice sites and poly(A sites The starting gene sequences for this design step were GRverl and RDverl.
a) Remove undesired restriction sites:
To check for the presence and location of undesired restriction sites, the sequences of both synthetic genes were compared against a database of restriction enzyme recognition sequences (REBASE ver.712, http://www.neb.com/rebase) using standard sequence analysis software (GenePro ver 6.10, Riverside Scientific Ent.).
Specifically, the following restriction enzymes were classified as undesired:
- BamHI,XhoI,SfiI,Kpnl,SacI,MIuI,NheI,SmaI,X'liol,Bglll, Hind III, Nco I, Nar I, Xba I, Hpa I, Sal I, - other cloning sites commonly used: EcoR I, EcoR V, Cla I, - eight-base cutters (commonly used for complex constructs), - BstE II (to allow N-terminal fusions), - Xcm I (can generate A/T overhang used for T-vector cloning).

To eliminate undesired restriction sites when found in a synthetic gene, one or more codons of the synthetic gene sequence were altered in accordance with the codon optimization guidelines described in 1 a above.

b) Remove prokaryotic (E. cola') regulatory sequences:
To check for the presence and location of prokaryotic regulatory sequences, the sequences of both synthetic genes were searched for the presence of the following consensus sequences using standard sequence analysis software (GenePro):
- TATAAT (-10 Pribnow box of promoter) - AGGA or GGAG (ribosome binding site; only considered if paired with a methionine codon 12 or fewer bases downstream).
To eliminate such regulatory sequences when found in a synthetic gene, one or more codons of the synthetic gene at sequence were altered in accordance with the codon optimization guidelines described in la above.

c) Remove splice sites:
To check for the presence and location of splice sites, the DNA strand corresponding to the primary RNA transcript of each synthetic gene was searched for the presence of the following consensus sequences (see Watson et al., 1983) using standard sequence analysis software (GenePro):

- splice donor site: AG I GTRAGT (exon I intron), the search was performed for AGGTRAG and the lower stringency GGTRAGT;
- splice acceptor site: (Y)õNCAG I G (intron I exon), the search was performed with n = 1.
To eliminate splice sites found in a synthetic gene, one or more codons of the synthetic gene sequence were altered in accordance with the codon optimization guidelines described in 1 a above. Splice acceptor sites were generally difficult to eliminate in one gene without introducing them into the other gene because they tended to contain one of the two only Gln codons (CAG); they were removed by placing the Gln codon CAA in both genes at the expense of a slightly increased sequence identity between the two genes.

d) Remove poly(A) sites:
. To check for the presence and location of poly(A) sites, the sequences of both synthetic genes were searched for the presence of the following consensus sequence using standard sequence analysis software (GenePro):

- AATAAA.
To eliminate each poly(A) addition site found in a synthetic gene, one or more codons of the synthetic gene sequence were altered in accordance with the codon optimization guidelines described in la above. The two output sequences from this second design step were named GRver2 and RDver2. Their DNA sequences are 63% identical (590 mismatches).

3. Remove transcription factor (TF) binding sites, then repeat steps 2 a-d The starting gene sequences for this design step were GRver2 and RDver2.
To check for the presence, location and identity of potential TF binding sites, the sequences of both synthetic genes were used as query sequences to search a database of transcription factor binding sites (TRANSFAC v3.2). The TRANSFAC database (http://transfac.gbf.de/TRANSFAC/index:html) holds information on gene regulatory DNA sequences (TF binding sites) and proteins (TFs) that bind to and act through them. The SITE table of TRANSFAC Release 3.2 contains 4,401 entries of individual (putative) TF binding sites (including TF
binding sites in eukaryotic genes, in artificial sequences resulting from mutagenesis studies and in vitro selection procedures based on random oligonucleotide mixtures or specific theoretical considerations, and consensus binding sequences (from Faisst and Meyer, 1992).
The software tool used to locate and display these TF binding sites in the synthetic gene sequences was TESS (Transcription Element Search Software, http://agave.humgen.upenn.edu/tess/index.html). The filtered string-based search option was used with the following user-defined search parameters:
- Factor Selection Attribute: Organism Classification - Search Pattern: Mammalia - Max. Allowable Mismatch %: 0 - Min. element length: 5 - Min. log-likelihood: 10 This parameter selection specifies that only mammalian TF binding sites (approximately 1,400 of the 4,401 entries in the database) that are at least 5 bases long will be included in the search. It further specifies that only TF binding sites that have a perfect match in the query sequence and a minimum log likelihood (LLH) score of 10 will be reported. The LLH scoring method assigns 2 to an unambiguous match, 1 to a partially ambiguous match (e.g., A or T match W) and 0 to a match against W. For example, a search with parameters specified above would result in a "hit" (positive result or match) for TATAA (SEQ ID
NO:50) (LLH = 10), STRATG (SEQ ID NO:51) (LLH = 10), and MTTNCNNMA (SEQ ID NO:52) (LLH =10) but not for TRATG (SEQ ID NO:
53) (LLH = 9) if these four TF binding sites were present in the query sequence.
A lower stringency test was performed at the end of the design process to re-evaluate the search parameters.
When TESS was tested with a mock query sequence containing known TF binding sites it was found that the program was unable to report matches to sites ending with the 3' end of the query sequence. Thus, an extra nucleotide was added to the 3' end of all query sequences to eliminate this problem.
The first search for TF binding sites using the parameters described above found about 100 transcription factor binding sites (hits) for each of the two synthetic genes (GRver2 and RDver2). All sites were eliminated by changing one or more codons of the synthetic gene sequences in accordance with the codon optimization guidelines described in la above. However, it was expected that some these changes created new TF binding sites, other regulatory sites, and new restriction sites. Thus, steps 2 a-d were repeated as described, and 4 new restriction sites and 2 new splice sites were removed. The two output sequences from this third design step were named GRver3 and RDver3. Their DNA
sequences are 66% identical (541 mismatches).

4. Remove new transcription factor (TF) binding sites, then repeat steps 2 a-d The starting gene sequences for this design step were GRver3 and RDver3.

This fourth step is an iteration of the process described in step 3. The search for newly introduced TF binding sites yielded about 50 hits for each of the two synthetic genes. All sites were eliminated by changing one or more codons of the synthetic gene sequences in general accordance with the codon optimization guidelines described in 1 a above. However, more high to medium usage codons were used to allow elimination of all TF binding sites. The lowest priority was placed on maintaining low sequence identity between the GR and RD genes.
Then steps 2 a-d were repeated as described. The two output sequences from this fourth design step were named GRver4 and RDver4. Their DNA sequences are 68% identical (506 mismatches).

5. Remove new transcription factor (TF) binding sites, then repeat steps 2 a-d The starting gene sequences for this design step were GRver4 and RDver4.
This fifth step is another iteration of the process described in step 3 above.
The search for new TF binding sites introduced in step 4 yielded about 20 hits for each of the two synthetic genes. All sites were eliminated by changing one or more codons of the synthetic gene sequences in general accordance with the codon optimization guidelines described in la above. However, more high to medium usage codons were used (these are all considered "preferred") to allow elimination of all TF binding sites. The lowest priority was placed on maintaining low sequence identity between the GR and RD genes. Then steps 2 a-d were repeated as described. Only one acceptor splice site could not be eliminated. As a final step the absence of all TF binding sites in both genes as specified in step 3 was confirmed. The two output sequences from this fifth and last design step were named GRver5 and RDver5. Their DNA sequences are 69% identical (504 mismatches).

Additional evaluation of GRver5 and RDver5 a) Use lower stringency parameters for TESS:
The search for TF binding sites was repeated as described in step 3 above, but with even less stringent user-defined parameters:
- setting LLH to 9 instead of 10 did not result in new hits;

- setting LLH to 0 through 8(incl.) resulted in hits for two additional sites, MAMAG (22 hits) and CTKTK (24 hits);
- setting LLH to 8 and the minimum element length to 4, the search yielded (in addition to the two sites above) different 4-base sites for AP- 1, NF- 1, and c-Myb that are shortened versions of their longer respective consensus sites which were eliminated in steps 3-5 above.
It was not realistic to attempt complete elimination of these sites without introduction of new sites, so no further changes were made.

b) Search different database:
The Eukaryotic Promoter Database (release 45) contains information about reliably mapped transcription start sites (1253 sequences) of eukaryotic genes.
This database was searched using BLASTN 1.4.11 with default parameters (optimized to find nearly identical sequences rapidly; see Altschul et al, 1990) at the National Center for Biotechnology Information site (http://www.ncbi.nlm.nih.gov/cgi-bin/BLAST). To test this approach, a portion of pGL3-Control vector sequence containing the SV40 promoter and enhancer was used as a query sequence, yielding the expected hits to SV40 sequences. No hits were found when using the two synthetic genes as query sequences.

Summary of GRver5 and RDver5 synthetic gene properties Both genes, which at this stage were still only "virtual" sequences in the computer, have a codon usage that strongly favors mammalian high-usage codons and minimizes mammalian and E. coli low-usage codons.
Both genes are also completely devoid of eukaryotic TF binding sites consisting of more than four unambiguous bases, donor and acceptor splice sites (one exception: GRver5 contains one splice acceptor site), poly(A) sites, specific prokaryotic (E. coli) regulatory sequences, and undesired restriction sites.
The gene sequence identity between GRver5 and RDver5 is only 69%
(504 base mismatches) while their encoded proteins are 99% identical (4 amino acid mismatches). Their identity with the parent sequence YG#81-6G1 is 74%

(GRver5) and 73% (RDver5). Their base composition is 49.9% GC (GRver5) and 49.5% GC (RDver5), compared to 40.2% GC for the parent YG#81-6G01.

nes Construction of synthetic genes The two synthetic genes were constructed by assembly from synthetic oligonucleotides in a thermocycler followed by PCR amplification of the full-length genes (similar to Stemmer et al. (1995) Gene. 164, pp. 49-53).
Unintended mutations that interfered with the design goals of the synthetic genes were corrected.
a) Design of synthetic oligonucleotides:
The synthetic oligonucleotides were mostly 40mers that collectively code for both complete strands of each designed gene (1,626 bp) plus flanking regions needed for cloning (1,950 bp total for each gene). The 5' and 3' boundaries of all oligonucleotides specifying one strand were generally placed in a manner to give an average offset/overlap of 20 bases relative to the boundaries of the oligonucleotides specifying the opposite strand.
The ends of the flanking regions of both genes matched the ends of the amplification primers (pRAMtailup: 5'-gtactgagacgacgcca cg ccaagcttaggcctgagtg SEQ ID NO:54, and pRAMtaildn: 5'-ggcatgagcgtgaactgactgaactagcggccgccgag SEQ ID NO:55) to allow cloning of the genes into our E. coli expression vector pRAM (W099/14336).
A total of 183 oligonucleotides were designed: fifteen oligonucleotides that collectively encode the upstream and downstream flanking sequences and 168 oligonucleotides (4 x 42) that encode both strands of the two genes.
All 183 oligonucleotides were run through the hairpin analysis of the OLIGO software (OLIGO 4.0 Primer Analysis Software (D 1989-1991 by Wojciech Rychlik) to identify potentially detrimental intra-molecular loop formation. The guidelines for evaluating the analysis results were set according to recommendations of Dr. Sims (Sigma-Genosys Custom Gene Synthesis Department): oligos forming hairpins with AG < -10 have to be avoided, those forming hairpins with AG <_ -7 involving the 3' end of the oligonucleotide should also be avoided, while those with an overall AG <_ -5 should not pose a problem for this application. The analysis identified 23 oligonucleotides able to form hairpins with a AG between -7.1 and -4.9. Of these, 5 had blocked or nearly blocked 3' ends (0-3 free bases) and were re-designed by removing 1-4 bases at their 3' end and adding it to the adjacent oligonucleotide.

The 40mer oligonucleotide covering the sequence complementary to the poly(A) tail had a very low complexity 3' end (13 consecutive T bases). An additional 40mer was designed with a high complexity 3' end but a consequently reduced overlap with one of its complementary oligonucleotides (11 instead of 20 bases) on the opposite strand.
Even though the oligonucleotides were designed for use in a thermocycler-based assembly reaction, they could also be used in a ligation-based protocol for gene construction. In this approach, the oligonucleotides are annealed in a pairwise fashion and the resulting short double-stranded fragments are ligatect using the sticky overhangs. However, this would require that all oligonucleotides be phosphorylated.

b) Gene assembly and amplification In a first step, each of the two synthetic genes was assembled in a separate reaction from 98 oligonucleotides. The total volume for each reaction was 50 1:
0.5 M oligonucleotides (= 0.25 pmoles of each oligo) 1.0 U Taq DNA polymerase 0.02 U Pfu DNA polymerase 2 mM MgC12 0.2 mM dNTPs (each) 0.1 % gelatin Cycling conditions: (94 C for 30 seconds, 52 C for 30 seconds, and 72 C for 30 seconds) x 55 cycles.

In a second step, each assembled synthetic gene was amplified in a separate reaction. The total volume for each reaction was 50 l:

2.5 1 assembly reaction 5.0 U Taq DNA polymerase 0.1 U Pfu DNA polymerase 1 M each primer (pRAMtailup, pRAMtaildn) 2 mM MgC12 0.2 mM dNTPs (each) Cycling conditions: (94 C for 20 seconds, 65 C for 60 seconds, 72 C for 3 minutes) x 30 cycles.

The assembled and amplified genes were subcloned into the pRAM

vector and expressed in E. coli, yielding 1-2% luminescent GR or RD clones.
Five GR and five RD clones were isolated and analyzed further. Of the five GR
clones, three had the correct insert size, of which one was weakly luminescent and one had an altered restriction pattern. Of the five RD clones, two had the correct size insert with an altered restriction pattern and one of those was weakly luminescent. Overall, the analysis indicated the presence of a large number of mutations in the genes, most likely the result of errors introduced in the assembly and amplification reactions.
c) Corrective assembly and amplification To remove the large number of mutations present in the full-length synthetic genes we perforrned an additional assembly and amplification reaction for each gene using the proof-reading DNA polymerase Tli. The assembly reaction contained, in addition to the 98 GR or RD oligonucleotides, a small amount of DNA from the corresponding full-length clones with mutations described above. This allows the oligos to correct mutations present in the templates.
The following assembly reaction was performed for each of the synthetic genes. The total volume for each reaction was 50 l:

0.5 M oligonucleotides (= 0.25 pmoles of each oligo) 0.016 pmol plasmid (mix of clones with correct insert size) 2.5 U Tli DNA polymerase 2 n-ilV1 MgC12 0.2 mM dNTPs (each) 0.1 % gelatin Cycling conditions: 94 C for 30 seconds, then (94 C for seconds, 52 C for 30 seconds, 72 C for 30 seconds) for 55 cycles, then 72 C for 5 minutes.

30 The following amplification reaction was performed on each of the assembly reactions. The total volume for each amplification reaction was 50 l:
1-5 l of assembly reaction pmol each primer (pRAMtailup, pRAMtaildn) 2.5 U Tli DNA polymerase 2 mM MgC12 0.2 mM dNTPs (each) Cycling conditions: 94 C for 30 seconds, then (94 C for 20 seconds, 65 C for 60 seconds and 72 C for 3 minutes) for 30 cycles, then 72 C for 5 minutes.

The genes obtained from the corrective assembly and amplification step were subeloned into the pR.AM vector and expressed in E. coli, yielding 75%
luminescent GR or RD clones. Forty-four GR and 44 RD clones were analyzed with the screening robot described in W099/14336. The six best GR and RD
clones were manually analyzed and one best GR and RD clone was selected (GR6 and RD7). Sequence analysis of GR6 revealed two point mutations in the coding region, both of which resulted in an amino acid substitution (S49N and P230S). Sequence analysis of RD7 revealed three point mutations in the coding region, one of which resulted in an amino acid substitution (H36Y). It was confirmed that none of the silent point mutations introduced any regulatory or restriction sites conflicting with the overall 'design criteria for the synthetic genes.
d) Reversal of unintended amino acid substitutions The unintended amino acid substitutions present in the GR6 and RD7 synthetic genes were reversed by site-directed mutagenesis to match the GRver5 and RDver5 designed sequences, thereby creating GRver5.1 and RDver5.1. The DNA sequences of the mutated regions were confirmed by sequence analysis.

e) Improve spectral properties The RDver5.1 gene was fiuther iriodified to improve its spectral properties by introducing an amino change (R351G), thereby creating RDver5.2 pGL3 vectors with RD and GR genes The parent click beetle luciferase YG#81-6G1 ("YG"), and the synthetic click beetle luciferase genes GRver5.1 ("GR"), RDver5.2 ("RD"), and RD156-1H9 were cloned into the four pGL3 reporter vectors (Promega Corp.):

- pGL3-Basic = no promoter, no enhancer - pGL3-Control = SV40 promoter, SV40 enhancer - pGL3-Enhancer = SV40 enhancer (3' to luciferase coding sequences) - pGL3 -Promoter = SV40 promoter.
The primers employed in the assembly of GR and RD synthetic genes facilitated the cloning of those genes into pRAM vectors. To introduce the genes into pGL3 vectors (Promega Corp., Madison, WI) for analysis in mammalian cells, each gene in a pRAM vector (pRAM RDver5.1, pRAM GRver5.1, and pRAM
RD156-1H9) was amplified to introduce an Nco I site at the 5' end and an Xba I
site at the 3' end of the gene. The primers for pRAM RDver5.1 and pRAM
GRver5.1 were:
GR-->5' GGA TCC CAT GGT GAA GCG TGA GAA 3' (SEQ ID NO:56) or RD->5' GGA TCC CAT GGT GAA ACG CGA 3' (SEQ ID NO:57) and 5' CTA GCT TTT TTT TCT AGA TAA TCA TGA AGA C 3' (SEQ ID NO:58) The primers for pRAM RD156-1H9 were:
5' GCG TAG CCA TGG TAA AGC GTG AGA AAA ATG TC 3' (SEQ ID NO:
59) and 5' CCG ACT CTA GAT TAC TAA CCG CCG GCC TTC ACC 3' (SEQ ID NO:
60) The PCR included:
100 ng DNA plasmid 1 M primer upstream 1 M primer downstream 0.2 mM dNTPs 1X buffer (Promega Corp.) 5 units Pfu DNA polymerase (Prornega Corp.) Sterile nanopure H20 to 50 l The cycling parameters were: 94 C for 5 minutes; (94 C for 30 seconds;
55 C for 1 minute; and 72 C for 3 minutes) x 15 cycles. 'The purified PCR
product was digested with Nco I and Xba I, ligated with pGL3-control that was also digested with Nco I and Xba I, and the ligated products introduced to E.
coli.

To insert the luciferase genes into the other pGL3 reporter vectors (basic, promoter and enhancer), the pGL3-control vectors containing each of the luciferase genes was digested with Nco I and Xba I, ligated with other pGL3 vectors that also were digested with Nco I and Xba I, and the ligated products introduced to E. coli. Note that the polypeptide encoded by GRver5.1 and RDver5.1 (and RD156-1H9, see below) nucleic acid sequences in pGL3 vectors has an amino acid substitution at position 2 to valine as a result of the Nco I site at the initiation codon in the oligonucleotide.
Because of internal Nco I and Xba I sites, the native gene in YG #81-6G01 was amplified from a Hind III site upstream to a Hpa I site downstrearri-of the coding region and which included flanking sequences found in the GR and RD clones. The upstream primer (5'-CAA AAA GCT TGG CAT TCC GGT

ACT GTT GGT AAA GCC ACC ATG GTG AAG CGA GAG- 3'; SEQ ID
NO:61) and a downstream primer (5'- CAA TTG TTG TTG TTA ACT TGT
TTA TT -3'; SEQ ID NO:62) were mixed with YG#81-6G01 and amplified using the PCR conditions above. The purified PCR product was digested with Nc I and Xba I, ligated witli pGL3-control that was also digested with Hind ZII

and Hpa I, and the ligated products introduced into E. coli. To insert YG#81-6G01 into the other pGL3 reporter vectors (basic, promoter and enhancer), the pGL3-control vectors containing YG#81-6G01 were digested with Nco I and Xba I, ligated with the other pGL3 vectors that also were digested with Nco I
and Xba I, and the ligated products introduced to E. coli. Note that the clone of YG#81-6G01 in the pGL3 vectors has a C instead of an A at base 786, which yields a change in the amino acid sequence at residue 262 from Phe to Leu. To determine whether the altered amino acid at position 262 affected the enzyme biochemistry, the clone of YG#81-6G01 was mutated to resemble the original sequence. Both clones were then tested for expression in E. coli, physical stability, substrate binding, and luminescence output kinetics. No significant differences were found.
Partially purified enzymes expressed from the synthetic genes and the parent gene were employed to determine Km for luciferin and ATP (see Table 3).

Table 3 Enzyme KM (LH2) KM (ATP) YG parent 2 M 17 M
GR 1.3 M 25 M
RD 24.5 M 46 M

In vitro eukaryotic transcription/translation reactions were also conducted using Promega's TNT T7 Quick system according to manufacturer's instructions. Luminescence levels were 1 to 37-fold and 1 to 77-fold higher (depending on the reaction time) for the synthetic GR and RD genes, respectively, compared to the parent gene (corrected for luminometer spectral sensitivity).
To test whether the synthetic click beetle luciferase genes and the wild type click beetle gene have improved expression in mammalian cells, each of the synthetic genes and the parent gene was cloned into a series of pGL3 vectors and introduced into CHO cells (Table 8). In all cases, the synthetic click beetle genes exhibited a higher expression than the native gene. Specifically, expression of the synthetic GR and RD genes was 1900-fold and 40-fold higher, respectively, than that of the parent (transfection efficiency normalized by comparison to native Renilla luciferase gene). Moreover, the data (basic versus control vector) show that the synthetic genes have reduced basal level transcription.

Further, in experiments with the enhancer vector where the percentage of activity in reference to the control is compared between the native and synthetic gene, the data showed that the synthetic genes have reduced risk of anomalous transcription characteristics. In particular, the parent gene appeared to contain one or more internal transcriptional regulatory sequences that are activated by the enhancer in the vector, and thus is not suitable as a reporter gene while the synthetic GR and RD genes showed a clean reporter response (transfection efficiency normalized by comparison to native Renilla luciferase gene). See Table 8.

Example 2 Synthetic Renilla Luciferase Nucleic Acid Molecule The synthetic Renilla luciferase genes prepared include 1) an introduced Kozak sequence, 2) codon usage optimized for mammalian (human) expression, 3) a reduction or elimination of unwanted restriction sites, 4) removal of prokaryotic regulatory sites (ribosome binding site and TATA box), 5) removal of splice sites and poly(A) sites, and 6) a reduction or elimination of mammalian transcriptional factor binding sequences.
The process of computer-assisted design of synthetic Renilla luciferase genes by iterative rounds of codon optimization and removal of transcription factor binding sites and other regulatory sites as well as restriction sites can be described in three steps:
1. Using the wild type Renilla luciferase gene as the parent gene, codon usage was optimized, one amino acid was changed (T-->A) to generate a Kozak consensus sequence, and undesired restriction sites were eliminated thereby creating synthetic gene Rlucverl.
2. Remove prokaryotic regulatory sites, splice sites, poly(A) sites and transcription factor (TF) binding sites (first pass). Then remove newly created TF binding sites. Then remove newly created undesired restriction enzyme sites, prokaryotic regulatory sites, splice sites, and poly(A) sites without introducing new TF binding sites. This thereby created Rlucver2.
3. Change 3 bases of Rlucver2 thereby creating Rluc-final.
4. The actual gene was then constructed from synthetic oligonucleotides corresponding to the Rluc-final designed sequence. All mutations resulting from the assembly or PCR process were corrected. This gene is Rluc-final.
Codon Selection Starting with the Renilla reniforrnis luciferase sequence in Genbank (Accession No. M63501), codons were selected based on codon usage for optimal expression in human cells and to avoid E. coli low-usage codons. The best codon for expression in human cells (or the best two codons if found at a similar frequency) was chosen for all amino acids with more than one codon (Wada et al., 1990):

Arg: CGC Lys: AAG
Leu: CTG Asn: AAC
Ser: TCT/AGC Gln: CAG
Thr: ACC His: CAC
Pro: CCA/CCT Glu: GAG
Ala: GCC Asp: GAC
Gly: GGC Tyr: TAC
Val: GTG Cys: TGC
Ile: ATC/ATT Phe: TTC
In cases where two codons were selected for one amino acid, they were used in an alternating fashion. To meet other criteria for the synthetic gene, the initial optimal codon selection was modified to some extent later. For example, introduction of a Kozak sequence required the use of GCT for Ala at amino acid position 2 (see below).
The following low-usage codons in mammalian cells were not used unless needed: Arg: CGA, CGU; Leu: CTA, UUA; Ser: TCG; Pro: CCG;
Val: GTA; and Ile: ATA. The following low-usage codons in E. coli were also avoided when reasonable (note that 3 of these match the low-usage list for mammalian cells): Arg: CGA/CGG/AGA/AGG, Leu: CTA; Pro: CCC; Ile:
ATA.
Introduction of Kozak Sequences The Kozak sequence: 5' aaccATGGCT 3' (SEQ ID NO: 63) (the Nco I
site is underlined, the coding region is shown in capital letters) was introduced to the synthetic Renilla luciferase gene. The introduction of the Kozak sequence changes the second amino acid from Thr to Ala (GCT).
Removal of undesired restriction sites REBASE ver. 808 (updated August 1, 1998; Restriction Enzyme Database; www.neb.com/rebase) was employed to identify undesirable restriction sites as described in Example 1. The following undesired restriction sites (in addition to those described in Example 1) were removed according to the process described in Example 1: EcoICR I, NdeI, NsiI, SphI, Spel, XmaI, Pstl.
The version of Renilla luciferase (Rluc) which incorporates all these changes is Rlucverl.

Removal of prokaryotic~E coli) reQ;ulatory sequences, splice sites, and poly(A) sites The priority and process for eliminating transcription regulation sites was as described in Example 1.
Removal of TF binding sites The same process, tools, and criteria were used as described in Example 1, however, the newer version 3.3 of the TRANSFAC database was employed.
After removing prokaryotic regulatory sequences, splice sites and poly(A) sites from Rlucverl, the first search for TF binding sites identified about 60 hits.
All sites were eliminated with the exception of three that could not be removed without altering the amino acid sequence of the synthetic Renilla gene:
1. site at position 63 composed of two codons for W
(TGGTGG), for CAC-binding protein T00076;

2. site at position 522 composed of codons for KMV
(AAN ATG GTN), for myc-DF1 T00517;
3. site at position 885 composed of codons for EMG
(GAR ATG GGN), for myc-DF1 T00517.
The subsequent second search for (newly introduced) TF binding sites yielded about 20 hits. All new sites were eliminated, leaving only the three sites described above. Finally, any newly introduced restriction sites, prokaryotic regulatory sequences, splice sites and poly(A) sites were removed without introducing new TF binding sites if possible.
Rlucver2 was obtained.
As in Example 1, lower stringency search parameters were specified for the TESS filtered string search to further evaluate the synthetic Renilla gene.
With the LLH reduced from 10 to 9 and the minimum element length reduced from 5 to 4, the TESS filtered string search did not show any new hits.
When, in addition to the parameter changes listed above, the organism classification was expanded from "mammalia" to "chordata", the search yielded only four more TF binding sites. When the Min LLH was further reduced to between 8 and 0, the search showed two additional 5-base sites (MAMAG and CTKTK) which combined had four matches in Rlucver2, as well as several 4-base sites. Also as in Example 1, Rlucver2 was checked for hits to entries in the EPD (Eukaryotic Promoter Database, Release 45). Three hits were determined one to Mus musculus promoter H-2L"d (Cell, 44, 261 (1986)), one to Herpes Simplex Virus type 1 promoter b'g'2.7 kb, and one to Homo sapiens DHFR
promoter (J. Mol. Biol., 176, 169 (1984)). However, no further changes were made to Rlucver2.

Summary of Properties for Rlucver2 - All 30 low usage codons were eliminated. The introduction of a Kozak sequence changed the second amino acid from Thr to Ala;
- base composition: 55.7% GC (Renilla wild-type parent gene: 36.5%);

- one undesired restriction site could not be eliminated: EcoR V at position 488;
- the synthetic gene had no prokaryotic promoter sequence but one potentially functional ribosome binding site (RBS) at positions 867-73 (about 13 bases upstream of a Met codon ) could not be eliminated;

- all poly(A) sites were eliminated;
- splice sites: 2 donor splice sites could not be eliminated (both share the amino acid sequence MGK);
- TF sites: all sites with a consensus of >4 unambiguous bases were eliminated (about 280 TF binding sites were removed) with 3 exceptions due to the preference to avoid changes to the amino acid sequence.
When introduced into pGL3, Rluc-final has a Kozak sequence (CACCATGGCT; SEQ ID NO:65). The changes in Rluc-final relative to Rlucver2 were introduced during gene assembly. One change was at position 619, a C to an A, which eliminated a eukaryotic promoter sequence and reduced the stability of a hairpin structure in the corresponding oligonucleotide employed to assemble the gene. Other changes included a change from CGC to AGA at positions 218-220 (resulted in a better oligonucleotide for PCR).

Gene Assembly Strategy The gene assembly protocol employed for the synthetic Renilla luciferase was similar to that described in Example 1.

Sense Strand primer:
5' AACCATGGCTTCCAAGGTGTACGACCCCGAGCAACGCAAA 3' (SEQ
ID NO:66) Anti-sense Strand primer:
5' GCTCTAGAATTACTGCTCGTTCTTCAGCACGCGCTCCACG 3' (SEQ
ID NO:67) The resulting synthetic gene fragment was cloned into a pRAM vector using Nco I and Xba I. Two clones having the correct size insert were sequenced. Four to six mutations were found in the synthetic gene from each clone. These mutations were fixed by site-directed mutagenesis (Gene Editor from Promega Corp., Madison, WI) and swapping the correct regions between these two genes. The corrected gene was confirmed by sequencing.

Other Vectors To prepare an expression vector for the synthetic Renilla luciferase gene in a pGL-3 control vector backbone, 5 g of pGL3-control was digested with Nco I and Xba I in 50 l final volume with 2 l of each enzyme and 5 l l OX
buffer B (nanopure water was used to fill the volume to 50 l). The digestion reaction was incubated at 37 C for 2 hours, and the whole mixture was run on a 1% agarose gel in 1XTAE. The desired vector backbone fragment was purified -using Qiagen's QIAquick gel extraction kit.
The native Renilla luciferase gene fragment was cloned into pGL3-control vector using two oligonucleotides, Nco I-RL-F and Xba I-RL-R, to PCR
amplify native Renilla luciferase gene using pRL-CMV as the template. The sequence for Nco I-RL-F is 5'-CGCTAGCCATGGCTTCGAAAGTTTATGATCC -3' (SEQ ID NO:68); the sequence for Xba I-RL-R is 5' GGCCAGTAACTCTAGAATTATTGTT-3' (SEQ ID NO:69). The PCR
reaction was carried out as follows:

Reaction mixture (for 100 l):
DNA template (Plasmid) 1.0 l (1.0 ng/ l final) 10 X Rec. Buffer 10.0 l (Stratagene Corp.) dNTPs (25 mM each) 1.0 l (fina1250 M) Primer 1 (10 M) 2.0 l (0.2 M final) Primer 2 (10 M) 2.0 l (0.2 M final) Pfu DNA Polymerase 2.0 l (2.5 U/ l, Stratagene Corp.) 82.0 l double distilled water PCR Reaction: heat 94 C for 2 minutes; (94 C for 20 seconds; 65 C for 1 minute; 72 C for 2 minutes; then 72 C for 5 minutes) x 25 cycles, then incubate on ice. The PCR amplified fragment was cut from a gel, and the DNA purified and stored at -20 C.
To introduce native Renilla luciferase gene fragment into pGL3-control vector, 5 g of the PCR product of the native Renilla luciferase gene (RAM-RL-synthetic) was digested with Nco I and Xba I. The desired Renilla luciferase gene fragment was purified and stored at -20 C.
Then 100 ng of insert and 100 ng of pGL3-control vector backbone were digested with restriction enzymes Nco I and Xba I and ligated together. Then 2 l of the ligation mixture was transformed into JM109 competent cells. Eight ampicillin resistance clones were picked and their DNA isolated. DNA from each positive clone of pGL3-control-native and pGL3-control-synthetic was purified. The correct sequences for the native gene and the synthetic gene in the vectors were confirmed by DNA sequencing.
To determine whether the synthetic Renilla luciferase gene has improved expression in mammalian cells, the gene was cloned into the mammalian expression vector pGL3-control vector under the control of SV40 promoter and SV40 early enhancer. The native Renilla luciferase gene was also cloned into the pGL-3 control vector so that the expression from synthetic gene and the native gene could be compared. The expression vectors were then transfected into four common mammalian cell lines (CHO, NIH3T3, Hela and CV-1; Table 9), and the expression levels compared between the vectors with the synthetic gene versus the native gene. The amount of DNA used was at two different levels to ascertain that expression from the synthetic gene is consistently increased at different expression levels. The results show a 70-600 fold increase of expression for the synthetic Renilla luciferase gene in these cells (Table 4).

Table 4 Cell Type Amount Vector Fold Expression Increase CHO 0.2 g 142 2.8 g 145 NIH3T3 0.2 g 326 2.0 g 593 HeLa 0.2 g 185 1.0 g 103 CV-1 0.2 g 68 2.0 g 72 One important advantage of luciferase reporter is its short protein half-life. The enhanced expression could also result from extended protein half-life and, if so, this gives an undesired disadvantage of the new gene. This possibility is ruled out by a cycloheximide chase ("CHX Chase") experiment, which demonstrated that there was no increase of protein half-life resulted from the humanized Renilla luciferase gene.
To ensure that the increase in expression is not limited to one expression vector backbone, is promoter specific and/or cell specific, a synthetic Renilla gene (Rluc-final) as well as native Renilla gene were cloned into different vector backbones and under different promoters. The synthetic gene always exhibited increased expression compared to its wild-type counterpart (Table 5).

Table 5 Vector NIH-3T3 HeLa CHO
pRL-tk, native 3,834.6 922.4 7,671.9 pRL-tk, synthetic 13,252.5 9,040.2 41,743.5 pRL-CMV, native 168,062.2 842,482.5 153,539.5 pRL-CMV, synthetic 2,168,129 8,440,306 2,532,576 pRL-SV40, native 224,224.4 346,787.6 85,323.6 Vector NIH-3T3 HeLa CHO
pRL-SV40, synthetic 1,469,588 2,632,510 1,422,830 pRL-null, native 2,853.8 431.7 2,434 pRL-null, synthetic 9,151.17 2,439 28,317.1 pRGL3b, native 12 21.8 17 pRGL3b, synthetic 130.5 212.4 1,094.5 pRGL3-tk, native 27.9 155.5 186.4 pRGL3-tk, synthetic 6,778.2 8,782.5 9,685.9 pRL-tk no intron, native 31.8 165 93.4 pRL-tk no intron, synthetic 6,665.5 6,379 21,433.1 Table 6 Percent of control vector Vector CHO cells NIH3T3 cells HeLa cells pRL-control native 100 100 100 pRL-control synthetic 100 100 100 pRL-basic native 4.1 5.6 0.2 pRL-basic synthetic 0.4 0.1 0.0 pRL-promoter native 5.9 7.8 0.6 pRL-promoter synthetic 15.0 9.9 1.1 pRL-enhancer native 42.1 123.9 52.7 pRL-enhancer synthetic 2.6 1.5 5.4 With reduced spurious expression the synthetic gene should exhibit less basal level transcription in a promoterless vector. The synthetic and native Renilla luciferase genes were cloned into the pGL3-basic vector to compare the basal level of transcription. Because the synthetic gene itself has increased expression efficiency, the activity from the promoterless vector cannot be compared directly to judge the difference in basal transcription, rather, this is taken into consideration by comparing the percentage of activity from the promoterless vector in reference to the control vector (expression from the basic vector divided by the expression in the fully functional expression vector with both promoter and enhancer elements). The data demonstrate that the synthetic Renilla luciferase has a lower level of basal transcription than the native gene in mammalian cells (Table 6).
It is well known to those skilled in the art that an enhancer can substantially stimulate promoter activity. To test whether the synthetic gene has reduced risk of inappropriate transcriptional characteristics, the native and synthetic gene were introduced into a vector with an enhancer element (pGL3-enhancer vector). Because the synthetic gene has higher expression efficiency, the activity of botll cannot be compared directly to compare the level of transcription in the presence of the enhancer, however, this is taken into account by using the percentage of activity from enhancer vector in reference to the control vector (expression in the presence of enhancer divided by the (--xpression in the fully functional expression vector with both promoter and enhancer elements). Such results show that when native gene is present, the enhancer alone is able to stimulate transcription from 42-124% of the control, however, when the native gene is replaced by the synthetic gene in the same vector, the activity only constitutes 1-5% of the value when the same enhancer arnd a strong SV40 promoter are employed. This clearly demonstrates that synthetic gene has reduced risk of spurious expression (Table 6).
The synthetic Renilla gene (Rluc-final) was used in in vitro systems to compare translation efficiency with the native gene. In a T7 quick coupled transcription/translation system (Promega Corp., Madison, )", pRL-null native plasmid (having the native Renilla luciferase gene under the control of the T7 promoter) or the same amount of pRL-null-synthetic plasmid (having the synthetic Renilla luciferase gene under the control of the T7 promoter) was added to the TNT reaction mixture and luciferase activity measured every 5 minutes up to 60 minutes. Dual Luciferase assay kit (Promega Corp.) was used to measure Renilla luciferase activity. The data showed that improved expression was obtained from the synthetic gene. To further evidence the increased translation efficiency of the synthetic gene, RNA was prepared by an in vitro transcription system, then purified. pRL-null (native or synthetic) vectors were linearized with BamHI. The DNA was purified by multiple phenol-chloroform extraction followed by ethanol precipitation. An in vitro T7 transcription system was employed by prepare RNAs. The DNA template was removed by using RNase-free DNase, and RNA was purified by phenol-chloroform extraction followed by multiple isopropanol precipitations. The same amount of purified RNA, either for the synthetic gene or the native gene, was then added to a rabbit reticulocyte lysate or wheat germ lysate. Again, the synthetic Renilla luciferase gene RNA produced more luciferase than the native one. These data suggest that the translation efficiency is improved by the synthetic sequence. To determine why the synthetic gene was highly expressed in wheat gerin, plant codon usage was determined. The lowest usage codons in higher plants coincided with those in mammals.
Reporter gene assays are widely used to study transcriptional regulation events. This is often carried out in co-transfection experiments, in which, along with the primary reporter construct containing the testing promoter, a second control reporter under a constitutive promoter is transfected into cells as an internal control to normalize experimental variations including transfection efficiencies between the samples. Control reporter signal, potential'promoter cross talk between the control reporter and primary reporter, as well as potential regulation of the control reporter by experimental conditions, are important aspects to consider for selecting a reliable co-reporter vector.
As described above, vector constructs were made by cloning synthetic Renilla luciferase gene into different vector backbones under different promoters. All the constructs showed higher expression in the three mammalian cell lines tested (Table 5). Thus, with better expression efficiency, the synthetic Renilla luciferase gives out higher signal when transfected into mammalian cells.
Because a higher signal is obtained, less promoter activity is required to achieve the same reporter signal, this reduced risk of promoter interference.
CHO cells were transfected with 50 ng pGL3-control (firefly luc+) plus one of different amounts of native pRL-TK plasmid (50, 100, 500, 1000, or 2000 ng) or synthetic pRL-TK (5, 10, 50, 100, or 200 ng). To each transfection, pUC19 carrier DNA. was added to a total of 3 g DNA. 10 fold less pRL-TK DNA gave similar or more signal as the native gene, with reduced risk of inhibiting expression from the primary reporter pGL3-control.
Experimental treatment sometimes may activate cryptic sites within the gene and cause induction or suppression of the co-reporter expression, which would compromise its function as co-reporter for normalization of transfection efficiencies. One example is that TPA induces expression of co-reporter vectors harboring the wild-type gene when transfecting MCF-7 cells. 500 ng pRL-TK
(native), 5 g native and synthetic pRG-B, 2.5 g native and synthetic pRG-TK
were transfected per well of MCF-7 cells. 100 ng/well pGL3-control (firefly luc+) was co-transfected with all RL plasmids. Carrier DNA, pUC19, was used to bring the total DNA transfected to 5.1 g/well. 15.3 l TransFast Transfection Reagent (Promega Corp., Madison, WI) was added per well. Sixteen hours later, cells were trypsinized, pooled and split into six wells of a 6-well dish and allowed to attach to the well for 8 hours. Three wells were then treated with the 0.2 nM of the tumor promoter, TPA (phorbol- 1 2-myristate- 13 -acetate, Calbiochem #524400-S), and three wells were mock treated with 20 l DMSO.
Cells were harvested with 0.4 ml Passive Lysis Buffer 24 hours post TPA
addition. The results showed that by using the synthetic gene, undesirable change of co-reporter expression by experimental stimuli can be avoided (Table 7). This demonstrates that using synthetic gene can reduce the risk of anomalous expression.
Table 7 Vector Rlu Fold Induction pRL-tk untreated (native) 184 pRL-tk TPA treated (native) 812 4.4 pRG-B untreated (native) 1 pRG-B TPA treated (native) 8 8.0 pRG-B untreated (final) 132 pRG-B TPA treated (final) 195 1.47 pRG-tk untreated (native) 44 Vector Rlu Fold Induction pRG-tk TPA treated (native) 192 4.36 pRG-tk untreated (final) 12,816 pRG-tk TPA treated (final) 11,347 0.88 Example 3 Synthetic Firefly Luciferase Genes The luc+ gene (U.S. Patent No. 5,670,356) was optimized using two approaches. In the first approach (Strategy A), regulatory sequences such as codons were optimized and consensus transcription factor binding sites (TFBS) were removed (see Example 4, although different versions of programs and databases were used). The sequences obtained for the first approach include hluc+ver2AFl through hluc+ver2AF8 (designations with an "F" indicate the construct included flanking sequences). hluc+ver2AF1 is codon-optimized, hh.ic+ver2AF2 is a sequence obtained after a first round of removal of identified undesired sequences including transcription factor binding sites, hluc+ver2AF3 was obtained after a second round of removal of identified undesired sequences including transcription factor binding sites, hluc+ver2AF4 was obtained after a third round of removal of identified undesired sequences including transcription factor binding sites, hluc+ver2AF5 was obtained after a fourth round of removal of identified undesired sequences including transcription factor binding sites, hluc+ver2AF6 was obtained after removal of promoter modules and RBS, hluc+ver2AF7 was obtained after further removal of identified undesired sequences including transcription factor binding sites, and hluc+ver2AF8 was obtained after modifying a restriction enzyme recognition site.
Pairwise DNA identity of different P.pyralis luciferase gene versions:
Table 8 luc luc+ hluc+ hluc+ver2A1 hluc+ver2Bl hluc+ver2A6 hluc+ver2B6 uc 100 95 76 73 77 74 75 luc+ 100 78 76 78 75 77 hluc+ 100 91 81 87 81 hluc+ver2A1 100 74 91 78 hluc+ver2B1 100 74 85 hluc+ver2A6 100 80 luc+ver2B6 100 luc+ has the following sequence:
atggaagacgccaaaaacataaagaaaggcccggcgccattctatccgctggaagatggaaccgctggagagca actgcataaggctatgaagagatacgccctggttcctggaacaattgcttttacagatgcacatatcgaggtggacatc acttacgctgagtacttcgaaatgtccgttcggttggcagaagctatgaaacgatatgggctgaatacaaatcacaga atcgtcgtatgcagtgaaaactctcttcaattctttatgccggtgttgggcgcgttatttatcggagttgcagttgcgc cc gcgaacgacatttataatgaacgtgaattgctcaacagtatgggcatttcgcagcctaccgtggtgttcgtttccaaaa aggggttgcaaaaaattttgaacgtgcaaaaaaagctcccaatcatccaaaaaattattatcatggattctaaaacgga ttaccagggatttcagtcgatgtacacgttcgtcacatctcatctacctcccggttttaatgaatacgattttgtgcca ga gtccttcgatagggacaagacaattgcactgatcatgaactcctctggatctactggtctgcctaaaggtgtcgctctg cctcatagaactgcctgcgtgagattctcgcatgccagagatcctatttttggcaatcaaatcattccggatactgcga t tttaagtgttgttccattccatcacggttttggaatgtttactacactcggatatttgatatgtggatttcgagtcgtc ttaat gtatagatttgaagaagagctgtttctgaggagccttcaggattacaagattcaaagtgcgctgctggtgccaacccta ttctccttcttcgccaaaagcactctgattgacaaatacgatttatctaatttacacgaaattgcttctggtggcgctc ccc tctctaaggaagtcggggaagcggttgccaagaggttccatctgccaggtatcaggcaaggatatgggctcactga gactacatcagctattctgattacacccgagggggatgataaaccgggcgcggtcggtaaagttgttccattttttgaa gcgaaggttgtggatctggataccgggaaaacgctgggcgttaatcaaagaggcgaactgtgtgtgagaggtccta tgattatgtccggttatgtaaacaatccggaagcgaccaacgccttgattgacaaggatggatggctacattctggag acatagcttactgggacgaagacgaacacttcttcatcgttgaccgcctgaagtctctgattaagtacaaaggctatca ggtggctcccgctgaattggaatccatcttgctccaacaccccaacatcttcgacgcaggtgtcgcaggtcttcccga cgatgacgccggtgaacttcccgccgccgttgttgttttggagcacggaaagacgatgacggaaaaagagatcgtg gattacgtcgccagtcaagtaacaaccgcgaaaaagttgcgcggaggagttgtgtttgtggacgaagtaccgaaag gtcttaccggaaaactcgacgcaagaaaaatcagagagatcctcataaaggccaagaagggcggaaagatcgcc gtgtaa (SEQ ID NO:43) and hluc+ has the following sequence:
atggccgatgctaagaacattaagaagggccctgctcccttctaccctctggaggatggcaccgctggcgagcagc tgcacaaggccatgaagaggtatgccctggtgcctggcaccattgccttcaccgatgcccacattgaggtggacatc acctatgccgagtacttcgagatgtctgtgcgcctggccgaggccatgaagaggtacggcctgaacaccaaccacc gcatcgtggtgtgctctgagaactctctgcagttcttcatgccagtgctgggcgccctgttcatcggagtggccgtgg cccctgctaacgacatttacaacgagcgcgagctgctgaacagcatgggcatttctcagcctaccgtggtgttcgtgt ctaagaagggcctgcagaagatcctgaacgtgcagaagaagctgcctatcatccagaagatcatcatcatggactct aagaccgactaccagggcttccagagcatgtacacattcgtgacatctcatctgcctcctggcttcaacgagtacgac ttcgtgccagagtctttcgacagggacaaaaccattgccctgatcatgaacagctctgggtctaccggcctgcctaag ggcgtggccctgcctcatcgcaccgcctgtgtgcgcttctctcacgcccgcgaccctattttcggcaaccagatcatc cccgacaccgctattctgagcgtggtgccattccaccacggcttcggcatgttcaccaccctgggctacctgatttgc ggctttcgggtggtgctgatgtaccgcttcgaggaggagctgttcctgcgcagcctgcaagactacaaaattcagtct gccctgctggtgccaaccctgttcagcttcttcgctaagagcaccctgatcgacaagtacgacctgtctaacctgcac gagattgcctctggcggcgccccactgtctaaggaggtgggcgaagccgtggccaagcgctttcatctgccaggca tccgccagggctacggcctgaccgagacaaccagcgccattctgattaccccagagggcgacgacaagcctggc gccgtgggcaaggtggtgccattcttcgaggccaaggtggtggacctggacaccggcaagaccctgggagtgaa ccagcgcggcgagctgtgtgtgcgcggccctatgattatgtccggctacgtgaataaccctgaggccacaaacgcc ctgatcgacaaggacggctggctgcactctggcgacattgcctactgggacgaggacgagcacttcttcatcgtgga ccgcctgaagtctctgatcaagtacaagggctaccaggtggccccagccgagctggagtctatcctgctgcagcac cctaacattttcgacgccggagtggccggcctgcccgacgacgatgccggcgagctgcctgccgccgtcgtcgtg ctggaacacggcaagaccatgaccgagaaggagatcgtggactatgtggccagccaggtgacaaccgccaagaa gctgcgcggcggagtggtgttcgtggacgaggtgcccaagggcctgaccggcaagctggacgcccgcaagatcc gcgagatcctgatcaaggctaagaaaggcggcaagatcgccgtgtaa (SEQ ID NO: 14).

Table 9 Percent Identity hluc+ver2A8 hluc+ver2B 10 luc+ hluc+
hluc+ver2A8 79.6 74 86.6 Divergence hluc+ver2BlO 22.9 75.9 80.1 luc+ 30.4 27.8 77.4 hluc+ 14.7 22.5 25.7 Table 10 Composition statistics of different P.pyYalis luciferase gene versions GC content CG di-nucleotides H. sapiens 53% --luc 45% 99 luc+ 47% 97 hluc+ 60% 111 hluc+ver2Al 66% 151 hluc+ver2Bl 46% 1 hluc+ver2A6 58% 133 hluc+ver2B6 49% 53 hluc+ver2A 1 -hluc+ver2A5 have the following sequences (SEQ ID Nos.16-20):
hluc+ver2A1 AAAGCCACCATGGAGGACGCCAAGAACATCAAGAAGGGCCCCGCCC
CCTTCTACCCCCTGGAGGACGGCACCGCCGGCGAGCAGCTGCACAAG
GCCATGAAGCGCTACGCCCTGGTGCCCGGCACCATCGCCTTCACCGA
CGCCCACATCGAGGTGGACATCACCTACGCCGAGTACTTCGAGATGA
GCGTGCGCCTGGCCGAGGCCATGAAGCGCTACGGCCTGAACACCAAC
CACCGCATCGTGGTGTGCAGCGAGAACAGCCTGCAGTTCTTCATGCC
CGTGCTGGGCGCCCTGTTCATCGGCGTGGCCGTGGCCCCCGCCAACG
ACATCTACAACGAGCGCGAGCTGCTGAACAGCATGGGCATCAGCCAG
CCCACCGTGGTGTTCGTGAGCAAGAAGGGCCTGCAGAAGATCCTGAA
CGTGCAGAAGAAGCTGCCCATCATCCAGAAGATCATCATCATGGACA
GCAAGACCGACTACCAGGGCTTCCAGAGCATGTACACCTTCGTGACC
AGCCACCTGCCCCCCGGCTTCAACGAGTACGACTTCGTGCCCGAGAG
CTTCGACCGCGACAAGACCATCGCCCTGATCATGAACAGCAGCGGCA
GCACCGGCCTGCCCAAGGGCGTGGCCCTGCCCCACCGCACCGCCTGC
GTGCGCTTCAGCCACGCCCGCGACCCCATCTTCGGCAACCAGATCAT
CCCCGACACCGCCATCCTGAGCGTGGTGCCCTTCCACCACGGCTTCG
GCATGTTCACCACCCTGGGCTACCTGATCTGCGGCTTCCGCGTGGTGC
TGATGTACCGCTTCGAGGAGGAGCTGTTCCTGCGCAGCCTGCAGGAC
TACAAGATCCAGAGCGCCCTGCTGGTGCCCACCCTGTTCAGCTTCTTC
GCCAAGAGCACCCTGATCGACAAGTACGACCTGAGCAACCTGCACGA
GATCGCCAGCGGCGGCGCCCCCCTGAGCAAGGAGGTGGGCGAGGCC
GTGGCCAAGCGCTTCCACCTGCCCGGCATCCGCCAGGGCTACGGCCT
GACCGAGACCACCAGCGCCATCCTGATCACCCCCGAGGGCGACGACA
AGCCCGGCGCCGTGGGCAAGGTGGTGCCCTTCTTCGAGGCCAAGGTG
GTGGACCTGGACACCGGCAAGACCCTGGGCGTGAACCAGCGCGGCG
AGCTGTGCGTGCGCGGCCCCATGATCATGAGCGGCTACGTGAACAAC
CCCGAGGCCACCAACGCCCTGATCGACAAGGACGGCTGGCTGCACAG
CGGCGACATCGCCTACTGGGACGAGGACGAGCACTTCTTCATCGTGG
ACCGCCTGAAGAGCCTGATCAAGTACAAGGGCTACCAGGTGGCCCCC
GCCGAGCTGGAGAGCATCCTGCTGCAGCACCCCAACATCTTCGACGC

CGGCGTGGCCGGCCTGCCCGACGACGACGCCGGCGAGCTGCCCGCCG
CCGTGGTGGTGCTGGAGCACGGCAAGACCATGACCGAGAAGGAGAT
CGTGGACTACGTGGCCAGCCAGGTGACCACCGCCAAGAAGCTGCGCG
GCGGCGTGGTGTTGTGGACGAGGTGCCCAAGGGCCTGACCGGCAAG
CTGGACGCCCGCAAGATCCGCGAGATCCTGATCAAGGCCAAGAAGG
GCGGCAAGATCGCCGTGTAATAATTCTAGA
hluc+ver2A2 AAAGCCACCATGGAGGACGCCAAGAACATCAAGAAGGGCCCAGCGC
CATTCTACCCCCTGGAGGACGGCACCGCCGGCGAGCAGCTGCACAAG
GCCATGAAGCGCTACGCCCTGGTGCCCGGCACCATCGCCTTCACCGA
CGCACATATCGAGGTGGACATCACCTACGCCGAGTACTTCGAGATGA
GCGTTCGGCTGGCAGAGGCTATGAAGCGCTATGGGCTGAACACCAAC
CATCGCATCGTGGTGTGCAGCGAGAACAGCTTGCAGTTCTTCATGCC
CGTGTTGGGTGCCCTGTTCATCGGCGTGGCTGTGGCCCCAGCTAACG
ACATCTACAACGAGCGCGAGCTGCTGAACAGCATGGGCATCAGCCAG
CCACCGTCGTATTGTGAGCAAGAAAGGGCTGCAAAAGATCCTGAA
CGTGCAAAAGAAGCTGCCCATCATCCAAAAGATCATCATCATGGACA
GCAAGACCGACTACCAGGGCTTCCAAAGCATGTACACCTTCGTGACC
AGCCATTTGCCGCCCGGCTTCAACGAGTACGACTTCGTGCCCGAGAG
CTTCGACCGCGACAAGACCATCGCCCTGATCATGAACAGTAGTGGCA
GTACCGGCTTACCTAAGGGCGTGGCCCTACCGCACCGCACCGCCTGT
GTCCGATTCAGTCATGCCCGCGACCCCATCTTCGGCAACCAGATATC
CCCGACACCGCTATCCTGAGCGTGGTGCCATTTCACCACGGCTTCGGC
ATGTTCACCACCCTGGGCTACTTGATCTGCGGCTTCCGGGTCGTGCTG
ATGTACCGCTTCGAGGAGGAGCTATTCTTGCGCAGCTTGCAAGACTA
CAAGATTCAAAGCGCCCTGCTGGTGCCCACCCTGTTCAGTTTCTTCGC
CAAGAGCACCCTGATCGACAAGTACGACCTGAGCAACCTGCACGAG
ATCGCCAGCGGCGGCGCCCCGCTCAGCAAGGAGGTGGGCGAGGCCG
TGGCCAAGCGCTTCCACCTGCCAGGCATCCGCCAGGGCTACGGCCTG
ACCGAGACAACCAGCGCCATTCTGATCACCCCCGAGGGGGACGACA
AGCCTGGCGCAGTAGGCAAGGTGGTGCCCTTCTTCGAGGCTAAGGTG
GTGGACCTGGACACCGGTAAAACCCTGGGTGTGAACCAGCGCGGCG

AGCTGTGCGTCCGTGGCCCATGATATGAGCGGCTACGTTAACAAC
CCCGAGGCTACAAACGCCCTGATCGACAAGGACGGCTGGCTGCACAG
CGGCGACATCGCCTACTGGGACGAGGACGAGCACTTCTTCATCGTGG
ACCGGCTGAAGAGCCTGATCAAATACAAGGGCTACCAGGTAGCCCCA
GCCGAACTGGAGAGCATCCTGCTGCAGCACCCCAACATCTTCGACGC
CGGGGTCGCCGGCCTGCCCGACGACGATGCCGGCGAGCTGCCCGCCG
CAGTCGTGGTGCTGGAGCACGGTAAAACCATGACCGAGAAGGAGAT
CGTGGACTATGTGGCCAGCCAGGTTACAACCGCCAAGAAGCTGCGCG
GCGGCGTGGTGTTCGTGGACGAGGTGCCTAAAGGCCTGACGGGCAAG
TTGGACGCCCGCAAGATCCGCGAGATTCTGATCAAGGCCAAGAAGGG
CGGCAAGATCGCCGTGTAATAATTTAGA
hluc+ver2A3 AAAGCCACCATGGAAGATGCCAAAAACATTAAGAAGGGCCCAGCGC
CATTCTACCCACTGGAGGACGGCACCGCCGGCGAGCAGCTGCACAAA
GCCATGAAGCGCTACGCCCTGGTGCCCGGCACCATCGCTTTACCGA
CGCACATATCGAGGTGGACATCACCTACGCCGAGTACTTCGAGATGA
GCGTTCGGCTGGCAGAGGCTATGAAGCGCTATGGGCTGAATACCAAC
CATCGCATCGTGGTGTGCAGCGAGAATAGCTTGCAGTTCTTCATGCCC
GTGTTGGGTGCCCTGTTCATCGGTGTGGCTGTGGCCCCAGCTAACGAC
ATCTACAACGAGCGCGAGCTGCTGAACAGCATGGGCATCAGCCAGCC
CACCGTCGTATTCGTGAGCAAGAAAGGGCTGCAAAAGATCCTCAACG
TGCAAAAGAAGCTACCGATCATACAAAAGATCATCATCATGGATAGC
AAGACCGACTACCAGGGCTTCCAAAGCATGTACACCTTCGTGACCAG
CCATTTGCCACCCGGCTTCAACGAGTACGACTTCGTGCCCGAGAGCTT
CGACCGGGACAAAACCATCGCCCTGATCATGAACAGTAGTGGCAGTA
CCGGATTGCCCAAGGGCGTAGCCCTACCGCACCGCACCGCCTGTGTC
CGATTCAGTCATGCCCGCGACCCCATCTTCGGCAACCAGATCATCCCC
GACACCGCTATCCTCAGCGTGGTGCCATTTCACCACGGCTTCGGCATG
TTCACCACGCTGGGCTACTTGATCTGCGGCTTTCGGGTCGTGCTCATG
TACCGCTTCGAGGA,GGAGCTATTCTTGCGCAGCTTGCAAGACTATAA
GATTCAAAGCGCCCTGCTGGTGCCCACACTGTTCAGCTTCTTCGCCAA
GAGCACTCTCATCGACAAGTACGACCTGAGCAACCTGCACGAGATCG

CCAGCGGCGGGGCGCCGCTCAGCAAGGAGGTGGGCGAGGCCGTGGC
CAAGCGCTTCCACCTACCAGGCATCCGCCAGGGCTACGGCCTGACAG
AAACAACCAGCGCCATTCTGATCACCCCCGAAGGGGACGACAAGCCT
GGCGCAGTAGGCAAGGTGGTGCCCTTCTTCGAGGCTAAGGTGGTGGA
CTTGGACACCGGTAAGACCCTGGGTGTGAACCAGCGCGGCGAGCTGT
GCGTCCGTGGCCCCATGATCATGAGCGGCTACGTTAACAACCCCGAG
GCTACAAACGCTCTCATCGACAAGGACGGCTGGCTGCACAGCGGCGA
CATCGCCTACTGGGACGAGGACGAGCACTTCTTCATCGTGGACCGGC
TGAAGAGCCTGATCAAATACAAGGGCTACCAGGTAGCCCCAGCCGA
ACTGGAGAGCATCCTGCTGCAACACCCCAACATCTTCGACGCCGGGG
TCGCCGGCCTGCCCGACGACGATGCCGGCGAGCTGCCCGCCGCAGTC
GTCGTGCTGGAGCACGGTAAAACCA-TGACCGAGAAGGAGATCGTGG
ACTATGTGGCCAGCCAGGTTACAACCGCCAAGAAGCTGCGCGGTGGT
GTTGTGTTCGTGGACGAGGTGCCTAAAGGCCTGACGGGCAAGTTGGA
CGCCCGCAAGATCCGCGAGATTCTCATTAAGGCCAAGAAGGGCGGCA
AGATCGCCGTGTAATAATTCTAGA
hluc+ver2A4 AAAGCCACCATGGAAGATGCCAAAAACATTAAGAAGGGCCCAGCGC
CATTCTACCCACTCGAAGACGGCACCGCCGGCGAGCAGCTGCACAAA
GCCATGAAGCGCTACGCCCTGGTGCCCGGCACCATCGCCTTTACCGA
CGCACATATCGAGGTGGACATTACCTACGCCGAGTACTTCGAGATGA
GCGTTCGGCTGGCAGAAGCTATGAAGCGCTATGGGCTGAACACCAAC
CATCGCATCGTGGTGTGCAGCGAGAATAGCTTGCAGTTCTTCATGCCC
GTGTTGGGTGCCCTGTTCATCGGTGTGGCTGTGGCCCCAGCTAACGAC
ATCTACAACGAGCGCGAGCTGCTGAACAGCATGGGCATCAGCCAGCC
CACCGTCGTATTCGTGAGCAAGAAAGGGCTGCAAAAGATCCTCAACG
TGCAAAAGAAGCTACCGATCATACAAAAGATCATCATCATGGATAGC
AAGACCGACTACCAGGGCTTCCAAAGCATGTACACCTTCGTGACTTC
CCATTTGCCACCCGGCTTCAACGAGTACGACTTCGTGCCCGAGAGCTT
CGACCGGGACAAAACCATCGCCCTGATCATGAACAGTAGTGGCAGTA
CCGGATTGCCCAAGGGCGTAGCCCTACCGCACCGCACCGCTTGTGTC
CGATTCAGTCATGCCCGCGACCCCATCTTCGGCAACCAGATCATCCCC

GACACCGCTATCCTCAGCGTGGTGCCATTTCACCACGGCTTCGGCATG
TTCACCACGCTGGGCTACTTGATCTGCGGCTTTCGGGTCGTGCTCATG
TACCGCTTCGAGGAGGAGCTATTCTTGCGCAGCTTGCAAGACTATAA
GATTCAAAGCGCCCTGCTGGTGCCCACACTGTTCAGTTTCTTGCCAA
GAGCACTCTCATCGACAAGTACGACCTAAGCAACTTGCACGAGATCG
CCAGCGGCGGGGCGCCGCTCAGCAAGGAGGTGGGCGAGGCCGTGGC
CAAACGCTTCCACTACCAGGCATCCGCCAGGGCTACGGCCTGACAG
AAACAACCAGCGCCATTCTGATCACCCCCGAAGGGGACGACAAGCCT
GGCGCAGTAGGCAAGGTGGTGCCCTTCTTCGAGGCTAAGGTGGTGGA
CTTGGACACCGGTAAGACACTGGGTGTGAACCAGCGCGGCGAGCTGT
GCGTCCGTGGCCCCATGATCATGAGCGGCTACGTT'AACAACCCCGAG
GCTACAAACGCTCTCATCGACAAGGACGGCTGGCTGCACAGCGGCGA
CATCGCCTACTGGGACGAGGACGAGCACTTCTTCATCGTGGACCGGC
TGAAGAGCCTGATCAAATACAAGGGCTACCAGGTAGCCCCAGCCGA
ACTGGAGAGCATCCTGCTGCAACACCCCAACATCTTCGACGCCGGGG
TCGCCGGCCTGCCCGACGACGATGCGGCGAGCTGCCCGCCGCAGTC
GTCGTGCTGGAACACGGTAAAACCATGACCGAGAAGGAGATCGTGG
ACTATGTGGCCAGCCAGGTTACAACCGCCAAGAAGCTGCGCGGTGGT
GTTGTGTTCGTGGACGAGGTGCCTAAAGGCCTGACGGGCAAGTTGGA
CGCCCGCAAGATCCGCGAGATTCTCATTAAGGCCAAGAAGGGCGGCA
AGATCGCCGTGTAATAATTCTAGA
hluc+ver2A5 AAAGCCACCATGGAAGATGCCAAAAACATTAAGAAGGGCCCAGCGC
CATTCTACCCACTCGAAGACGGCACCGCGGCGAGCAGCTGCACAAA
GCCATGAAGCGCTACGCCCTGGTGCCCGGCACCATCGCCTTTACCGA
CGCACATATCGAGGTGGACATTACCTACGCCGAGTACTTCGAGATGA
GCGTTCGGCTGGCAGAAGCTATGAAGCGCTATGGGCTGAACACCAAC
CATCGGATCGTGGTGTGCAGCGAGAATAGCTTGCAGTTCTTCATGCC
CGTGTTGGGTGCCCTGTTCATCGGTGTGGCTGTGGCCCCAGCTAACGA
CATCTACAACGAGCGCGAGCTGCTGAACAGCATGGGCATCAGCCAGC
CCACCGTCGTATTCGTGAGCAAGAAAGGGCTGCAAAAGATCCTCAAC
GTGCAAAAGAAGCTACCGATCATACAAAAGATCATCATCATGGATAG

CAAGACCGACTACCAGGGCTTCCAAAGCATGTACACCTTCGTGACT'T
CCCATTTGCCACCCGGCTTCAACGAGTACGACTTCGTGCCCGAGAGC
TTCGACCGGGACAAAACCATCGCCCTGATCATGAACAGTAGTGGCA'G
TACCGGATTGCCCAAGGGCGTAGCCCTACCGCACCGCACCGCTTGTG
TCCGATTCAGTCATGCCCGCGACCCCATCTTCGGCAACCAGATCATCC
CCGACACCGCTATCCTCAGCGTGGTGCCATTTCACCACGGCTTCGGCA
TGTTCACCACGCTGGGCTACTTGATCTGCGGCTTTCGGGTCGTGCTCA
TGTACCGCTTCGAGGAGGAGCTATTCTTGCGCAGCTTGCAAGACTAT
AAGATTCAAAGCGCCCTGCTGGTGCCCACACTGTTCAGTTTCTTCGCT
AAGAGCACTCTCATCGACAAGTACGACCTAAGCAACTTGCACGAGAT
CGCCAGCGGCGGGGCGCCGCTCAGCAAGGAGGTGGGCGAGGCCGTG
GCCAAACGCTTCCACCTACCAGGCATCCGCCAGGGCTACGGCCTGArC
AGAAACAACCAGCGCCATTCTGATCACCCCCGAAGGGGACGACAAG
CCTGGCGCAGTAGGCAAGGTGGTGCCCTTCTTCGAGGCTAAGGTGGT
GGACTTGGACACCGGTAAGACACTGGGTGTGAACCAGCGCGGCGAG
CTGTGCGTCGTGGCCCCATGATCATGAGCGGCTACGTTAACAACCC
CGAGGCTACAAACGCTCTCATCGACAAGGACGGCTGGCTGCACAGCG
GCGACATCGCCTACTGGGACGAGGACGAGCACTTCTTCATCGTGGAC
CGGCTGAAGAGCCTGATCAAATACAAGGGCTACCAGGTAGCCCCAGC
CGAACTGGAGAGCATCCTGCTGCAACACCCCAACATCTTCGACGCCG
GGGTCGCCGGCCTGCCCGACGACGATGCCGGCGAGCTGCCCGCCGCA
GTCGTCGTGCTGGAACACGGTAAAACCATGACCGAGAAGGAGATCGT
GGACTATGTGGCCAGCCAGGTTACAACCGCCAAGAAGCTGCGCGGTG
GTGTTGTGTTCGTGGACGAGGTGCCTAAAGGCCTGACGGGCAAGTTG
GACGCCCGCAAGATCCGCGAGATTCTCATTAAGGCCAAGAAGGGCG
GCAAGATCGCCGTGTAATAATTCTAGA
hluc+ver2A6 has the following sequence AAAGCCACCATGGAaGAtGCCAAaAACATtAAGAAGGGCCCaGCgCCaT
TCTACCCaCTcGAaGACGGCACCGCCGGCGAGCAGCTGCACAAaGCCA
TGAAGCGCTACGCCCTGGTGCCCGGCACCATCGCCTTtACCGACGCaC
AtATCGAGGTGGACATtACCTACGCCGAGTACTTCGAGATGAGCGTtCG
gCTGGCaGAaGCtATGAAGCGCTAtGGgCTGAAtACaAACCAtCGgATCGT

GGTGTGCAGCGAGAAtAGCtTGCAGTTCTTCATGCCCGTGtTGGGtGCC
CTGTTCATCGGtGTGGCtGTGGCCCCaGCtAACGACATCTACAACGAGC
GCGAGCTGCTGAACAGCATGGGCATCAGCCAGCCCACCGTcGTaTTCG
TGAGCAAGAAaGGgCTGCAaAAGATCCTcAACGTGCAaAAGAAGCTaCC
gATCATaCAaAAGATCATCATCATGGAtAGCAAGACCGACTACCAGGG
CTTCCAaAGCATGTACACCTTCGTGACttcCCAttTGCCaCCCGGCTTCAA
CGAGTACGACTTCGTGCCCGAGAGCTTCGACCGgGACAAaACCATCGC
CCTGATCATGAACAGtAGtGGCAGtACCGGatTgCCcAAGGGCGTaGCCC
TaCCgCACCGCACCGCtTGtGTcCGaTTCAGtCAtGCCCGCGACCCCATCT
TCGGCAACCAGATCATCCCCGACACCGCtATCCTcAGCGTGGTGCCaTT
tCACCACGGCTTCGGCATGTTCACCACgCTGGGCTACtTGATCTGCGGC
TTtCGgGTcGTGCTcATGTACCGCTTCGAGGAGGAGCTaTTCtTGCGCAG
CtTGCAaGACTAtAAGATtCAaAGCGCCCTGCTGGTGCCCACaCTGTTCA
GtTTCTTCGCtAAGAGCACtCTcATCGACAAGTACGACCTaAGCAACtTG
CACGAGATCGCCAGCGGCGGgGCgCCgCTcAGCAAGGAGGTaGGtGAG
GCCGTGGCCAAaCGCTTCCACCTaCCaGGCATCCGCCAGGGCTACGGC
CTGACaGAaACaACCAGCGCCATtCTGATCACCCCCGAaGGgGACGACA
AGCCtGGCGCaGTaGGCAAGGTGGTGCCCTTCTTCGAGGCtAAGGTGGT
GGACtTGGACACCGGtAAgACaCTGGGtGTGAACCAGCGCGGCGAGCTG
TGCGTcCGtGGCCCCATGATCATGAGCGGCTACGTtAACAACCCCGAG
GCtACaAACGCtCTcATCGACAAGGACGGCTGGCTGCACAGCGGCGAC
ATCGCCTACTGGGACGAGGACGAGCACTTCTTCATCGTGGACCGgCT
GAAGAGCCTGATCAAaTACAAGGGCTACCAGGTaGCCCCaGCCGAaCT
GGAGAGCATCCTGCTGCAaCACCCCAACATCTTCGACGCCGGgGTcGC
CGGCCTGCCCGACGACGAtGCCGGCGAGCTGCCCGCCGCaGTcGTcGT
GCTGGAaCACGGtAAaACCATGACCGAGAAGGAGATCGTGGACTAtGT
GGCCAGCCAGGTtACaACCGCCAAGAAGCTGCGCGGtGGtGTtGTGTTC
GTGGACGAGGTGCCtAAaGGCCTGACgGGCAAGtTGGACGCCCGCAAG
ATCCGCGAGATtCTcATtAAGGCCAAGAAGGGCGGCAAGATCGCCGTG
TAATAATTCTAGA (SEQ ID NO:21).

The hluc+ver2A6 sequence was modified yielding hluc+ver2A7:

AAAGCCACCATGGAaGAtGCCAAaAACATtAAGAA
GGGCCCaGCgCCaTTCTACCCaCTcGAaGACGGgACCGCCGGCGAGCAG
CTGCACAAaGCCATGAAGCGCTACGCCCTGGTGCCCGGCACCATCGC
CTTtACCGACGCaCAtATCGAGGTGGACATtACCTACGCCGAGTACTTC
GAGATGAGCGTtCGgCTGGCaGAaGCtATGAAGCGCTAtGGgCTGAAtAC
aAACCAtCGgATCGTGGTGTGCAGCGAGAAtAGCtTGCAGTTCTTCATGC
CCGTGtTGGGtGCCCTGTTCATCGGtGTGGCtGTGGCCCCaGCtAACGAC
ATCTACAACGAGCGCGAGCTGCTGAACAGCATGGGCATCAGCCAGCC
CACCGTcGTaTTCGTGAGCAAGAAaGGgCTGCAaAAGATCCTcAACGTG
CAaAAGAAGCTaCCgATCATaCAaAAGATCATCATCATGGAtAGCAAGA
CCGACTACCAGGGCTTCCAaAGCATGTACACCTTCGTGACttcCCAttTG
CCaCCCGGCTTCAACGAGTACGACTTCGTGCCCGAGAGCTTCGACCGg GACAAaACCATCGCCCTGATCATGAACAGtAGtGGCAGtACCGGatTgCC
cAAGGGCGTaGCCCTaCCgCACCGCACCGCtTGtGTcCGaTTCAGtCAtGCC
CGCGACCCCATCTTCGGCAACCAGATCATCCCCGACACCGCtATCCTc AGCGTGGTGCCaTTtCACCACGGCTTCGGCATGTTCACCACgCTGGGCT
ACtTGATCTGCGGCTTtCGgGTcGTGCTcATGTACCGCTTCGAGGAGGAG
CTaTTCtTGCGCAGCtTGCAaGACTAtAAGATtCAatctGCCCTGCTGGTGC
CCACaCTaTTtAGcTTCTTCGCtAAGAGCACtCTcATCGACAAGTACGACC
TaAGCAACtTGCACGAGATCGCCAGCGGCGGgGCgCCgCTcAGCAAGGA
GGTaGGtGAGGCCGTGGCCAAaCGCTTCCACCTaCCaGGCATCCGCCAG
GGCTACGGCCTGACaGAaACaACCAGCGCCATtCTGATCACCCCCGAaG
GgGACGACAAGCCtGGCGCaGTaGGCAAGGTGGTGCCCTTCTTCGAGG
CtAAGGTGGTGGACtTGGACACCGGtAAgACaCTGGGtGTGAACCAGCG
CGGCGAGCTGTGCGTcCGtGGCCCCATGATCATGAGCGGCTACGTtAA
CAACCCCGAGGCtACaAACGCtCTcATCGACAAGGACGGCTGGCTGCA
CAGCGGCGACATCGCCTACTGGGACGAGGACGAGCACTTCTTCATCG
TGGACCGgCTGAAGAGCCTGATCAAaTACAAGGGCTACCAGGTaGCCC
CaGCCGAaCTGGAGAGCATCCTGCTGCAaCACCCCAACATCTTCGACG
CCGGgGTcGCCGGCCTGCCCGACGACGAtGCCGGCGAGCTGCCCGCCG
CaGTcGTcGTGCTGGAaCACGGtAAaACCATGACCGAGAAGGAGATCGT
GGACTAtGTGGCCAGCCAGGTtACaACCGCCAAGAAGCTGCGCGGtGGt GTtGTGTTCGTGGACGAGGTGCCtAAaGGCCTGACgGGCAAGtTGGACG

CCCGCAAGATCCGCGAGATtCTcATtAAGGCCAAGAAGGGCGGCAAGA
TCGCCGTGTAATAATTCTAGA (SEQ ID NO:22).

For vectors wit11 a BglI site in the multiple cloning region, the Bgll site present in the firefly sequence can be removed. The luciferase gene from hluc+ver2AF8, which lacks a Bgll site, displays an average of a 7.2-fold increase in expression when assayed in four mammalian cell lines, i.e., NIH3T3, CHO, HeLa and HEK293 cells.

hluc+ver2A8 has the following sequence:
AAAGCCACCATGGAaGAtGCCAAaAACATtAAGAAGGGCCCaGCgCCaT
TCTACCCaCTcGAaGACGGgACCGCCGGCGAGCAGCTGCACAAaGCCA
TGAAGCGCTACGCCCTGGTGCCCGGCACCATCGCCTTtACCGACGCaC
AtATCGAGGTGGACATtACCTACGCCGAGTACTTCGAGATGAGCGTtCG
gCTGGCaGAaGCtATGAAGCGCTAtGGgCTGAAtACaAACCAtCGgATCGT
GGTGTGCAGCGAGAAtAGCtTGCAGTTCTTCATGCCCGTGtTGGGtGCC
CTGTTCATCGGtGTGGCtGTGGCCCCaGCtAACGACATCTACAACGAGC
GCGAGCTGCTGAACAGCATGGGCATCAGCCAGCCCACCGTcGTaTTCG
TGAGCAAGAAaGGgCTGCAaAAGATCCTcAACGTGCAaAAGAAGCTaCC
gATCATaCAaAAGATCATCATCATGGAtAGCAAGACCGACTACCAGGG
CTTCCAaAGCATGTACACCTTCGTGACttcCCAttTGCCaCCCGGCTTCAA
CGAGTACGACTTCGTGCCCGAGAGCTTCGACCGgGACAAaACCATCGC
CCTGATCATGAACAGtAGtGGCAGtACCGGatTgCCcAAGGGCGTaGCCC
TaCCgCACCGCACCGCtTGtGTcCGaTTCAGtCAtGCCCGCGACCCCATCT
TCGGCAACCAGATCATCCCCGACACCGCtATCCTcAGCGTGGTGCCaTT
tCACCACGGCTTCGGCATGTTCACCACgCTGGGCTACtTGATCTGCGGC
TTtCGgGTcGTGCTcATGTACCGCTTCGAGGAGGAGCTaTTCtTGCGCAG
CtTGCAaGACTAtAAGATtCAatctGCCCTGCTGGTGCCCACaCTaTTtAGcT
TCTTCGCtAAGAGCACtCTcATCGACAAGTACGACCTaAGCAACtTGCAC
GAGATCGCCAGCGGCGGgGCgCCgCTcAGCAAGGAGGTaGGtGAGGCC
GTGGCCAAaCGCTTCCACCTaCCaGGCATCCGCCAGGGCTACGGCCTG
ACaGAaACaACCAGCGCCATtCTGATCACCCCCGAaGGgGACGACAAGC
CtGGCGCaGTaGGCAAGGTGGTGCCCTTCTTCGAGGCtAAGGTGGTGGA
CtTGGACACCGGtAAgACaCTGGGtGTGAACCAGCGCGGCGAGCTGTGC

GTcCGtGGCCCCATGATCATGAGCGGCTACGTtAACAACCCCGAGGCtA
CaAACGCtCTcATCGACAAGGACGGCTGGCTGCACAGCGGCGACATCG
CCTACTGGGACGAGGACGAGCACTTCTTCATCGTGGACCGgCTGAAG
AGCCTGATCAAaTACAAGGGCTACCAGGTaGCCCCaGCCGAaCTGGAG
AGCATCCTGCTGCAaCACCCCAACATCTTCGACGCCGGgGTcGCCGGC
CTGCCCGACGACGAtGCCGGCGAGCTGCCCGCCGCaGTcGTcGTGCTGG
AaCACGGtAAaACCATGACCGAGAAGGAGATCGTGGACTAtGTGGCCA
GCCAGGTtACaACCGCCAAGAAGCTGCGCGGtGGtGTtGTGTTCGTGGA
CGAGGTGCCtAAaGGaCTGACcGGCAAGtTGGACGCCCGCAAGATCCGC
GAGATtCTcATtAAGGCCAAGAAGGGCGGCAAGATCGCCGTGTAATAA
TTCTAGA (SEQ ID NO:23).

For the second approach, firefly luciferase Zuc+ codons were optimized for mammalian expression, and the number of consensus transcription factor binding site, and CG dinucleotides (CG islands, potential methylation sites) was reduced.

The second approach yielded: versions hluc+ver2BF1 through hluc+ver2BF5.
hluc+ver2BF1 is codon-optimized, hluc+ver2BF2 is a sequence obtained after a first round of removal of identified undesired sequences including transcription factor binding sites, hluc+ver2BF3 was obtained after a second round of removal of identified undesired sequences including transcription factor binding sites, hluc+ver2BF4 was obtained after a third round of removal of identified undesired sequences including transcription factor binding sites, hluc+ver2BF5 was obtained after a fourth round of removal of identified undesired sequences including transcription factor binding sites, hluc+ver2BF6 was obtained after removal of promoter modules and RBS, hluc+ver2BF7 was obtained after fiuther removal of identified undesired sequences including transcription factor binding sites, and hluc+ver2BF8 was obtained after modifying a restriction enzyme recognition site.

hluc+ver2Bl-B5 have the following sequences (SEQ ID Nos. 24-28):
hluc+ver2B 1 AAAGCCACCATGGAGGATGCTAAGAATATTAAGAAGGGGCCTGCTCC
TTTTTATCCTCTGGAGGATGGGACAGCTGGGGAGCAGCTGCATAAGG

CTATGAAGAGATATGCTCTGGTGCCTGGGACAATTGCTTTTACAGATG
CTCATATTGAGGTGGATATTACATATGCTGAGTATTTTGAGATGTCTG
TGAGACTGGCTGAGGCTATGAAGAGATATGGGCTGAATACAAATCAT
AGAATTGTGGTGTGTTCTGAGAATTCTCTGCAGTTTTTTATGCCTGTG
CTGGGGGCTCTGTTTATTGGGGTGGCTGTGGCTCCTGCTAATGATATT
TATAATGAGAGAGAGCTGCTGAATTCTATGGGGATTTCTCAGCCTAC
AGTGGTGTTTGTGTCTAAGAAGGGGCTGCAGAAGATTCTGAATGTGC
AGAAGAAGCTGCCTATTATTCAGAAGATTATTATTATGGATTCTAAG
ACAGATTATCAGGGGTTTCAGTCTATGTATACATTTGTGACATCTCAT
CTGCCTCCTGGGTTTAATGAGTATGATTTTGTGCCTGAGTCTTTTGAT
AGAGATAAGACAATTGCTCTGATTATGAATTCTTCTGGGTCTACAGG
GCTGCCTAAGGGGGTGGCTCTGCCTCATAGAACAGCTTGTGTGAGAT
TTTCTCATGCTAGAGATCCTATTTTTGGGAATCAGATTATTCCTGATA
CAGCTATTCTGTCTGTGGTGCCTTTTCATCATGGGTTTGGGATGTTTAC
AACACTGGGGTATCTGATTTGTGGGTTTAGAGTGGTGCTGATGTATAG
ATTTGAGGAGGAGCTGTTTCTGAGATCTCTGCAGGATTATAAGATTCA
GTCTGCTCTGCTGGTGCCTACACTGTTTTCTTTTTTTGCTAAGTCTACA
CTGATTGATAAGTATGATCTGTCTAATCTGCATGAGATTGCTTCTGGG
GGGGCTCCTCTGTCTAAGGAGGTGGGGGAGGCTGTGGCTAAGAGATT
TCATCTGCCTGGGATTAGACAGGGGTATGGGCTGACAGAGACAACAT
CTGCTATTCTGATTACACCTGAGGGGGATGATAAGCCTGGGGCTGTG
GGGAAGGTGGTGCCTTTTTTTGAGGCTAAGGTGGTGGATCTGGATAC
AGGGAAGACACTGGGGGTGAATCAGAGAGGGGAGCTGTGTGTGAGA
GGGCCTATGATTATGTCTGGGTATGTGAATAATCCTGAGGCTACAAA
TGCTCTGATTGATAAGGATGGGTGGCTGCATTCTGGGGATATTGCTTA
TTGGGATGAGGATGAGCATTTTTTTATTGTGGATAGACTGAAGTCTCT
GATTAAGTATAAGGGGTATCAGGTGGCTCCTGCTGAGCTGGAGTCTA
TTCTGCTGCAGCATCCTAATATTTTTGATGCTGGGGTGGCTGGGCTGC
CTGATGATGATGCTGGGGAGCTGCCTGCTGCTGTGGTGGTGCTGGAG
CATGGGAAGACAATGACAGAGAAGGAGATTGTGGATTATGTGGCTTC
TCAGGTGACAACAGCTAAGAAGCTGAGAGGGGGGGTGGTGTTTGTGG
ATGAGGTGCCTAAGGGGCTGACAGGGAAGCTGGATGCTAGAAAGAT
TAGAGAGATTCTGATTAAGGCTAAGAAGGGGGGGAAGATTGCTGTGT

AATAATTCTAGA

hluc+ver2B2 AAAGCCACCATGGAAGATGCTAAAAACATTAAGAAGGGGCCTGCTCC
TTTCTACCCTCTGGAGGATGGGACTGCCGGGGAGCAGCTGCATAAAG
CTATGAAGCGGTATGCTCTGGTGCCAGGCACAATTGCGTTCACGGAT
GCTCACATTGAGGTGGACATTACATACGCTGAGTATTTTGAGATGTCG
GTGCGGCTGGCTGAGGCTATGAAGCGATATGGGCTGAATACAAACCA
TAGAATTGTAGTGTGCTCTGAGAACTCGTTGCAGTTTTTTATGCCTGT
GCTGGGGGCTCTCTTCATCGGGGTGGCTGTGGCTCCTGCTAACGACAT
TTACAATGAGAGAGAGCTTTTGAACTCGATGGGGATTTCTCAGCCTA
CAGTGGTGTTTGTGAGTAAGAAAGGGCTTCAAAAGATTCTCAATGTG
CAAAAGAAGCTGCCTATTATTCAAAAGATTATTATTATGGACTCTAA
GACAGACTACCAGGGGTTTCAGTCTATGTATACATTTGTGACATCTCA
TCTGCCTCCTGGGTTCAACGAGTATGACTTTGTGCCCGAGTCTTTCGA
CAGAGATAAGACAATTGCTCTGATTATGAATTCATCTGGGTCTACCG
GGCTGCCTAAGGGTGTAGCTCTGCCACATAGAACAGCTTGTGTGAGA
TTTTCTCATGCTAGGGACCCTATTTTTGGGAATCAGATTATTCCTGAT
ACTGCTATTCTGTCGGTTGTGCCCTTTCATCATGGGTTTGGGATGTTTA
CAACACTGGGCTACCTGATATGTGGGTTTAGAGTGGTGCTCATGTATA
GGTTTGAGGAGGAGCTTTTTTTGCGCTCTCTGCAAGATTATAAGATTC
AGTCTGCTCTGCTGGTGCCTACACTGTTTTCTTTTTTTGCTAAGTCTAC
CCTGATCGATAAGTATGATCTGTCCAACCTGCACGAGATTGCTTCTGG
GGGGGCTCCTCTGTCTAAGGAGGTAGGTGAGGCTGTGGCTAAGCGCT
TTCATCTGCCTGGAATCAGACAGGGGTATGGGCTAACAGAAACAACA
TCTGCTATTCTGATTACACCAGAGGGGGATGATAAGCCCGGGGCTGT
AGGGAAAGTGGTGCCCTTTTTTGAAGCTAAAGTAGTTGATCTTGATAC
CGGTAAGACACTGGGGGTGAATCAGCGAGGGGAACTGTGTGTGAGA
GGGCCTATGATTATGTCGGGGTATGTGAACAACCCTGAGGCTACAAA

TGCTCTGATTGATAAGGATGGGTGGCTGCATTCGGGCGATATTGCTTA
CTGGGATGAGGATGAGCATTTCTTCATCGTGGACAGACTGAAGTCGT
TGATCAAATATAAGGGGTATCAAGTAGCTCCTGCTGAGCTGGAGTCC
ATTCTGCTTCAACATCCTAACATTTTCGATGCTGGGGTGGCTGGGCTG

CCTGATGATGATGCTGGGGAGCTGCCTGCTGCTGTAGTGGTGCTGGA
GCACGGTAAGACAATGACAGAGAAGGAGATTGTGGATTATGTGGCTT
CACAAGTGACAACAGCTAAGAAACTGAGAGGTGGCGTTGTGTTTGTG
GATGAGGTGCCTAAAGGGCTGACAGGCAAGCTGGATGCTAGAAAAA
TTCGAGAGATTCTGATTAAGGCTAAGAAGGGTGGAAAGATTGCTGTG
TAATAGTTCTAGA

hluc+ver2B3 AAAGCCACCATGGAAGATGCTAAAAACATTAAGAAGGGGCCTGCTCC
TTTCTACCCTCTTGAAGATGGGACTGCTGGCGAGCAACTTCACAAAG
CTATGAAGCGGTATGCTCTTGTGCCAGGCACAATTGCGTTCACGGAT
GCTCACATTGAGGTGGACATCACATACGCTGAGTATTTTGAGATGTC
GGTGCGGCTGGCAGAAGCTATGAAGCGCTATGGGCTGAATACAAACC
ATAGAATTGTAGTGTGCAGTGAGAACTCGTTGCAGTTCTTTATGCCCG
TGCTGGGGGCTCTCTTCATCGGGGTGGCTGTGGCTCCTGCTAACGACA
TCTACAACGAGCGAGAGCTGTTGAACTCGATGGGGATTTCTCAGCCT
ACAGTGGTGTTTGTGAGTAAGAAAGGGCTTCAAAAGATTCTCAATGT
GCAAAAGAAGCTGCCTATTATTCAAAAGATTATTATTATGGACTCTA
AGACCGACTACCAGGGGTTTCAGTCTATGTATACATTTGTGACATCTC
ATCTGCCTCCTGGCTTCAACGAGTACGACTTCGTGCCCGAGTCTTTCG
ACAGAGATAAGACAATTGCTCTGATCATGAATTCATCCGGGTCTACC
GGGCTGCCTAAGGGTGTAGCTCTGCCCCATAGAACAGCTTGTGTGAG
ATTTTCTCATGCTAGGGACCCTATTTTTGGGAATCAGATTATTCCTGA
CACTGCTATTCTGTCGGTGGTGCCCTTTCATATGGGTTTGGGATGTT
TACAACACTGGGCTACCTAATATGTGGGTTTAGAGTGGTGCTCATGTA
TAGGTTTGAAGAAGAGCTGTTCTTACGCTCTTTGCAAGATTATAAGAT
TCAGTCTGCTCTGCTGGTGCCAACACTATTCTCTTTTTTTGCTAAGTCT
ACGCTCATAGACAAGTATGACTTGTCCAACTTGCACGAGATTGCTTCT
GGCGGAGCACCTCTGTCTAAGGAGGTAGGTGAGGCTGTGGCTAAGCG
CTTTCATCTGCCTGGTATCAGACAGGGGTATGGGCTAACAGAAACAA
CATCTGCTATTCTGATTACACCAGAGGGGGATGATAAGCCCGGGGCT
GTAGGGAAAGTGGTGCCCTTTTTTGAAGCCAAAGTAGTTGATCTTGAT
ACCGGTAAGACACTAGGGGTGAACCAGCGTGGTGAACTGTGTGTGAG

AGGGCCTATGATTATGTCGGGGTACGTTAACAACCCCGAAGCTACAA
ATGCTCTGATTGATAAGGATGGCTGGCTGCATTCGGGCGAATTGCTT
ACTGGGATGAGGATGAGCATTTCTTCATCGTGGACAGACTGAAGTCG
TTGATCAAATACAAGGGGTATCAAGTAGCTCCTGCTGAGCTGGAATC
CATTCTGCTTCAACATCCCAACATTTTCGATGCTGGGGTGGCTGGGCT
GCCTGATGATGATGCTGGGGAGTTGCCTGCTGCTGTAGTGGTGCTTGA
GCACGGTAAGACAATGACAGAGAAGGAGATCGTGGATTATGTGGCTT
CACAAGTGACAACAGCTAAGAAACTGAGAGGTGGCGTTGTGTTTGTG
GATGAGGTGCCTAAAGGGCTCACTGGCAAGCTGGATGCTAGAAAAAT
TCGAGAGATTCTGATTAAGGCTAAGAAGGGTGGAAAGATTGCTGTGT
AATAGTTCTAGA

hluc+ver2B4 AAAGCCACCATGGAAGATGCTAAAAACATTAAGAAGGGGCCTGCTCC
CTTCTACCCTCTTGAAGATGGGACTGCTGGCGAGCAACTTCACAAAG
CTATGAAGCGGTATGCTCTTGTGCCAGGCACAATTGCGTTCACGGAT
GCTCACATTGAGGTGGACATCACATACGCTGAGTATTTTGAGATGTC
GGTGCGGCTGGCAGAAGCTATGAAGCGCTATGGGCTGAATACAAACC
ATAGAATTGTAGTGTGCAGTGAGAACTCGTTGCAGTTCTTTATGCCCG
TGCTGGGGGCTCTCTTCATCGGGGTGGCTGTGGCTCCTGCTAACGACA
TCTACAACGAGCGAGAGCTGTTGAACTCGATGGGGATCTCTCAGCCT
ACAGTGGTGTTTGTGAGTAAGAAAGGGCTTCAAAAGATTCTCAATGT
GCAAAAGAAGCTGCCTATTATTCAAAAGATTATTATTATGGACTCTA
AGACAGACTACCAGGGGTTTCAGTCCATGTATACATTTGTGACATCTC
ATCTGCCTCCTGGCTTCAACGAGTACGACTTCGTGCCCGAGTCTTTCG
ACAGAGATAAGACAATTGCTCTGATCATGAATTCATCCGGGTCTACC
GGGCTGCCTAAGGGTGTAGCTCTGCCCCATCGAACAGCTTGTGTGAG
ATTCTCTCATGCCAGGGACCCGATCTTTGGGAATCAGATTATTCCTGA
CACTGCTATTCTGTCGGTGGTGCCCTTTCATCATGGGTTTGGGATGTT
TACAACACTGGGATACCTAATATGTGGGTTTAGAGTGGTGCTCATGT
ATAGGTTTGAAGAAGAACTGTTCTTACGCTCTTTGCAAGATTATAAGA
TTCAGTCTGCTCTGCTGGTGCCAACACTATTCTCTTTTTTTGCTAAGTC
TACGCTCATAGACAAGTATGACTTGTCCAACTTGCACGAGATTGCTTC

TGGCGGAGCACCTCTGTCTAAGGAGGTAGGTGAGGCTGTGGCTAAGC
GCTTTCATCTGCCTGGTATCAGACAGGGGTACGGGCTAACAGAAACA
ACTTCTGCTATTCTGATTACACCAGAGGGCGATGACAAGCCCGGGGC
TGTAGGGAAAGTGGTGCCCTTTTTTGAAGC CAAAGTAGTTGATCTTGA
TACCGGTAAGACACTAGGGGTGAACCAGCGTGGTGAACTGTGTGTGC
GGGGCCCTATGATTATGTCGGGGTACGTTAACAACCCCGAAGCTACA
AATGCTCTTATTGATAAGGATGGCTGGTTGCATTCGGGCGACATTGCC
TACTGGGATGAGGATGAGCATTTCTTCATCGTGGACAGACTGAAGTC
GTTGATCAAATACAAGGGGTATCAAGTAGCTCCTGCTGAGCTGGAAT
CCATTCTGCTTCAACATCCAAACATTTTCGATGCTGGGGTGGCTGGGC
TGCCTGATGATGATGCTGGAGAGTTGCCTGCTGCTGTAGTAGTGCTTG
AGCACGGTAAGACAATGACAGAGAAGGAGATCGTGGATTATGTGGC
TTCACAAGTGACAACAGCTAAGAAACTGAGAGGTGGCGTTGTGTTTG
TGGATGAGGTGCCTAAAGGGCTCACTGGCAAGCTGGATGCCAGAAAA
ATTCGAGAGATTCTCATTAAGGCTAAGAAGGGTGGAAAGATTGCTGT
GTAATAGTTCTAGA

hluc+ver2B5 AAAGCCACCATGGAAGATGCTAAAAACATTAAGAAGGGGCCTGCTCC
CTTCTACCCTCTTGAAGATGGGACTGCTGGCGAGCAACTTCACAAAG
CTATGAAGCGGTATGCTCTTGTGCCAGGCACAATTGCGTTCACGGAT
GCTCACATTGAGGTGGACATCACATACGCTGAGTATTTTGAGATGTC
GGTGCGGCTGGCAGAAGCTATGAAGCGCTATGGGCTGAATACAAACC
ATAGAATTGTAGTGTGCAGTGAGAACTCGTTGCAGTTCTTTATGCCCG
TGCTGGGGGCTCTCTTCATCGGGGTGGCTGTGGCTCCTGCTAACGACA
TCTACAACGAGCGAGAGCTGTTGAACTCGATGGGGATCTCTCAGCCT
ACAGTGGTGTTTGTGAGTAAGAAAGGGCTTCAAAAGATTCTCAATGT
GCAAAAGAAGCTGCCTATTATACAAAAGATTATTATTATGGACTCTA
AGACCGACTACCAGGGGTTTCAGTCCATGTACACATTTGTAACCTCTC
ATCTGCCTCCTGGCTTCAACGAGTACGACTTCGTGCCCGAGTCTTTCG
ACAGGGACAAAACGATTGCTCTGATCATGAACTCATCCGGGTCTACC
GGGCTGCCTAAGGGTGTAGCTCTGCCCCATCGAACAGCTTGTGTGAG
ATTCTCTCATGCCAGGGACCCGATCTTTGGGAATCAGATTATTCCTGA

CATGCTATTCTGTCGGTGGTGCCCTTTCATCATGGGTTT'GGGATGTT
CACAACACTGGGATACCTCATTTGCGGGTTTAGAGTGGTGCTCATGTA
TAGGTTTGAAGAAGAACTATTCCTACGCTCTTTGCAAGATTATAAGAT
TCAGTCTGCTCTGCTGGTGCCAACACTATTCTCTTTTTTTGCTAAGTCT
ACGCTCATAGACAAGTATGACTTGTCCAACTTGCACGAGATTGCTTCT
GGCGGAGCACCTCTGTCTAAGGAGGTAGGTGAGGCTGTGGCTAAGCG
CTTTCATCTGCCTGGTATCAGACAGGGGTACGGGCTAACAGAAACAA
CTTCTGCTATTCTGATTACACCAGAGGGCGATGACAAACCCGGGGCT
GTAGGGAAAGTGGTGCCCTTTTTTGAAGCCAAAGTAGTT'GATCTTGAT
ACCGGTAAGACACTAGGGGTGAACCAGCGTGGTGAACTGTGTGTGCG
GGGCCCTATGATTATGTCGGGGTACGTTAACAACCCCGAAGCTACAA
ATGCTCTTATTGATAAGGATGGCTGGTTGCATTCGGGCGACATTGCCT
ACTGGGATGAGGATGAGCATTTCTTCATCGTGGACAGACTGAAGTCG
TTGATCAAATACAAGGGGTATCAAGTAGCTCCTGCTGAGCTGGAATC
CATTCTGCTTCAACATCCTAACATTTTCGATGCTGGGGTGGCTGGGCT
GCCTGATGATGATGCTGGAGAGTTGCCTGCTGCTGTAGT,AGTGCTTGA
GCACGGTAAGACAATGACAGAGAAGGAGATCGTGGATT'ATGTGGCTT
CACAAGTGACAACAGCTAAGAAACTGAGAGGTGGCGTTGTGTTTGTG
GATGAGGTGCCTAAAGGGCTCACTGGCAAGCTGGATGCCAGAAAAAT
TCGAGAGATTCTCATTAAGGCTAAGAAGGGTGGAAAGA_TTGCTGTGT
AATAGTTCTAGA

hluc+ver2B6 has the following sequence:
AAAGCCACCATGGAaGATGCcAAaAAcATTAAGAAGGGGCCTGCTCCc TTcTAcCCTCTtGAaGATGGGACtGCtGGcGAGCAaCTtCAcAAaGCTATGA
AGcGgTATGCTCTtGTGCCaGGcACAATTGCgTTcACgGATGCTCAcATTG
AaGTaGAcATcACATAcGCTGAGTATTTTGAGATGTCgGTGcGgCTGGCa GAaGCTATGAAGcGcTATGGGCTGAATACAAAcCATAGAATTGTaGTGT
GcagTGAGAAcTCgtTGCAGTTcTTTATGCCcGTGCTGGGGGCTCTcTTcAT
cGGGGTGGCTGTGGCTCCTGCTAAcGAcATcTAcAACGAGCGAGAGCTgt TGAAcTCgATGGGGATcTCTCAGCCTACAGTGGTGTTTG'FGagTAAGAA
aGGGCTtCAaAAGATTCTcAATGTGCAaAAGAAGCTGCCTATTATaCAaA
AGATTATTATTATGGAcTCtAAGACcGAcTAcCAGGGGTT'TCAGTCcATG

TAcACATTTGTaACcTCTCATCTGCCTCCTGGCTTcAACGAGTAcGAcTTc GTGCCcGAGTCTTTcGAcAGgGAcAAaACgATTGCTCTGATcATGAAcagc TCcGGGTCTACcGGGCTGCCTAAGGGtGTaGCTCTGCCcCATcGAACAGC
TTGTGTGAGATTcTCTCATGCcAGgGACCCgATCTTtGGaAAcCAGATcATc CCTGAcACtGCTATTCTGTCgGTgGTGCCcTTTCATCATGGGTTTGGGAT
GTTcACAACACTGGGaTAccTcATtTGcGGGTTTAGAGTGGTGCTcATGTA
TAGgTTTGAaGAaGAaCTaTTccTacGcTCTtTGCAaGATTATAAGATTCAG
TCTGCTCTGCTGGTGCCaACACTaTTcTCTTTTTTTGCTAAGTCTACgCTc ATaGAcAAGTATGActTGTCcAActTGCAcGAGATTGCTTCTGGcGGaGCa CCTCTGTCTAAGGAGGTaGGtGAGGCTGTGGCTAAGcGcTTTCATCTGC
CTGGtATcAGACAGGGGTAcGGGCTaACAGAaACAACtTCTGCTATTCTG
ATTACACCaGAGGGcGATGAcAAaCCcGGGGCTGTaGGGAAaGTGGTGC
CcTTTTTTGAaGCcAAaGTaGTtGATCTtGATACcGGtAAGACACTaGGGGT
GAAcCAGcGtGGtGAaCTGTGTGTGcGgGGcCCTATGATTATGTCgGGGTA
cGTtAAcAAcCCcGAaGCTACAAATGCTCTcATaGAcAAGGAcGGgTGGcTt CATagcGGcGAcATTGCcTAcTGGGAcGAGGATGAGCATTTcTTcATcGTG
GAcAGACTGAAGTCgtTGATcAAaTAcAAGGGGTATCAaGTaGCTCCTGC
TGAGCTGGAaTCcATTCTGCTtCAaCAcCCcAAtATcTTcGATGCTGGGGT
GGCTGGGCTGCCTGATGATGATGCTGGaGAGcTGCCTGCTGCTGTaGTa GTGCTtGAGCAcGGtAAGACAATGACAGAGAAGGAGATcGTGGATTAT
GTGGCTTCaCAaGTGACAACAGCTAAGAAaCTGAGAGGtGGcGTtGTGT
TTGTGGATGAGGTGCCTAAaGGGCTcACtGGcAAGCTGGATGCcAGAAA
aATTcGAGAGATTCTcATTAAGGCTAAGAAGGGtGGaAAGATTGCTGTG
TAATAgTTCTAGA (SEQ ID NO:29).

hluc+ver2BF8 was created by removing a Ptxl consensus transcription factor binding site from hluc+ver2BF7.

hluc+ver2B7 has the following sequence:
AAAGCCACCATGGAAGATGCCAAAAACATTAAGAAGGGGCCTGCTC
CCTTCTACCCTCTTGAAGATGGGACTGCTGGCGAGCAACTTCACAAA
GCTATGAAGCGGTATGCTCTTGTGCCAGGGACAATTGCGTTCACGGA
TGCTCACATTGAAGTAGACATCACATACGCTGAGTATTTTGAGATGTC

GGTGCGGCTGGCAGAAGCTATGAAGCGCTATGGGCTGAATACAAACC
ATAGAATTGTAGTGTGCAGTGAGAACTCGTTGCAGTTCTTTATGCCCG
TGCTGGGGGCTCTCTTCATCGGGGTGGCTGTGGCTCCTGCTAACGACA
TCTACAACGAGCGAGAGCTGTTGAACTCGATGGGGATCTCTCAGCCT
ACAGTGGTGTTTGTGAGTAAGAAAGGGCTTCAAAAGATTCTCAATGT
GCAAAAGAAGCTGCCTATTATACAAAAGATTATTATTATGGACTCTA
AGACAGACTACCAGGGGTTTCAGTCCATGTACACATTTGTAACCTCTC
ATCTGCCTCCTGGCTTCAACGAGTACGACTTCGTGCCCGAGTCTTTCG
ACAGGGACAAAACGATTGCTCTGATCATGAACAGCTCCGGGTCTACC
GGGCTGCCTAAGGGTGTAGCTCTGCCCCATCGAACAGCTTGTGTGAG
ATTCTCTCATGCCAGGGACCCGATCTTTGGAAACCAGATCATCCCTGA
CACTGCTATTCTGTCGGTGGTGCCCTTTCATCATGGGTTTGGGATGTT
CACAACACTGGGATACCTCATTTGCGGGTTTAGAGTGGTGCTCATGTA
TAGGTTTGAAGAAGAACTATTCCTACGCTCTTTGCAAGATTATAAGAT
TCAGTCTGCTCTGCTGGTGCCAACACTATTCTCTTTTTTTGCTAAGTCT
ACGCTCATAGACAAGTATGACTTGTCCAACTTGCACGAGATTGCTTCT
GGCGGAGCACCTCTGTCTAAGGAGGTAGGTGAGGCTGTGGCTAAGCG
CTTTCATCTGCCTGGTATCAGACAGGGGTACGGGCTAACAGAAACAA
CTTCTGCTATTCTGATTACACCAGAGGGCGATGACAAACCCGGGGCT
GTAGGGAAAGTGGTGCCCTTTTTTGAAGCCAAAGTAGTTGATCTTGAT
ACCGGTAAGACACTAGGGGTGAACCAGCGTGGTGAACTGTGTGTGCG
GGGCCCTATGATTATGTCGGGGTACGTTAACAACCCCGAAGCTACAA
ATGCTCTCATAGACAAGGACGGGTGGCTTCATAGCGGCGACATTGCC
TACTGGGACGAGGATGAGCATTTCTTCATCGTGGACAGACTGAAGTC
GTTGATCAAATACAAGGGGTATCAAGTAGCTCCTGCCGAGCTTGAGT
CCATTCTGCTTCAACACCCCAATATCTTCGATGCTGGGGTGGCTGGGC
TGCCTGATGATGATGCTGGAGAGCTGCCTGCTGCTGTAGTAGTGCTTG
AGCATGGTAAGACAATGACAGAGAAGGAGATCGTGGATTATGTGGCT
TCACAAGTGACAACAGCTAAGAAACTCCGAGGTGGCGTTGTGTTTGT
GGATGAGGTGCCTAAAGGGCTCACTGGCAAGCTGGATGCCAGAAAA
ATTCGAGAGATTCTCATTAAGGCTAAGAAGGGTGGAAAGATTGCTGT
GTAATAGTTCTAGA (SEQ ID NO:94) hluc+ver2B8 has the following sequence AAAGCCACCATGGAaGATGCcAAaAAcATTAAGAAGGGGCCTGCTCCc TTcTAcCCTCTtGAaGATGGGACtGCtGGcGAGCAaCTtCAcAAaGCTATGA
AGcGgTATGCTCTtGTGCCaGGgACAATTGCgTTcACgGATGCTCAcATTG
AaGTaGAcATcACATAcGCTGAGTATTTTGAGATGTCgGTGcGgCTGGCa GAaGCTATGAAGcGcTATGGGCTGAATACAAAcCATAGAATTGTaGTGT
GcagTGAGAAcTCgtTGCAGTTcTTTATGCCcGTGCTGGGGGCTCTcTTcAT
cGGGGTGGCTGTGGCTCCTGCTAAcGAcATcTAcAAcGAGcGAGAGCTgt TGAAcTCgATGGGGATcTCTCAGCCTACAGTGGTGTTTGTGagTAAGAA
aGGGCTtCAaAAGATTCTcAATGTGCAaAAGAAGCTaCCgATcATaCAaAA
GATcATcATcATGGAtagcAAGACcGAcTAcCAGGGGTTTCAGTCcATGTA
cACATTTGTaACcTCTCATCTGCCTCCTGGcTTcAAcGAGTAcGAcTTcGT
GCCcGAGTCTTTcGAcAGgGAcAAaACgATTGCTCTGATcATGAAcagcTCc GGGTCTACcGGGCTGCCTAAGGGtGTaGCTCTGCCcCATcGAACAGCTT
GTGTGAGATTcTCTCATGCcAGgGAcCCgATcTTtGGaAAcCAGATcATcC
CTGAcACtGCTATTCTGTCgGTgGTGCCcTTTCATCATGGGTTTGGGATG
TTcACAACACTGGGaTAccTcATtTGcGGGTTTAGAGTGGTGCTcATGTAT
AGgTTTGAaGAaGAaCTaTTccTacGcTCTtTGCAaGATTATAAGATTCAGT
CTGCTCTGCTGGTGCCaACACTaTTcTCTTTTTTTGCTAAGTCTACgCTcA
TaGAcAAGTATGActTGTCcAActTGCAcGAGATTGCTTCTGGcGGaGCaCC
TCTGTCTAAGGAGGTaGGtGAGGCTGTGGCTAAGcGcTTTCATCTGCCT
GGtATcAGACAGGGGTAcGGGCTaACAGAaACAACtTCTGCTATTCTGAT
TACACCaGAGGGcGATGAcAAaCCtGGGGCTGTaGGGAAaGTGGTGCCcT
TTTTTGAaGCcAAaGTaGTtGATCTtGATACcGGtAAGACACTaGGGGTGA
AcCAGcGtGGtGAaCTGTGTGTGcGgGGcCCTATGATTATGTCgGGGTAcG
TtAAcAAcCCcGAaGCTACAAATGCTCTcATaGAcAAGGAcGGgTGGcTtC
ATagcGGcGAcATTGCcTAcTGGGAcGAGGATGAGCATTTcTTcATcGTGG
AcAGACTGAAGTCgtTGATcAAaTAcAAGGGGTATCAaGTaGCTCCTGCc GAGCTtGAgTCcATTCTGCTtCAaCAcCCcAAtATcTTcGATGCTGGGGTGG
CTGGGCTGCCTGATGATGATGCTGGaGAGcTGCCTGCTGCTGTaGTaGT
GCTtGAGCAtGGtAAGACAATGACAGAGAAGGAGATcGTGGATTATGT
GGCTTCaCAaGTGACAACAGCTAAGAAaCTccGAGGtGGcGTtGTGTTTG
TGGATGAGGTGCCTAAaGGGCTr.ACtGGcAAGCTGGATGCcAGAAAaAT

TcGAGAGATTCTcATTAAGGCTAAGAAGGGtGGaAAGATTGCTGTGTA
ATAgTTCTAGA (SEQ ID NO:31).

hluc+ver2BF8 was modified to yield hluc+ver2BF9.
hluc+ver2B9 has the following sequence AAAGCCACCATGGAaGATGCcAAaAAcATTAAGAAGGGGCCTGCTCCc TTcTAcCCTCTtGAaGATGGGACtGCtGGcGAGCAaCTtCAcAAaGCTATGA
AGcGgTATGCTCTtGTGCCaGGgACAATTGCgTTcACgGATGCTCAcATTG
AaGTaGAcATcACATAcGCTGAGTATTTTGAGATGTCgGTGcGgCTGGCa GAaGCTATGAAGcGcTATGGGCTGAATACAAAcCATAGAATTGTaGTGT
GcagTGAGAAcTCgtTGCAGTTcTTTATGCCcGTGCTGGGGGCTCTCTTcAT
tGGGGTGGCTGTGGCTCCTGCTAAtGAcATcTAcAAcGAGcGAGAGCTgtT
GAAcagtATGGGGATcTCTCAGCCTACAGTGGTGTTTGTGagTAAGAAaG
GGCTtCAaAA.GATTCTcAATGTGCAaAAGAAGCTaCCgATcATaCAaAAG
ATcATcATcATGGAtagcAAGACcGAcTAcCAGGGGTTTCAGTCcATGTAc ACATTTGTaACcTCTCATCTGCCTCCTGGcTTcAAtGAGTAtGAcTTcGTG
CCcGAGTCTTTcGAcAGgGAcAAaACgATTGCTCTGATcATGAAcagcagtG
GGTCTACcGGGCTGCCTAAGGGtGTaGCTCTGCCcCATcGAACAGCTTG
TGTGAGATTcTCTCATGCcAGgGAcCCgATcTTtGGaAAcCAGATcATcCCT
GAcACtGCTATTCTGTCgGTgGTGCCcTTTCATCATGGGTTTGGGATGTT
cACAACACTGGGaTAccTcATtTGcGGGTTTAGAGTGGTGCTcATGTATA
GgTTTGAaGAaGAaCTaTTccTacGcTCTtTGCAaGATTATAAGATTCAGTC
TGCTCTGCTGGTGCCaACACTaTTcTCTTTTTTTGCTAAGTCTACgCTcAT
aGAcAAGTATGActTGTCcAActTGCAcGAGATTGCTTCTGGcGGaGCaCCT
CTGTCTAAGGAGGTaGGtGAGGCTGTGGCTAAGcGcTTTCATCTGCCTG
GtATcAGACAGGGGTAcGGGCTaACAGAaACAACtTCTGCTATTCTGATT
ACACCaGAGGGcGATGAcAAaCCtGGGGCTGTaGGGAAaGTGGTGCCcTT
TTTTGAaGCcAAaGTaGTtGATCTtGATACcGGtAAGACACTaGGGGTGAA
cCAGaGaGGtGAatTGTGTGTGaGgGGcCCTATGATTATGTCgGGGTAcGTt AAcAAcCCcGAaGCTACAAATGCTCTcATaGAcAAGGAcGGgTGGcTtCAT
agtGGaGAtATTGCcTAcTGGGAtGAaGATGAGCATTTcTTcATcGTGGAcA
GACTGAAGTCgtTGATcAAaTAcAAGGGGTATCAaGTaGCTCCTGCcGAG

CTtGAgTCcATTCTGCTtCAaCAcCCcAAtATcTTcGATGCTGGGGTGGCTG
GGCTGCCTGATGATGATGCTGGaGAGcTGCCTGCTGCTGTaGTaGTGCTt GAGCAtGGtAAGACAATGACAGAGAAGGAGATcGTGGATTATGTGGCT
TCaCAaGTGACAACAGCTAAGAAaCTccGAGGtGGcGTtGTGTTTGTGGA
TGAGGTGCCTAAaGGGCTcACtGGcAAGCTGGATGCcAGAAAaATTCGA
GAGATTCTcATTAAGGCTAAGAAGGGtGGaAAGATTGCTGTGTAATAgT
TCTAGA (SEQ ID NO:32).

The BglI sequence in hluc+ver2BF9 was removed resulting in hluc+ver2BF10.
hluc+ver2BF10 demonstrated poor expression.

hluc+ver2B 10 has the following sequence AAAGCCACCATGGAaGATGCcAAaAAcATTAAGAAGGGGCCTGCTCCc TTcTAcCCTCTtGAaGATGGGACtGCtGGcGAGCAaCTtCAcAAaGCTATGA
AGcGgTATGCTCTtGTGCCaGGgACAATTGCgTTcACgGATGCTCAcATTG
AaGTaGAcATcACATAcGCTGAGTATTTTGAGATGTCgGTGcGgCTGGCa GAaGCTATGAAGcGcTATGGGCTGAATACAAAcCATAGAATTGTaGTGT
GcagTGAGAAcTCgtTGCAGTTcTTTATGCCcGTGCTGGGGGCTCTcTTcAT
tGGGGTGGCTGTGGCTCCTGCTAAtGAcATcTAcAAcGAGcGAGAGCTgtT
GAAcagtATGGGGATcTCTCAGCCTACAGTGGTGTTTGTGagTAAGAAaG
GGCTtCAaAAGATTCTcAATGTGCAaAAGAAGCTaCCgATcATaCAaAAG
ATcATcATcATGGAtagcAAGACcGAcTAcCAGGGGTTTCAGTCcATGTAc ACATTTGTaACcTCTCATCTGCCTCCTGGcTTcAAtGAGTAtGAcTTcGTG
CCcGAGTCTTTcGAcAGgGAcAAaACgATTGCTCTGATcATGAAcagcagtG
GGTCTACcGGGCTGCCTAAGGGtGTaGCTCTGCCcCATcGAACAGCTTG
TGTGAGATTcTCTCATGCcAGgGAcCCgATcTTtGGaAAcCAGATcATcCCT
GAcACtGCTATTCTGTCgGTgGTGCCcTTTCATCATGGGTTTGGGATGTT
cACAACACTGGGaTAccTcATtTGcGGGTTTAGAGTGGTGCTcATGTATA
GgTTTGAaGAaGAaCTaTTccTacGcTCTtTGCAaGATTATAAGATTCAGTC

TGCTCTGCTGGTGCCaACACTaTTcTCTTTTTTTGCTAAGTCTACgCTcAT
aGAcAAGTATGActTGTCcAActTGCAcGAGATTGCTTCTGGcGGaGCaCCT
CTGTCTAAGGAGGTaGGtGAGGCTGTGGCTAAGcGcTTTCATCTGCCTG
GtATcAGACAGGGGTAcGGGCTaACAGAaACAACtTCTGCTATTCTGATT

ACACCaGAGGGcGATGAcAAaCCtGGGGCTGTaGGGAAaGTGGTGCCcTT
TTTTGAaGCcAAaGTaGTtGATCTtGATACcGGtAAGACACTaGGGGTGAA
cCAGaGaGGtGAatTGTGTGTGaGgGGcCCTATGATTATGTCgGGGTAcGTt AAcAAcCCcGAaGCTACAAATGCTCTcATaGAcAAGGAcGGgTGGcTtCAT
agtGGaGAtATTGCcTAcTGGGAtGAaGATGAGCATTTcTTcATcGTGGAcA
GACTGAAGTCgtTGATcAAaTAcAAGGGGTATCAaGTaGCTCCTGCcGAG
CTtGAgTCcATTCTGCTtCAaCAcCCcAAtATcTTcGATGCTGGGGTGGCTG
GGCTGCCTGATGATGATGCTGGaGAGcTGCCTGCTGCTGTaGTaGTGCTt GAGCAtGGtAAGACAATGACAGAGAAGGAGATcGTGGATTATGTGGCT
TCaCAaGTGACAACAGCTAAGAAaCTccGAGGtGGcGTtGTGTTTGTGGA
TGAGGTGCCTAAaGGaCTcACtGGcAAGCTGGATGCcAGAAAaATTcGAG
AGATTCTcATTAAGGCTAAGAAGGGtGGaAAGATTGCTGTGTAATAgTT
CTAGA (SEQ ID NO:33).

Table 11 Summary of Firefly Luciferase Constructs Firefly luciferase Number of Number of CG dinucleotides Gene consensus Promoter (possible transcription modules* methylation sites) factor binding sites Luc+ 287 7 97 hluc+ver2AF8 3 0 132 hluc+ver2BF 10 3 0 43 *Promoter modules are defined as a composite regulatory element, with 2 TFBS
separated by a spacer, which has been shown to exhibit synergistic or antagonistic function.

Example 4 Synthetic Selectable Polypeptide Genes Design Process Define sequences Protein sequence that should be maintained:

- Neo: from neo gene of pCI-neo (Promega) (SEQ ID NO: 1) - Hyg: from hyg gene of pcDNA3.1/Hygro (Invitrogen) (SEQ ID NO:6) DNA flanking regions for starting sequence:

- 5' end: Kozak sequence from neo gene of pCI-neo (GCCACCATGA;
SEQ ID NO:34)), PfIMI site (CCANNNNNTGG; SEQ ID NO:35), add Ns at end (to avoid search algorithm errors & keep ORF1):
neolhyg: NNNNNCCAnnnnnTGGCCACC-ATG-G (SEQ ID NO:36) Change: replace PfIMI with Sbfl (CCTGCAGG) - 3' end: two stop codons (at least one TAA), PfIMI site (not compatible with that at 5' end to allow directional cloning), add Ns at end (to avoid search algorithm errors):

neolhyg: TAATAACCAnnnnnTGGNNN (SEQ ID NO:37) Change: replace PfIMI with AfZII (CTTAAG) Define codon usage Codon usage was obtained from the Codon Usage Database (b!U://www.kazusa.or.jp/codon/):
Based on: GenBank Release 131.0 [15 August 2002] (Nakamura et al., 2000).
Codon usage tables were downloaded for:

HS: Hoino sapiens [gbpri] 50,031 CDS's (21,930,294 codons) MM: Mus musculus [gbrod] 23,113 CDS's (10,345,401 codons) EC: Escherichia coli [gbbct] 11,985 CDS's (3,688,954 codons) EC K12: Escherichia coli K12 [gbbct] 4,291 CDS's (1,363,716 codons) * HS and MM were compared and found to be closely similar, use HS
table * EC and EC K12 were compared and found to be closely similar, use EC K12 table Codon selection strategy:

Overall strategy is to adapt codon usage for optimal expression in mammalian cells while avoiding low-usage E. coli codons. One "best"
codon was selected for each amino acid and used to back-translate the desired protein sequence to yield a starting gene sequence.

Strategy A was chosen for the design of the neo and hyg genes (see Table 12). (Strategy A: Codon bias optimized: emphasis on codons showing the highest usage frequency in HS. Best codons are those with highest usage in HS, unless a codon with slightly lower usage has substantially higher usage in E. coli.).

Table 12 Amino acid Codon Choices in Codon Choices in Codon Examples 1-2 Bias Optimized Strategy A
Gly GGC/GGT GGC
Glu GAG GAG
Asp GAC GAC
Val GTG/GTC GTG
Ala GCC/GCT GCC
Arg CGC/CGT CGC
Ser TCT/AGC AGC
Lys AAG AAG
Asn AAC AAC
Ile ATC/ATT ATC
Thr ACC/ACT ACC
Cys TGC TGC
Tyr TAC TAC
Leu CTG/TTG CTG
Phe TTC TTC
Gln CAG CAG
His CAC CAC
Pro CCA/CCT CCC
Generate startinggene sequences Use custom codon usage table in Vector NTI 8.0 (Informax) ("Strategy A") Back-translate neo and hyg protein sequences Neo (based on neomycin gene from Promega's pCI-neo) MIEQDGLHAGSPAAWVERLFGYDWAQQTIGCSDAAVFRLSAQGRPVLF
VKTDLS GALNELQDEAARLS W LATTGVP CAAV LD V V TEAGRD W LLLGE
VP GQDLLS SHLAPAEKV SIMADAMRRLHTLDPATCPFDHQAKHRIERAR

TRMEAGLVDQDDLDEEHQGLAPAELFARLKARMPD GEDLV V THGDAC
LPNIMVENGRFSGFIDCGRLGVADRYQDIALATRDIAEELGGEWADRFLV
LYGIAAPDSQRIAFYRLLDEFF (SEQ ID NO:2) and encoded by Atgattgaacaagatggattgcacgcaggttctccggccgcttgggtggagaggctattcggctatgactgggcac aacagacaatcggctgctctgatgccgccgtgttccggctgtcagcgcaggggcgcccggttctttttgtcaagacc gacctgtccggtgccctgaatgaactgcaggacgaggcagcgcggctatcgtggctggccacgacgggcgttcct tgcgcagctgtgctcgacgttgtcactgaagcgggaagggactggctgctattgggcgaagtgccggggcaggat ctcctgtcatctcaccttgctcctgccgagaaagtatccatcatggctgatgcaatgcggcggctgcatacgcttgatc cggctacctgcccattcgaccaccaagcgaaacatcgcatcgagcgagcacgtactcggatggaagccggtcttgt cgatcaggatgatctggacgaagagcatcaggggctcgcgccagccgaactgttcgccaggctcaaggcgcgcat gcccgacggcgaggatctcgtcgtgacccatggcgatgcctgcttgccgaatatcatggtggaaaatggccgctttt ctggattcatcgactgtggccggctgggtgtggcggaccgctatcaggacatagcgttggctacccgtgatattgctg aagagcttggcggcgaatgggctgaccgcttcctcgtgctttacggtatcgccgctcccgattcgcagcgcatcgcc ttctatcgccttcttgacgagttcttctga (SEQ ID NO: 1) Hyg (based on hygromycin gene from Invitrogen's pcDNA3.1/Hygro) MKKPELTATSVEKFLIEKFD SVSDLMQLSEGEESRAFSFDVGGRGYVLRV
NSCADGFYKDRYVYRHFASAALPIPEVLDIGEFSESLTYCISRRAQGVTLQ
DLPETELPAVLQPVAEAMDAIAAADLS QTS GFGPFGPQGIGQYTTWRDFI

CAIADPHVYHWQTVMDDTVSASVAQALDELMLWAEDCPEVRHLVHAD
FGSNNVLTDNGRITAVIDW SEAMFGDS QYEVANIFFWRPWLACMEQQT
RYFERRHPELAGSPRLRAYMLRIGLDQLYQSLVDGNFDDAAWAQGRCD
AIVRS GAGTV GRTQIARRSAAV WTD GC VEVLAD S GNRRP S TRPRAKE
(SEQ ID NO:7) encoded by Atgaaaaagcctgaactcaccgcgacgtctgtcgagaagtttctgatcgaaaagttcgacagcgtctccgacctgat gcagctctcggagggcgaagaatctcgtgctttcagcttcgatgtaggagggcgtggatatgtcctgcgggtaaata gctgcgccgatggtttctacaaagatcgttatgtttatcggcactttgcatcggccgcgctcccgattccggaagtgct t gacattggggaattcagcgagagcctgacctattgcatctcccgccgtgcacagggtgtcacgttgcaagacctgcc tgaaaccgaactgcccgctgttctgcagccggtcgcggaggccatggatgcgatcgctgcggccgatcttagccag acgagcgggttcggcccattcggaccgcaaggaatcggtcaatacactacatggcgtgatttcatatgcgcgattgc tgatccccatgtgtatcactggcaaactgtgatggacgacaccgtcagtgcgtccgtcgcgcaggctctcgatgagc tgatgctttgggccgaggactgccccgaagtccggcacctcgtgcacgcggatttcggctccaacaatgtcctgacg gacaatggccgcataacagcggtcattgactggagcgaggcgatgttcggggattcccaatacgaggtcgccaac atcttcttctggaggccgtggttggcttgtatggagcagcagacgcgctacttcgagcggaggcatccggagcttgc aggatcgccgcggctccgggcgtatatgctccgcattggtcttgaccaactctatcagagcttggttgacggcaatttc gatgatgcagcttgggcgcagggtcgatgcgacgcaatcgtccgatccggagccgggactgtcgggcgtacacaa atcgcccgcagaagcgcggccgtctggaccgatggctgtgtagaagtactcgccgatagtggaaaccgacgcccc agcactcgtccgagggcaaaggaat (SEQ ID NO:6).

Table 13 Nomenclature of exemplary neo and hyggene versions Genz naine Description neo from pCI-neo (Promega) hneo humanized (codon usage strategy A) ORF
hneo-F humanized ORF with 5' and 3' flanking regions hneo-1F humanized ORF with 5' and 3' flanking regions after first removal of undesired sequence matches hneo-2F humanized ORF with 5' and 3' flanking regions after second removal of undesired sequence matches hneo-3F humanized ORF with 5' and 3' flanking regions after third removal of undesired sequence matches hneo-3FB Changed 5' and 3' flanking cloning sites hyg from pcDNA3.1/Hygro (Invitrogen) hhyg humanized (codon usage strategy A) ORF
hhyg-F humanized ORF with 5' and 3' flanking regions hhyg-1F humanized ORF with 5' and 3' flanking regions after first removal of undesired sequence matches hhyg-2F humanized ORF with 5' and 3' flanking regions after second removal of undesired sequence matches hhyg-3F humanized ORF with 5' and 3' flanking regions after third removal of undesired sequence matches hhyg-3FB Changed 5' and 3' flanking cloning sites "h" indicates humanized codons, "F" indicates presence of 5' and 3' flanking sequences.

Create starting (codon-optimized) gene sequences:
hneo (humanized starting gene sequence without flanking regions in hneo-F) CCACTCAGTGGCCACCATGATCGAGCAGGACGGCCTGCACGCCGGCA
GCCCCGCCGCCTGGGTGGAGCGCCTGTTCGGCTACGATGGGCCAG
CAGACCATCGGCTGCAGCGAGCCGCCGTGTTCCGCCTGA-GCGCCCA
GGGCCGCCCCGTGCTGTTCGTGAAGACCGACCTGAGCGGCGCCCTGA
ACGAGCTGCAGGACGAGGCCGCCCGCCTGAGCTGGCTGGCCACCACC
GGCGTGCCCTGCGCCGCCGTGCTGGACGTGGTGACCGAGGCCGGCCG
CGACTGGCTGCTGCTGGGCGAGGTGCCCGGCCAGGACCTGCTGAGCA
GCCACCTGGCCCCCGCCGAGAAGGTGAGCATCATGGCCGACGCCATG
CGCCGCCTGCACACCCTGGACCCCGCCACCTGCCCCTTCGACCACCA
GGCCAAGCACCGCATCGAGCGCGCCCGCACCCGCATGGAGGCCGGC
CTGGTGGACCAGGACGACCTGGACGAGGAGCACCAGGGCCTGGCCC
CCGCCGAGCTGTTCGCCCGCCTGAAGGCCCGCATGCCCGACGGCGAG
GACCTGGTGGTGACCCACGGCGACGCCTGCCTGCCCAACATCATGGT
GGAGAACGGCCGCTTCAGCGGCTTCATCGACTGCGGCCGCCTGGGCG
TGGCCGACCGCTACCAGGACATCGCCCTGGCCACCCGCGACATCGCC
GAGGAGCTGGGCGGCGAGTGGGCCGACCGCTTCCTGGTGCTGTACGG
CATCGCCGCCCCCGACAGCCAGCGCATCGCCTTCTACCGCCTGCTGG
ACGAGTTCTTCTAATAACCAGTCTCTGG (SEQ ID NO:3).

hhyg (humanized starting gene sequence without flanking regions) CCACTCAGTGGCCACCATGAAGAAGCCCGAGCTGACCGCCACCAGCG
TGGAGAAGTTCCTGATCGAGAAGTTCGACAGCGTGAGCGACCTGATG
CAGCTGAGCGAGGGCGAGGAGAGCCGCGCCTTCAGCTTCGACGTGG
GCGGCCGCGGCTACGTGCTGCGCGTGAACAGCTGCGCCGACGGCTTC
TACAAGGACCGCTACGTGTACCGCCACTTCGCCAGCGCCGCCCTGCC
CATCCCCGAGGTGCTGGACATCGGCGAGTTCAGCGAGAGCCTGACCT
ACTGCATCAGCCGCCGCGCCCAGGGCGTGACCCTGCAGGACCTGCCC
GAGACCGAGCTGCCCGCCGTGCTGCAGCCCGTGGCCGAGGCCATGGA

CGCCATCGCCGCCGCCGACCTGAGCCAGACCAGCGGCTTCGGCCCCT
TCGGCCCCCAGGGCATCGGCCAGTACACCACCTGGCGCGACTTCATC
TGCGCCATCGCCGACCCCCACGTGTACCACTGGCAGACCGTGATGGA
CGACACCGTGAGCGCCAGCGTGGCCCAGGCCCTGGACGAGCTGATGC
TGTGGGCCGAGGACTGCCCCGAGGTGCGCCACCTGGTGCACGCCGAC
TTCGGCAGCAACAACGTGCTGACCGACAACGGCCGCATCACCGCCGT
GATCGACTGGAGCGAGGCCATGTTCGGCGACAGCCAGTACGAGGTGG
CCAACATCTTCTTCTGGCGCCCCTGGCTGGCCTGCATGGAGCAGCAG
ACCCGCTACTTCGAGCGCCGCCACCCCGAGCTGGCCGGCAGCCCCCG
CCTGCGCGCCTACATGCTGCGCATCGGCCTGGACCAGCTGTACCAGA
GCCTGGTGGACGGCAACTTCGACGACGCCGCCTGGGCCCAGGGCCGC
TGCGACGCCATCGTGCGCAGCGGCGCCGGCACCGTGGGCCGCACCCA
GATCGCCCGCCGCAGCGCCGCCGTGTGGACCGACGGCTGCGTGGAGG
TGCTGGCCGACAGCGGCAACCGCCGCCCCAGCACCCGCCCCCGCGCC
AAGGAGTAATAACCAGCTCTTGG (SEQ ID NO:8).

Programs and databases used for identification and removal of sequence motifs All from Genomatix Software GmbH (Munich, Germany, hqp://www.genomatix.de):
GEMS Launcher Release 3.5.2 (June 2003) Matlnspector professional Release 6.2.1 June 2003 Matrix Family Library Ver 3.1.2 June 2003 (incl. 318 vertebrate matrices in 128 families) Modellnspector professional Release 4.8 October 2002 Model Library Ver 3.1 March 2003 (226 modules) SequenceShaper tool User Defined Matrices Sequence motifs to remove from starting gene sequences (In order of priority) Restriction enzyme recognition sequences:
See user-defined matrix subset neo and hyg. Same as those used for design of hluc+ version 2.0 Generally includes those required for cloning (pGL4) or commonly used for cloning Change: also Sbfl, AfII, AccIII
Transcription factor binding sequences:
Promoter modules (2 TF binding sites with defined orientation) with default score or greater Vertebrate TF binding sequences with score of at least core=0.75 /
matrix=optimized Eukaryotic transcription regulatory sites:
Kozak sequence Splice donor / acceptor sequences in (+) strand PolyA addition sequences in (+) strand Prokaryotic transcription re ug latory sequences:
E. coli promoters E. coli RBS (if less than 20 bp upstream of Met codon) User-defined matrix subset "neo+hyg"
Format: Matrix name (core similarity threshold / matrix similarity threshold) = U$Aatll (0.75/1.00) = U$BamHI (0.75/1.00) = U$Bgll (0.75/1.00) = U$BglII (0.75/1.00) = U$BsaI (0.75/1.00) = U$BsmAI (0.75/1.00) = U$BsmBI (0.75/1.00) = U$BstEll (0.75/1.00) = U$BstXI (0.75/1.00) = U$Csp451 (0.75/1.00) = U$CspI (0.75/1.00) = U$EC-P-10 (1.00/Optimized) = U$EC-P-35 (1.00/Optimized) = U$EC-Prom (1.00/Optimized) = U$EC-RBS (0.75/1.00) = U$EcoRI (0.75/1.00) = U$HindIII (0.75/1.00) = U$Kozak (0.75/Optimized) = U$KpnI (0.75/1.00) = U$M1uI (0.75/1.00) = U$NcoI (0.75/1.00) = U$Nde1(0.75/1.00) = U$Nhe1(0.75/1.00) = U$Not1(0.75/1.00) = U$NsiI (0.75/1.00) = U$PflMI (0.75/1.00) = U$PmeI (0.75/1.00) = U$PolyAsig (0.75/1.00) = U$Pstl (0.75/1.00) = U$Sacl (0.75/1.00) = U$SacII (0.75/1.00) = U$Sall (0.75/1.00) = U$Sfil (0.75/1.00) = U$Sgfl (0.75/1.00) = U$SmaI (0.75/1.00) = U$SnaBI (0.75/1.00) = U$Spel (0.75/1.00) = U$Splice-A (0.75/Optimized) = U$Splice-D (0.75/Optimized) = U$Xbal (0.75/1.00) = U$XcmI (0.75/1.00) = U$Xhol (0.75/1.00) = ALL vertebrates.lib (0.75/Optimized) User-defined matrix subset "neo+hyjz-EC

Format: Matrix name (core similarity threshold / matrix similarity threshold) = U$AatII (0.75/1.00) = U$BamHI (0.75/1.00) = U$BglI (0.75/1.00) = U$BglII (0.75/1.00) = U$BsaI (0.75/1.00) = U$BsmAI (0.75/1.00) = U$BsmBI (0.75/1.00) = U$BstEII (0.75/1.00) = U$BstXI (0.75/1.00) = U$Csp451 (0.75/1.00) = U$CspI (0.75/1.00) = U$EcoRI (0.75/1.00) = U$HindIII (0.75/1.00) = U$Kozak (0.75/Optimized) = U$KpnI (0.75/1.00) = U$Mlul (0.75/1.00) = U$NcoI (0.75/1.00) = U$Ndel (0.75/1.00) = U$Nhel (0.75/1.00) = U$Notl (0.75/1.00) = U$Nsil (0.75/1.00) = U$PflMI (0.75/1.00) = U$Pmel (0.75/1.00) = U$PolyAsig (0.75/1.00) = U$Pstl (0.75/1.00) = U$Sacl (0.75/1.00) = U$SacII (0.75/1.00) = U$Sall (0.75/1.00) = U$Sfil (0.75/1.00) = U$Sgfl (0.75/1.00) = U$Smal (0.75/1.00) = U$SnaBI (0.75/1.00) = U$SpeI (0.75/1.00) = U$Splice-A (0.75/Optimized) = U$Splice-D (0.75/Optimized) = U$Xbal (0.75/1.00) = U$XcmI (0.75/1.00) = U$Xhol (0.75/1.00) = ALL vertebrates.lib (0.75/Optimized) User-defined matrix subset "pGL4-072503"
Format: Matrix name (core similarity threshold / matrix similarity threshold) = U$AatII (0.75/1.00) = U$AccIII (0.75/1.00) = U$AflII (0.75/1.00) = U$BamHI (0.75/1.00) = U$BglI (0.75/1.00) = U$Bg1II (0.75/1.00) = U$BsaI (0.75/1.00) = U$BsmAI (0.75/1.00) = U$BsmBI (0.75/1.00) = U$BstEll (0.75/1.00) = U$BstXI (0.75/1.00) = U$Csp451 (0.75/1.00) = U$Cspl (0.75/1.00) = U$EC-P-10 (1.00/Optimized) = U$EC-P-35 (1.00/Optimized) = U$EC-Prom (1.00/Optimized) = U$EC-RBS (0.75/1.00) = U$EcoRI (0.75/1.00) = U$HindIII (0.75/1.00) = U$Kozak (0.75/Optimized) = U$KpnI (0.75/1.00) = U$Mlul (0.75/1.00) = U$Ncol (0.75/1.00) = U$NdeI (0.75/1.00) = U$Nhe1(0.75/1.00) = U$Notl (0.75/1.00) = U$Nsil (0.75/1.00) = U$PflMI (0.75/1.00) = U$Pme1(0.75/1.00) = U$PolyAsig (0.75/1.00) = U$Pstl (0.75/1.00) = U$SacI (0.75/1.00) = U$SacII (0.75/1.00) = U$SalI (0.75/1.00) = U$Sbfl (0.75/1.00) = U$SfiI (0.75/1.00) = U$SgfI (0.75/1.00) = U$Smal (0.75/1.00) = U$SnaBI (0.75/1.00) = U$SpeI (0.75/1.00) = U$Splice-A (0.75/Optimized) = U$Splice-D (0.75/Optimized) = U$Xbal (0_75/1.00) = U$Xcml (0.75/1.00) = U$Xhol (0-75/1.00) = ALL vertebrates.lib Strategy for removal of sequence motifs The undesired sequence motifs specified above were removed from the starting gene sequence by selecting alternate codons that allowed retention of the specified protein and flanking sequences. Alternate codons were selected in a way to conform to the overall codon selection strategy as much as possible.
General steps:
- Identify undesired sequence matches with Matlnspector using matrix family subset "neo+hyg" or "neo+hyg-EC" and with ModelInspector using default settings.
- Identify possible replacement codons to remove undesired sequence matches with SequenceShaper (keep ORF).
- Incorporate changes into a new version of the synthetic gene sequence and re-analyze with MatInspector and Modellnspector.
Specific steps:
- First try to remove undesired sequence matches using subset "neo+hyg-EC"
and SequenceShaper default remaining thresholds (0.70/Opt-0.20).
- For sequence rnatches that cannot be removed with this approach use lower SequenceShaper remaining thresholds (e.g. 0.70/Opt-0.05).

- For sequence matches that still cannot be removed, try different combinations of manually chosen replacement codons (especially if more than 3 base changes might be needed). If that introduces new sequence matches, try to remove those using the steps above (a different starting sequence sometimes allows a different removal solution).
- Use subset "neo+hyg" to check whether problematic E. coli sequence matches were introduced, and if so try to remove them using an analogous approach to that described above for non E. coli sequences.

Use an analogous strategy for the flanking (non-ORF) sequences.
Final check with subset "pGL4-072503" after change in flanking cloning sites After codon optimizing neo and hyg, hneo and hhyg were obtained.

Regulatory sequences were removed from hneo and hhyg yielding hneo-1F and hhyg-1F (the corresponding sequences without flanking regions are SEQ ID Nos.
38 and 30, respectively). Regulatory sequences were removed from hneo-1F and hhyg-1F yielding hneo-2F and hhyg-2F (the corresponding sequences without flanking regions are SEQ ID Nos. 39 and 42, respectively). Regulatory sequences were removed from hneo-2F and hhyg-2F yielding hneo-3F and hhyg-3F. Hneo-3F and hhyg-3F were further modified by altering 5' and 3' cloning sites yielding hneo-3FB and hhyg-3FB:

hneo-3 (after 3rd round of sequence removal, subset neo+hyg) has the following sequence:
CCACTCcGTGGCCACCATGATCGAaCAaGACGGCCTcCAtGCtGGCAGtC
CCGCaGCtTGGGTcGAaCGCtTGTTCGGgTACGACTGGGCCCAGCAGAC
CATCGGaTGtAGCGAtGCgGCCGTGTTCCGtCTaAGCGCtCAaGGCCGgCC
CGTGCTGTTCGTGAAGACCGACCTGAGCGGCGCCCTGAACGAGCTtCA
aGACGAGGCtGCCCGCCTGAGCTGGCTGGCCACCACCGGtGTaCCCTGC
GCCGCtGTGtTGGAtGTtGTGACCGAaGCCGGCCGgGACTGGCTGCTGCT
GGGCGAGGTcCCtGGCCAGGAtCTGCTGAGCAGCCACCTtGCCCCCGCt GAGAAGGTttcCATCATGGCCGAtGCaATGCGgCGCCTGCACACCCTGG
ACCCCGCtACaTGCCCCTTCGACCACCAGGCtAAGCAtCGgATCGAGCGt GCtCGgACCCGCATGGAGGCCGGCCTGGTGGACCAGGACGACCTGGA
CGAGGAGCAtCAGGGCCTGGCCCCCGCtGAaCTGTTCGCCCGCCTGAAa GCCCGCATGCCgGACGGtGAGGACCTGGTtGTGACaCAtGGtGAtGCCTG
CCTcCCtAACATCATGGTcGAGAAtGGcCGCTTCtcCGGCTTCATCGACTG

CGGtCGCCTaGGaGTtGCCGACCGCTACCAGGACATCGCCCTGGCCACC
CGCGACATCGCtGAGGAGCTtGGCGGCGAGTGGGCCGACCGCTTCtTaG
TctTGTACGGCATCGCaGCtCCCGACAGCCAGCGCATCGCCTTCTACCG
CCTGCTcGACGAGTTCTTtTAATGACCAGgCTCTGG (SEQ ID NO:4);

hneo-3FB (change PfIMI sites to Sbft at 5' end and AfZII at 3' end) has the following sequence:
cctgcaggCCACCATGATCGAACAAGACGGCCTCCATGCTGGCAGTCCCG
CAGCTTGGGTCGAACGCTTGTTCGGGTACGACTGGGCCCAGCAGACC
ATCGGATGTAGCGATGCGGCCGTGTTCCGTCTAAGCGCTCAAGGCCG
GCCGTGCTGTTCGTGAAGACCGACTGAGCGGCGCCTGAACGAGC
TTCAAGACGAGGCTGCCCGCCTGAGCTGGCTGGCCACCACCGGTGTA
CCTGCGCCGCTGTGTTGGATGTTGTGACCGAAGCCGGCCGGGACTG
GCTGCTGCTGGGCGAGGTCCCTGGCCAGGATCTGCTGAGCAGCCACC
TTGCCCCCGCTGAGAAGGTTTCCATCATGGCCGATGCAATGCGGCGC
CTGCACACCCTGGACCCCGCTACATGCCCCTTCGACCACCAGGCTAA
GCATCGGATCGAGCGTGCTCGGACCCGCATGGAGGCCGGCCTGGTGG
ACCAGGACGACCTGGACGAGGAGCATCAGGGCCTGGCCCCCGCTGA
ACTGTTCGCCCGCCTGAAAGCCCGCATGCCGGACGGTGAGGACCTGG
TTGTGACACATGGTGATGCCTGCCTCCCTAACATCATGGTCGAGAAT
GGCCGCTTCTCCGGCTTCATCGACTGCGGTCGCCTAGGAGTTGCCGAC
CGCTACCAGGACATCGCCCTGGCCACCCGCGACATCGCTGAGGAGCT
TGGCGGCGAGTGGGCCGACCGCTTCTTAGTCTTGTACGGCATCGCAG
CTCCCGACAGCCAGCGCATCGCCTTCTACCGCCTGCTCGACGAGTTCT
TTTAATGAgcttaag (SEQ ID NO:5);

hhyg-3 (after 3rd round of sequence removal, subset neo+hyg) has the following sequence:
CCACTCcGTGGCCACCATGAAGAAGCCCGAGCTGACCGCtACCAGCGT
tGAaAAaTTtCTcATCGAGAAGTTCGACAGtGTGAGCGACCTGATGCAGt TgtcgGAGGGCGAaGAgAGCCGaGCCTTCAGCTTCGAtGTcGGCGGaCGC
GGCTAtGTaCTGCGgGTGAAtAGCTGCGCtGAtGGCTTCTACAAaGACCG
CTACGTGTACCGCCACTTCGCCAGCGCtGCaCTaCCCATCCCCGAaGTGt TGGACATCGGCGAGTTCAGCGAGAGCCTGACaTACTGCATCAGtaGaCG

CGCCCAaGGCGTtACtCTcCAaGACCTcCCCGAaACaGAGCTGCCtGCtGT
GtTaCAGCCtGTcGCCGAaGCtATGGAtGCtATtGCCGCCGCCGACCTCAGt CAaACCAGCGGCTTCGGCCCaTTCGGgCCCCAaGGCATCGGCCAGTAC
AaACCTGGCGgGAtTTCATtTGCGCCATtGCtGAtCCCCAtGTcTACCACT
GGCAGACCGTGATGGACGACACCGTGtcCGCCAGCGTaGCtCAaGCCCT
GGACGAaCTGATGCTGTGGGCCGAaGACTGtCCCGAGGTGCGCCAcCTc GTcCAtGCCGACTTCGGCAGCAACAACGTcCTGACCGACAACGGCCGC
ATCACCGCCGTaATCGACTGGtcCGAaGCtATGTTCGGgGACAGtCAGTA
CGAGGTGGCCAACATCTTCTTCTGGCGgCCCTGGCTGGCtTGCATGGA
GCAGCAGACtCGCTACTTCGAGCGCCGgCAtCCCGAGCTGGCCGGCAG
CCCtCGtCTGCGaGCCTACATGCTGCGCATCGGCCTGGAtCAGCTCTACC
AGAGCCTcGTGGACGGCAACTTCGACGAtGCtGCCTGGGCtCAaGGCCG
CTGCGAtGCCATCGTcCGCAGCGGgGCCGGCACCGTcGGtCGCACaCAaA
TCGCtCGCCGgAGCGCCGCCGTaTGGACCGACGGCTGCGTcGAGGTGCT
GGCCGACAGCGGCAACCGCCGgCCCAGtACaCGaCCgCGCGCtAAGGAG
TAgTAACCAGgctcTGG (SEQ ID NO:9); and hhyg-3FB (change PfIMI sites to Sbfl at 5' end and Af71I at 3' end) has the following sequence:

cctgcaggCCACCATGAAGAAGCCCGAGCTGACCGCTACCAGCGTTGAAA
AATTTCTCATCGAGAAGTTCGACAGTGTGAGCGACCTGATGCAGTTG
TCGGAGGGCGAAGAGAGCCGAGCCTTCAGCTTCGATGTCGGCGGACG
CGGCTATGTACTGCGGGTGAATAGCTGCGCTGATGGCTTCTACAAAG
ACCGCTACGTGTACCGCCACTTCGCCAGCGCTGCACTACCCATCCCC
GAAGTGTTGGACATCGGCGAGTTCAGCGAGAGCCTGACATACTGCAT
CAGTAGACGCGCCCAAGGCGTTACTCTCCAAGACCTCCCCGAAACAG
AGCTGCCTGCTGTGTTACAGCCTGTCGCCGAAGCTATGGATGCTATTG
CCGCCGCCGACCTCAGTCAAACCAGCGGCTTCGGCCCATTCGGGCCC
CAAGGCATCGGCCAGTACACAACCTGGCGGGATTTCATTTGCGCCAT
TGCTGATCCCCATGTCTACCACTGGCAGACCGTGATGGACGACACCG
TGTCCGCCAGCGTAGCTCAAGCCCTGGACGAACTGATGCTGTGGGCC
GAAGACTGTCCCGAGGTGCGCCACCTCGTCCATGCCGACTTCGGCAG
CAACAACGTCCTGACCGACAACGGCCGCATCACCGCCGTAATCGACT

GGTCCGAAGCTATGTTCGGGGACAGTCAGTACGAGGTGGCCAACATC
TTCTTCTGGCGGCCCTGGCTGGCTTGCATGGAGCAGCAGACTCGCTAC
TTCGAGCGCCGGCATCCCGAGCTGGCCGGCAGCCCTCGTCTGCGAGC
CTACATGCTGCGCATCGGCCTGGATCAGCTCTACCAGAGCCTCGTGG
ACGGCAACTTCGACGATGCTGCCTGGGCTCAAGGCCGCTGCGATGCC
ATCGTCCGCAGCGGGGCCGGCACCGTCGGTCGCACACAAATCGCTCG
CCGGAGCGCCGCCGTATGGACCGACGGCTGCGTCGAGGTGCTGGCCG
ACAGCGGCAACCGCCGGCCCAGTACACGACCGCGCGCTAAGGAGTA
GTAActtaag (SEQ ID NO:10).

Analysis of hneo-3FB and hhyg-3FB
hneo-3FB had no transcription factor binding sequence, including promoter module, matches (GEMS release 3.5.2 June 2003; vertebrate TF
binding sequence families (core similarity: 0.75 / matrix similarity: opt);
and promoter modules (default parameters: optimized threshold or 80% of maximum score)), while hhyg-3FB had 4 transcription factor binding sequence matches remaining but no promoter modules (Table 10). The following transcription factor binding sequences were found in hhyg-3FB:

1) V$MIl~1I
Family: Muscle Initiators (2 members) Best match: Muscle Initiator Sequence 1 Ref: Laura L. Lopez & James W. Fickett "Muscle-Specific Regulation of Transcription: A Catalog of Regulatory Elements"

http ://www. cb il. up enn. edu/MTIIZ/Ho ineP age.html Position in ORF: -7 to 11 2) V$PAX5 Family: PAX-5/PAX-9 B-cell-specific activating proteins (4 members) Best match: B-cell-specific activating protein Ref MEDLINE 94010299 Position in ORF: 271 to 299 3) V$AREB
Family: Atplal regulatory element binding (4 members) Best match: AREB6 Ref: MEDLINE 96061934 Position in ORF: 310 to 322 4) V$VMYB
Family: AMV-viral myb oncogene (2 members) Best match: v-Myb Ref: MEDLINE 94147510 Position in ORF: 619 to 629 Other sequences remaining in hneo-3F included one E. coli RBS 8 bases upstream of Met (ORF position 334 to 337); hneo-3FB included a splice acceptor site (+) and PstI site as part of a 5' cloning site for Sbfl, and one E. coli RBS 8 bases upstream of Met (ORF position 334 to 337); hhyg-3F had no other sequence matches; and hhyg-3FB included a splice acceptor site (+) and Pstl site as part of a 5' cloning site for SbfI.
Subsequently, regulatory sequences were removed from hneo-3F and hhyg-3F yielding hneo-4 and hhyg-4. Then regulatory sequences were removed from hneo-4 yielding hneo-5.

Table 14 Gene name TF bindii-ig sequences Promoter modules 5'F/ORF/3'F 5'F/ORF/3'F
Neo --/53/-- --/0/--hneo-F 1/61/2 0/2/0 hneo-3F 0/0/0 0/0/0 hneo-3FB 0/0/0 0/0/0 Hyg -- / 74 / -- -- / 3 / --hhyg-F 1 / 94 / 1 0/ 4/ 0 hhyg-3F 1/3/0 0/0/0 hhyg-3FB 1/3/0 0/0/0 *Promoter modules are defined as a composite regulatory element, with 2 transcription factor binding sites separated by a spacer, which has been shown to exhibit synergistic or antagonistic function.

Table 15 summarizes the identity of various genes.

Table 15 Pairwise identity of different gene versions Comparisons were of open reading frames (ORFs).

neo hneo hneo-3 hneo4 lineo-5 Final hNeo Neo -- 79 78 78 78 77 hneo -- 90 90 90 89 1u1eo-3 -- 100 99 98 hneo-4 -- 99 98 hneo-5 -- 99 Final hNeo --hyg hhyg lihyg-3 hHygro hhyg-4 Final hHyg Hyg -- 79 78 73 76 78 hhyg -- 88 83 86 88 hhyg-3 -- 94 96 98 hHygro -- 96 94 hliyg-4 -- 97 Final hHyg --Percent Identity 1 82.2 1 Synthetic puro-SEQ ID NO:11 b 2 19.6 2 Starting puro-SEQ ID NO:15 An expression cassette (hNeo-cassette) with a synthetic neomycin gene flanked by a SV40 promoter and a synthetic poly(A) site is shown below.
GGATCCGTTTGCGTATTGGGCGCTCTTCCGCTGATCTGCGCAGCACCA
TGGCCTGAAATAACCTCTGAAAGAGGAACTTGGTTAGCTACCTTCTG

AGGCGGAAAGAACAGCTGTGGAATGTGTGTCAGTTAGGGTGTGGAA
AGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCATCTC
AATTAGTCAGCAACCAGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGG
CAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCATAGTCC
CGCCCCTAACTCCGCCCATCCCGCCCCTAACTCCGCCCAGTTCCGCCC
ATTCTCCGCCCCATGGCTGACTAATTTTTTTTATTTATGCAGAGGCCG
AGGCCGCCTCTGCCTCTGAGCTATTCCAGAAGTAGTGAGGAGGCTTT
TTTGGAGGCCTAGGCTTTTGCAAAAAGCTCGATTCTTCTGACACTAGC
GCCACCATGATCGAACAAGACGGCCTCCATGCTGGCAGTCCCGCAGC
TTGGGTCGAACGCTTGTTCGGGTACGACTGGGCCCAGCAGACCATCG
GATGTAGCGATGCGGCCGTGTTCCGTCTAAGCGCTCAAGGCCGGCCC
GTGCTGTTCGTGAAGACCGACCTGAGCGGCGCCCTGAACGAGCTTCA
AGACGAGGCTGCCCGCCTGAGCTGGCTGGCCACCACCGGCGTACCCT
GCGCCGCTGTGTTGGATGTTGTGACCGAAGCCGGCCGGGACTGGCTG
CTGCTGGGCGAGGTCCCTGGCCAGGATCTGCTGAGCAGCCACCTTGC
CCCCGCTGAGAAGGTTTCTATCATGGCCGATGCAATGCGGCGCCTGC
ACACCCTGGACCCCGCTACCTGCCCCTTCGACCACCAGGCTAAGCAT
CGGATCGAGCGTGCTCGGACCCGCATGGAGGCCGGCCTGGTGGACCA
GGACGACCTGGACGAGGAGCATCAGGGCCTGGCCCCCGCTGAACTGT
TCGCCCGACTGAAAGCCCGCATGCCGGACGGTGAGGACCTGGTTGTC
ACACACGGAGATGCCTGCCTCCCTAACATCATGGTCGAGAATGGCCG
CTTCTCCGGCTTCATCGACTGCGGTCGCCTAGGAGTTGCCGACCGCTA
CCAGGACATCGCCCTGGCCACCCGCGACATCGCTGAGGAGCTTGGCG
GCGAGTGGGCCGACCGCTTCTTAGTCTTGTACGGCATCGCAGCTCCC
GACAGCCAGCGCATCGCCTTCTACCGCTTGCTCGACGAGTTCTTTTAA
TGATCTAGAACCGGTCATGGCCGCAATAAAATATCTTTATTTTCATTA
CATCTGTGTGTTGGTTTTTTGTGTGTTCGAACTAGATGCTGTCGAC
(SEQ ID NO:44).

An expression cassette (hPuro-cassette) with a synthetic puromycin gene flanked by a SV40 promoter and a synthetic poly(A) site is shown below.
GGATCCGTTTGCGTATTGGGCGCTCTTCCGCTGATCTGCGCAGCACCA
TGGCCTGAAATAACCTCTGAAAGAGGAACTTGGTTAGCTACCTTCTG

AGGCGGAAAGAACCAGCTGTGGAATGTGTGTCAGTTAGGGTGTGGAA
AGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCATCTC
AATTAGTCAGCAACCAGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGG
CAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACATAGTCC
CGCCCCTAACTCCGCCCATCCCGCCCCTAACTCCGCCCAGTTCCGCCC
ATTCTCCGCCCCATGGCTGACTAATTTTTTTTATTTATGCAGAGGCCG
AGGCCGCCTCTGCCTCTGAGCTATTCCAGAAGTAGTGAGGAGGCTTT
TTTGGAGGCCTAGGCTTTTGCAAAAAGCTCGATTCTTCTGACACTAGC
GCCACCATGACCGAGTACAAGCCTACCGTGCGCCTGGCCACTCGCGA
TGATGTGCCCCGCGCCGTCCGCACTCTGGCCGCCGCTTTCGCCGACTA
CCCCGCTACCCGGCACACCGTGGACCCCGACCGGCACATCGAGCGTG
TGACAGAGTTGCAGGAGCTGTTCCTGACCCGCGTCGGGCTGGACATC
GGCAAGGTGTGGGTAGCCGACGACGGCGCGGCCGTGGCCGTGTGGA
CTACCCCCGAGAGCGTTGAGGCCGGCGCCGTGTTCGCCGAGATCGGC
CCCCGAATGGCCGAGCTGAGCGGCAGCCGCCTGGCCGCCCAGCAGCA
AATGGAGGGCCTGCTTGCCCCCCATCGTCCCAAGGAGCCTGCCTGGT
TTCTGGCCACTGTAGGAGTGAGCCCCGACCACCAGGGCAAGGGCTTG
GGCAGCGCCGTCGTGTTGCCCGGCGTAGAGGCCGCCGAACGCGCCGG
TGTGCCCGCCTTTCTCGAAACAAGCGCACCAAGAAACCTTCCATTCTA
CGAGCGCCTGGGCTTCACCGTGACCGCCGATGTCGAGGTGCCCGAGG
GACCTAGGACCTGGTGTATGACACGAAAACCTGGCGCCTAATGATCT
AGAACCGGTCATGGCCGCAATAAAATATCTTTATTTTCATTACATCTG
TGTGTTGGTTTTTTGTGTGTTCGAACTAGATGCTGTCGAC (SEQ ID
NO:11);

hpuro:
GCTAGCGCCACCATGACCGAGTACAAGCCCACCGTGCGCCTGGCCAC
CCGCGACGACGTGCCCCGCGCCGTGCGCACCCTGGCCGCCGCCTTCG
CCGACTACCCCGCCACCCGCCACACCGTGGACCCCGACCGCCACATC
GAGCGCGTGACCGAGCTGCAGGAGCTGTTCCTGACCCGCGTGGGCCT
GGACATCGGCAAGGTGTGGGTGGCCGACGACGGCGCCGCCGTGGCC
GTGTGGACCACCCCCGAGAGCGTGGAGGCCGGCGCCGTGTTCGCCGA
GATCGGCCCCCGCATGGCCGAGCTGAGCGGCAGCCGCCTGGCCGCCC

AGCAGCAGATGGAGGGCCTGCTGGCCCCCCACCGCCCCAAGGAGCCC
GCCTGGTTCCTGGCCACCGTGGGCGTGAGCCCCGACCACCAGGGCAA
GGGCCTGGGCAGCGCCGTGGTGCTGCCCGGCGTGGAGGCCGCCGAGC
GCGCCGGCGTGCCCGCCTTCCTGGAGACCAGCGCCCCCCGCAACCTG
CCCTTCTACGAGCGCCTGGGCTTCACCGTGACCGCCGACGTGGAGGT
GCCCGAGGGCCCCCGCACCTGGTGCATGACCCGCAAGCCCGGCGCCT
AATGATCTAGA (SEQ ID NO:91);

hpuro-1:
gctagcgccaccatgaccgagtacaagcctaccgtgcgcctggccactcgcgatgatgtgccccgcgccgtccgc actctggccgccgctttcgccgactaccccgctacccggcacaccgtggaccccgaccggcacatcgagcgtgtg acagagttgcaggagctgttcctgacccgcgtcgggctggacatcggcaaggtgtgggtagccgacgacggcgc ggccgtggccgtgtggactacccccgagagcgttgaggccggcgccgtgttcgccgagatcggcccccgaatgg ccgagctgagcggcagccgcctggccgcccagcagcaaatggagggcctgcttgccccccatcgtcccaaggag cccgcctggtttctggccactgtaggagtgagccccgaccaccagggcaagggcttgggcagcgccgtcgtgttg cccggcgtagaggccgccgaacgcgccggtgtgcccgcctttctggagacaagcgctccgcgtaaccttccattct acgagcgcctgggcttcaccgtgaccgccgatgtcgaggtgcccgagggaccccggacctggtgcatgactcgc aagcctggcgcctaatgatctaga (SEQ ID NO:92); and hpuro-2 GCTAGCGCCACCATGACCGAGTACAAGCCTACCGTGCGCCTGGCCAC
TCGCGATGATGTGCCCCGCGCCGTCCGCACTCTGGCCGCCGCTTTCGC
CGACTACCCCGCTACCCGGCACACCGTGGACCCCGACCGGCACATCG
AGCGTGTGACAGAGTTGCAGGAGCTGTTCCTGACCCGCGTCGGGCTG
GACATCGGCAAGGTGTGGGTAGCCGACGACGGCGCGGCCGTGGCCG
TGTGGACTACCCCCGAGAGCGTTGAGGCCGGCGCCGTGTTCGCCGAG
ATCGGCCCCCGAATGGCCGAGCTGAGCGGCAGCCGCCTGGCCGCCCA
GCAGCAAATGGAGGGCCTGCTTGCCCCCCATCGTCCCAAGGAGCCTG
CCTGGTTTCTGGCCACTGTAGGAGTGAGCCCCGACCACCAGGGCAAG
GGCTTGGGCAGCGCCGTCGTGTTGCCCGGCGTAGAGGCCGCCGAACG
CGCCGGTGTGCCCGCCTTTCTCGAAACAAGCGCACCAAGAAACCTTC
CATTCTACGAGCGCCTGGGCTTCACCGTGACCGCCGATGTCGAGGTG
CCCGAGGGACCTAGGACCTGGTGTATGACACGAAAACCTGGCGCCTA

ATGATCTAGA (SEQ ID NO:93).

The starting puro sequence (from psi STRIKE) has SEQ ID NO:15 (atgaccgagt acaagcccac ggtgcgcctc gccacccgcg acgacgtccc ccgggccgta cgcaccctcg ccgccgcgtt cgccgactac cccgccacgc gccacaccgtcgacccggac cgccacatcg agcgggtcac cgagctgcaa gaactcttcc tcacgcgcgt cgggctcgac atcggcaagg tgtgggtcgc ggacgacggc gccgcggtgg cggtctggac cacgccggag agcgtcgaag cgggggcggt gttcgccgag atcggcccgc gcatggccga gttgagcggt tcccggctgg ccgcgcagca acagatggaa ggcctcctgg cgccgcaccg gcccaaggag cccgcgtggt tcctggccac cgtcggcgtg tcgcccgacc accagggcaa gggtctgggc agcgccgtcg tgctccccgg agtggaggcg gccgagcgcg ccggggtgcc cgccttcctg gagacctccg cgccccgcaa cctccccttc tacgagcggc tcggcttcac cgtcaccgcc gacgtcgagg tgcccgaagg accgcgcacc tggtgcatga cccgcaagcc cggtgcc).

Other synthetic hyg and neo genes include hneo-1:
CCACTCAGTGGCCACCATGATCGAGCAGGACGGCCTcCAtGCtGGCAGt CCCGCaGCCTGGGTcGAGCGCtTGTTCGGgTACGACTGGGCCCAGCAG
ACCATCGGaTGtAGCGAtGCCGCaGTGTTCCGCCTGAGCGCtCAaGGCCG
gCCCGTGCTGTTCGTGAAGACCGACCTGAGCGGCGCCCTGAACGAGC
TtCAaGACGAGGCtGCCCGCCTGAGCTGGCTGGCCACCACCGGtGTaCC
CTGCGCCGCtGTGtTGGAtGTtGTGACCGAaGCCGGCCGCGACTGGCTGC
TGCTGGGCGAGGTGCCtGGCCAGGACCTGCTGAGCAGCCACCTGGCC
CCCGCtGAGAAGGTGAGCATCATGGCCGACGCCATGCGgCGCCTGCAC
ACCCTGGACCCCGCtACaTGCCCCTTCGACCACCAGGCtAAGCACCGC
ATCGAGCGgGCtCGgACCCGCATGGAGGCCGGCCTGGTGGACCAGGAC
GACCTGGACGAGGAGCACCAGGGCCTGGCCCCCGCtGAaCTGTTCGCC
CGCCTGAAaGCCCGCATGCCgGACGGtGAGGACCTGGTtGTGACaCACG
GCGACGCCTGCCTcCCtAACATCATGGTcGAGAACGGgCGCTTCtcCGGC
TTCATCGACTGCGGCCGCCTGGGCGTtGCCGACCGCTACCAGGACATC
GCCCTGGCCACCCGCGACATCGCCGAGGAGCTGGGCGGCGAGTGGG
CCGACCGCTTCCTGGTctTGTACGGCATCGCaGCtCCCGACAGCCAGCG
CATCGCCTTCTACCGCCTGCTGGACGAGTTCTTCTAgTAACCAGgCTCT

GG (SEQ ID NO:38);

hneo-2 CCACTCcGTGGCCACCATGATCGAaCAaGACGGCCTcCAtGCtGGCAGtC
CCGCaGCtTGGGTcGAaCGCtTGTTCGGgTACGACTGGGCCCAGCAGAC
CATCGGaTGtAGCGAtGCgGCCGTGTTCCGtCTaAGCGCtCAaGGCCGgCC
CGTGCTGTTCGTGAAGACCGACCTGAGCGGCGCCCTGAACGAGCTtCA
aGACGAGGCtGCCCGCCTGAGCTGGCTGGCCACCACCGGtGTaCCCTGC
GCCGCtGTGtTGGAtGTtGTGACCGAaGCCGGCCGgGACTGGCTGCTGCT
GGGCGAGGTcCCtGGCCAGGAtCTGCTGAGCAGCCACCTtGCCCCCGCt GAGAAGGTttcCATCATGGCCGAtGCaATGCGgCGCCTGCACACCCTGG
ACCCCGCtACaTGCCCCTTCGACCACCAGGCtAAGCAtCGgATCGAGCGt GCtCGgACCCGCATGGAGGCCGGCCTGGTGGACCAGGACGACCTGGA
CGAGGAGCAtCAGGGCCTGGCCCCCGCtGAaCTGTTCGCCCGCCTGAAa GCCCGCATGCCgGACGGtGAGGACCTGGTtGTGACaCAtGGaGAtGCCTG
CCTcCCtAACATCATGGTcGAGAAtGGcCGCTTCtcCGGCTTCATCGACTG
CGGtCGCCTaGGaGTtGCCGACCGCTACCAGGACATCGCCCTGGCCACC
CGCGACATCGCtGAGGAGCTtGGCGGCGAGTGGGCCGACCGCTTCtTaG
TctTGTACGGCATCGCaGCtCCCGACAGCCAGCGCATCGCCTTCTACCG
CCTGCTcGACGAGTTCTTtTAATGACCAGgCTCTGG (SEQ ID NO:39);
hhyg-1 CCACTCAGTGGCCACCATGAAGAAGCCCGAGCTGACCGCTACCAGCG
TTGAGAAGTTCCTGATCGAGAAGTTCGACAGCGTGAGCGACCTGATG
CAGTTAAGCGAGGGCGAGGAAAGCCGCGCCTTCAGCTTCGATGTCGG
CGGACGCGGCTATGTACTGCGGGTGAATAGCTGCGCTGATGGCTTCT
ACAAAGACCGCTACGTGTACCGCCACTTCGCCAGCGCTGCACTGCCC
ATCCCCGAGGTGCTGGACATCGGCGAGTTCAGCGAGAGCCTGACATA
CTGCATCAGCCGCCGCGCTCAAGGCGTGACTCTCCAAGACCTGCCCG
AGACAGAGCTGCCCGCTGTGCTACAGCCTGTCGCCGAGGCTATGGAC
GCTATTGCCGCCGCCGACCTGAGCCAGACCAGCGGCTTCGGCCCATT
CGGGCCCCAAGGCATCGGCCAGTACACCACCTGGCGCGACTTCATCT
GCGCCATTGCTGATCCCCATGTCTACCACTGGCAGACCGTGATGGAC
GACACCGTGAGCGCCAGCGTAGCTCAAGCCCTGGACGAGCTGATGCT

GTGGGCCGAGGACTGCCCCGAGGTGCGCCATCTCGTCCATGCCGACT
TCGGCAGCAACAACGTCCTGACCGACAACGGCCGCATCACCGCGTA
ATCGACTGGAGCGAGGCATGTTCGGGGACAGTCAGTACGAGGTGGC
CAACATCTTCTTCTGGCGGCCCTGGCTGGCCTGCATGGAGCAGCAAA
CCCGCTACTTCGAGCGCCGCCATCCCGAGCTGGCCGGCAGCCCCCGT
CTGCGAGCCTACATGCTGCGCATCGGCCTGGATCAGCTCTACCAGAG
CCTCGTGGACGGCAACTTCGACGATGCTGCCTGGGCTCAAGGCCGCT
GCGATGCCATCGTCCGCAGCGGGGCCGGCACCGTCGGTCGCACACAA
ATCGCTCGCCGGAGCGCCGCCGTATGGACCGACGGCTGCGTCGAGGT
GCTGGCCGACAGCGGCAACCGCCGGCCCAGTACACGACGCGCGCTA
AGGAGTAGTAACCAGCTCTTGG (SEQ ID NO:30);

hhyg-2:
CCACTCCGTGGCCACCATGAAGAAGCCCGAGCTGACCGCTACCAGCG
TTGAAAAATTTCTCATCGAGAAGTTCGACAGTGTGAGCGACCTGATG
CAGTTGTCGGAGGGCGAAGAGAGCCGAGCCTTCAGCTTCGATGTCGG
CGGACGCGGCTATGTACTGCGGGTGAATAGCTGCGCTGATGGCTTCT
ACAAAGACCGCTACGTGTACCGCCACTTCGCCAGCGCTGCACTACCC
ATCCCCGAAGTGTTGGACATCGGCGAGTTCAGCGAGAGCCTGACATA
CTGCATCAGTAGACGCGCCCAAGGCGTTACTCTCCAAGACCTCCCCG
AAACAGAGCTGCCTGCTGTGTTACAGCCTGTCGCCGAAGCTATGGAT
GCTATTGCCGCCGCCGACCTCAGTCAAACCAGCGGCTTCGGCCCATT
CGGGCCCCAAGGCATCGGCCAGTACACAACCTGGCGGGATTTCATTT
GCGCCATTGCTGATCCCATGTCTACCACTGGCAGACCGTGATGGAC
GACACCGTGTCCGCCAGCGTAGCTCAAGCCCTGGACGAACTGATGCT
GTGGGCCGAAGACTGTCCCGAGGTGCGCCACCTCGTCCATGCCGACT
TCGGCAGCAACAACGTCCTGACCGACAACGGCCGCATCACCGCCGTA
ATCGACTGGAGCGAGGCTATGTTCGGGGACAGTCAGTACGAGGTGGC
CAACATCTTCTTCTGGCGGCCCTGGCTGGCTTGCATGGAGCAGCAGA
CTCGCTACTTCGAGCGCCGGCATCCCGAGCTGGCCGGCAGCCCTCGT
CTGCGAGCCTACATGCTGCGCATCGGCCTGGATCAGCTCTACCAGAG
CCTCGTGGACGGCAACTTCGACGATGCTGCCTGGGCTCAAGGCCGCT
GCGATGCCATCGTCCGCAGCGGGGCCGGCACCGTCGGTCGCACACAA

ATCGCTCGCCGGAGCGCCGCCGTATGGACCGACGGCTGCGTCGAGGT
GCTGGCCGACAGCGGCAACCGCCGGCCCAGTACACGACCGCGCGCTA
AGGAGTAGTAACCAGCTCTTGG (SEQ ID NO:42);

hHygro (SacI site in ORF near 5' end, insert in-frame linker coding for 12 amino acids at 3' end, and SnaBI site added at 3' end in ORF) aagcttgctagcgccaccatgaagaagcccgagctcaccgctaccagcgttgaaaaatttctcatcgagaagttcga cagtgtgagcgacctgatgcagttgtcggagggcgaagagagccgagccttcagcttcgatgtcggcggacgcgg ctatgtactgcgggtgaatagctgcgctgatggcttctacaaagaccgctacgtgtaccgccacttcgccagcgctgc actacccatccccgaagtgttggacatcggcgagttcagcgagagcctgacatactgcatcagtagacgcgcccaa ggcgttactctccaagacctccccgaaacagagctgcctgctgtgttacagcctgtcgccgaagctatggatgctatt gccgccgccgacctcagtcaaaccagcggcttcggcccattcgggccccaaggcatcggccagtacacaacctg gcgggatttcatttgcgccattgctgatccccatgtctaccactggcagaccgtgatggacgacaccgtgtccgccag cgtagctcaagccctggacgaactgatgctgtgggccgaagactgtcccgaggtgcgccacctcgtccatgccgac ttcggcagcaacaacgtcctgaccgacaacggccgcatcaccgccgtaatcgactggtccgaagctatgttcgggg acagtcagtacgaggtggccaacatcttcttctggcggccctggctggcttgcatggagcagcagactcgctacttc gagcgccggcatcccgagctggccggcagccctcgtctgcgagcctacatgctgcgcatcggcctggatcagctc taccagagcctcgtggacggcaacttcgacgatgctgcctgggctcaaggccgctgcgatgccatcgtccgcagc ggggccggcaccgtcggtcgcacacaaatcgctcgccggagcgccgccgtatggaccgacggctgcgtcgaggt gctggccgacagcggcaaccgccggcccagtacacgaccgcgcgctaaggagggtggcggagggagcggtgg cggaggttcctacgtatagtctagactcgag (SEQ ID NO:70);

hhyg-4 atgaagaagcccgagctcaccgctaccagcgttgaaaaatttctcatcgagaagttcgacagtgtgagcgacctgat gcagttgtcggagggcgaagagagccgagccttcagcttcgatgtcggcggacgcggctatgtactgcgggtgaa tagctgcgctgatggcttctacaaagaccgctacgtgtaccgccacttcgccagcgctgcactacccatccccgaag tgttggacatcggcgagttcagcgagagcctgacatactgcatcagtagacgcgcccaaggcgttactctccaaga cctccccgaaacagagctgcctgctgtgttacagcctgtcgccgaagctatggatgctattgccgccgccgacctca gtcaaaccagcggcttcggcccattcgggccccaaggcatcggccagtacacaacctggcgggatttcatttgcgc cattgctgatccccatgtctaccactggcagaccgtgatggacgacaccgtgtccgccagcgtagctcaagccctgg acgaactgatgctgtgggccgaagactgtcccgaggtgcgccacctcgtccatgccgacttcggcagcaacaacgt cctgaccgacaacggccgcatcaccgccgtaatcgactggtccgaagctatgttcggggacagtcagtacgaggtg gccaacatcttcttctggcggccctggctggcttgcatggagcagcagactcgctacttcgagcgccggcatcccga gctggccggcagccctcgtctgcgagcctacatgctgcgcatcggcctggatcagctctaccagagcctcgtggac ggcaacttcgacgatgctgcctgggctcaaggccgctgcgatgccatcgtccgcagcggggccggcaccgtcggt cgcacacaaatcgctcgccggagcgcagccgtatggaccgacggctgcgtcgaggtgctggccgacagcggca accgccggcccagtacacgaccgcgcgctaaggaaggcggtggaggtagtggtggcggaggtagctacgta (SEQ ID NO:71);

hneo-4:
GCTAGCGCCACCATGATCGAACAAGACGGCCTCCATGCTGGCAGTCC
CGCAGCTTGGGTCGAACGCTTGTTCGGGTACGACTGGGCCCAGCAGA
CCATCGGATGTAGCGATGCGGCCGTGTTCCGTCTAAGCGCTCAAGGC
CGGCCCGTGCTGTTCGTGAAGACCGACCTGAGCGGCGCCCTGAACGA
GCTTCAAGACGAGGCTGCCCGCCTGAGCTGGCTGGCCACCACCGGTG
TACCCTGCGCCGCTGTGTTGGATGTTGTGACCGAAGCCGGCCGGGAC
TGGCTGCTGCTGGGCGAGGTCCCTGGCCAGGATCTGCTGAGCAGCCA
CCTTGCCCCCGCTGAGAAGGTTTCCATCATGGCCGATGCAATGCGGC
GCCTGCACACCCTGGACCCCGCTACATGCCCCTTCGACCACCAGGCT
AAGCATCGGATCGAGCGTGCTCGGACCCGCATGGAGGCCGGCCTGGT
GGACCAGGACGACCTGGACGAGGAGCATCAGGGCCTGGCCCCCGCT
GAACTGTTCGCCCGCCTGAAAGCCCGCATGCCGGACGGTGAGGACCT
GGTTGTGACACATGGTGATGCCTGCCTCCCTAACATCATGGTCGAGA
ATGGCCGCTTCTCCGGCTTCATCGACTGCGGTCGCCTAGGAGTTGCCG
ACCGCTACCAGGACATCGCCCTGGCCACCCGCGACATCGCTGAGGAG
CTTGGCGGCGAGTGGGCCGACCGCTTCTTAGTCTTGTACGGCATCGC
AGCTCCCGACAGCCAGCGCATCGCCTTCTACCGCCTGCTCGACGAGT
TCTTTTAATCTAGA
(SEQ ID NO:72);
and hneo-5:
GCTAGCGCCACCATGATCGAACAAGACGGCCTCCATGCTGGCAGTCC
CGCAGCTTGGGTCGAACGCTTGTTCGGGTACGACTGGGCCCAGCAGA
CCATCGGATGTAGCGATGCGGCCGTGTTCCGTCTAAGCGCTCAAGGC
CGGCCCGTGCTGTTCGTGAAGACCGACCTGAGCGGCGCCCTGAACGA
GCTTCAAGACGAGGCTGCCCGCCTGAGCTGGCTGGCCACCACCGGCG

TACCCTGCGCCGCTGTGTTGGATGTTGTGACCGAAGCCGGCCGGGAC
TGGCTGCTGCTGGGCGAGGTCCCTGGCCAGGATCTGCTGAGCAGCCA
CCTTGCCCCCGCTGAGAAGGTTTCTATCATGGCCGATGCAATGCGGC
GCCTGCACACCCTGGACCCCGCTACCTGCCCCTTCGACCACCAGGCT
AAGCATCGGATCGAGCGTGCTCGGACCCGCATGGAGGCCGGCCTGGT
GGACCAGGACGACCTGGACGAGGAGCATCAGGGCCTGGCCCCCGCT
GAACTGTTCGCCCGACTGAAAGCCCGCATGCCGGACGGTGAGGACCT
GGTTGTCACACACGGAGATGCCTGCCTCCCTAACATCATGGTCGAGA
ATGGCCGCTTCTCCGGCTTCATCGACTGCGGTCGCCTAGGAGTTGCCG
ACCGCTACCAGGACATCGCCCTGGCCACCCGCGACATCGCTGAGGAG
CTTGGCGGCGAGTGGGCCGACCGCTTCTTAGTCTTGTACGGCATCGC
AGCTCCCGACAGCCAGCGCATCGCCTTCTACCGCTTGCTCGACGAGTT
CTTTTAATGATCTAGA(SEQ ID NO:73).

The synthetic nucleotide sequence of the invention may be employed in fusion constructs. For instance, a synthetic sequence for a selectable polypeptide rnay be fused to a wild-type sequence or to another synthetic sequence which encodes a different polypeptide. For instance, the neo sequence in the following examples of a synthetic Renilla luciferase-neo sequence may be replaced with a synthetic neo sequence of the invention:
atggcttccaaggtgtacgaccccgagcaacgcaaacgcatgatcactgggcctcagtggtgggctcgctgcaagc aaatgaacgtgctggactccttcatcaactactatgattccgagaagcacgccgagaacgccgtgatttttctgcatgg taacgctgcctccagctacctgtggaggcacgtcgtgcctcacatcgagcccgtggctagatgcatcatccctgatct gatcggaatgggtaagtccggcaagagcgggaatggctcatatcgcctcctggatcactacaagtacctcaccgctt ggttcgagctgctgaaccttccaaagaaaatcatctttgtgggccacgactggggggcttgtctggcctttcactactc ctacgagcaccaagacaagatcaaggccatcgtccatgctgagagtgtcgtggacgtgatcgagtcctgggacga gtggcctgacatcgaggaggatatcgccctgatcaagagcgaagagggcgagaaaatggtgcttgagaataacttc ttcgtcgagaccatgctcccaagcaagatcatgcggaaactggagcctgaggagttcgctgcctacctggagccatt caaggagaagggcgaggttagacggcctaccctctcctggcctcgcgagatccctctcgttaagggaggcaagcc cgacgtcgtccagattgtccgcaactacaacgcctaccttcgggccagcgacgatctgcctaagatgttcatcgagtc cgaccctgggttcttttccaacgctattgtcgagggagctaagaagttccctaacaccgagttcgtgaaggtgaaggg cctccacttcagccaggaggacgctccagatgaaatgggtaagtacatcaagagcttcgtggagcgcgtgctgaag aacgagcagaccggtggtgggagcggaggtggcggatcaggtggcggaggctccggagggattgaacaagatg OZi Oll 0LL'1LL&I 2 110fJ2 2JILLL'L''2 022.5LELL'2? 0,3L'LOIL'S 10 0 02 O}LjLo&
2?oL2? OlL'OL~~~~21,312 0E

uso~~~~~~042uf olt,It, ooMm- oIL,2tu o~2m, OoL' 02732oL' I o SZ
OZ
Si pue agS 'uoisn3 oau-izq) njo~~~~~2t, (Zi : ON C[I

8iz~~o/soozsll/.L3a 190b~0/900Z OAd 6T-~0-LOOZ ~LL08SZ0 FIO

cgaccctgggttcttttccaacgctattgtcgagggagctaagaagttccctaacaccgagttcgtgaaggtgaaggg cctccacttcagccaggaggacgctccagatgaaatgggtaagtacatcaagagcttcgtggagcgcgtgctgaag aacgagcagtaa (neo-hrl-fusion; SEQ ID NO:13).

Example 5 Transcription Factor Binding Sites Used to Identify Sites in Selected Synthetic Sequences TF binding site libraries The TF binding site library ("Matrix Family Library") is part of the GEMS Launcher package. Table 16 shows the version of the Matrix Family Library which was used in the design of a particular sequence and Table 17 shows a list of all vertebrate TF binding sites ("matrices") in Matrix Family Library Version 2.4, as well as all changes made to vertebrate niatrices in later versions up to 4.1 (section "GENOMATIX MATRIX FAMILY LIBRARY

INFORMATION Versions 2.4 to 4.1"). (Genomatix has a copyright to all Matrix Library Family information).

Table 16 Synthetic DNA sequence Genomatix Matrix Family Library GL4B-NN3* Version 2.4 May 2002 luc2A8 and luc2B10 Version 3.0 Nov 2002 Version 3.1.1 A ril 2003 hhyg3 Version 3.1.2 June 2003 hneo3 hhyg4 Version 3.3 August 2003 S eI-NcoI-Ver2 ** Version 4.0 Nov 2003 hneo5 Version 4.1 Feb 2004 hpuro2 *NotI-Ncol fragment in pGL4 including amp gene (pGL4B-NN3) **SpeI-NcoI-Ver2 (replacement for Spel-NcoI fragment in pGL4B-NN3 Table 17 GENOMATIX MATRIX FAMILY LIBRARY INFORMATION
Versions 2.4 to 4.1 A:Matrix Fainily LibraryVersion 2.4 Matrix Family Library Version 2.4 (May 2002) contains 412 weight matrices in 193 families (Vertebrates: 275 matrices in 106 families) Vertebrates li'amily Fami1y lnformation, MatriYName lnformation ~ V$~T.O 1 aryl hydrocarbon receptori / Arnt heterodimers AHR-arnt heterodimers V$AHRR and AHR-related V$AHR.01 aryl hydrocarbon / dioxin receptor factors V$AHRARNT.02 aryl hydrocarbon / Arnt heterodimers, fixed core V$AP1.01 APl binding site V$AP1.02 activator protein 1'~_ ..
V$AP1.03 activator protein 1 . 3 , V$AP1FJ.01 activator protein 1 ;) ;) _.__ . . ...._. __.._._ . . . _ _._.. ._._.
V$AP1F AP1 and related factors! V$NFE2 Ol INF-E2 p45 IV$VMAF.01 v-Maf TCF11/MafG
V$TCF1 1MAFG.01 heterodimers, binding to subclass of AP 1 sites V$BEL1.01. Bel-1 similar region ' ! E
. ..-,... ._._-......-._-...,,__, ........._ . . .... ...... -__...-, ...,...._ []EAL2. 01 activator protein 2 $AP2F [Activator Protein 2 V$AP4R AP4 and Related V$AP4.01 activator protein 4 .. . ...___ .._ . . _ .._- _- _ rotems . ---~
proteins V$AP4.02 [activator protein 4 !
. ._ ___ . . __. . _., Thingl/E47 heterodimer, TH1 bHLH member V$TH1E47.01 specific expression in a variety of embryonic tissues Family Family Information Matrix Name Information V$TALIALPHAE47.01 Tal-lalpha/E47 heterodimer V$TALIBETAE47.01 Tal-lbeta/E47 heterodimer V$TALIBETAITF2.01 Tal-lbeta/ITF-2 heterodimer V$AP4.03 . activator protein 4 AREB6 (Atp1a1 V$AREB6.04 regulatory element binding factor 6) AREB6 (Atplal V$AREB6.02 regulatory element Atplal regulatory binding factor 6) V$AREB element binding AREB6 (Atplal V$AREB6.03 ~ regulatory element binding factor 6) AREB6 (Atplal V$AREB6.01 = regulatory element binding factor 6) __~_.. . . ... ..._. . _ _.._..__E .. .._ __.. ___..._.__ __1 _, . _ . .
Apolipoprotein aI and !
V$ARP1 cIII gene Repressor V$ARP1.01 apolipoprotein AI
Protein regulatory protein 1 BARbiturate-Inducible :
V$BARB El. box from V$BARBIE.01 barbiturate-inducible Pro+eukaryot. genes element POZ/zinc finger protein, transcriptional repressor, V$BCL6.01 translocations observed in diffuse large cell POZ lYxnphoma ! V$BCL6 finger e pr ssed in B- k... .
Cells POZ/zinc finger protein, transcriptional repressor, V$BCL6.02 translocations observed in diffuse large cell lymphoma N$BRAC Brachyury gene, mesoderrn V$TBX5.01 ? T-Box factor 5 site MuCatJOIL.LS
related to Holt-Oram - - -~ -Family Family Information Matrix Name Information J
syndrome F__ develo mental factor p V$BRACH.01 Brachyury V$BRN3.01 POU transcription factor Bm POU domain = Brn-3 V$BRNF
factors factor Brn-2 (N-Oct V$BRN2.01 F3) ABL C-abl DNA binding V$CABL.01 Multifunctional c-Abl src V$C
sites type tyrosine kinase Xenopus homeodomain V$XVENT2.01 factor Xvent-2; early IV$CART Cart-1 (cartilage BMP signaling response homeoprotein 1) V$CART1.01 Cart-1 (cartilage homeoprotein 1) ~ .. _. . ._. _ ....... .. .. ~ Vertebrate caudal Cdx-2 mammalian caudal"
V$CDXF related homeodomain V$CDX2.01 related intestinal transcr.
protein factor V$CEBPB.O1 CCAAT/enhancer Ccaat/Enhancer binding protein beta V$CEBP Binding Protein V$CEBP.02 C/EBP binding site x. w V$CHOP CHOP binding protein V$CHOP.O1 heterodimers of CHOP
and C/EBPalpha V$CDPCR3HD.01 cut-like homeodomain protein . . _ _._._.. . ~ ...... .. _ _ _ .. _.._.i , ..... .
V$CDP.O1 cut-like homeodomain protein CLOX and CLOX
V$CLOX homology (CDP) V$CDP.02 transcriptional repressor factors CDP
, _-. . ...... _ ....- -.-. _ _ ., ........._..~..=..:'~.....,.v ... ._... . .
.._ . . . .,_~ . J
cut-like homeodomain V$CDPCR3.01 protein V$CLOX.O 1 Clox . . _ . _.... ._ ._ _.i c-Myb, important in C-MM, cellular V$CMYB transcriptional V$CMYB.01 hematopoesis, cellular activator equivalent to avian myoblastosis virus Family !Family Information Matrix Name Information ' -- -oncogene v-myb factors which COMP1, cooperates with V$COMP COoperate with V$COMP1.01 myogenic proteins in Myogenic Proteins multicomponent complex, COUP antagonizes HNF-!
Repr. of RXR- 4 by binding site V$COUP mediated activ. & V$COUP.01 competition or synergizes retinoic acid responses by direct protein - protein interaction with HNF-4 CP2-erythrocyte Factor V$CP2F related to drosophila V$CP2.01 CP2 Elfl V$CREB Camp-Responsive V$CREBP1.01 cAMP-responsive Element Binding element binding protein 1 proteins V$CREBPICJUN.01 CRE-binding protein l/c-;
Jun heterodimer V$CREB.O 1 cAMP-responsive element binding protein V$HLF.01 hepatic leukemia factor -.__._..._____ . ..._. ...__ . .. _._.
=.I
-------- - -; E4BP4, bZIP domain, V$E4BP4.01 transcriptional repressor V$CREB.02 cAMP-responsive element binding protein - - .~
V$CREB.03 ! cAMP-response element-' binding protein _.....___.,. _ . ' ._ ._..__ .. ~._.___ cAMP-response element V$CREB.04 binding protein 11V$CREBP1.02 CRE-binding protein 1 ! V$ATF 02 ATF binding site V$ATF.O1 activating transcription factor Tax/CREB complex 1V$TAXCREB.O 1 M.
V$TAXCREB.02 Tax/CREB complex ~_.

Family Family Information Matrix Name ; Informatiora V$VJUN.01 v-Jun ~

E2F, involved in cell V$E2F.02 cycle regulation, interacts with Rb p 107 protein E2F-myc activator/cell E2F, involved in cell V$E2FF cycle regulator V$E2F.03 cycle regulation, interacts with Rb p107 protein = E2F, involved in cell V$E2F.01 cycle regulation, interacts' with Rb p 107 protein BPV bovine papilloma papillioma virus E2 JV$E2.01 virus regulator E2 V$E2TF Transcriptional activator V$E2.02 papilloma virus regulator V$DELTAEF1.01 ~ deltaEF 1 V$EBOR E-BOx Related factors V$XBP1.01 X-box-binding protein 1 V$EBOX E-BOX binding factors V$USF.02 upstream stimulating factor __ , _.__... _... __._ 7$US ; upstream stimulating factor I I V$MYCMAX.03 MYC-MAX binding sites;
_: _ ......
V$SREBP.03 Sterol regulatory element binding protein _ . _ . . . ..__._. ._. _ _._ . _ _ ____ ._. _......., Sterol regulatory element V$SREBP.02 binding protein _ IV$MYCMAX.02 c-Myc/Max heterodimer V$NMYC.01 N-Myc ~) ,_ . .... .,..__ . ._. .. .. ... . . _, __.._._._...._.._ Member of b-zip family, V$ATF6.01 induced by ER
damage/stress upstream stimulatisig V$USF.01 factor F Matrix Name Information Family Family Information V$MYCMAX.01 c-Myc/Max heterodimer V$MAX.01 Max nuclear translocator V$ARNT.O1 AhR
homodimers V$SREBP.O1 Sterol regulatory element binding protein 1 and 2 Jnuclear factor Y (Y-box V$NFY.02 binding factor) V$ECAT Enhancer-CcAaT V$NFY.03 nuclear factor Y (Y-box binding factors binding factor) V$NFY.01 nuclear factor Y (Y-box binding factor) Egr-1/Krox-24/NGFI-A
V$EGR1.01 immediate-early gene product Egr-2/Krox-20 early V$EGR2.01 growth response gene EGR/nerve growth product V$EGRF Factor Induced protein early growth response C & rel. fact. V$EGR3.01 gene 3 product V$NGFIC.01 nerve growth factor-induced protein C
V$WT1.01 Wilms Tumor Suppressor ... _w .. ___..~_ ._,_ , . _ . _~ . _ .. .. ..~._...__, _ Erythroid krueppel like F!ct oid krueppel like V$EKLF V$EKLF.O1 factor (EKLF) _ . _., .. .. . ..
V$E TSF Human and murine V$CETS1P54.01 c-Ets-1(p54) ' -ETS1 Factors nuclear respiratory factor V$NRF2.01 2 GABP: GA binding V$GABP.01 protein -~
V$ELK1.02 Elk-1 _ _ -- _ _ r- - r----- r Family Family Information Matrix Name Information 1V$FLI.01 E_,_, TS family member FLI
V$ETS2.01 c-Ets-2 binding site IV$ETS1.01 ~ c-Ets-1 binding site V$ELK1.01 Elk-1 Pu. 1 (Pu 120) Ets-like V$PU1.01 transcription factor identified in lymphoid B-cells Ecotropic viral V$EVI1.06 integration site 1 encoded factor Ecotropic viral V$EVI1.02 integration site 1 encoded;
"factor , . _ . _. . .
Ecotropic viral V$EVI1.03 integration site 1 encoded ~V$EVIl EVII-myleoid factor transforming protein Ecotropic viral V$EVI1.05 integration site 1 encoded!
factor Ecotropic viral V$EVI1.04 integration site 1 encoded;
factor .~ - ..1 Ecotropic viral V$EVI1.01 } integration site 1 encoded!
ffactor _..
V$FKHD Fork Head Domain V$HFH1.01 ~ HNF-3/Fkh Homolog 11 factors J _. . . _ _.!
V$HFH2.01 [HNF3/Fkh Homolog 2 _. . . .. __ .._. , .. _ . _. . ..... . _. ___ __.~
-----, ! F HNF-3/Fkh Homolog 3 V$HFH3.01 a(= Freac-6) V$HFH8.01 HNF-3/Fkh Homolog-8 =i. . , Xenopus fork head V$XFD1.01 domain factor 1 - -- _ . --, - _ _.
Family IFamily Information Matrix Name Information V$XFD2.01 Xenopus fork head domain factor 2 V$XFD3.01 Xenopus fork head domain factor 3 V$HNF3B.01 Hepatocyte Nuclear Factor 3beta V$FREAC2.01 Fork head RElated = ACtivator-2 V$FREAC3.01 Fork head RElated ACtivator-3 V$FREAC4.01 Fork head RElated ACtivator-4 V$FREAC7.01 Fork head RElated ACtivator-7 .._ _ . .. _~
complex of Lmo2 bound V$LM02COM.02 to Tal-1, E2A proteins , and GATA-1, half-site 2 . .. !
I V$GATA1.04 GATA-binding factor 1 V$GATA1.05 GATA-binding factor 1 V$GATA2.01 GATA-binding factor 2 V$GATA2.02 GATA-binding factor 2 GATA binding factors V$GATA V$GATA3.01 GATA-binding factor 3 fV$GATA3.02 GATA-binding factor 3 . . ... _. _. _. .. _ .__ .._i V$GATA.Ol GATA binding site = ; (consensus) V$GATA1.03 GATA-binding factor 1 _ ! V$GATA1.01 GATA-binding factor 1 !~ V$GATA1.02 factor 1 [GATA-binding Growth Factor growth factor V$GFI1 ' Independence- V$GFI1.01 independence 1 zinc transcriptional finger protein acts as Family Famil Information ormation Matrix Name Information I-irepressor F_ transcriptional repressor V$GKLF Gut-enriched Krueppel V$GKLF.O1 gut-enriched Krueppel-Like binding Factor like factor Glucocorticoid receptor, V$GRE.01 C2C2 zinc finger protein binds glucocorticoid Glucocorticoid dependent to GREs V$GREF responsive and related elements V$ARE.01 ~~ogene receptor binding site V$PRE.01 Progesterone receptor binding site Human Acute V$HAML Myelogenous V$AML1.01 runt-factor AML-1 Leukernia factors , ._ ____. . _.. _._. . _. . .. ._ . ____. ..... _ _ _. ..~
V$HEAT HEATshock factors [V$HSF 1.01 heat shock factor 1 __ . _ .. , , _ ... . . ! . __ __ E-box binding factor ~V$HEN1.01 HEN1 V$HEN1 withut transcript.
activation V$HEN1.02 HEN1 =
Human muscle-specificmuscle-specific Mt FMTB Mt binding site V$MTBF.01 = binding site V$HNF1.01 hepatic nuclear factor 1 V$HNF1 Hepatic Nuclear Factor'll l V$HNF1.02 Hepatic nuclear factor 1 V$HNF4.01 ~ Hepatic nuclear factor 4 ~ Hepatic Nuclear Factor [ _. . _ . . _ . ._._ 1 V$HNF4 4 V$HNF4.02 IHepatic nuclear factor 4( Homeodomain Binding site for S8 type V$HOMS subfarnily S8 V$58.01 homeodomains ,'. .- . . .._......._. _ .. . . ._ ..... . ._ ~-~ Member of the vertebrate Factors with moderate V$HOXA9.01 HOX - cluster of activity to homeo homeobox factors V$HOXF domain consensus -sequence Hox-1.3, vertebrate V$HOX1-3.01 homeobox protein _ . . .J _-.._. . _..... _-._. -.. _. _. ._. . _~ .._,. ._....._.,.. _ .. .
........ . ... .

V$IKRS Ikaros zinc finger family ~T4T VF1. (11 _. T_~~F_1 lllrarnq_11_ enriched in B and T

- _ r------ _ _ _ Family Family Information Matrit Narne Information lymphocytes Ikaros 2, potential V$IK2.01 regulator of lymphocyte differentiation Ikaros 1, potential V$IK1.01 regulator of lymphocyte differentiation Ikaros 3, potential V$IK3.01 regulator of lymphocyte differentiation V$IRF1.01 interferon regulatory factor 1 V$IRFF hiterferon Regulatory V$IRF2.01 rnte rferon regulatory Factors ctor 2 _ .. . _. _ _. -V$ISRE.O1 interferon-stimulated response element TCF/LEF-1, involved in V$LEFF LEF1/TCF V$LEF1.01 the Wnt signal transduction pathway ..... _ .. _ . _ _ .. ._.... .._._. _.

Lentiviral Tata LV$LTUP V$TAACC.O1 UPstream element element V$MEF2 MEF2-myocyte- V$MEF2.05 Ã MEF2 specific enhancer- --- - , binding factor m o enic enhancer V$MEF2.01 fa tor 2 yte enhancer factor V$HMEF2.01 Fyo-. , _ . __ . . .. . _._. . _ , _ V$MMEF2.01 myocyte enhancer factor _.. ._ _.. . . .. _ _ . _, related to serum response !
l V$RSRFC4.01 factor, C4 related to serum response V$RSRFC4.02 factor, C4 2_ ....__ . _ V _._ ~
V$AMEF.01 myocyte enhancer factor ~
mMADS f actor V$MEF2.02 131 Family Family Information Matrix Name Information V$MEF2.03 myogenic MADS
factor V$MEF2.04 myogenic MADS factor _ ~ MEF3 binding site, V$MEF3 MEF3 BINDING V$MEF3.01 present in skeletal SITES muscle-specific transcriptional enhancers Homeodomain factor Homeobox protein V$MEIS aberrantly expressed in V$MEIS1.01 myeloid leukemia MEIS 1 binding site V$MUSCLE INI.01 Muscle Initiator Sequence V$MINI Muscle INItiator V$MUSCLE INI.02 Muscle Initiator Sequence V$MUSCLE INI.03 Muscle Initiator Sequence Mouse Krueppel like Ribonucleoprotein V$MOKF' V$MOK2.01 associated zinc finger factor protein MOK-2 ... __.._. . _i . __. _.._._ . __. _... _.I
_ ..._ Metal induced Metal transcriptiori factor V$MTFl ~anscription factor V$MTF-1.01 1, MRE

V$MYOD.02 myoblast determining factor { ~
~ genic bHLH
V$MYF5.01 MyfS myo f protein ( ..............._..... ._ .._ __.....,....._....._,_.. . .. __. .. .._ ... .
. , .. ,. ... ._._ . ......, myoblast determination V$MYOD.O1 MYOblast gene product , _ _... . V$MYOD Determining factor complex of Lmo2 bound i V$LMO2COM.01 to Tal-1, E2A proteins, ~ and GATA- 1, half-site 1 .. ._ . _. _ .. . .._,__ V$E47.01 MyoD/E47 and MyoD/E 12 dimers ~..._ V$E47.02 ~ TALl/E47 dimers ~--- - ~--- - ;. , Family Family Information NlatrixName Information V$NF1.01 nuclear factor 1 V$MYOF MYOgenic Factors V$MYOGNF1.01 myogenin / nuclear factor 1 or related factors MyT 1 zinc fmger V$MYT 1. 02 transcription factor involved in primary V$MYTl Xenopus MYTl C2HC neurogenesis zinc finger protein MyT1 zinc finger V$MYT1.01 transcription factor involved in primary neurogenesis V$MZFl Myeloid Zinc Finger 1 V$MZF1.01 MZF1 factors V$NFAT Nuclear Factor of V$NFAT.O1 Nuclear factor of Activated T-cells activated T-cells .. , _... . . _ . ... - .. f.. .. . -. .. .__._.. .....~

F F~ Vc-Rel V$NFKAPPAB.01 NF-kappaB
V$NFKAPPAB65.01 ?j NF-kappaB (p65) V$NFKB Nuclear Factor Kappa )B/c-rel j~"
V$NFKAPPAB50.01 ~~NF-kappaB (p50) _.. , w . ~
V$NFKAPPAB.02 NF-kappaB
V$NFKAPPAB.03 NF-kappaB
V$NFKAPPAB.03 _ ..~ ~._ homeo domain factor V$NKX25.01 Nkx-2=5/Csx, tinman homolog, high affinity t sites , , _ . _ .. _ ._,. . ... _ . _ _ _. __. _ ._ . ....._._ _, NKX - Homeodomain homeo domain factor V$NKXH Nloc-2.5/Csx, tinman sites V$NKX25.02 homolog low affinity sites prostate-specific V$NKX3 1.01 homeodomain protein NKX3.1 V$N LF Neuron-specific- =;. V$OLF1.01 olfactory neuron-specific OLFactory factor factor -Family Family Information Matrix Name Information V$NRSF.01 neuron-restrictive Neuron-Restrictive silencer factor V$NRSF Silencer Factor V$NRSE.01 neural-restrictive-silencer-element Rat C2H2 Zn finger V$OAZF Olfactory associated V$ROAZ.01 protein involved in zinc finger protein olfactory neuronal differentiation ._, . _ V$OCT1.02 octamer-binding factor 1 V$OCT1.06 octamer-binding factor 1 V$OCT.01 Octamer binding site (OCT1/OCT2 consensus) V$OCT1 OCTamer binding protein V$OCT1.05 factor 1joctamerbinding V$OCT1.04 octamer-binding factor 1 V$OCT1.03 [octamerbinding factor 1 ,) V$OCT1.01 factor 1[octamerbinding . .
OCT6 Binding V$OCTB factors_astrocytes + V$TST1.01 POU-factor Tst-1/Oct-6 glioblastoma cells OCT1 binding factor octamer-binding factor 1, V$OCTP V$OCT1P.01 POU-s ecific domain (POU-specific domain) p , . . __... . _ . _ _ _ . $ i p53 tumor suppr.-neg.
, V$P53F regulat. of the tumor V$P53.01 tumor suppressor p53 suppr. Rb + Paxl paired domain protein, expressed in the V$PAX1 PAX-1 binding site V$PAX1.01 developing vertebral column of mouse embryos Pax-3 paired domain protein, expressed in V$PAX3 PAX-3 binding sites V$PAX3.01 embryogenesis, mutations correlate to Waardenburg Syndrome Family v F~:mil3 Information Matrix Name Information Pax-4 paired domain V$PAX4 Heterogeneous PAX-4 V$PAX4.01 protein, together with binding sites PAX-6 involved in pancreatic development V$PAX9.01 1 zebrafish PAX9 binding sites V$PAXS cell-specific activating V$PAX5.01 B-cell-specific activating protein protein =
, _. . . . ____ . . .. .. _. . . . _ V$PAX5.02 B-cell-specific activating protein Activ. involved in Iris ~- ~ Pax-6 paired domain V$PAX6 development in the V$PAX6.01 protein mouse eye PAX-2/5/8 binding V$PAX8 V$PAX8.01 PAX 2/5/8 binding site sites . _ _. E . . ..
, .. .. . _ _. _ . .. . _ . . _-___ V$PBXF Homeo domain factor V$PBX1.01 homeo domain factor PBX-1 Pbx-1 V$ACAAT.Ol Avian C-type LTR
CCAAT box _ . _ ... ... .. .... _ . _ _i _ .. _ ....... _.,. _-..... __-__...-._ ...._....

V$PCAT Promoter-CcAaT V$CAAT.O1 cellular and viral binding factors CCAAT box . ___ _ .._..~
V$CLTR CAAT.Ol Mammalian C-type LTR
CCAAT box _ ._ ------_-~
Pdxl (IDX1/IPF1) Pancreatic and V$PDX1.01 pancreatic and intestinal V$PDX1 intestinal homeodomain TF
homeodomain transcr. _ . . _ _. . _ ._ .
factor I Pancreatic and intestinal r V$ISL1.01 lim-homeodomain factor . _. _ .. W. : .. . _ , . .~_~ -. .. .. . ,. . .. f ... ...... . . . . _ - .
.. - . . . . , .1 , . _...,.-.. ..._. ..-_ .. .' .. + i PEROxisome V$PERO proliferator-activated I V$PPARA.01 PPAR/R~ heterodimers receptor fi _ ... __ ._ . _ GHF-1 pituitary Pitl, GHF-1 pituitary V$PIT1 specific pou domain V$PIT1.01 specific pou domain transcription factor transcription factor V$RARF Nuclear receptor for :Family Family Information } Matril Name ~Information member of nuclear _ receptors retenoic acid Retinoid receptor-related V$RTR_ 01 testis-associated receptor , 4 (GCNF/RTR) V$RBIT Regulator of B-Cell V$BRIGHT.O 1 Bright, B cell regulator IgH transcription of IgH transcription Mammalian ;
' V$RBPF RBPJ - kappa V$RBPJK.01 transcriptional repressor i;
' RBP-Jkappa/CBF 1 r' Epstein-Barr virus Epstein-Barr virus V$REBV ~.anscription factor R V$EBVR.O1 ~anscription factor R
~_. ._ _._..
V$RORA1.01 ~R-related orphan receptor alphal i Estrogen receptor and V$RORA ; rar-Rel. Orphan ' V$RORA2.01 -related orphan Receptor Alpha receptor alpha2 i I V$ER.O 1 [estrogen receptor I
Ras-REsponsive I Ras-responsive element V$RREB i element Binding i V$RREB 1.01 j binding protein 1 ' protein , . _ _.
. .~~ . _ 1 Farnesoid X - activated V$FXRE.01 receptor (RXR/FXR
dimer) ~
( VDR/RXR Vitamin D
i V$VDR RXR.01 receptor RXR i i RXR heterodimer f heterodimer site V$RXRF : , I t binding sites I
? VDR/RXR Vitamin D
~ V$VDR RXR.02 i receptor RXR
: heterodimer site i , _i " Nuclear receptor j V$LXRE.01 ~ involved in the regulationl lipid homeostasis i . ..
.
; Special AT-rich Special AT-rich ; sequence-binding protein I
! V$SATB ; sequence binding ; V$SAT1131.01 l, predominantly ~
; protein expressed in thymocytes, ~
; binds to matrix Family = Family InformationI Matrix Name Information attachment regions ~
V$SEFl SEF 1 protein in mouse V$SEF1.01 [SEF I binding site Retrovirus SL3-3 . _ . . ., V$SF1F Vertebrate V$SF1.01 SFl steroidogenic factor steroidogenic factor 1 Smad3 transcription V$SMAD3.01 factor involved in TGF-beta signaling Vertebrate SMAD
V$SMAD family of transcription Smad4 transcription factors V$SMAD4.01 factor involved in TGF-beta signaling V$FAST1.01 FAST-1 SMAD
interacting protein --,Sox-5 ,~ , V$SOX5.01 , V$SRY.O1 sex-determining region Y.
gene product _ _ _ _ .. .. _ .._. _. _ .~ _ HMGI(Y) high-mobility-SOx/sRY-sex/testis group protein I (Y) V$SORY determinig and related architectural transcription;
HMG Box factors V$HMGIY.O1 factor organizing the framework of a nuclear protein-DNA
transcriptional complex FL$-S0 X9.01. [bSooxX (SRY-related HMG
) _. .. ..~
_-=____-=--~
stimulating protein 1 V$SP1.01 SP1, ubiquitous zinc V$SP1F GC-Box finger transcription factor!
factors_SPI/GC

V$GC.O1 ~ GC box elernents ~~~__..,.
V$SRF.02 4 Fse~rn response factor Serum Response V$SRFF ! V$SRF.03 serum res onsive factor element binding Factor i p _ . . ._ _ _. _ .:
1yss.0i serum response factor Family !Fami13 Information r Matrix Name Information V$STAT.O1 signal transducers and activators of transcription STAT5: signal V$STAT5.01 transducer and activator of transcription 5 Signal Transducer and STAT6: signal V$STAT Activator of Transcript. V$STAT6.01 transducer and activator factors of transcription 6 signal transducer and V$STAT1.01 activator of transcription signal transducer and V$STAT3.01 activator of transcription Viral homolog of vErbA, viral homolog of V$T3RH thyroid hormon V$T3R.01 thyroid hormone receptor' receptor alphal (AEV alphal vErbA) V$TATA.02 Mammalian C-type LTR
TATA box Avian C-type LTR
Tata-Binding Protein V$ATATA.01 TATA box , V$TBPF Factor V$TATA.01 cellular and viral TATA
box elements V$MTATA.01 Muscle TATA box _.. ._ ..._,_. ._ :.
_ TCF11 transcription TCF11/KCR-F1/Nrfl ( V$TCFF V$TCF11.01 Factor homodimers __. ._..! . __ _ ._.. J .. .._ .________. . ....__._.._ . .._..__._.!
V$TEAF TEA/ATTS DNA V$TEF1.01 TEF-1 related muscle factor binding domain factors _ . . _ _ _. , .. _ . _ _ . _ . . . . _ _ . _. _ ... . . _ , .
Thyroid transcription Thyroid transcription V$TTFF factor-1 V$TTF1.01 factor-1 (TTF1) binding site chicken Vitellogenin~i PAR-type chicken V$VBPF gene Binding Protein V$VBP.01 vitellogenin promoter-factor binding protein Family Family Information Matrix Name Information _ r - - _ V~ viral myb V$VMYB=02 v-Myb $
oncogene V$VMYB.01 v-Myb winged helix protein, Winged Helix and ZF5 involved in hair V$WHZF binding sites V$WHN.01 keratinization and thymus epithelium differentiation V$RFX1.01 X-box binding protein V$XBBF X-box binding Factors V$RFX1.02 X-box binding protein V$MIF1.01 MIBP-1 / RFX1 complex Se-Cys tRNA gene V$STAF.02 transcription activating Xenopus SEleno Uactor V$XSEC Cystein t-RNA activiating factor Se-Cys tRNA gene V$STAF.01 transcription activating factor . .. ._ . _. . .
activator/repressor V$YY1F binding to transcr. init. V$YY1.01 ~ Yin and Yang 1 site V$ZBPF Zinc binding protein V$ZBP89.01 Zinc finger transcription factor factor ZBP-89 ZincFinger with V$ZFIA ! InterAction domain V$ZID.01 zinc finger with factors interaction domain _ __ _. _~ _- _ ! . _ .. . . . __~ ._ ._. _ .. _. .. . . .
Genoinatix Software GmbH 1998-2002 - All rights reserved.

B. Chanpes from Family-Library Version 2.4 to Version 3.0 Matrix Family Library Version 3.0 (Nov 2002) contains 452 weight matrices in 216 families (Vertebrates: 314 matrices in 128 families) New weight matrices - Vertebrates Faily Family Iuformat on Matrix Name Matrix Information BTB/POZ-bZIP
AP1 and related transcription factor V AP 1 F factors V$BACH 1.01 BACH 1 forms heterodimers with the small Maf protein family NMP4 (nuclear matrix V CIZF CAS interating zinc V$NMP4.01 protein 4) / CIZ (Cas-finger protei interacting zinc finger protein) Camp-Responsive ~ Activating transcription V$CREB Element Binding V$ATF6.02 factor 6, member of b-zip proteins family, induced by ER
stress Ubiquitous GLI - GLI-Krueppel-related V$E4FF Krueppel like zinc V$E4F.01 transcription factor, finger involved in regulator of adenovirus cell cycle regulation E4 promoter Growth Factor Growth factor Independence-V GFIl hanscriptional V$GfI1B.01 independence 1 zinc repressor finger protein Gfi-1B
F~L$GLIF GLI zinc finger V$GLI1.01 Zinc finger transcription family factor GLI1 . . ...
Runt-related transcription Human Acute factor 2/ CBFAl (core-V$HAMLI Myelogenous V$AML3.01 binding factor, runt ~
Leukemia factors domain, alpha subunit 1) ~
homologues of Drosophila hairy and V$HESF V$HES1.01 enhancer of split enhancer of split homologue 1 (HES-1) complex _., ._. . _ ._ ._ . _. . . ._. .
-.... .~

~~ V$HIF1.01 ~ Hypoxia induced factor-1 Hypoxia inducible (HIF-1) V$HIFF factor, bHLH / PAS __ _ _. . . .._.
Hypoxia inducible factor, protein family V$HIF1.02 bHLH / PAS protein family __ ..._... _ FFamily ~ ly Matrix Name Matrix Information.
Informahon Liver enriched Cut -Onecut Homeodomain V$HNF6 Homeodomain V$HNF6.01 transcription factor HNF6 factor HNF6 (ONECUT) Cone-rod homeobox-containing containing transcription Factors with factor / otx-like moderate activity to homeobox gene V HOXF homeo domain Homeobox protein consensus sequence V$EN1.01 engrailed (en-1) V$PTX1.01 Pituitary Homeobox 1 (Ptxl) FV$IRF3.01 Interferon regulatory V IRFF Interferon factor 3 (IRF-3) Regulatory Factors Interferon regulatory V$IRF7.01 factor 7 (IRF-7) ~ V$MAZ.01 Myc associated zinc _ Myc associated zinc ~nger protein (MAZ) V MA'ZF fingers MYC-associated zinc V$MAZR.01 finger protein related transcription factor Homeodomain factor aberrantly Binding site for V$MEIS V$MEIS1.01 monomeric Meisl expressed in myeloid leukernia homeodomain protein ~ Microphthahnia MIT (microphthalmia V$MITF transcription factor V$MIT.O1 transcription factor) and Ribonucleoprotein Mouse Krueppel V MOKF V$MOK2.02 associated zinc finger 1 like factor 'protein MOK-2 (human) DNA binding site for V$~~ NeuroD, Beta2, ! V$NEUROD1.01 NEUROD1 (BETA-2 HLH domain E ! E47 dimer) __.. _ .. _ . . _. ~ _ V NF 1 F Nuclear Factor 1 V NF 1 02 Nuclear factor 1 CTF 1 (~ I I~ ( ) NKX/DLX - DLX-1, -2, and -5 binding~
V$NKXHI V$DLX1.01 sites Homeodomain sites Distal-less 3 V$DLX3.01 homeodomain transcription facto mm F

VH6 homeodomain _ 141 HMX3 5.1 Family ~ - - -Family 11latrix Name Matrix Information Information F- - ~ ~ transcription factor V$MSX.01 Homeodomain proteins ~MSX-1 and MSX-2 Muscle segment homeo V$MSX2.01 box 2, homologue of Drosophila (HOX 8) Neural retina Neural retinal basic V NRLF leucine zipper V$NRL.01 leucine zipper factor (bZIP) [V$PARF PAR/bZIP family V$DBP.01 Albumin D-box binding protein V$PBX1 MEIS1.01 Binding site for a Pbx 1 /Meis 1 heterodimer V$PBXC PBX1 - MEIS1 V$PBX1 MEIS1.02 (Pbxl/Meisl ~ Binding site for a complexes heterodimer V$PBX1 MEIS1.03 Binding site for a {
Pbxl/Meisl heterodimer _ _. .. ._ _... _ _ . __ .. _.__~.._._._..._ _ . Promyelocytic leukemia V PLZF C2H2 zinc finger V$PLZF.01 Jzink finger (TF with nine $ protein PLZF Krueppel-like zink fingers) Y Halfsite of PXR
j (pregnane X
~receptor)/RXR resp. CAR
V$PXRF Pregnane X receptor' V$PXRCAR.01 (constitutive androstane receptor)/RXR
heterodimer binding site v-ERB and rar- Monomers of the nur V$RORA related Orphan V$NBRE.01 subfamily of nuclear receptors (nur77, nurrl, Receptor Alpha nor-1)..---..__.-__.__.
t 3 Alpha (1)-fetoprotein Vertebrate transcription factor (FTF), V$SF1F V$FTF.01 1 steroidogenic factor liver receptor homologue- {
1 1 (LHR-1) ! Sine oculis ( SIX) SIX3 / SlXdomain (SD) } V$SIXF homeodomain V$SIX3.01 and Homeodomain (HD) factors ~ transcription factor TALE TG-interacting factor Homeodomain class V$TALE V$TGIF.01 belonging to TALE class recognizing TG
motives of homeodomain factors .
_ _ -- r-- - _ _ _-! Family Fatmly Matrix Name Matrix Information.
Information ZF5 POZ domain Zinc finger / POZ dornain kZF5F zinc finger kF5.o1 transcription factor Weight matrices renamed = V$MEIS1.01 renamed to V$MEIS1 HOXA9.01 Weight matrices moved to other families = V$BEL1.01 moved from V$AP1F to V$BEL1 = V$NF1.01 moved from V$MYOF to V$NF1 = V$ER.01 moved from V$RORA to V$EREF
= V$T3R.01 moved from V$T3RH to V$RORA

= V$CLTR CAAT.01 moved from V$PCAT to V$RCAT
= V$FAST1.01 moved from V$SMAD to V$FAST

Weight matrices removed = V$MUSCLE INI.03 C..Changes from Family Librarv Version 3.0 to Version 3.1.

Matrix Family Library Version 3.1 contains 456 weight matrices in 216 families (Vertebrates: 318 matrices in 128 families) New weight matrices - Vertebrates _ . _ .. _ . _ _,_ . . . ~ . _. . _ Family Family Infortnation Matrix Name Matrix Information !TCF/LEF-1, involved in the V$LEFF ;, LEF1/TCF V$LEF1.02 i Wnt signal transduction pathway Zebrafish PAX2 paired V PAX2~ PAX-2 binding sites V$PAX2.01 domain protein _ _. . _ _._._ .~ _._ . = . _ .._ . ._ . .. {

V$PAX51 cell-specific V$PAX5.03 PAX5 paired domain protein activating protein , .. _ . __. . _, . _. . . ._ . . ._._ _ __._.. . . _ PAX4 paired domain binding V$PAX4 PD.O1 site V PAX6 PAX-4/PAX-6 paired ~-domain binding sites PAX6 paired domain and V$PAX6.02 ~ homeodomain are required for binding to this site .
V$ZBPF Zinc binding protem V$ZF9.01 Core promoter-binding factor protein (CPBP) with 3 Krueppel-type zinc fingers Weight matrices modified = V$AML1.01 = V$AML3.01 Weight matrices moved to other families = V$ARNT.01 moved from V$EBOX to V$HIFF (ARNT is a synonym for HIF1 B) Weight matrices removed = V$SEF1.01 = V$OCT1.03 Version 3.1.1 (Apri12003) Matrices V$Il2F3.01 and V$IRF7.01 corrected.
Version 3.1.2 (June 2003) Matrix V$GfI1B.01 corrected.

D. Changes from Family-Library Version 3.1 to Version 3.3 Matrix Family Library Version 3.3 (August 2003) contains 485 weight matrices in 233 families (Vertebrates: 326 matrices in 130 families) New weight matrices - Vertebrates -- - - . _ _ Family Family Matrix Name 112atrix Iuformation Information Estrogen Response Canonical palindromic V$EREF Elements V$ER.02 estrogen response element (ERE) Basic transcription V SP1F GC-Box V$BTEB3.01 element (BTE) binding factors_SP1/GC protein, BTEB3, FKLF-Cell cycle-dependent Cell cycle element, CDF-1 binding V$CDEF regulators: Cell V$CDE.01 site (CDE/CHR tandem cycle dependent elements regulate cell ]element cycle dependent repression) Cell cycle gene Cell cycle homology region regulators: Cell (CDE/CHR tandem V CHRF } cycle homolo g1' V$CHR.O1 E elements regulate cell element 1 cycle dependent ! repression) Hypoxia inducible Binding site of factor, bHLH / Clock/BMAL1 V$HIFF ' V$CLOCK_BMAL1.01; heterodimer, PAS protein NPAS2/BMAL1 Ifamily _ heterodimer _..!.....__._. _. ____. _ _.
i rDomain ork Head factor VV$FKHRL1.01 factors OXO) _.
Tumor suppressor p53 ! p53 tumor suppr.- V$P53.02 (5' half site) V$P53F neg. regulat. of the ; --tumor suppr. Rb ! V$P53.03 Tumor suppressor p53 (3' half site) Weight matrices modified = V$GFI1.01 E. Changes from Family Library Version 3.3 to Version 4.0 Matrix Family Library Version 4.0 (November 2003) contains 535 weight matrices in 253 families (Vertebrates: 339 matrices in 136 families) New weight matrices - Vertebrates F y Family Information Matrix Name Matrix Information Amino acid response V AARF AARE binding factors V$AARE.01 element, ATF4 binding site MAF and AP1 related V$BACH2~01 Bach2 bound TRE
V$AP1R ~ ~ Nuclear factor (erythroid-factors V$NFE2L2.01 derived 2)-like 2, NRF2 Vertebrate caudal V$CDXF related homeodomain V$CDX1.01 Intestine specific Fhomeodomain factor CDX-1 protein Homolog to deformed epidermal NUDR (nuclear DEAF-1 V DEAF autoregulatory factor-1 V$NUDR.01 related transcriptional regulator protein , from D. melanogaster Human and murine Ets - family member ELF-2 V$ETSF ETS1 factors V$ELF2.01 (~~la) V$GABF GA-boxes V$GAGA.01 GAGA-Box V HNF1 Hepatic Nuclear Factor V$HNF1.03 [HePatic nuclear factor 1 _ ....._ ._. _..__. _.__ . ._ Factors with moderate =
Vertebrate bicoid-type V$HOXF activity to homeo domain consensus V$GSC.01 homeodomain protein Goosecoid sequence Lim homeodomain Homeodomain binding site V$LHXF " V$LHX3.01 in LI1VI/Homeodomain factor factors E I 1~]KX/DLX - Homeodomain protein V$NZI; V$NKX32.01 NKX3.2 (BAPX1, NKX3B, ( homeodomain sites Bagpipe homolog) ! Mammalian transcriptional V RBPF RBPJ - kappa V$RBPJK.02 ___._ __. repressor RBP-Jkappa/CBF1 I Zinc finger protein RP5 8 RP58 (ZFP238) zinc (ZNF238) associated V$RP58 V$RP58.01 ' finger protein preferentially with heterochromatin Weight matrices modified = V$GRE.01 = V$NFY.03 Weight matrices moved to other families = V$BACH1.01 moved from V$AP1F to V$AP1R
= V$NFE2.01 moved from V AP 1 F to V$AP 1R

= V$TCF11MAFG.01 moved from V$AP1F to V$A.P1R
= V$VMAF.01 moved from V AP1F to V$AP1R
F.,.Changes from Famil), Library Version 4.0 to Version 4.1 Matrix Family Library Version 4.1 (February 2004) contains 564 weight matrices in 262 families (Vertebrates: 356 matrices in 138 families) New weight matrices - Vertebrates . _ - . ----- _ __ ----- _--_ , RamilY { Familb,r lnformationi Matrix iyame iNialriX Information Basonuclein rDNA Basonuclin, cooperates V BNCF transcription factor V$BNC.01 with USF1 in rDNA Poll (Poll) transcription) - , --------z c-Myb, important in C-myb, cellular hematopoesis, cellular V$CMYB' transcriptional V$CMYB.02 equivalent to avian activator myoblastosis virus oncogene v-myb LBP-lc (leader-binding CP2-erythrocyte V$CP2F Factor related to V$CP2.02 protein-lc), LSF (late SV40 factor), CP2, SEF
drosophila Elfl (SAA3 enhancer factor) Basic and erythroid Basic krueppel-like factor V$EKLF V$BKLF.01 Krueppel like factors (KLF3) _ Heterodimers of the bHLH transcription bHLH transcription V$HAND factor dimer of V$IiAND2 E 12.01 factors HAND2 (Thing2) F HAND2 and E12 and E12 Hypoxia inducible Basic helix-loop-helix V$HIFF factor, bHLH / PAS V$DEC1.01 a protein known as Decl, protein family Stra13 or Sharp2 Onecut CUT-homeodomain ~V$HNF6 Homeodomain factO V$OC2.01 { transcription factor HNF6 } Onecut-2 Factors with Homeodomain V HOXF moderate activity to V$OTX2.01 b'anscription factor Otx2 homeo domain (homolog of Drosophila consensus sequence orthodenticle) ; Family Family Inforniation Nlatrix Name ! Matrix Infornaation V$GSH1.01 Homeobox transcription factor Gsh- 1 Interferon regulatory V$IRFF hiterferon V$IRF4.01 factor (IRF)-related ' Regulatory Factors protein (NF-EM5, PIP, LSIRF, ICSAT) Lim homeodomain L1M-homeodomain V$LHXF factors V$LMX1B.01 transcription factor MYT 1 C2HC zinc Myelin transcription V$MYT1 finger protein V$MYT1L.01 factor 1-like, neuronal C2HC zinc finger factor 1 NeuroD, Beta2, Neurogenin 1 and 3 V$W~ HLH domain V$NEUROG.01 (ngnl/3) binding sites v-1VIyb, viral myb variant V$VMYB.03 from transformed BM2 AMV-viral myb cells V$VMYB; oncogene V$.VMYB..04 v-Myb, AMV v-myb E V$VMYB.OS v-1VIyb, variant of AMV
v-rnyb Transcriptional repressor, Zinc binding protein binds to elements found V$ZBPF factor V$ZNF202.01 predominantly in genes that participate in lipid metabolism Weight matrices modified = V$CMYB.01 = V$PTX1.01 Copyright Genofnatix Software GrnbH 1998-2004 - All rights f eser=ved Example 6 Summary of Design for Particular Selectable Genes TF binding sites and search parameters Each TF binding site ("matrix") belongs to a matrix family that groups functionally similar matrices together, eliminating redundant matches by Matlnspector professional (the search program). Searches were limited to vertebrate TF binding sites. Searches were performed by matrix family, i.e., the results show only the best match from a family for each site. MatInspector default parameters were used for the core and matrix similarity values (core similarity = 0.75, matrix similarity = optimized).

Table 18 Gene Desi agn tions A. Synthetic hygromycin gene Sequence Description 1Vlatrix Library hyg from pcDNA3.1/Hygro Not applicable hhyg humanized ORF Not applicable hhyg-1 First removal of undesired sequence matches Ver 3.1.2 Jun hhyg-2 Second removal of undesired sequence Ver 3.1.2 Jun rriatches 2003 hhyg-3 Third removal of undesired sequence Ver 3.1.2 Jun matches 2003 hHygro Changes to ORF and add linker Ver 3.3 Aug hhyg-4 Fourth removal of undesired sequence Ver 3.3 Aug matches 2003 B. Synthetic neomycin gene Sequence Description MatY-ix Librarv neo from pCI-neo or psiSTRIKE neo Not applicable hneo humanized ORF Not applicable hneo-1 First removal of undesired sequence matches Ver 3.1.2 Jun hneo-2 Second removal of undesired sequence Ver 3.1.2 Jun matches 2003 hneo-3 Third removal of undesired sequence Ver 3.1.2 Jun matches 2003 hneo-4 Changed 5' and 3' flanking regions/cloning Ver 4.1 Feb sites 2004 hneo-5 Fourth removal of undesired sequence Ver 4.1 Feb matches 2004 C. Synthetic puromycin gene Sequence Description Matrix Library puro from psiSTRIKE puromycin Not applicable hpuro humanized ORF Not applicable hpuro-1 First removal of undesired sequence matches Ver 4.1 Feb hpuro-2 Second removal of undesired sequence Ver 4.1 Feb matches 2004 Note: the above sequence names designate the ORF only (except for Hhygro which includes flanking sequences). Addition of "F" to the sequence name indicates the presence of up- and down-stream flanking sequences. Additional letters (e.g.,"B") indicate changes were made only to the flanking regions Table 19 Sequences in Synthetic Hygromycin Genes TFBS in hhyg Before removal of TFBS from hhyg (94 matches) 1"amilN1111,1trix"I"' Fu rtherlnform:rtion V$PCAT/CAAT O1 cellular and viral CCAAT box ~. ~_.. _... _...._ ~. _ .. . _ . _ _ . ... _ _. ._..____, Ã V$MINUMUSCLE M.02 Muscle Initiator Sequence V$MINUMUSCLEINI.Ol ' Muscle Initiator Sequence [
V$ETSF/PU1.01 Pu.1 (Pu120) Ets-like transcription factor identified in lymphoid B-cells V$AH1ZR/AHRARNT.02 hydrocarbon / Arnt heterodimers, fixed ! core .. ,..._ ...V$EGRF/EGR3.01 early growth response gene 3 product . _ _...
V$AP4R/AP4.01 ! Activator protein 4 _ _ _ ~~ __ .. ..
V$EGRF/NGFIC.O1 Nerve growth factor-induced protein C
_ _ V$MAZF/MAZ.01 Myc associated zinc finger protein (MAZ) Core promoter-binding protein (CPBP) with V$ZBPF/ZF9.01 3 Krueppel-type e zinc fingers V$CREB/ATF6.02 Activating transcription factor 6, member of b-zip family, induced by ER stress V$EGRF/EGR3.01 early growth response gene 3 product Core promoter-binding protein (CPBP) with V$ZBPF/ZF9.01 3 Krueppel-type zinc fingers ___ V$HIFF/HIF1.02 Hypoxia inducible factor, bHLH / PAS

Family/matrix~* Further Information protein family V$E2FF/E2F.01 E2F, involved in cell cycle regulation, interacts with Rb p107 protein V$AP4R/AP4.01 Activator protein 4 ~
V$HEN1/HEN1.02 HEN1 IV$MYOD/E47.01 MyoD/E47 and MyoD/E12 dimers V$EGRF/EGR3.01 early growth response gene 3 product Ribonucleoprotein associated zinc finger V$MOKF/MOK2.02 protein MOK-2 (human) V$SP1F/GC.01 [GC box elements V$NRSF/NRSE.01 Neural-restrictive-silencer-element V$RORA/RORA2.01 RAR-related orphan receptor alpha2 V$ZBPF/ZF9.01 Core promoter-binding protein (CPBP) with 3 Krueppel-type zinc fingers Zinc finger / POZ domain transcription V$ZF5F/ZF5.01 factor _ . ._. .
V$AHRR/AHRARNT.02 Aryl hydrocarbon / Arnt heterodimers, fixed core V$AP1F/TCF1 1MAFG.01 TCF11/MafG heterodimers, binding to subclass of AP 1 sites .._ _ _ . . . _. _._ _ _ _. ._. _ . . _ , V$EKLF/_KLF.01 Erythroid krueppel like factor (EKLF) ~
V$NRSF/NRSF.O1 Neuron-restrictive silencer factor V$NRSF/NR_E.01 Neural-restrictive-silencer-element . . __ _ . . .
V$EBOX/MYCMAX.03 MYC-MAX binding sites V$RXRFlFXRE.01 Farnesoid X- activated receptor (RXR/FXR
dimer) V$AHRR/A HRARNT.02 ~1 hydrocarbon / Arnt heterodimers, fixed core Winged helix protein, involved in hair V$WHZF/WHN.01 keratinization and thymus epithelium differentiation V$EGRF/EGR1.01 [Egr-i/Krox-24/NGFI-A immediate-early gene product V$SMAD/SMAD3.01 Smad3 transcription factor involved in TGF-beta signaling V$MOKF/MOK2.01 [Ribonucleoprotein associated zinc finger ' protein MOK-2 (mouse) _ _..__._. . _._ , V$MYOD/MYOD.02 Myoblast determining factor .----_. - ----_--- -.. _ --_--___, Family/matrix'k k Further Information V$E4FF/E4F.01 [diI-Krueppel-related transcription factor, regulator of adenovirus E4 promoter V$MOKF/MOK2.01 Ribonucleoprotein associated zinc finger protein MOK-2 (mouse) Egr-2/Krox-20 early growth response gene V$EGRF/EGR2.01 product V$EGRF/EGR3.01 early growth response gene 3 product V$HIFF/HIF1.02 Hypoxia inducible factor, bHLH / PAS
protein family .
V$EBOX/USF.02 Upstream stimulating factor V$HIFF/ARNT.01 AhR nuclear translocator homodimers V$ZF5F/ZF5.01 Zinc finger / POZ domain transcription factor Member of b-zip family, induced by ER
V$EBOY.../ATF6.01 damage/stress, binds to the ERSE in association with NF-Y
, . . .._. . _. . . ._ __ _. . _____.... . _ ._. . _ _.__... _---__ ...
V$BELIBEL1.01 Bel-1 similar region (defined in Lentivirus LTRs) V$NRSF/NRSE.01 Neural-restrictive-silencer-element ____. ~..._.. ~
.~ V$MYOD/MYOD.01 Myoblast determination gene product ._ _ . . ...- , ...__ _. __...
-.-_-...., V$NEUR/NEUROD 1.O l DNA binding site for NEUROD 1 (BETA-2 E47 dimer) V$AHRR/AHRARNT.01 1 hydrocarbon receptor / Arnt heterodimers V$HIFF/ARNT.O1 AhR nuclear translocator homodimers V$VMYB/VMYB.02 . . ._.. . . _y _ _ ._.. ._.. ._' V$MOKF/MOK2.01 ~bonucleoprotein associated zinc finger I protein MOK-2 (mouse) V$PAX5/PAX5.01 B~cell-specific activating protein . V$PBXC/PBX1 MEIS1.02i Bindin site for a Pbxl/Meisl heterodimer ~
V$MYOF/1\4YOGNF1.01 ~ Myogenin / nuclear factor 1 or related factors=
~~..:._... -..:;=..~, ~
V$SRFF/SRF.03 Serum responsive factor IV$CP2F/CP2.01 CP2 V$OAZF/ROAZ.O1 Rat C2H2 Zn finger protein involved in olfactory neuronal differentiation V$AHRR/AHR.01 Aryl hydrocarbon / dioxin receptor V$M11~TI/MUSCLE IlvL01 Muscle Initiator Sequence _._ __ ... _.. _- ... _ . _._. .___, V$PAXS/PAX5.02 B cell-specific activating protein Family/matrix** Further Tnformation V$ZBPF/ZF9.01 Core promoter-binding protein (CPBP) with 3 Krueppel-type zinc fingers Member of b-zip family, induced by ER
V$EBOX/ATF6.01 damage/stress, binds to the ERSE in association with NF-Y
V$EGRF/NGFIC.01 Nerve growth factor-induced protein C
Zinc finger / POZ domain transcription V$ZF5F/ZF5.01 factor ; V$AP4R/A34.02 Activator protein 4 V$NBBF/MIF1.01 MIBP-1 / RFX1 complex V$EGRF/EGR3.01 early growth response gene 3 product Winged helix protein, involved in hair V$WHZF/WHN.01 keratinization and thymus epithelium differentiation V$PAXS/PAX5.01 B-cell-specific activating protein Winged helix protein, involved in hair V$WHZF/WHN.01 keratinization and thymus epithelium differentiation V$PAXS/PAX5.01 B-cell-specific activating protein a~V$PAX5/PAX5.03 PAX5 paired domain protein . .. . _ . .. ,... . .. -._ . , ,.. . ..... . . _ _.... . . ..... . _ . . . h _......,,.....~_..., .--; V$PAX5/PAX5.03 PAX5 paired domain protein _..._ _. . _._ .. ___ . . _ ._ _ .
Core promoter-binding protein (CPBP) with V$ZBPF/ZF9.01 3 Krueppel-type zinc fingers _. ., _._. . _.
V$CP2F/CP2.01 CP2 V$MNUMUSCLE IlVI.02 Muscle Initiator Sequence V$AP2F/A12.01 Activator protein 2 ~ W __. . _ _ . ..:.
V$PAXS/PAX5.01 B-cell-specific activating protein ~..__...
V$AHRR/AHRARNT.02 !Ary1 hydrocarbon / Arnt heterodimers, fixed ! core uscle Ltutiator Se uence INL02' _ V$MINUMLTSCLE M ..- _ ._ . . . , q_ . , .. ....... ~~ . , ....... ,. . _ . .k V$EGRF/EGR3.01 early growth response gene 3 product V$SP1F/SP1.01 stimulating protein 1 SPl, ubiquitous zinc finger transcription factor V$ZBPF/ZF9.01 3 oe o m oter-bZ ning protein (CPBP) with pp type c fingers V$EGRF/EGR1.01 J Egr-1/Krox-24/NGFI-A immediate-early gene product~

V$EGRF/WT1.01 i Wilms Tumor Suppressor - - - _-- ---. _-- -- _ - _ - ,._ _ _ _- ------- -- - - __. _ _ _ _ _ Family/matrix** Further Informatiarn V$SP1F/SP1.01 stimulating protein 1 SP1, ubiquitous zinc finger transcription factor V$RCAT/CLTR CAAT.01 Mammalian C-type LTR CCAAT box rt~eppelromo-type ter-binding protein (CPBP) with V$ZBPF/ZF9.01 zinc fingers ~V$EGRF/WT1.01 Wilms Tumor Suppressor V$EGRF/WT1.01 Wi1ms Tumor Suppressor V$NF 1 F/NF 1.01 Nuclear factor 1 .. ._._ _ . .,..__. ._.__ _.. _ . .. _ V$PDX1/PDX1.01 Pdxl (IDX1/IPF1) pancreatic and intestinal ~
homeodomain n TF
**matches are listed in order of occurrence in the corresponding sequence TFBS in hhyg3 After removal of TFBS from hhyg2 (3 matches) FamilN- /uiat.rixC'urther Infortnat.i(io n _ _..~ ...~ , V$MINIIMUSCLE INI.02 Muscle Initiator Sequence V$PAX5/PAX5.02 B-cell-specific activating protein .. .
~~___...._.__ _ _ . .. .. .. _ . ._.._. _. . , V$VMYB/VMYB.02 v-Myb **matches are listed in order of occurrence in the corresponding sequence TFBS in hHygro Before removal of TFBS from hHygro (5 matches, excluding linker) Family/matrix** Further Information V$MINUMUSCLE Muscle Initiator Sequence M.02 V$PAXSlPAX5.02 B-cell-specific activating protein _.
V$AREB/AREB6. (Atplal regulatory element binding factor 6)j 4 ~7B6 _ ._ ._ . _..... _ _~
V$VMYB/VMYB. v-M b ,02 y Cell cycle-dependent element, CDF-1 binding site i V$CDEF/CDE.01 ''; (CDE/CHR tandem elements regulate cell cycle dependent repression) **matches are listed in order of occurrence in the corresponding sequence TFBS in hhyg4 After removal of TFBS from hHygro (4 matches) Family/matrix** Further Tnformation .V$MINUMUSCLE 1NI.02 Muscle Imtiator Se uence .
.~ .._ q.
V$PAX5/PAX5.02 a B-cell-specific activating protein V$AREB/AREB6.04 ~EB6 (Atplal regulatory element binding factor 6) V$VMYB/VMYB.02 v-Myb **matches are listed in order of occurrence in the corresponding sequence Table 20 Sequences in Synthetic Neomycin Genes TFBS in hneo Before removal of TFBS from hneo (69 matches) _ - = - -j I,amilN !matri~'~ Fui ther Information V$PCAT/CAAT.01 cellular and viral CCAAT box ;V$ZFIA/ZID.O 1 Zinc finger with interaction domain V$AP1F/TCFIIMAFG.01; TCF11/MafG heterodimers, binding to subclass of AP 1 sites ~ . ._.,... . __.. . _...,.._ . ..... . .... ....... . ..... ........
.,,.._........ _..... ... ....,......... ._...._..... ....f ~V$MINUMUSCLE M.01; Muscle Irutiator Sequence V$AHRR/AHRARNT.01 { Aryl hydrocarbon receptor / Arnt heterodimers V$HIFF/HTF1.02 Hypoxia inducible factor, bHLH / PAS
protein family V$SP1F/G O1 ~ GC box elements z._...~_ . _ 1V$MINUIVIUSCLE M.02 Muscle Initiator Sequence __ __..
V$CP2F/CP2.01 a CP2 ~
Winged helix protein, involved in hair V$WHZF/WHN.01 keratinization and thymus epithelium + differentiation V$PAX5/PA.X5.02 B-cell-specific activating protein V$ZFSF/ZF5.01 Zinc finger / POZ domain transcription r facto ....
y _ .. lCore . .~ ............V$ZBPF9.01 promoter-binding protein (CPBP) with 3 Krueppel-type zinc fingers V$ZBPF/ZF9.01 A Core promoter-binding protein (CPBP) -Family/matrix** Further Information ~- with 3 I~rueppel-type zinc fingers V$HIFF/HIF1.02 Hypoxia inducible factor, bHLH / PAS
protein family V$AHRR/AHRARNT.01 ~ Ary1 hydrocarbon receptor / Arnt heterodimers _. ..___ . , V$NRSF/NRSE.01 INeural-restrictive-silencer-element V$HIFF/HIF1.02 Hypoxia inducible factor, bHLH / PAS
protein family V$CREB/ATF6.02 ~ Activating transcription factor 6, member of b-zip family, induced by ER stress V$RXRF/VDR RXR.01 VDR/RXR Vitamin D receptor RXR
heterodimer site ~V$PCAT/CAAT.01 cellular and viral CCAAT box V$NRSF/NRSE.01 Neural-restrictive-silencer-element i V$P53F/P53.01 FTumor suppressor p53 ~ . ... . _....
V$NEIJR/NEUROD 1.01 DNA binding site for NEUROD 1(BETA-~
2 / E47 dimer) V$EBOX/USF.03 Upstream stimulating factor V$MYOD/MYOD.02 Myoblast determining factor F. .. _ __ . .. . _ , V$NRSF/NRSE.Ol Neural-restrictive-silencer-element Winged helix protein, involved in hair V$WHZF/WHN.01 keratinization and thymus epithelium differentiation V$EBOX/MYCMAX.03 = MYC-MAX binding sites V$HESF/HES1.01 Drosophila hairy and enhancer of split homologue 1 (HES-1) [
V$NEUR/NEUROD 1.01 DNA binding site for NEUROD 1(BETA-2 / E47 dimer) < _ _._ _ _.. .._..._._. .~.... . . _ . ___.._ .. __ __ . __.~
V$MYOD/MYOD.02 M ~
_'Y obla __.st determining factor 1~-~~V$REBV/EBVR.01 Epstein-Barr virus transcription factor R
..
V$PAX5/PAX5.02 B-cell-specific activating protein V$ZF5F/ZF5.01 Zinc finger / POZ domain transcription factor V$ZF5F/ZF5.01 Zinc finger / POZ domain transcription factor ..Wilms Tumor Su ressor V$EGRF/WT1.01 _ .__.
pp-_ V$EGRF/WT1.01 ' Wilms Tumor Suppressor V$ZBPF/ZF9.01 ', Core promoter-binding protein (CPBP) Family/rnatriti** Further Information with 3 Krueppel-type zinc fingers F_ V$MTNI/M[JSCLE INI.O1 Muscle Initiator Sequence V$NRSF/NRSF.01 Neuron-restrictive silencer factor _. ._ ..
U$PflMI/PflMI IRE II-IP
~.
V$NRSF/NRSE.O1 Neural-restrictive-silencer-element V$MOKF/MOK2.02 ~bonucleoprotein associated zinc finger protein MOK-2 (human) ]V$AP2F/AP2.01 Activator protein 2 V$AP 1 F/AP 1 FJ.01 Activator protein 1 V$PAX5/PA-N5.03 PAXS paired domain protein V$EGRF/EGR3.01 early growth response gene 3 product Winged helix protein, involved in hair V$WHZF/WHN.O1 keratinization and thymus epithelium differentiation ._..~._ _._. . ___ V$PAX6/PA~4 PI).Ol PAX4 paired domain binding site V$VMYB/VMYB.02 r= v-Myb V$BELIBEL1.01 l-1 similar region (defined in Lentivirus TRs) V$MOKF/MOK2.01 1~bonucleoprotein associated zinc finger protein MOK-2 (mouse) V$EGRF/EGR1.01 ~ Egr-1/Krox-24/NGFI-A immediate-early gene product Member of b-zip family, induced by ER
' V$EBOX/ATF6.01 damage/stress, binds to the ERSE in association with NF-Y
__...~, V$EGRF/EGR3 O1 early growth response gene 3 product _ . ~. ..~_.. _ ~ .
V$NRSF/NI2SE O1 Neural-restrictive-silencer-element 1V$ETSF/ETS1 O1 c-Ets-1 binding site ~.
V$NRSF/NRSF.01 ; Neuron-restrictive silencer factor V$SP 1 F/SP 1.01 stimulating protein 1 SP 1, ubiquitous zinc finger transcription factor , . _... _. _ -j ~$ZBPF/ZBP89.01 ( Zin.c finger transcription factor ZBP-89 }
_ . _ V$PAX5/PAX5.03 PAX5 paired domain protein V$GREF/ARE.01 Androgene receptor binding site POZ/zinc finger protein, transcriptiorial V$BCL6/BCL6.02 repressor, translocations observed in diffuse large cell lymphoma .
~_.__.._.
V$CLOX/CDP.O1 cut-like homeodomain protem **matches are listed in order of occurrence in the corresponding sequence TFBS in hneo3 After removal of TFBS from hneo2 = before removal of TFBS from hneo3 (0 matches) TFBS in hneo4 After removal of TFBS from hneo3 = before removal of TFBS from hneo4 (7 matches) t~amily/matrixx* FurtherInformation V$PAX5/PAX9.01 Zebrafish PAX9 binding sites r V$AARF/AARE.O1 ~ino acid response element, ATF4 binding site V$P53F/P53.02 ~Tumor suppressor p53 (5' half site) IV$AP1R/BACH2.01 Bach2 bound TRE
IV$NELTR/NEUROG.01, Neurogenin 1 and 3(ngnl/3) binding sites c-Myb, important in hematopoesis, cellular V$CMYB/CMYB.01 equivalent to avian myoblastosis virus oncogerie v-myb V$HOXF/CRX.01 Cone-rod homeobox-containing transcription factor / otx-like homeobox gene **matches are listed in order of occurrence in the corresponding sequence TFBS in hneo5 After removal of TFBS from hneo4 (0 matches) Table 21 Sequences in Syathetic Puromycin Genes TFBS matches in hpuro Before removal of TFBS from hpuro (68 matches) _. , w .
Family/matrix** Further Information Cell cycle-dependent element, CDF-1 binding site (CDE/CHR tandem V$CDEF/CDE.01 elements regulate cell cycle dependent repression) Pax-3 paired domain protein, V$PAX3/PAX3.01 expressed in embryogenesis, rnutations correlate to Waardenburg Family/matrix*Y Further Information Syndrome Activating transcription factor 6, V$CREB/ATF6.02 member of b-zip family, induced by ER stress --V$EBOR/XBP1.01 X-box-binding protein 1 V$P53F/P53.03 Tumor suppressor p53 (3' half site) V$HESF/HES 1.01 Drosophila hairy and enhancer of split homologue 1 (HES-1) V$MTF1/MTF-1.01 Metal transcription factor 1, MRE
V$EKLF/EKLF.O1 Erythroid krueppel like factor (EKLF) V$EGRF/EGR1.01 Egr-1/Krox-24/NGFI-A immediate-early gene product Member of b-zip family, induced by V$EBOX/ATF6.01 ER damage/stress, binds to the ERSE I
in association with NF-Y
_ _ .._ . __ _. _. __ .. . .__._..._ ..__ _ ._.._ .
Member of b-zip family, induced by V$EBOX/ATF6.01 ER damage/stress, binds to the ERSE ' in association with NF-Y
c-Myb, important in hematopoesis, V$CMYB/CMYB.Ol cellular equivalent to avian myoblastosis virus oncogene v-myb . .. . ._..._ . . _--_ _. ._ _ . ..__.._ _.
~
V$AHRR/AHRARNT.O1 hydrocarbon receptor / Arnt heterodimers V$EBOX/MYCMAX.03 MYC-MAX binding sites V$RORA/RORA2.01 RAR-related orphan receptor alpha2 V$EBOX/MYCMAX.03 MYC-MAX binding sites ., _ _.,__.
Hypoxia inducible factor, bHLH
V$HIFF/HIF1.02 PAS protein faxnily -.. .-... ... ... .... ... ...w.... ........ .~. ..~.. .., ... .... ..
.......... ... . . .._.,k V$EGRF/EGR3.01 early growth response gene 3 product V$EGRF/WT1.01 Wilms Tumor Suppressor Runt-related transcription factor 2 V$HAML/AML3.01 CBFA1 (core-binding factor, runt 1 domain, alpha subunit 1) V$PAXS/PAX5.03 ~ PAX5 paired domain protein ~ Member of b-zip family, induced by V$EBOX/ATF6.01 ER damage/stress, binds to the ERSE !
in association with NF-Y
! V$HIFF/HIF1.02 Hypoxia inducible factor, bHLH /

Faniily/matrix*r Further Information r- PAS protein family V$ZBPFJZBP89.01 Zinc finger transcription factor ZBP-V$OAZF/ROAZ.01 Rat C2H2 Zn finger protein involved in olfactory neuronal differentiation V$GABF/GAGA.01-~~ GAGA-Box V$EBOXJMYCMAX.03 MYC-MAX binding sites _ ~_ =
V$MYOD/MYF5.01 MyfS myogenic bHLH protein _.r... __... . . ..
._....~._, .
V$AP4R/TALIBETAE47.01 ITal-lbeta/E47 heterodimer V$NEUR/NEUROG.01 Neurogenin l and 3 (ngnl/3) binding sites Heterodimers of the bHLH
V$HAND/HAND2 E12.01 transcription factors HAND2 (Thing2) and E12 MYC-associated zinc finger protein ~
V$MAZF/MAZR.Ol related transcription factor Transcriptional repressor, binds to IV$ZBPF/Z202.0l elements found predominantly in genes that participate in lipid metabolism ivNsPi.oi Stimulating protein 1 SP1, ubiquitous zinc finger transcription factor V$AP2FJAP2.01 Activator protein 2 V$RREB/RREB1.01 Ras-responsive element binding protein 1 V$XBBFJMIF1.01 MIBP-1 J RFXl complex -- . . .~.:.:.~~~. :..:,. - w .. .
V$CREB/TAXCREB.01 Tax/CREB complex , _. ._ , _ . ,.._ .. _ . .
V$EGRF/EGR3.01 early growth response gene 3 product V$MOKF/MOK2.01 Ribonucleoprotein associated zinc finger protein MOK-2 (mouse) _. _ . _ . .. .. . _ . _. ... _ , . _.. , V$MOKF/MOK2.01 Ribonucleoprotein associated zinc [finger protein MOK-2 (mouse) V$PAX5/PAX5.01 0B-cell-specific activating protein _ __ = . ,_... _. . _ . . , .
V$NRSF/NRSE.01 Neural-restrictive-silencer-element i V$MINI/MUSCLE INI.02 [Muscle Initiator Sequence Member of b-zip family, induced by V$EBOX/ATF6.01 ER damage/stress, binds to the ERSE
in association witli NF-Y
. . _._, ..__._..__..._.. __.---_ , V$DEAF/NUDR.01 NUDR (nuclear DEAF-1 related ~._..._ -----Family/matrix*Y Further Information F- transcriptional regulator protein) V$AHRR/AHRARNT.01 Aryl hydrocarbon receptor / Arnt heterodimers V$ZF5F/ZF5.01 Zinc finger / POZ domain transcription factor V$EGRF/EGR1.01 Egr-1/Krox-24/NGFI-A immediate-early gene product V$HIFF/HIF1.02 Hypoxia inducible factor, bHLH /
PAS protein family V$ETSF/ETS1.01 c-Ets-1 binding site V$STAT/STAT1.01 Signal transducer and activator of transcription 1 POZ/zinc finger protein, V$BCL6/BCL6.01 transcriptional repressor, translocations observed in diffuse large ce111ymphoma V$ZF5F/ZF5.01 Zinc finger / POZ domain transcription factor POZ/zinc finger protein, V$BCL6/BCL6.02 transcriptional repressor, translocations observed in diffuse large cell lymphoma _ .. . . . _._= _..__..._.__ ._... . _ ._. . <
V$EGRF/EGR3.01 early growth response gene 3 product Activating transcription factor 6, V$CREB/ATF6.02 member of b-zip family, induced by ER stress V$HIFF/HIF1.02 Hypoxia inducible factor, bHLH
PAS protein family _ _. ... . ?
V$EBOR/XBP1.01 X-box binding protein 1 , ._ . _. . _.. .. .
. ~ . . . _ . __..___ _ __ , _ ..__~ .. . . ..;
V$DEAF/NUDR.01 NUDR (nuclear DEAF-1 related transcriptional regulator protein) VDR/RXR Vitamin D receptor RXR
V$RXRF/VDR RXR.01 heterodimer site ~._ . ._..

V$AP2F/AP2.01 Activator protein 2 ~ _ ~ -- -- - 4 Epstein-Barr virus transcription Vfactor R
Core promoter-binding protein V$ZBPF/ZF9.01 (CPBP) with 3 Krueppel-type zinc fingers V$MYOD/LM02COM.01 Complex of Lmo2 bound to Tal-1 _..._ , I amily/matrix* k Further Inforination F E2A proteins, and GATA- 1, half-site V$AREB/AREB6.03 AREB6 (Atplal regulatory element binding factor 6) }
[Famesoid X - activated receptor V$RXRF/FXRE.01 (RXR/FYR dimer) V$AHRR/AHR.01 Aryl hydrocarbon / dioxin receptor **matches are listed in order of occurrence in the corresponding sequence TFBS matches in hpurol After removal of TFBS from hpuro = before removal of TFBS from hpurol (4 matches) Further lnforniation (V$NEUR/NEUROG.U1,iNeurogenin 1 and 3(ngnl/3) binding sites ._.__._ .
V$PAX5/PAX5.02 B-cell-specific activating protein V$REBV/EBVR.01 Epstein-Barr virus transcription factor R
IV$AHRR/AHR.01 Aryl hydrocarbon / dioxin receptor **matches are listed in order of occurrence in the corresponding sequence TFBS matches in hpuro2 After removal of TFBS from hpurol (2 matches) 11'.-niily/matrix" Further Information .... ..~

V$NEURlNEUROG.O1 Neurogenin 1 and 3(ngnl/3) binding sites ..
POZ/zinc finger protein, transcriptional V$BCL6/BCL6.02 repressor, translocations observed in diffuse large cell lymphoma **matches are listed in order of occurrence in the corresponding sequence Example 7 Summar,y of Design of Synthetic Firefly Luciferase Genes TF binding sites and search parameters The TF binding sites are from the TF binding site library ("Matrix Family Library") that is part of the GEMS Launcher package. Each TF binding site ("matrix") belongs to a matrix family that groups functionally similar matrices together, eliminating redundant matches by Matlnspector professional (the search program). Searches were limited to vertebrate TF binding sites.
Searches were performed by matrix family, i.e. the results show only the best match from a family for each site. Matlnspector default parameters were used for the core and matrix similarity values (core similarity = 0.75, matrix similarity =
optimized).

Table 22 Luc Gene Desi agn tions Synthetic luc gene (versions A and B) Se uence* Descri õtion Matrix Library Luc wild-type gene (not applicable) luc+ improved gene from Promega's pGL3 (not applicable) vectors hluc+ Improved gene form Promega's pGL3(R2.1)- (not applicable) Basic Codon optimization strategy A
hluc+ver2A1 codon optimized luc+ (strategy A) Ver 3.0 Nov 2002 hluc+ver2A2 First removal of undesired sequence matches Ver 3.0 Nov 2002 hluc+ver2A3 Second removal of undesired sequence Ver 3.0 Nov 2002 matches hluc+ver2A4 Third removal of undesired sequence Ver 3.0 Nov 2002 matches hluc+ver2A5 Fourth removal of undesired sequence Ver 3.0 Nov 2002 matches hluc+ver2A6 Fifth removal of undesired sequence matches Ver 3.0 Nov 2002 hluc+ver2A7 Sixth removal of undesired sequence Ver 3.1.1 Apr matches 2003 hluc+ver2A8 Removal of BgII (RE) site Ver 3.1.1 Apr Codon o timization strat~ B
hluc+ver2B 1 codon optimized luc+ (strategy B) Ver 3.0 Nov 2002 hluc+ver2B2 First removal of undesired sequence matches Ver 3.0 Nov 2002 hluc+ver2B3 Second removal of undesired sequence Ver 3.0 Nov 2002 matches hluc+ver2B4 Third removal of undesired sequence Ver 3.0 Nov 2002 matches hluc+ver2B5 Fourth removal of undesired sequence Ver 3.0 Nov 2002 matches hluc+ver2B6 Fifth removal of undesired sequence matches Ver 3.0 Nov 2002 hluc+ver2B7 Sixth removal of undesired sequence Ver 3.1.1 Apr matches 2003 hluc+ver2B8 Removal of SmaI (RE), Ptxl (TF) sites Ver 3.1.1 Apr hluc+ver2B9 Removal of additional CpG sequences Ver 3.1.1 Apr Se uenc-e* Descrition Matrix Librgy hluc+ver2B 10 Removal of BglI (RE) site Ver 3.1.1 Apr * the sequence names designate open reading frames; RE = restriction enzyme recognition sequence Table 23 Sequences in Synthetic Luc Genes (version A), TFBS in hluc+ver2A1 Before removal of TFBS from hluc+ver2A1 (110 matches) Fai nily/znatrix '~~ F'urther Information V$MINI/MUSCLE 1NI. Muscle Initiator Sequence V$WHZF/WHN.01 winged helix protein, involved in hair keratinization and thymus epithelium differentiation V$GREF/PRE.01 Progesterone receptor binding site V$MAZF/MAZR.Ol MYC-associated zinc finger protein related transcription factor V$SP1F/SP1.01 ~ stimulating protein 1 SP 1, ubiquitous zinc finger transcription factor ~ ____ Zinc finger transcription factor ZBP-89 V$ZBPF/ZBP89.01 71 --==-V$SF1F/SF1.01 SF1 steroidogenic factor 1 .__. . .. ....____.... . __...~._.,.._.._.. ._ _.. _ . _... ._ _ _ a V$EGRF/NGFIC.01 Nerve growth factor-induced protein C
~ ~, _ .. . _..
V$MINUMUSCLE INI.
Muscle Initiator Sequence V$EGRF/EGR2.01 Egr-2/Krox-20 early growth response gene product _ _ _..,.
V$ZF5F/ZF5.01' Zinc finger / POZ domain transcription factor V$HESF/HES 1.01 Drosophila hairy and enhancer of split homologue 1(HES-+
1) V$NRSF/NRSE 01 neural-restrictive-silencer-element ~.__ V$PAXS/PAX5.02 ~ B-cell-specific activating protein Runt-related transcription factor 2 / CBFA1 (core-binding IV$HAML/AML3.01 factor, runt domain, alpha subunit 1) .. . . - .. .. - .) .-..._ ., .__.....,. ..... . ....... . . ... . . . .... . --. . . ~ . .. - .. ..,. . .. . 3 V$GREF/PRE.01 Progesterone receptor binding site V$P53F/P53A1 tumor suppressor p53 r V$ZF5F/ZF5.01 ! Zinc finger / POZ domain transcription factor V$EBOX/ATF6.01 Member of b-zip family, induced by ER damage/stress, binds to the ERSE in association with NF-Y
V$EGRF/EGR3.01 early growth response gene 3 product V$NF 1F/NF 1.O 1 Nuclear factor 1 ~_ _._ _ _ _ .... _ _.. .. _ .. _. .. _._ .__ -__.. _ . .. ._ , , Farnil,y/matrit** Further Information V$EGRF/EGR3.01 early growth response gene 3 product IV$REBV/EBVR.01 Epstein-Barr virus transcription factor R
V$MOKF/MOK2.01 Ribonucleoprotein associated zinc finger protein MOK-2 (mouse) V$PBX C/PBX1 MEIS1 Binding site for a Pbx1/Meis1 heterodimer V$XSEC/STAF.01 Se-Cys tRNA gene transcription activating factor V$COMP/COMP 1.01 COMP 1, cooperates with myogenic proteins in multicomponent complex .._--V$MYOF/MYOGNFI.O
1 Myogenin / nuclear factor 1 or related factors V$NEUR/NEUROD 1.0 DNA binding site for NEUROD 1 (BETA-2 / E47 dimer) V$MYOD/MYOD.02 myoblast determining factor V$AP2F/AP2.01 FA~ctivator protein 2 V$EVI1/EV11.02 Ecotropic viral integration site 1 encoded factor , _... . _. . _ . -.._ . .._.._. __ . . _ _;
' V$SMAD/SMAD4.01 ! Smad4 transcription factor involved in TGF-beta signaling V$MYOD/MYF5.01 MyfS myogenic bHLH protein V$HESF/HES1.01 [DrosoPhila hairy and enhancer of split homologue 1(HES-.. . .
V$PAX5/PAX5.01 B-cell-specific activating protein _ . . .__ , .. ~. __. . _.
V$EBOX/ATF6.01 Member of b-zip family, induced by ER damage/stress, binds to the ERSE in association with NF-Y
. . ,._ _ . .. _, .._...__ __. ~. ...._ __ . _ _._.. . ._ .__...... . J
V$SP1F/GC.01 GC box elements V$MAZF/MAZR.O1 associated zinc finger protein related transcription factor V$RREB/RREB 1.01 jRas-responsive element binding protein 1 ------------V$AHRR/AHRARNT.0 Aryl hydrocarbon receptor / Amt heterodimers =1 +
V$HIFF/HIF1.02 --, Hypoxia inducible factor, bHLH / PAS protein family V$ZF5F/ZF5.01 -~ Zinc finger / POZ domain transcription factor P ~ mm Member of b-zip family, induced by ER damage/stress, V$EBOX/ATF6.01 binds to the ERSE in association with NF-Y
V$YY 1 F/YY1.01 Yin and Yang 1 V$ETSF/GABP.O1 GABP: GA binding protein , _._...__ .._ _. _ ___. .._ ._.. _. . ___._ . ...._....._ .._. ._. . _.__ _.
.__ __.. _ Iv$MOKF/MOK2.O1 Ribonucleoprotein associated zinc finger protein MOK-2 (mouse) V$ETSF/ELK1.02 ~j Elk-1 V$EBOX/MYCMAX.03 ~ MYC-MAX binding sites [vsE4FFIE4F.o1 GLI-Krueppel-related transcription factor, regulator of adenovirus E4 promoter Family/matrix3'* Further Information V$XBBF/RFX1.01 IX-box binding protein RFX1 V$EVIl/EVI1.06 Ecotropic viral integration site 1 encoded factor V$MOKF/MOK2.01 Ribonucleoprotein associated zinc finger protein MOK-2 (mouse) ... _,._._. . . . . _.. _ ..
V$NF1F/NF1.01 Nuclear factor 1 V$PBXC/PBX1 MEIS1 Binding site for a Pbxl/Meisl heterodimer V$ZFSF/ZF5.01 Zinc finger / POZ domain transcription factor V$HESF/HES1.01 Drosophila hairy and enhancer of split homologue 1(HES-1) V$PAX5/PAX5.01 B-cell-specific activating protein V$ETSF/GABP.01 GABP: GA binding protein V$MYOD/MYOD.02 myoblast determining factor V$XSEC/STAF.01 Se-Cys tRNA gene transcription activating factor V$OAZF/ROAZ.01 Rat C2H2 Zn finger protein involved in olfactory neuronal differentiation = V$AP2F/AP2.01 Activator protein 2 V$PAX3/PAX3.01 Pax-3 paired domain protein, expressed in embryogenesis, mutations correlate to Waardenburg Syndrome V$AP2F/AP2.01 Activator protein 2 ~.._......~.. . _._ . - .~ ~
V$MTF1/MTF 1.01 Metal transcription factor 1,MRE
Alpha (1)-fetoprotein transcription factor (FTF), liver V$SF1F/FTF.01 receptor homologue-1 (LHR-1) ___ ___ . , . . _. _.l V$SMAD/SMAD4.01 Smad4 transcription factor involved in TGF-beta signaling V$NFKB/NFKAPPAB. NF-kappaB
01 .'.
V$EKLF/EKLF.01 Erythroid krueppel like factor (EKLF) V$CREB/TAXCREB.01 Tax/CREB complex V$E2FF/E2F.03 E2F, involved in cell cycle regulation, interacts with Rb p 107 protein 1V$CP2F/CP2.01 CP2 V$AHRR/AHRARNT.0 1 Aryl hydrocarbon receptor / Amt heterodimers V$EGRF/EGR2 O1 Egr-2/Krox-20 early growth response gene product ~~
V$ZFSF/ZF5.01 Zinc finger / POZ domain transcription factor V$EBOR/XBP1.01 X-box-binding protein 1 _ ._ . ..... . .. . .._,.;
V$FIKFID/XFD3.01 Xenopus fork head domain factor 3 _ . ._, ._ ._ . _.. _- - _.._.. _ ..
V$AP2F/AP2.01 Activator protein 2 ,_ . .. .._ .... _.. _ -.__ . _ __ . ._. .__. _ .__ _~
V$EGRF/NGFIC.01 Nerve growth factor-induced protein C
-~
V$PCAT/ACAAT.01 Avian C-type LTR CCAAT box _ _ __._~ __ Family/matrixX* Furtlier Information V$PBXC/PBX1 MEISl Binding site for a Pbxl/Meisl heterodirner .02 V$AHRR/AHRARNT.O Ary1 hydrocarbon / A r n t heterodimers, fixed core ;
Ribonucleoprotein associated zinc finger protein MOK-2 V$MOKF/MOK2.01 (mouse) (V$GREF/GRE.01 Glucocorticoid receptor, C2C2 zinc finger protein binds ~ -- glucocorticoid dependent to GREs V$NEUR/NEUROD 1.0 DNA binding site for NEUROD 1 (BETA-2 / E47 dimer) :. . _ _ ._.... .. . _.. . . .__ _ __ V$NRSF/NRSE.01 neural-restrictive-silencer-element V$NRSF/NRSE.01 neural-restrictive-silencer-element V$AHRR/AHRARNT.0 ~yl hydrocarbon / Arnt heterodimers, fixed core V$EBOX/ATF6.01 Member of b-zip family, induced by ER damage/stress, binds to the ERSE in association with NF-Y
; V$HIFF/HIF 1.02 Hypoxia inducible factor, bHLH / PAS protein family ;_.._... _ _. ~
V$EGRF/EGR3.01 early growth response gene 3 product V$EGRF/EGR3.01 learly growth response gene 3 product IV$WHZF/WHN.01 ~winged helix protein, involved in hair keratinization and thymus epithelium differentiation V$AP2F/AP2.01 Activator protein 2 j V$HIFF/HIF1.02 Hypoxia inducible factor, bHLH / PAS protein family #_ .._.._. __. _ .
V$NRSF/NRSE.O1 neural-restrictive-silencer-element .....
V$ZFIA/ZID.01 zinc finger with interaction domain V$SMAD/SMAD4.01 Smad4 transcription factor involved in TGF-beta signaling 2$AHRR/AHRARNT.O hydrocarbon / Arnt heterodimers, fixed core [Aryl V$EBOX/MYCMAX 01 c-Myc/Max heterodimer V$EBOX/USF 03 upstream stimulating factor .. . _. r. _ . _ V$EGRF/EGR1.01_ Egr-l/Krox-24/NGFI-A immediate-earlygene product ~
V$MINI/MUSCLE ITII. ' Ol Muscle Initiator Sequence ;-Ribonucleoprotein associated zinc finger protein MOK-2 V$MOKF/MOK2.01 k (mouse) _.__ _...., . . _..
V$NRSF/NRSE.01 neural-restrictive-silencer-element _ . ... _._ _ . u.. __ _ .. - _ _ .
V$NF1F/NF1.01 ~ Nuclear factor 1 V$SF1F/SF1.01 SFl steroidogenic factor 1 "matches are listed in order of occurrence in the correspondi..ng sequence TFBS in hluc+ver2A3 After removal of TFBS from hluc+ver2A2 = before removal of TFBS
from hluc+ver2A3 (8 matches) ~ Family/matrix** Further Information f Egr-2/Krox-20 early growth response gene {
V$EGRF/EGR2.01 product Runt-related transcription factor 2/ CBFA1 V$HAML/AML3.01 (core-binding factor, runt domain, alpha subunit 1) V$MYOF/MYOGNF1.01 Myogenin / nuclear factor 1 or related factors V$NF1F/NF1.01 Nuclear factor 1 V$ETSF/GABP.01 GABP: GA binding protein V$NFKB/NFKAPPAB.01 NF-kappaB
V$EKLF/EKLF.01 Erythroid krueppel like factor (EKLF) 1V$FKHD/XFD3.01 Xenopus fork head domain factor 3 **matches are listed in order of occurrence in the corresponding sequence TFBS in hluc+ver2A6 After removal of TFBS from hluc+ver2A5 (2 matches) Famil~!iuatrL~~ 'Further Informalion V$HAML/AML3.01 ]Runt-related transcription factor 2/ CBFA1 (core-binding factor, runt dom_ain, alpha subunit 1) V$FKHD/XFD3.01 Xenopus fork head domain factor 3 {
**matches are listed in order of occurrence in the corresponding sequence TFBS in hluc+ver2A6 Before removal of TFBS from hluc+ver2A6 (4 matches) FamiIy/matrix** Further Information V$PAX5/PAX5.03 PAX5 paired domain protein ~_ .__ . . . ,.m .._.~.. .-.___ ..__ __. _ .. ..
1p TCF/LEF-1, involved in the Wnt signal transduction V$LEFF/LEF1.02 athway V$IRFF/IRF7.01 Interferon regulatory factor 7(IRF-7) V$FKHD/XFD3.01, Xenopus fork head domain factor 3 **matches are listed in order of occurrence in the corresponding sequence TFBS in hluc+ver2A7 After removal of TFBS from hluc+ver2A6 = before removal of TFBS
from hluc+ver2A7 (1 match) _ ,.v ._ Family/matrix Further Information V$FKHD/XFD3.01; Xenopus fork head domain factor 3 , TFBS in hluc+ver2A8 After removal of TFBS from hluc+ver2A7 (1 match) Fami1y/matris Further Information V$FKHD/XFD3.01 Xenopus fork head domain factor 3 Table 24 Sequences in Synthetic Luc Genes (version B) TFB S in hluc+ver2B 1 Before removal of TFBS from hluc+ver2B1 (187 matches) Fin-ther Inforrnation _..._ .~- - V$HOXF/PTX1.01 P~ituitarv Homeobox 1 (Ptxl) _ . _ .. _ _._..._. _. ._. .. __k~.w .__ . ,.. .
V$OCT1/OCT1.04 octamer-binding factor 1 ,._._._. . .. __ _ _... ~_~~...~.-_: _ _ ......-.. . _- _~_. _ . . _ _.;
V$OCTP/OCT1P.01 1 joctamer binding factor 1, POU-specificrvdomain V$NKXH/NKX25.02 homeo domain factor Nkx-2.5/Csx, tinman homolog low affinity sites - ~-- -_-~...
1V$BARB/BARBIE.01 barbiturate-inducible element _. -. . . . _., V$TBPF/TATA.O1 - cellular and viral TATA box elements ~_ V$GATA/GATA.01 JGATA binding site (consensus) _~ __ . ..
..... _._..--.....~õ
V$AP4R/AP4.01 Activator protein 4 1V$HEN1/HEN1.02 ? HEN1 V$SRFF/SRF.01 - Iserum response factor V$PARF/DBP.01 Albumin D-box binding protein V$MOKF/MOK2.01 Ribonucleoprotein associated zinc finger protein~
? ! MOK-2 (mouse) _ . _ -_ . . ._ . ._.....__.__..._ ... . __ _ ._._ _.a ------ .
I V$EVI1/EVI1.04 I Ecotropic viral integration site 1 encoded factor V$GFIl/GfI1B.01 Growth factor independence 1 zinc finger protein Gfi-1B
_ .. _ _ . . _ .._ ___ .._... .. .. . . _. _ __ __. ... _ _._. . ...
V$RBPF/RBPJK.0 1 Mammalian transcriptional repressor RBP-Jkappa/CBF1 ._ __ _ . _.._._.._... . _ .__. .... ....... ..... _~_.~
V$TBPF/TATA.02 Mammalian C-type LTR TATA box Family/matrix** Further Information .~._-_.
V$AP4R/TALIALPHAE47.01 Ta1-1alpha/E47 heterodimer V$SRFF/SRF.01 serum response factor V$OCTP/OCT1P.01 joctamer-binding factor 1, POU-specific domain V$BRNFBRN2.01 POU factor Brn-2 (N-Oct 3) V$CREB/E4BP4.01 E4BP4, bZIP domain, transcriptional repressor V$VBPF/VBP.01 PAR-type chicken vitellogenin promoter-binding protein V$EVII/EVI1.04 Ecotropic viral integration site 1 encoded factor V$CLOX/CDPCR3.01 cut-like homeodomain protein V$GFI1/GfI1B.01 Growth factor independence 1 zinc finger protein Gfi-1B
V$GATA/LMO2COM.02 complex of Lmo2 bound to Tal-1, E2A proteins, and GATA-1, half-site 2 V$SRFF/SRF.01 serum response factor V$HOXT/MEIS 1 HOXA9.01 Homeobox protein MEIS 1 binding site V$OCT1/OCT1.03 octamer-binding factor 1 V$GFI1/GFI1.01 Growth factor independence 1 zinc finger protein acts as transcriptional repressor _______-- V$HNF6/HNF6.01 Liver enriched Cut - Homeodomain transcription factor HNF6 (ONECUT) __ ~..~.~..- ~ -. ..__.
V$HAML/AML1 O1 runt-factor AML-1 V$GREF/PRE.01 Progesterone receptor binding site ..........._ V$STAT/STAT5.01 STATS:.signal transducer and activator of transcription 5 V$TBPF/TATA.01 cellular and viral TATA box elements V$CLOX/CDP.01 cut-like homeodomain protein V$FKHD/HFH8.01 HNF-3/Fkh Homolog-8 V$FAST/FAST1.01 FAST-1 SMAD interacting protein ._. _...
V$GFI1/GfI1B.01 GTowth factor independence 1 zinc finger protein Gfi-IB
.
. . . _._..__._.~~ _ V$CART/CART1.01 ; Cart-1 (cartilage homeoprotein 1) V$HMTB/MTBF.01 muscle-specific Mt binding site =
V$TBPF/TATA.O1 i cellular and viral TATA box elements _.~
V$FKHD/XFD2.01 Xenopus fork head domain factor 2 . _.
V$BRNFBRN2.01 POU factor Brn-2 (N-Oct 3) ~. ...___.
V$MEF2/AMEF2.01 i myocyte enhancer factor V$BRNFBRN2.01 POU factor Bm-2 3) ._... (N-Oct V$BELIBEL1.01 Bel-1 similar region (defined in Lentivirus ~
----; V$NOLF/OLF 1.01 olfactory neuron-specific factor Family/matrix** Further Information V$OCT1/OCT1.06 octamer-binding factor 1 V$NFKB/NFKAPPAB.02 NF-kappaB
POZ/zinc finger protein, transcriptional V$BCL6/BCL6.02 repressor, translocations observed in diffuse large cell lymphoma V$MOKF/MOK2.01 ~~bonucleoprotein associated zinc finger protein:
MOK-2 (mouse) V$HEAT/HSF1.01 heat shock factor 1 V$OCTP/OCT1P.01 octamer-binding factor 1, POU-specific domain I V$PIT1/PIT1.01 Pitl, GHF-1 pituitary specific pou domain transcription factor V$HOXF/CRX.01 ~ Cone-rod homeobox-containing transcription factor / otx-like homeobox gene V$HNF6/HNF6.01 Liver enriched Cut - Homeodomain transcription factor HNF6 (ONECUT) V$CLOX/CLOX.01 Clox 1_ . _ . . . . _._. _.._ ..._ - .. ._,. _ _ ._..
POZ/zinc finger protein, transcriptional V$BCL6/BCL6.02 repressor, translocations observed in diffuse large cell lymphoma V$HOXF/PTX1.01 Pituitary Homeobox 1 (Ptxl) ._..... ___,, V$GATA/GATA1.02 GATA-binding factor 1 ------- -V$FKHD/FREAC4.01 Fork head RElated ACtivator-4 _.. . _ _ . ! . _ _ . __. __.....____. . . .
V$E4FF/E4F.01 GLI-Krueppel-related transcription factor, regulator of adenovirus E4 promoter V$PDXl/ISL1.01 Pancreatic and intestinal lim-homeodomain I
_factor -- -V$CART/CART1.01 Cart-1 (cartilage homeoprotein 1) Growth factor independence 1 zinc finger V$GFI1/GFI1.01 protein acts as transcriptional repressor V$IRFF/IRF3.01 Interferon regulatory factor 3 (IRF-3) . _. ... v. . . _ ._.
__.-_____..._. __ . . .._ . ._. . _ . __ V$BARBBARBIE.Ol barbiturate-inducible element V$PBXF/PBXl.01 homeo domain factor Pbx-1 V$EVI1/EVI1.02 Ecotropic viral integration site 1 encoded factor ~.
~-_ V$GATA/GATA2.01 GATA-binding factor 2 V$BRNF/BRN2.01 POU factor Brn-2 (N-Oct 3) ......
V$PARF/DBP.O1 Albumin D-box binding protein V$BRNFBRN3.01 POU transcription factor Brn-3 V$ZBPF/ZBP89.01 Zinc finger transcription factor ZBP-89 ~
V$CREB/TAXCREB.02 Tax/CREB complex V$GREF/PRE.01 Progesterone receptor binding site V$RBPF/RBPJK.01 Mammalian transcriptional repressor RBP-Family/matrix** Further Tnformation F- Jkappa/CBF 1 V$GATA/GATA3.02 GATA-binding factor 3 V$STAT/STAT.01 signal transducers and activators of transcription V$IKRS/IK2.01 Ikaros 2, potential regulator of lymphocyte differentiation V$SRFF/SRF.01 serum response factor V$SEF 1/SEF 1.01 FsEF 1 binding site V$HAML/AML1.01 runt-factor AML-1 ~
Ribonucleoprotein associated zinc finger protein;
V$MOKF/MOK2.02 MOK-2 (human) V$FKHD/FREAC2.01 Fork head RElated ACtivator-2 V$HMTB/MTBF.01 muscle-specific Mt binding site V$GFI1/GFI1.01 prGrowth factor independence 1 zinc finger protein acts as transcriptional repressor V$ECATINFY.03 nuclear factor Y(Y-box binding factor) V$HOXT/MEIS 1 HOXA9.01 Homeobox protein MEIS 1 binding site 1_ _ V$PCAT/ACAAT.01 Avian C-type LTR CCAAT box V$HNF6/HNF6.01 Liver enriched Cut - Homeodomain transcription factor HNF6 (ONECUT) V$CLOX/CLOX.01 ~~ Clox V$GATA/GATA3.02 GATA-binding factor 3 AREB6 (Atplal regulatory element binding V$AREB/AREB6.04 factor 6) 11V$GATA/GATA3.02 GATA-binding factor 3 V$FKHD/HNF3B.01 Hepatocyte Nuclear Factor 3beta V$IRFF/IRF 1.01 interferon regulatory factor 1 V$NKXH/NKX31.01 prostate-specific homeodomain protein NKX3.1 ~ _. ... __ .. . . _ _. . _~ ._. . -_ _ ~
V$PBXF/PBX1.01 homeo.domain factor Pbx-1 . ... _ . _ , _ ... _ . . . . _ .~
V$ECAT/NFY.03 Inuclear factor Y(Y-box binding factor) _, ~._ _. . . __.._. .._ V$PBXC/PBXl MEIS1.02 ~ Binding site for a Pbxl/Meisl heterodimer i V$CLOX/CDP.02 transcriptional repressor CDP
V$HOXT/MEIS 1 HOXA9.01 Homeobox protein MEIS 1 binding site __..
V$HOXF/HOXA9.01 IMember of the vertebrate HOX - cluster of homeobox factors =
. ,. .. _._ _. _ V$GATA/GATA.01 GATA binding site (consensus) ....... ..__._. _ , V$NKXH/NKX31.01 prostate-specific homeodomain protein NKX3.1 V$GATA/GATA3 402 GATA-binding factor 3 ,..__. _..--..
homeobox-containing transcription lCone-rod ... V$HOXF/CRX.O 1 factor / otx-like homeobox gene V$CART/CART1.01 Cart-1 (cartilage homeoprotein 1) Family/matrix** Further InformationI

V$OCTI/OCT1.02 joctamer-binding factor 1 V{ $MAZF/MAZR.01 C-associated zinc finger protein related transcription factor V$ZBPF/ZBP89.01 Zinc finger transcription factor ZBP-89 ~~ _ . _..,. ._ _ _ _.. , V$GATA/GATA3.02 GATA-binding factor 3 V$HOXFICRX.O 1 Cone-rod homeobox-containing transcription factor / otx-like homeobox gene V$CLOX/CDPCR3.01 cut-like homeodomain protein .___;..... . __ I._.._._.~__._......__ -V$AP1F/VMAF.01 v-Maf V$AP4R/TAL1ALPHAE47.01 Tal-1alpha/E47 heterodimer IV$PAX8/PAX8.01 PAX 2/5/8 binding site V$BRAC/BRACH.01 Brachyury V$GATA/GATA1.02 GATA-binding factor 1 V$RREB/RREB1.01 Ras-responsive element binding protein 1 V$MZF 1/MZF 1.O l MZF 1 Ribonucleoprotein associated zinc finger protein?
V$MOKF/MOK2.02 MOK-2 (human) ... . ., . .. __ .._ _.. .. .. .
V$HOXF/PTX1.01 Pituitary Homeobox 1 (Ptxl) V$LTUP/TAACC.01 Lentiviral TATA upstream element Thingl/E47 heterodimer, TH1 bHLH member V$AP4R/TH1E47.01 specific expression in a variety of embryonic tissues V$XSEC/STAF.01 Se-Cys tRNA gene transcription activating factor Ikaros 3, potential regulator of lymphocyte iV$IKRS/IK3.01 differentiation ~- . ... ...........
V$AP 1F/AP 1.01 AP 1 binding site .._ . , . . . ._.. _... .. ___...._ ____ IV$MAZF/MAZ.01 Myc associated zinc finger protein (MAZ) ... _._ ... . _ j V$MZF 1/MZF 1.01 MZF 1 V$CLOX/CDPCR3.01 cut-like homeodomain protein _. .._,...._.._.__ ..._ . . _..;
V$P53F/P53.01 tumor suppressor p53 V$SMAD/SMAD3.01 Smad3 transcription factor involved in TGF-beta. signaling ,._. _ _.._..__..- __,_... . _., ... __ V$HMTB/MTBF.01 muscle-specific Mt binding site V$OCTI/OCT1.03 foctamer-binding factor 1 V$FKHD/XFD3.01 Xenopus fork head domain factor 3 . _ _ . . _. . _ _ .
V$PIT1/PIT1.01 Pitl, GHF-1 pituitary specific pou domain transcription factor , _.___.. _.__V$OCTP/OCT1PM01 ' octamer-binding factor 1, POU-specific-domain V$HOXF/HOXl-3.01 Hox-1.3, vertebrate homeobox protein WO 2006/034061 PCT/US2005/033218 ~

Family/matrixY* Further Information V$PBXF/PBX1.01 ~homeo domain factor Pbx-1 V$ECAT/NFY.03 nuclear factor Y (Y-box binding factor) V$PBXC/PBX1 MEIS1.02 Binding site for a Pbxl/Meis1 heterodimer V$CLOX/CDP.02 transcriptional repressor CDP
. ,. . . ..,... J
V$HOXT/MEIS1 HOXA9.01 Homeobox protein MEIS1 binding site V$HOXF/HOXA9.01 Member of the vertebrate HOX - cluster of homeobox factors V$GATA/GATA1.02 GATA-binding factor 1 V$PCAT/ACAAT.01 Avian C-type LTR CCAAT box IV$XSEC/STARO1 Se-Cys tRNA gene transcription activating factor V$OCTP/OCT1P.01 octamer-binding factor 1, POU-specific domain V$CLOX/CDP.01 cut-like homeodomain protein V$FAST/FAST1.01 FAST-1 SMAD interacting protein ._ nuclear factor Y(Y-box binding factor) V$ECAT/~~NFY 01-~ ~
V$MEF2/MMEF2.01 myocyte enhancer factor _._...
V$TBPF/TATA.02 Mamrnalian C-type LTR TATA box V$FAST/FAST1.01 FAST-1 SMAD interacting protein V$LTUP/TAACC.01 Lentiviral TATA upstream element V$MOKF/MOK2.01 Ribonucleoprotein associated zinc finger proteini MOK-2 (mouse) _. _ . _.~ .._.... ... .___.._.
V$BRNFBRN2.01 ~ POU factor Brn-2 (N-Oct 3) .._...._.~...._._. ....._.
V$HOXF/CRX.01 Cone-rod homeobox-containing transcription factor / otx-like homeobox gene V$NKXH/NKX31 H01 prostate-specific homeodomain protein NKX3.1 V$HEN1/HEN1.01 IHEN1 Bel-1 similar region (defined in Lentivirus V$BELIBEL1.01 LTRs) ._.. . __. ___ w..
V$HOXF/PTX1.01 Pituitary Homeobox 1(Ptx1) V$BRNFBRN2.01 POU factor Brn-2 (N-Oct 3) ! V$NFKB/NFKAPPAB.01 NF-kappaB
. , . _ .. . .. V$HAML/AML1.01 runt-factor AML-1 V$ZFIA/ZID.01 Izinc finger with interaction domain _.
f V$XSEC/STAF.02 Se-Cys tRNA gene transcription activating factor ,_... , .i V$IKRS/IK1.01 Ikaros 1, potential regulator of lymphocyte 1 differentiation V$FAST/FAST1.01 FAST-1 SMAD interacting protein , _.
~ V$MOKF/MOK2.01 Ribonucleoprotein associated zinc finger proteini MOK-2 (mouse) Family/matrix** Further Inforniati n V$BELIBEL1.01 Bel-1 similar region (defined in Lentivirus LTRs) V$EGRF/WT1.01 Wilms Tumor Suppressor V$MAZF/MAZR.01 MYC-associated zinc finger protein related transcription factor V$ZBPF/ZBP89.01 Zinc finger transcription factor ZBP-89 V$ZBPF/ZBP89.01 Zinc finger transcription factor ZBP-89 V$SP1F/GC.01 ~ GC box elements V$RREB/RREB 1.01 Ras-responsive element binding protein 1 _ ~ .~_ . __. _. . . .._ _.. . . ._. V$MOI~FF/MOK2.01 ~bonucleoprotein associated zinc finger protein, MOK-2 (mouse) V$MEIS/MEIS 1.01 Binding site for monomeric Meis 1 homeodomain protein POZ/zinc finger protein, transcriptional V$BCL6/BCL6.02 repressor, translocations observed in diffuse large cell lymphoma V$GATA/GATA3 02_.
GATA-binding factor 3 ~~.. ~
_ V$HOXF/CRX.O1 Cone-rod homeobox-containing txanscription factor / otx-like homeobox gene V$HOXF/CRX.O1 Cone-rod homeobox-containing transcription factor / otx-like homeobox gene V$MAZF/MAZR.Ol MYC-associated zinc finger protein related transcription factor V$MZF1/MZF1.01 ~ MZFl V$PDXl/PDX1.01 Pdxl (IDX1/IPF1) pancreatic and intestinal homeodomain TF
**matches are listed in order of occurrence in the corresponding sequence TFBS in hluc+ver2B3 After removal of TFBS from hluc+ver2B2 = before removal of TFBS
from hluc+ver2B3 (35 matches) Family/matrix** Further Information . , V$OCT1/OCT1.04 ,octamer bm din factor 1 ~._....~ _ ._, V$BARBBARBIE.01 barbiturate-inducible element , _ ._ w.._. _ . ._.. . . .
V$NFKB/NFKAPPAB.02 NF-kappaB
V$OCTP/OCT1P.01 octamer-binding factor 1, POU-specific domain Pit1, GHF-1 pituitary specific pou domain V$PITl/PIT1.01 transcription factor V$HOXF/PTXLOI ! Pituitary Homeobox lf (Ptxl) 1V$FKHD/FREAC4.01 Fork head RElated ACtivator-4 Fami13-/matrix' FurtherInformation V$E4FF/E4F.01 GLI-Krueppel-related transcription factor, regulator of adenovirus E4 promoter V$EVI1/EVI1.02 Ecotropic viral integration site 1 encoded factor V$GATA/GATA2.01 [GATA-binding factor 2 V$GREF/PRE.01 Progesterone receptor binding site V$RBPF/RBPJK.Ol Mammalian transcriptional repressor RBP-Jkappa/CBF 1 V$STAT/STAT.Ol signal transducers and activators of transcription .. _ E ..__ ._.. ..___ _. _ ..
V$IKRS/II~2.01 11karos 2, potential regulator of lymphocyte differentiation V$FKHD/FREAC2.01 Fork head RElated ACtivator-2 V$SRFF/SRF.01 serum response factor IV$GREF/PRE.01 Progesterone receptor binding site V$CLOX/CDPCR3.01 cut-like homeodomain protein V$AP4R/TALIALPHAE47 O1' al-lalpha/E47 heterodimer C~_ ' V$GATA/GATA1.02 GATA-binding factor 1 , . _... E _ ._.r v.. _ _. _ .. ... ._ _ .
1V$FKHD/XFD3.01 Xenopus fork head domain factor 3 ~
IV$PBXF/PBX1.01 homeo domain factor Pbx-1 V$ECAT/NFY.03 Inuclear factor Y (Y-box binding factor) ~ _ ___.... ...
V$PBXC/PBXl MEIS1Y .02 ; Bm... _. ding site for a Pbxl/Meisl heterodimer ___ . _.. __ _.. .__. _ . . ._... ____ .. ... ___ _ .a ...~......_.... -._ .____._.___.._____ V$CLOX/CDP.02 transcriptional repressor CDP
. ._ .. ._ .. . _ . .. ._.___ __ ._ _ .....__ _._ _ . .. _ . _ .. . __.. , V$HOXT/MEIS 1 HOXA9.01 Homeobox protein MEIS 1 binding site V$HOXF/HOXA9.01 Member of the vertebrate HOX - cluster of homeobox factors V$GATA/GATA1.02 GATA-binding factor 1 .
1V$MINI/MUSCLE INL0 Fmuscle Initiator Sequence 1V$CLOX/CDP.01 s icut-like homeodomain protein , V$BRNFBRN2.01 1POU factor Brn 2(N-Oct 3) V$NFKB/NFKAPPAB.01 NF-kappaB
V$ZFIA/ZID.O1 lzinc finger with interaction domain .._. _ ;.
' POZ/zinc finger protein, transcriptional V$BCL6/BCL6.02 repressor, translocations observed in diffuse N large cell lymphoma .
V$HOXF/CRX.01 Cone-rod homeobox-containing transcription factor / otx-like homeobox gene **matches are listed in order of occurrence in the corresponding sequence TFBS in hluc+ver2B6 After removal of TFBS from hluc+ver2B5 (2 matches) Family/matriY* Further Inf'ormation V$HOXF/PTX1.01 Pituitary Homeobox 1 (Ptx1) V$FKHD/X_FD3.01 IXenopus fork head domain factor 3 ~
**matches are listed in order of occurrence in the corresponding sequence TFBS in hluc+ver2B6 Before removal of TFBS from hluc+ver2B6 (6 matches) ~__ r~.. -Famil,y/niatj ix-" Further Information_ V$PAX6/PAX4 PD.01 (PAX4 paired domain binding site V$HOXF/PTX1.01 Pituitary Homeobox 1 (Ptxl) V$FKHD/XFD3.01 Xenopus fork head domain factor 3 V$PAX6/PAX6.02 PAX6 paired domain and homeodomain are required E for binding to this site _. ._ _-, . -. . . _ . . - ._ 1V$PAXS/PAXS 03 PAX5 paired domain protein V$IRFF/IRF3.01 Interferon regulatory factor 3 (IRF-3) **matches are listed in order of occurrence in the corresponding sequence TFBS in hluc+ver2B7 After removal of TFBS from hluc+ver2B6 = before removal of TFBS
from hluc+ver2B7 (2 matches) F~~nuly/m.ztria~Fur-ther Informalion - _- -_-. , _ rV$HOXF/PTX1.01 PituitaryHomeobox 1 (Ptxl) -_-V$FKHD/XFD3.01 Xenopus fork head domain factor 3 **matches are listed in order of occurrence in the corresponding sequence TFBS in hluc+ver2B8 After removal of TFBS from hluc+ver2B7 = before removal of TFBS
from hluc+ver2B8 (1 match) Family/matrix Further Information V$FKHD/XFD3.01 MXenopus fork head domain factor 3 TFBS in hluc+ver2B9 After removal of TFBS from hluc+ver2B8 = before removal of TFBS
from hluc+ver2B9 (1 match) Family/matrix Further Information V$FKHID/XFD3.01 [Xenopus fork head domain factor 3 TFBS in hluc+ver2B 10 After removal of TFBS from hluc+ver2B9 (1 match) Family/inatri : Further Information V$FKHD/XFD3.01 f Xenopus fork head domain factor 3 Example 8 Summary of Desi ifor pGL4 Sequences Figure 2 depicts the design scheme for the pGL4 vector. A portion of the vector backbone in pGL3 which includes an bla gene and a sequence between bla and a multiple cloning region, but not a second open reading frame, was modified to yield pGL4. pGL4 includes an ampicillin resistance gene between a Notl and a Spel site, the sequence of which was modified to remove regulatory sequences but not to optimize codons for mammalian expression (bla- 1 -bla-5), and a SpeI-Ncol fragment that includes a multiple cloning region and a translation trap. The translation trap includes about 60 nucleotides having at least two stop codons in each reading frame. The SpeI-NcoI fragment from a parent vector, pGL4-basics-5F2G-2, was modified to decrease undesired regulatory sequences (MCS-1 to MCS-4; SEQ ID Nos. 76-79). One of the resulting sequences, MCS-4, was combined with a modified ampicillin resistance gene, bla-5 (SEQ ID NO:84), to yield pGL4B-4NN (SEQ ID NO:95).
pGL4B-4NN was further modified (pGL4-NN1-3; SEQ ID Nos. 96-98). To determine if additional polyA sequences in the Spel-NcoI fragment further reduced expression from the vector backbone, various polyA sequences were inserted therein. For instance, pGL4NN-Blue Heron included a c-mos polyA
sequence in the SpeI-NcoI fragment. However, removal of regulatory sequences in polyA sequences may alter the secondary structure and thus the function of those sequences.

In one vector, the Spel-Ncol fragment from pGL3 (Spel-NcoI start ver 2;
SEQ ID NO:48) was modified to remove one transcription factor binding site and one restriction enzyme recognition site, and alter the multiple cloning region, yielding Spel-Ncol ver2 (SEQ ID NO:49).

TF binding sites and search parameters Each TF binding site ("matrix") belongs to a matrix family that groups functionally similar matrices together, eliminating redundant matches by Matlnspector professional (the search program). Searches were limited to vertebrate TF binding sites. Searches were performed by matrix family, i.e., the results show only the best match from a family for each site. Matlnspector default parameters were used for the core and matrix similarity values (core similarity = 0.75, matrix similarity = optimized), except for sequence MCS-1 (core similarity = 1.00, matrix similarity = optimized).

Table 25 Description of Desi egn d Sequences pGL4 sequences Sequence Desci-iption Matrix Library SpeI-Ncol fragfneszt witlz MCS, translation trap MCS-1 Spel-NcoI from pGL4-basics-5F2G-2 Ver 2.2 Sep MCS-2 First removal of undesired sequence Ver 2.2 Sep matches 2001 MCS-3 Second removal of undesired sequence Ver 2.2 Sep matches 2001 MCS-4 Third removal of undesired sequence Ver 2.3 Feb matches 2001 NotI-S eI ra sraent witlz bla eize Bla Beta-lactamase gene from pGL3 vectors bla-1 * SacII (RE) added, BsmAI (RE) site Ver 2.2 Sep removed (*) 2001 bla-2* First removal of undesired sequence Ver 2.3 Feb matches 2001 bla-3* Second removal of undesired sequence Ver 2.3 Feb matches 2001 b1a-4* Third removal of undesired sequence Ver 2.3 Feb matches 2001 Sequence Description Matrix Librai b1a-5* Fourth removal of undesired sequence Ver 2.3 Feb matches 2001 Notl-Ncol fragment with bla, translation tra , MCS
pGL4B-4NN Combination of bla-5 and MCS-4 Ver 2.4 May sections 2002 pGL4B-4NN1 First removal of undesired sequence Ver 2.4 May matches 2002 pGL4B-4NN2 Second removal of undesired sequence Ver 2.4 May matches 2002 pGL4B-4NN3 Third version after removal of CEBP Ver 2.4 May (TF) site 2002 SpeI-Ncol fragment with translation trap, oIA,MCS
Spel-Ncol- Existing MCS replaced with new MCS Ver 4.0 Nov Ver2-start 2003 Spe1-Ncol-Ver2 First removal of undesired sequence Ver 4.0 Nov matches 2003 (*)Bla codon usage was not optimized for expression in mammalian cells. Low usage E. coli codons were avoided when changes were introduced to remove undesired sequence elements.

Table 26 Sequences in Synthetic Spe1-NcoI frament of pGL4 TFBS in MCS-1 Before removal of TFBS from MCS-1 (14 matches) Name of Further Information family/matrix Pax-3 paired domain protein, expressed in V$PAX3/PAX3.01 embryogenesis, mutations correlate to { Waardenburg Syndrome V$GATA/GATA.01 GATA binding site (consensus) V$NKXH/NKX31.01 ; prostate-specific homeodomain protein NKX3.1 V$CREB/E4BP4.01 E4BP4, bZIP dornain, transcriptional repressor V$BRN2/BRN2.01 POU factor Bm-2 (N-Oct 3) V$CREB/E4BP4.01 E4BP4, bZIP donain, transcriptional repressor E f V$NKXH/NKX31.01 prostate-specific homeodomain protein NKX3.1 V$ZFIA/ZIID.01 zinc finger with interaction domain V$CP2F/CP2.01 CP2 V$BRACBRACH.01 Brachyury V$PAX6/PAX6.01 Pax-6 paired dorrmain protein prostate-specific homeodomain protein V$NKXH/NKX31.01 NKX3.1 V$TEAF/TEF1.01 TEF-1 related muscle factor V$ETSF/ELK1.02 Elk-1 **matches are listed in order of occurrence in the corresponding sequence TFBS in MCS-2 After removal of TFBS from'MCS-1 = before removal of TFBS from MCS-2 (12 matches) Name of Furt_her Information family/matrix a* >

V$GATA/GATA.01 GATA binding site (consensus) V$NKXH/NKX31.01 prostate-specific homeodomain protein NKX3.1 V$TBPF/ATATA.01 Avian C-type LTR TATA box V$CART/CART1.01 Cart-1 (cartilage homeoprotein 1) V$CREB/E4BP4.01 E4BP4, bZIP domain, transcriptional repressor' V$BRN2/BRN2.01 POU factor Bm-2 (N-Oct 3) V$CREB/E4BP4.01 E4BP4, bZIP domain, transcriptional repressor V$TBPF/ATATA.01 Avian C-type LTR TATA box prostate-specific homeodomain protein V$NKXH/NKX31.01 NKX3.1 V$PAX6/PAX6.01 Pax-6 paired domain protein ;.._.._.. _ . V$PAX8/PAX8.01 PAX 2/5/8 binding site Paxl paired domain protein, expressed in the V$PAX1/PAX1.01 developing vertebral column of mouse = embryos . ...~.
**matches are listed in order of occurrence in the corresponding sequence TFBS in MCS-3 After removal of TFBS from MCS-2 = before removal of TFBS from MCS-4 (0 matches) TFBS in MCS-4 After removal of TFBS from MCS-3 (0 matches) Table 27 Sequences in Synthetic 1VotI-SpeI Fragment of pGL4 TFBS in bla-1 Before removal of TFBS from bla-1 (94 matches) Name of family/matrix Further Information _ ..~. .
VGATA-binding factor 1 V$GATA/GATA1.02 V$HOXF/HOXl-3.01 Hox-1.3, vertebrate homeobox protein V$TBPF/ATATA.01 Avian C-type LTR TATA box V$ETSF/NRF2.01 nuclear respiratory factor 2 V$OCTP/OCT1P.01 octamer-binding factor 1, POU-specific domain V$ETSF/ELK1.02 Elk-1 V$GI!F/GKLF.01 ~ gut-enriched Krueppel-like factor E2F, involved in cell cycle regulation, V$E 2FF/E2F.02 interacts with Rb p 107 protein V$ETSF/NRF2.01 nuclear respiratory factor 2 V$AP1F/VMAF.01 v-Maf V$XBBF/RFX1.01 X-box binding protein RFX1 V$AREB/AREB6.04 AREB6 (Atplal regulatory element binding factor 6) c-Myb, important in hematopoesis, V$CMYB/CMYB.01 cellular equivalent to avian myoblastosis virus oncogene v-myb , . .. . . .. _ ._.____ _ . _ V$VMYB/VMYB.02 v-Myb , . _ 1i~yc . V$EBOX/NMYC.01 PAR-type chicken vitellogenin V$VBPF/VBP.01 promoter-binding protein , __ _ __ _.. . . . . ._ .. . . _ _ _ . _ _._. . _ ..
c-Myb, important in hematopoesis, V$CMYB/CMYB.01 cellular equivalent to avian t -- --Name of family/matrix ** F Further Information F_ myoblastosis virus oncogene v-myb V$GATA/GATA3.02 GATA-binding factor 3 V$PAX8/PAX8.01 PAX 2/5/8 binding site V$HNF4/HNF4.02 Hepatic nuclear factor 4 E2F, involved in cell cycle regulation, V$E2FF/E2F.01 interacts with Rb p 107 protein V$NFAT/NFAT.01 Nuclear factor of activated T-cells [i7Y.02 V$ECANFnuclear factor Y (Y-box binding factor) V$TBPF/Mammalian C-type LTR TATA box V$MYT1/MYT1.02 MyT 1 zinc finger transcription factor involved in primary neurogenesis _.. _ _._.._ . ._.. _. _ . __:_ ,IV$GATA/GATA3.01 GATA-binding factor 3 V$CREB/CREB.02 cAMP-responsive element binding protein , . . . .. . _ -~, winged helix protein, involved in hair V$WHZF/WHN.01 keratinization and thymus epithelium differentiation .__.,...
V$IRFF/ISRE.01 interferon-stimulated response element _. . ~ .. . _ V$NRSF/NRSE.01 neural-restrictive-silencer-element .. .~
V$TCFF/TCF11.01 TCF11/KCR-F1/Nrfl homodimers signal transducers and activators of V$STAT/STAT.01 transcription V$ECAT/NFY.03 nuclear factor Y (Y-box binding factor) V$OCT1/OCT1.05 octamer-binding factor 1 octamer-binding factor 1, POU-specific !
V$OCTP/OCT1P.01 domain _.._J
lmeo domain factor Nkx-2.5/Csx, 184 Name of family/niatrix Further Information - ~ tinman homolog low affinity sites V$PIT1lPIT1.01 Pitl, GHF-1 pituitary specific pou domain transcription factor V$CLOX/CDPCR3.01 cut-like homeodomain protein V$GREF/ARE.01 ~~- Androgene receptor binding site V$GATA/GATA1.04 GATA-binding factor 1 V$E2TF/E2.02 papilloma virus regulator E2 V$RPOA/POLYA.01 fMammalian C-type LTR Poly A signal V$VMYB/VMYB.02--- v-Myb V$CEBP/CEBPB.01 CCAAT/enhancer binding protein beta PAR-type chicken vitellogenin V$VBPF/VBP.01 promoter-binding protein V$CREB/HLF.01 hepatic leukemia factor V$SF1F/SF1.01 ~ SF1 steroidogenic factor 1 . ._ V$XBBF/MIF 1.O 1 MIBP-1 / RFX 1 complex Ikaros 2, potential regulator of V$IKRS/IK2.01 lymphocyte differentiation . _v.
---V$MINUMUSCLE_INI.02 Muscle Initiator Sequence V$PCAT/CLTR CAAT.01 Mainmalian C-type LTR CCAAT box ;. _ . ._ _ .._.~..~._. _ V$PAX5/PAX5.01 ~ B-cell-specific activating protein Mammalian C-type LTR Poly A
V$RPAD/PADS.01 downstream element . _ . _ .. . .. _ . .. _ V$XBBF/RFX1.02 X-box binding protein RFX1 _.A
V$CEBP/CEBPB.01 r CCAAT/enhancer binding protein beta V$CREB/HLF.O1 [hepatic leukemia factor _ _ ..
V$HNF1/HNF1.01 Fepatic nuclear factor 1 . . _ _... -~ __ Name of family/matrix j- Further Information _ V$VMYB/VMYB.01 v-Myb V$NKXH/NKX31.01 prostate-specific homeodomain protein IVI~X3.1 V$XBBF/RFX1.01 X-box binding protein RFX1 V$STAT/STAT.01 signal transducers and activators of transcription V$HNF1/HNF1.01 hepatic nuclear factor 1 V$HMYO/S8.01 S8 V$SORY/SOX5.01 Sox-5 V$SORY/SOX5.01 V$RBIT/BRIGHT.01 Bright, B cell regulator of IgH
transcription homeo domain factor Nkx-2.5/Csx, V$NI~XH/NKX25.02 tinman homolog low affinity sites V$GATA/GATA1.02 GATA-binding factor 1 V$BARB/BARBIE.01 barbiturate-inducible element V$MTF1/MTF-1.01 Metal transcription factor 1, MRE
V$NFKB/CREL.01 --~ c-Rel mm ~
V$ETSF/ELK1.02 Elk-1 V$CLOX/CDP.01 cut-like homeodomain protein V$RPOA/LPOLYA.01 Lentiviral Poly A signal ~
V$GATA/GATA1.03 GATA-binding factor 1 _ _..__ ... _ . _ _ _. .. _.._ .
V$ZFIA/ZID.01 zinc finger with interaction domain ---~ winged helix protein, involved in hair V$WHZF/WHN.01 keratinization and thymus epithelium differentiation Paxl paired domain protein, expressed ! V$PAX1/PAX1.01 in the developing vertebral column of --Name of family/matrix Further Information mouse embryos V$GATA/LMO2COM.02 complex of Lmo2 bound to Tal-1, E2A
proteins, and GATA-1, half-site 2 Iv RSFSF.01 neuron-restrictive silencer factor IVP4R/TAL1 _____~
BETAE47.01 Tal-lbeta/E47 heterodimer complex of Lmo2 bound to Tal-1, E2A
V$GATA/LMO2COM.02 proteins, and GATA-1, half-site 2 V$GATA/GATA1.02 GATA-binding factor 1 X-box binding protein RFX1 [V$XBBF/RFX1.01 V$AHRR/AHRARNT.02 aryl hydrocarbon / Arnt heterodimers, fixed core IV$PAX5/PAX9.01zebrafish PAX9 binding sites V$CLOX/CDP.02 transcriptional repressor CDP
transcriptional IV$GATAIGATA1 .01 GATA-binding factor 1 TCFl 1/MafG heterodimers, binding to V$AP1F/TCF11MAFG.01 subclass of AP 1 sites - -.~..
V$BRN2/BRN2.01 POUfactor Bm-2 (N-Oct 3) V$NKXH/NKX25.02 homeo domain factor Nkx-2.5/Csx, tinman homolog low affinity sites ~ . _._ . , V$ECAT/NFY 02 Fu clear factor Y (Y-box binding factor) ~ . __.._ . _ .. _ _ F
V$FKHD/FREAC4.01-~ Frk head RElated ACtivator-4 ...
V$NFAT/NFAT.01 Nuclear factor of activated T-cells .... . -. .. ... - .. . .._-. -........ ....... _... . -...- _- ... ._... f _..-.-,. ...-. . .
.. --..... . .._. , ._-.... -.. ..... _ V$IRFFBtF1.01 interferon regulatory factor 1 ( . _ _.. _._ ....._.. __. . .._. _i E2F, involved in cell cycle regulation, V$E2FF/E2F.02 interacts with Rb p 107 protein **matches are listed in order of occurrence in the corresponding sequence TFBS in bla-2 After removal of TFBS from bla-1 = before removal of TFBS from bla-2 (51 matches) FName of family/matri~: Further Information V$GATA/GATA1.02 GATA-binding factor 1 V$ETSF/NRF2.01 [nuclear respiratory factor 2 octamer-binding factor 1, POU-specific V$OCTP/OCT 1P.01 domain V$ETSF/ELK1.02 Elk-1 V$EBOX/NMYC.01 N-Myc V$GATA/GATA3.02 FATA-binding factor 3 ~
~_ ____ V$PAX8/PAX8.01 PAX 2/5/8 binding site V$HNF4/HNF4.02 Ã Hepatic nuclear factor 4 =
_ ....: , E2F, involved in cell cycle regulation, V$E2FF/E2F.01 interacts with Rb p 107 protein V$NFAT/NFAT.01 INuclear factor of activated T-cells =
7 _ V$ECAT/NFY_02 nuclear factor Y binding factor) ... .. . .. .. . .
~_._. (Y-box V$TBPF/TATA.02 ~,' Mammalian C-type LTR TATA box MyT 1 zinc finger transcription factor V$MYT 1 /MYT 1.02 involved in primary neurogenesis ]V$GATA/GATA3.01 GATA-binding factor 3 cAMP-responsive element binding V$CREB/CREB.02 protein ._ __ = winged helix protein, involved in hair V$WHZF/WHN.01 keratinization and thymus epithelium differentiation . . . __ . . _. - __ . . . . .. . . , ~ V$NRSF/NRSE.01 neural-restrictive-silencer-element V$OCT1/OCT 1.05 { octamer-binding factor 1 V$CLOX/CDPCR3.01 cut hke homeodomain protein Name of family/matrix*Y Further Information V$GREF/ARE.01 Androgene receptor binding site V$GATA/GATA1.04 GATA-binding factor 1 AAT/enhancer binding protein beta V$CEBP/CEBPB.01 PC
.,. . . .._. -..-õ_., 1 .-_...... ..-...õ. . ... - .. -.....,_. -._ . ..-..._-,-.._...,,_ . _ , V$CREB/HLF.01 ', hepatic leukemia factor V$VBPF/VBP.01 PAR-type chicken vitellogenin prornoter-binding protein . __ .. _. ._._.._.. ..__-_ _ . _ .. _ ~..., F V$XBBF/MIF1.01 PBP-1 / RFXl complex Ikaros 2, potential regulator of V$IKRS/IK2.01 lymphocyte e differentiation V$PAX5/PAX5.01 [B-cell-sPecific activating protein V$XBBF/RFX1.02 X-box binding protein RFX1 { V$CEBP/CEBPB.01 i CCAAT/enhancer binding protein beta V$CREB/HLF.01 hepatic leukemia factor V$XBBF/RFX1.02 X-box binding protein RFXl ~ ._.~......_ ...~..~..~~
V$GATA/GATA1.02 GATA-binding factor 1 ~~
~
V$BARBBARBIE.01 faibiturate-inducible element V$MTFl/MTF-1.01 Metal transcription factor 1, MRE
V$NFKB/CREL.01 c-Rel .... ..
V$ETSF/ELK1.02 [E1k_1 __....
V$TBPF/TATA.01 cellular and viral TATA box elements V$MEIS/MEIS 1.01 H. oprotein MEIS 1 binding site =
~__.._... . . . .;
Mernber of the vertebrate HOX - cluster' V$HOXF/HOXA9.01 of homeobox factors V$GATA/GATA1.03 [GATAbinding factor 1 _ .... ._ -. .. , -.. -. .- . ._.- ., . .. .-,_.. ..._- .. _. __".- .-__4 V$MEIS/MEIS 1.01 Homeobox protein MEIS 1 binding site V$NOLF/OLF1.01 olfactory neuron-specific factor _ - - -- -j Name of family/matrix Further Information V$AP4R/TALIBETAE47.01 Tal-lbeta/E47 heterodirner V$GATA/GATA1.02 [dkTAbinding factor I
V$XBBF/RFX1.01 X-box binding protein RFX1 aryl hydrocarbon / Arnt heterodimers, V$AHRR/AHRARNT.02 fixed core V$PAX5/PAX9.01 Pebr,afish PAX9 binding sites ._ V$CLOX/CDP.02 transcriptional repressor CDP
V$GATA/GATA1.01 GATA-binding factor I
V$IRFF/IRF 1.01 interferon regulatory factor 1 V$E2FF/E2F.02 E2F, involved in cell cycle regulation, interacts with Rb p 107 protein **matches are listed in order of occurrence in the corresponding sequence TFBS in bla-3 After removal of TFBS from bla-2 = before removal of TFBS from bla-3 = (16 matches) -N meof Further Information family/matrit V$ETSF/NRF2.01 nuclear respiratory factor 2 .__.__ -._. . _ _... . ..... .. __.__ .... _._._.. , E2F, involved in cell cycle regulation, interacts with V$E2FF/E2F.02 Rb p 107 protein clear factor of activated T-cells V$NFAT/NFAT.01 FU
_ . . .._ , . _ . .. . _. ._ ...._. _ __ _ ., _ , _._i V$TBPF/TATA.02 Mammalian C-type LTR TATA box MyTl zinc finger transcription factor involved in V$MYT1/MYT1.02 pnmary neurogenesis r- .- ... . .-;- . - .... . ... . . .. . . . r Name of Further Information family/matrix k~

V$WHZF/W winged helix protein, involved in hair keratinization HN.01 and thymus epithelium differentiation V$SORY/SOX5.01 Sox-5 V$CEBP/CEBPB.01 CCAAT/enhancer binding protein beta V$CREB/HLF.01 hepatic leukemia factor V$VBPF/VBP.01 PAR-type chicken vitellogenin promoter-binding protein V$PAX5/PAX5.01 B-cell-specific activating protein V$XBBF/RFX1.02 X-box binding protein RFX1 V$CREB/HLF.01 hepatic leukemia factor V$GATA/GATA1.0 3 GATA-binding factor 1 V$MEIS/MEIS 1.01 Homeobox protein MEIS 1 binding site _. _. . _..~
E V$NOLF/OLF1.01 j olfactory neuron-specific factor ...__.. _._., .__- -._ . ... __.... . _ _ _,_.._.i **matches are listed in order of occurrence in the corresponding sequence TFBS in bla-4 After removal of TFBS from bla-3 = before removal of TFBS from bla-4 = (14 matches) Name of Further Information familylmatrix** 191 ~-- ~- - -- - , Name of Further Information family/matrix*' V$ETSF/NRF2.01 nuclear respiratory factor 2 V$NFAT/NFAT.01 Nuclear factor of activated T-cells winged helix protein, involved in hair V$WHZF/WHN.01 keratinization and thymus epithelium differentiation V$GATA/GATA3.01 GATA-binding factor 3 V$CEBP/CEBPB.01 CCAAT/enhancer binding protein beta V$EBOX/USF.02 I upstream stimulating factor V$PAX5/PAX5.01 B-cell-specific activating protein V$XBBF/RFX1.02 X-box binding protein RFX1 .. . .-.. .. -.-. .. .... :,........ .-...- W,..~ ....... ..........-.. ..~. .
,,. .... ...
.' .. - -. -. . .... . . . -. t V$GATA/GATA1.03 GATA-binding factor 1 V$MEIS/MEIS 1.01 Homeobox protein MEIS 1 binding site V$ZFIA/ZID.01 zinc finger with interaction domain .._ .......... . ...._ ~__. .._----__......__ ._ ..___.._._. __ _.
winged helix protein, involved in hair V$WHZF/WHN.01 keratinization and thymus epithelium differentiation ,__ _. . _ ;_ ._._..... __ ..
Paxl paired domain protein, expressed in k.
V$PAX 1 /PAX 1. 0 1 the developing vertebral column of mouse embryos 1V$GATMO2c0M.02 complex of Lmo2 bound to Tal-1, E2A ( Name of Further Information family/matris**

proteins, and GATA-1, half-site 2 **matches are listed in order of occurrence in the corresponding sequence TFBS in bla-5 After removal of TFBS from bla-4 (5 matches) Nameof Further Information 1'a milv/matriY '*
' V$ETSF/NRF2.01 nuclear respiratory factor 2 winged helix protein, involved in hair V$WHZF/WHN.O1 keratinization and thymus epithelium differentiation V$GATA/GATA3.01 GATA-binding factor 3 _ .. . ..~~~.~ .~~ _ . . . . ._ , ._. .. ..._ ., V$CEBP/CEBPB.O1 CCAAT/enhancer binding protein beta _._ ___. - -_ .. . ._ .. ._.._... w_._.._.._ V$EBOX/USF.02 upstream stimulating factor **matches are listed in order of occurrence in the corresponding sequence Table 28 Sequences in Synthetic Notl-Ncol Fragment of pGL4 TFBS in pGL4B-4NN
Before removal of TFBS from pGL4B-4NN = (11 matches) Name of Furtlier Information family/niatrix* "

V$SMAD/FAST1.01 FAST-1 SMAD interacting protein V$SMAD/FAST1.01 FAST-1 SMAD interacting protein V$ETSF/FLI.01 ETS family member FLI

V$RBPF/RBPJK.01 Mammalian transcriptional repressor RBP-Jkappa/CBF1 V$ETSF/FLI.01 ETS family member FLI
V$EBOX/USF.02 upstream stimulating factor V$CEBP/CEBPB.01 CCAAT/enhancer binding protein beta V$GATA/GATA3.01 GATA-binding factor 3 winged helix protein, involved in hair V$WHZF/WHN.01 keratinization and thymus epithelium differentiation , __ _.. _ .. _ .
V$ETSF/NRF2.01 nuclear respiratory factor 2 V$TBPF/ATATA.01 Avian C-type LTR TATA box **matches are listed in order of occurrence in the corresponding sequence TFBS in pGL4B-4NN1 After removal of TFBS from pGL4B-4NN = before removal of TFBS
from pGL4B-4NN1 (7 matches) Name of Further Information family/matrix** ; V$ETSF/NRF2.01 nuclear respiratory factor 2 winged helix protein, involved in hair V$WHZF/WHN.01 keratinization and thymus epithelium differentiation [vsEBP/CEBPRo1 CCAAT/enhancer binding protein beta V$EBOX/USF.02 upstream stimulating factor V$ETSF/FLI.O1 ETS family member FLI
V$SMAD/FAST1.01 FAST-1 SMAD interacting protein V$SMAD/FAST1.01 FAST-1 SMAD interacting protein **matches are listed in order of occurrence in the corresponding sequence TFBS in pGL4B-4NN2 After removal of TFBS from pGL4B-4NN1 = before removal of TFBS
from pGL4B-4NN2 (4 matches) Name of I, tirtherTnl=oruiation family/matri~ ~-"~

V$ETSF/NRF2.01 nuclear respiratory factor 2 winged helix protein, involved in hair V$WHZF/WHN.01 t keratinization and thymus epithelium differentiation V$CEBP/CEBPB.01' CCAAT/enhancer binding protein beta --------------V$EBOX/LTSF.02 upstream stimulating factor .. _ . . _ :
**matches are listed in order of occurrence in the corresponding sequence TFBS in pGL4B-4NN3 After removal of TFBS from pGL4B-4NN2 (3 matches) Name of family/niatrix Further Inforniationl =

V$EBOX/USF. upstream stimulating factor .

V$WHZF/WH winged helix protein, involved in hair keratinization and N.01 thymus epithelium differentiation V$ETSF/NRF2;
.01 nuclear respiratory factor 2 **matches are listed in order of occurrence in the corresponding sequence Table 29 Sequences in Synthetic Spel-Ncol section of pGL4 TFBS in Spel-Nc I-Ver2-start Before removal of TFBS from Spel-Ncol-Ver2-start (34 matches) FarnilN/matrix*k Ftrr-ther Infortnalion ,,'~ -~-_ - - --- --- --- - ---- --I- -- --V$PAX8/PAX8.01 PAX 2/5/8 binding site 1V$GATAIGATA1.02 _-_-__---_ GATA-binding factor 1 E4BP4, bZIP domain, transcriptional V$CREB/E4BP4.01 repressor Prostate-specific homeodomain protein V$1~TKXH/NKX31.01 NI~3.1 V$TBPF/ATATA.01 Avian C-type LTR TATA box E4BP4, bZIP domain, transcriptional V$CREB/E4BP4.01 ,repressor Prostate-specific homeodomain protein V$NKXH/NKX31.01 1NKX3.1 V$CART/CART1.01 Cart-1 (cartilage homeoprotein 1) Homeo domain factor Nkx-2.5/Csx, V$NKXH/NKX25.02 tinman homolog low affinity sites Elk1 1V$ETS'/ELK1.01 Family/matrix** Further Information Cdx-2 mammalian caudal related V$CDXF/CDX2.01 intestinal transcr. factor , . .- _ . ... _ _. .... _ .__ _ . . . _ V$BRNF/BRN3.01 ; POU transcription factor Bm-3 V$TBPF/TATA.02 Mammalian C-type LTR TATA box V$FKHD/FREAC3.01 Fork head related activator-3 (FOXC1) V$C-CT1/OCT1.02 Octamer-binding factor 1 V$CART/CART1.01 Cart-1 (cartilage homeoprotein 1) V$PDX 1 /PDX 1.01 Pdx l(IDX 1/IPF 1) pancreatic and intestinal homeodomain TF
V$PARF/DBP.01 [Albumin D-box binding protein _ ... ...__ .. . ___ , .
V$GATA/GATA3.02 GATA-binding factor 3 PAR-type chicken vitellogenin V$VBPF/VBP.01 promoter-binding protein _ ~:~__.. ._ _ .. . _. _._.... ..
V$AP4R/TALIALPHAE47 01Ã Tal-lalpha/E47 heterodimer ... . . ... ____. _ .~ ._ ..____._. ._.._. _... __ _ ._.. !Zinc finger protein RP58 (ZNF238), V$R.P58/RP58.01 associated preferentially with heterochromatin COMP1, cooperates with myogenic V$C OMP/COMP 1.01 proteins in multicomponent complex . _ _ _ . ._.~ _.. _ .. . ._. . w. .. ._.. ._ _ _. .
; V$CLOX/CLOX.01 Clox .~._ V$TBPF/ATATA.01 Avian C-type LTR TATA box Binding site for a Pbxl/Meisl V$PBXC/PBX1 MEIS 1.02 heterodimer [V$PIBXF/PBX1.01 Homeo domain factor Pbx-1 V$IRFF/IRF1.01 Interferon regulatory factor 1 .
f V$TEAF/TEF1.01 TEF-1 related muscle factor .

Family/matrix** Further Information Member of b-zip family, induced by ER
V$EBOX/ATF6.01 damage/stress, binds to the ERSE in association with NF-Y

V$NKXH/NKX32.01 Homeodomain protein NKX3.2 (BAPX1, NK.X3B, Bagpipe homolog) _---V$E2TF/E2.02 Papilloma virus regulator E2 V$EVI1/EVI1.05 Ecotropic viral integration site 1 encoded factor V$GATA/GATA3.02 GATA-binding factor 3 **matches are listed in order of occurrence in the corresponding sequence TFBS in Snel-NcoI-V er2 After removal of TFBS from SpeI-Nc I-Ver2-start (28 matches) Famih1matrix Further Informatiou k> ...,. . ... _.. , .
. - ...-_ PAX
V$PAXB/PAX8.01 12/5/8 binding site V$GATA/GATA1.02 GATA-binding factor 1 E4BP4, bZIP domain, transcriptional V$CREB/E4BP4.01 repressor _. .. ._. . s .. ... . .
Prostate-specific homeodomain protein V$NKXH/NKX31.01 NKX3.1 . _ . _._ .. . _ . ._. _ , V$TBPF/ATATA.01 Avian C-type LTR TATA box E4BP4, bZIP domain, transcriptional V$CREB/E4BP4.01 repressor Prostate-specific homeodomain protein V$NKXH/NKX31.01 NKX3.1 .___ ._. _ .... . .. ...... _# __ _ _._ V$CART/CART1.01 "Cart-1 (cartilage homeoprotein 1) ~

Family/matrix** Further Information V$NKXH/NKX25.02 Homeo dornain factor Nkx-2.5/Csx, tinman hornolog low affinity sites Cdx-2 mammalian caudal related V$CDXF/CDX2.01 intestinal transcr. factor V$BRNFBRN3.01 POU transcription factor Brn-3 . _ . _. . . . . ..__ _. :
FY$TBPF/TATA.02 Mammalian C-type LTR TATA box V$FKHD/FREAC3.01- Fork head related activator-3 (FOXC1) V$OCTl/OCT1.02 Octamer-binding factor 1 V$CART/CART1.01 ~Cart-1 (cartilage homeoprotein 1) Pdxl (IDX 1/IPF1) pancreatic and V$PDX1/PDX1.01 intestinal homeodomain TF
V$PARF/DBP.01 Albumin D-box binding protein FK-s L(JATA/GATA3.02 GATA-binding factor 3 PAR-type chicken vitellogenin V$VBPF/VBP.01 promoter-binding protein V$AP4R/TALIALPHAE47.01 i Tal-lalpha1E47 heterodimer Zinc finger protein RP5 8 (ZNF23 8), V$RP58/RP58.01 associated preferentially with heterochrornatin COMP 1, cooperates with myogenic MCOMP/COMP1.01 proteins in multicomponent complex [Clox !
V$CLOX/CLOX.O 1 _ ._ ._ . _ _ _.. __. .._., ._ .. _, V$TBPF/ATATA.01 Avian C-type LTR TATA box ' Binding site for a Pbx 1/Meis 1 V$PBXC/PBX1 MEIS1.02 heterodimer V$PBXF/PBX1.01 - '' Homeo domain factor Pbx-1 Family/matrit** Further Information V$IRFF/IR.F1.01 Interferon regulatory factor 1 V$TEAF/TEF1.01 ~~ TEF-1 related muscle factor **matches are listed in order of occurrence in the corresponding sequence The number of consensus transcription factor binding sites present in the vector backbone (including the ampicillin resistance gene) was reduced from in pGL3 to 40 in pGL4, and the number of promoter modules was reduced from in pGL3 to 4 for pGL4, using databases, search programs and the like as described herein. Otlier modifications in pGL4 relative to pGL3 include the removal of the fl origin of replication and the redesign of the multiple cloning region.
MCS-1 to MCS-4 have the following sequences (SEQ ID Nos:76-79) ACTAGTCGTCTCTCTTGAGAGACCGCGATCGCCACCATGATAAGTAA
GTAATATTAAATAAGTAAGGCCTGAGTGGCCCTCGAGCCAGCCTTGA
GTTGGTTGAGTCCAAGTCACGTCTGGAGATCTGGTACCTACGCGTGA
GCTCTACGTAGCTAGCGGCCTCGGCGGCCGAATTCTTGCGATCTAAG
TAAGCTTGGCATTCCGGTACTGTTGGTAAAGCCACCATGG

ACTAGTACGTCTCTCTTGAGAGACCGCGATCGCCACCATGATAAGTA
AGTAATATTAAATAAGTAAGGCCTGAGTGGCCCTCGAGTCCAGCCTT
GAGTTGGTTGAGTCCAAGTCACGTCTGGAGATCTGGTACCTTACGCGT
AGAGCTCTACGTAGCTAGCGGCCTCGGCGGCCGAATTCTTGCGATCT
AAGCTTGGCAATCCGGTACTGTTGGTAAAGCCACCATGG

ACTAGTACGTCTCTCTTGAGAGACCGCGATCGCATGCCTAGGTAGGT
AGTATTAGAGCATAGGTAGAGGCCTAAGTGGCCCTCGAGTCCAGCCT
TGAGTTGGTTGAGTCCAAGTCACGTCTGGAGATCTGGTACCTTACGCG
TATGAGCTCTACGTAGCTAGCGGCCTCGGCGGCCGAATTC'TTGCGAT
CTAAGCTTGGCAATCCGGTACTGTTGGTAAAGCCACCATGG

ACTAGTACGTCTCTCTTGAGAGACCGCGATCGCCACCATGTCTAGGT
AGGTAGTAAACGAAAGGGCTTAAAGGCCTAAGTGGCCCTCGAGTCCA
GCCTTGAGTTGGTTGAGTCCAAGTCACGTTTGGAGATCTGGTACCTTA

CGCGTATGAGCTCTACGTAGCTAGCGGCCTCGGCGGCCGAATTCTTG
CGATCTAAGCTTGGCAATCCGGTACTGTTGGTAAAGCCACCATGG
bla has the following sequence:
ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCAT
TTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAG
ATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGAT
CTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTT
TCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATC
CCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATT
CTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTT
ACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCAT
GAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGAC
CGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACT
CGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGA
CGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCA
AACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAA
TAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCG
GCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAG
CGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCC
CTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGG
ATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAG
CATTGGTAA (SEQ ID NO:41).

bla-1 to bla-5 have the following sequences (SEQ ID Nos:80-84):
bla-1 ACTAGTAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGT
ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCAT
TTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAG
ATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGAT
CTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTT
TCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATC
CCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATT
CTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTT
ACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCAT
GAGTGATAACACCGCGGCCAACTTACTTCTGACAACGATCGGAGGAC
CGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACT
CGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGA
CGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCA

AACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAA
TAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCG
GCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAG
CGTGGCTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCC
CTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGG
ATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAG
CATTGGTAACCACTGCAGTGGTTTTCCTTTTGCGGCCGC
bla-2 ACTAGTAACCCTGATAAATGCTGCAAACATATTGAAAAAGGAAGAGT
ATGAGTATTCAACATTTCCGTGTCGCACTCATTCCCTTCTTTGCGGCA
TTTTGCTTGCCTGTTTTTGCACACCCCGAAACGCTGGTGAAAGTAAAA
GATGCTGAAGATCAACTGGGTGCACGAGTGGGCTATATCGAACTGGA
TCTCAATAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTT
TCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATC
CCGTATTGACGCCGGGCAAGAGCAGCTCGGTCGCCGCATACACTACT
CACAGAACGACTTGGTTGAGTACTCGCCGGTCACGGAAAAGCATCTT
ACGGATGGCATGACAGTAAGAGAATTGTGTAGTGCTGCCATAACCAT
GAGTGATAACACCGCGGCCAACTTACTTCTGACAACGATCGGAGGCC
CTAAGGAGCTGACCGCATTTTTGCACAACATGGGGGATCATGTAACC
CGGCTTGATCGTTGGGAACCGGAGCTGAACGAAGCCATACCGAACGA
CGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCA
AACTACTCACTGGCGAACTTCTCACTCTAGCATCACGACAGCAACTC
ATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTC
GGCCCTTCCGGCTGGCTGGTTTATAGCTGATAAATCCGGTGCCGGTG
AACGCGGCTCTCGCGGGATCATTGCTGCGCTGGGGCCAGATGGTAAG
CCCTCACGAATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTAT
GGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATCA
AGCACTGGTAGCCACTGCAGTGGTTTAGCTTTTGCGGCCGC
bla-3 ACTAGTAACCCTGACAAATGCTGCAAACATATTGAAAAAGGAAGAGT
ATGAGCATCCAACATTTTCGTGTCGCACTCATTCCCTTCTTTGCGGCA
TTTTGCTTGCCTGTTTTTGCACACCCCGAAACGCTGGTGAAAGTAAAA
GATGCTGAAGATCAACTGGGTGCAAGAGTGGGCTATATCGAACTGGA
TCTCAATAGCGGCAAGATCCTTGAGTCTTTTCGCCCCGAAGAACGTTT
TCCGATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTGTTGTC
CCGTATAGACGCCGGGCAAGAGCAGCTTGGTCGCCGTATACACTACT
CACAAAACGACTTGGTTGAGTACTCGCCGGTCACGGAAAAGCATCTT
ACGGATGGCATGACGGTAAGAGAATTGTGTAGTGCTGCCATTACCAT
GAGCGACAATACCGCGGCCAACTTACTTCTGACAACGATCGGAGGCC
CTAAGGAGCTGACCGCATTTTTGCACAACATGGGGGATCATGTAACC
CGGCTTGACCGCTGGGAACCGGAGCTGAACGAAGCCATACCGAACG
ACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGG
AAACTACTCACTGGCGAACTTCTCACTCTAGCATCACGACAGCAGCT
CATAGACTGGATGGAGGCGGACAAAGTAGCAGGACCACTTCTTCGCT
CGGCCCTCCCTGCTGGCTGGTTCATTGCTGATAAATCCGGTGCCGGTG
AACGCGGCTCTCGCGGGATCATTGCTGCGCTGGGGCCTGATGGTAAG
CCCTCACGAATCGTAGTAATCTACACGACGGGGAGTCAGGCCACTAT

GGACGAACGAAATAGACAGATCGCTGAGATCGGTGCCTCACTGATCA
AGCACTGGTAACCACTGCAGTGGTTTAGCATTTGCGGCCGC
bla-4 ACTAGTAACCCTGACAAATGCTGCAAACATATTGAAAAAGGAAGAGT
ATGAGCATCCAACATTTTCGTGTCGCACTCATTCCCTTCTTTGCGGCA
TTTTGCTTGCCTGTTTTTGCACACCCCGAAACGCTGGTGAAAGTAAAA
GATGCTGAAGATCAACTGGGTGCAAGAGTGGGCTATATCGAACTGGA
TCTCAATAGCGGCAAGATCCTTGAGTCTTTCCGCCCCGAAGAACGTTT
TCCGATGATGAGCACTTTCAAAGTACTGCTATGTGGCGCGGTGTTGTC
CCGTATAGACGCCGGGCAAGAGCAGCTTGGTCGCCGTATACACTACT
CACAAAACGACTTGGTTGAGTACTCGCCGGTCACGGAAAAGCATCTT
ACGGATGGCATGACGGTAAGAGAATTGTGTAGTGCTGCCATTACCAT
GAGCGATAATACCGCGGCCAACTTACTTCTGACAACGATCGGAGGCC
CTAAGGAGCTGACCGCATTTTTGCACAACATGGGTGATCATGTGACC
CGGCTTGACCGCTGGGAACCGGAGCTGAACGAAGCCATACCGAACG
ACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACTCTTCGG
AAACTACTCACTGGCGAACTTCTCACTCTAGCATCACGACAGCAGCT
CATAGACTGGATGGAGGCGGACAAAGTAGCAGGACCACTTCTTCGCT
CGGCCCTCCCTGCTGGCTGGTTCATTGCTGATAAATCTGGAGCCGGTG
AGCGTGGCTCTCGCGGTATCATTGCTGCGCTGGGGCCTGATGGTAAG
CCCTCACGAATCGTAGTAATCTACACGACGGGGAGTCAGGCCACTAT
GGACGAACGAAATAGACAGATCGCTGAGATCGGTGCCTCACTGATCA
AGCACTGGTAACCACTGCAGTGGTTTAGCATTTGCGGCCGC
bla-5 ACTAGTAACCCTGACAAATGCTGCAAACATATTGAAAAAGGAAGAGT
ATGAGCATCCAACATTTTCGTGTCGCACTCATTCCCTTCTTTGCGGCA
TTTTGCTTGCCTGTTTTTGCACACCCCGAAACGCTGGTGAAAGTAAAA
GATGCTGAAGATCAACTGGGTGCAAGAGTGGGCTATATCGAACTGGA
TCTCAATAGCGGCAAGATCCTTGAGTCTTTCCGCCCCGAAGAACGAT
TCCCGATGATGAGCACTTTCAAAGTACTGCTATGTGGCGCGGTGTTGT
CCCGTATAGACGCCGGGCAAGAGCAGCTTGGTCGCCGTATACACTAC
TCACAAAACGACTTGGTTGAGTACTCGCCGGTCACGGAAAAGCATCT
TACGGATGGCATGACGGTAAGAGAATTGTGTAGTGCTGCCATTACCA
TGAGCGATAATACCGCGGCCAACTTACTTCTGACAACGATCGGAGGC
CCTAAGGAGCTGACCGCATTTTTGCACAACATGGGTGATCATGTGAC
CCGGCTTGACCGCTGGGAACCGGAGCTGAACGAAGCCATACCGAAC
GACGAGCGTGATACCACGATGCCAGTAGCAATGGCCACAACTCTTCG
GAAACTACTCACTGGCGAACTTCTCACTCTAGCATCACGACAGCAGC
TCATAGACTGGATGGAGGCGGACAAAGTAGCAGGACCACTTCTTCGC
TCGGCCCTCCCTGCTGGCTGGTTCATTGCTGACAAATCCGGTGCCGGT
GAACGCGGCTCTCGCGGCATCATTGCTGCGCTGGGGCCTGATGGTAA
GCCCTCACGAATCGTAGTAATCTACACGACGGGGAGTCAGGCCACTA
TGGACGAACGAAATAGACAGATCGCTGAGATCGGTGCCTCACTGATC
AAGCACTGGTAACCACTGCAGTGGTTTAGCATTTGCGGCCGCNNN.
Table 30 Pairwise identity of different bla gene versions bla bla-1 bla-2 bla-3 bla-4 bla-5 blain pGL4 (SEQ ID
NO:74) bla -- 99 93 90 89 88 87 bla-1 -- 94 90 90 89 88 bla-2 -- 96 94 94 93 bla-3 -- 98 98 97 bla-4 -- 99 97 bla-5 -- 98 note: sequence "bla" is bla gene from pGL3-Basic; ClustalW

(Slow/Accurate, IUB); sequence comparisons were of ORF only Spel-NcoI ver2 start has the following sequence:
ACTAGTACGTCTCTCAAGGATAAGTAAGTAATATTAAGGTACGGGAG
GTACTTGGAGCGGCCGCAATAAAATATCTTTATTTTCATTACATCTGT
GTGTTGGTTTTTTGTGTGAATCGATAGTACTAACATACGCTCTCCATC
AAAACAAAACGAAACAAAACAAACTAGCAAAATAGGCTGTCCCCAG
TGCAAGTGCAGGTGCCAGAACATTTCTCTGGCCTAAGTGGCCGGTAC
CGAGCTCGCTAGCCTCGAGGATATCAGATCTGGCCTCGGCGGCCAAG
CTTGGCAATCCGGTACTGTTGGTAAAGCCACCATGG (SEQ ID NO:48);
and Spel-Ncol-Ver2 has the following sequence:
ACTAGTACGTCTCTCAAGGATAAGTAAGTAATATTAAGGTACGGGAG
GTATTGGACAGGCCGCAATAAAATATCTTTATTTTCATTACATCTGTG
TGTTGGTTTTTTGTGTGAATCGATAGTACTAACATACGCTCTCCATCA
AAACAAAACGAAACAAAACAAACTAGCAAAATAGGCTGTCCCCAGT
GCAAGTGCAGGTGCCAGAACATTTCTCTGGCCTAACTGGCCGGTACC
TGAGCTCGCTAGCCTCGAGGATATCAAGATCTGGCCTCGGCGGCCAA
GCTTGGCAATCCGGTACTGTTGGTAAAGCCACCATGG (SEQ ID NO:49) pGL4 related sequences include (SEQ ID Nos.95-97):

pGL4B-4NN
GCGGCCGCAAATGCTAAACCACTGCAGTGGTTACCAGTGCTTGATCA
GTGAGGCACCGATCTCAGCGATCTGTCTATTTCGTTCGTCCATAGTGG
CCTGACTCCCCGTCGTGTAGATTACTACGATTCGTGAGGGCTTACCAT
CAGGCCCCAGCGCAGCAATGATGCCGCGAGAGCCGCGTTCACCGGCA

CCGGATTTGTCAGCAATGAACCAGCCAGCAGGGAGGGCCGAGCGAA
GAAGTGGTCCTGCTACTTTGTCCGCCTCCATCCAGTCTATGAGCTGCT
GTCGTGATGCTAGAGTGAGAAGTTCGCCAGTGAGTAGTTTCCGAAGA
GTTGTGGCCATTGCTACTGGCATCGTGGTATCACGCTCGTCGTTCGGT
ATGGCTTCGTTCAGCTCCGGTTCCCAGCGGTCAAGCCGGGTCACATG
ATCACCCATGTTGTGCAAAAATGCGGTCAGCTCCTTAGGGCCTCCGA
TCGTTGTCAGAAGTAAGTTGGCCGCGGTATTATCGCTCATGGTAATGG
CAGCACTACACAATTCTCTTACCGTCATGCCATCCGTAAGATGCTTTT
CCGTGACCGGCGAGTACTCAACCAAGTCGTTTTGTGAGTAGTGTATA
CGGCGACCAAGCTGCTCTTGCCCGGCGTCTATACGGGACAACACCGC
GCCACATAGCAGTACTTTGAAAGTGCTCATCATCGGGAATCGTTCTTC
GGGGCGGAAAGACTCAAGGATCTTGCCGCTATTGAGATCCAGTTCGA
TATAGCCCACTCTTGCACCCAGTTGATCTTCAGCATCTTTTACTTTCAC
CAGCGTTTCGGGGTGTGCAAAAACAGGCAAGCAAAATGCCGCAAAG
AAGGGAATGAGTGCGACACGAAAATGTTGGATGCTCATACTCTTCCT
TTTTCAATATGTTTGCAGCATTTGTCAGGGTTACTAGTACGTCTCTCTT
GAGAGACCGCGATCGCCACCATGTCTAGGTAGGTAGTAAACGAAAG
GGCTTAAAGGCCTAAGTGGCCCTCGAGTCCAGCCTTGAGTTGGTTGA
GTCCAAGTCACGTTTGGAGATCTGGTACCTTACGCGTATGAGCTCTAC
GTAGCTAGCGGCCTCGGCGGCCGAATTCTTGCGATCTAAGCTTGGCA
ATCCGGTACTGTTGGTAAAGCCACCATGG
pGL4B-4NN1 gcggccgcaaatgctaaaccactgcagtggttaccagtgcttgatcagtgaggcaccgatctcagcgatctgtctatt tcgttcgtccatagtggcctgactccccgtcgtgtagattactacgattcgtgagggcttaccatcaggccccagcgc agcaatgatgccgcgagagccgcgttcaccggcccccgatttgtcagcaatgaaccagccagcagggagggccg agcgaagaagtggtcctgctactttgtccgcctccatccagtctatgagctgctgtcgtgatgctagagtaagaagttc gccagtgagtagtttccgaagagttgtggccattgctactggcatcgtggtatcacgctcgtcgttcggtatggcttcg t tcaactccggttcccagcggtcaagccgggtcacatgatcacccatgttgtgcaaaaatgcggtcagctccttaggg cctccgatcgttgtcagaagtaagttggccgcggtgttgtcgctcatggtaatggcagcactacacaattctcttaccg t catgccatccgtaagatgcttttccgtgaccggcgagtactcaaccaagtcgttttgtgagtagtgtatacggcgacca agctgctcttgcccggcgtctatacgggacaacaccgcgccacatagcagtactttgaaagtgctcatcatcgggaa tcgttcttcggggcggaaagactcaaggatcttgccgctattgagatccagttcgatatagcccactcttgcacccagt tgatcttcagcatcttttactttcaccagcgtttcggggtgtgcaaaaacaggcaagcaaaatgccgcaaagaaggga atgagtgcgacacgaaaatgttggatgctcatactcttcctttttcaatatgtttgcagcatttgtcagggttactagt acg tctctcttgagagaccgcgatcgccaccatgtctaggtaggtagtaaacgaaagggcttaaaggcctaagtggccct cgagtccagccttgagttggttgagtccaagtcacgtttggagatctggtaccttacgcgtatgagctctacgtagcta gcggcctcggcggccgaattcttgcgttcgaagcttggcaatccggtactgttggtaaagccaccatgg; and pGL4B-4NN2 GCGGCCGCAAATGCTAAACCACTGCAGTGGTTACCAGTGCTTGATCA
GTGAGGCACCGATCTCAGCGATCTGCCTATTTCGTTCGTCCATAGTGG
CCTGACTCCCCGTCGTGTAGATCACTACGATTCGTGAGGGCTTACCAT
CAGGCCCCAGCGCAGCAATGATGCCGCGAGAGCCGCGTTCACCGGCC
CCCGATTTGTCAGCAATGAACCAGCCAGCAGGGAGGGCCGAGCGAA
GAAGTGGTCCTGCTACTTTGTCCGCCTCCATCCAGTCTATGAGCTGCT
GTCGTGATGCTAGAGTAAGAAGTTCGCCAGTGAGTAGTTTCCGAAGA
GTTGTGGCCATTGCTACTGGCATCGTGGTATCACGCTCGTCGTTCGGT
ATGGCTTCGTTCAACTCTGGTTCCCAGCGGTCAAGCCGGGTCACATG

ATCACCCATGTTGTGCAAAAATGCGGTCAGCTCCTTAGGGCCTCCGA
TCGTTGTCAGAAGTAAGTTGGCCGCGGTGTTGTCGCTCATGGTAATGG
CAGCACTACACAATTCTCTTACCGTCATGCCATCCGTAAGATGCTTTT
CCGTGACCGGCGAGTACTCAACCAAGTCGTTTTGTGAGTAGTGTATA
CGGCGACCAAGCTGCTCTTGCCCGGCGTCTATACGGGACAACACCGC
GCCACATAGCAGTACTTTGAAAGTGCTCATCATCGGGAATCGTTCTTC
GGGGCGGAAAGACTCAAGGATCTTGCCGCTATTGAGATCCAGTTCGA
TATAGCCCACTCTTGCACCCAGTTGATCTTCAGCATCTTTTACTTTCAC
CAGCGTTTCGGGGTGTGCAAAAACAGGCAAGCAAAATGCCGCAAAG
AAGGGAATGAGTGCGACACGAAAATGTTGGATGCTCATACTCTTCCT
TTTTCAATATGTTTGCAGCATTTGTCAGGGTTACTAGTACGTCTCTCTT
GAGAGACCGCGATCGCCACCATGTCTAGGTAGGTAGTAAACGAAAG
GGCTTAAAGGCCTAAGTGGCCCTCGAGTCCAGCCTTGAGTTGGTTGA
GTCCAAGTCACGTTTGGAGATCTGGTACCTTACGCGTATGAGCTCTAC
GTAGCTAGCGGCCTCGGCGGCCGAATTCTTGCGTTCGAAGCTTGGCA
ATCCGGTACTGTTGGTAAAGCCACCATGG, as well as pGL4B-4NN3:
GCGGCCGCAAATGCTAAACCACTGCAGTGGTTACCAGTGCTTGATCA
GTGAGGCACCGATCTCAGCGATCTGCCTATTTCGTTCGTCCATAGTGG
CCTGACTCCCCGTCGTGTAGATCACTACGATTCGTGAGGGCTTACCAT
CAGGCCCCAGCGCAGCAATGATGCCGCGAGAGCCGCGTTCACCGGCC
CCCGATTTGTCAGCAATGAACCAGCCAGCAGGGAGGGCCGAGCGAA
GAAGTGGTCCTGCTACTTTGTCCGCCTCCATCCAGTCTATGAGCTGCT
GTCGTGATGCTAGAGTAAGAAGTTCGCCAGTGAGTAGTTTCCGAAGA
GTTGTGGCCATTGCTACTGGCATCGTGGTATCACGCTCGTCGTTCGGT
ATGGCTTCGTTCAACTCTGGTTCCCAGCGGTCAAGCCGGGTCACATG
ATCACCCATATTATGAAGAAATGCAGTCAGCTCCTTAGGGCCTCCGA
TCGTTGTCAGAAGTAAGTTGGCCGCGGTGTTGTCGCTCATGGTAATGG
CAGCACTACACAATTCTCTTACCGTCATGCCATCCGTAAGATGCTTTT
CCGTGACCGGCGAGTACTCAACCAAGTCGTTTTGTGAGTAGTGTATA
CGGCGACCAAGCTGCTCTTGCCCGGCGTCTATACGGGACAACACCGC
GCCACATAGCAGTACTTTGAAAGTGCTCATCATCGGGAATCGTTCTTC
GGGGCGGAAAGACTCAAGGATCTTGCCGCTATTGAGATCCAGTTCGA
TATAGCCCACTCTTGCACCCAGTTGATCTTCAGCATCTTTTACTTTCAC
CAGCGTTTCGGGGTGTGCAAAAACAGGCAAGCAAAATGCCGCAAAG
AAGGGAATGAGTGCGACACGAAAATGTTGGATGCTCATACTCTTCCT
TTTTCAATATGTTTGCAGCATTTGTCAGGGTTACTAGTACGTCTCTCTT
GAGAGACCGCGATCGCCACCATGTCTAGGTAGGTAGTAAACGAAAG
GGCTTAAAGGCCTAAGTGGCCCTCGAGTCCAGCCTTGAGTTGGTTGA
GTCCAAGTCACGTTTGGAGATCTGGTACCTTACGCGTATGAGGGTTG
AGTCCAAGTCACGTTTGGAGATCTGGTACCTTACGCGTATGAGCTCTA
CGTAGCTAGCGGCCTCGGCGGCCGAATTCTTGCGTTCGAAGCTTGGC
AATCCGGTACTGTTGGTAAAGCCACCATGG (SEQ ID NO:45) pGL4NN from Blue Heron:
GCGGCCGCAAATGCTAAACCAOTGCAGTGGTTACCAGTGCTTGATCA

DEMANDE OU BREVET VOLUMINEUX

LA PRESENTE PARTIE DE CETTE DEMANDE OU CE BREVET COMPREND
PLUS D'UN TOME.

NOTE : Pour les tomes additionels, veuillez contacter le Bureau canadien des brevets JUMBO APPLICATIONS/PATENTS

THIS SECTION OF THE APPLICATION/PATENT CONTAINS MORE THAN ONE
VOLUME

NOTE: For additional volumes, please contact the Canadian Patent Office NOM DU FICHIER / FILE NAME:

NOTE POUR LE TOME / VOLUME NOTE:

Claims (69)

1. An isolated nucleic acid molecule comprising a synthetic nucleotide sequence having a coding region for a selectable polypeptide, wherein the synthetic nucleotide sequence has 90% or less nucleic acid sequence identity to a parent nucleic acid sequence encoding a corresponding selectable polypeptide, wherein the decreased sequence identity is a result of different codons in the synthetic nucleotide sequence relative to the codons in the parent nucleic acid sequence, wherein the nucleotide sequence encodes a selectable polypeptide with at least 85% amino acid sequence identity to the corresponding selectable polypeptide encoded by the parent nucleic acid sequence, wherein the synthetic nucleotide sequence has a reduced number of regulatory sequences relative to the average number of regulatory sequences resulting from random selections of codons at the sequences which differ between the synthetic nucleotide sequence and the parent nucleic acid sequence, and wherein the synthetic nucleotide sequence, when expressed in a cell, confers resistance to ampicillin, puromycin, hygromycin or neomycin.
2. The isolated nucleic acid molecule of claim 1 wherein the regulatory sequences include transcription factor binding sequences, intron splice sites, poly(A) sites, promoter modules, and/or promoter sequences.
3. The isolated nucleic acid molecule of claim 1 wherein a majority of the codons which differ are ones that are preferred codons of a desired host cell and/or are not low-usage codons in that host cell.
4. The isolated nucleic acid molecule of claim 3 wherein the majority of the codons which differ in the synthetic nucleic acid sequence are those which are employed more frequently in mammals.
5. The isolated nucleic acid molecule of claim 3 wherein the majority of the codons which differ in the synthetic nucleic acid sequence are those which are preferred codons in humans.
6. The isolated nucleic acid molecule of claim 3 wherein the majority of codons which differ are the codons CGC, CTG, AGC, ACC, CCC, GCC, GGC, GTG, ATC, AAG, AAC, CAG, CAC, GAG, GAC, TAC, TGC
and TTC.
7. The isolated nucleic acid molecule of claim 1 wherein the nucleic acid molecule encodes a fusion of the selectable polypeptide with a luciferase.
8. The isolated nucleic acid molecule of claim 7 wherein the luciferase is a Renilla luciferase, a firefly luciferase or a click beetle luciferase.
9. The isolated nucleic acid molecule of claim 1 wherein the parent nucleic acid sequence is a wild-type neo, hyg, bla or puro sequence.
10. The isolated nucleic acid molecule of claim 1 wherein the parent nucleic acid sequence is SEQ ID NO:1, SEQ ID NO:6, SEQ ID NO:15 or SEQ
ID NO:41.
11. The isolated nucleic acid molecule of claim 1 wherein the synthetic nucleotide sequence comprises an open reading frame in SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID
NO:30, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:42, SEQ ID
NO:44; SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID
NO:73, SEQ ID NO:74, SEQ ID NO:80, SEQ ID NO:81, SEQ ID
NO:82, SEQ ID NO:83, or SEQ ID NO :84.
12. The isolated nucleic acid molecule of claim 1 wherein the synthetic nucleotide sequence has at least 10% fewer regulatory sequences.
13. The isolated nucleic acid molecule of claim 1 wherein the synthetic nucleotide sequence has an increased number of AGC serine-encoding codons, an increased number of ATC isoleucine-encoding codons, an increased number of CCC proline-encoding codons, and/or an increased number of ACC threonine-encoding codons.
14. The isolated nucleic acid molecule of claim 1 wherein the codons in the synthetic nucleotide sequence which differ encode the same amino acids as the corresponding codons in the parent nucleic acid sequence.
15. The isolated nucleic acid molecule of claim 1 which has at least 90%
nucleotide sequence identity to an open reading frame in any one of SEQ
ID NO:4, SEQ ID NO:5, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:30, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:42, SEQ
ID NO:44, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID
NO:73, SEQ ID NO:74, SEQ ID NO:80, SEQ ID NO:81, SEQ ID
NO:82, SEQ ID NO:83, or SEQ ID NO:84, or the complement thereof.
16. The isolated nucleic acid molecule of claim 1 wherein the nucleic acid molecule encodes a fusion of the selectable polypeptide with one or more other peptides or polypeptides, wherein at least the selectable polypeptide is encoded by the synthetic nucleic acid sequence.
17. The isolated nucleic acid molecule of claim 16 wherein one or more other peptides are peptides having protein destabilization sequences.
18. A plasmid comprising the nucleic acid molecule of claim 1.
19. The plasmid of claim 18 which further comprises a multiple cloning region.
20. The plasmid of claim 18 which further comprises an open reading frame of interest.
21. The plasmid of claim 18 which further comprises a promoter functional in a particular host cell operably linked to the synthetic nucleotide sequence.
22. The plasmid of claim 21 wherein the promoter is functional in a prokaryotic cell.
23. The plasmid of claim 21 wherein the promoter is functional in a eukaryotic cell.
24. The plasmid of claim 20 further comprising a promoter operably linked to the open reading frame of interest.
25. An isolated nucleic acid molecule comprising a synthetic nucleotide sequence encoding a firefly luciferase, wherein the synthetic nucleotide sequence has 80% or less nucleic acid sequence identity to a parent nucleic acid sequence having SEQ ID NO:43 or 85% or less nucleic acid sequence identity to a parent nucleic acid sequence having SEQ ID

NO: 14 which encodes a firefly luciferase, wherein the decreased sequence identity is a result of different codons in the synthetic nucleotide sequence relative to the codons in the parent nucleic acid sequence, wherein the synthetic nucleotide sequence encodes a firefly luciferase which has at least 85% amino acid sequence identity to the corresponding luciferase encoded by the parent nucleic acid sequence, and wherein the synthetic nucleotide sequence has a reduced number of regulatory sequences relative to the average number of regulatory sequences resulting from random selections of codons at the sequences which differ between the synthetic nucleotide sequence and the parent nucleic acid sequence.
26. The isolated nucleic acid molecule of claim 25 wherein the regulatory sequences include transcription factor binding sequences, intron splice sites, poly(A) sites, promoter modules, and/or promoter sequences.
27. The isolated nucleic acid molecule of claim 25 wherein a majority of the codons which differ are ones that are preferred codons of a desired host cell and/or are not low-usage codons in that host cell.
28. The isolated nucleic acid molecule of claim 27 wherein the majority of the codons which differ in the synthetic nucleic acid molecule are those which are employed more frequently in mammals.
29. The isolated nucleic acid molecule of claim 27 wherein the majority of the codons which differ in the synthetic nucleic acid molecule are those which are preferred codons in humans.
30. The isolated nucleic acid molecule of claim 27 wherein the majority of codons which differ are the codons CGC, CTG, AGC, ACC, CCC, GCC, GGC, GTG, ATC, AAG, AAC, CAG, CAC, GAG, GAC, TAC, TGC
and TTC.
31. The isolated nucleic acid molecule of claim 25 wherein the synthetic nucleotide sequence comprises a sequence in an open reading frame in SEQ ID NO:21, SEQ ID NO:22, or SEQ ID NO:23 or has at least 90%
nucleotide sequence identity thereto.
32. The isolated nucleic acid molecule of claim 25 wherein the synthetic nucleic acid molecule is expressed in a mammalian host cell at a level which is greater than that of the parent nucleic acid sequence.
33. The isolated nucleic acid molecule of claim 25 wherein the synthetic nucleic acid molecule has an increased number of AGC serine-encoding codons, an increased number of CCC proline-encoding codons, an increased number of ATC isoleucine-encoding codons and/or an increased number of ACC threonine-encoding codons.
34. The isolated acid molecule of claim 25 wherein the synthetic nucleotide sequence has at least 10% fewer transcription regulatory sequences .
35. The isolated nucleic acid molecule of claim 25 wherein the codons in the synthetic nucleotide sequence which differ encode the same amino acids as the corresponding codons in the parent nucleic acid sequence.
36. The isolated nucleic acid molecule of claim 25 wherein the nucleic acid molecule encodes a fusion of the luciferase with one or more other peptides or polypeptides, wherein at least the luciferase is encoded by the synthetic nucleic acid sequence.
37. The isolated nucleic acid molecule of claim 36 wherein one or more other peptides are peptides having protein destabilization sequences.
38. A plasmid comprising the nucleic acid molecule of claim 25.
39. The plasmid of claim 38 which further comprises a multiple cloning region.
40. The plasmid of claim 38 which further comprises a promoter operatively linked to the synthetic nucleotide sequence.
41. The plasmid of claim 38 which further comprises the synthetic nucleotide sequence of the nucleic acid molecule of claim 1.
42. An expression vector comprising the nucleic acid molecule of claim 25 linked to a promoter functional in a cell.
43. The expression vector of claim 42 wherein the promoter is functional in a eukaryotic cell.
44. The expression vector of claim 42 wherein the expression vector further comprises a multiple cloning site.
45. The expression vector of claim 42 wherein the promoter is functional in a mammalian cell.
46. The expression vector of claim 42 wherein the synthetic nucleotide sequence is operatively linked to a Kozak consensus sequence.
47. A plasmid comprising a nucleotide sequence comprising SEQ ID NO:74 or a nucleotide sequence comprising at least 80% nucleic acid sequence identity to SEQ ID NO:74, which nucleotide sequence comprises an open reading frame with less than 90% nucleic acid sequence identity to SEQ
ID NO:41, and the expression of which open reading frame in a host cell confers resistance to ampicillin.
48. A host cell comprising the expression cassette of claim 42.
49. A host cell comprising the plasmid of claim 17, 38 or 47.
50. A kit comprising, in suitable container means, the plasmid of claim 17, 38 or 47.
51. A polynucleotide which hybridizes under stringent hybridization conditions to SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:9, SEQ ID
NO:10, SEQ ID NO:11, SEQ ID NO:30, SEQ ID NO:38, SEQ ID
NO:39, SEQ ID NO:42, SEQ ID NO:44, SEQ ID NO:70, SEQ ID
NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID
NO:80, SEQ ID NO:81, SEQ ID NO:82, SEQ ID NO:83, SEQ ID
NO:84, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, or the complement of the polynucleotide, wherein the polynucleotide or the complement thereof encodes a selectable polypeptide or a firefly luciferase.
52. The polynucleotide of claim 51 which does not have SEQ ID NO:1, SEQ
ID NO:6, SEQ ID NO:15, SEQ ID NO:41, SEQ ID NO:14, or SEQ ID
NO:43.
53. An isolated nucleic acid molecule comprising a synthetic nucleotide sequence which does not code for a desirable peptide or polypeptide but includes sequences which inhibit transcription and/or translation, wherein the synthetic nucleotide sequence has at least 20 nucleotides which have a different sequence relative to a corresponding parent nucleic acid sequence which does not code for the desirable peptide or polypeptide, wherein the synthetic nucleotide sequences has 90% or less nucleic acid sequence identity to the parent nucleic acid sequences, and wherein the sequence difference is a result of a reduced number of one or more regulatory sequences in the synthetic nucleotide sequence relative to the parent nucleic acid sequence.
54. The isolated nucleic acid molecule of claim 53 wherein the synthetic nucleotide sequence has SEQ ID NO:49.
55. The isolated nucleic acid molecule of claim 53 further comprising a multiple cloning region and/or a poly(A) site.
56. The isolated nucleic acid molecule of claim 53 wherein the sequences which inhibit transcription include one or more poly(A) sites.
57. The isolated nucleic acid molecule of claim 53 wherein the sequences which inhibit translation include one or more stop codons in one or more reading frames.
58. The isolated nucleic acid molecule of claim 53 wherein the parent nucleic acid sequence includes a multiple cloning region.
59. The isolated nucleic acid molecule of claim 53 wherein the parent nucleic acid sequence includes sequences which inhibit transcription and/or translation.
60. The isolated nucleic acid molecule of claim 53 wherein the parent nucleic acid sequence has SEQ ID NO:76.
61. The isolated nucleic acid molecule of claim 53 wherein the synthetic nucleotide sequence has a reduced number of one or more restriction endonuclease recognition sites relative to the parent nucleic acid sequence.
62. A plasmid comprising the nucleic acid molecule of claim 53.
63. A plasmid which includes a sequence including SEQ ID NO:89, SEQ ID
NO:90, or a sequence having at least 90% nucleic acid sequence identity thereto, or the complement thereof, which sequence encodes at least one selectable and/or screenable polypeptide.
64. The plasmid of claim 63 further comprising a multiple cloning region.
65. The plasmid of claim 63 further comprising another selectable or screenable polypeptide.
66. The plasmid of claim 63 or 65 wherein at least one selectable or screenable polypeptide comprises one or more protein destabilization sequences.
67. The plasmid of claim 63 wherein the sequence for the at least one selectable and/or screenable polypeptide is not SEQ ID NO:41.
68. A synthetic nucleotide sequence of at least 100 nucleotides having a coding region for a selectable polypeptide which confers resistance to ampicillin, puromycin, hygromycin or neomycin, wherein the synthetic nucleotide sequence has 90% or less nucleic acid sequence identity to a corresponding region of a parent nucleic acid sequence for the selectable polypeptide, wherein the decreased sequence identity is a result of different codons in the synthetic nucleotide sequence relative to the codons in the corresponding region in the parent nucleic acid sequence, wherein the synthetic nucleotide sequence has a reduced number of regulatory sequences relative to the average number of regulatory sequences resulting from random selections of codons at the sequences which differ between the synthetic nucleotide sequence and the parent nucleic acid sequence.
69. An isolated nucleic acid molecule encoding a selectable polypeptide and comprising a synthetic nucleotide sequence of at least 100 nucleotides having a coding region for the selectable polypeptide, wherein the synthetic nucleotide sequence has 90% or less nucleic acid sequence identity to a corresponding region in a parent nucleic acid sequence for the selectable polypeptide, wherein the decreased sequence identity is a result of different codons in the synthetic nucleotide sequence relative to the codons in the parent nucleic acid sequence, wherein the synthetic nucleotide sequence encodes a region of the selectable polypeptide with at least 85% amino acid sequence identity to the corresponding region of the selectable polypeptide encoded by the parent nucleic acid sequence, wherein the synthetic nucleotide sequence has a reduced number of regulatory sequences relative to the average number of regulatory sequences resulting from random selections of codons at the sequences which differ between the synthetic nucleotide sequence and the parent nucleic acid sequence, and wherein the isolated nucleic acid molecule, when expressed in a cell, confers resistance to ampicillin, puromycin, hygromycin or neomycin.
CA002580773A 2004-09-17 2005-09-16 Synthetic nucleic acid molecule and methods of preparation Abandoned CA2580773A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/943,508 US7728118B2 (en) 2004-09-17 2004-09-17 Synthetic nucleic acid molecule compositions and methods of preparation
US10/943,508 2004-09-17
PCT/US2005/033218 WO2006034061A2 (en) 2004-09-17 2005-09-16 Synthetic nucleic acid molecule and methods of preparation

Publications (1)

Publication Number Publication Date
CA2580773A1 true CA2580773A1 (en) 2006-03-30

Family

ID=35448059

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002580773A Abandoned CA2580773A1 (en) 2004-09-17 2005-09-16 Synthetic nucleic acid molecule and methods of preparation

Country Status (6)

Country Link
US (2) US7728118B2 (en)
EP (1) EP1797181A2 (en)
JP (1) JP2008513021A (en)
CN (1) CN101061221A (en)
CA (1) CA2580773A1 (en)
WO (1) WO2006034061A2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030157643A1 (en) * 2000-08-24 2003-08-21 Almond Brian D Synthetic nucleic acids from aquatic species
US7879540B1 (en) * 2000-08-24 2011-02-01 Promega Corporation Synthetic nucleic acid molecule compositions and methods of preparation
US7728118B2 (en) 2004-09-17 2010-06-01 Promega Corporation Synthetic nucleic acid molecule compositions and methods of preparation
US20070212332A1 (en) * 2005-08-11 2007-09-13 Department Of Veterans Affairs Methods for accelerating bone repair
US20090208955A1 (en) * 2006-05-25 2009-08-20 Institute For Advance Study Methods for identifying sequence motifs, and applications thereof
US9422342B2 (en) 2006-07-13 2016-08-23 Institute Of Advanced Study Recoding method that removes inhibitory sequences and improves HIV gene expression
US8080647B2 (en) * 2006-11-22 2011-12-20 Pioneer Hi Bred International Inc Tetracycline repressor and uses thereof
EP2180058A1 (en) 2008-10-23 2010-04-28 Cellectis Meganuclease recombination system
EP2580329B1 (en) 2010-06-10 2018-07-11 Active Motif, Inc. Modified renilla luciferase nucleic acids and methods of use
EP3498710A1 (en) 2010-11-02 2019-06-19 Promega Corporation Oplophorus-derived luciferases, novel coelenterazine substrates, and methods of use
EP2635583B1 (en) 2010-11-02 2015-06-03 Promega Corporation Coelenterazine derivatives and methods of using same
US9200046B2 (en) * 2011-06-29 2015-12-01 Cornell University Reporter system for high throughput screening of compounds and uses thereof
EP3597741A1 (en) 2012-04-27 2020-01-22 Duke University Genetic correction of mutated genes
US11072811B2 (en) 2013-03-15 2021-07-27 Promega Corporation Substrates for covalent tethering of proteins to functional groups or solid surfaces
JP6588917B2 (en) 2014-01-29 2019-10-09 プロメガ コーポレイションPromega Corporation Pro-matrix for live cell applications
JP6703484B2 (en) 2014-01-29 2020-06-03 プロメガ コーポレイションPromega Corporation Quinone-masked probe as a labeling reagent for cellular uptake measurements
US9732373B2 (en) 2014-09-11 2017-08-15 Promega Corporation Luciferase sequences utilizing infrared-emitting substrates to produce enhanced luminescence
US20180334688A1 (en) 2015-10-13 2018-11-22 Duke University Genome engineering with type i crispr systems in eukaryotic cells
CN108884459B (en) * 2016-04-26 2024-04-02 科济生物医药(上海)有限公司 Method for improving immune response cell function
US10316070B2 (en) 2016-09-09 2019-06-11 Promega Corporation Dual protected pro-coelenterazine substrates
RU2659025C1 (en) * 2017-06-14 2018-06-26 Общество с ограниченной ответственностью "ЛЭНДИГРАД" Methods of encoding and decoding information
WO2020027832A1 (en) * 2018-08-01 2020-02-06 Nantkwest, Inc. Chemokine responsive activated natural killer cells with secondary homing activation for verified targets
CN109797166A (en) * 2018-11-20 2019-05-24 陕西师范大学 Egr2-Luciferase-KI-HEK293 cell system, method is constructed based on CRISPR-Cas9 targeted genomic modification technology
EP3938782A1 (en) 2019-03-12 2022-01-19 Quidel Corporation Compositions, kits, and methods for detecting autoantibodies
CN112301047A (en) * 2020-11-02 2021-02-02 江苏东玄基因科技有限公司 Method for accurately regulating and controlling recombinant protein expression

Family Cites Families (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE428379B (en) 1978-05-31 1983-06-27 Lkb Produkter Ab DETERMINATION OF ATOL AND REAGENTS OF BIOLUMINISM
US4412001A (en) 1981-01-30 1983-10-25 Board Of Trustees Of The University Of Illinois Isolation of bacterial luciferase
US4503142A (en) 1982-06-25 1985-03-05 Litton Bionetics, Inc. Open reading frame vectors
US4581335A (en) 1982-12-01 1986-04-08 Texas A&M University System Process for producing a cloned luciferase-synthesizing microorganism
US5096825A (en) 1983-01-12 1992-03-17 Chiron Corporation Gene for human epidermal growth factor and synthesis and expression thereof
US5380831A (en) 1986-04-04 1995-01-10 Mycogen Plant Science, Inc. Synthetic insecticidal crystal protein gene
US5168062A (en) 1985-01-30 1992-12-01 University Of Iowa Research Foundation Transfer vectors and microorganisms containing human cytomegalovirus immediate-early promoter-regulatory DNA sequence
US5583024A (en) 1985-12-02 1996-12-10 The Regents Of The University Of California Recombinant expression of Coleoptera luciferase
US5221623A (en) 1986-07-22 1993-06-22 Boyce Thompson Institute For Plant Research, Inc. Use of bacterial luciferase structural genes for cloning and monitoring gene expression in microorganisms and for tagging and identification of genetically engineered organisms
US4968613A (en) 1987-07-29 1990-11-06 Kikkoman Corporation Luciferase gene and novel recombinant DNA as well as a method of producing luciferase
US5182202A (en) 1987-11-30 1993-01-26 Kikkoman Corporation Purified luciferase from luciola cruciata
JPH088864B2 (en) 1988-04-12 1996-01-31 キッコーマン株式会社 Luciferase
DE68910036T2 (en) 1988-07-01 1994-03-31 Kikkoman Corp Luciferase gene and new recombinant DNA as well as processes for the production of luciferase.
US5604123A (en) 1988-08-09 1997-02-18 Toray Industries, Inc. Luciferase, gene encoding the same and production process of the same
DE68927437T2 (en) 1988-08-09 1997-03-06 Toray Industries METHOD FOR PRODUCING LUCIFERASE BY RECOMBINANT EXPRESSION OF A LUCIFERASE-ENCODING GENE
JPH0771485B2 (en) 1988-09-01 1995-08-02 キッコーマン株式会社 Luciferase production method
US5196524A (en) 1989-01-06 1993-03-23 Eli Lilly And Company Fusion reporter gene for bacterial luciferase
DE69026851T2 (en) 1989-02-14 1996-10-31 Wako Pure Chem Ind Ltd Process for increasing chemiluminescence
FI901681A0 (en) 1989-04-10 1990-04-03 Ela Technologies Inc FOERFARANDE FOER OEKNING AV KAENSLIGHETEN HOS LUMINESCENSANALYSER.
JPH03167288A (en) 1989-11-27 1991-07-19 Chisso Corp Method for sensitized luminescence of aequorin by surface active agent
US5292658A (en) 1989-12-29 1994-03-08 University Of Georgia Research Foundation, Inc. Boyd Graduate Studies Research Center Cloning and expressions of Renilla luciferase
US5219737A (en) 1990-03-27 1993-06-15 Kikkoman Corporation Mutant luciferase of a firefly, mutant luciferase genes, recombinant dnas containing the genes and a method of producing mutant luciferase
EP0528819A1 (en) 1990-04-18 1993-03-03 Plant Genetic Systems, N.V. Modified bacillus thuringiensis insecticidal-crystal protein genes and their expression in plant cells
US5283179A (en) 1990-09-10 1994-02-01 Promega Corporation Luciferase assay method
WO1992015673A1 (en) 1991-03-11 1992-09-17 The University Of Georgia Research Foundation, Inc. Cloning and expression of renilla luciferase
US5229285A (en) 1991-06-27 1993-07-20 Kikkoman Corporation Thermostable luciferase of firefly, thermostable luciferase gene of firefly, novel recombinant dna, and process for the preparation of thermostable luciferase of firefly
CA2122261A1 (en) 1991-10-30 1993-05-13 Marc Cornelissen Modified genes and their expression in plant cells
US5629168A (en) 1992-02-10 1997-05-13 British Technology Group Limited Chemiluminescent enhancers
AT401526B (en) 1993-02-10 1996-09-25 Scheirer Winfried REAGENT SOLUTION TO STABILIZE LUMINESCENCE IN LUCIFERASE MEASUREMENT
CA2104815A1 (en) 1993-02-26 1994-08-27 Naotaka Kuroda Method for measuring adenyl group-containing substances
US5610335A (en) 1993-05-26 1997-03-11 Cornell Research Foundation Microelectromechanical lateral accelerometer
US6118047A (en) 1993-08-25 2000-09-12 Dekalb Genetic Corporation Anthranilate synthase gene and method of use thereof for conferring tryptophan overproduction
JPH0767696A (en) 1993-09-06 1995-03-14 Tosoh Corp Method for reducing back ground luminescence
ES2301160T3 (en) 1994-01-03 2008-06-16 Promega Corporation MUTANT LUCIFERASES.
US5605793A (en) 1994-02-17 1997-02-25 Affymax Technologies N.V. Methods for in vitro recombination
GB9501170D0 (en) 1994-03-23 1995-03-08 Secr Defence Luciferases
US5795737A (en) 1994-09-19 1998-08-18 The General Hospital Corporation High level expression of proteins
US5786464C1 (en) 1994-09-19 2012-04-24 Gen Hospital Corp Overexpression of mammalian and viral proteins
US5670356A (en) 1994-12-12 1997-09-23 Promega Corporation Modified luciferase
DK0804587T3 (en) 1995-01-20 2004-10-11 Secr Defence Mutant luciferases
US5744320A (en) 1995-06-07 1998-04-28 Promega Corporation Quenching reagents and assays for enzyme-mediated luminescence
DK1143006T3 (en) 1995-08-18 2008-07-14 Morphosys Ip Gmbh Vectors / DNA sequences from human combinatorial antibody libraries
US5874304A (en) 1996-01-18 1999-02-23 University Of Florida Research Foundation, Inc. Humanized green fluorescent protein genes and methods
US6020192A (en) 1996-01-18 2000-02-01 University Of Florida Humanized green fluorescent protein genes and methods
JPH09294600A (en) 1996-04-26 1997-11-18 Kikkoman Corp Determination of activity of a plurality of promoters
EP1009763A4 (en) 1996-06-11 2002-08-07 Merck & Co Inc Synthetic hepatitis c genes
JPH1087621A (en) 1996-09-13 1998-04-07 Sankyo Co Ltd Enhancer for lucigenin chemiluminescence
US6114148C1 (en) 1996-09-20 2012-05-01 Gen Hospital Corp High level expression of proteins
WO1998013487A1 (en) 1996-09-27 1998-04-02 Maxygen, Inc. Methods for optimization of gene therapy by recursive sequence shuffling and selection
US5976796A (en) 1996-10-04 1999-11-02 Loma Linda University Construction and expression of renilla luciferase and green fluorescent protein fusion genes
JP3167288B2 (en) 1997-03-17 2001-05-21 株式会社バンダイ Portable electronic equipment
GB9707486D0 (en) 1997-04-11 1997-05-28 Secr Defence Enzyme assays
US6074859A (en) 1997-07-08 2000-06-13 Kikkoman Corporation Mutant-type bioluminescent protein, and process for producing the mutant-type bioluminescent protein
WO1999004024A2 (en) 1997-07-15 1999-01-28 Dow Agrosciences Llc Nucleotide sequences of genes encoding sink proteins and uses thereof for improving the nutritional quality of feeds
US6602677B1 (en) 1997-09-19 2003-08-05 Promega Corporation Thermostable luciferases and methods of production
WO1999014336A2 (en) 1997-09-19 1999-03-25 Promega Corporation Thermostable luciferases and methods of production
US6306600B1 (en) 1998-04-17 2001-10-23 Clontech Laboratories, Inc. Rapidly degrading GFP-fusion proteins and methods of use
US6130313A (en) 1997-10-02 2000-10-10 Clontech Laboratories, Inc. Rapidly degrading GFP-fusion proteins
US7090976B2 (en) 1999-11-10 2006-08-15 Rigel Pharmaceuticals, Inc. Methods and compositions comprising Renilla GFP
US6700038B1 (en) 1999-03-31 2004-03-02 Wisconsin Alumni Research Foundation Plant expression vectors based on the flock house virus genome
MXPA02003232A (en) 1999-09-30 2003-09-22 Alexion Pharma Inc Compositions and methods for altering gene expression.
AU783767B2 (en) 1999-10-14 2005-12-01 Takara Bio Usa, Inc. Anthozoa derived chromophores/fluorophores and methods for using the same
FR2812883B1 (en) 2000-08-11 2002-10-18 Aventis Cropscience Sa USE OF HPPD INHIBITORS AS SELECTING AGENTS IN PLANT TRANSFORMATION
US20030157643A1 (en) 2000-08-24 2003-08-21 Almond Brian D Synthetic nucleic acids from aquatic species
US7879540B1 (en) 2000-08-24 2011-02-01 Promega Corporation Synthetic nucleic acid molecule compositions and methods of preparation
AU2002309989A1 (en) 2001-05-18 2002-12-03 Rigel Pharmaceuticals, Incorporated Directed evolution of protein in mammalian cells
RU2303600C2 (en) * 2001-11-13 2007-07-27 Клонтек Лэборетериз, Инк. New chromophores/fluorophores and uses thereof
AU2003272419B8 (en) * 2002-09-16 2008-08-21 Promega Corporation Rapidly degraded reporter fusion proteins
US20040142356A1 (en) 2002-10-30 2004-07-22 Stacey Patterson Modified luciferase nucleic acids and methods of use
JP4311003B2 (en) 2002-12-02 2009-08-12 アイシン精機株式会社 Prokaryotic gene expression analysis method
US6878531B1 (en) * 2003-11-10 2005-04-12 Medical College Of Georgia Research Institute Method for multiple site-directed mutagenesis
US7728118B2 (en) 2004-09-17 2010-06-01 Promega Corporation Synthetic nucleic acid molecule compositions and methods of preparation

Also Published As

Publication number Publication date
EP1797181A2 (en) 2007-06-20
US8008006B2 (en) 2011-08-30
WO2006034061A2 (en) 2006-03-30
WO2006034061A3 (en) 2006-05-26
CN101061221A (en) 2007-10-24
US20060068395A1 (en) 2006-03-30
US7728118B2 (en) 2010-06-01
JP2008513021A (en) 2008-05-01
US20080070299A1 (en) 2008-03-20

Similar Documents

Publication Publication Date Title
US8008006B2 (en) Synthetic nucleic acid molecule compositions and methods of preparation
AU2001285278B2 (en) Synthetic nucleic acid molecule compositions and methods of preparation
Borg et al. The R2R3 MYB transcription factor DUO1 activates a male germline-specific regulon essential for sperm cell differentiation in Arabidopsis
AU2001285278A1 (en) Synthetic nucleic acid molecule compositions and methods of preparation
Andzelm et al. MEF2D drives photoreceptor development through a genome-wide competition for tissue-specific enhancers
Howes et al. Dorsal spine evolution in threespine sticklebacks via a splicing change in MSX2A
EP2666857B1 (en) Nucleic acid construct for expressing oxidative stress indicator and use thereof
US20090191622A1 (en) Synthetic nucleic acids from aquatic species
Reichardt et al. The tumor suppressor Brat controls neuronal stem cell lineages by inhibiting Deadpan and Zelda
US20150376627A1 (en) Inducible Expression System Transcription Modulators Comprising A Distributed Protein Transduction Domain And Methods For Using The Same
Shirai et al. Mutations in cardinal are responsible for the red-1 and peach eye color mutants of the red flour beetle Tribolium castaneum
Zhang et al. miR-309a is a regulator of ovarian development in the oriental fruit fly Bactrocera dorsalis
EP1621634B1 (en) Multiple gene transcription activity determining system
JP2006508678A (en) Fluorescent proteins from aqueous species
Gresakova et al. Dual role of Fam208a during zygotic cleavage and early embryonic development
CN112877360A (en) Construction method of circular RNA luciferase reporter plasmid for detecting IRES activity
Bethke Nuclear hormone receptor regulation of microRNAs

Legal Events

Date Code Title Description
FZDE Discontinued