CA2585545A1 - Short term treatment for uterine disorder - Google Patents

Short term treatment for uterine disorder Download PDF

Info

Publication number
CA2585545A1
CA2585545A1 CA002585545A CA2585545A CA2585545A1 CA 2585545 A1 CA2585545 A1 CA 2585545A1 CA 002585545 A CA002585545 A CA 002585545A CA 2585545 A CA2585545 A CA 2585545A CA 2585545 A1 CA2585545 A1 CA 2585545A1
Authority
CA
Canada
Prior art keywords
patient
uterine
intravaginal device
pressure applying
distal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002585545A
Other languages
French (fr)
Inventor
Fred H. Burbank
Greig E. Altieri
Michael L. Jones
Ed Olson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vascular Control Systems Inc
Original Assignee
Vascular Control Systems, Inc.
Fred H. Burbank
Greig E. Altieri
Michael L. Jones
Ed Olson
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vascular Control Systems, Inc., Fred H. Burbank, Greig E. Altieri, Michael L. Jones, Ed Olson filed Critical Vascular Control Systems, Inc.
Publication of CA2585545A1 publication Critical patent/CA2585545A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/285Surgical forceps combined with cutting implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/2812Surgical forceps with a single pivotal connection
    • A61B17/282Jaws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/42Gynaecological or obstetrical instruments or methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/42Gynaecological or obstetrical instruments or methods
    • A61B17/44Obstetrical forceps

Abstract

This invention is directed to a method and device for treating a female patient's uterine disorder by occluding one or both of the patient's uterine artery. The treatment embodying features of the invention basically involves occluding one or both of the patient's uterine arteries with an intravaginal device to form a thrombus within the occluded artery or arteries and administering an agent which will prolong the occlusion of the artery or arteries after removal of the occluding device or initiate or accelerate fibroid cell apoptosis (programmed cell death). The intravaginal device has a pair of pivotally connected occluding members, with at least one of the occluding member having a movable occluding element on a distal shaft section of the occluding member.

Description

SHORT TERM TREATMENT FOR UTERINE DISORDER

FIELD OF THE INVENTION

[0001] The invention is generally directed to the treatment of uterine disorders by detecting and regulating blood flow through one or both of the patient's uterine arteries.

BACKGROUND OF THE INVENTION
[0002] Hysterectomy (surgical removal of the uterus) is performed on approximately 600,000 women annually in the United States. Hysterectomy is often the therapeutic choice for the treatment of uterine cancer, adenomyosis, menorrhagia, prolapse, dysfunctional uterine bleeding (abnormal menstrual bleeding that has no discrete anatomic explanation such as a tumor or growth), and muscular tumors of the uterus, known as leimyoma or uterine fibroids.
[0003] However, hysterectomy is a drastic treatment, having many undesirable characteristics. Thus, any method which can approximate the therapeutic result of a hysterectomy without removing the uterus would be a significant improvement in this field. Newer treatment methods have been developed for some diseases which may spare these women a hysterectomy.
[0004] In an article published in 1964, Bateman reported that uterine artery vessel ligation or division. achieved via infra-abdominal surgery similar to hysterectomy, was effective in treating menorrhagia both with and without myomectomy.
Bateman, W., M.D., "Treatment of intractable menorrhagia by bilateral uterine vessel interruption", 89 Am. J. Obstet. Gynecol. 825-827 (Harcourt Health Sciences, July 15, 1964). While Bateman reported some success, this procedure involves opening the abdominal cavity, with the known attendant risks and disadvantages.
[0005] In 1995, it was demonstrated that uterine fibroids could be treated without hysterectomy using a non-surgical therapy, specifically comprising bilateral intraluminal occlusion of the uterine arteries (Ravina et al., "Arterial Embolization to Treat Uterine Myomata", Lancet Sept. 9, 1995; Vol. 346; pp. 671-672, incorporated in its entirety herein). This technique is known as "uterine artery embolization". In this technique, uterine arteries are accessed via a transvascular route from a common femoral artery into the left and right uterine arteries by means of an intravascular catheter and embolic material, such as small metallic coils, polyvinyl alcohol particulate and the like, is delivered through the catheter to the uterine arteries which quickly become occluded.
[0006] See also Burbank, Fred, M.D., et al, Uterine Artery Occlusion by Embolization or Surgery for the Treatment of Fibroids: A Unifying Hypothesis Transient Uterine Ischemia, The Journal of the American Association of Gynecologic Laparoscopists, November 2000, Vol. 7, No. 4 Supplement, pp. S3-S49. U.S.
Patent No. 6,254,601, to Fred Burbank et al, entitled "Methods for Occlusion of the Uterine Arteries", describes numerous devices and methods useful for occluding a uterine artery by penetrating the tissue of the patient to access the uterine artery.
The devices and methods described in Burbank '601 have been useful in occluding a uterine artery, however there have been some difficulties encountered with their use.
[0007] The uterus has a dual (or redundant) blood supply, the primary blood supply being from the bilateral uterine arteries, and the secondary blood supply from the bilateral ovarian arteries. Consequently, when both uterine arteries are occluded, i.e. bilateral vessel occlusion, the uterus and the fibroids contained within the uterus are both deprived of their blood supply. However, as demonstrated by Ravina et al. and Burbank et al., the ischemic effects on the fibroid is greater than the effect on the uterus. In most instances, the fibroid withers and ceases to cause clinical symptoms.
[0008] However, many physicians do not possess the training or equipment necessary to perform catheter-based uterine artery embolization under radiologic direction. Accordingly, there are substantially fewer uterine artery embolizations performed, worldwide, each year than hysterectomies for symptomatic uterine fibroids and other uterine disorders.
[0009] Recently, fibroid treatment procedures have been described wherein the uterine arteries are temporarily occluded by an intravaginal device which is clamped or otherwise pressed against a tissue bundle with the patient's uterine artery being within the bundle. Pressure on the tissue occludes the underlying uterine artery causing thrombus to form in the occluded artery. While these procedures have shown much promise, they typically take about six hours for completely effective treatment. which means the patient must be under observation and frequently sedated during the period.
[0010] What is needed, therefore, are intravaginal devices and procedures for using such devices which can be easily used by physicians with limited training to occlude blood flow in a female patient's uterine arteries and which reduces the period the patient's uterine arteries must be clamped.

SUMMARY OF THE INVENTION
[0011] The invention is directed to a device and method for treating a female patient's uterine disorder by occluding one or both of the patient's uterine artery. The treatment is suitable for uterine disorders such as uterine fibroids, dysfunctional uterine bleeding (DUB), and post partum hemorrhage (PPH) by reducing or terminating blood flow through one or both of the female patient's uterine arteries.
[0012] The treatment embodying features of the invention basically involves occluding one or both of the patient's uterine arteries with an intravaginal device to form a thrombus within the occluded artery or arteries and administering an agent which will prolong the occlusion of the artery or arteries after removal of the occluding device or initiate or accelerate fibroid cell apoptosis (programmed cell death). The agent may act to retard or prevent lysis of the thrombus or may act to reduce uterine blood flow which can retard lysis. The agent can be an anti-fibrinolytic agent administered to the patient to retard or prevent lysis of the thrombus formed by the uterine artery occlusion for essentially the duration of the treatment.
By maintaining an effective amount of the anti-fibrinolytic agent within the patient's blood stream, the lysis of the thrombus within the uterine arteries after the occluding device (e.g. clamp) is removed is retarded or prevented. This allows the occluding device to be removed earlier thereby shortening the clamping period. Moreover, the uterine artery occlusion after occluding device removal can be extended by maintaining an effective level of anti-fibrinolytic agent within the patient.
[0013] After the uterine arteries have been occluded for a sufficient time, the administration of the anti-fibrinolytic agent can be terminated so that lysis of the thrombus is initiated by the normal lysis cycle and blood flow through the arteries can resume. Administering the anti-fibrinolytic agent allows for blood stasis to occur within the uterus and eliminates or retards the clot lysis cycle which can minimize the effect of the treatment. The stasis in the uterus initiates a clotting cascade and by minimizing the competitive lysis cycle a quicker treatment can be delivered.
The clot is maintained after removal of the occlusion system by the continued administration of the anti-fibrinolytic agent.
[0014] The preferred anti-fibrinolytic agent is a plasminogen binding agent which is believed to bind to plasminogen and prevents tissue plasminogen activator (tPa) and urine plasminogen activator (uPa) from binding with plasminogen. When tPa and the uPa bind with the plasminogen to generate plasmin which solubilizes (lyses) fibrin clots and also degrades various proteins including fibrinogen and coagulation factors. The presently preferred plasminogen binding agent is tranexamic acid (TA).
Typically, the TA is delivered to the patient intravenously. An alternative plasminogen binding agent is ethamsylate, but this agent is not as effective as tranexamic acid and is required in much larger doses. Other anti-fibrinolytic agents include acexamic acid, aminocaproic acid and aprotinin.
[0015] Another agent which can enchance the effects of the clamping of the uterine arteries is misoprostol. An effective level of Misoprostol can reduce blood flow in the uterus and reduce the amount of fibrinolytic agent reaching the thrombus thereby extending the period in which the thrombus will remain in place.
Additionally, other agents capable of reducing uterine artery blood flow can be administered.
[0016] Agents which stimulate production of Bax and Bak proteins can be administered as well to augment fibroid tissue necrosis. Bax and Bak are proteins which promote apoptosis or programmed cell death. Bax and Bak protein levels are elevated in ischemic fibroid tissue. The proto-oncogene Bcl-2 is found in abundance in the cells of a fibroid, compared to normal myometrial cells. Bcl-2 is believed to play an important role in the growth of tumors. An agent which inhibits the protein expression of Bcl-2 can be used to treat fibroids. Furthermore, agents which produce effects similar to those created by inhibition Bcl-2 or stimulation of Bax or Bak, can be administered to aid in treatment of fibroids.
[0017] An intravaginal device embodying features of the invention has a pair of clamping members Each of the clamping members have an elongated handle which is configured in part to extend out of the patient during the procedure and a clamping jaw with pressure applying surfaces for uterine artery occlusion. The distal ends of the jaws are configured to engage the patient's vaginal fornix on opposite sides of the patient's uterine cervix and to apply pressure to the patient's vaginal fornix to occlude the underlying uterine arteries.
[0018] The elongated handles of the occluding members are preferably pivotally mounted so that manipulation of the proximal shaft sections of the occluding members, which extend out of the patient during the procedure, will adjust the spacing between the pressure applying surfaces on the distal ends of the jaws.
[0019] The intravaginal device should be stabilized with respect to the patient's uterus by a positioning member or shaft such as a tenaculum to facilitate a more effective application of pressure by the pressure applying member to the vaginal fornix to ensure occlusion of the patient's uterine artery.
[0020] In one embodiment of the invention, one or more blood flow sensors, preferably based on Doppler ultrasound, are provided on at least one of the pressure applying surfaces to aid in the location of the patient's uterine arteries, and to monitor the occlusion thereof. When the pressure applying surfaces of the jaws are pressed against the wall of the vaginal fornix, the vaginal wall is distended so as to more closely approach a uterine artery. Applying tension to the uterine cervix by the tenaculum or tenaculum type device or implement, including forceps, suction devices, and the like, help to reduce the distance from the patient's vaginal fornix to the patient's uterine artery.
[0021] A method for occluding a patient's uterine arteries which embodies features of the invention includes advancing the intravaginal device through the patient's vaginal canal, preferably slidably mounted on a previously deployed tenaculum or tenaculum-like device. The stabilizing shaft of the tenaculum-like device, which is partially deployed within the patient's uterine cervix, guides the intravaginal device so that the clamping jaws of the device are disposed adjacent to .the sides of the patient's cervix. The positions of the pressure applying surfaces of the clamping jaws are adjusted utilizing the blood flow sensors to ensure that the pressure applying surfaces on the clamping jaws are properly positioned with respect to the uterine arteries for effective occlusion thereof.
[0022] The invention allows for the non-surgical location and occlusion of blood vessels such as the uterine artery, providing effective therapeutic treatment.
Importantly, the present invention allows for the occlusion of a female patient's uterine artery without the need for radiographic equipment or for extensive training in the use of radiographic techniques. The devices and methods are simple and readily used for treating uterine fibroids, dysfunctional uterine bleeding (DUB), adenomyosis, post-partum hemorrhage, and other uterine disorders. The mechanical occlusion portion of the treatment period is shortened considerably by the administration of an anti-fibrinolytic agent to the patient to maintain the occluding thrombus within the patient's uterine arteries. The shortened treatment times allows the patient to be more mobile, simplifies the treatment and reduces the patient monitoring and care needed. Furthermore, reduced artery clamping periods reduces the trauma to the patient's cervix and vaginal mucosa. The shorter treatment periods also increases the number of patient's which can be treated over a given period.
[0023] These and other advantages will become more apparent from the following detailed description when taken in conjunction with the accompanying exemplary drawings.

BRIEF DESCRIPTION OF THE DRAWINGS
[0024] Figure 1 is a perspective view of a uterine artery intravaginal device which embodies features of the invention.
[0025] Figure 2 is a side view of the distal portion of the uterine artery intravaginal device shown in Figure 1.
[0026] Figure 3 is an exploded perspective view of a system including the intravaginal device shown in Figure 1 and a tenaculum-type device configured to slidably receive the intravaginal device.
[0027] Figure 4 is a perspective view of a tenaculum-type device mounted within a patient's uterine cervix.
[0028] Figure 5 is an perspective view of the intravaginal device shown in Figure 1 mounted on the shaft of the tenaculum-like device shown in Figure 3.
[0029] Figure 6 is a perspective view of the intravaginal device mounted on the shaft of the tenaculum-like device shown in Figure 4 with the pressure applying surfaces of the intravaginal device pressing against the patient's uterine arteries.

DETAILED DESCRIPTION OF THE INVENTION
[0030] The treatment embodying features of the invention basically involves occluding one or both of the patient's uterine arteries with a device to form thrombus within the occluded artery or arteries and administering an agent to the patient which will allow for occlusion of the artery or arteries to be prolonged after removal of the device. The agent may act to prevent lysis of the thrombus or may act to reduce uterine blood flow.
[0031] Figures 1 and 2 illustrate a relatively non-invasive intra-vaginal device 10 embodying features of the invention. The device 10 includes a pair of elongated clamping members 11 and 12, each of which has an elongated handle 13 and 14 respectively with finger grips 15 and 16 on the proximal ends of the handles.
Clamping jaws 17 and 18 are secured to the distal ends 20 and 21 respectively of handles 13 and 14. The clamping jaws 17 and 18 are provided with pressure-applying surfaces 22 and 23 respectively on the distal ends 24 and 25 of the clamping elements. The handles 13 and 14 are pivotally connected at pivot point 26 to facilitate the opening and closing of the clamping jaws 17 and 18. A shoe slider 27 (shown in Figure 2) is provided on the under side of the intravaginal device 10 for mounting the intravaginal device to the shaft 28 of a tenaculum like device 29 (as shown in Figure 3) to guide the intravaginal device 10 to the patient's uterine cervix.
[0032] Blood flow sensors 30 and 31 are secured to the pressure applying surfaces 22 and 23 respectively. Conductors 32 and 33 are electrically connected by their distal ends to the sensors 30 and 31 and extend proximally. The proximal ends of the conductors 30 and 31 have adaptors 34 and 35 to be operatively connected to power source (not shown) with an audio or video display to convert the sensed blood flow signal from the sensors to actuate an audible report or a video display representing the blood flow sensed.
[0033] The clamping jaws 17 and 18 shown in Figures 1 and 2 are open, paddle-like members which have opposed tissue receiving recesses 36 and 37 proximal to the distal ends 24 and 25 of the jaws 17 and 18 which are defined in part by longitudinally oriented top side element 38 and bottom side element 39 for recess 36 and top side element 40 and bottom side element 41 for recess 37. The proximal ends of the side elements 38-41 are secured to the distal ends 24 and 25 of handles 13 and 14. The top side elements 36 and 38 of the clamping elements are essentially in line with the distal ends 24 and 25 of the handles 13 and 14.
The bottom side elements 37 and 39 are spaced away from the top elements and preferably extend below the shoe slider 27 so that the distal ends 24 and 25 of the clamping elements 17 and 18 are equally disposed above and below the shaft 28 of tenaculum-like device 29 (shown in Figures 2 and 3) to properly engage the patients vaginal fornix and to apply pressure to the underlying uterine arteries to occlude these arteries.
[0034] Figure 3 is an exploded view of the system embodying features of the invention including the intravaginal device 10 described above and the tenaculum-like device 29. The tenaculum-like device has a pointed distal tip 42 configured to engage tissue of the patient's uterine cervix. The distal tip 43 of the shaft 28 is flared as shown to maintain the tip within the patient's uterine cervix 44 during the procedure. Handles 45 and 46 allow movement between the tip 43 and the shaft to manipulate the patient's uterine cervix. Sheath 47 is provided with internal threads (not shown) within its distal end 48 which are configured to engage the threads 49 on the shaft 28 to prevent the withdrawal of the intravaginal device during the procedure. Details of the tenaculum device 29 are found in co-pending application Serial No. 10/300,420, filed on November, 19, 2002, and co-pending application Serial No. 10/716,329, filed on November 18, 2003, both of which are assigned to the present assignee.
[0035] Figure 4 illustrates the deployment of the tenaculum like device 29 within the patient's vaginal canal (not shown) with the shaft 28 of the tenaculum-like device inserted into the patient's uterine cervix 44. The handle 45 of the tenaculum-like device 29 has a sharp distal element 43 for engaging cervical tissue to be able to manipulate the patient's uterine cervix during the procedure when positioning the intravaginal device 10 about the patient's uterine cervix 44. Handle 46 is secured to the mid-point of the shaft 28.
[0036] As shown in Figure 5, the intravaginal device 10 is mounted onto the shaft 28 of the tenaculum-like device 29 with the shaft 28 slidably extending within the shoe slide 27. The intravaginal device 10 is advanced within the patient's vaginal canal (not shown) over the shaft 28 of the tenaculum-like device 29 until the open jaws 17 and 18 of the device 10 extend over the end of the patient's uterine cervix as shown in Figure 3. The distal ends 24 and 25 are urged against the patient's vaginal fornix on both sides of the cervix 44. The position of the distal ends 24 and 25 is adjusted to facilitate use of the blood flow sensors 30 and 31 on the pressure applying surfaces 22 and 23 to detect the underlying uterine arteries 45 and 46. The operator squeezes the finger grips 15 and 16 on the proximal ends of handles and 14 to press the pressure applying surfaces against the patient's vaginal fornix to occlude the underlying uterine arteries as shown in Figure 6. The ratchet locks 50 and 51 on the handles 13 and 14 adjacent the finger grips 15 and 16 engage to lock the handles 13 and 14 together with the pressure applying surfaces 22 and 23 of the jaws 17 and 18 pressed against the vaginal fornix with the underlying uterine arteries 45 and 46 occluded. The blood flow sensors 30 and 31 can be employed to monitor the blood flow through the uterine arteries 45 and 46 and to detect blood flow termination when the arteries are occluded.
[0037] The blood flow sensors 30 and 31 are preferably Doppler ultrasonic sensing systems to allow the operator to more easily guide the clamping jaws 17 and 18 to the location of the patient's target uterine arteries 45 and 46. The blood flow sensor is preferably mounted to the face of a tissue-contacting, pressure applying surface of the jaws of the intravaginal device and is preferably oriented perpendicularly to the pressure applying surface. Other orientations can be employed. Ultrasound energy useful for sensing a location of a blood vessel or of blood flow in a blood vessel has a frequency of less than about 20 MegaHertz (MHz), such as between about 5 MHz and about 19 MHz, and preferably between about 6 MHz and about 10 MHz. In commercially available Doppler sensors, the frequency is typically about 8 MHz. For sensors based on electromagnetic energy useful for sensing a location of a blood vessel or of blood flow in a blood vessel, the EM energy should have a wavelength of about 500 nanometers (nm) to about 2000 nm, preferably about 700 nm to about 1000 nm.
[0038] Suitable Doppler ultrasonic systems include the MedaSonics CardioBeat Blood Flow Doppler with Integrated Speaker (Cooper Surgical, Inc., Trumbull, CT). Other commercially available suitable Doppler ultrasound sensors are the Koven model ES 100X MiniDop VRP-8 probe (St. Louis, MO) and the DWUNeuro Scan Medical Systems' Multi-Dop B+ system (Sterling, VA).
[0039] While not shown in the drawings, the pressure applying surface of the occluding elements can be provided with a serrated or other tissue-grasping surface which is configured to engage and hold onto tissue when the pressure applying surfaces are pressed into tissue of the patient's vaginal fornix.
[0040] The uterine arteries in human females are located adjacent the vaginal mucosa at a location within a few centimeters of the vaginal fornix. As a result, for accessing and occluding a uterine artery from within the patient's vaginal canal, the dimensions of a vagina determine what size intravaginal device is suitable, taking into consideration that the intravaginal device should readily reach the vaginal fornix and be manually operated from outside of a patient's body. For example, a intravaginal device can be between about 6 inch to about 12 inches (15.2-30.5 mm) in length for most applications.
[0041] The clamping jaws 17 and 18 are locked position about 0.5 to about 3 hours, preferably about 1 to about 2 hours for effective occluding of the patient's uterine arteries. During or shortly after the occlusion of the patient's uterine arteries, thrombus forms in the arteries. An agent can be administered to the patient in addition to the clamping to enhance the effects of the occluded artery and decrease the time necessary for the device to remain in place.
[0042] The agent can be an anti-fibrinolytic agent, which retards or prevents lysis of the thrombus formed by the uterine artery occlusion for essentially the duration of the treatment. By maintaining an effective amount of the anti-fibrinolytic agent within the patient's blood stream, the lysis of thrombus within the uterine arteries is retarded or prevented, so the thrombus formation is accelerated, reducing the clamping period. Moreover, the uterine artery occlusion can be extended by maintaining an effective level of anti-fibrinolytic agent within the patient after the clamping pressure by the intravaginal device has been released.
[0043] After the uterine arteries have been occluded for a sufficient time, the administration of the anti-fibrinolytic agent can be terminated so that lysis of the thrombus is initiated by the normal lysis cycle and blood flow through the arteries can resume. By administering the anti-fibrinolytic agent allows for blood stasis to occur within the uterus and but eliminates or retards the clot lysis cycle which can minimize the effect of the treatment. The stasis in the uterus initiates a clotting cascade and by minimizing the competitive lysis cycle a shorter treatment period can be obtained.
The clot is maintained after removal of the occlusion system by maintaining an effective level of the anti-fibrinolytic agent within the patient.
[0044] If the thrombus is not lysed, the thrombus effectively blocks blood flow through the artery, so the clamping jaw is no longer needed and it can be removed.
Preferably, the anti-fibrinolytic agent has been administered to the patient and an effective level of the agent is developed within the patient's blood before the jaws of the intravaginal device are clamped together to occlude the patient's uterine arteries.
[0045] The preferred anti-fibrinolytic agent is a plasminogen binding agent which is believed to bind to plasminogen and prevents tissue plasminogen activator (tPa) and urine plasminogen activator (uPa) from binding with plasminogen. When tPa and the uPa bind With the plasminogen to generate plasmin which solubilizes (lyses) fibrin clots and also degrades various proteins including fibrinogen and coagulation factors.
[0046] The presently preferred plasminogen binding agent is tranexamic acid (TA). Typically, the TA is delivered to the patient intravenously. Initially, the patient's are given 10mg TA/kg of patient weight over a thirty minute period, followed by a constant drip at 1 mg TA/kg of body weight for the duration of the treatment time. An alternative plasminogen binding agent is ethamsylate, but this agent is not as effective as tranexamic acid and is required in much larger doses. Other anti-fibrinolytic agents include acexamic acid, aminocaproic acid and aprotinin.
[0047] By maintaining an anti-fibrinolytic agent within the patient's blood, clot formation from the artery occlusion is accelerated because the clot lysis cycle is retarded or eliminated allowing for reduced occlusion times. When an anti-fibrinolytic agent is used to accelerate the uterine artery occlusion, the uterine arteries should be occluded for a period of about 0.5 to about 3 hours, usually about 1 to about 2 hours for effective treatment of the uterine disorder. The uterine artery occlusion can be extended after the clamping members of the intravaginal device have been released by the continued administration of the anti-fibrinolytic agents to the patient.
By retarding or preventing lysis of the thrombus within the patient's uterine arteries and uterus, the arteries remain occluded even though the pressure applied by the jaws of the intravaginal device have been released. The occluding thrombus is maintained within the patient's uterus and uterine arteries to provide a total artery occlusion time period of about 1 to about 48 hours, preferably about 1 to about 24 hours for effective treatments of the patient's uterine disorder. Typically, the total occlusion time will be less than 6 hours [0048] At the end of the treatment, administration of the anti-fibrinolytic agents is terminated. Typically lysis of the thrombus within the occluded uterine arteries begins about a half an hour after the administration of the anti-fibrinolytic agent has been terminated. Within about 24 hours the thrombus has been completely lysed and full blood flow resumes.
[0049] Another agent which can enchance the effects of the clamping of the uterine arteries is misoprostol. An effective level of Misoprostol can reduce blood flow in the uterus and reduce the amount of fibrinolytic agent reaching the thrombus thereby extending the period in which the thrombus will remain in place.
Additionally, other agents capable of reducing uterine artery blood flow can be administered.
[0050] Agents which stimulate production of Bax and Bak proteins can be administered as well to augment fibroid tissue necrosis. Bax and Bak are proteins which promote apoptosis or programmed cell death. Bax and Bak protein levels are elevated in ischemic fibroid tissue. The proto-oncogene Bcl-2 is found in abundance in the cells of a fibroid, compared to normal myometrial cells. Bcl-2 is believed to play an important role in the growth of tumors. An agent which inhibits the protein expression of Bcl-2 can be used to treat fibroids. Furthermore, agents which produce effects similar to those created by inhibition Bcl-2 or stimulation of Bax or Bak, can be administered to aid in treatment of fibroids.
[0051] The uterine artery intravaginal devices embodying features of the invention can be made from any suitable material or combination of materials, including metals such as stainless steel, cobalt-chromium alloys, cobalt-chromium-nickel alloys, chromium-cobalt-molybdenum alloys and superelastic alloys such as nickel-titanium alloys having a stable austenite phase at body temperature, high strength plastics, ceramics, and other materials known in the art to be suitable for the uses contemplated herein. Biocompatible polymers such as polycarbonate, polysulfone, polyester, polyacetal and a variety of fluoropolymers can be suitable for a variety of embodiments of the invention. The intravaginal devices and systems embodying features of the invention can be designed for single use (disposable) or can be sterilizable and capable of multiple use.
[0052] While particular forms of the invention have been illustrated and described, it will be apparent that various modifications can be made to the invention and that individual features shown in one embodiment can be combined with any or all the features of another embodiment described herein. The intravaginal device described herein is a presently preferred embodiment, but other uterine artery intravaginal devices can be utilized. For example, other suitable intravaginal devices are described in co-pending applications Serial No. 10/107,810, filed on March 28, 2002, Serial No. 10/107,800, filed on March 28, 2002, Serial No. 10/430,880, filed on May 6, 2003, Serial No. 10/721,857, filed on November 25, 2003 and Serial No.
10/718,222, filed on November 20, 2003, all of which have been assigned to the present assignee. Accordingly, the invention is not to be limited to the specific embodiments illustrated and should be defined by the scope of the appended claims as broadly as the prior art will permit. Terms such as "element", "member", "device", "component", "section", "portion", "steps", "means" and words of similar import, if used in the appended claims, shall not be construed as invoking the provisions of 35 U.S.C. 112(6) unless the claims expressly use the term "means" followed by a particular function without reciting specific structure or use the term "step"
followed by a particular function without reciting specific action. All patents and patent applications cited herein are hereby incorporated in their entireties by reference.

Claims (11)

1. An intravaginal device for treating a female patient's uterine disorder by occluding at least one of the patient's uterine arteries, comprising-a a first clamping member which has i an elongated handle with a proximal handle portion configured to extend out of the patient during treatment and be manipulated by an operator, which has a distal handle portion having a pivot point and which is configured to rotate in a plane about the pivot point, and ii a paddle-shaped jaw which is secured to the distal handle portion, which has a distal tip with a pressure applying surface, which has an inside tissue receiving recess proximal to the pressure applying surface with upper and lower longitudinally oriented sides proximal to the distal tip defining in part the tissue receiving recess, with the upper longitudinally oriented side in line with the distal handle portion and the lower longitudinally oriented side spaced away from the upper longitudinally oriented side, and b a second clamping member which has i. an elongated handle with a proximal handle portion configured to extend out of the patient during treatment and be manipulated by an operator along with the proximal handle portion of the first clamping member, which has a distal handle portion having a pivot point pivotally secured to the pivot point of the handle of the first clamping member, and ii. which has a distal shaft section with an open paddle-shaped jaw having a distal tip with a pressure applying surface opposed to the pressure applying surface of the first clamping member, a tissue receiving recess proximal to the pressure applying surface extending away from the tissue receiving recess of the first clamping member, a pair of longitudinally oriented sides, with one of the sides in the rotational plane of the intermediate shaft section and one in a rotational plane spaced from the rotational plane of the intermediate shaft section.
2. The intravaginal device of claim 1 wherein each of the proximal shaft sections of the clamping members include a grip configured to receive an operator's finger.
3. The intravaginal device of claim 1 wherein at least one of the clamping members has a blood flow sensor on its distal tip for detecting the location of the patient's uterine artery.
4. The intravaginal device of claim 1 wherein the blood flow sensor is a Doppler crystal.
5. The intravaginal device of claim 4 wherein the Doppler crystal is mounted in the pressure applying surface of the distal tip.
6. The intravaginal device of claim 5 wherein the Doppler crystal has a direction of view away from the pressure applying surface.
7. The intravaginal device of claim 1 wherein the pair of longitudinally oriented sides of the clamping members are spaced apart a distance of about 1 to about 20 mm.
8. The intravaginal device of claim 7 wherein the pair of longitudinally oriented sides of the clamping members are spaced apart a distance of about 5 to about 10 mm.
9. The intravaginal device of claim 1 wherein the distal end of the paddle-shaped jaw of the first clamping member and the distal end of the paddle-shaped jaw of the second clamping member are configured to engage a patient's vaginal fornix on opposite sides of the patient's uterine cervix.
10. The intravaginal device of claim 1 wherein the device is mounted to a tenaculum like device to guide the device to the patient's uterine cervix.
11. The intravaginal device of claim 1 wherein the device has a shoe slider on the underside of the device for mounting the device to the tenaculum like device.
CA002585545A 2004-10-27 2005-10-25 Short term treatment for uterine disorder Abandoned CA2585545A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US62275104P 2004-10-27 2004-10-27
US60/622,751 2004-10-27
US11/256,768 2005-10-24
US11/256,768 US7875036B2 (en) 2004-10-27 2005-10-24 Short term treatment for uterine disorder
PCT/US2005/038393 WO2006049960A1 (en) 2004-10-27 2005-10-25 Short term treatment for uterine disorder

Publications (1)

Publication Number Publication Date
CA2585545A1 true CA2585545A1 (en) 2006-05-11

Family

ID=35781301

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002585545A Abandoned CA2585545A1 (en) 2004-10-27 2005-10-25 Short term treatment for uterine disorder

Country Status (9)

Country Link
US (1) US7875036B2 (en)
EP (1) EP1811909B1 (en)
JP (1) JP4782140B2 (en)
KR (1) KR20080004446A (en)
AT (1) ATE498365T1 (en)
AU (1) AU2005302600B2 (en)
CA (1) CA2585545A1 (en)
DE (1) DE602005026429D1 (en)
WO (1) WO2006049960A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7004965B2 (en) * 2003-12-17 2006-02-28 Yosef Gross Implant and delivery tool therefor
US20090093758A1 (en) * 2006-07-24 2009-04-09 Yossi Gross Fibroid treatment apparatus and method
US20100130815A1 (en) * 2007-05-18 2010-05-27 Prostaplant Ltd. Intraurethral and extraurethral apparatus
US20090054915A1 (en) * 2007-08-23 2009-02-26 Peter Meier Obstruction of uterine arteries to treat uterine fibroids using mechanical instruments to twist the vessels
US20090054916A1 (en) * 2007-08-23 2009-02-26 Peter Meier Clip-based method for treatment of uterine fibroids by obstruction of the uterine arteries
US20090062827A1 (en) * 2007-08-31 2009-03-05 Peter Meier Vacuum-based method for obstruction of uterine arteries to treat uterine fibroids
US8551002B2 (en) * 2008-12-12 2013-10-08 Immersion Corporation Spatial array of sensors mounted on a tool
US8403953B2 (en) * 2009-07-27 2013-03-26 Fibro Control, Inc. Balloon with rigid tube for occluding the uterine artery
US8608738B2 (en) 2010-12-06 2013-12-17 Soulor Surgical, Inc. Apparatus for treating a portion of a reproductive system and related methods of use
MX2012004494A (en) 2012-04-17 2013-10-17 Arnoldo Guzman Sanchez Compressive system for reducing edge bleeding in classical hysterotomy in cases of placenta praevia.
EP2859855B1 (en) * 2013-10-08 2017-04-05 Karl Leibinger Medizintechnik Gmbh & Co. Kg Repositioning pliers with dual 90° deformation for distribution on two levels
WO2017042294A1 (en) * 2015-09-11 2017-03-16 Atropos Limited Tenaculum
CN112770680A (en) 2018-08-17 2021-05-07 安普列斯医疗公司 Device and method for compression of tumors
US11419610B2 (en) 2018-08-17 2022-08-23 Empress Medical, Inc. Device and method for passing tension member around tissue mass

Family Cites Families (127)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3209753A (en) * 1962-05-04 1965-10-05 Donald B Hawkins Intestinal clamps and the like
US3411505A (en) 1965-12-15 1968-11-19 Paul D. Nobis Device for interrupting arterial flow
US3779248A (en) 1971-10-18 1973-12-18 Medical Concepts Inc Forceps
US4120302A (en) * 1976-10-08 1978-10-17 American Hospital Supply Corporation Disposable pads for surgical instruments
US4428374A (en) * 1978-12-20 1984-01-31 Auburn Robert M Umbilical cord clamping assembly
US4292960A (en) * 1979-04-30 1981-10-06 Rca Corporation Apparatus and method for application of radioactive and microwave energy to the body
US4226240A (en) * 1979-05-30 1980-10-07 Walker Jr William E Surgical foreceps
IN151996B (en) 1979-06-18 1983-09-17 Ethicon Inc
US4509528A (en) * 1981-12-16 1985-04-09 Harvinder Sahota Hemostat with blood flow sensor
US4428379A (en) * 1982-01-07 1984-01-31 Technicare Corporation Passive ultrasound needle probe locator
SU1072859A1 (en) 1982-01-22 1984-02-15 Донецкий государственный медицинский институт им.А.М.Горького Intestinal forceps
US5370675A (en) * 1992-08-12 1994-12-06 Vidamed, Inc. Medical probe device and method
US4650466A (en) * 1985-11-01 1987-03-17 Angiobrade Partners Angioplasty device
US4991588A (en) * 1986-07-21 1991-02-12 Pfizer Hospital Products Group, Inc. Doppler guide wire
US4757823A (en) * 1987-01-27 1988-07-19 Hofmeister John F Method and apparatus for measuring uterine blood flow
US4994069A (en) * 1988-11-02 1991-02-19 Target Therapeutics Vaso-occlusion coil and method
US4945896A (en) * 1989-01-24 1990-08-07 Gade George F Surgical retractor assembly having tissue viability sensor embedded therein
US5289831A (en) * 1989-03-09 1994-03-01 Vance Products Incorporated Surface-treated stent, catheter, cannula, and the like
US5201314A (en) * 1989-03-09 1993-04-13 Vance Products Incorporated Echogenic devices, material and method
US5081997A (en) * 1989-03-09 1992-01-21 Vance Products Incorporated Echogenic devices, material and method
US5749879A (en) * 1989-08-16 1998-05-12 Medtronic, Inc. Device or apparatus for manipulating matter
US5108408A (en) * 1990-04-20 1992-04-28 Lally James J Uterine-ring hysterectomy clamp
US5037433A (en) * 1990-05-17 1991-08-06 Wilk Peter J Endoscopic suturing device and related method and suture
US5100423A (en) 1990-08-21 1992-03-31 Medical Engineering & Development Institute, Inc. Ablation catheter
US5227181A (en) * 1990-12-19 1993-07-13 Mold-Masters Limited Multi-cavity melt distribution manifold
US5261409A (en) 1991-05-27 1993-11-16 Sulzer Brothers Limited Puncturing device for blood vessels
US5226911A (en) * 1991-10-02 1993-07-13 Target Therapeutics Vasoocclusion coil with attached fibrous element(s)
US5662680A (en) * 1991-10-18 1997-09-02 Desai; Ashvin H. Endoscopic surgical instrument
US5713896A (en) * 1991-11-01 1998-02-03 Medical Scientific, Inc. Impedance feedback electrosurgical system
US5704361A (en) * 1991-11-08 1998-01-06 Mayo Foundation For Medical Education And Research Volumetric image ultrasound transducer underfluid catheter system
US5277181A (en) 1991-12-12 1994-01-11 Vivascan Corporation Noninvasive measurement of hematocrit and hemoglobin content by differential optical analysis
US5562680A (en) * 1992-01-03 1996-10-08 Hasson; Harrith M. Apparatus for assisting the performance of pelvic endoscopic procedures
JPH07506991A (en) * 1992-04-23 1995-08-03 シメッド ライフ システムズ インコーポレイテッド Apparatus and method for sealing vascular punctures
US5336231A (en) * 1992-05-01 1994-08-09 Adair Edwin Lloyd Parallel channel fixation, repair and ligation suture device
US5443470A (en) * 1992-05-01 1995-08-22 Vesta Medical, Inc. Method and apparatus for endometrial ablation
NL9201118A (en) * 1992-06-24 1994-01-17 Leuven K U Res & Dev TOOL KIT FOR LAPAROSCOPIC VAGINAL HYSTERECTOMY.
US5672153A (en) * 1992-08-12 1997-09-30 Vidamed, Inc. Medical probe device and method
US5368034A (en) 1992-09-04 1994-11-29 Boston Scientific Corporation Method and apparatus for thrombolytic therapy
WO1994006460A1 (en) * 1992-09-21 1994-03-31 Vitaphore Corporation Embolization plugs for blood vessels
CA2102084A1 (en) * 1992-11-09 1994-05-10 Howard C. Topel Surgical cutting instrument for coring tissue affixed thereto
US5275166A (en) 1992-11-16 1994-01-04 Ethicon, Inc. Method and apparatus for performing ultrasonic assisted surgical procedures
US5336229A (en) * 1993-02-09 1994-08-09 Laparomed Corporation Dual ligating and dividing apparatus
US5383922A (en) * 1993-03-15 1995-01-24 Medtronic, Inc. RF lead fixation and implantable lead
US5542944A (en) * 1993-04-19 1996-08-06 Bhatta; Krishan M. Surgical device and method
US5496331A (en) * 1993-07-28 1996-03-05 Terumo Kabushiki Kaisha Knot-forming instrument and method of forming knots
JPH09507645A (en) * 1994-01-18 1997-08-05 エンドバスキュラー・インコーポレイテッド Vein ligation device and vein ligation method
ATE157275T1 (en) * 1994-03-07 1997-09-15 Maurer A Sa DEVICE FOR FILTRATION OF FLUID MEDIA
US5458596A (en) * 1994-05-06 1995-10-17 Dorsal Orthopedic Corporation Method and apparatus for controlled contraction of soft tissue
US5707349A (en) 1994-05-09 1998-01-13 Somnus Medical Technologies, Inc. Method for treatment of air way obstructions
US5672172A (en) * 1994-06-23 1997-09-30 Vros Corporation Surgical instrument with ultrasound pulse generator
US5549624A (en) * 1994-06-24 1996-08-27 Target Therapeutics, Inc. Fibered vasooclusion coils
US5697942A (en) 1994-07-31 1997-12-16 Palti; Yoram Internal vascular clamp
US6032673A (en) * 1994-10-13 2000-03-07 Femrx, Inc. Methods and devices for tissue removal
US5702407A (en) 1994-11-29 1997-12-30 Olympus Optical Co., Ltd. Ligating apparatus
US5588960A (en) 1994-12-01 1996-12-31 Vidamed, Inc. Transurethral needle delivery device with cystoscope and method for treatment of urinary incontinence
US5614204A (en) * 1995-01-23 1997-03-25 The Regents Of The University Of California Angiographic vascular occlusion agents and a method for hemostatic occlusion
US6019724A (en) * 1995-02-22 2000-02-01 Gronningsaeter; Aage Method for ultrasound guidance during clinical procedures
US5715832A (en) * 1995-02-28 1998-02-10 Boston Scientific Corporation Deflectable biopsy catheter
US5665096A (en) * 1995-03-07 1997-09-09 Yoon; Inbae Needle driving apparatus and methods of suturing tissue
US5766135A (en) * 1995-03-08 1998-06-16 Terwilliger; Richard A. Echogenic needle tip
US5817022A (en) 1995-03-28 1998-10-06 Sonometrics Corporation System for displaying a 2-D ultrasound image within a 3-D viewing environment
US5899861A (en) * 1995-03-31 1999-05-04 Siemens Medical Systems, Inc. 3-dimensional volume by aggregating ultrasound fields of view
US5626607A (en) * 1995-04-03 1997-05-06 Heartport, Inc. Clamp assembly and method of use
US5570692A (en) 1995-05-19 1996-11-05 Hayashi Denki Co. Ltd. Ultrasonic doppler blood flow detector for hemorrhoid artery ligation
GB2302025A (en) 1995-06-10 1997-01-08 Mark Steven Whiteley Vascular doppler forceps
US5713371A (en) * 1995-07-07 1998-02-03 Sherman; Dani Method of monitoring cervical dilatation during labor, and ultrasound transducer particularly useful in such method
US5658299A (en) * 1995-07-20 1997-08-19 Applied Medical Resources Surgical ligating device and method for using same
DE19528440C2 (en) 1995-08-02 1998-09-10 Harald Dr Med Kuebler Surgical cutting instrument
US5674243A (en) 1995-08-03 1997-10-07 Hale; Theodore Mark Obstetrical forceps
US5747637A (en) * 1995-09-07 1998-05-05 Mitsui Toatsu Chemicals, Inc. Bioabsorbable polymer and process for preparing the same
US5979453A (en) 1995-11-09 1999-11-09 Femrx, Inc. Needle myolysis system for uterine fibriods
US5716389A (en) * 1995-11-13 1998-02-10 Walinsky; Paul Cardiac ablation catheter arrangement with movable guidewire
DE19603981C2 (en) * 1996-02-05 1998-11-05 Wolf Gmbh Richard Medical instrument for uterine manipulation
US5697937A (en) 1996-02-23 1997-12-16 Toma; Doina Surgical clamp with manipulable guide means
AU733465B2 (en) * 1996-03-05 2001-05-17 Tyco Healthcare Group, Lp Vascular catheter-based system for heating tissue
US5691314A (en) 1996-03-18 1997-11-25 The Medical College Of Hampton Roads Adjunctive therapy
DE19706751A1 (en) 1996-03-27 1997-10-02 Valleylab Inc Electrosurgical device for removing tissue in body areas
US6077257A (en) * 1996-05-06 2000-06-20 Vidacare, Inc. Ablation of rectal and other internal body structures
US6066139A (en) * 1996-05-14 2000-05-23 Sherwood Services Ag Apparatus and method for sterilization and embolization
US5911691A (en) * 1996-05-21 1999-06-15 Aloka Co., Ltd. Ultrasound image processing apparatus and method of forming and displaying ultrasound images by the apparatus
JPH09313487A (en) 1996-05-29 1997-12-09 Ge Yokogawa Medical Syst Ltd Method and device for ultrasonic three-dimensional photographing
US5720743A (en) * 1996-06-07 1998-02-24 Bischof; John C. Thermally insulating surgical probe
US5776129A (en) * 1996-06-12 1998-07-07 Ethicon Endo-Surgery, Inc. Endometrial ablation apparatus and method
US5904651A (en) * 1996-10-28 1999-05-18 Ep Technologies, Inc. Systems and methods for visualizing tissue during diagnostic or therapeutic procedures
US6106473A (en) * 1996-11-06 2000-08-22 Sts Biopolymers, Inc. Echogenic coatings
US6035238A (en) * 1997-08-13 2000-03-07 Surx, Inc. Noninvasive devices, methods, and systems for shrinking of tissues
US5797397A (en) * 1996-11-25 1998-08-25 Hewlett-Packard Company Ultrasound imaging system and method using intensity highlighting to facilitate tissue differentiation
US5792059A (en) * 1996-11-26 1998-08-11 Esaote S.P.A. Intraoperative probe, specifically intended for direct-contact observations
US5895386A (en) * 1996-12-20 1999-04-20 Electroscope, Inc. Bipolar coagulation apparatus and method for arthroscopy
US5759154A (en) * 1996-12-23 1998-06-02 C. R. Bard, Inc. Print mask technique for echogenic enhancement of a medical device
US5916173A (en) * 1997-02-26 1999-06-29 Kirsner; Vaclav Methods and apparatus for monitoring fertility status in the mammalian vagina
US6045508A (en) * 1997-02-27 2000-04-04 Acuson Corporation Ultrasonic probe, system and method for two-dimensional imaging or three-dimensional reconstruction
US5910484A (en) * 1997-05-30 1999-06-08 The General Hospital Corporation Treatment of ischemic cardiac malfunction
US5895395A (en) * 1997-07-17 1999-04-20 Yeung; Teresa T. Partial to full thickness suture device & method for endoscopic surgeries
US5922008A (en) * 1997-08-28 1999-07-13 Gimpelson; Richard J. Surgical forceps
US5941889A (en) * 1997-10-14 1999-08-24 Civco Medical Instruments Inc. Multiple angle disposable needle guide system
US6015541A (en) * 1997-11-03 2000-01-18 Micro Therapeutics, Inc. Radioactive embolizing compositions
US6280441B1 (en) * 1997-12-15 2001-08-28 Sherwood Services Ag Apparatus and method for RF lesioning
CN1127752C (en) * 1997-12-16 2003-11-12 皇家菲利浦电子有限公司 High-pressure discharge lamp
AU2318599A (en) * 1998-01-13 1999-08-02 Urometrics, Inc. Devices and methods for monitoring female arousal
EP1067872B1 (en) * 1998-03-20 2006-03-01 Boston Scientific Limited Endoscopic suture system
US6261234B1 (en) * 1998-05-07 2001-07-17 Diasonics Ultrasound, Inc. Method and apparatus for ultrasound imaging with biplane instrument guidance
JP3331177B2 (en) * 1998-07-29 2002-10-07 旭光学工業株式会社 Sector scan ultrasound probe
US5921933A (en) * 1998-08-17 1999-07-13 Medtronic, Inc. Medical devices with echogenic coatings
US6425867B1 (en) * 1998-09-18 2002-07-30 University Of Washington Noise-free real time ultrasonic imaging of a treatment site undergoing high intensity focused ultrasound therapy
US5980534A (en) 1998-10-07 1999-11-09 Gimpelson; Richard J. Cervical clamp
US6013088A (en) * 1998-11-17 2000-01-11 Karavidas; Theocharis Surgical clamp with removable tips
US6254601B1 (en) 1998-12-08 2001-07-03 Hysterx, Inc. Methods for occlusion of the uterine arteries
US6231515B1 (en) * 1999-01-13 2001-05-15 Scimed Life Systems, Inc. Safety mechanism and method to prevent rotating imaging guide device from exiting a catheter
US6080118A (en) * 1999-02-25 2000-06-27 Blythe; Cleveland Vaginal probe and method of using same
US6175751B1 (en) * 1999-03-16 2001-01-16 Allen Maizes Apparatus and method for sensing oxygen levels in a fetus
US6293954B1 (en) * 1999-06-21 2001-09-25 Novare Surgical Systems, Inc. Surgical clamp with replaceable clamp members
EP1072282A1 (en) 1999-07-19 2001-01-31 EndoArt S.A. Flow control device
US6210330B1 (en) * 1999-08-04 2001-04-03 Rontech Medical Ltd. Apparatus, system and method for real-time endovaginal sonography guidance of intra-uterine, cervical and tubal procedures
US6635017B1 (en) 2000-02-09 2003-10-21 Spentech, Inc. Method and apparatus combining diagnostic ultrasound with therapeutic ultrasound to enhance thrombolysis
DE20022012U1 (en) 2000-04-18 2001-05-10 Hofstetter Alfons Medical clamp
US20030120306A1 (en) * 2000-04-21 2003-06-26 Vascular Control System Method and apparatus for the detection and occlusion of blood vessels
WO2001082811A1 (en) * 2000-04-27 2001-11-08 Medtronic, Inc. System and method for assessing transmurality of ablation lesions
US6635065B2 (en) 2000-11-16 2003-10-21 Vascular Control Systems, Inc. Doppler directed suture ligation device and method
US20030120286A1 (en) * 2001-03-28 2003-06-26 Vascular Control System Luminal clip applicator with sensor
US7354444B2 (en) * 2001-03-28 2008-04-08 Vascular Control Systems, Inc. Occlusion device with deployable paddles for detection and occlusion of blood vessels
CA2442362C (en) 2001-03-28 2009-08-11 Vascular Control Systems, Inc. Method and apparatus for the detection and ligation of uterine arteries
US7207996B2 (en) 2002-04-04 2007-04-24 Vascular Control Systems, Inc. Doppler directed suturing and compression device and method
US20040097961A1 (en) * 2002-11-19 2004-05-20 Vascular Control System Tenaculum for use with occlusion devices
US7404821B2 (en) * 2003-01-30 2008-07-29 Vascular Control Systems, Inc. Treatment for post partum hemorrhage
US7333844B2 (en) * 2003-03-28 2008-02-19 Vascular Control Systems, Inc. Uterine tissue monitoring device and method
US20040202694A1 (en) 2003-04-11 2004-10-14 Vascular Control Systems, Inc. Embolic occlusion of uterine arteries

Also Published As

Publication number Publication date
EP1811909A1 (en) 2007-08-01
KR20080004446A (en) 2008-01-09
AU2005302600A1 (en) 2006-05-11
JP4782140B2 (en) 2011-09-28
WO2006049960A1 (en) 2006-05-11
JP2008517722A (en) 2008-05-29
DE602005026429D1 (en) 2011-03-31
US20060106109A1 (en) 2006-05-18
EP1811909B1 (en) 2011-02-16
ATE498365T1 (en) 2011-03-15
AU2005302600B2 (en) 2011-07-07
US7875036B2 (en) 2011-01-25

Similar Documents

Publication Publication Date Title
US7875036B2 (en) Short term treatment for uterine disorder
US7329265B2 (en) Uterine artery occlusion clamp
US7223279B2 (en) Methods for minimally-invasive, non-permanent occlusion of a uterine artery
EP1562492B1 (en) Apparatus for the detection and occlusion of blood vessels
US7229465B2 (en) Method and apparatus for the detection and ligation of uterine arteries
AU2004294914B2 (en) Occlusion device for asymmetrical uterine artery anatomy
EP1778100A1 (en) Uterine artery occlusion staple
AU2004210130B2 (en) Uterine artery occlusion clamp
ES2359983T3 (en) DEVICE FOR SHORT-TERM TREATMENT OF UTERINE DISORDER.

Legal Events

Date Code Title Description
FZDE Discontinued