CA2597050C - Minimally-invasive annuloplasty repair segment delivery template, system and method of use - Google Patents

Minimally-invasive annuloplasty repair segment delivery template, system and method of use Download PDF

Info

Publication number
CA2597050C
CA2597050C CA2597050A CA2597050A CA2597050C CA 2597050 C CA2597050 C CA 2597050C CA 2597050 A CA2597050 A CA 2597050A CA 2597050 A CA2597050 A CA 2597050A CA 2597050 C CA2597050 C CA 2597050C
Authority
CA
Canada
Prior art keywords
template
shape
holder
repair segment
further including
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA2597050A
Other languages
French (fr)
Other versions
CA2597050A1 (en
Inventor
Delos M. Cosgrove
Stefan G. Schreck
Richard S. Rhee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Edwards Lifesciences Corp
Original Assignee
Edwards Lifesciences Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Edwards Lifesciences Corp filed Critical Edwards Lifesciences Corp
Publication of CA2597050A1 publication Critical patent/CA2597050A1/en
Application granted granted Critical
Publication of CA2597050C publication Critical patent/CA2597050C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2445Annuloplasty rings in direct contact with the valve annulus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2466Delivery devices therefor

Abstract

An annuloplasty repair segment and template for heart valve annulus repair. The elongate flexible template may form a distal part of a holder that also has a proximal handle. Alternatively, the template may be releasably attached to a mandrel that slides within a delivery sheath. the template being released from the end of the sheath to enable manipulation by a surgeon. A tether connecting the template and mandrel may also be provided. The template may be elastic, temperature responsive, or multiple linked segments. The template may he aligned with the handle and form a two- or three-dimensional curve out of alignment with the handle such that the annuloplasty repair segment attached thereto conforms to the curve. The template may be actively or passively converted between its straight and curved positions. The combined holder and ring is especially suited for minimally-invasive surgeries in which the combination is delivered to an implantation site through a small access incision with or without a cannula, or through a catheter passed though the patient's vasculature.

Description

CROSS-REFERENCE TO RELATED APPLICATION

This application is a divisional of Canadian Patent Application No. 2,423,878 which is based on international application No. PCT/US01/42311 filed on September 26, 2001, which claims the benefit of priority of U.S. Patent Application No.
09/680,202 filed on October 5, 2000, the disclosures of which are incorporated herein by reference.

MINIMALLY-INVASIVE ANNULOPLASTY REPAIR SEGMENT
DELIVERY TEMPLATE, SYSTEM AND METHOD OF USE
Field of the Invention The present invention relates generally to medical devices and particularly to heart valve prostheses having a low profile sewing ring that enables larger valve orifices to be used.

Background of the Invention Prosthetic heart valves are used to replace damaged or diseased heart valves. In vertebrate animals, the heart is a hollow muscular organ having four pumping chambers: the left and right atria and the left and right ventricles, each provided with its own one-way valve. The natural heart valves are identified as the aortic, mitral (or bicuspid), tricuspid and pulmonary valves. Prosthetic heart valves can be used to replace any of these naturally occurring valves, although repair or replacement of the aortic or mitral valves is most common because they reside in the left side of the heart where pressures are the greatest.

Two primary types of heart valve replacements or prostheses are known. One is a mechanical-type heart valve that uses a ball and cage arrangement or a pivoting mechanical closure to provide unidirectional blood flow. The other is a tissue-type or "bioprosthetic" valve which is constructed with natural-tissue valve leaflets which function much like a natural human heart valve's, imitating the natural action of the flexible heart valve leaflets which seal against each other to ensure the one-way blood flow. In both types of prosthetic valves, a biocompatible fabric-covered suture la or sewing ring or cuff on the valve body (mechanical) or stent (tissue-type) provides a platform for attaching the valve to the annulus of the particular valve being replaced.

The valves of the heart separate chambers therein, and are each mounted in an annulus therebetween. The annuluses comprise dense fibrous rings attached either directly or indirectly to the atrial and ventricular muscle fibers. In a valve replacement operation, the damaged leaflets are excised and the annulus sculpted to receive a replacement valve. Ideally the annulus presents relatively healthy tissue that can be formed by the surgeon irito a uniform ledge projecting into the orifice left by the removed valve. The time and spacial constraints imposed by surgery, however, often dictate that the shape of the resulting annulus is less than perfect for attachment of a sewing ring. Moreover, the annulus may be calcified as well as the leaflets and complete annular debridement, or removal of the hardened tissue, results in a larger orifice and less defined annulus ledge to which lo to attach the sewing ring. In short, the contours of the resulting annulus vary widely after the natural valve has been excised.
Conventional placement of the valve is intra-annular, with the valve body deep within the narrowest portion of the annulus to enhance any seal effected by the sewing ring/suture combination and reduce the chance of perivalvular leakage.
Surgeons report using at least 30 siinple sutures or 20 mattress-type sutures to prevent leakage. Mattress sutures are more time consuming and essentially comprise double passes of the needle through the tissue with one knot.
Naturally, the implantation of a prosthetic heart valve, either a mechanical valve or a bioprosthetic valve (i.e., "tissue" valve), requires a great 2o deal of skill and concentration given the delicate nature of the native heart tissue, the spatial constraints of the surgical field and the criticality of achieving a secure and reliable implantation. It is of equal importance that the valve itself has characteristics that promote a long valve life and that have minimal impact on the physiological makeup of the heart environment.
In view of the foregoing, it is evident that an improved sewing ring that addresses the apparent deficiencies in existing sewing rings is necessary and desired. That is, there is a need for a sewing ring that increases the orifice area of the valve while at the same time sixnplifying the fabrication and implantation steps.
Summary of the Invention The present invention provides an improved sewing ring and sewing ring/stent assembly that facilitates manufacture and implantation of heart valves. The sewing ring is adapted to pivot or move outward from the stent, thus enabling a surgeon during the implantation procedure to more easily isolate the sewing ring against the native tissue and away from the stent and tissue leaflets. Thus, there is less chance of the surgeon puncturing the leaflets.
Furthermore, the compliance of the sewing ring, or ability to pivot the ring away from the stent, enables the sewing ring to be made smaller in the radial dimension, and thus the overall valve orifice size can be increased.
Additionally, the manufacturing process is facilitated because various regions around the stent can be more easily visualized and accessed by virtue of the movable sewing ring.
In one aspect, the piresent invention provides a sewing ring attached to a generally annular periphery of a heart valve. The sewing ring includes a suture=
permeable ring attached to the heart valve periphery and configured to pivot from a first position substantially adjacent the periphery to a second position outward from the first position. The sewing ring desirably comprises a sutara permeable insert ring and a fabric cover. The insert ring may be substantially planar. The fabric covering the insert ring also desirably covers a portion of the heart valve. Moreover, the fabric covering both the insert ring and a portion of heart valve also preferably connects the ring to the heart valve periphery. A
seani may be provided wherein the sewing ring pivots between the first and second positions about the seam. In one embodiment, the first and second positions are stable such that the sewing ring is bi-stable.
In a further aspect, a heart valve having an inflow end and an outflow end is provided, comprising a generally annular stent, and a suture penneable sewing ring attached to a periphery thereof. The sewing ring is movable between two positions, wherein in the first position the sewing ring extends generally toward the outflow end of the valve and in the second position the sewing ring extends generally toward the inflow end of the valve. The sewing ring may comprise an insert ring and a fabric cover, and the fabric covering the insert ring may also cover a portion of the stent. In a preferred embodiment, the sewing ring attaches to the stent exclusively with a portion of a fabric that also covers a portion of the sewing ring. A seam is desirably provided in the fabric at the line of attachment between the sewing ring and the stent, wherein the sewing ring pivots about the seam between the first and second positions. The first and second positions may be stable, and the insert ring may be frustoconical in shape such that in the first posifion the ring extends toward the outflow end and in the second position the ring extends toward the inflow end.
Furthermore, the insert ring may be provided with alternating radially thick and thin regions, or it may have a radially unulating shape, to fadlitate moveinent between the first and second positions.
In another aspect, the present invention provides a heart valve including a generally annular stent having a periphery, a tubular fabric, and a generally annular suture-permeable insert sized at least as large as the stent periphery.
The stent and insert are connected together exclusively by a portion of the fabric that permits relative outward pivoting of the insert with respect to the stent. In a preferred embodiment, the fabric at least partly covers both the stent and insert.
2o A seam may be provided in the fabric at the line of attachment between the insert and the stent to provide a discrete pivot line. In a preferred embod'unent, the tubular fabric is a single piece prior to assembly of heart valve, and desirably encompasses both the stent and insert. The stent may have an undulating outflow edge comprising alternating commissures and cusps, wherein the fabric covers the outflow edge. The insert is desirably disposed around stent to pivot about the outer surface thereof, and a sewing tab along the undulating outflow edge is desirably sewn directly to the stent to prevent relative movement of the fabric upon pivoting of the insert.
In a further embodiment, a method of implanting a heart valve in host tissue (e.g., an aortic annulus) is provided. The heart valve has an inflow end and an outflow end, and a sewing ring attached to a periphery thereof. The method includes positioning the sewing ring to extend generally toward the inflow end of the valve, attaching the sewing ring to the host tissue, and ro positioning the valve with respect to the attached sewing ring so that the sewing 5 ring extends generally toward the outflow end of the valve. The method of attachment preferably comprises suturing. The method also may include providing the heart valve having a stent and a plurality of leaflets supported thereby, the sewing ring being located substantially adjacent the valve when extending generally toward the inflow end of the valve. The method of re-1o positioning may thus include inverting the sewing ring by pivoting it outward from the position substantially adjacent the valve. In one embodiment, the sewing ring is configured and attached to the stent so as to be bi-stable between the two positions.
Further, the present invention provides a method of assembling a heart valve, including providing a generally annular stent having a periphery, a tubular fabric, and a generally annular suturo-permeable insert ring sized at least as large as the stent periphery. The method includes connecting the stent and insert ring with the fabric to permit relative outward pivoting of the fa.briG
covered insert ring with respect to the stent. The method may include completely covering the stent with the tabular fabric prior to connecting the insert ring with the fabric. Furthermore, the tubular fabric preferably consists of a single piece, wherein the method includes covering both the stent and the insert ring with the single piece. The method further may include holding a portion of tubular fabric against the annular stent using an assembly fixture.
The assembly fixture desirably comprises an annular member and is mounted for rotation about an assembly handle. The handle has an elongated grip, wherein the axis of rotation of the assembly fixture is angled with respect to the grip.
A further understanding of the nature and advantages of the invention will become apparent by reference to the remaining portions of the specification and drawings.

Brief Description of the Drawings Figure 1 is a perspective view of a stent assembly used in an exemplary mitral or pulmonary position heart valve of the present invention;
Figure 2 is a perspective view of a suture-permeable insert for an exemplary mitral or puhnonary position heart valve sewing ring of the present invention;
Figures 3A and 3B are perspective views of initial steps in an assembly process of a heart valve of the present invention wherein a tubular fabric covering is wrapped around the stent assembly of Figure 1; .
Figure 3C is a cross-sectional view taken along line 3C-3C of Figure 3B;
Figures 4A and 4B are perspective views of further steps in the heart valve assembly process in which the fabric covering is attached along the outflow edge of the stent assembly;
Figure 5A is a perspective view of a further step in the heart valve assembly process in which free edges of the tubular fabric covering are created in preparation for addition of the insert shown in Figure 2;
Figure 5B is a cross-sectional view taken along line 5B-5B of Figure 5A;
Figure 6A is a perspective view of a further step in the heart valve assembly process wherein the insert of Figure 2 is positioned around the stent assembly of Figure 1, with the fabric covering therebetween, and with the help of an assembly fixture;
Figure 6B is a cross-sectional view taken along line 6B-6B of Figure 6A;
Figure 7A is a perspective view of a further step in a heart valve assembly process wherein an outflovv portion of the suture-permeable insert is 1. providing a holder having a flexible template adapted to attach to an annuloplasty repair segment, the template being convertible from a generally linear shape to a curved shape;
2. attaching an annuloplasty repair segment to the flexible template;
3. delivering the repair segment attached to the template to a heart valve annulus;
4. causing the template and repair segment to simultaneously undergo a shape change; and 5. attaching the annuloplasty repair segment to the annulus.
The method may also include a step of delivering the annuloplasty repair segment attached to the template through a minimally-invasive tube. The minimally invasive tube may be inserted through an access incision in the chest wall, or through an access incision in the peripheral vasculature and through vascular system, both into proximity within the annulus. The method may include releasing the template from the end of the tube, and maintaining a tether connection between the template and an anchor mandrel from within the tube.
A further understanding of the nature and advantages of the invention will become apparent by reference to the remaining portions of the specification and drawings.

Brief Description of the Drawings Figure 1 is an elevational view of a holder of the present invention having an annuloplasty repair segment attached to a flexible distal template;
Figure 2 is an elevational view of an alternative holder of the present invention having an annuloplasty repair segment attached to a flexible distal template;
Figures 3A-D are elevational views of the deployment of the holder of Figure 1 from within a delivery tube;
Figure 4 is an elevational view of a still further holder of the present invention having an annuloplasty repair segment attached to a distal template having markers;
Figure 5 is an elevational view of another holder of the present invention having an annuloplasty repair segment attached to a flexible distal template that can pivot with respect to a proximal handle;
Figure 6A and 6B are elevational views of the deployment of the holder of Figure 5;
Figures 7A and 7B are elevational views of another holder of the present invention having an annuloplasty repair segment attached to a distal multi-segmented template that can curl with respect to a proximal handle upon actuation of a pull string;
Figures 8A-8C are perspective views of a further holder of the present invention having an annuloplasty repair segment attached to a distal template that is biased to curl in three-dimensions with respect to a proximal handle;
Figures 9A and 9B are perspective views of an annuloplasty delivery system of the present invention having an annuloplasty repair segment attached to a template that is biased to curl when ejected from a proximal delivery tube;
Figure 10 is a perspective exploded view of the annuloplasty delivery system of Figures 9A and 9B;
Figure 11 is an enlarged perspective view of the distal end ofthe annuloplasty delivery system of Figures 9A and 9B;
Figures 12 and 12A are schematic illustrations depicting a human chest and the disposition of a right parasternal incision in connection with an aortic surgery procedure in accordance with the present invention;
Figure 13 is a pictorial illustration depicting the right para.sternal incision of Figure 12 showing respective costal cartilages;
Figure 14 is a pictorial illustration depicting the right parasternal incision of Figure 12 after respective costal cartilage units are excised and incision retracted;
Figure 15 is a pictorial illustration depicting the right parastemal incision of Figure 12 after the aortic valve is removed, with traction sutures placed at the commissures;
Figure 16 is a pictorial illustration depicting the right parasternal incision of Figure 12 after the aorta is opened to expose the aortic valve, and injection of cardioplegia into the coronary ostia;
Figure 17 is a pictorial illustration of the implantation of an annuloplasty ring of the present invention to repair the aortic valve;
Figure 18 is a pictorial illustration depicting the surgery field of Figure 17 after an incision of the right atrium;
Figure 19 is a pictorial illustration depicting an alternative way of exposing the surgical field of Figure 17;
Figure 20 is a pictorial illustration of the performance of an annuloplasty in the surgical field of Figure 17;
Figure 21 is a pictorial illustration of the performance of an annuloplasty in the surgical field of Figure 17; and Figure 22 is a pictorial illustration of the completion of an annuloplasty in the surgical field of Figure 17.

Description of the Preferred Embodiments The present invention provides a number of different templates for delivering and facilitating implantation of annuloplasty rings or repair segments.
It should be understood that the term annuloplasty ring or repair segments refers to any generally elongated structure used in annulus repair, whether straight or curved. For example, an annuloplasty ring is conventionally understood to provide either a complete or substantially complete loop sized to correct a misshapen and or dilated native annulus. In many instances, a partial ring or even a straight repair segment may be used around just a portion of the annulus, such as around the posterior edge. Consequently, the term "annulopla.sty repair segment" as used herein is intended to encompass all of such structures. Additionally, although annuloplasty repair devices are typically 5 suture-permeable, the use of the invention to implant other structures which are attached to the annulus without passage of sutures therethrough is also contemplated.
A first embodiment of the present invention is illustrated in Figure 1 in which an annuloplasty repair segment 20 is attached to a curved portion 22 of a 10 delivery template 24. The annuloplasty repair segment 20 is flexible and conforms to the curved portion 22 by virtue of a plurality of attaching sutures 26, or other similar expedient.
The template 24 comprises the curved portion 22 defining a distal end, and a generally straight, elongated shaft portion 28 defining a proximal end.
Depending on the implantation technique, the shaft 28 may be flexible or rigid.
The curved portion 22, on the other hand, is highly flexible, preferably elastic.
Specifically, curved portion 22 may be formed of a biocompatible metal such as stainless-steel or Elgiloy, or from a super-elastic material such as Nitinol.
The material used for the curved portion 22 may be the same as that used for the shaft portion 28, or the two portions may be formed of different material and connected using conventional means. The usage of the template 24 will be described below with respect to Figures 3A-3C.
Figure 2 illustrates an alternative embodiment of the present invention similar to that shown in Figure 1, with an annuloplasty repair segment 20 supported on a curved wire-like portion 30 of a template 32. Again, the template 32 comprises the wire-like portion 30 on the distal end, and a shaft portion 34 on the proximal end.
In contrast to the suture attachment means shown in Figure 1, the curved wire-like portion 30 passes through the body of the annuloplasty repair segment 20 to secure it thereto. In this regard, therefore, the annuloplasty repair segment 20 must be sufficiently permeable for the wire-like portion 30 to pass therethrough. In one embodiment, the annuloplasty repair segment 20 comprises an elastic inner core (not shown) surrounded by a tubular fabric covering 36. The wire-like portion 30 may therefore be passed between the inner core and the fabric covering 36, or may even be embedded within the inner core for a more secure coupling. The inner core may take a number of 1o forms, including a solid metal rod such as titanium, a mdal rod in combination with a silicone sleeve, or a silicone rod. Various other annuloplasty repair segment constractions are well-known in the art, and are incorporated herein.
Figures 3A-3C illustrate a series of positions of the combined annuloplasty repair segment 20 and template 24 of Figure 1 being delivered through a delivery tube 40, such as a cannula or catheter. It should be understood that the same operation applies to the combined ring 20 and template 34 shown in Figure 2.
The delivery tube 40 comprises a proximal end (not shown) and an open distal end 42. In use, the combined annuloplasty repair segment 20 and template 24 are located as shown adjacent the distal end 42, or are advanced into that positioned through the tube 40. It should be noted that the curved portion 22 on the distal end of the template 24 (and the attached ring 20) assumes a straightened or elongate configuration when located within the tube 40.
As will be explained in greater detail below, the distal end 42 is advanced into proximity with the site at which the annuloplasty repair segment 20 will be implanted; namely, a distended or otherwise damaged heart valve annulus. Subsequeirtly, as seen Figures 3B-3D, the combined annuloplasty repair segment 20 and template 24 are advanced from the distal end 42 in the direction of arrow 44. By virtue of the elasticity of the curved portion 22, the annuloplasty repair segment 20 ultimately undergoes a shape change to the curved shape as seen in Figure 3D. As the curved portion 22 passes from the distal end 42 of the tube 40, its own spring-bias causes it to revert to its original shape. It should be noted that the spring bias might be in more than one plane.
That is, the resulting curved configuration may be a three-dimensional shape as desired.
The template 24 may be advanced from the open mouth 42 by either distal displacement of the template 24 with respect to the fixed tube 40, or by proximal displacement of the tube 40 with respect to the fixed template 24.
That is, the template 24 can be pushed from within the tube 40, or the tube can be retracted to expose the ring 20 and curved portion 22. In an exemplary embodiment, the shaft 28 extends a sufficient distance in the proximal direction to emerge from within the proximal end (not shown) of the tube 40, and is manipulated by a handle, or other such means.
Figure 4 illustrates an alternative embodiment of the present invention in which an annuloplasty repair segment 50 is removably attached to an elongate, preferably straight template 52. In this embodiment, the combined ring 50 and template 52 are sized to be advanced into implantation position through a minimally invasive access tube or catheter, with a distal portion of the template 52 remaining straight so that the annuloplasty repair segment 50 also remains straight. The straight ring 50 may be attached to a short section of annulus that has been plicated or otherwise tightened where the need to repair the entire annulus is absent. In this regard, the template 52 need not be flexible, the advantage being the reduced profile or cross-sectional size of the template and repair segment combination that enables minimally-invasive passage through a tube such as a cannula or catheter. In a preferred embodiYiment, the maximum cross-sectional dimension of the teinplate and repair segment combination is sufficiently small, for example 5-10 mm, so as to pass through known minimally invasive cannulas or catheters.
Alternatively, the material of the template 52 may be such that it changes shape and forms a curve upon reaching body temperature. That is, certain shape memory metals (e.g., Nitinol) may be used that undergo a shape change upon crystalline transformation between two temperatures.
A plurality of markers 54 are also provided on the distal portion of the template 52 to indicate suture placement. Such markers 54 may be, for lo example, colored or contrasting lines or dots, or may be radiopaque or otherwise highly visible, such as fluorescent. Location and spacing of the individual markers 54 may correspond to particular anatomical landmarks, as previously measured using an endoscope, for example.
Figure 5 illustrates a still further embodiment of the present invention in which an annuloplasty repair segment 60 is fastened to a flexible template 62 connected to the distal end of the insertion handle 64 at a hinge 66. The ring attaches to the flexible template 62 using one or more mounting sutures 68.
The mounting suture(s) 68 desirably pass through the sutur&permeable ring 60, or may be looped therearound, and are threaded through apertures or guides provided in the template 62 and secure thereto, such as with knots. A
plurality of cutting guides or prompts 70 are also provided at spaced intervals on the flexible template 62 across which the mounting sutures 68 extend. The cutting prompts 70 may take the form of a pair of raised notches across which a suture 68 extends such that a scalpel blade may be inserted between the notches to .
sever the suture. Examples of such cutting prompts 70 are seen in USPN
5,683,402, hereby expressly incorporated by reference.
Figures 6A and 6B schematically illustrate several steps in implantation of the annuloplasty repair segment 60 and operation of the template 62. The assembly of the ring 60, template 62, and handle 64 is first inserted through an access incision 72 in the wall of the chest (schematically shown at 74). After locating the annuloplasty repair segment 60 in proximity with the damaged annulus, the flexible template 62 pivots with respect to the handle 64 at the hinge 66. Such pivoting may be accomplished using a push or pull mechanism, such as a suture 76 connected at the extreme distal most tip of the template and passing through a series of guides or pulleys (not shown) within the handle 64. In a preferred embodiment, the hinge 66 permits the flexible template 62 to pivot an angle of less than 90 with respect to the handle 64, after which point fiuther pulling on the suture 76 causes the template 62 to bend, as seen in Figure 6B. For example, hinge 66 may permit the template 62 to pivot an angle of between about 70-85 , more preferably about 80 . In this manner, stress imposed on a flexible template 62 is reduced in contrast to simply bending the template through the entire angular rotation.
Figures 7A-7C illustrate a still further embodiment of present invention in which an annuloplasty repair segment 80 is secured to a multi-segmented template 82 provided on the distal end of a handle 84. The template 82 comprises a series of segments 86 linked together at pivot points 88. By forming the segments 86 with cutouts 90, for example, the segmented template 82 can form the curvature seen Figures 7B, but is structurally prevented from curling in the opposite direction.
An exemplary cross-section of a segment 86 is seen in Figure 7C and comprises a generally rectilinear shape having a groove or depression 92 on one end for receiving the annuloplasty repair segment 80, and a through bore 94.
The through bores 94 in each of the segments 86 are aligned to receive a pra-biased bend wire 96. Figure 7A is an exploded view, while Figure 7B shows the components assembled with the bend wire 96 causing the segmented template 82 to form the aforementioned curvilinear shape. In addition, the annuloplasty repair segment 80 conforms to the shape of the bend wire 96 and template 82.
In use, the assembled components, including the bend wire 96, may be advanced through a minimally invasive introducer tube, such as a cannula or a 5 catheter. Depending on the rigidity of the introducer tube, the assembly seen in Figure 7B may be partially or completely straight. Further advancement of the assembly from the open distal end of the introducer tube permits the bend wire 96 to curl the template 82 and annuloplasty repair segment 80 into the configuration shown. This technique is much like that shown in Figures 3A3C
10 for the first two embodiment illustrated.
Alternatively, the assembly minus the bend wire 96 may be advanced into proximity with the damaged annulus tbrough an access incision, or through a minimally invasive introducer tube. Subsequently, and after projection of the annuloplasty repair segment 80 from the introducer tube, if used, the bend wire is 96 may be introduced into the proximal end of the handle 84, as indicated by the arrow 98 in Figure 7B. As the bend wire 96 advances through the aligned through bores 94, the resulting curvilinear sbape as seen in Figure 7B is attained.
Figures 8A-8C illustrate a further holder 100 of the present invention having an annuloplasty repair segment 102 attached to a distal template 104 that is biased to curl in three-dimensions with respect to a proximal handle 106.
The annuloplasty repair segment 102 may be attached to one side of the template 104, as in the earlier embodiments, or the template may be sized to insert within the repair segment. In the latter instance, the template 102 may be a wire that fits within a receiving bore of the annuloplasty repair segment 102, or the wire may simply slide between an outer fabric cover and inner structure of the repair segment 102.

In use, the holder 100 may be disposed within and ejected from a delivery tube, such as with the earlier embodiment seen in Figures 3A-3B.
Once the distal end of the holder 100 emerges from within the tube, the pre-biased template 104 assumes its particular three-dimensional shape, and so does the attached annuloplasty repair segment 102. Ideally, the shape of the template 104 re-orients the annuloplasty repair segment 102 from being aligned with the tube axis, to defining a ring or ring segment that lies in a plane angled with respect to the tube axis. As best seen in Figure 8A, the ring or ring segment desirably lies in a plane that is nearly perpendicular to the tube axis, which is typical as the native valve annulus lies at a similar orientation with respect to the direction of insertion of the delivery tube. The surgeon then attaches the segment 102 in a manner to correct the affected valve annulus, and disconnecis the template 104. If the template 104 is attached via sutures, it is disconnected with a scalpel. If the template 104 is inserted within the body of the segment 102, the surgeon braces the segment with forceps, or otherwise, and retracts the template from within. The template may be made of a suitable metal or polymer. A lubricious polymer, such as silicon, may be desirable if the template inserts within the segment 102 to facilitate removal therefrom.
Figures 9A-9B, 10 and 11 illustrate an annuloplasty delivery system 120 of the present invention having an annuloplasty repair segment 122 attached to a template 124 that is biased to curl when ejected from a proximal delivery sheath 126. The teinplate 124 includes a proximal handle section 128 and a distal forming section 130. The forming section attaches to or inserts within the annuloplasty repair segment 122, and causes the segment to assume the same shape. The handle section 128 is enlarged relative to the forming section 130 and includes a plurality of through holes 132 to which a tether 134 attaches.
The tether 134, in turn, initially coils around and attaches to a post 136 provided on an anchor mandrel 138. The anchor mandrel 138 is sized to fit and slide within a delivery tube 140 concentrically disposed within the delivery sheath 126. The anchor mandrel 138 farther includes a rectangular pin 142 on its distal end that mates with a similarly-sized cavity 144 in the proximal end of the handle section 128 of the template 124.
In use, the template 124 mates with the anchor mandrel 138, and the two as well as the annuloplasty repair segment 122 are housed within the delivery tube 140. The delivery tube 140 is initially retracted within the delivery sheath 126 that is typically rigid and inserted though a chest incision or so-called stab wound. As before, however, the delivery sheath 126 may take the form of an 1o elongated, flexible catheter for percutaneous, vascular insertion.
After the distal end of the delivery sheath 126 is positioned near the valve annulus site, the delivery tube 140 is advanced from within the delivery sheath, as seen in Figures 9A and 9B. Using a pusher rod (not shown), the anchor mandrel 138 is at least partially advanced out of the end of the delivery tube 140. The anchor mandrel 138 may include an enlarged cylindrical proximal end that is stopped at the end of the delivery tube 140 by a flange or tab. At least the post 136 extends from the tube 140, as shown. The rectangular pin 142 and cavity 144 may engage with an interference fit, or a more positive coupling may be provided. In either case, the surgeon disengages the two elements to release the template 124. The tether 134 maintains a connection between the anchor mandrel 138 and teniplate 124, and thus between fie sheath 126 and template.
By manipulating the handle portion 128, the surgeon can maneuver the curled annuloplasty repair segment 122 into the proper position, and attach it to correct the affected annulus. At this stage, the template 124 may be detached from the annuloplasty repair segment 122 by severing connecting sutures, if the template is attached to the side of the segment. Alternatively, if the forming portion 130 inserts within the repair segment 122, it may be retracted by bracing the segment and pulling the template 124 free, such as by pulling the tether 134.
The advantage of such a system as shown in Figures 9-11 is the ability of the surgeon to freely maneuver the annuloplasty repair segment 122 into position, within the constraint of an attached handle. Moreover, the template 124 maintains the proper repair segment shape while the attachment procedure is done. The annuloplasty repair segment 122 is typically relatively flexible, and the reinforcement of the forming portion 130 greatly reduces the surgeon's task, especially in the small spaces of minimally-invasive surgeries. Finally, although a semi-circular, planar shape of the forming portion 130 is shown, other shapes such as a three-dimensional shape may be utilized, or the shape may be customized based on patient need.

Methods of Use Figures 12-22 illustrate two exemplary minimally invasive techniques for repairing a heart valve annulus using the present invention. Figures 13-16 pertain to an aortic valve repair, while Figures 17-22 pertain to a mitral valve repair.
These procedures involve creation of an access channel from the outside of the body through the patient's chest cavity, with the heart being stopped and the patient put on bypass. The repair is done with the affectedheart valve being exposed through the channel. Other procedures are contemplated, however, including a wholly vascular approach with elongated, flexible catheters inserted through the femoral artery, for example, eliminating the chest incision. Therefore, the following methods should be considered exemplary only, and illustrative of the ultimate delivery and implantation of the annuloplasty devices described herein.
Aortic Procedure Referring now to Figure 12, in a typical human, a stemum 150, a planary bone structure centrally disposed in the cbest, is connected to a plurality ofribs 152 by respective costal cartilages Rl, R2, R3, R4, R5, and L1, L2, L3, L4, L5.
The heart and great vessels are located within a tissue sack (pericardium), located beneath the stemum, extending laterally under the costal cartilages and ribs, with the aorta disposed in part underlying the second and third right costal cartilages R2 and R3 and a portion of the right coronary artery located generally underlying the vicinity of the fourth and fifth right costal cartilages R4 and R5.
In accordance with one aspect of the present invention, it has been determined that a surgery on portions of the heart and great vessels located between a point approximately three centimeters above supra annular ridge and the mid-ventricular cavity, can be effected with minimal invasion, without a median 1o sternotomy, or other gross thoracotomy, by, as illustrated in Figure 12, making a relatively short parasternal incision 154 extending across a predetermined number of costal cartilage, e.g., a right parastemal incision extending from the lower edge of the second costal cartilage R2 to the superior edge of the fifth costal cartilage R5 and removing one or more costal cartilages, e.g., the third and fourth costal cartilages, R3 and R4. It has been determined that over a period of time the chest wall in the area of the resected cartilages becomes stable secondary to scarring of the remaining tissue. In effect, scar tissue resulting from the procedure functionally replaces the excised cartilage, providing a relatively rigid chest wall.
This procedure can be readily employed to perform operations on structures located on portions of the heart and great vessels located between a point approximately three centimeters above supra annular ridge and the mid-ventricular cavity. As will be more fully described, the procedure is of particular utility with respect to surgery to repair or replace the aortic valve. Specifically, in the context of exemplary surgery to replace an aortic valve, the patient is anesthetized and intubated, and placed supine on the operating room table. Preferably, defibrillator pads are placed on the patient's back and anterior left chest, and a transesophageal echocardiography probe is placed to access the etiology of the aortic valve disease and to assist in removing air from the heart after completiori of the operation.

Referring to Figures 12 and 12A, a right parasternal incision is made extending from the lower edge of the second costal cartilage R2 to the superior edge of the fifth costal cartilage. The pectoral major muscle is divided, exposing the second, third, and fourth intercostal spaces, and the third and fourth costal 5 cartilages R3 and R4 as shown in Figure 13. The third and fourth costal cartilages R3 and R4 are totally excised (Figure 12). The right internal thoracic artery is ligated just below the second costal cartilage R2 and just above the fifth costal cartilage R5. Intercostal muscles and pleura are incised lateral to the edge of the sternum, entering the right pleural cavity. As shown in Figure 14, the pericardium 10 156 is then incised, exposing the ascending aorta 158, and is stitched back. The incision is held open using a conventional chest retractor 160.
A cardiopulmonary by-pass is then established. Typically, a conunon femoral artery and vein are exposed and, after infusion of an anti-coagulant, e.g., heparinization, are cannulated. Catheters are placed in the femoral artery and in is femoral vein, respectively. Adequate venous drainage may be obtained by utilizing a long venous cannula disposed so that the tip of the cannula passes through the right atrium and preferably into the superior vena cava 162 (Figure 14).
Alternativeiy, venous return can be affected by introducing an appropriate catheter into the right atrial appendage. Catheters direct the blood to a conventional hear~
20 lung machine (not shown) that oxygenates the blood and pumps it back under pressure to the patient.
After catheters are placed, the heart is excluded from circulation. For example, the aorta 158 is suitably encircled with umbilical tape 170 and the ascending aorta cross clamped with a right angle clamp 172. The aorta is then incised along line 174 in Figure 14 to expose the coronary ostia 166 and the aortic valve 178, as seen in Figure 15. Aortic valve 178 includes a plurality, typically three, of leaflets (valve cusps) 180, joined at respective commissures 182, and surrounded by a relatively fibrous aortic annulus 184. Cardiac furr;tion is arrested, by e.g., by administering cardioplegia into the ascending aorta. Typically, after performing the aortatomy, a suitable cardioplegia is introduced into the left coronary artery. Preferably, a suitable cardioplegia fluid, such as a coldpotassium solution is infused through a catheter 186 inserted in coronary ostia 176.
Sutures 188 are the suitably placed just above each commissure 182, and clamped under tension to a drape (not shown) surrounding the operating site. This elevates the aortic root (e.g., aortic annulus 184) into the operative field.
Aortic valve 178 is then repaired. For example, referring to Figure 16, the annuloplasty delivery system 120 of Figures 9-11 is introduced into the surgical field and the annuloplasty repair segment 122 attached to the template 124 is released into proximity of the annulus 184 from the delivery sheath 126. The tether 134 maintains a connection between the template 124 and delivery sheath 126 as the repair segment 122 is maneuvered and securedinto a corrective position in the annulus 184. Various implements are known for manipulating and suturing surgical devices in tight spaces, including robotically-assisted forceps and suture needles or stapling mechanisms, and will not be described or shown here.
Finally, the template 124 is disengaged from the repair segment 122, and the annuloplasty delivery system 120 removed from the surgical site.
At the completion of the repair, the aortatomy is closed with sutures. Air is then removed from the heart through the aorta with the assistance of the transesophageal echocardiography probe; all air bubbles are preferably removed from the heart by removing clamp 74 to restore blood flow, and inflating the lungs, until blood flows through the closure sutures, then tightening the sutures.

Mitral Procedure In another aspect of the present invention, a similar incision as that described above with reference to Figures 12 and 12A, can be used in performing surgery to repair or replace a mitral valve. More specifically, referring to Figures 12A, a parasterna.l incision approximately 10cm in length is made over the third and fourth intercostal cartilages R3 and R4. The pectoralis major muscle is then divided longitudinally, exposing the third and fourth cartilages R3, R4. The cartilages R3, R4 are completely resected and the internal thoracic artery (not shown) is then ligated and divided. The pericardium is opened and suspended under tension to the drapes of the patient.
Referring to Figure 17, the resulting wound provides access into the chest cavity and particularly exposes the first portion of the ascending aorta 196, the superior vena cava 198 and the right atrium 200. The wound also provides access for making a planned incision 202 into the right atrium 200.
Referring to Figure 18, prior to making the incision 202 into the right atrium 200, the patient must be cannulated so that the heart may be bypassed from blood flow during the surgery on the heart. In that connection, a first cannula (not shown) is inserted directly into the superior vena cava 198. A second cannula may be inserted into the inferior vena cava, either via the right atrium 200 or via a venous cannula introduced through a femoral vein as known in the art. Arterial return is established by a third cannula that may be inserted either directly into the ascending aorta 196 or through a femoral artery.
Once cannulation is complete, a cross clamp 204 is applied to the ascending 2o aorta 196 as shown in Figure 18 to occlude blood flow. Antegrade cardioplegia is then applied directly into the ascending aorta proximal of the clamp via a cardioplegia catheter 206. Bypass is established and then the heart progressively dimi.nishes its beating activity until it ceases beating altogether. The incision 202 into the right atrium 200 is made and the tissue draped back to expose the coronary sinus 208 and intra-arterial septum 210 (Figure 18). Additional cardioplegia is introduced, as necessary, in a retrograde fashion into the coronary sinus 208 with a retrograde cardioplegia catheter 212. The retrograde cardioplegia catheter 212 can be either a conventional retrograde catheter or an occluding balloon catheter to ensure proper introduction of the cardioplegia without leakage. The stage is then set to cut the intra-atnal septum 210 along an incision line 214 and thereby expose the dome of the left atrium. The incision 214 is made in the intra-atrial septum 210 starting at the foramen ovale and extending inferiorly and superiorly into the dome of the left atrium.
With reference to Figure 19, hand-held refractors 220, 222 are then inserted into the superior and inferior portions of the left atrium, respectively, and used to pull the atrial tissue back and expose the mitral valve 224. Additionally, downward traction may be applied on the posterior lateral left atrial wall 225 to provide better exposure to the mitral valve 224. A deformable retractor 226, which may be manipulated into a shape that grasps the tissue but does not obstruct the surgical field, may be used to provide the downward traction on the posterior lateral left atrial wall 224. In addition, to further expose the surgical field, a flexible and resilient ring member 228 may be inserted into the field between the valve 224 and the left atrial wall. Aiter the ring member is inserted, the ring 228 expands to facilitate lifting the tissue away from the valve area requiring surgeiy.
The mitral valve 224 being fully exposed after achieving the above=described configuration, repair of the valve 224 may then be achieved using the devices of the present invention. By way of example only, the procedure for completing the surgical method after repair of a mitral valve is hereinafter described.
Referring to Figures 20-22, after exposure of the mitral valve 224, an annuloplasty is performed. For example, the annuloplasty delivery system 120 of Figures 9-11 is introduced into the surgical field and the annuloplasty repair segment 122 attached to the template 124 is released into proximity ofthe annulus 230 from the delivery sheath 126. The tether 134 maintains a connection between the template 124 and delivery sheath 126 as the repair segment 122 is maneuvered and secured by sutures 232 into a corrective position in the annulus 230.
Again, various implements are known for manipulating and saturing surgical devices in tight spaces, including robotically-assisted forceps and suture needles or stapling mechanisms, and will not be described or shown here. Finally, the template 124 is disengaged from the repair segment 122, and the annuloplasty delivery system removed from the surgical site, as in Figure 22.
The present invention thus provides an improved annuloplasty delivery system and/or holder that is especially suitable for miniunally-invasive surgeries.
The system enables delivery of an annuloplasty repair segment to the valve annulus through a tube, such as a catheter or cannulaThe system/holder includes a template to which the repair segment attaches that is capable ofundergoing a shape change, either actively via a deflection mechanism or passively by virtue of instrinsic properties, such as a spring bias or material memory. The shape may be two- or three-dimensions, and typically fonns a curve along at least a portion to conform around the annulus. The template is desirably an elongate member that assumes a generally linear shape for passing through the delivery tube, and then is actively or passively converted to the changed shape upon exiting from the distal end of the tube. The repair segment inay be various lengths, from relatively short to almost a complete ring shape, and is flexible to assume the respective shapes of the template. The template may remain rigidly attached to a handle that extends from the proximal end of the tube, or may be released to enable free manipulation by the surgeon at the implantation site. A tether may be provided to maintain connection between the delivery tube and template while permitting maximum access and visibility around the repair segment during the attachment procedure. The template remains attached to the repair segment during the attachment procedure to support and maintain a desired shape of the repair segment. Once the repair segment is implanted, the template is detached, such as by severing conneding sutures, or by pulling it longitudinally from within the repair segment.
While the foregoing is a complete description of the preferred embodiments of the invention, various alternatives, modifications, and equivalents may be used.

Moreover, it will be obvious that certain other modifications may be practiced within the scope of the appended claims.

Claims (39)

1. A holder for an annuloplasty repair segment, comprising:
an elongate template adapted to attach to an annuloplasty repair segment and being adapted to pass in a generally linear shape through a tube, the template being convertible from the generally linear shape to a curved shape.
2. The holder of claim 1, wherein the template is flexible.
3. The holder of claim 2, wherein the template is biased toward the curved shape.
4. The holder of claim 1, wherein the curved shape is three-dimensional.
5. The holder of claim 1, further including a deflection mechanism for converting the template between the linear shape and the curved shape.
6. The holder of claim 1, wherein the template is capable of a temperature-induced shape change between the linear shape and the curved shape.
7. The holder of claim 1, wherein the template includes a plurality of hinged sections.
8. The holder of claim 7, further including a deflection mechanism for converting the template between the linear shape and the curved shape.
9. The holder of claim 1, wherein the template is flexible but unbiased from the linear shape, the holder further including a biasing member adapted to insert within the template so as to bias the template toward the curved shape.
10. The holder of claim 1, further including a handle attached to the template for passing the template through the tube and for manipulating the template to position the annuloplasty repair segment into proximity with a valve annulus.
11. The holder of claim 1, further including an anchor mandrel to which the template is releasably attached, and a tether connecting the template and anchor mandrel when released.
12. The holder of claim 1, further including suture location markers on the template to facilitate suture alignment with anatomical landmarks.
13. A combination annuloplasty repair segment and holder, comprising:
a holder including a template having a generally linear shape in at least one position, the template being adapted to undergo a shape change along its length; and an annuloplasty repair segment attached to the template and configured to assume the changed shape of the template.
14. The combination of claim 13, wherein the template is flexible and the shape change occurs from bending of the template.
15. The combination of claim 13, wherein the template is biased toward the changed shape.
16. The combination of claim 13, wherein the changed shape is a curve.
17. The combination of claim 13, wherein the curve is three-dimensional.
18. The combination of claim 13, further including a deflection mechanism for converting the template between the linear shape and the changed shape.
19. The combination of claim 13, wherein the template includes a plurality of hinged sections.
20. The combination of claim 19, further including a deflection mechanism for converting the template between the linear shape and the curved shape.
21. The combination of claim 13, wherein the template is capable of a temperature-induced shape change between the linear shape and the changed shape.
22. The combination of claim 13, wherein the template is flexible but unbiased from the linear shape, the holder further including a biasing member adapted to insert within the template so as to bias the template toward the curved shape.
23. The combination of claim 13, further including a handle attached to the template for manipulating the template to position the annuloplasty repair segment into proximity with a valve annulus.
24. The combination of claim 13, further including an anchor mandrel to which the template is releasably attached, and a tether connecting the template and anchor mandrel when released.
25. The combination of claim 13, further including suture location markers on the template to facilitate suture alignment with anatomical landmarks.
26. An annuloplasty repair segment delivery system, comprising:
a delivery sheath;
an anchor mandrel slidably disposed within the sheath near a distal end thereof and restrained from exiting the sheath; and an elongate template adapted to attach to a flexible annuloplasty repair segment and being releasably attached to the anchor mandrel, the template being convertible from a generally linear shape within the sheath to a curved shape when ejected from the end of the sheath.
27. The system of claim 26, further including a tether connecting the template and anchor mandrel when released.
28. The system of claim 26, wherein the template is biased toward the changed shape.
29. The system of claim 26, wherein the changed shape is a curve.
30. The system of claim 29, wherein the curve is three-dimensional.
31. The system of claim 26, wherein the template includes a handle portion and a forming portion, the forming portion being biased into a curved shape and being attached to the flexible annuloplasty repair segment so that the segment also assumes the curved shape.
32. The system of claim 31, wherein the forming portion inserts within the segment.
33. A method of implanting an annuloplasty repair segment in a heart valve annulus, comprising:
providing a holder having a flexible template adapted to attach to an annuloplasty repair segment, the template being convertible from a generally linear shape to a curved shape;
attaching an annuloplasty repair segment to the flexible template;
delivering the repair segment attached to the template to a heart valve annulus;
causing the template and repair segment to simultaneously undergo a shape change; and attaching the annuloplasty repair segment to the annulus.
34. The method of claim 33, wherein the step of delivering includes delivering the annuloplasty repair segment attached to the template through a minimally-invasive tube.
35. The method of claim 34, wherein the minimally-invasive tube is first inserted through an access incision in the chest wall into proximity with the annulus.
36. The method of claim 34, wherein the minimally-invasive tube is first inserted through an access incision in the peripheral vasculature and passed through the vascular system into proximity with the annulus.
37. The method of claim 34, further including releasing the template from the tube after delivering the template through the tube.
38. The method of claim 37, wherein the holder includes an anchor mandrel slidable within the tube but constrained from exiting the tube, and the elongate template is releasably attached to the anchor mandrel.
39. The method of claim 38, further including a tether connecting the template and anchor mandrel when released.
CA2597050A 2000-10-05 2001-09-26 Minimally-invasive annuloplasty repair segment delivery template, system and method of use Expired - Lifetime CA2597050C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
USUS09/680,202 2000-10-05
US09/680,202 US6602288B1 (en) 2000-10-05 2000-10-05 Minimally-invasive annuloplasty repair segment delivery template, system and method of use
CA002423878A CA2423878C (en) 2000-10-05 2001-09-26 Minimally-invasive annuloplasty repair segment delivery template, system and method of use

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CA002423878A Division CA2423878C (en) 2000-10-05 2001-09-26 Minimally-invasive annuloplasty repair segment delivery template, system and method of use

Publications (2)

Publication Number Publication Date
CA2597050A1 CA2597050A1 (en) 2002-04-11
CA2597050C true CA2597050C (en) 2010-07-06

Family

ID=24730148

Family Applications (2)

Application Number Title Priority Date Filing Date
CA002423878A Expired - Lifetime CA2423878C (en) 2000-10-05 2001-09-26 Minimally-invasive annuloplasty repair segment delivery template, system and method of use
CA2597050A Expired - Lifetime CA2597050C (en) 2000-10-05 2001-09-26 Minimally-invasive annuloplasty repair segment delivery template, system and method of use

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CA002423878A Expired - Lifetime CA2423878C (en) 2000-10-05 2001-09-26 Minimally-invasive annuloplasty repair segment delivery template, system and method of use

Country Status (8)

Country Link
US (3) US6602288B1 (en)
EP (1) EP1322260B1 (en)
JP (1) JP3759497B2 (en)
AT (1) ATE315919T1 (en)
AU (2) AU2001295074B2 (en)
CA (2) CA2423878C (en)
DE (1) DE60116786T2 (en)
WO (1) WO2002028321A2 (en)

Families Citing this family (445)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7883539B2 (en) 1997-01-02 2011-02-08 Edwards Lifesciences Llc Heart wall tension reduction apparatus and method
US6332893B1 (en) 1997-12-17 2001-12-25 Myocor, Inc. Valve to myocardium tension members device and method
US6736845B2 (en) * 1999-01-26 2004-05-18 Edwards Lifesciences Corporation Holder for flexible heart valve
US7192442B2 (en) * 1999-06-30 2007-03-20 Edwards Lifesciences Ag Method and device for treatment of mitral insufficiency
FR2799364B1 (en) * 1999-10-12 2001-11-23 Jacques Seguin MINIMALLY INVASIVE CANCELING DEVICE
US7018406B2 (en) 1999-11-17 2006-03-28 Corevalve Sa Prosthetic valve for transluminal delivery
FR2800984B1 (en) * 1999-11-17 2001-12-14 Jacques Seguin DEVICE FOR REPLACING A HEART VALVE PERCUTANEOUSLY
US6402781B1 (en) 2000-01-31 2002-06-11 Mitralife Percutaneous mitral annuloplasty and cardiac reinforcement
US7296577B2 (en) * 2000-01-31 2007-11-20 Edwards Lifescience Ag Transluminal mitral annuloplasty with active anchoring
US6989028B2 (en) * 2000-01-31 2006-01-24 Edwards Lifesciences Ag Medical system and method for remodeling an extravascular tissue structure
US6547778B1 (en) * 2000-07-21 2003-04-15 Joseph H. Sklar Graft ligament strand tensioner
JP2004506469A (en) 2000-08-18 2004-03-04 アトリテック, インコーポレイテッド Expandable implantable device for filtering blood flow from the atrial appendage
US6602288B1 (en) 2000-10-05 2003-08-05 Edwards Lifesciences Corporation Minimally-invasive annuloplasty repair segment delivery template, system and method of use
US6723038B1 (en) 2000-10-06 2004-04-20 Myocor, Inc. Methods and devices for improving mitral valve function
US6602286B1 (en) 2000-10-26 2003-08-05 Ernst Peter Strecker Implantable valve system
US6974476B2 (en) * 2003-05-05 2005-12-13 Rex Medical, L.P. Percutaneous aortic valve
US7591826B2 (en) * 2000-12-28 2009-09-22 Cardiac Dimensions, Inc. Device implantable in the coronary sinus to provide mitral valve therapy
US6656221B2 (en) * 2001-02-05 2003-12-02 Viacor, Inc. Method and apparatus for improving mitral valve function
WO2002062263A2 (en) * 2001-02-05 2002-08-15 Viacor, Inc. Apparatus and method for reducing mitral regurgitation
CA2668308A1 (en) * 2001-03-05 2002-12-05 Viacor, Incorporated Apparatus and method for reducing mitral regurgitation
US6955689B2 (en) * 2001-03-15 2005-10-18 Medtronic, Inc. Annuloplasty band and method
WO2002076284A2 (en) * 2001-03-23 2002-10-03 Viacor, Inc. Method and apparatus for reducing mitral regurgitation
US7186264B2 (en) * 2001-03-29 2007-03-06 Viacor, Inc. Method and apparatus for improving mitral valve function
US6800090B2 (en) * 2001-05-14 2004-10-05 Cardiac Dimensions, Inc. Mitral valve therapy device, system and method
US6676702B2 (en) * 2001-05-14 2004-01-13 Cardiac Dimensions, Inc. Mitral valve therapy assembly and method
US7935145B2 (en) 2001-05-17 2011-05-03 Edwards Lifesciences Corporation Annuloplasty ring for ischemic mitral valve insuffuciency
ITMI20011012A1 (en) 2001-05-17 2002-11-17 Ottavio Alfieri ANNULAR PROSTHESIS FOR MITRAL VALVE
US20030078654A1 (en) * 2001-08-14 2003-04-24 Taylor Daniel C. Method and apparatus for improving mitral valve function
US6908482B2 (en) 2001-08-28 2005-06-21 Edwards Lifesciences Corporation Three-dimensional annuloplasty ring and template
US7367991B2 (en) * 2001-08-28 2008-05-06 Edwards Lifesciences Corporation Conformal tricuspid annuloplasty ring and template
ATE387160T1 (en) * 2001-08-31 2008-03-15 Mitral Interventions DEVICE FOR HEART VALVE REPAIR
US20030050693A1 (en) * 2001-09-10 2003-03-13 Quijano Rodolfo C. Minimally invasive delivery system for annuloplasty rings
US7052487B2 (en) * 2001-10-26 2006-05-30 Cohn William E Method and apparatus for reducing mitral regurgitation
AUPR847301A0 (en) * 2001-10-26 2001-11-15 Cook Incorporated Endoluminal prostheses for curved lumens
US6824562B2 (en) 2002-05-08 2004-11-30 Cardiac Dimensions, Inc. Body lumen device anchor, device and assembly
US7635387B2 (en) 2001-11-01 2009-12-22 Cardiac Dimensions, Inc. Adjustable height focal tissue deflector
US6949122B2 (en) * 2001-11-01 2005-09-27 Cardiac Dimensions, Inc. Focused compression mitral valve device and method
US7311729B2 (en) * 2002-01-30 2007-12-25 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US6805710B2 (en) * 2001-11-13 2004-10-19 Edwards Lifesciences Corporation Mitral valve annuloplasty ring for molding left ventricle geometry
AU2002228753A1 (en) * 2001-12-04 2003-06-17 Edwards Lifesciences Corporation Minimally-invasive annuloplasty repair segment delivery template system
US6793673B2 (en) 2002-12-26 2004-09-21 Cardiac Dimensions, Inc. System and method to effect mitral valve annulus of a heart
US6976995B2 (en) 2002-01-30 2005-12-20 Cardiac Dimensions, Inc. Fixed length anchor and pull mitral valve device and method
US6908478B2 (en) 2001-12-05 2005-06-21 Cardiac Dimensions, Inc. Anchor and pull mitral valve device and method
US7179282B2 (en) * 2001-12-05 2007-02-20 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
DE10161543B4 (en) * 2001-12-11 2004-02-19 REITAN, Öyvind Implant for the treatment of heart valve insufficiency
US6764510B2 (en) 2002-01-09 2004-07-20 Myocor, Inc. Devices and methods for heart valve treatment
US6960229B2 (en) * 2002-01-30 2005-11-01 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US7125420B2 (en) * 2002-02-05 2006-10-24 Viacor, Inc. Method and apparatus for improving mitral valve function
US7004958B2 (en) * 2002-03-06 2006-02-28 Cardiac Dimensions, Inc. Transvenous staples, assembly and method for mitral valve repair
US6797001B2 (en) 2002-03-11 2004-09-28 Cardiac Dimensions, Inc. Device, assembly and method for mitral valve repair
US7118595B2 (en) * 2002-03-18 2006-10-10 Medtronic, Inc. Flexible annuloplasty prosthesis and holder
US6719786B2 (en) * 2002-03-18 2004-04-13 Medtronic, Inc. Flexible annuloplasty prosthesis and holder
US6752828B2 (en) 2002-04-03 2004-06-22 Scimed Life Systems, Inc. Artificial valve
ES2318130T3 (en) 2002-05-08 2009-05-01 Cardiac Dimensions, Inc. DEVICE TO MODIFY THE FORM OF A MITRAL VALVE.
US7101395B2 (en) * 2002-06-12 2006-09-05 Mitral Interventions, Inc. Method and apparatus for tissue connection
US7753858B2 (en) 2002-06-13 2010-07-13 Guided Delivery Systems, Inc. Delivery devices and methods for heart valve repair
US20060122633A1 (en) 2002-06-13 2006-06-08 John To Methods and devices for termination
US9949829B2 (en) 2002-06-13 2018-04-24 Ancora Heart, Inc. Delivery devices and methods for heart valve repair
US8641727B2 (en) 2002-06-13 2014-02-04 Guided Delivery Systems, Inc. Devices and methods for heart valve repair
US7883538B2 (en) 2002-06-13 2011-02-08 Guided Delivery Systems Inc. Methods and devices for termination
US8287555B2 (en) 2003-02-06 2012-10-16 Guided Delivery Systems, Inc. Devices and methods for heart valve repair
US7753924B2 (en) 2003-09-04 2010-07-13 Guided Delivery Systems, Inc. Delivery devices and methods for heart valve repair
US7758637B2 (en) 2003-02-06 2010-07-20 Guided Delivery Systems, Inc. Delivery devices and methods for heart valve repair
US7753922B2 (en) 2003-09-04 2010-07-13 Guided Delivery Systems, Inc. Devices and methods for cardiac annulus stabilization and treatment
US7666193B2 (en) * 2002-06-13 2010-02-23 Guided Delivery Sytems, Inc. Delivery devices and methods for heart valve repair
EP1530441B1 (en) 2002-06-13 2017-08-02 Ancora Heart, Inc. Devices and methods for heart valve repair
US7608103B2 (en) * 2002-07-08 2009-10-27 Edwards Lifesciences Corporation Mitral valve annuloplasty ring having a posterior bow
JP2006501033A (en) * 2002-10-01 2006-01-12 アンプル メディカル, インコーポレイテッド Device, system and method for reshaping a heart valve annulus
US7087064B1 (en) 2002-10-15 2006-08-08 Advanced Cardiovascular Systems, Inc. Apparatuses and methods for heart valve repair
US7112219B2 (en) 2002-11-12 2006-09-26 Myocor, Inc. Devices and methods for heart valve treatment
US7335213B1 (en) * 2002-11-15 2008-02-26 Abbott Cardiovascular Systems Inc. Apparatus and methods for heart valve repair
US9149602B2 (en) 2005-04-22 2015-10-06 Advanced Cardiovascular Systems, Inc. Dual needle delivery system
US7404824B1 (en) 2002-11-15 2008-07-29 Advanced Cardiovascular Systems, Inc. Valve aptation assist device
US7485143B2 (en) 2002-11-15 2009-02-03 Abbott Cardiovascular Systems Inc. Apparatuses and methods for heart valve repair
US6945978B1 (en) * 2002-11-15 2005-09-20 Advanced Cardiovascular Systems, Inc. Heart valve catheter
US8187324B2 (en) 2002-11-15 2012-05-29 Advanced Cardiovascular Systems, Inc. Telescoping apparatus for delivering and adjusting a medical device in a vessel
US7981152B1 (en) 2004-12-10 2011-07-19 Advanced Cardiovascular Systems, Inc. Vascular delivery system for accessing and delivering devices into coronary sinus and other vascular sites
US7837729B2 (en) 2002-12-05 2010-11-23 Cardiac Dimensions, Inc. Percutaneous mitral valve annuloplasty delivery system
US7316708B2 (en) * 2002-12-05 2008-01-08 Cardiac Dimensions, Inc. Medical device delivery system
US6945957B2 (en) 2002-12-30 2005-09-20 Scimed Life Systems, Inc. Valve treatment catheter and methods
US7314485B2 (en) 2003-02-03 2008-01-01 Cardiac Dimensions, Inc. Mitral valve device using conditioned shape memory alloy
US20040220654A1 (en) 2003-05-02 2004-11-04 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US20060136053A1 (en) * 2003-05-27 2006-06-22 Rourke Jonathan M Method and apparatus for improving mitral valve function
US7351259B2 (en) * 2003-06-05 2008-04-01 Cardiac Dimensions, Inc. Device, system and method to affect the mitral valve annulus of a heart
US7887582B2 (en) 2003-06-05 2011-02-15 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
CA2533556A1 (en) * 2003-07-23 2005-02-03 Viacor, Inc. Method and apparatus for improving mitral valve function
US7998112B2 (en) 2003-09-30 2011-08-16 Abbott Cardiovascular Systems Inc. Deflectable catheter assembly and method of making same
US8128681B2 (en) 2003-12-19 2012-03-06 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US7854761B2 (en) 2003-12-19 2010-12-21 Boston Scientific Scimed, Inc. Methods for venous valve replacement with a catheter
US9526616B2 (en) 2003-12-19 2016-12-27 Cardiac Dimensions Pty. Ltd. Mitral valve annuloplasty device with twisted anchor
US7837728B2 (en) 2003-12-19 2010-11-23 Cardiac Dimensions, Inc. Reduced length tissue shaping device
US7794496B2 (en) 2003-12-19 2010-09-14 Cardiac Dimensions, Inc. Tissue shaping device with integral connector and crimp
US7329279B2 (en) 2003-12-23 2008-02-12 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US20120041550A1 (en) 2003-12-23 2012-02-16 Sadra Medical, Inc. Methods and Apparatus for Endovascular Heart Valve Replacement Comprising Tissue Grasping Elements
US7445631B2 (en) 2003-12-23 2008-11-04 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US7780725B2 (en) 2004-06-16 2010-08-24 Sadra Medical, Inc. Everting heart valve
US20050137694A1 (en) 2003-12-23 2005-06-23 Haug Ulrich R. Methods and apparatus for endovascularly replacing a patient's heart valve
US9005273B2 (en) 2003-12-23 2015-04-14 Sadra Medical, Inc. Assessing the location and performance of replacement heart valves
US8828078B2 (en) 2003-12-23 2014-09-09 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US7959666B2 (en) 2003-12-23 2011-06-14 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US7824443B2 (en) * 2003-12-23 2010-11-02 Sadra Medical, Inc. Medical implant delivery and deployment tool
US9526609B2 (en) 2003-12-23 2016-12-27 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US8840663B2 (en) 2003-12-23 2014-09-23 Sadra Medical, Inc. Repositionable heart valve method
US8343213B2 (en) 2003-12-23 2013-01-01 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US8579962B2 (en) 2003-12-23 2013-11-12 Sadra Medical, Inc. Methods and apparatus for performing valvuloplasty
US7381219B2 (en) 2003-12-23 2008-06-03 Sadra Medical, Inc. Low profile heart valve and delivery system
US7824442B2 (en) 2003-12-23 2010-11-02 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US20050137687A1 (en) 2003-12-23 2005-06-23 Sadra Medical Heart valve anchor and method
US11278398B2 (en) 2003-12-23 2022-03-22 Boston Scientific Scimed, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US8182528B2 (en) 2003-12-23 2012-05-22 Sadra Medical, Inc. Locking heart valve anchor
EP2526895B1 (en) 2003-12-23 2014-01-29 Sadra Medical, Inc. Repositionable heart valve
US8603160B2 (en) 2003-12-23 2013-12-10 Sadra Medical, Inc. Method of using a retrievable heart valve anchor with a sheath
US7988724B2 (en) 2003-12-23 2011-08-02 Sadra Medical, Inc. Systems and methods for delivering a medical implant
US7748389B2 (en) 2003-12-23 2010-07-06 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US8287584B2 (en) * 2005-11-14 2012-10-16 Sadra Medical, Inc. Medical implant deployment tool
US8206439B2 (en) * 2004-02-23 2012-06-26 International Heart Institute Of Montana Foundation Internal prosthesis for reconstruction of cardiac geometry
CN101683291A (en) 2004-02-27 2010-03-31 奥尔特克斯公司 Prosthetic heart valve delivery systems and methods
JP2007535342A (en) 2004-03-11 2007-12-06 パーキュテイニアス カルディオバスキュラー ソリューションズ ピー・ティー・ワイ リミテッド Percutaneous prosthetic heart valve
US7452376B2 (en) * 2004-05-14 2008-11-18 St. Jude Medical, Inc. Flexible, non-planar annuloplasty rings
US8052748B2 (en) * 2004-05-14 2011-11-08 St. Jude Medical, Inc. Systems and methods for holding annuloplasty rings
US7938856B2 (en) * 2004-05-14 2011-05-10 St. Jude Medical, Inc. Heart valve annuloplasty prosthesis sewing cuffs and methods of making same
US20050278022A1 (en) * 2004-06-14 2005-12-15 St. Jude Medical, Inc. Annuloplasty prostheses with improved anchoring structures, and related methods
US7713298B2 (en) * 2004-06-29 2010-05-11 Micardia Corporation Methods for treating cardiac valves with adjustable implants
US20080183285A1 (en) * 2004-06-29 2008-07-31 Micardia Corporation Adjustable cardiac valve implant with selective dimensional adjustment
US20060015178A1 (en) * 2004-07-15 2006-01-19 Shahram Moaddeb Implants and methods for reshaping heart valves
US8236029B2 (en) 2004-08-11 2012-08-07 Nlt Spine Ltd. Devices for introduction into a body via a substantially straight conduit to for a predefined curved configuration, and methods employing such devices
US7566343B2 (en) 2004-09-02 2009-07-28 Boston Scientific Scimed, Inc. Cardiac valve, system, and method
US7704277B2 (en) 2004-09-14 2010-04-27 Edwards Lifesciences Ag Device and method for treatment of heart valve regurgitation
AU2006206254B2 (en) 2005-01-20 2012-02-09 Cardiac Dimensions Pty. Ltd. Tissue shaping device
DE102005003632A1 (en) 2005-01-20 2006-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Catheter for the transvascular implantation of heart valve prostheses
CN101495049B (en) 2005-01-21 2010-12-15 梅约医学教育与研究基金会 Thorascopic heart valve repair method and apparatus
US20060173490A1 (en) 2005-02-01 2006-08-03 Boston Scientific Scimed, Inc. Filter system and method
US7854755B2 (en) 2005-02-01 2010-12-21 Boston Scientific Scimed, Inc. Vascular catheter, system, and method
US7878966B2 (en) 2005-02-04 2011-02-01 Boston Scientific Scimed, Inc. Ventricular assist and support device
US7780722B2 (en) 2005-02-07 2010-08-24 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US7670368B2 (en) 2005-02-07 2010-03-02 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US7867274B2 (en) 2005-02-23 2011-01-11 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US8608797B2 (en) 2005-03-17 2013-12-17 Valtech Cardio Ltd. Mitral valve treatment techniques
US7842085B2 (en) * 2005-03-23 2010-11-30 Vaso Adzich Annuloplasty ring and holder combination
US7575595B2 (en) 2005-03-23 2009-08-18 Edwards Lifesciences Corporation Annuloplasty ring and holder combination
US7722666B2 (en) 2005-04-15 2010-05-25 Boston Scientific Scimed, Inc. Valve apparatus, system and method
SE531468C2 (en) 2005-04-21 2009-04-14 Edwards Lifesciences Ag An apparatus for controlling blood flow
US7962208B2 (en) 2005-04-25 2011-06-14 Cardiac Pacemakers, Inc. Method and apparatus for pacing during revascularization
US8012198B2 (en) 2005-06-10 2011-09-06 Boston Scientific Scimed, Inc. Venous valve, system, and method
US8685083B2 (en) 2005-06-27 2014-04-01 Edwards Lifesciences Corporation Apparatus, system, and method for treatment of posterior leaflet prolapse
US8951285B2 (en) 2005-07-05 2015-02-10 Mitralign, Inc. Tissue anchor, anchoring system and methods of using the same
ATE442108T1 (en) * 2005-07-15 2009-09-15 Cleveland Clinic Foundation DEVICE FOR REMODELING A HEART VALVE RING
US20070055368A1 (en) * 2005-09-07 2007-03-08 Richard Rhee Slotted annuloplasty ring
US7712606B2 (en) 2005-09-13 2010-05-11 Sadra Medical, Inc. Two-part package for medical implant
WO2007033360A2 (en) * 2005-09-14 2007-03-22 Micardia Corporation Left atrial balloon catheter
US7569071B2 (en) 2005-09-21 2009-08-04 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
WO2007035882A2 (en) * 2005-09-21 2007-03-29 Genesee Biomedical, Inc. Annuloplasty ring holder
US7695510B2 (en) * 2005-10-11 2010-04-13 Medtronic Vascular, Inc. Annuloplasty device having shape-adjusting tension filaments
WO2007064908A2 (en) * 2005-11-30 2007-06-07 The Board Of Trustees Of The Leland Stanford Junior University A system to prevent airway obstruction
EP1959866B1 (en) 2005-12-15 2019-03-06 Georgia Tech Research Corporation Papillary muscle position control devices and systems
EP1968492A2 (en) 2005-12-15 2008-09-17 Georgia Technology Research Corporation Systems and methods to control the dimension of a heart valve
CA2668988A1 (en) 2005-12-15 2007-09-07 Georgia Tech Research Corporation Systems and methods for enabling heart valve replacement
US20070213813A1 (en) 2005-12-22 2007-09-13 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US7799038B2 (en) 2006-01-20 2010-09-21 Boston Scientific Scimed, Inc. Translumenal apparatus, system, and method
US8403981B2 (en) 2006-02-27 2013-03-26 CardiacMC, Inc. Methods and devices for delivery of prosthetic heart valves and other prosthetics
US8147541B2 (en) 2006-02-27 2012-04-03 Aortx, Inc. Methods and devices for delivery of prosthetic heart valves and other prosthetics
US7503932B2 (en) 2006-04-11 2009-03-17 Cardiac Dimensions, Inc. Mitral valve annuloplasty device with vena cava anchor
US20070244556A1 (en) * 2006-04-12 2007-10-18 Medtronic Vascular, Inc. Annuloplasty Device Having a Helical Anchor and Methods for its Use
US7699892B2 (en) 2006-04-12 2010-04-20 Medtronic Vascular, Inc. Minimally invasive procedure for implanting an annuloplasty device
EP2029053B1 (en) 2006-05-15 2011-02-23 Edwards Lifesciences AG A system for altering the geometry of the heart
US8932348B2 (en) 2006-05-18 2015-01-13 Edwards Lifesciences Corporation Device and method for improving heart valve function
US8585594B2 (en) 2006-05-24 2013-11-19 Phoenix Biomedical, Inc. Methods of assessing inner surfaces of body lumens or organs
EP2032080B1 (en) 2006-06-01 2017-05-03 Edwards Lifesciences Corporation Prosthetic insert for improving heart valve function
US8376865B2 (en) 2006-06-20 2013-02-19 Cardiacmd, Inc. Torque shaft and torque shaft drive
CA2657442A1 (en) 2006-06-20 2007-12-27 Aortx, Inc. Prosthetic heart valves, support structures and systems and methods for implanting the same
CA2657446A1 (en) 2006-06-21 2007-12-27 Aortx, Inc. Prosthetic valve implantation systems
US11285005B2 (en) 2006-07-17 2022-03-29 Cardiac Dimensions Pty. Ltd. Mitral valve annuloplasty device with twisted anchor
US20080058924A1 (en) * 2006-09-01 2008-03-06 Aaron Ingle Saddle-shaped annuloplasty ring
US7879087B2 (en) 2006-10-06 2011-02-01 Edwards Lifesciences Corporation Mitral and tricuspid annuloplasty rings
JP2010511469A (en) * 2006-12-05 2010-04-15 バルテック カーディオ,リミティド Segmented ring placement
US11259924B2 (en) 2006-12-05 2022-03-01 Valtech Cardio Ltd. Implantation of repair devices in the heart
US9974653B2 (en) 2006-12-05 2018-05-22 Valtech Cardio, Ltd. Implantation of repair devices in the heart
WO2008091493A1 (en) 2007-01-08 2008-07-31 California Institute Of Technology In-situ formation of a valve
EP2109417B1 (en) 2007-02-05 2013-11-06 Boston Scientific Limited Percutaneous valve and delivery system
US20090157176A1 (en) 2007-02-09 2009-06-18 Alain Carpentier Annuloplasty rings for correcting degenerative valvular diseases
US11660190B2 (en) 2007-03-13 2023-05-30 Edwards Lifesciences Corporation Tissue anchors, systems and methods, and devices
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US8529620B2 (en) 2007-05-01 2013-09-10 Ottavio Alfieri Inwardly-bowed tricuspid annuloplasty ring
US8828079B2 (en) 2007-07-26 2014-09-09 Boston Scientific Scimed, Inc. Circulatory valve, system and method
CA2698388C (en) 2007-09-07 2015-11-24 Edwards Lifesciences Corporation Active holder for annuloplasty ring delivery
DE102007043831B4 (en) * 2007-09-13 2009-07-02 Lozonschi, Lucian, Madison catheter
DE102007043830A1 (en) 2007-09-13 2009-04-02 Lozonschi, Lucian, Madison Heart valve stent
US20090081606A1 (en) * 2007-09-26 2009-03-26 Scarazzo Robert M Dental matrix band holder and procedure
CN101902975B (en) 2007-10-18 2014-06-04 尼奥绰德有限公司 Minimally invasive repair of a valve leaflet in a beating heart
WO2009064806A1 (en) * 2007-11-12 2009-05-22 Endologix, Inc. Method and agent for in-situ stabilization of vascular tissue
US9131928B2 (en) * 2007-12-20 2015-09-15 Mor Research Applications Ltd. Elongated body for deployment in a heart
US7892276B2 (en) 2007-12-21 2011-02-22 Boston Scientific Scimed, Inc. Valve with delayed leaflet deployment
CA2713934C (en) 2008-02-06 2015-10-20 Guided Delivery Systems, Inc. Multi-window guide tunnel
EP2259758B1 (en) * 2008-02-11 2011-11-16 William Cook Europe APS Introducer for endovascular grafts and stents
US9044318B2 (en) 2008-02-26 2015-06-02 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis
ES2903231T3 (en) 2008-02-26 2022-03-31 Jenavalve Tech Inc Stent for positioning and anchoring a valve prosthesis at an implantation site in a patient's heart
US8382829B1 (en) 2008-03-10 2013-02-26 Mitralign, Inc. Method to reduce mitral regurgitation by cinching the commissure of the mitral valve
FR2930137B1 (en) 2008-04-18 2010-04-23 Corevalve Inc TREATMENT EQUIPMENT FOR A CARDIAC VALVE, IN PARTICULAR A MITRAL VALVE.
US7972370B2 (en) * 2008-04-24 2011-07-05 Medtronic Vascular, Inc. Stent graft system and method of use
US20090276040A1 (en) 2008-05-01 2009-11-05 Edwards Lifesciences Corporation Device and method for replacing mitral valve
US8152844B2 (en) 2008-05-09 2012-04-10 Edwards Lifesciences Corporation Quick-release annuloplasty ring holder
US20090287303A1 (en) 2008-05-13 2009-11-19 Edwards Lifesciences Corporation Physiologically harmonized tricuspid annuloplasty ring
EP2296744B1 (en) 2008-06-16 2019-07-31 Valtech Cardio, Ltd. Annuloplasty devices
US8006594B2 (en) 2008-08-11 2011-08-30 Cardiac Dimensions, Inc. Catheter cutting tool
WO2010031082A2 (en) * 2008-09-15 2010-03-18 Arbor Surgical Technologies, Inc. Tools, systems, and methods for remodeling tissue
US8287591B2 (en) * 2008-09-19 2012-10-16 Edwards Lifesciences Corporation Transformable annuloplasty ring configured to receive a percutaneous prosthetic heart valve implantation
US9314335B2 (en) 2008-09-19 2016-04-19 Edwards Lifesciences Corporation Prosthetic heart valve configured to receive a percutaneous prosthetic heart valve implantation
BRPI0920406A2 (en) 2008-10-10 2019-09-24 Guided Delivery Systems Inc termination devices and related methods.
KR20110084912A (en) 2008-10-10 2011-07-26 가이디드 딜리버리 시스템즈 인코퍼레이티드 Tether tensioning devices and related methods
JP5607639B2 (en) 2008-10-10 2014-10-15 サドラ メディカル インコーポレイテッド Medical devices and systems
CN102438546B (en) 2008-11-21 2015-07-15 经皮心血管解决方案公司 Heart valve prosthesis
US8226654B2 (en) 2008-12-04 2012-07-24 Aeton Medical Llc Trocar-tipped drill bit
US8808368B2 (en) 2008-12-22 2014-08-19 Valtech Cardio, Ltd. Implantation of repair chords in the heart
US8147542B2 (en) 2008-12-22 2012-04-03 Valtech Cardio, Ltd. Adjustable repair chords and spool mechanism therefor
US8926697B2 (en) 2011-06-23 2015-01-06 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
US9011530B2 (en) 2008-12-22 2015-04-21 Valtech Cardio, Ltd. Partially-adjustable annuloplasty structure
EP2379008B1 (en) 2008-12-22 2021-02-17 Valtech Cardio, Ltd. Adjustable annuloplasty devices
US8911494B2 (en) 2009-05-04 2014-12-16 Valtech Cardio, Ltd. Deployment techniques for annuloplasty ring
US8940044B2 (en) 2011-06-23 2015-01-27 Valtech Cardio, Ltd. Closure element for use with an annuloplasty structure
US10517719B2 (en) 2008-12-22 2019-12-31 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US8715342B2 (en) 2009-05-07 2014-05-06 Valtech Cardio, Ltd. Annuloplasty ring with intra-ring anchoring
US8241351B2 (en) 2008-12-22 2012-08-14 Valtech Cardio, Ltd. Adjustable partial annuloplasty ring and mechanism therefor
WO2010085456A1 (en) 2009-01-20 2010-07-29 Guided Delivery Systems Inc. Anchor deployment devices and related methods
WO2010091653A1 (en) * 2009-02-11 2010-08-19 Georg Lutter Catheter
US8353956B2 (en) 2009-02-17 2013-01-15 Valtech Cardio, Ltd. Actively-engageable movement-restriction mechanism for use with an annuloplasty structure
US9968452B2 (en) 2009-05-04 2018-05-15 Valtech Cardio, Ltd. Annuloplasty ring delivery cathethers
US8523881B2 (en) 2010-07-26 2013-09-03 Valtech Cardio, Ltd. Multiple anchor delivery tool
US8449466B2 (en) 2009-05-28 2013-05-28 Edwards Lifesciences Corporation System and method for locating medical devices in vivo using ultrasound Doppler mode
WO2011008538A1 (en) 2009-06-29 2011-01-20 Med Institute, Inc. Slotted pusher rod for flexible delivery system
US10123821B2 (en) * 2009-09-10 2018-11-13 Atricure, Inc. Scope and magnetic introducer systems and methods
DE102009042465A1 (en) * 2009-09-23 2011-03-31 Fehling Instruments Gmbh & Co. Kg Instrument for the surgical treatment of aortic valve defects
US20110077733A1 (en) * 2009-09-25 2011-03-31 Edwards Lifesciences Corporation Leaflet contacting apparatus and method
US9011520B2 (en) 2009-10-29 2015-04-21 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US8940042B2 (en) 2009-10-29 2015-01-27 Valtech Cardio, Ltd. Apparatus for guide-wire based advancement of a rotation assembly
US9180007B2 (en) 2009-10-29 2015-11-10 Valtech Cardio, Ltd. Apparatus and method for guide-wire based advancement of an adjustable implant
US10098737B2 (en) 2009-10-29 2018-10-16 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US8277502B2 (en) 2009-10-29 2012-10-02 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
WO2011067770A1 (en) 2009-12-02 2011-06-09 Valtech Cardio, Ltd. Delivery tool for implantation of spool assembly coupled to a helical anchor
US8870950B2 (en) 2009-12-08 2014-10-28 Mitral Tech Ltd. Rotation-based anchoring of an implant
EP2509538B1 (en) 2009-12-08 2017-09-20 Avalon Medical Ltd. Device and system for transcatheter mitral valve replacement
US20110160849A1 (en) * 2009-12-22 2011-06-30 Edwards Lifesciences Corporation Bimodal tricuspid annuloplasty ring
US8961596B2 (en) * 2010-01-22 2015-02-24 4Tech Inc. Method and apparatus for tricuspid valve repair using tension
US8475525B2 (en) 2010-01-22 2013-07-02 4Tech Inc. Tricuspid valve repair using tension
US9307980B2 (en) 2010-01-22 2016-04-12 4Tech Inc. Tricuspid valve repair using tension
US10058323B2 (en) 2010-01-22 2018-08-28 4 Tech Inc. Tricuspid valve repair using tension
US8449608B2 (en) 2010-01-22 2013-05-28 Edwards Lifesciences Corporation Tricuspid ring
US9107749B2 (en) 2010-02-03 2015-08-18 Edwards Lifesciences Corporation Methods for treating a heart
US10433956B2 (en) * 2010-02-24 2019-10-08 Medtronic Ventor Technologies Ltd. Mitral prosthesis and methods for implantation
US8357195B2 (en) 2010-04-15 2013-01-22 Medtronic, Inc. Catheter based annuloplasty system and method
US9795482B2 (en) 2010-04-27 2017-10-24 Medtronic, Inc. Prosthetic heart valve devices and methods of valve repair
US8579964B2 (en) 2010-05-05 2013-11-12 Neovasc Inc. Transcatheter mitral valve prosthesis
US8790394B2 (en) 2010-05-24 2014-07-29 Valtech Cardio, Ltd. Adjustable artificial chordeae tendineae with suture loops
JP2013526388A (en) 2010-05-25 2013-06-24 イエナバルブ テクノロジー インク Artificial heart valve, and transcatheter delivery prosthesis comprising an artificial heart valve and a stent
EP2575685B1 (en) 2010-06-07 2019-02-13 Valtech Cardio, Ltd. Apparatus for guide-wire based advancement of a rotation assembly
US11653910B2 (en) 2010-07-21 2023-05-23 Cardiovalve Ltd. Helical anchor implantation
WO2012027500A2 (en) 2010-08-24 2012-03-01 Edwards Lifesciences Corporation Flexible annuloplasty ring with select control points
BR122019025550B1 (en) 2010-08-31 2020-09-29 Edwards Lifesciences Corporation PROSTHETIC TRICUSPID ANULOPLASTY RING
US9861350B2 (en) 2010-09-03 2018-01-09 Ancora Heart, Inc. Devices and methods for anchoring tissue
EP2613737B2 (en) 2010-09-10 2023-03-15 Symetis SA Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device
US9095466B2 (en) 2010-11-16 2015-08-04 W. L. Gore & Associates, Inc. Apposition fiber for use in endoluminal deployment of expandable devices in tortuous anatomies
US8932350B2 (en) 2010-11-30 2015-01-13 Edwards Lifesciences Corporation Reduced dehiscence annuloplasty ring
US9044221B2 (en) 2010-12-29 2015-06-02 Neochord, Inc. Exchangeable system for minimally invasive beating heart repair of heart valve leaflets
US8845717B2 (en) 2011-01-28 2014-09-30 Middle Park Medical, Inc. Coaptation enhancement implant, system, and method
US8888843B2 (en) 2011-01-28 2014-11-18 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valve regurgitation
US9445898B2 (en) 2011-03-01 2016-09-20 Medtronic Ventor Technologies Ltd. Mitral valve repair
US8454656B2 (en) 2011-03-01 2013-06-04 Medtronic Ventor Technologies Ltd. Self-suturing anchors
EP4119095A1 (en) 2011-03-21 2023-01-18 Cephea Valve Technologies, Inc. Disk-based valve apparatus
US9554897B2 (en) 2011-04-28 2017-01-31 Neovasc Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
US9308087B2 (en) 2011-04-28 2016-04-12 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
EP2520251A1 (en) 2011-05-05 2012-11-07 Symetis SA Method and Apparatus for Compressing Stent-Valves
EP2713894B1 (en) 2011-06-01 2021-01-20 NeoChord, Inc. System for minimally invasive repair of heart valve leaflets
US9918840B2 (en) 2011-06-23 2018-03-20 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
US10792152B2 (en) 2011-06-23 2020-10-06 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
CA2835893C (en) 2011-07-12 2019-03-19 Boston Scientific Scimed, Inc. Coupling system for medical devices
WO2013011502A2 (en) 2011-07-21 2013-01-24 4Tech Inc. Method and apparatus for tricuspid valve repair using tension
US9668859B2 (en) 2011-08-05 2017-06-06 California Institute Of Technology Percutaneous heart valve delivery systems
CA3040390C (en) 2011-08-11 2022-03-15 Tendyne Holdings, Inc. Improvements for prosthetic valves and related inventions
US8920493B2 (en) 2011-09-16 2014-12-30 St. Jude Medical, Cardiology Division, Inc. Systems and methods for holding annuloplasty rings
US8858623B2 (en) 2011-11-04 2014-10-14 Valtech Cardio, Ltd. Implant having multiple rotational assemblies
EP3656434B1 (en) 2011-11-08 2021-10-20 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
US9131926B2 (en) 2011-11-10 2015-09-15 Boston Scientific Scimed, Inc. Direct connect flush system
US8940014B2 (en) 2011-11-15 2015-01-27 Boston Scientific Scimed, Inc. Bond between components of a medical device
US8951243B2 (en) 2011-12-03 2015-02-10 Boston Scientific Scimed, Inc. Medical device handle
US9827092B2 (en) 2011-12-16 2017-11-28 Tendyne Holdings, Inc. Tethers for prosthetic mitral valve
US9277993B2 (en) 2011-12-20 2016-03-08 Boston Scientific Scimed, Inc. Medical device delivery systems
US9510945B2 (en) 2011-12-20 2016-12-06 Boston Scientific Scimed Inc. Medical device handle
WO2013112547A1 (en) 2012-01-25 2013-08-01 Boston Scientific Scimed, Inc. Valve assembly with a bioabsorbable gasket and a replaceable valve implant
WO2013163762A1 (en) 2012-05-02 2013-11-07 The Royal Institution For The Advancement Of Learning/Mcgill University Device for soft tissue support and method for anchoring
US9345573B2 (en) 2012-05-30 2016-05-24 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
US8961594B2 (en) 2012-05-31 2015-02-24 4Tech Inc. Heart valve repair system
US9883941B2 (en) 2012-06-19 2018-02-06 Boston Scientific Scimed, Inc. Replacement heart valve
WO2014022124A1 (en) 2012-07-28 2014-02-06 Tendyne Holdings, Inc. Improved multi-component designs for heart valve retrieval device, sealing structures and stent assembly
WO2014021905A1 (en) 2012-07-30 2014-02-06 Tendyne Holdings, Inc. Improved delivery systems and methods for transcatheter prosthetic valves
WO2014052818A1 (en) 2012-09-29 2014-04-03 Mitralign, Inc. Plication lock delivery system and method of use thereof
US10376266B2 (en) 2012-10-23 2019-08-13 Valtech Cardio, Ltd. Percutaneous tissue anchor techniques
WO2014064694A2 (en) 2012-10-23 2014-05-01 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
US9730793B2 (en) 2012-12-06 2017-08-15 Valtech Cardio, Ltd. Techniques for guide-wire based advancement of a tool
WO2014105760A1 (en) 2012-12-31 2014-07-03 Edwards Lifesciences Corporation Post-implant expandable surgical heart valve configurations
US10543085B2 (en) 2012-12-31 2020-01-28 Edwards Lifesciences Corporation One-piece heart valve stents adapted for post-implant expansion
CN105007832B (en) 2013-01-09 2018-01-23 4科技有限公司 Organize ancora equipment
EP2948103B1 (en) 2013-01-24 2022-12-07 Cardiovalve Ltd Ventricularly-anchored prosthetic valves
EP2961351B1 (en) 2013-02-26 2018-11-28 Mitralign, Inc. Devices for percutaneous tricuspid valve repair
US10449333B2 (en) 2013-03-14 2019-10-22 Valtech Cardio, Ltd. Guidewire feeder
US9687346B2 (en) 2013-03-14 2017-06-27 Edwards Lifesciences Corporation Multi-stranded heat set annuloplasty rings
WO2014141239A1 (en) 2013-03-14 2014-09-18 4Tech Inc. Stent with tether interface
US9724195B2 (en) 2013-03-15 2017-08-08 Mitralign, Inc. Translation catheters and systems
US9744037B2 (en) 2013-03-15 2017-08-29 California Institute Of Technology Handle mechanism and functionality for repositioning and retrieval of transcatheter heart valves
US9486306B2 (en) 2013-04-02 2016-11-08 Tendyne Holdings, Inc. Inflatable annular sealing device for prosthetic mitral valve
US10463489B2 (en) 2013-04-02 2019-11-05 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US11224510B2 (en) 2013-04-02 2022-01-18 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US10478293B2 (en) 2013-04-04 2019-11-19 Tendyne Holdings, Inc. Retrieval and repositioning system for prosthetic heart valve
US9572665B2 (en) 2013-04-04 2017-02-21 Neovasc Tiara Inc. Methods and apparatus for delivering a prosthetic valve to a beating heart
WO2014186323A1 (en) * 2013-05-13 2014-11-20 The Johns Hopkins University Delivery system to deploy pacing or defibrillation leads in the vascular system
US9610159B2 (en) 2013-05-30 2017-04-04 Tendyne Holdings, Inc. Structural members for prosthetic mitral valves
CN105658178B (en) 2013-06-25 2018-05-08 坦迪尼控股股份有限公司 Feature is complied with thrombus management and structure for prosthetic heart valve
US9561103B2 (en) 2013-07-17 2017-02-07 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
CA2919379C (en) 2013-08-01 2021-03-30 Tendyne Holdings, Inc. Epicardial anchor devices and methods
JP6563394B2 (en) 2013-08-30 2019-08-21 イェーナヴァルヴ テクノロジー インコーポレイテッド Radially foldable frame for an artificial valve and method for manufacturing the frame
US10070857B2 (en) 2013-08-31 2018-09-11 Mitralign, Inc. Devices and methods for locating and implanting tissue anchors at mitral valve commissure
WO2015058039A1 (en) 2013-10-17 2015-04-23 Robert Vidlund Apparatus and methods for alignment and deployment of intracardiac devices
US10299793B2 (en) 2013-10-23 2019-05-28 Valtech Cardio, Ltd. Anchor magazine
US10166098B2 (en) 2013-10-25 2019-01-01 Middle Peak Medical, Inc. Systems and methods for transcatheter treatment of valve regurgitation
JP6554094B2 (en) 2013-10-28 2019-07-31 テンダイン ホールディングス,インコーポレイテッド Prosthetic heart valve and system and method for delivering an artificial heart valve
US9526611B2 (en) 2013-10-29 2016-12-27 Tendyne Holdings, Inc. Apparatus and methods for delivery of transcatheter prosthetic valves
US10022114B2 (en) 2013-10-30 2018-07-17 4Tech Inc. Percutaneous tether locking
US10039643B2 (en) 2013-10-30 2018-08-07 4Tech Inc. Multiple anchoring-point tension system
US10052095B2 (en) 2013-10-30 2018-08-21 4Tech Inc. Multiple anchoring-point tension system
US9610162B2 (en) 2013-12-26 2017-04-04 Valtech Cardio, Ltd. Implantation of flexible implant
WO2015120122A2 (en) 2014-02-05 2015-08-13 Robert Vidlund Apparatus and methods for transfemoral delivery of prosthetic mitral valve
US9986993B2 (en) 2014-02-11 2018-06-05 Tendyne Holdings, Inc. Adjustable tether and epicardial pad system for prosthetic heart valve
CA2937566C (en) 2014-03-10 2023-09-05 Tendyne Holdings, Inc. Devices and methods for positioning and monitoring tether load for prosthetic mitral valve
ES2908178T3 (en) 2014-06-18 2022-04-28 Polares Medical Inc Mitral valve implants for the treatment of valvular regurgitation
EP3157607B1 (en) 2014-06-19 2019-08-07 4Tech Inc. Cardiac tissue cinching
EP3160396B1 (en) 2014-06-24 2022-03-23 Polares Medical Inc. Systems for anchoring an implant
US10195030B2 (en) 2014-10-14 2019-02-05 Valtech Cardio, Ltd. Leaflet-restraining techniques
US9901445B2 (en) 2014-11-21 2018-02-27 Boston Scientific Scimed, Inc. Valve locking mechanism
CN106999178B (en) 2014-12-02 2019-12-24 4科技有限公司 Eccentric tissue anchor
EP3229736B1 (en) 2014-12-09 2024-01-10 Cephea Valve Technologies, Inc. Replacement cardiac valves and method of manufacture
JP6826035B2 (en) 2015-01-07 2021-02-03 テンダイン ホールディングス,インコーポレイテッド Artificial mitral valve, and devices and methods for its delivery
WO2016115375A1 (en) 2015-01-16 2016-07-21 Boston Scientific Scimed, Inc. Displacement based lock and release mechanism
US9861477B2 (en) 2015-01-26 2018-01-09 Boston Scientific Scimed Inc. Prosthetic heart valve square leaflet-leaflet stitch
WO2016125137A1 (en) 2015-02-02 2016-08-11 Endospan Ltd. Self-orienting endovascular delivery system
WO2016126524A1 (en) 2015-02-03 2016-08-11 Boston Scientific Scimed, Inc. Prosthetic heart valve having tubular seal
US9788942B2 (en) 2015-02-03 2017-10-17 Boston Scientific Scimed Inc. Prosthetic heart valve having tubular seal
AU2016215197B2 (en) 2015-02-05 2020-01-02 Tendyne Holdings Inc. Expandable epicardial pads and devices and methods for their delivery
EP3253333B1 (en) 2015-02-05 2024-04-03 Cardiovalve Ltd Prosthetic valve with axially-sliding frames
CA2978599C (en) 2015-03-05 2022-09-06 Ancora Heart, Inc. Devices and methods of visualizing and determining depth of penetration in cardiac tissue
US20160256269A1 (en) 2015-03-05 2016-09-08 Mitralign, Inc. Devices for treating paravalvular leakage and methods use thereof
US10426617B2 (en) 2015-03-06 2019-10-01 Boston Scientific Scimed, Inc. Low profile valve locking mechanism and commissure assembly
US10285809B2 (en) 2015-03-06 2019-05-14 Boston Scientific Scimed Inc. TAVI anchoring assist device
US10080652B2 (en) 2015-03-13 2018-09-25 Boston Scientific Scimed, Inc. Prosthetic heart valve having an improved tubular seal
EP4070763A1 (en) 2015-04-16 2022-10-12 Tendyne Holdings, Inc. Apparatus for retrieval of transcathter prosthetic valves
CN114515173A (en) 2015-04-30 2022-05-20 瓦尔泰克卡迪欧有限公司 Valvuloplasty techniques
US10709555B2 (en) 2015-05-01 2020-07-14 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
EP4074285A1 (en) 2015-05-12 2022-10-19 Ancora Heart, Inc. Device for releasing catheters from cardiac structures
EP3294220B1 (en) 2015-05-14 2023-12-06 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
AU2016262564B2 (en) 2015-05-14 2020-11-05 Cephea Valve Technologies, Inc. Replacement mitral valves
US10314707B2 (en) 2015-06-09 2019-06-11 Edwards Lifesciences, Llc Asymmetric mitral annuloplasty band
US10195392B2 (en) 2015-07-02 2019-02-05 Boston Scientific Scimed, Inc. Clip-on catheter
WO2017004369A1 (en) 2015-07-02 2017-01-05 Edwards Lifesciences Corporation Hybrid heart valves adapted for post-implant expansion
CR20170597A (en) 2015-07-02 2018-04-20 Edwards Lifesciences Corp INTEGRATED HYBRID HEART VALVES
US10335277B2 (en) 2015-07-02 2019-07-02 Boston Scientific Scimed Inc. Adjustable nosecone
US10136991B2 (en) 2015-08-12 2018-11-27 Boston Scientific Scimed Inc. Replacement heart valve implant
US10179041B2 (en) 2015-08-12 2019-01-15 Boston Scientific Scimed Icn. Pinless release mechanism
US10779940B2 (en) 2015-09-03 2020-09-22 Boston Scientific Scimed, Inc. Medical device handle
US10327894B2 (en) 2015-09-18 2019-06-25 Tendyne Holdings, Inc. Methods for delivery of prosthetic mitral valves
WO2017059406A1 (en) 2015-10-01 2017-04-06 Neochord, Inc. Ringless web for repair of heart valves
US9592121B1 (en) 2015-11-06 2017-03-14 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
AU2016362474B2 (en) 2015-12-03 2021-04-22 Tendyne Holdings, Inc. Frame features for prosthetic mitral valves
AU2016380259B2 (en) 2015-12-28 2020-10-22 Tendyne Holdings, Inc. Atrial pocket closures for prosthetic heart valves
WO2017117370A2 (en) 2015-12-30 2017-07-06 Mitralign, Inc. System and method for reducing tricuspid regurgitation
US10751182B2 (en) 2015-12-30 2020-08-25 Edwards Lifesciences Corporation System and method for reshaping right heart
DE202017007326U1 (en) 2016-01-29 2020-10-20 Neovasc Tiara Inc. Valve prosthesis to prevent flow obstruction
US10342660B2 (en) 2016-02-02 2019-07-09 Boston Scientific Inc. Tensioned sheathing aids
US10531866B2 (en) 2016-02-16 2020-01-14 Cardiovalve Ltd. Techniques for providing a replacement valve and transseptal communication
US10470877B2 (en) 2016-05-03 2019-11-12 Tendyne Holdings, Inc. Apparatus and methods for anterior valve leaflet management
US10583005B2 (en) 2016-05-13 2020-03-10 Boston Scientific Scimed, Inc. Medical device handle
EP3454795B1 (en) 2016-05-13 2023-01-11 JenaValve Technology, Inc. Heart valve prosthesis delivery system for delivery of heart valve prosthesis with introducer sheath and loading system
US10245136B2 (en) 2016-05-13 2019-04-02 Boston Scientific Scimed Inc. Containment vessel with implant sheathing guide
US10201416B2 (en) 2016-05-16 2019-02-12 Boston Scientific Scimed, Inc. Replacement heart valve implant with invertible leaflets
US10702274B2 (en) 2016-05-26 2020-07-07 Edwards Lifesciences Corporation Method and system for closing left atrial appendage
EP3468480B1 (en) 2016-06-13 2023-01-11 Tendyne Holdings, Inc. Sequential delivery of two-part prosthetic mitral valve
US11331187B2 (en) 2016-06-17 2022-05-17 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
EP3478224B1 (en) 2016-06-30 2022-11-02 Tendyne Holdings, Inc. Prosthetic heart valves and apparatus for delivery of same
GB201611910D0 (en) 2016-07-08 2016-08-24 Valtech Cardio Ltd Adjustable annuloplasty device with alternating peaks and troughs
EP3484411A1 (en) 2016-07-12 2019-05-22 Tendyne Holdings, Inc. Apparatus and methods for trans-septal retrieval of prosthetic heart valves
WO2018029680A1 (en) 2016-08-10 2018-02-15 Mitraltech Ltd. Prosthetic valve with concentric frames
US10722356B2 (en) 2016-11-03 2020-07-28 Edwards Lifesciences Corporation Prosthetic mitral valve holders
EP3541299A4 (en) 2016-11-18 2020-09-02 Ancora Heart, Inc. Myocardial implant load sharing device and methods to promote lv function
CN109996581B (en) 2016-11-21 2021-10-15 内奥瓦斯克迪亚拉公司 Methods and systems for rapid retrieval of transcatheter heart valve delivery systems
AU2018203053B2 (en) 2017-01-23 2020-03-05 Cephea Valve Technologies, Inc. Replacement mitral valves
CR20190381A (en) 2017-01-23 2019-09-27 Cephea Valve Tech Inc Replacement mitral valves
JP7094965B2 (en) 2017-01-27 2022-07-04 イエナバルブ テクノロジー インク Heart valve imitation
US10390953B2 (en) 2017-03-08 2019-08-27 Cardiac Dimensions Pty. Ltd. Methods and devices for reducing paravalvular leakage
US10653524B2 (en) 2017-03-13 2020-05-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
CN110913801B (en) 2017-03-13 2022-04-15 宝来瑞斯医疗有限公司 Coaptation assistance element for treating an adverse coaptation of a heart valve of a heart and system for delivering the same
US10478303B2 (en) 2017-03-13 2019-11-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
US10213306B2 (en) 2017-03-31 2019-02-26 Neochord, Inc. Minimally invasive heart valve repair in a beating heart
US11045627B2 (en) 2017-04-18 2021-06-29 Edwards Lifesciences Corporation Catheter system with linear actuation control mechanism
US10842619B2 (en) 2017-05-12 2020-11-24 Edwards Lifesciences Corporation Prosthetic heart valve docking assembly
EP3634311A1 (en) 2017-06-08 2020-04-15 Boston Scientific Scimed, Inc. Heart valve implant commissure support structure
WO2019014473A1 (en) 2017-07-13 2019-01-17 Tendyne Holdings, Inc. Prosthetic heart valves and apparatus and methods for delivery of same
WO2019028161A1 (en) 2017-08-01 2019-02-07 Boston Scientific Scimed, Inc. Medical implant locking mechanism
US10939996B2 (en) 2017-08-16 2021-03-09 Boston Scientific Scimed, Inc. Replacement heart valve commissure assembly
CN111263622A (en) 2017-08-25 2020-06-09 内奥瓦斯克迪亚拉公司 Sequentially deployed transcatheter mitral valve prosthesis
WO2019046099A1 (en) 2017-08-28 2019-03-07 Tendyne Holdings, Inc. Prosthetic heart valves with tether coupling features
US10835221B2 (en) 2017-11-02 2020-11-17 Valtech Cardio, Ltd. Implant-cinching devices and systems
US11135062B2 (en) 2017-11-20 2021-10-05 Valtech Cardio Ltd. Cinching of dilated heart muscle
WO2019144071A1 (en) 2018-01-19 2019-07-25 Boston Scientific Scimed, Inc. Medical device delivery system with feedback loop
EP3740160A2 (en) 2018-01-19 2020-11-25 Boston Scientific Scimed Inc. Inductance mode deployment sensors for transcatheter valve system
CN111655199B (en) 2018-01-22 2023-09-26 爱德华兹生命科学公司 Heart-shaped maintenance anchor
CN111655200B (en) 2018-01-24 2023-07-14 爱德华兹生命科学创新(以色列)有限公司 Contraction of annuloplasty structures
WO2019145941A1 (en) 2018-01-26 2019-08-01 Valtech Cardio, Ltd. Techniques for facilitating heart valve tethering and chord replacement
EP3749252A1 (en) 2018-02-07 2020-12-16 Boston Scientific Scimed, Inc. Medical device delivery system with alignment feature
EP3758651B1 (en) 2018-02-26 2022-12-07 Boston Scientific Scimed, Inc. Embedded radiopaque marker in adaptive seal
US11285003B2 (en) 2018-03-20 2022-03-29 Medtronic Vascular, Inc. Prolapse prevention device and methods of use thereof
US11026791B2 (en) 2018-03-20 2021-06-08 Medtronic Vascular, Inc. Flexible canopy valve repair systems and methods of use
EP3768176B1 (en) 2018-03-23 2024-03-20 NeoChord, Inc. Device for suture attachment for minimally invasive heart valve repair
US11253360B2 (en) 2018-05-09 2022-02-22 Neochord, Inc. Low profile tissue anchor for minimally invasive heart valve repair
US11173030B2 (en) 2018-05-09 2021-11-16 Neochord, Inc. Suture length adjustment for minimally invasive heart valve repair
CN112399836A (en) 2018-05-15 2021-02-23 波士顿科学国际有限公司 Replacement heart valve commissure assemblies
USD944398S1 (en) 2018-06-13 2022-02-22 Edwards Lifesciences Corporation Expanded heart valve stent
US11241310B2 (en) 2018-06-13 2022-02-08 Boston Scientific Scimed, Inc. Replacement heart valve delivery device
CA3106104A1 (en) 2018-07-12 2020-01-16 Valtech Cardio, Ltd. Annuloplasty systems and locking tools therefor
EP3829490A1 (en) 2018-07-30 2021-06-09 Edwards Lifesciences Corporation Minimally-invasive low strain annuloplasty ring
CN113194854A (en) 2018-09-07 2021-07-30 尼奥绰德有限公司 Suture attachment device for minimally invasive heart valve repair
JP6523540B1 (en) * 2018-09-21 2019-06-05 重之 尾崎 Suture guide
EP3876870B1 (en) 2018-11-08 2023-12-20 Neovasc Tiara Inc. Ventricular deployment of a transcatheter mitral valve prosthesis
WO2020123486A1 (en) 2018-12-10 2020-06-18 Boston Scientific Scimed, Inc. Medical device delivery system including a resistance member
JP7438236B2 (en) 2019-04-01 2024-02-26 ニオバスク ティアラ インコーポレイテッド Controllably deployable prosthetic valve
CA3136334A1 (en) 2019-04-10 2020-10-15 Neovasc Tiara Inc. Prosthetic valve with natural blood flow
US11376126B2 (en) 2019-04-16 2022-07-05 Neochord, Inc. Transverse helical cardiac anchor for minimally invasive heart valve repair
US11439504B2 (en) 2019-05-10 2022-09-13 Boston Scientific Scimed, Inc. Replacement heart valve with improved cusp washout and reduced loading
AU2020279750B2 (en) 2019-05-20 2023-07-13 Neovasc Tiara Inc. Introducer with hemostasis mechanism
US11628020B2 (en) 2019-06-19 2023-04-18 Virtuoso Surgical, Inc. Insertable robot for minimally invasive surgery
AU2020295566B2 (en) 2019-06-20 2023-07-20 Neovasc Tiara Inc. Low profile prosthetic mitral valve
WO2021011659A1 (en) 2019-07-15 2021-01-21 Ancora Heart, Inc. Devices and methods for tether cutting
CN114786621A (en) 2019-10-29 2022-07-22 爱德华兹生命科学创新(以色列)有限公司 Annuloplasty and tissue anchoring techniques
US11648110B2 (en) 2019-12-05 2023-05-16 Tendyne Holdings, Inc. Braided anchor for mitral valve
CN114641263A (en) 2019-12-16 2022-06-17 爱德华兹生命科学公司 Valve holder assembly with suture looping protection
US11648114B2 (en) 2019-12-20 2023-05-16 Tendyne Holdings, Inc. Distally loaded sheath and loading funnel
US11678980B2 (en) 2020-08-19 2023-06-20 Tendyne Holdings, Inc. Fully-transseptal apical pad with pulley for tensioning
JP2023554000A (en) 2020-12-14 2023-12-26 カーディアック・ディメンションズ・プロプライエタリー・リミテッド Modular preloaded medical implants and delivery systems
US11464634B2 (en) 2020-12-16 2022-10-11 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation with secondary anchors
US11759321B2 (en) 2021-06-25 2023-09-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation

Family Cites Families (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5876419A (en) * 1976-10-02 1999-03-02 Navius Corporation Stent and method for making a stent
US4164046A (en) * 1977-05-16 1979-08-14 Cooley Denton Valve prosthesis
US4679556A (en) 1986-04-16 1987-07-14 Shiley Inc. Releasable holder and method of use
CA1303298C (en) 1986-08-06 1992-06-16 Alain Carpentier Flexible cardiac valvular support prosthesis
US4850358A (en) 1986-11-14 1989-07-25 Millar Instruments, Inc. Method and assembly for introducing multiple devices into a biological vessel
US4917698A (en) 1988-12-22 1990-04-17 Baxter International Inc. Multi-segmented annuloplasty ring prosthesis
DE69010890T2 (en) 1989-02-13 1995-03-16 Baxter Int PARTLY FLEXIBLE RING-SHAPED PROSTHESIS FOR IMPLANTING AROUND THE HEART-VALVE RING.
US5041130A (en) 1989-07-31 1991-08-20 Baxter International Inc. Flexible annuloplasty ring and holder
US5290300A (en) 1989-07-31 1994-03-01 Baxter International Inc. Flexible suture guide and holder
US5350420A (en) 1989-07-31 1994-09-27 Baxter International Inc. Flexible annuloplasty ring and holder
US5064431A (en) 1991-01-16 1991-11-12 St. Jude Medical Incorporated Annuloplasty ring
US5370685A (en) * 1991-07-16 1994-12-06 Stanford Surgical Technologies, Inc. Endovascular aortic valve replacement
US5201880A (en) 1992-01-27 1993-04-13 Pioneering Technologies, Inc. Mitral and tricuspid annuloplasty rings
US5814097A (en) * 1992-12-03 1998-09-29 Heartport, Inc. Devices and methods for intracardiac procedures
US5972030A (en) 1993-02-22 1999-10-26 Heartport, Inc. Less-invasive devices and methods for treatment of cardiac valves
US5403305A (en) 1993-04-08 1995-04-04 Carbomedics, Inc. Mitral valve prosthesis rotator
US5360014A (en) 1993-11-10 1994-11-01 Carbomedics, Inc. Sizing apparatus for heart valve with supra annular suture ring
US5489296A (en) 1993-12-17 1996-02-06 Autogenics Heart valve measurement tool
US5449373A (en) * 1994-03-17 1995-09-12 Medinol Ltd. Articulated stent
US5476510A (en) 1994-04-21 1995-12-19 Medtronic, Inc. Holder for heart valve
US5531785A (en) 1994-05-06 1996-07-02 Autogenics, Inc. Prosthetic heart valve holder
US5560487A (en) 1994-07-29 1996-10-01 Carbomedics, Inc. Holder and packaging for bioprosthetic heart valve
US5776187A (en) * 1995-02-09 1998-07-07 St. Jude Medical, Inc. Combined holder tool and rotator for a prosthetic heart valve
US6093184A (en) 1995-03-23 2000-07-25 Sulzer Carbomedics Inc. Flexible valve rotator
US5807405A (en) * 1995-09-11 1998-09-15 St. Jude Medical, Inc. Apparatus for attachment of heart valve holder to heart valve prosthesis
WO1997016135A1 (en) * 1995-11-01 1997-05-09 St. Jude Medical, Inc. Bioresorbable annuloplasty prosthesis
EP0871417B1 (en) * 1995-12-01 2003-10-01 Medtronic, Inc. Annuloplasty prosthesis
US6613085B1 (en) * 1996-01-31 2003-09-02 St. Jude Medical, Inc. Prosthetic heart valve rotator tool
US5843177A (en) * 1996-05-02 1998-12-01 St. Jude Medical, Inc. Apparatus for attaching a handle to an annuloplasty ring implantation device
US5814101A (en) * 1996-09-25 1998-09-29 St. Jude Medical, Inc. Holder for heart valve prosthesis
US5716397A (en) * 1996-12-06 1998-02-10 Medtronic, Inc. Annuloplasty device with removable stiffening element
US5961539A (en) 1997-01-17 1999-10-05 Segmed, Inc. Method and apparatus for sizing, stabilizing and/or reducing the circumference of an anatomical structure
DE69819890T2 (en) * 1997-05-29 2004-08-26 Edwards Lifesciences Corp., Irvine ADJUSTABLE SURGICAL DEVICE HANDLE
US6250308B1 (en) 1998-06-16 2001-06-26 Cardiac Concepts, Inc. Mitral valve annuloplasty ring and method of implanting
US6159240A (en) * 1998-08-31 2000-12-12 Medtronic, Inc. Rigid annuloplasty device that becomes compliant after implantation
US6358276B1 (en) * 1998-09-30 2002-03-19 Impra, Inc. Fluid containing endoluminal stent
US6425916B1 (en) * 1999-02-10 2002-07-30 Michi E. Garrison Methods and devices for implanting cardiac valves
US6406492B1 (en) * 1999-04-08 2002-06-18 Sulzer Carbomedics Inc. Annuloplasty ring holder
US6287339B1 (en) * 1999-05-27 2001-09-11 Sulzer Carbomedics Inc. Sutureless heart valve prosthesis
SE514718C2 (en) 1999-06-29 2001-04-09 Jan Otto Solem Apparatus for treating defective closure of the mitral valve apparatus
US7192442B2 (en) * 1999-06-30 2007-03-20 Edwards Lifesciences Ag Method and device for treatment of mitral insufficiency
US6997951B2 (en) * 1999-06-30 2006-02-14 Edwards Lifesciences Ag Method and device for treatment of mitral insufficiency
US6416548B2 (en) * 1999-07-20 2002-07-09 Sulzer Carbomedics Inc. Antimicrobial annuloplasty ring having a biodegradable insert
US6350281B1 (en) * 1999-09-14 2002-02-26 Edwards Lifesciences Corp. Methods and apparatus for measuring valve annuluses during heart valve-replacement surgery
FR2799364B1 (en) 1999-10-12 2001-11-23 Jacques Seguin MINIMALLY INVASIVE CANCELING DEVICE
US6989028B2 (en) * 2000-01-31 2006-01-24 Edwards Lifesciences Ag Medical system and method for remodeling an extravascular tissue structure
US7296577B2 (en) * 2000-01-31 2007-11-20 Edwards Lifescience Ag Transluminal mitral annuloplasty with active anchoring
US6402781B1 (en) * 2000-01-31 2002-06-11 Mitralife Percutaneous mitral annuloplasty and cardiac reinforcement
US6569198B1 (en) * 2000-03-31 2003-05-27 Richard A. Wilson Mitral or tricuspid valve annuloplasty prosthetic device
US6368348B1 (en) * 2000-05-15 2002-04-09 Shlomo Gabbay Annuloplasty prosthesis for supporting an annulus of a heart valve
US6419696B1 (en) * 2000-07-06 2002-07-16 Paul A. Spence Annuloplasty devices and related heart valve repair methods
US6524338B1 (en) * 2000-08-25 2003-02-25 Steven R. Gundry Method and apparatus for stapling an annuloplasty band in-situ
US8956407B2 (en) * 2000-09-20 2015-02-17 Mvrx, Inc. Methods for reshaping a heart valve annulus using a tensioning implant
US6602288B1 (en) * 2000-10-05 2003-08-05 Edwards Lifesciences Corporation Minimally-invasive annuloplasty repair segment delivery template, system and method of use
US6602286B1 (en) * 2000-10-26 2003-08-05 Ernst Peter Strecker Implantable valve system
US6974476B2 (en) * 2003-05-05 2005-12-13 Rex Medical, L.P. Percutaneous aortic valve
WO2002062263A2 (en) * 2001-02-05 2002-08-15 Viacor, Inc. Apparatus and method for reducing mitral regurgitation
US6955689B2 (en) * 2001-03-15 2005-10-18 Medtronic, Inc. Annuloplasty band and method
US6786924B2 (en) * 2001-03-15 2004-09-07 Medtronic, Inc. Annuloplasty band and method
US20060069429A1 (en) * 2001-04-24 2006-03-30 Spence Paul A Tissue fastening systems and methods utilizing magnetic guidance
US6676702B2 (en) * 2001-05-14 2004-01-13 Cardiac Dimensions, Inc. Mitral valve therapy assembly and method
US6800090B2 (en) * 2001-05-14 2004-10-05 Cardiac Dimensions, Inc. Mitral valve therapy device, system and method
US20030078654A1 (en) * 2001-08-14 2003-04-24 Taylor Daniel C. Method and apparatus for improving mitral valve function
AUPR847301A0 (en) * 2001-10-26 2001-11-15 Cook Incorporated Endoluminal prostheses for curved lumens
US6824562B2 (en) * 2002-05-08 2004-11-30 Cardiac Dimensions, Inc. Body lumen device anchor, device and assembly
US7635387B2 (en) * 2001-11-01 2009-12-22 Cardiac Dimensions, Inc. Adjustable height focal tissue deflector
US6793673B2 (en) * 2002-12-26 2004-09-21 Cardiac Dimensions, Inc. System and method to effect mitral valve annulus of a heart
US6764510B2 (en) * 2002-01-09 2004-07-20 Myocor, Inc. Devices and methods for heart valve treatment
US6960229B2 (en) * 2002-01-30 2005-11-01 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US7125420B2 (en) * 2002-02-05 2006-10-24 Viacor, Inc. Method and apparatus for improving mitral valve function
US7004958B2 (en) * 2002-03-06 2006-02-28 Cardiac Dimensions, Inc. Transvenous staples, assembly and method for mitral valve repair
US7101395B2 (en) * 2002-06-12 2006-09-05 Mitral Interventions, Inc. Method and apparatus for tissue connection
US7753858B2 (en) * 2002-06-13 2010-07-13 Guided Delivery Systems, Inc. Delivery devices and methods for heart valve repair
US7666193B2 (en) * 2002-06-13 2010-02-23 Guided Delivery Sytems, Inc. Delivery devices and methods for heart valve repair
EP1530441B1 (en) * 2002-06-13 2017-08-02 Ancora Heart, Inc. Devices and methods for heart valve repair
US7758637B2 (en) * 2003-02-06 2010-07-20 Guided Delivery Systems, Inc. Delivery devices and methods for heart valve repair
US7753922B2 (en) * 2003-09-04 2010-07-13 Guided Delivery Systems, Inc. Devices and methods for cardiac annulus stabilization and treatment
US7588582B2 (en) * 2002-06-13 2009-09-15 Guided Delivery Systems Inc. Methods for remodeling cardiac tissue
MXPA05002284A (en) * 2002-08-29 2006-02-10 Mitralsolutions Inc Implantable devices for controlling the internal circumference of an anatomic orifice or lumen.
JP2006501033A (en) * 2002-10-01 2006-01-12 アンプル メディカル, インコーポレイテッド Device, system and method for reshaping a heart valve annulus
US8979923B2 (en) * 2002-10-21 2015-03-17 Mitralign, Inc. Tissue fastening systems and methods utilizing magnetic guidance
US7112219B2 (en) * 2002-11-12 2006-09-26 Myocor, Inc. Devices and methods for heart valve treatment
US8187324B2 (en) * 2002-11-15 2012-05-29 Advanced Cardiovascular Systems, Inc. Telescoping apparatus for delivering and adjusting a medical device in a vessel
US7485143B2 (en) * 2002-11-15 2009-02-03 Abbott Cardiovascular Systems Inc. Apparatuses and methods for heart valve repair
EP1648346A4 (en) * 2003-06-20 2006-10-18 Medtronic Vascular Inc Valve annulus reduction system
US20050010283A1 (en) * 2003-07-11 2005-01-13 Vedic Biotechnology, Inc. Heart failure mitral annuloplasty ring with multiple sets of suture placement indicia
WO2005018507A2 (en) * 2003-07-18 2005-03-03 Ev3 Santa Rosa, Inc. Remotely activated mitral annuloplasty system and methods
US7160322B2 (en) * 2003-08-13 2007-01-09 Shlomo Gabbay Implantable cardiac prosthesis for mitigating prolapse of a heart valve
US7955384B2 (en) * 2003-11-12 2011-06-07 Medtronic Vascular, Inc. Coronary sinus approach for repair of mitral valve regurgitation
EP1689329A2 (en) * 2003-11-12 2006-08-16 Medtronic Vascular, Inc. Cardiac valve annulus reduction system
US20060271174A1 (en) * 2003-12-19 2006-11-30 Gregory Nieminen Mitral Valve Annuloplasty Device with Wide Anchor
US7824443B2 (en) * 2003-12-23 2010-11-02 Sadra Medical, Inc. Medical implant delivery and deployment tool
WO2005087139A1 (en) * 2004-03-15 2005-09-22 Baker Medical Research Institute Treating valve failure
US20060100697A1 (en) * 2004-11-10 2006-05-11 Casanova R M Shape memory annuloplasty ring and holder
US7575595B2 (en) * 2005-03-23 2009-08-18 Edwards Lifesciences Corporation Annuloplasty ring and holder combination
US7842085B2 (en) * 2005-03-23 2010-11-30 Vaso Adzich Annuloplasty ring and holder combination
US8864823B2 (en) * 2005-03-25 2014-10-21 StJude Medical, Cardiology Division, Inc. Methods and apparatus for controlling the internal circumference of an anatomic orifice or lumen
US20070027533A1 (en) * 2005-07-28 2007-02-01 Medtronic Vascular, Inc. Cardiac valve annulus restraining device
CN100445488C (en) * 2005-08-01 2008-12-24 邱则有 Hollow member for cast-in-situ concrete moulding
US7611534B2 (en) * 2005-08-25 2009-11-03 The Cleveland Clinic Foundation Percutaneous atrioventricular valve and method of use
US7503932B2 (en) * 2006-04-11 2009-03-17 Cardiac Dimensions, Inc. Mitral valve annuloplasty device with vena cava anchor
US20070244556A1 (en) * 2006-04-12 2007-10-18 Medtronic Vascular, Inc. Annuloplasty Device Having a Helical Anchor and Methods for its Use
US20070244555A1 (en) * 2006-04-12 2007-10-18 Medtronic Vascular, Inc. Annuloplasty Device Having a Helical Anchor and Methods for its Use
US20070244546A1 (en) * 2006-04-18 2007-10-18 Medtronic Vascular, Inc. Stent Foundation for Placement of a Stented Valve
JP2009535128A (en) * 2006-04-29 2009-10-01 アーバー・サージカル・テクノロジーズ・インコーポレイテッド Multi-part prosthetic heart valve assembly and apparatus and method for delivering the same
EP1854429A1 (en) * 2006-05-12 2007-11-14 Micardia Corporation Intraoperative and post-operative adjustment of an annuloplasty ring
US8376865B2 (en) * 2006-06-20 2013-02-19 Cardiacmd, Inc. Torque shaft and torque shaft drive
US20080033541A1 (en) * 2006-08-02 2008-02-07 Daniel Gelbart Artificial mitral valve
US20090192600A1 (en) * 2008-01-25 2009-07-30 Ryan Timothy R Sizing device having two sizers and methods of use
CA2713934C (en) * 2008-02-06 2015-10-20 Guided Delivery Systems, Inc. Multi-window guide tunnel
US8795352B2 (en) * 2008-04-15 2014-08-05 Medtronic Vascular, Inc. Devices and methods for treating valvular regurgitation
WO2010031082A2 (en) * 2008-09-15 2010-03-18 Arbor Surgical Technologies, Inc. Tools, systems, and methods for remodeling tissue
US8911494B2 (en) * 2009-05-04 2014-12-16 Valtech Cardio, Ltd. Deployment techniques for annuloplasty ring
US8715342B2 (en) * 2009-05-07 2014-05-06 Valtech Cardio, Ltd. Annuloplasty ring with intra-ring anchoring

Also Published As

Publication number Publication date
WO2002028321A3 (en) 2002-06-20
CA2597050A1 (en) 2002-04-11
US20030144732A1 (en) 2003-07-31
ATE315919T1 (en) 2006-02-15
DE60116786T2 (en) 2006-08-31
JP2004510493A (en) 2004-04-08
EP1322260A2 (en) 2003-07-02
US6602288B1 (en) 2003-08-05
AU9507401A (en) 2002-04-15
AU2001295074C1 (en) 2005-01-06
US6962605B2 (en) 2005-11-08
JP3759497B2 (en) 2006-03-22
CA2423878C (en) 2008-07-08
CA2423878A1 (en) 2002-04-11
AU2001295074B2 (en) 2004-01-22
US20050171601A1 (en) 2005-08-04
US7931684B2 (en) 2011-04-26
WO2002028321A2 (en) 2002-04-11
EP1322260B1 (en) 2006-01-18
DE60116786D1 (en) 2006-04-06

Similar Documents

Publication Publication Date Title
CA2597050C (en) Minimally-invasive annuloplasty repair segment delivery template, system and method of use
AU2001295074A1 (en) Minimally-invasive annuloplasty repair segment delivery template system
WO2003047467A1 (en) Minimally-invasive annuloplasty repair segment delivery template system
EP1335683B1 (en) Percutaneous aortic valve
US6974476B2 (en) Percutaneous aortic valve
EP2583640B1 (en) Minimally invasive replacement heart valve
US8267993B2 (en) Expandable annuloplasty ring and associated ring holder
US6564805B2 (en) Less-invasive devices and methods for treatment of cardiac valves
JP3717929B2 (en) Prosthetic assembly for non-thoracotomy replacement of heart valves
RU140821U1 (en) AORTIC BIOPROTHESIS AND SYSTEMS FOR ITS DELIVERY IN THE PLACE OF IMPLANTATION
US8454684B2 (en) Heart valve holder for use in valve implantation procedures
US20030050693A1 (en) Minimally invasive delivery system for annuloplasty rings
AU2002225718A1 (en) Percutaneous aortic valve
JP2014523282A (en) Minimally invasive repair of heart valve leaflets
JP2013066772A (en) Implantable prosthetic valve
WO1997027799A1 (en) Less-invasive devices and methods for cardiac valve surgery
CA2239907A1 (en) Less invasive devices and methods for treatment of cardiac valves
US11751995B2 (en) Apparatus and methods for minimally invasive transapical access
CA2177490C (en) Devices and methods for intracardiac procedures

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20210927