CA2609860A1 - Water-in-oil bitumen dispersions and methods for producing paving compositions from the same - Google Patents

Water-in-oil bitumen dispersions and methods for producing paving compositions from the same Download PDF

Info

Publication number
CA2609860A1
CA2609860A1 CA 2609860 CA2609860A CA2609860A1 CA 2609860 A1 CA2609860 A1 CA 2609860A1 CA 2609860 CA2609860 CA 2609860 CA 2609860 A CA2609860 A CA 2609860A CA 2609860 A1 CA2609860 A1 CA 2609860A1
Authority
CA
Canada
Prior art keywords
group
member selected
acid
alkyl
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA 2609860
Other languages
French (fr)
Other versions
CA2609860C (en
Inventor
Everett Crews
Tom Girardeau
Iain Jack
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ingevity South Carolina LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38541836&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CA2609860(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to CA2702151A priority Critical patent/CA2702151C/en
Publication of CA2609860A1 publication Critical patent/CA2609860A1/en
Application granted granted Critical
Publication of CA2609860C publication Critical patent/CA2609860C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/26Bituminous materials, e.g. tar, pitch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L95/00Compositions of bituminous materials, e.g. asphalt, tar, pitch
    • C08L95/005Aqueous compositions, e.g. emulsions
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C5/00Pavings made of prefabricated single units
    • E01C5/12Pavings made of prefabricated single units made of units with bituminous binders or from bituminous material, e.g. asphalt mats
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C7/00Coherent pavings made in situ
    • E01C7/08Coherent pavings made in situ made of road-metal and binders
    • E01C7/18Coherent pavings made in situ made of road-metal and binders of road-metal and bituminous binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0075Uses not provided for elsewhere in C04B2111/00 for road construction
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2395/00Bituminous materials, e.g. asphalt, tar or pitch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/30Adapting or protecting infrastructure or their operation in transportation, e.g. on roads, waterways or railways
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

The present invention relates to bituminous compositions suitable for use in paving applications containing water-in-oil bitumen dispersion of paving grade bitumen such as penetration-graded, viscosity-graded and/or penetration-graded varieties that is substantially free of volatile solvents and made by controlling temperature-dependent interfacial rheology through the use of selected surfactants. The invention paving compositions are suitable for use in the construction of load-bearing, high-traffic pavements at a temperature range lower than that required for conventional hot-mix bituminous paving compositions, yet with similar or superior compaction to densities property and at least equal cure rate.

Claims (147)

1. Bituminous composition comprising:
(a) water-in-oil bitumen dispersion in an amount from about 2% to about 10% by total weight of the bituminous composition, wherein the dispersion comprises:
(i) bitumen in an amount from about 75% to about 95% by total weight of the bitumen dispersion, (ii) surfactant package having an interfacial tension between the bitumen and water of less than 40 dynes/cm at a temperature of 26° C and at an aqueous concentration of less than 0.1% weight, in an amount from about 0.05% to about 2% by total weight of the bitumen dispersion, (ii) water in an amount to complete the dispersion; and (b) aggregate and/or reclaimed asphalt pavement in an amount from about 90% to about 98% by total weight of the bituminous composition.
2. The composition of claim 1, wherein the amount of the bitumen is from about 85% to about 95% by total weight of the bitumen dispersion.
3. The composition of claim 1, wherein the amount of the surfactant package is from about 0.08% to about 0.5% by total weight of the bitumen dispersion.
4. The composition of claim 1, wherein the amount of the surfactant package is from about 0.1% to about 0.75% by total weight of the bitumen dispersion.
5. The composition of claim 1, wherein the bitumen comprises at least one member selected from the group consisting of naturally occurring bitumen, bitumen derived from crude oil, petroleum pitch obtained from a cracking process, coal tar, polymer-modified bitumen, rubberized bitumen, rubberized bitumen containing recycled tire material, acid-modified bitumen, wax-modified bitumen, and combinations thereof.
6. The composition of claim 1, wherein the naturally occurring bitumen comprises at least one member selected from the group consisting of lake asphalt, lake asphalt derivative, gilsonite, gilsonite derivative, and combinations thereof.
7. The composition of claim 1, wherein the bitumen comprises at least one member selected from the group consisting of unmodified bitumen, modified bitumen, and combinations thereof.
8. The composition of claim 7, wherein the modified bitumen comprises at least one additive selected from the group consisting of natural rubber, synthetic rubber, plastomer, thermoplastic resin, thermosetting resin, elastomer, and combinations thereof.
9. The composition of claim 7, wherein the modified bitumen comprises at least one additive selected from the group consisting of styrene-butadiene-styrene, styrene-butadiene-rubber, polyisoprene, polybutylene, butadiene-styrene rubber, vinyl polymer, ethylene vinyl acetate, ethylene vinyl acetate derivative, sulfur-containing crosslinker, salt, acid modifier, wax modifier, and combinations thereof.
10. The composition of claim 7, wherein the acid modifier comprises at least one member selected from the group consisting of tall oil acid, distilled tall oil, crude tall oil, tall oil pitch, phosphoric acid derivative of tall oil acids, phosphoric acid derivative of tall oil pitch, polyphosphoric acid, and combinations thereof.
11. The composition of claim 1, wherein the surfactant package comprises one member selected from the group consisting of anionic surfactant, cationic surfactant, amphoteric surfactant, nonionic surfactant, and combinations thereof.
12. The composition of claim 11, wherein the anionic surfactant comprises at least one member selected from the group consisting of saturated C-12 to C-24 fatty acids;
unsaturated C-12 to C-24 fatty acids; unsaturated C-12 to C-24 fatty acids modified with at least one member selected from the group consisting of acrylic acid, maleic anhydride, fumaric acid, diene and dieneophile; rosin acids; rosin acids modified with at least one member selected from the group consisting of acrylic acid, maleic anhydride, fumaric acid, diene and dieneophile; natural resinous polymers; Vinsol resins;
quebracho resins; tannins; lignous polymers; polyacrylic acid; polyacrylate derivatives;
alkyl sulfonates; alkyl benzyl sulfonates; alkyl sulfates; alkyl phosphonates;
alkyl phosphates; phenolic resins; and combinations thereof.
13. The composition of claim 11, wherein the anionic surfactant comprises at least one member selected from the group consisting of complexes, addition products, and condensation products formed by a reaction of (i) at least one member selected from the group consisting of natural resinous polymer, Vinsol resin, quebracho resin, tannins and lignin; and (ii) at least one member selected from the group consisting of saturated C10-C24 fatty acids, unsaturated C10-C24 fatty acids, and unsaturated C10-C24 fatty acids modified with at least one member selected from the group consisting of acrylic acid, maleic anhydride, fumaric acid, dienes and dienophiles.
14. The composition of claim 11, wherein the anionic surfactant comprises at least one member selected from the group consisting of sulfate, sulfonate, phosphate, and phosphonate derivative of at least one compound selected from the group consisting of lignin, natural resinous polymers, Vinsol resins, quebracho resins, and tannins.
15. The composition of claim 11, wherein the anionic surfactant comprises at least one member selected from the group consisting of sulfate, sulfonate, phosphate, and phosphonate derivative of a member selected from the group consisting of complexes, addition products, and condensation products formed by a reaction of (i) at least one member selected from the group consisting of natural resinous polymer, Vinsol resin, quebracho resin, tannins and lignin; and (ii) at least one member selected from the group consisting of saturated C10-C24 fatty acids, unsaturated C10-C24 fatty acids, and unsaturated C10-C24 fatty acids modified with at least one member selected from the group consisting of acrylic acid, maleic anhydride, fumaric acid, diene and dienophile.
16. The composition of claim 11, wherein the amphoteric surfactant comprises at least one product obtained by (i) modifying C-12 to C-24 fatty acid with at least one member selected from the group consisting of acrylic acid, maleic anhydride, fumaric acid, diene and dieneophile; and then (ii) reacting the resulting modified product with at least one member selected from the group consisting of polyethylene polyamines, lithium C-12 to C-24 alkyl amidopropyl halide methyl carboxylate betaine, sodium C-12 to C-24 alkyl amidopropyl halide methyl carboxylate betaines, potassium C-12 to C-24 alkyl amidopropyl halide methyl carboxylate betaines, lithium C-12 to C-24 alkyl amidopropyl halide phosphate betaines, sodium C-12 to C-24 alkyl amidopropyl halide phosphate betaines, potassium C-12 to C-24 alkyl amidopropyl halide phosphate betaines, lithium C-12 to C-24 alkyl amidopropyl halide sulphate betaines, sodium C-12 to C-24 alkyl amidopropyl halide sulphate betaines, and potassium C-12 to C-24 alkyl amidopropyl halide sulphate betaines.
17. The composition of claim 11, wherein the cationic surfactant comprises at least one member selected from the group consisting of fatty imidoamines derived from (i) modifying C-12 to C-24 fatty acids with at least one member selected from the group consisting of acrylic acid, maleic anhydride, fumaric acid, diene and dieneophile, and then (ii) reacting the resulting modified products with polyalkylenepolyamines; fatty amidoamines derived from (i) modifying C-12 to C-24 fatty acids with at least one member selected from the group consisting of acrylic acid, maleic anhydride, fumaric acid, diene and dieneophile; and then (ii) reacting the resulting modified products with at least one member selected from the group consisting of polyalkylenepolyamines, saturated C-12 to C-24 alkyl monoamines, unsaturated C-12 to C-24 alkyl monoamines, saturated C-12 to C-24 alkyl polypropylenepolyamines, unsaturated C-12 to C-24 alkyl polypropylenepolyamines; polyoxyethylene derivatives made by modifying saturated C-12 to C-24 alkyl monoamines with at least one member selected from the group consisting of ethylene oxide and propylene oxide; polyoxyethylene derivatives made by modifying unsaturated C-12 to C-24 alkyl monoamines with at least one member selected from the group consisting of ethylene oxide and propylene oxide;
polyoxyethylene derivatives made by modifying saturated C-12 to C-24 alkyl polypropylenepolyamines with at least one member selected from the group consisting of ethylene oxide and propylene oxide; polyoxyethylene derivatives made by modifying unsaturated C-12 to C-24 alkyl polypropylenepolyamines with at least one member selected from the group consisting of ethylene oxide and propylene oxide;
saturated C-12 to C-24 alkyl aryl monoamines; unsaturated C-12 to C-24 alkyl aryl monoamines;
saturated C-12 to C-24 alkyl aryl polypropylenepolyamines; unsaturated C-12 to alkyl aryl polypropylenepolyamines; saturated C-12 to C-24 quaternary amines;
unsaturated C-12 to C-24 quaternary amines; amine derivatives of tannins;
amine derivatives of phenolic resins; amine derivatives of lignins; amine-modified polyacrylates; and combinations thereof.
18. The composition of claim 11, wherein the cationic surfactant comprises at least one member selected from the group consisting of saturated C-12 to C-24 alkyl monoamines, unsaturated C-12 to C-24 alkyl monoamines, saturated C-12 to C-24 alkyl polypropylenepolyamines, unsaturated C-12 to C-24 alkyl polypropylenepolyamines, and combinations thereof.
19. The composition of claim 11, wherein the cationic surfactant is a blend of at least one member selected from the group consisting of saturated and unsaturated C-12 to alkyl monoamines, and at least one member selected from the group consisting of saturated and unsaturated C-12 to C-24 alkyl polypropylenepolyamines.
20. The composition of claim 11, wherein the nonionic surfactant comprises at least one member selected from the group consisting of alkylaryl polyethylene oxide derivative of alkanol; polypropylene oxide derivative of alkanol; polyethylene oxide derivative of alkanol; polypropylene oxide derivative of alkanol, wherein the alkanol has branched, linear, or cyclic structure; polyethoxylated surfactant; polypropoxylated surfactant;
sorbitan esters; monosaccharide derivative; polysaccharide derivative; protein stabilizer;
mechanical stabilizers; and combinations thereof.
21. The composition of claim 20, wherein the protein stabilizer comprises at least one member selected from the group consisting of casein, albumin, and combinations thereof.
22. The composition of claim 20, wherein the mechanical stabilizers comprises at least one member selected from the group consisting of phyllosilicate bentonite, montmorillonite clay, and combinations thereof.
23. The composition of claim 11, wherein the nonionic surfactant comprises at least one member selected from the group consisting of alkyl polysaccharide; alkylphenol alkoxylate; fatty alcohol ethoxylate; saturated fatty acid propoxylate;
unsaturated fatty acid propoxylate; ethoxylate of escinoleic acid; ethoxylate of castor oil;
propoxylate of escinoleic acid; propoxylate of castor oil, wherein the ethoxylate has linear, branched, or cyclic structure, and the propoxylate linear, branched, or cyclic structure.
24. The composition of claim 1, wherein the surfactant package comprises at least one member selected from the group consisting of polyethylene-polypropylene block copolymer; hydroxypoly(oxyethylene) poly(oxypropylene) poly(oxyethylene) block copolymers; 1,2-propyleneglycol ethoxylated; 1,2-propyleneglycol propoxylated;
and synthetic block copolymer of ethylene oxide and propylene oxide having molecular weights exceeding 300 g/mole.
25. The composition of claim 1, wherein the surfactant package comprises at least one member selected from the group consisting of decyl alcohol ethoxylates; castor oil ethoxylate; ceto-oleyl alcohol ethoxylate; ethoxylated alkanolamide; fatty alcohol alkoxylates; dinonyl phenol ethoxylate, nonyl phenol ethoxylate; sorbitan ester ethoxylate; alkyl ether sulphate; monoalkyl sulphosuccinamate; alkyl phenol ether sulphate; fatty alcohol sulphate; di-alkyl sulphosuccinate; alkyl ether phosphate; alkyl phenol ether phosphate; alkyl naphthalene sulphonate; .alpha.-olefin sulphonate; alkyl benzene sulphonic acids and salt, alkyl ampho(di)acetate; alkyl betaine; alkyl polysaccharide; alkylamine ethoxylate; amine oxide; and combinations thereof.
26. The composition of claim 1, wherein the surfactant package comprises at least one member selected from the group consisting of oligomer, co-oligomer, ter-oligomer, tetra-oligomer, homopolymer, copolymer, terpolymer, and tetrapolymer of at least one monomer selected from the group consisting of acrylic acid, alkylacrylic acid, alkyl ester of acrylic acid, alkyl ester of alkylacrylic acid, hydroxyalkyl ester of acrylic acid, hydroxyalkyl ester of alkylacrylic acid, acrylamide, alkylacrylamide, N-alkyl acrylamide, N,N-dialkyl acrylamdide, N-hydroxyalkylacrylamide, N,N-dihydroxyalkylacrylamide, styrene, alkylstyrene, ethene, propene, higher order alkene, diene, hydroxylated propene, polyhyrdoxylated polyalkene, halogenated ethylene, halogenated propylene, and halogenated alkylidene.
27. The composition of claim 1, wherein the surfactant package comprises at least one member selected from the group consisting of lithium, sodium, potassium, magnesium, calcium, ammonium, and alkylammonium salts of at least one member selected from the group consisting of oligomers, co-oligomers, ter-oligomers, tetra-oligomers, homopolymers, copolymers, terpolymers, and tetrapolymers of at least one monomer selected from the group consisting of acrylic acid, alkylacrylic acid, alkyl ester of acrylic acid, alkyl ester of alkylacrylic acid, hydroxyalkyl ester of acrylic acid, hydroxyalkyl ester of alkylacrylic acid, acrylamide, alkylacrylamide, N-alkyl acrylamide, N,N-dialkyl acrylamdide, N-hydroxyalkylacrylamide, N,N-dihydroxyalkylacrylamide, styrene, alkylstyrene, ethene, propene, higher order alkene, diene, hydroxylated propene, polyhyrdoxylated polyalkene, halogenated ethylene, halogenated propylene, and halogenated alkylidene.
28. The composition of claim 1, wherein the surfactant package comprises salt obtained by a reaction of (i) at least one member selected from the group consisting of hydrogen halide, carboxylic acid, and phosphoric acid; and (ii) at least one member selected from the group consisting of oligomers, co-oligomers, ter-oligomers, tetra-oligomers, homopolymers, copolymers, terpolymers, and tetrapolymers of at least one monomer selected from the group consisting of acrylic acid, alkylacrylic acid, alkyl ester of acrylic acid, alkyl ester of alkylacrylic acid, hydroxyalkyl ester of acrylic acid, hydroxyalkyl ester of alkylacrylic acid, acrylamide, alkylacrylamide, N-alkyl acrylamide, N,N-dialkyl acrylamdide, N-hydroxyalkylacrylamide, N,N-dihydroxyalkylacrylamide, styrene, alkylstyrene, ethene, propene, higher order alkene, diene, hydroxylated propene, polyhyrdoxylated polyalkene, halogenated ethylene, halogenated propylene, and halogenated alkylidene.
29. The composition of claim 1, wherein the surfactant package comprises at least one member selected from the group consisting of oligomeric ethyleneamine, oligomeric polypropyleneamine, hexamethylene diamine, bis-hexamethylene diamine, polyethylene polyamine, polypropylene polyamine, polyethylene/polypropylene polyamine, distillation residue from polyalkylene polyamine manufacture, and higher order polyalkylene polyamine.
30. The composition of claim 1, wherein the surfactant package comprises salt obtained by a reaction of (i) at least one member selected from the group consisting of hydrogen halide, carboxylic acid, and phosphoric acid; and (ii) at least one member selected from the group consisting of oligomeric ethyleneamine, oligomeric polypropyleneamine, hexamethylene diamine, bis-hexamethylene diamine, polyethylene polyamine, polypropylene polyamine, polyethylene/polypropylene polyamine, distillation residue from polyalkylene polyamine manufacture, and higher order polyalkylene polyamine.
31. The composition of claim 1, wherein the surfactant package comprises at least one member selected from the group consisting of monoethoxylated, polyethoxylated, monopropylated, and polypropylated condensate of at least one member selected from the group consisting of oligomeric ethyleneamine, oligomeric polypropyleneamine, hexamethylene diamine, bis-hexamethylene diamine, oligomeric aziridine, polyaziridine, polyethylene polyamine, polypropylene polyamine, polyethylene/polypropylene polyamine, distillation residue from polyalkylene polyamine manufacture, and higher order polyalkylene polyamine.
32. The composition of claim 1, wherein the surfactant package comprises salt obtained by a reaction of (i) at least one member selected from the group consisting of hydrogen halide, carboxylic acid, and phosphoric acid; and (ii) at least one member selected from the group consisting of monoethoxylated , polyethoxylated, monopropylated, and polypropylated condensates of at least one compound selected from the group consisting of oligomeric ethyleneamine, oligomeric polypropyleneamine, hexamethylene diamine, bis-hexamethylene diamine, oligomeric aziridine, polyaziridine, polyethylene polyamine, polypropylene polyamine, polyethylene/polypropylene polyamine, distillation residue from polyalkylene polyamine manufacture, and higher order polyalkylene polyamine.
33. The composition of claim 1, wherein the surfactant package comprises homolog of hydroxylalkyl amine.
34. The composition of claim 1, wherein the surfactant package comprises salt obtained by a reaction of (i) homolog of hydroxyalkyl amine and (ii) at least one member selected from the group consisting of hydrogen halide, carboxylic acid and phosphoric acid.
35. The composition of claim 1, wherein the surfactant package comprises at least one member selected from the group consisting of C-36 dimeric fatty acid and C-54 trimeric fatty acid.
36. The composition of claim 1, wherein the surfactant package comprises polymeric condensation product of C-36 dimeric fatty acid and at least one member selected from the group consisting of oligomeric ethyleneamine, polyethylene polyamine, oligomeric propylamine, polypropylene polyamine, the distillation residue from polyalkylene polyamine manufacture, and higher order polyalkylene polyamine.
37. The composition of claim 1, wherein the surfactant package comprises salt obtained by a reaction of (i) at least one member selected from the group consisting of hydrogen halide, carboxylic acid, and phosphoric acid; and (ii) at least one member selected from the group consisting of polymeric condensation product of C-36 dimeric fatty acid and at least one member selected from the group consisting of oligomeric ethyleneamine, polyethylene polyamine, oligomeric propylamine, polypropylene polyamine, the distillation residue from polyalkylene polyamine manufacture, and higher order polyalkylene polyamine.
38. The composition of claim 1, wherein the surfactant package comprises polymeric condensation product of C-54 trimeric fatty acids and at least one member selected from the group consisting of oligomeric ethyleneamine, polyethylene polyamine, oligomeric propylamine, polypropylene polyamine, the distillation residue from polyalkylene polyamine manufacture, and higher order polyalkylene polyamine.
39. The composition of claim 1, wherein the surfactant package comprises salt obtained by a reaction of (i) at least one member selected from the group consisting of hydrogen halide, carboxylic acid, and phosphoric acid; and (ii) at least one member selected from the group consisting of polymeric condensation product of C-54 trimeric fatty acid and at least one member selected from the group consisting of oligomeric ethyleneamine, polyethylene polyamine, oligomeric propylamine, polypropylene polyamine, the distillation residue from polyalkylene polyamine manufacture, and higher order polyalkylene polyamine.
40. The composition of claim 1, wherein the surfactant package comprises at least one member selected from the group consisting of hydroxystearic acid, oligomer of hydroxystearic acid, and polymeric hydroxystearic acid.
41. The composition of claim 1, wherein the surfactant package comprises polymeric condensation product formed by a reaction of (i) at least one member selected from the group consisting of ethylene amine, propylene amine, ethylene/propylene amine, oligomeric ethyleneamine, polyethylene polyamine, oligomeric propylene amine, distillation residue from polyalkylene polyamine manufacture, and higher order polyalkylene polyamine; and (ii) at least one member selected from the group consisting of hydroxystearic acid, oligomer of hydroxystearic acid, and polymeric hydroxystearic acid.
42. The composition of claim 1, the surfactant package comprises polymeric condensation product of (i) at least one member selected from the group consisting of hydroxystearic acid, oligomers of hydroxystearic acid, and polymeric hydroxystearic acid; and (ii) at least one member selected from the group consisting of lithium hydroxide, sodium hydroxide, potassium hydroxide, and Lewis acid base.
43. The composition of claim 1, wherein the surfactant package comprises ethoxytrimethyleneamine derivatives of C-12 to C-24 fatty amines of structure (I) wherein R = saturated or unsaturated aliphatic C-12 to C-24 having linear, branched, or cyclic structure;
x + y >= 2; and a , b >= 0.
44. The composition of claim 1, wherein the surfactant package comprises polymeric condensation product of (i) at least one member selected from the group consisting of hydroxystearic acid, oligomers of hydroxystearic acid, and polymeric hydroxystearic acid; and (ii) at least one member selected from the group consisting of ethoxytrimethyleneamine derivatives of C-12 to C-24 fatty amines of structure (I).
45. The composition of claim 1, wherein the surfactant package comprises propoxytrimethyleneamine derivatives of C-12 to C-24 fatty amines of structure (II) wherein R = saturated or unsaturated aliphatic C-12 to C-24 having linear, branched, or cyclic structure;
x + y >= 2;and a,b >= 0.
46. The composition of claim 1, wherein the surfactant package comprises polymeric condensation product of (i) at least one member selected from the group consisting of hydroxystearic acid, oligomers of hydroxystearic acid, and polymeric hydroxystearic acid; and (ii) at least one member selected from the group consisting of propoxytrimethyleneamine derivative of C-12 to C-24 fatty amine of structure (II).
47. The composition of claim 1, wherein the surfactant package comprises aliphatic diakylamine of structure (III) wherein R1, R2= saturated or unsaturated C-12 to C-24 moieties having linear, branched, or cyclic structure.
48. The composition of claim 1, wherein the surfactant package comprises salt obtained by the reaction of (i) at least one member selected from the group consisting of hydrogen halide, carboxylic acid, and phosphoric acid; and (ii) at least one member selected from the group consisting of saturated and unsaturated aliphatic C-12 to C-24 dialkyl amine of structure (III).
49. The composition of claim 1, wherein the surfactant package comprises quaternary amine of structure (IV) wherein R1, R2= saturated or unsaturated aliphatic C-12 to C-24 moieties having linear, branched, or cyclic structure; and R3, R4 = methyl or higher order homolog of saturated or unsaturated aliphatic C-12 to C-24 moieties having linear, branched, or cyclic structure.
50. The composition of claim 1, wherein the surfactant package comprises salt obtained by the reaction of (i) at least one member selected from the group consisting of hydrogen halide, carboxylic acid, and phosphoric acid; and (ii) at least one member selected from the group consisting of saturated and unsaturated aliphatic C-12 to C-24 alkyl quaternary amine of structure (IV).
51. The composition of claim 1, wherein the surfactant package comprises quaternary amine of structure (V) wherein:

R1, R2= saturated or unsaturated aliphatic C-12 to C-24 moieties having linear, branched, or cyclic structure; and R3, R4 = ethoxy moieties, propoxy moieties, or combinations thereof.
52. The composition of claim 1, wherein the surfactant package comprises salt obtained by the reaction of (i) at least one member selected from the group consisting of hydrogen halide, carboxylic acid, and phosphoric acid; and (ii) at least one member selected from the group consisting of saturated and unsaturated aliphatic C-12 to C-24 alkyl quaternary amine of structure (V).
53. The composition of claim 1, wherein the surfactant package comprises bisamide formed by a reaction of polyalkylenepolyamine and adduct obtained by modifying at least one member selected from the group consisting of saturated aliphatic C-12 to C-24 fatty acid and unsaturated aliphatic C-12 to C-24 fatty acids with at least one member selected from the group consisting of acrylic acid, maleic anhydride, fumaric acid, diene and dieneophiles, wherein the C-12 to C-24 fatty acid has linear, branched, or cyclic structure.
54. The composition of claim 1, wherein the surfactant package comprises salt obtained by the reaction of (i) at least one member selected from the group consisting of hydrogen halide, carboxylic acid, and phosphoric acid; and (ii) at least one member selected from the group consisting of bisamide formed by a reaction of polyalkylenepolyamine and adduct obtained by modifying at least one member selected from the group consisting of saturated aliphatic C-12 to C-24 fatty acid and unsaturated aliphatic C-12 to C-24 fatty acids with at least one member selected from the group consisting of acrylic acid, maleic anhydride, fumaric acid, diene and dieneophiles, wherein the C-12 to C-24 fatty acid has linear, branched, or cyclic structure.
55. The composition of claim 1, wherein the surfactant package comprises dialkylarylamine.
56. The composition of claim 1, wherein the surfactant package comprises salt obtained by the reaction of at least one member selected from the group consisting of hydrogen halide, carboxylic acid, and phosphoric acid; and dilakylarylamine.
57. The composition of claim 1, wherein the surfactant package has an interfacial tension between the bitumen and water of less than 40 dynes/cm at a temperature of 26° C and at an aqueous concentration of less than 0.1 % weight.
58. The composition of claim 1, wherein the surfactant package has an interfacial tension between the bitumen and water of less than 30 dynes/cm at a temperature of 26° C and at an aqueous concentration of less than 0.1 % weight.
59. The composition of claim 1, wherein the surfactant package has an interfacial tension between the bitumen and water of less than 20 dynes/cm at a temperature of 26° C and at an aqueous concentration of less than 0.1 % weight.
60. The composition of claim 1, wherein the surfactant package has an interfacial tension between the bitumen and water of less than 10 dynes/cm at a temperature of 26° C and at an aqueous concentration of less than 0.1 % weight.
61. The composition of claim 1, wherein the surfactant package has an interfacial tension between the bitumen and water of less than 5 dynes/cm at a temperature of 26° C and at an aqueous concentration of less than 0.1 % weight.
62. The composition of claim 1, wherein the water-in-oil bitumen dispersion comprises organic solvent in an amount of less than or equal to 4% by weight by total weight of the dispersion.
63. The composition of claim 1, wherein the water-in-oil bitumen dispersion comprises organic solvent in an amount of less than or equal to 1% by weight by total weight of the dispersion.
64. The composition of claim 1, wherein the aggregate comprises at least one member selected from the group consisting of dense-graded aggregate, gap-graded aggregate, open-graded, stone-matrix aggregate, reclaimed asphalt paving material, reclaimed roofing shingles, and combinations thereof.
65. The composition of claim 1, further comprising additive for enhancing processability or improving performance.
66. The composition of claim 1, wherein the water-in-oil bitumen dispersion is produced using high-shear mixing process comprising at least one member selected from the group consisting of high-shear colloid mill dispersion, high-shear static mixer dispersion, high-shear roto-mixer dispersion, high-shear dispersion via injection of the water into a bitumen process stream through phase inversion process, and combinations thereof.
67. The composition of claim 1, characterized by its application to a surface being paved at a temperature in a range of about 0° C to about 120° C.
68. The composition of claim 1, characterized by its application to a surface being paved at a temperature in a range of about 85° C to about 100° C.
69. The composition of claim 1, characterized by its application to a surface being paved at a temperature in a range of about 85.degree C to about 95° C.
70. A thin lift overlay for paving applications comprising the bituminous composition of claim 1.
71. A bituminous paving block comprising the bituminous composition of claim 1.
72. A method for producing a bituminous composition comprising steps of:
(A) preparing water-in-oil bituminous dispersion comprising:
(i) bitumen, in an amount from about 75% to about 95% by total weight of the bitumen dispersion, (ii) surfactant package having an interfacial tension between the bitumen and water of less than 40 dynes/cm at a temperature of 26° C and at an aqueous concentration of less than 0.1% weight, in an amount from about 0.05% to about 2% by total weight of the bitumen dispersion, and (iii) water in an amount to complete the dispersion; and (B) producing the bituminous composition having a temperature from about 50° C
to about 120° C by mixing:
(i) the water-in-oil bitumen dispersion of step (A), having a temperature from about 75° C to a bout 95° C, in an amount from about 2% to about 10% by total weight of the bituminous composition, and (ii) aggregate and/or reclaimed asphalt pavement, having a temperature from about 60° C to about 140° C, in an amount from about 90% to about 98%
by total weight of the bituminous composition.
73. The method of claim 72, wherein the produced bituminous composition has a temperature in the range of about 55° C to about 120° C.
74. The method of claim 72, wherein the produced bituminous composition has a temperature in the range of about 60° C to about 95° C.
75. The method of claim 72, wherein the water-in-oil bitumen dispersion of step (B) (i) has a temperature in the range of about 85°C to about 95°C.
76. The method of claim 72, wherein the aggregate and/or reclaimed asphalt pavement of step (B) (ii) has a temperature in the range of about 60°C to about 120°C.
77. The method of claim 72, wherein the water-in-oil bituminous dispersion is delivered after production directly into at least one stationary or mobile asphalt mixing unit, wherein the mixing unit comprises at least one member selected from the group consisting of drum mixers, pug-mill batch mixers, dual mixers, and combinations thereof, and wherein the mobile mixing unit comprises equipment used in in-situ or in-place operations.
78. A paved road comprising at least one layer of a bituminous composition, wherein the bituminous composition comprises:
(a) ~water-in-oil bitumen dispersion in an amount from about 2% to about 10%
by total weight of the bituminous composition, wherein the dispersion comprises:
(i) ~bitumen, in an amount from about 75% to about 95% by total weight of the bitumen dispersion, (ii) ~surfactant package having an interfacial tension between the bitumen and water of less than 40 dynes/cm at a temperature of 26 C and at an aqueous concentration of less than 0.1 % weight, in an amount from about 0.05% to about 2% by total weight of the bitumen dispersion, (iii) ~water in an amount to complete the dispersion; and (b) ~aggregate and/or reclaimed asphalt pavement in an amount from about 90%
to about 98% by total weight of the bituminous composition.
79. The paved road of claim 78, wherein an amount of the bitumen in the dispersion is from about 85% to about 95% by total weight of the bitumen dispersion.
80. The paved road of claim 78, wherein an amount of the surfactant package in the dispersion is from about 0.08% to about 0.5% by total weight of the bitumen dispersion.
81. The paved road of claim 78, wherein an amount of the surfactant package in the dispersion is from about 0.1% to about 0.75% by total weight of the bitumen dispersion.
82. The paved road of claim 78, wherein the bitumen comprises at least one member selected from the group consisting of naturally occurring bitumen, bitumen derived from crude oil, petroleum pitches obtained from a cracking process, coal tar, polymer-modified bitumen, rubberized bitumen, rubberized bitumen containing recycled tire material, acid-modified bitumen, wax-modified bitumen, and combinations thereof.
83. The paved road of claim 82, wherein the naturally occurring bitumen comprises at least one member selected from the group consisting of lake asphalt, lake asphalt derivative, gilsonite, gilsonite derivative, and combinations thereof.
84. The paved road of claim 78, wherein the bitumen comprises at least one member selected from the group consisting of unmodified bitumen, modified bitumen, and combinations thereof.
85. The paved road of claim 84, wherein the modified bitumen comprises at least one additive selected from the group consisting of natural rubber, synthetic rubber, plastomer, thermoplastic resin, thermosetting resin, elastomer, and combinations thereof.
86. The paved road of claim 84, wherein the modified bitumen comprises at least one additive selected from the group consisting of styrene-butadiene-styrene, styrene-butadiene-rubber, polyisoprene, polybutylenes, butadiene-styrene rubbers, vinyl polymers, ethylene vinyl acetate, ethylene vinyl acetate derivatives, sulfur-containing crosslinker, salts acid modifier, wax modifier, and combinations thereof.
87. The paved road of claim 86, wherein the acid modifier comprises at least one member selected from the group consisting of tall oil acid, crude tall oil, tall oil pitch, phosphoric acid derivative of tall oil acids, phosphoric acid derivative of tall oil pitch, polyphosphoric acid, and combinations thereof.
88. The paved road of claim 78, wherein the surfactant package comprises at least one member selected from the group consisting of anionic surfactant, cationic surfactant, amphoteric surfactant, nonionic surfactant, and combinations thereof.
89. The paved road of claim 88, wherein the anionic surfactant comprises at least one member selected from the group consisting of saturated C-12 to C-24 fatty acids;
unsaturated C-12 to C-24 fatty acids; unsaturated C-12 to C-24 fatty acids modified with at least one member selected from the group consisting of acrylic acid, maleic anhydride, fumaric acid, diene and dieneophile; rosin acids; rosin acids modified with at least one member selected from the group consisting of acrylic acid, maleic anhydride, fumaric acid, diene and dieneophile; natural resinous polymers; Vinsol resins;

quebracho resins; tannins; lignous polymers; polyacrylic acid; polyacrylate derivatives;
alkyl sulfonates; alkyl benzyl sulfonates; alkyl sulfates; alkyl phosphonates;
alkyl phosphates; phenolic resins; and combinations thereof.
90. The paved road of claim 88, wherein the anionic surfactant comprises at least one member selected from the group consisting of complexes, addition products, and condensation products formed by a reaction of (i) at least one member selected from the group consisting of natural resinous polymer, Vinsol resin, quebracho resin, tannins and lignin; and (ii) at least one member selected from the group consisting of saturated C l 0-C24 fatty acids, unsaturated C10-C24 fatty acids, and unsaturated C10-C24 fatty acids modified with at least one member selected from the group consisting of acrylic acid, maleic anhydride, fumaric acid, dienes and dienophiles.
91. The paved road of claim 88, wherein the anionic surfactant comprises at least one member selected from the group consisting of sulfate, sulfonate, phosphate, and phosphonate derivative of at least one compound selected from the group consisting of lignin, natural resinous polymers, Vinsol resins, quebracho resins, and tannins.
92. The paved road of claim 88, wherein the anionic surfactant comprises at least one member selected from the group consisting of sulfate, sulfonate, phosphate, and phosphonate derivative of a member selected from the group consisting of complexes, addition products, and condensation products formed by a reaction of (i) at least one member selected from the group consisting of natural resinous polymer, Vinsol resin, quebracho resin, tannins and lignin; and (ii) at least one member selected from the group consisting of saturated C10-C24 fatty acids, unsaturated C10-C24 fatty acids, and unsaturated C10-C24 fatty acids modified with at least one member selected from the group consisting of acrylic acid, maleic anhydride, fumaric acid, diene and dienophile.
93. The paved road of claim 88, wherein the amphoteric surfactant comprises at least one product obtained by (i) modifying C-12 to C-24 fatty acid with at least one member selected from the group consisting of acrylic acid, maleic anhydride, fumaric acid, diene and dieneophile; and then (ii) reacting the resulting modified product with at least one member selected from the group consisting of polyethylene polyamines, lithium C-12 to C-24 alkyl amidopropyl halide methyl carboxylate betaine, sodium C-12 to C-24 alkyl amidopropyl halide methyl carboxylate betaines, potassium C-12 to C-24 alkyl amidopropyl halide methyl carboxylate betaines, lithium C-12 to C-24 alkyl amidopropyl halide phosphate betaines, sodium C-12 to C-24 alkyl amidopropyl halide phosphate betaines, potassium C-12 to C-24 alkyl amidopropyl halide phosphate betaines, lithium C-12 to C-24 alkyl amidopropyl halide sulphate betaines, sodium C-12 to C-24 alkyl amidopropyl halide sulphate betaines, and potassium C-12 to C-24 alkyl amidopropyl halide sulphate betaines.
94. The paved road of claim 88, wherein the cationic surfactant comprises at least one member selected from the group consisting of fatty imidoamines derived from (i) modifying C-12 to C-24 fatty acids with at least one member selected from the group consisting of acrylic acid, maleic anhydride, fumaric acid, diene and dieneophile, and then (ii) reacting the resulting modified products with polyalkylenepolyamines; fatty amidoamines derived from (i) modifying C-12 to C-24 fatty acids with at least one member selected from the group consisting of acrylic acid, maleic anhydride, fumaric acid, diene and dieneophile; and then (ii) reacting the resulting modified products with at least one member selected from the group consisting of polyalkylenepolyamines, saturated C-12 to C-24 alkyl monoamines, unsaturated C-12 to C-24 alkyl monoamines, saturated C-12 to C-24 alkyl polypropylenepolyamines, unsaturated C-12 to C-24 alkyl polypropylenepolyamines; polyoxyethylene derivatives made by modifying saturated C-12 to C-24 alkyl monoamines with at least one member selected from the group consisting of ethylene oxide and propylene oxide; polyoxyethylene derivatives made by modifying unsaturated C-12 to C-24 alkyl monoamines with at least one member selected from the group consisting of ethylene oxide and propylene oxide;
polyoxyethylene derivatives made by modifying saturated C-12 to C-24 alkyl polypropylenepolyamines with at least one member selected from the group consisting of ethylene oxide and propylene oxide; polyoxyethylene derivatives made by modifying unsaturated C-12 to C-24 alkyl polypropylenepolyamines with at least one member selected from the group consisting of ethylene oxide and propylene oxide;
saturated C-12 to C-24 alkyl aryl monoamines; unsaturated C-12 to C-24 alkyl aryl monoamines;

saturated C-12 to C-24 alkyl aryl polypropylenepolyamines; unsaturated C-12 to alkyl aryl polypropylenepolyamines; saturated C-12 to C-24 quaternary amines;
unsaturated C-12 to C-24 quaternary amines; amine derivatives of tannins;
amine derivatives of phenolic resins; amine derivatives of lignins; amine-modified polyacrylates; and combinations thereof.
95. The paved road of claim 88, wherein the cationic surfactant comprises at least one member selected from the group consisting of saturated C-12 to C-24 alkyl monoamines, unsaturated C-12 to C-24 alkyl monoamines, saturated C-12 to C-24 alkyl polypropylenepolyamines, unsaturated C-12 to C-24 alkyl polypropylenepolyamines, and combinations thereof.
96. The paved road of claim 88, wherein the cationic surfactant is a blend of at least one member selected from the group consisting of saturated and unsaturated C-12 to alkyl monoamines, and at least one member selected from the group consisting of saturated and unsaturated C-12 to C-24 alkyl polypropylenepolyamines.
97. The paved road of claim 88, wherein the nonionic surfactant comprises at least one member selected from the group consisting of alkylaryl polyethylene oxide derivative of alkanol; polypropylene oxide derivative of alkanol; polyethylene oxide derivative of alkanol; polypropylene oxide derivative of alkanol, wherein the alkanol has branched, linear, or cyclic structure; polyethoxylated surfactant; polypropoxylated surfactant;
sorbitan esters; monosaccharide derivative; polysaccharide derivative; protein stabilizer;
mechanical stabilizers; and combinations thereof.
98. The paved road of claim 97, wherein the protein stabilizer comprises at least one member selected from the group consisting of casein, albumin, and combinations thereof.
99. The paved road of claim 97, wherein the mechanical stabilizers comprises at least one member selected from the group consisting of phyllosilicate bentonite, montmorillonite clay, and combination thereof.
100. The paved road of claim 88, wherein the nonionic surfactant comprises at least one member selected from the group consisting of alkyl polysaccharide; alkylphenol alkoxylate; fatty alcohol ethoxylate; saturated fatty acid propoxylate;
unsaturated fatty acid propoxylate; ethoxylate of escinoleic acid; ethoxylate of castor oil;
propoxylate of escinoleic acid; propoxylate of castor oil, wherein the ethoxylate has linear, branched, or cyclic structure, and the propoxylate linear, branched, or cyclic structure.
101. The paved road of claim 78, wherein the surfactant package comprises at least one member selected from the group consisting of polyethylene-polypropylene block copolymer, hydroxypoly(oxyethylene) poly(oxypropylene) poly(oxyethylene) block copolymers, 1,2-propyleneglycol ethoxylated, 1,2-propyleneglycol propoxylated;
and synthetic block copolymer of ethylene oxide and propylene oxide having molecular weights exceeding 300 g/mole.
102. The paved road of claim 78, wherein the surfactant package comprises at least one member selected from the group consisting of decyl alcohol ethoxylates; castor oil ethoxylate; ceto-oleyl alcohol ethoxylate; ethoxylated alkanolamide; fatty alcohol alkoxylates; dinonyl phenol ethoxylate, nonyl phenol ethoxylate; sorbitan ester ethoxylate; alkyl ether sulphate; monoalkyl sulphosuccinamate; alkyl phenol ether sulphate; fatty alcohol sulphate; di-alkyl sulphosuccinate; alkyl ether phosphate; alkyl phenol ether phosphate; alkyl naphthalene sulphonate; .alpha.-olefin sulphonate; alkyl benzene sulphonic acids and salt, alkyl ampho(di)acetate; alkyl betaine; alkyl polysaccharide; alkylamine ethoxylate; amine oxide; and combinations thereof.
103. The paved road of claim 78, wherein the surfactant package comprises at least one member selected from the group consisting of oligomer, co-oligomer, ter-oligomer, tetra-oligomer, homopolymer, copolymer, terpolymer, and tetrapolymer of at least one monomer selected from the group consisting of acrylic acid, alkylacrylic acid, alkyl ester of acrylic acid, alkyl ester of alkylacrylic acid, hydroxyalkyl ester of acrylic acid, hydroxyalkyl ester of alkylacrylic acid, acrylamide, alkylacrylamide, N-alkyl acrylamide, N,N-dialkyl acrylamdide, N-hydroxyalkylacrylamide, N,N-dihydroxyalkylacrylamide, styrene, alkylstyrene, ethene, propene, higher order alkene, diene, hydroxylated propene, polyhyrdoxylated polyalkene, halogenated ethylene, halogenated propylene, and halogenated alkylidene.
104. The paved road of claim 78, wherein the surfactant package comprises at least one member selected from the group consisting of lithium, sodium, potassium, magnesium, calcium, ammonium, and alkylammonium salts of at least one member selected from the group consisting of oligomers, co-oligomers, ter-oligomers, tetra-oligomers, homopolymers, copolymers, terpolymers, and tetrapolymers of at least one monomer selected from the group consisting of acrylic acid, alkylacrylic acid, alkyl ester of acrylic acid, alkyl ester of alkylacrylic acid, hydroxyalkyl ester of acrylic acid, hydroxyalkyl ester of alkylacrylic acid, acrylamide, alkylacrylamide, N-alkyl acrylamide, N,N-dialkyl acrylamdide, N-hydroxyalkylacrylamide, N,N-dihydroxyalkylacrylamide, styrene, alkylstyrene, ethene, propene, higher order alkene, diene, hydroxylated propene, polyhyrdoxylated polyalkene, halogenated ethylene, halogenated propylene, and halogenated alkylidene.
105. The paved road of claim 78, wherein the surfactant package comprises salt obtained by a reaction of (i) at least one member selected from the group consisting of hydrogen halide, carboxylic acid, and phosphoric acid; and (ii) at least one member selected from the group consisting of oligomers, co-oligomers, ter-oligomers, tetra-oligomers, homopolymers, copolymers, terpolymers, and tetrapolymers of at least one monomer selected from the group consisting of acrylic acid, alkylacrylic acid, alkyl ester of acrylic acid, alkyl ester of alkylacrylic acid, hydroxyalkyl ester of acrylic acid, hydroxyalkyl ester of alkylacrylic acid, acrylamide, alkylacrylamide, N-alkyl acrylamide, N,N-dialkyl acrylamdide, N-hydroxyalkylacrylamide, N,N-dihydroxyalkylacrylamide, styrene, alkylstyrene, ethene, propene, higher order alkene, diene, hydroxylated propene, polyhyrdoxylated polyalkene, halogenated ethylene, halogenated propylene, and halogenated alkylidene.
106. The paved road of claim 78, wherein the surfactant package comprises at least one member selected from the group consisting of oligomeric ethyleneamine, oligomeric polypropyleneamine, hexamethylene diamine, bis-hexamethylene diamine, polyethylene polyamine, polypropylene polyamine, polyethylene/polypropylene polyamine, distillation residue from polyalkylene polyamine manufacture, and higher order polyalkylene polyamine.
107. The paved road of claim 78, wherein the surfactant package comprises salt obtained by a reaction of (i) at least one member selected from the group consisting of hydrogen halide, carboxylic acid, and phosphoric acid; and (ii) at least one member selected from the group consisting of oligomeric ethyleneamine, oligomeric polypropyleneamine, hexamethylene diamine, bis-hexamethylene diamine, polyethylene polyamine, polypropylene polyamine, polyethylene/polypropylene polyamine, distillation residue from polyalkylene polyamine manufacture, and higher order polyalkylene polyamine.
108. The paved road of claim 78, wherein the surfactant package comprises at least one member selected from the group consisting of monoethoxylated, polyethoxylated, monopropylated, and polypropylated condensate of at least one member selected from the group consisting of oligomeric ethyleneamine, oligomeric polypropyleneamine, hexamethylene diamine, bis-hexamethylene diamine, oligomeric aziridine, polyaziridine, polyethylene polyamine, polypropylene polyamine, polyethylene/polypropylene polyamine, distillation residue from polyalkylene polyamine manufacture, and higher order polyalkylene polyamine.
109. The paved road of claim 78, wherein the surfactant package comprises salt obtained by a reaction of (i) at least one member selected from the group consisting of hydrogen halide, carboxylic acid, and phosphoric acid; and (ii) at least one member selected from the group consisting of monoethoxylated , polyethoxylated, monopropylated, and polypropylated condensates of at least one compound selected from the group consisting of oligomeric ethyleneamine, oligomeric polypropyleneamine, hexamethylene diamine, bis-hexamethylene diamine, oligomeric aziridine, polyaziridine, polyethylene polyamine, polypropylene polyamine, polyethylene/polypropylene polyamine, distillation residue from polyalkylene polyamine manufacture, and higher order polyalkylene polyamine.
110. The paved road of claim 78, wherein the surfactant package comprises homolog of hydroxylalkyl amine.
111. The paved road of claim 78, wherein the surfactant package comprises salt obtained by a reaction of (i) homolog of hydroxyalkyl amine and (ii) at least one member selected from the group consisting of hydrogen halide, carboxylic acid and phosphoric acid.
112. The paved road of claim 78, wherein the surfactant package comprises at least one member selected from the group consisting of C-36 dimeric fatty acid and C-54 trimeric fatty acid.
113. The paved road of claim 78, wherein the surfactant package comprises polymeric condensation product of C-36 dimeric fatty acid and at least one member selected from the group consisting of oligomeric ethyleneamine, polyethylene polyamine, oligomeric propylamine, polypropylene polyamine, the distillation residue from polyalkylene polyamine manufacture, and higher order polyalkylene polyamine.
114. The paved road of claim 78, wherein the surfactant package comprises salt obtained by a reaction of (i) at least one member selected from the group consisting of hydrogen halide, carboxylic acid, and phosphoric acid; and (ii) at least one member selected from the group consisting of polymeric condensation product of C-36 dimeric fatty acid and at least one member selected from the group consisting of oligomeric ethyleneamine, polyethylene polyamine, oligomeric propylamine, polypropylene polyamine, the distillation residue from polyalkylene polyamine manufacture, and higher order polyalkylene polyamine.
115. The paved road of claim 78, wherein the surfactant package comprises polymeric condensation product of C-54 trimeric fatty acids and at least one member selected from the group consisting of oligomeric ethyleneamine, polyethylene polyamine, oligomeric propylamine, polypropylene polyamine, the distillation residue from polyalkylene polyamine manufacture, and higher order polyalkylene polyamine.
116. The paved road of claim 78, wherein the surfactant package comprises salt obtained by a reaction of (i) at least one member selected from the group consisting of hydrogen halide, carboxylic acid, and phosphoric acid; and (ii) at least one member selected from the group consisting of polymeric condensation product of C-54 trimeric fatty acid and at least one member selected from the group consisting of oligomeric ethyleneamine, polyethylene polyamine, oligomeric propylamine, polypropylene polyamine, the distillation residue from polyalkylene polyamine manufacture, and higher order polyalkylene polyamine.
117. The paved road of claim 78, wherein the surfactant package comprises at least one member selected from the group consisting of hydroxystearic acid, oligomer of hydroxystearic acid, and polymeric hydroxystearic acid.
118. The paved road of claim 78, wherein the surfactant package comprises polymeric condensation product formed by a reaction of (i) at least one member selected from the group consisting of ethylene amine, propylene amine, ethylene/propylene amine, oligomeric ethyleneamine, polyethylene polyamine, oligomeric propylene amine, distillation residue from polyalkylene polyamine manufacture, and higher order polyalkylene polyamine; and (ii) at least one member selected from the group consisting of hydroxystearic acid, oligomer of hydroxystearic acid, and polymeric hydroxystearic acid.
119. The paved road of claim 78, the surfactant package comprises polymeric condensation product of (i) at least one member selected from the group consisting of hydroxystearic acid, oligomers of hydroxystearic acid, and polymeric hydroxystearic acid; and (ii) at least one member selected from the group consisting of lithium hydroxide, sodium hydroxide, potassium hydroxide, and Lewis acid base.
120. The paved road of claim 78, wherein the surfactant package comprises ethoxytrimethyleneamine derivatives of C-12 to C-24 fatty amines of structure (I) wherein R = saturated or unsaturated aliphatic C-12 to C-24 having linear, branched, or cyclic structure;
x + y >= 2; and a, b >= 0.
121. The paved road of claim 78, wherein the surfactant package comprises polymeric condensation product of (i) at least one member selected from the group consisting of hydroxystearic acid, oligomers of hydroxystearic acid, and polymeric hydroxystearic acid; and (ii) at least one member selected from the group consisting of ethoxytrimethyleneamine derivatives of C-12 to C-24 fatty amines of structure (I).
122. The paved road of claim 78, wherein the surfactant package comprises propoxytrimethyleneamine derivatives of C-12 to C-24 fatty amines of structure (II) wherein R = saturated or unsaturated aliphatic C-12 to C-24 having linear, branched, or cyclic structure;
x + y >= 2; and a, b >= 0.
123. The paved road of claim 78, wherein the surfactant package comprises polymeric condensation product of (i) at least one member selected from the group consisting of hydroxystearic acid, oligomers of hydroxystearic acid, and polymeric hydroxystearic acid; and (ii) at least one member selected from the group consisting of propoxytrimethyleneamine derivative of C-12 to C-24 fatty amine of structure (II).
124. The paved road of claim 78, wherein the surfactant package comprises aliphatic diakylamine of structure (III) wherein R1, R2 = saturated or unsaturated C-12 to C-24 moieties having linear, branched, or cyclic structure.
125. The paved road of claim 78, wherein the surfactant package comprises salt obtained by the reaction of (i) at least one member selected from the group consisting of hydrogen halide, carboxylic acid, and phosphoric acid; and (ii) at least one member selected from the group consisting of saturated and unsaturated aliphatic C-12 to C-24 dialkyl amine of structure (III).
126. The paved road of claim 78, wherein the surfactant package comprises quaternary amine of structure (IV) wherein R1, R2 = saturated or unsaturated aliphatic C-12 to C-24 moieties having linear, branched, or cyclic structure; and R3, R4 = methyl or higher order homolog of saturated or unsaturated aliphatic C-12 to C-24 moieties having linear, branched, or cyclic structure.
127. The paved road of claim 78, wherein the surfactant package comprises salt obtained by the reaction of (i) at least one member selected from the group consisting of hydrogen halide, carboxylic acid, and phosphoric acid; and (ii) at least one member selected from the group consisting of saturated an unsaturated aliphatic C-12 to C-24 alkyl quaternary amine of structure (IV).
128. The paved road of claim 78, wherein the surfactant package comprises quaternary amine of structure (V) wherein:

R1, R2 = saturated or unsaturated aliphatic C-12 to C-24 moieties having linear, branched, or cyclic structure; and R3, R4 = ethoxy moieties, propoxy moieties, or combinations thereof.
129. The paved road of claim 78, wherein the surfactant package comprises salt obtained by the reaction of (i) at least one member selected from the group consisting of hydrogen halide, carboxylic acid, and phosphoric acid; and (ii) at least one member selected from the group consisting of saturated an unsaturated aliphatic C-12 to C-24 alkyl quaternary amine of structure (V).
130. The paved road of claim 78, wherein the surfactant package comprises bisamide formed by a reaction of polyalkylenepolyamine and adduct obtained by modifying at least one member selected from the group consisting of saturated aliphatic C-12 to C-24 fatty acid unsaturated aliphatic C-12 to C-24 fatty acids with at least one member selected from the group consisting of acrylic acid, maleic anhydride, fumaric acid, diene and dieneophiles, and wherein the C-12 to C-24 fatty acid has linear, branched, or cyclic structure.
131. The paved road of claim 78, wherein the surfactant package comprises salt obtained by the reaction of (i) at least one member selected from the group consisting of hydrogen halide, carboxylic acid, and phosphoric acid; and (ii) at least one member selected from the group consisting of bisamide formed by a reaction of polyalkylenepolyamine and adduct obtained by modifying at least one member selected from the group consisting of saturated aliphatic C-12 to C-24 fatty acid unsaturated aliphatic C-12 to C-24 fatty acids with at least one member selected from the group consisting of acrylic acid, maleic anhydride, fumaric acid, diene and dieneophiles, and wherein the C-12 to C-24 fatty acid has linear, branched, or cyclic structure.
132. The paved road of claim 78, wherein the surfactant package comprises dialkylarylamine.
133. The paved road of claim 78, wherein the surfactant package comprises salt obtained by the reaction of at least one member selected from the group consisting of hydrogen halide, carboxylic acid, and phosphoric acid; and dilakylarylamine.
134. The paved road of claim 78, wherein the surfactant package has an interfacial tension between the bitumen and water of less than 40 dynes/cm at a temperature of 26° C and at an aqueous concentration of less than 0.1 % weight.
135. The paved road of claim 78, wherein the surfactant package has an interfacial tension between the bitumen and water of less than 30 dynes/cm at a temperature of 26° C and at an aqueous concentration of less than 0.1 % weight.
136. The paved road of claim 78, wherein the surfactant package has an interfacial tension between the bitumen and water of less than 20 dynes/cm at a temperature of 26° C and at an aqueous concentration of less than 0.1 % weight.
137. The paved road of claim 78, wherein the surfactant package has an interfacial tension between the bitumen and water of less than 10 dynes/cm at a temperature of 26° C and at an aqueous concentration of less than 0.1 % weight.
138. The paved road of claim 78, wherein the surfactant package has an interfacial tension between the bitumen and water of less than 5 dynes/cm at a temperature of 26° C and at an aqueous concentration of less than 0.1 % weight.
139. The paved road of claim 78, wherein the water-in-oil bitumen dispersion comprises organic solvent in an amount of less than or equal to 4% by weight by total weight of the dispersion.
140. The paved road of claim 78, wherein the water-in-oil bitumen dispersion comprises organic solvent in an amount of less than 1% by weight by total weight of the dispersion.
141. The paved road of claim 78, wherein the aggregate comprises at least one member selected from the group consisting of dense-graded aggregate, gap-graded aggregate, open-graded, stone-matrix aggregate, reclaimed asphalt paving material, reclaimed roofing shingles, and combinations thereof.
142. The paved road of claim 78, wherein the bituminous composition further comprises additive for enhancing processability or improving performance of the composition.
143. The paved road of claim 78, wherein the water-in-oil bitumen dispersion is using high-shear mixing process comprising at least one member selected from the group consisting of high-shear colloid mill dispersion, high-shear static mixer dispersion, high-shear roto-mixer dispersion, high-shear dispersion via injection of the water into a bitumen process stream through phase inversion process, and combinations thereof.
144. The paved road of claim 78, wherein the bituminous composition is applied to its surface at a temperature in a range of about 0° C to about 120°
C.
145. The paved road of claim 78, wherein the bituminous composition is applied to its surface at a temperature in a range of about 85° C to about 100°
C.
146. The paved road of claim 78, wherein the bituminous composition is applied to its surface at a temperature in a range of about 85° C to about 95°
C.
147. The paved road of claim 78, wherein during preparation of the bituminous composition, the water-in-oil bitumen dispersion has a temperature in a range of about 75°C to about 95°C, and the aggregate and/or reclaimed asphalt pavement has a temperature in a range of about 60°C to about 140°C.
CA2609860A 2006-03-28 2007-03-26 Water-in-oil bitumen dispersions and methods for producing paving compositions from the same Active CA2609860C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA2702151A CA2702151C (en) 2006-03-28 2007-03-26 Water-in-oil bitumen dispersions and methods for producing paving compositions from the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/391,146 US7297204B2 (en) 2004-02-18 2006-03-28 Water-in-oil bituminous dispersions and methods for producing paving compositions from the same
US11/391,146 2006-03-28
PCT/US2007/064897 WO2007112335A2 (en) 2006-03-28 2007-03-26 Water-in-oil bitumen dispersions and methods for producing paving compositions from the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CA2702151A Division CA2702151C (en) 2006-03-28 2007-03-26 Water-in-oil bitumen dispersions and methods for producing paving compositions from the same

Publications (2)

Publication Number Publication Date
CA2609860A1 true CA2609860A1 (en) 2007-10-04
CA2609860C CA2609860C (en) 2011-12-06

Family

ID=38541836

Family Applications (2)

Application Number Title Priority Date Filing Date
CA2609860A Active CA2609860C (en) 2006-03-28 2007-03-26 Water-in-oil bitumen dispersions and methods for producing paving compositions from the same
CA2702151A Active CA2702151C (en) 2006-03-28 2007-03-26 Water-in-oil bitumen dispersions and methods for producing paving compositions from the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
CA2702151A Active CA2702151C (en) 2006-03-28 2007-03-26 Water-in-oil bitumen dispersions and methods for producing paving compositions from the same

Country Status (15)

Country Link
US (2) US7297204B2 (en)
EP (4) EP2441804B1 (en)
JP (1) JP4748818B2 (en)
CN (2) CN101321814B (en)
AT (1) ATE479727T1 (en)
AU (2) AU2007230689B2 (en)
BR (1) BRPI0702862B1 (en)
CA (2) CA2609860C (en)
DE (1) DE602007008810D1 (en)
DK (1) DK1915420T3 (en)
ES (1) ES2352594T3 (en)
MX (1) MX281443B (en)
PL (1) PL1915420T3 (en)
WO (1) WO2007112335A2 (en)
ZA (1) ZA200709624B (en)

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2141204B9 (en) * 2004-02-18 2014-08-27 MeadWestvaco Corporation Method for producing bituminous compositions
US7833338B2 (en) 2004-02-18 2010-11-16 Meadwestvaco Packaging Systems, Llc Method for producing bitumen compositions
US7297204B2 (en) 2004-02-18 2007-11-20 Meadwestvaco Corporation Water-in-oil bituminous dispersions and methods for producing paving compositions from the same
FR2869910B1 (en) * 2004-05-04 2006-07-14 Appia AQUEOUS BITUMINOUS EMULSION
CA2606755C (en) * 2005-05-02 2013-08-27 Innophos, Inc. Modified asphalt binder material using crumb rubber and methods of manufacturing a modified asphalt binder
DK2574639T3 (en) 2005-07-26 2019-07-15 Knauf Insulation Gmbh Method for making glass fiber insulation products
US8454739B2 (en) * 2005-09-12 2013-06-04 Alm Holding Co. Bituminous paving composition and process for bituminous paving
US8454740B2 (en) * 2005-09-12 2013-06-04 Alm Holding Co. Bituminous paving composition and process for bituminous paving
CA2648709A1 (en) 2006-04-07 2007-10-18 Basf Se Electrically neutral dispersions and method of preparing same
FR2901801B1 (en) * 2006-06-06 2009-06-12 Ceca Sa Sa BITUMINOUS PRODUCTS AND AQUEOUS EMULSIONS BASED ON BITUMINOUS PRODUCTS AND USES THEREOF
WO2008089847A1 (en) 2007-01-25 2008-07-31 Knauf Insulation Limited Composite wood board
CN101668713B (en) 2007-01-25 2012-11-07 可耐福保温材料有限公司 Mineral fibre board
EP2108006B8 (en) 2007-01-25 2020-11-11 Knauf Insulation GmbH Binders and materials made therewith
EP2137223B1 (en) 2007-04-13 2019-02-27 Knauf Insulation GmbH Composite maillard-resole binders
AU2008280128C1 (en) 2007-07-26 2015-05-14 Akzo Nobel N.V. Adhesion and cohesion modifiers for asphalt
GB0715100D0 (en) 2007-08-03 2007-09-12 Knauf Insulation Ltd Binders
US7815725B2 (en) * 2007-09-07 2010-10-19 Alm Holding Co. Warm asphalt binder compositions containing lubricating agents
EP2055758A1 (en) * 2007-10-31 2009-05-06 S.A. Imperbel N.V. A bituminous glue.
WO2009058033A1 (en) * 2007-10-31 2009-05-07 Downer Edi Works Limited Bitumen supply and grading method and apparatus
EP2062943A1 (en) * 2007-11-14 2009-05-27 Akzo Nobel N.V. Asphalt modifiers for "warm mix" applications including adhesion promoter
ATE517970T1 (en) 2008-02-20 2011-08-15 Ceca Sa BITUMEN CONTAINING COMPOSITIONS
CN106638210A (en) 2008-02-22 2017-05-10 Alm控股公司 Paving method of bituminous mixtures at reduced temperatures
FR2930253B1 (en) * 2008-04-18 2011-10-28 Total France COLD BITUMINOUS ENROBES.
CN102089388B (en) * 2008-04-30 2014-09-03 莱特高级沥青系统公司 System and method for pre-treatment of rubber-modified asphalt cement, and emulsions thereof
MX2008006540A (en) * 2008-05-21 2009-11-23 Francisco Andres Alfonsin Pym Method for recycling oily waste in order to produce a multi-use dry-type modified pavement.
MX2011001290A (en) * 2008-08-05 2011-06-21 A L M Holding Company Process for cold-in-place recycling using foamed asphalt and lubrication additive.
EP2166039A1 (en) 2008-09-19 2010-03-24 Ceca S.A. Preparation process of asphalt mixtures
MX2011003155A (en) 2008-09-24 2011-10-11 Wright Advanced Asphalt Systems System and method for high throughput preparation of rubber-modified asphalt cements.
US8536255B2 (en) 2008-10-01 2013-09-17 A.L.M. Holding Company Stable emulsions for producing polymer modified asphalt
EP2208768B1 (en) * 2009-01-16 2013-03-27 S.A. Imperbel N.V. A bituminous cold glue
CN102325842B (en) 2009-02-19 2014-03-12 米德韦斯瓦科公司 Method for producing bituminous paving compositions
US20100222469A1 (en) * 2009-02-27 2010-09-02 Semmaterials, L.P. A crack resistant layer with good binder fracture energy properties and method of selecting same
BRPI1015286A2 (en) * 2009-04-07 2016-04-19 Andrey Vorobiev composition for improving stability and operational performance and reducing the environmental impact of asphalt mixtures "
US8906152B2 (en) * 2009-06-19 2014-12-09 Innophos, Inc. Reclaimed asphalt pavement containing polyphosphoric acid modified binder
FR2947826B1 (en) 2009-07-08 2012-04-20 Ceca Sa MIXTURE OF ADDITIVES FOR THE PREPARATION OF COATS
FR2948944B1 (en) 2009-08-04 2012-10-05 Ceca Sa SUPRAMOLECULAR POLYMER-CONTAINING BITUMINOUS COMPOSITION
EP2462169B1 (en) 2009-08-07 2019-02-27 Knauf Insulation Molasses binder
FR2949232B1 (en) 2009-08-18 2011-10-28 Ceca Sa BITUMINOUS COMPOSITION CONTAINING SUPRAMOLECULAR POLYMER
US8198350B2 (en) * 2010-02-11 2012-06-12 Icl Performance Products, Lp Polymer-modified asphalt with a crosslinking agent and methods of preparing
KR101835899B1 (en) 2010-05-07 2018-03-07 크나우프 인설레이션, 인크. Carbohydrate binders and materials made therewith
PT2566904T (en) * 2010-05-07 2021-08-30 Knauf Insulation Carbohydrate polyamine binders and materials made therewith
EP2388296A1 (en) * 2010-05-18 2011-11-23 Sorigué, S.A. Composite material for road, process for obtaining it, bituminous mixture contained therein and its use
EP2576882B1 (en) 2010-06-07 2015-02-25 Knauf Insulation Fiber products having temperature control additives
US8859649B2 (en) 2010-07-26 2014-10-14 Zydex Industries Asphalt compositions including a disperion of microgels dipersed in an oil
US8722771B2 (en) 2010-11-03 2014-05-13 Saudi Arabian Oil Company Sulfur modified asphalt for warm mix applications
BR112013018477A2 (en) 2011-04-13 2016-10-18 Quimigel Indústria E Comércio Ltda warm asphalt mix compositions, process for obtaining them, use on surfaces
US20140186635A1 (en) 2011-05-07 2014-07-03 Knauf Insulation Liquid high solids binder composition
WO2012160555A1 (en) * 2011-05-24 2012-11-29 Dsi - Dimona Silica Industries Ltd. Process for recycling asphalt mixes
US9534146B2 (en) 2011-06-24 2017-01-03 Akzo Nobel Chemicals International B.V. Additives for bitumen containing compositions
FR2981347B1 (en) * 2011-10-12 2015-10-16 Ceca Sa ADDITIVE FOR COATS CONTAINING RECYCLED BITUMINOUS PRODUCTS
US8789773B2 (en) 2011-11-01 2014-07-29 Crown Iron Works Company Recycling process for discarded roof shingles
US10259987B2 (en) * 2011-12-21 2019-04-16 Rhodia Operations Amine adducts, derivatives thereof, methods for making such adducts and derivatives, and methods for using such adducts and derivatives
WO2013115825A1 (en) * 2012-02-03 2013-08-08 Arlis Kadrmas Compositions comprising asphalt and electrically neutral copolymer dispersions
CN104203995A (en) 2012-02-07 2014-12-10 沙特阿拉伯石油公司 Sulfur modified polyvinyl acetate (PVAc)
GB201206193D0 (en) 2012-04-05 2012-05-23 Knauf Insulation Ltd Binders and associated products
WO2014001384A1 (en) * 2012-06-26 2014-01-03 Shell Internationale Research Maatschappij B.V. Asphalt composition
GB201214734D0 (en) 2012-08-17 2012-10-03 Knauf Insulation Ltd Wood board and process for its production
PL2928936T3 (en) 2012-12-05 2022-12-27 Knauf Insulation Sprl Binder
US10584247B2 (en) 2012-12-28 2020-03-10 Honeywell International Inc. Methods for reducing asphalt pavement thickness
NL2010586C2 (en) * 2013-04-08 2014-10-09 Konink Bam Groep Nv Mastic composition for asphalt mixtures and process for making such a mastic composition.
US9856377B1 (en) 2013-09-20 2018-01-02 Dennis D. Krivohlavek And Lucindy June Krivohlavek Revocable Family Trust Mix in place mixing grade emulsion for asphalt or bitumen applications
US20180072888A1 (en) * 2013-09-20 2018-03-15 Dennis D. Krivohlavek And Lucindy June Krivohlavek Revocable Family Trust Mix in place mixing grade emulsion for asphalt or bitumen applications
CN104559248B (en) * 2013-10-22 2017-02-22 中国石油化工股份有限公司 Cationic pitch warm mixing agent and preparation method thereof
CN104559243A (en) * 2013-10-22 2015-04-29 中国石油化工股份有限公司 Preparation method of sulfur asphalt and mixture
CN104559249B (en) * 2013-10-22 2017-06-20 中国石油化工股份有限公司 A kind of anion non-ionic composite asphalt warm-mix agent and preparation method thereof
CN104556781B (en) * 2013-10-22 2018-06-15 中国石油化工股份有限公司 A kind of non-ionic asphalt warm-mix agent and preparation method thereof
CN104559231B (en) * 2013-10-22 2018-07-20 中国石油化工股份有限公司 A kind of sulphur emulsified asphalt and preparation method thereof
CN104559236B (en) * 2013-10-22 2018-01-16 中国石油化工股份有限公司 A kind of emulsified asphalt and preparation method thereof
CN103601956B (en) * 2013-11-25 2015-08-05 抚顺市望花演武化工厂 A kind of road raw material, the waterproof roll production method of environment-friendly modified polymer bituminous resins
US11401204B2 (en) 2014-02-07 2022-08-02 Knauf Insulation, Inc. Uncured articles with improved shelf-life
GB201408909D0 (en) 2014-05-20 2014-07-02 Knauf Insulation Ltd Binders
US9518183B2 (en) * 2014-07-31 2016-12-13 Gregory Cole Pot hole filler composition and method of making same
KR101740910B1 (en) * 2015-03-23 2017-05-29 신명탑건설(주) Composition of asphalt concrete for repairing road pavement
GB201517867D0 (en) 2015-10-09 2015-11-25 Knauf Insulation Ltd Wood particle boards
GB201610063D0 (en) 2016-06-09 2016-07-27 Knauf Insulation Ltd Binders
FR3056609B1 (en) 2016-09-26 2018-09-14 Eurovia METHOD FOR INDENTING A HIGH-DENSITY RECYCLABLE HEAT EXCHANGER IN TERRESTRIAL INFRASTRUCTURE
GB201701569D0 (en) 2017-01-31 2017-03-15 Knauf Insulation Ltd Improved binder compositions and uses thereof
CN106904871A (en) * 2017-02-15 2017-06-30 上海浦东路桥建设股份有限公司 Draining reclaimed asphalt mixture and its mixing proportion design method
FR3065222B1 (en) 2017-04-18 2019-06-21 Eurovia ASPHALTIC PRODUCTS HAVING IMPROVED PROPERTIES OF HANDLING
FR3067370B1 (en) 2017-06-07 2019-07-26 Eurovia METHOD FOR MANUFACTURING A ROOF COATING COMPRISING A HEAT EXCHANGER DEVICE
EP3731958B1 (en) 2017-12-28 2024-02-07 Ecolab USA, Inc. Surfactant compositions and uses as inverters
GB201804908D0 (en) 2018-03-27 2018-05-09 Knauf Insulation Ltd Binder compositions and uses thereof
GB201804907D0 (en) 2018-03-27 2018-05-09 Knauf Insulation Ltd Composite products
WO2020009895A1 (en) * 2018-07-02 2020-01-09 Heritage Research Group Composition and method for treating an asphalt pavement with a void-filling asphalt emulsion
CN108840612B (en) * 2018-07-25 2020-11-10 北京通途技术有限公司 Preparation method of high-cohesiveness and high-strength pavement repairing material
US11142713B2 (en) 2018-09-27 2021-10-12 Ecolab Usa Inc. Asphaltene-inhibiting method using aromatic polymer compositions
CN109486181A (en) * 2018-11-22 2019-03-19 江苏利德尔新材料科技有限公司 A kind of preparation method of antistatic high fire-retardance MC nylon composite materials
US11814506B2 (en) 2019-07-02 2023-11-14 Marathon Petroleum Company Lp Modified asphalts with enhanced rheological properties and associated methods
CN110746838A (en) * 2019-10-08 2020-02-04 曾坤宁 High-stability asphalt separant
US11607654B2 (en) 2019-12-30 2023-03-21 Marathon Petroleum Company Lp Methods and systems for in-line mixing of hydrocarbon liquids
CA3103416C (en) 2019-12-30 2022-01-25 Marathon Petroleum Company Lp Methods and systems for inline mixing of hydrocarbon liquids
CA3104319C (en) 2019-12-30 2023-01-24 Marathon Petroleum Company Lp Methods and systems for spillback control of in-line mixing of hydrocarbon liquids
US11559774B2 (en) 2019-12-30 2023-01-24 Marathon Petroleum Company Lp Methods and systems for operating a pump at an efficiency point
CN111690152B (en) * 2020-07-08 2023-03-24 中铁四局集团有限公司 Rubber modified asphalt latex and preparation method and application thereof
KR102395274B1 (en) * 2021-02-04 2022-05-09 주식회사 오일스톤 Medium temperature recycled asphalt additives
US11578836B2 (en) 2021-03-16 2023-02-14 Marathon Petroleum Company Lp Scalable greenhouse gas capture systems and methods
US11655940B2 (en) 2021-03-16 2023-05-23 Marathon Petroleum Company Lp Systems and methods for transporting fuel and carbon dioxide in a dual fluid vessel
US11447877B1 (en) 2021-08-26 2022-09-20 Marathon Petroleum Company Lp Assemblies and methods for monitoring cathodic protection of structures
CN114772980B (en) * 2022-04-21 2023-06-23 天津市交通运输基础设施养护集团有限公司 High-viscosity cold-mixed cold-laid fine and thin-overlay asphalt concrete and preparation method thereof
US11686070B1 (en) 2022-05-04 2023-06-27 Marathon Petroleum Company Lp Systems, methods, and controllers to enhance heavy equipment warning
CN115806422A (en) * 2022-12-15 2023-03-17 天津新展高速公路有限公司 Semi-flexible anti-rutting pavement material and preparation method thereof

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2508430A (en) * 1949-02-17 1950-05-23 California Research Corp Bitumen-treating agent
US3520709A (en) 1966-09-06 1970-07-14 Grefco Adhesives for porous structures
US4523957A (en) * 1980-08-14 1985-06-18 Chevron Research Company Open-graded asphalt emulsion mixes
US4478642A (en) * 1983-06-20 1984-10-23 Westvaco Corporation Amphoterics as emulsifiers for bituminous emulsions
JPS60168759A (en) * 1984-02-13 1985-09-02 Toa Doro Kogyo Kk W/o bituminous emulsion
US4692350A (en) 1984-12-12 1987-09-08 Mobil Oil Corporation Asphalt coating method
US4597799A (en) * 1985-02-21 1986-07-01 Westvaco Corporation Cationic bituminous emulsions and emulsion aggregate slurries
JPS63248854A (en) * 1987-04-03 1988-10-17 Masatoshi Fujita Curable asphalt composition
US4789402A (en) 1987-04-10 1988-12-06 The Lubrizol Corporation Mannich reaction product as asphalt antistripping agent
US5085704A (en) * 1989-03-14 1992-02-04 Westvaco Corporation Accelerators for cationic aqueous bituminous emulsion-aggregate slurries
US5849070A (en) 1990-04-18 1998-12-15 Colas S.A. Compound binder, process for obtaining it and its application in highway surfacings
JP2987916B2 (en) * 1990-10-24 1999-12-06 ジェイエスアール株式会社 Asphalt modifier and asphalt composition
EP0491107B1 (en) 1990-12-19 1994-11-23 Aktiebolaget Nynäs Petroleum Two-component composition comprising a bitumen emulsion and a breaking additive, process for its preparation and the use of said two-component composition.
GB2255291A (en) 1991-05-03 1992-11-04 Exxon Research Engineering Co Bitumen emulsions.
JPH06116333A (en) * 1992-10-02 1994-04-26 Elf Atochem Japan Kk Improved asphalt composition for pavement
JP3274216B2 (en) * 1993-03-31 2002-04-15 三井化学株式会社 Semi-rigid pavement method
JPH0868024A (en) * 1994-08-26 1996-03-12 Kao Corp Method of retaining draining and permeability functions of paved material
US5743950A (en) * 1995-01-12 1998-04-28 Shell Oil Company Process for preparing an asphalt composition
EP0854895B1 (en) * 1995-10-09 2001-07-25 Kao Corporation Liquid amine compound and bituminous emulsifier produced using same
JP3438065B2 (en) * 1998-01-27 2003-08-18 独立行政法人港湾空港技術研究所 Airport pavement pavement structure and its construction method
JP2918876B1 (en) * 1998-03-09 1999-07-12 株式会社近代化成 Paving materials
US6143812A (en) * 1998-08-25 2000-11-07 Wacker Silicones Corporation Asphalt release agents and use thereof
JP4053189B2 (en) * 1999-06-24 2008-02-27 東邦化学工業株式会社 Manufacturing method of room temperature pavement material
RU2194062C2 (en) * 1999-10-05 2002-12-10 Научно-производственный центр "Инвента" Inverse-type bitumen emulsion
NO311140B1 (en) * 2000-02-25 2001-10-15 Kolo Veidekke As Process and system for the production of a lukewarm foam asphalt and its use
JP3798230B2 (en) * 2000-07-06 2006-07-19 花王株式会社 Asphalt emulsifying dispersant
US20020058734A1 (en) 2000-09-01 2002-05-16 Harlan C. Wayne Asphalt emulsion
JP2002138413A (en) * 2000-10-27 2002-05-14 Nichireki Co Ltd Method for repairing sidewalk pavement
JP2002138412A (en) * 2000-10-27 2002-05-14 Nichireki Co Ltd Method for repairing roadway pavement
JP4115184B2 (en) * 2001-07-18 2008-07-09 旭化成ケミカルズ株式会社 Asphalt composition
FI20011776A (en) 2001-09-07 2003-03-08 Tieliikelaitos A method for making a structural layer of a traffic lane and composite mass
JP3996790B2 (en) * 2002-02-19 2007-10-24 旭化成ケミカルズ株式会社 Asphalt composition
JP2003277613A (en) * 2002-03-22 2003-10-02 Kao Corp Method for producing asphalt modifier
CN1395024A (en) * 2002-08-19 2003-02-05 石油大学(华东) Viscous oil emulsion phase-inversion profile control water blockoff
NO20034089L (en) 2002-09-16 2004-03-17 Shell Int Research Process for the preparation of asphalt
US20040197312A1 (en) 2003-04-02 2004-10-07 Marina Moskalenko Cytokine-expressing cellular vaccine combinations
US7114843B2 (en) 2003-07-21 2006-10-03 Htp Est Method of manufacturing a bituminous coated aggregate mix
US7455476B2 (en) * 2003-12-18 2008-11-25 Kmc Enterprises, Inc. Method of reconstructing a bituminous-surfaced pavement
EP2141204B9 (en) * 2004-02-18 2014-08-27 MeadWestvaco Corporation Method for producing bituminous compositions
US7297204B2 (en) 2004-02-18 2007-11-20 Meadwestvaco Corporation Water-in-oil bituminous dispersions and methods for producing paving compositions from the same
US7833338B2 (en) * 2004-02-18 2010-11-16 Meadwestvaco Packaging Systems, Llc Method for producing bitumen compositions
JP2006022159A (en) * 2004-07-06 2006-01-26 Kao Corp Modified asphalt additive
FR2883882B1 (en) 2005-04-05 2007-05-25 Ceca S A Sa ADDITIVES FOR BITUMINOUS PRODUCTS, BITUMINOUS PRODUCTS CONTAINING SAME AND USES THEREOF
FR2884264B1 (en) 2005-04-08 2015-05-15 Appia PROCESS FOR PRODUCING A BITUMINOUS SPRAY
US8454739B2 (en) * 2005-09-12 2013-06-04 Alm Holding Co. Bituminous paving composition and process for bituminous paving
US8454740B2 (en) 2005-09-12 2013-06-04 Alm Holding Co. Bituminous paving composition and process for bituminous paving

Also Published As

Publication number Publication date
CA2609860C (en) 2011-12-06
US7297204B2 (en) 2007-11-20
WO2007112335A2 (en) 2007-10-04
EP2913365A1 (en) 2015-09-02
WO2007112335A3 (en) 2008-01-03
CN101857396B (en) 2016-05-18
ES2352594T3 (en) 2011-02-21
EP1915420B9 (en) 2011-01-19
EP2251379A1 (en) 2010-11-17
ATE479727T1 (en) 2010-09-15
DK1915420T3 (en) 2011-01-03
US20070082983A1 (en) 2007-04-12
ZA200709624B (en) 2009-05-27
EP2441804B1 (en) 2014-12-03
EP1915420A4 (en) 2009-03-04
US20080194738A1 (en) 2008-08-14
CN101321814A (en) 2008-12-10
CN101321814B (en) 2011-06-29
CA2702151A1 (en) 2007-10-04
AU2010241217B2 (en) 2013-01-10
BRPI0702862B1 (en) 2018-05-29
MX281443B (en) 2010-11-26
PL1915420T3 (en) 2011-04-29
AU2010241217A1 (en) 2010-11-25
US7951857B2 (en) 2011-05-31
EP1915420B1 (en) 2010-09-01
AU2007230689A1 (en) 2007-10-04
EP2251379B1 (en) 2015-01-21
AU2007230689B2 (en) 2010-09-23
JP2009531565A (en) 2009-09-03
DE602007008810D1 (en) 2010-10-14
EP2441804A1 (en) 2012-04-18
CA2702151C (en) 2014-01-21
MX2007014853A (en) 2008-02-14
CN101857396A (en) 2010-10-13
BRPI0702862A (en) 2008-05-27
JP4748818B2 (en) 2011-08-17
EP1915420A2 (en) 2008-04-30

Similar Documents

Publication Publication Date Title
CA2609860A1 (en) Water-in-oil bitumen dispersions and methods for producing paving compositions from the same
CA2684495A1 (en) Method for producing bitumen compositions
US5776234A (en) Anionic bituminous emulsions with improved adhesion
US20170190619A1 (en) Adhesive compositions with tunable rheological properties
AU2013202839B2 (en) Water-in-oil bitumen dispersions and methods for producing paving compositions from the same
JP3143085B2 (en) Method for improving adhesion between asphalt and aggregate in anionic bitumen emulsion and adhesion promoter used in the method
US5670562A (en) Adhesion enhancers for anionic bituminous emulsions
EP3394177A1 (en) Latexes containing polyphosphoric acid for asphalt modification
US4657595A (en) Quick setting anionic bituminous emulsions
US5668197A (en) Anionic bituminous emulsions
US20060229389A1 (en) Extended life slurry seal composition
WO2005100481A1 (en) Extended life slurry seal composition
US20230303842A1 (en) Block-copolymer dispersants in styrene butadiene rubber (sbr) latexes for use in asphalt emulsion applications
MXPA97006119A (en) Anionic bituminous emulsions improves
MXPA97006996A (en) Promoters of accession for emulsions bituminosasanioni
MXPA97007200A (en) Adhesion improvers for bituminous emulsions anioni

Legal Events

Date Code Title Description
EEER Examination request