CA2614986A1 - Electrooptical communications and power cable - Google Patents

Electrooptical communications and power cable Download PDF

Info

Publication number
CA2614986A1
CA2614986A1 CA002614986A CA2614986A CA2614986A1 CA 2614986 A1 CA2614986 A1 CA 2614986A1 CA 002614986 A CA002614986 A CA 002614986A CA 2614986 A CA2614986 A CA 2614986A CA 2614986 A1 CA2614986 A1 CA 2614986A1
Authority
CA
Canada
Prior art keywords
communications
power cable
metal wires
wires
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002614986A
Other languages
French (fr)
Inventor
Thomas Rytz
Martin Rutschi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brugg Kabel AG
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2614986A1 publication Critical patent/CA2614986A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4415Cables for special applications
    • G02B6/4416Heterogeneous cables

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Communication Cables (AREA)
  • Insulated Conductors (AREA)

Abstract

The invention relates to an electrooptical communications and power cable (24) comprising at least one light waveguide (10), which is arranged in a central multifibre bundle (20) consisting of a smooth flexible metal tube (18) and provided with a primary jacket (16). Two layer (26, 32) of stranded metal wires are extended coaxially to said multifibre bundle (20). The metal wires are also used for relieving a traction and /or transversal load. The internal metal wire layer (26) consists of metal wires (28) exhibiting a good electric conductivity. The external metal wire layer (32) comprises the metal wires (28), which are arranged alternately individually and/or groupwisely and exhibit a good electrical conductivity and metal wires (34) exhibiting a high traction strength. The two wire layers (36, 32) are held at a distance (a) from each other by an insulating layer (30). The inventive communications and power cable (24) is used first of all for an electrooptical power connection between two voltage converters (44, 46) in an intelligent system.

Description

Electrooptical Commux:ications and power cable The invention relates to an electrooptzcal communications and power cable, which comprises, in a central bundle core comprising a smooth, flexible metal tube, at least one optical waveguide with a primary sheathing, two layers running coaxially with respect to the bundle core and comprising stranded metal wires, which are also used as relief from tensile and/or transverse forces, and an outer sheath. Furthermore, the invention relates to a use for the electrooptical cQmmunications and power cable.

optioal cables with optical waveguides, in particular optical f ibers , have been known for many decades.The data are transmitted not in the form of electrical pulses through metal conductors but as light quanta in optical waveguides. Interfaces are electrooptical couplings, which convert electrical pulses into light quanta, and vice versa_ Modern optical waveguides and optical communications and power cables with at least one optical waveguide are known, for example, from the company publication Kommunikationskabel/CommuniCation Cables" by Brugg Kabel AG, CH-5201 Brugg, revised edition 2004.

An optical waveguide of the known type comprises an optical core and an optical sheath, in practice an optical fiber with an outer sheath of in total approximately 125 m in diameter_ A primary sheathing of the optical fibers made from a plastic has an outer diameter of 250 ~cm, for example. Depending on the use, cables with single-mode fibers or multi-mode fibers are used; further details are given in the previously mentiozled company publication, pages 6-9.

Electrooptical cables comprise, in additxon to at least wo 2007/006167 PCT/CH2006/000361 one optical waveguide, electrical conductors which are used, for example, for supplying voltage or for transmitting electrical signals. The electrical conductors are arranged on the optical cable or connected to it. Electrooptical communications and power cables are also known as hybrid cables.

If the bundle core comprises a metal tube having a high electrical conductivity, this metal tube itself can be used as the electrical conductor. Conventional steel tubes are not very suitable or not suitable at all for this purpose owing to the low electrical conductivity, howevex.

It is known from EP 0816885 B1 and DE 4236608 Al. to strand a bundle core with optical conductors with at least one metallic armoring layer. As a result, firstly the tensile force is increased and secondly the bundle core is better protected against transverse forces.
EP 0371660 Al has described an electrooptical cable, which comprises a central bundle core with a thin steel tube. This thin steel tube is surrounded by a dielectric layer, in which copper litz wires having a high electrical conductivity are embedded. A two-layered armor comprising steel wires is arranged outside the dielectric layer. For their part these steel wires are embedded in the protective sheathing.

The invention is based on the object of further improving an electrooptical cable of the type mentioned at the outset and extending its field ot use.

The object is achieved according to the invention by virtue of the fact that the inner wire layer comprises electrically highly conductive metal wires, and the outer wire layer comprising metal wires arranged in alternating fashion individually and/or in groups and having a high electrical conductivity, on the one hand, and metal wires having a high tensile strength, on the other hand, are held at a distance by means of an insulating layer. Specific and further-reaching embodiments of the electrical communications and power cable are the subject matter of dependent patent clazms.

I-Tere and in the text which follows the term "metal wi.res" also includes metal litz wires with comparable electrical and meChanical properties. In electrooptical communications and power cables, the signals are transmitted optically, and possibly even electrically if necessary, and the power is transmitted exclusively electrically.

Metals with an electrical resistivity of at most 5 x 10-5 SZ.mm, in particular (1-3) x 10-5 S2.mm, are preferably used as the electrically highly conductive metal wires. Taking into consideration the material costs, in particular copper, copper alloys, aluminum and aluminum alloys fall into this group. It is naturally also possible for composite wires coated with one of these electrically highly conductive metals, in particular with a steel care, to be used.

The electrically less conductive, outer metal wires have a high tensile strength of at least approximately 700 N/mm; wires made from a stainless steel are particularly well suited.

The alternating arrangement of the two different metal wires of the outer wire layer can take place in a wide variety of ways; f or reasons of simplicity the electrically highly conductive wires are denoted by Cu, and the wires with high tensile strength are denoted by Fe, for example - . . .Fe.Cu_Fe.Cz.Fe.Cu . . .
- ...Fe.Fe.Cu.Cu.Fe.Fe.Cu.Cu...
- ...Fe.Fe.Cu.Fe.Cu.Fe.Fe.Cu...
- ...Cu.Cu.Fe.Cu.Cu.Fe.Cu.Cu.Fe...
- .,,Fe.Fe.Cu.Fe.Cu.Fe.Cu.?e...
- ...Fe.Fe_Fe.Cu.Fe.Cu.Fe.Cu.Fe.Ctt.Fe.Fe.Fe.Fe.Cu.Fe...
The inner and the outer wire layer preferably have the same ohmic resistance.

The alternating of the metal wires individually and/or in groups can therefore be regular or irregular. The greater the proportion of Fe wires is, the lower is the electrical transport power of the outer wire layer.
Given a higher proportion of Fe wires in the outer wire layer, the relief from tensile and transverse forces is markedly improved.

The metal wires having a high tensile strength of the outer layer (Fe wires) and the metal tube of the bundle core are expediently made from the same material, namely a staxnless steel.

The electrically highly conductive metal wires (Cu wires) of the inner layer preferably rest directly an the metal tube of the bundle core. If the metal tube of the bundle core is made from an electrically highly conductive metal, the metal wires of the xnner layer can be replaced by a metal tube with a corresponding wall thickness.
In particular for reasons of fabrication, in general all the metal wires have the same diameter. Depending on the use, this diameter can extend from the fine wire to the bulky wire of approximately 1. mm. For general use, the wire diameter is usually in the range of from 0.3 to 0.5 mm.

The thickness of the insulating layer separating the WO 2007/006167 PCT/cH2006/000361 inner and the outer wire layer is at least the average radius, preferably at least the average diameter of the metal wires or the stranded litz wires.

The insulating layer is expediently made from a dielectriG plastic, in particular polyethylene or polypropylene. The outer sheath can be made fxom the same material or from polyurethane, polyamide or FRNC;
it is used for mechanical and chemical protection; the outer surface is preferably capable of being partially printed easily.

Furthermore, a swelling strip can be arranged between the wire layer and the outer sheath and/or a moisture barrier can be arranged outeide the outer wire layer.
This barrier is preferably an aluminum foil or an aluminum/plastic laminate of a type known per se.

By way of summary, the following advantages result for the electrooptical communications and power cable according to the invention:

- A bundle core comprising a metal tube, an inner wire layer comprising electrically highly conductive metal wires and an outer wire layer comprising metal wires arranged in alternating fashion individually and/or in groups and having a high electrical conductivity, on the one hand, and metal wires having a high tensile strength, on the other hand, also ensure optimum protection of the optical waveguides against tensile and transverse forces. The electrical conductors are positioned i.zi optimum fashion; on the inside exclusively highly conductive metal wires, and on the outside, in addition to the highly conductive metal wires connected in parallel, also less conductive metal wires having a high mechanical tensile strength nevertheless allow for a high electrical power.

WO 2007/006167 PCT/CI;2006/000361 The coaxial design of the eJ.ectrical conductors eliminates the AC losses in the cable.

- The electrooptical communications and power cables can in practice always be laid di.x'ectly, for example underwater, in particular in open bodies of water and in waste water channels in built-up areas and of trade and industry, in the ground, in particular along roads or rail tracks, in pipe systems and cable ducts in buildings. The cable is particularly suitable for use in military tactical systems.

- A smooth, flexible metal tube as the bundle core with two wire layers held coaxially at a distance allows for a small bending radius.

- Continuous operation can be maintained in a temperature range of from -40 to +80 C without the power or signal tx'ansmission being impaired.

A particularly advantageous use of the communications and power cable as an electrooptical power link between two voltage converters over a distance of up to approximately 20 ka.J.ometers_ One of the two voltage converters is generally permanently wired, and the other voltage converter is controllable. Voltage converters are, for example, transformers or switched mode power supplies. Of interest here is an intelligent system with a microcomputer.

The invention will be explained in more detail with reference to exemplary embodiments which are also the subject matter of dependant patent claims and which are illustrated in the drawing, in which, schematically:

- figure 1 shows a perspective view of a graduated, front-side end of an optical waveguide (prior axt), - figure 2 shows a cross section through a bundle core with a metal tube (prior art), - figure 3 shows a cross section through an electrooptical communications and power cable, and - figure 4 shows a diagram of a use of an electrooptical communications and power cable.

Figure 1 shows an optical waveguide 10 with an optical 25 core 12 and an optical sheath 14 made from glass and a primary sheathing 16 made from plastic. The optical core 12 and the optical sheath 14, corresponding to their usual material, are also referred to as optical fibers for reasons of simplicity. A distinction is drawn between single-mode fibers and multi-mode fibers, which is irrelevant here and cannot be seen in figure I
for reasons of simplicity.

Figure 2 shows a bundle core 20 with a metal tube 18 made from a stainless steel, twelve optical waveguides 10, which are arranged so as to run longitudinally therein, as shown in figure 1. The bundle core 20 is filled with a core filling compound 22, in this case with a gel.
In an electrooptical communications and power cable 24 as shown in figure 3, a bundle core 20 as shown in figure 2 is arranged in the center. The metal tube 18 of the bundle core 20 is stranded in direct contact with an inner, single-layered wire layer 26, which comprises twelve copper wires 28. An insulating layer 30 made from polyethylene is extruded onto this inner wire layer 26, which insulating layer 30 has a greater WO 2007/006167 PCT/C$2006/000361 thickness a than the diameter of the copper wires 28.
The insulating layer 30 is stranded with an outer wire layer 32, which in turn is designed to have a single layer. Electrically highly conductive wires 26 are arranged in alternating fashion individually and in groups with wires 34 having a high tensile strength, in this case stainless steel wires. The arrangement along the circumference is irregular; in each case one copper wire 28 is replaced by a stainless steel wire 34 at the bottom and top. As a result, the electrical conductivity of the entire communications and power cable 24 is slightly reduced in favor of mechanical stx'ength. As has already been mentioned, any desired combinations between copper wires 28 arid stainless steel wires 34 can be arranged.

The copper wires 28 of the inner and outer wire layer 26, 32 are connected in parallel. Preferably, the two wire layers 26, 32 have the same ohmiC resistance; in other words they are designed to be symmetrical.

An outer sheath 36 made from poXyurethane protects the communications and power cable 24 mechanically and chemically; it also allows fr,r printing.

Both the wires 28 of the inner wire layer 26 and the wireS 28, 34 of the outer wire layer 32 are held together with a retaining strip or net 38 and therefore remain positioned in the correct position during the production process. The retaining strip is in this case a Melinex strip by DuPont.

A moisture barrier 40, in this case an aluminum/plastic 3S laminate, only partially illustrated, is optionally arranged betweer; the outer wire layer 32 and the outer sheath 36.

Wo 2007/006167 PCT/eg2006/000361 in accordance with a variant not shown, a swelling strip can be arranged between the outer wire layer 32 and the outer sheath 36, within a moisture barrier 40 which xs in any case present, which swelling strip S swells on the ingress of moisture and exerts a pressure on all the layers, which pressure prevents the moisture from pushing forwards in the longittzdinal direction or at least severely restricts this.

In accordance with the use illustrated in figure 4, an electrooptical communications and power cable 24 is used as a transmission line for remotely feeding a system with an operational voltage of 110 V/60 Hz or 230 V/50 Hz at a distance of up to 20 km. A primary-side voltage converter 44 sets the fed-in voltage of 110 V/60 Hz or 230 V150 Hz to a voltage level of 100 - 1000 VAC or 100 - 1500 VDC.

The secondary-side converter 46 regulates the transmission voltage of 100 - 1000 VAC or 100 - 1500 VDC back to the conventional system voltages of 110 V/60 Hz or 230 V/SO Hz.

The voltage converter 44 is equipped with a standby mode. This standby mode disconzlects the voltage in the power cable 24 if no load is preeent at the voltage Cpn'Verter 46.

Example Electrooptical communications and power cable Electrically highly conductive copper wires 28 and stainless steel wires 34, with a diameter of 0.40 and 0.42 mm, respectively, are stranded in accordance with the invention. The arrangement i.zi the communications and power cable corresponds to figure 3, in particular also the sequence of the copper wires 28 and stainless steel wires 34, These wires are separated from one another by means of a PE insulating layer 30 which is 0.6 mm thick (thickness a). The outer protection is ensured by an outer sheath 36 comprising a polyurethane layer which is 0.8 mm triick. The inner and the outer wire layer 26, 34 are covered by a Melinex strip. The communications and power cable 24 has an outer diameter of 5.8 mm, weighs 68 kg/m and has a total conductor cross section of the copper cables of approximately 1.5 mm2.

Electrical conductivity - S~u - 0 _ 0172 (Q.mm2) /m ' sstainle:o:s steel = 0.4129 (S2.mm2) /m.
Resistances per km and per wire - Cu wire: cross seCtion = 0.1257 mm~; this corresponds to a resistance Rc,, of 136.8 Q/km.

- Stainless steel wire: cross section = 0.1385 mm2;
this corresponds to a resistance Rstainlcsa stec:l of 1031.5 Q/km.

Resistance of the entire wire layers per km - Conductors of the inner wire layer 26: twelve copper wires; this corresponds to a resistance Rx of 11.~ <_Z/km.

- Conductors of the outer wire layer 32: ten copper wires; this corresponds to a resistance Ra of 12.45 S2/km.

- The resistance of the copper wires 28 connected in paral.lel of the inner and outer wire layers 26, 32 corresponds to a conductor resistance of R = (12.45 x 73.7)/(12.45 + 73.7) = 11.53 0/km.

WO 2007/006167 PcT/ca2006/000361 - ii -A cakble having a conventional diameter withstands, for example, a continuous tensi.].e loading of approximately 3000 N and a transverse-pressure loading of approximately 1000 N/cm without in the process the S function being impaired. The cable breakage in this case takes place only at approximately 4250 N.

Claims (11)

1. An electrooptical communications and power cable (24), which comprises, in a central bundle core (20) comprising a smooth, flexible metal tube (18), at least one optical waveguide (10) with a primary sheathing (16), two layers (26, 32) running coaxially with respect to the bundle core (20) and comprising stranded metal wires, which are also used as relief from tensile and/or transverse forces, and an outer sheath (36), characterized in that the inner wire layer (26) comprises electrically highly conductive metal wires (28), and the outer wire layer (32) comprising metal wires (28) arranged in alternating fashion individually and/or in groups and having a high electrical conductivity, on the one hand, and metal wires (34) having a high tensile strength, on the other hand, are held at a distance (a) by means of an insulating layer (30).
2. The communications and power cable (24) as claimed in claim 1, characterized in that the electrically highly conductive metal wires (28), which are connected in parallel, have an electrical resistivity of at most approximately 5 × 10 -5 .OMEGA..mm, preferably of (1-3) × 10 -5 .OMEGA..mm, and the remaining metal wires (34) have a tensile strength of approximately 700 N/mm.
3. The communications and power cable (24) as claimed in claim 2, characterized in that the electrically highly conductive metal wires (28) are made from copper, a copper alloy, aluminum or an aluminum alloy or are coated with one of these metals, the metal wires (34) having a high tensile strength are preferably made from a stainless steel, in particular from the same metal as the metal tube (18) of the bundle core (20).
4. The communications and power cable (24) as claimed in one of claims 1 to 3, characterized in that the inner wire layer (26) rests directly on the metal tube (18) or is replaced by it.
5. The communications and power cable (24) as claimed in one of claims 1 to 4, characterized in that all the metal wires (28, 34) have the same diameter.
6. The communications and power cable (24) as claimed in one of claims 1 to 5, characterized in that the thickness a of the insulating layer (30) separating the wire layers (26, 32) corresponds at least to the average radius, preferably at least to the average diameter of the metal wires (28, 34).
7. The communications and power cable (24) as claimed in one of claims 1 to 6, characterized in that the insulating layer (30) is made from polyethylene or polypropylene, and the outer sheath (36) is made from polyurethane or the same material as the insulating layer (30).
8. The communications and power cable (24) as claimed in one of claims 1 to 7, characterized in that the two wire layers (26, 32) have approximately the same ohmic resistance, i.e. are designed to be symmetrical, and are preferably covered by in each case one retaining atrip or net (38).
9. The communications and power cable (24) as claimed in one of claims 1 to 8, characterized in that a swelling strip is arranged between the outer wire layer (32) and the outer sheath (36) and/or a moisture barrier (40), preferably an aluminum foil or an aluminum/plastic laminate, is arranged outside the outer wire layer (32).
10. The use of the communications and power cable (24) as claimed in one of claims 1 to 9 as an electrooptical power link between two voltage converters (44, 46) in an intelligent system, in particular between a permanently wired (44) and a controllable voltage converter (46) over a distance (d) of up to approximately 20 km.
11. The use of the communications and power cable (24) as claimed in claim 10 for transmitting electrical energy in a power link with a 50 Hz or 60 Hz AC
voltage of 100 - 1000 VAC or a DC voltage of 100 - 1500 VDC.
CA002614986A 2005-07-14 2006-07-07 Electrooptical communications and power cable Abandoned CA2614986A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH1169/05 2005-07-14
CH01169/05A CH705337B1 (en) 2005-07-14 2005-07-14 Electro-optical communications and power cables.
PCT/CH2006/000361 WO2007006167A1 (en) 2005-07-14 2006-07-07 Electrooptical communications and power cable

Publications (1)

Publication Number Publication Date
CA2614986A1 true CA2614986A1 (en) 2007-01-18

Family

ID=35500834

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002614986A Abandoned CA2614986A1 (en) 2005-07-14 2006-07-07 Electrooptical communications and power cable

Country Status (5)

Country Link
US (1) US20080247716A1 (en)
EP (1) EP1902337A1 (en)
CA (1) CA2614986A1 (en)
CH (1) CH705337B1 (en)
WO (1) WO2007006167A1 (en)

Families Citing this family (261)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9867530B2 (en) 2006-08-14 2018-01-16 Volcano Corporation Telescopic side port catheter device with imaging system and method for accessing side branch occlusions
US7787823B2 (en) 2006-09-15 2010-08-31 Corning Cable Systems Llc Radio-over-fiber (RoF) optical fiber cable system with transponder diversity and RoF wireless picocellular system using same
US7848654B2 (en) 2006-09-28 2010-12-07 Corning Cable Systems Llc Radio-over-fiber (RoF) wireless picocellular system with combined picocells
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US8111998B2 (en) 2007-02-06 2012-02-07 Corning Cable Systems Llc Transponder systems and methods for radio-over-fiber (RoF) wireless picocellular systems
US10219780B2 (en) * 2007-07-12 2019-03-05 Volcano Corporation OCT-IVUS catheter for concurrent luminal imaging
WO2009009799A1 (en) 2007-07-12 2009-01-15 Volcano Corporation Catheter for in vivo imaging
US9596993B2 (en) 2007-07-12 2017-03-21 Volcano Corporation Automatic calibration systems and methods of use
US20100054746A1 (en) 2007-07-24 2010-03-04 Eric Raymond Logan Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US8175459B2 (en) 2007-10-12 2012-05-08 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
WO2009081376A2 (en) 2007-12-20 2009-07-02 Mobileaccess Networks Ltd. Extending outdoor location based services and applications into enclosed areas
WO2010090999A1 (en) 2009-02-03 2010-08-12 Corning Cable Systems Llc Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
EP2394379B1 (en) 2009-02-03 2016-12-28 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US8548330B2 (en) 2009-07-31 2013-10-01 Corning Cable Systems Llc Sectorization in distributed antenna systems, and related components and methods
CH701871A1 (en) 2009-09-25 2011-03-31 Brugg Ag Kabelwerke Electro-optical cable.
US8280259B2 (en) 2009-11-13 2012-10-02 Corning Cable Systems Llc Radio-over-fiber (RoF) system for protocol-independent wired and/or wireless communication
WO2011085021A2 (en) * 2010-01-05 2011-07-14 Belden Inc. Multimedia cable
US8275265B2 (en) 2010-02-15 2012-09-25 Corning Cable Systems Llc Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US20110268446A1 (en) 2010-05-02 2011-11-03 Cune William P Providing digital data services in optical fiber-based distributed radio frequency (rf) communications systems, and related components and methods
US9525488B2 (en) 2010-05-02 2016-12-20 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
CN103119865A (en) 2010-08-16 2013-05-22 康宁光缆系统有限责任公司 Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US9252874B2 (en) 2010-10-13 2016-02-02 Ccs Technology, Inc Power management for remote antenna units in distributed antenna systems
US11141063B2 (en) 2010-12-23 2021-10-12 Philips Image Guided Therapy Corporation Integrated system architectures and methods of use
US11040140B2 (en) 2010-12-31 2021-06-22 Philips Image Guided Therapy Corporation Deep vein thrombosis therapeutic methods
WO2012115843A1 (en) 2011-02-21 2012-08-30 Corning Cable Systems Llc Providing digital data services as electrical signals and radio-frequency (rf) communications over optical fiber in distributed communications systems, and related components and methods
EP2702710A4 (en) 2011-04-29 2014-10-29 Corning Cable Sys Llc Determining propagation delay of communications in distributed antenna systems, and related components, systems and methods
CN103609146B (en) 2011-04-29 2017-05-31 康宁光缆系统有限责任公司 For increasing the radio frequency in distributing antenna system(RF)The system of power, method and apparatus
DE202011105000U1 (en) 2011-08-25 2011-12-20 Amphenol-Tuchel Electronics Gmbh Electro-optical cable
WO2013033592A1 (en) 2011-08-31 2013-03-07 Volcano Corporation Optical-electrical rotary joint and methods of use
EP2832012A1 (en) 2012-03-30 2015-02-04 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (mimo) configuration, and related components, systems, and methods
EP2842245A1 (en) 2012-04-25 2015-03-04 Corning Optical Communications LLC Distributed antenna system architectures
WO2014024192A1 (en) 2012-08-07 2014-02-13 Corning Mobile Access Ltd. Distribution of time-division multiplexed (tdm) management services in a distributed antenna system, and related components, systems, and methods
US10568586B2 (en) 2012-10-05 2020-02-25 Volcano Corporation Systems for indicating parameters in an imaging data set and methods of use
US9286673B2 (en) 2012-10-05 2016-03-15 Volcano Corporation Systems for correcting distortions in a medical image and methods of use thereof
US9292918B2 (en) 2012-10-05 2016-03-22 Volcano Corporation Methods and systems for transforming luminal images
US11272845B2 (en) 2012-10-05 2022-03-15 Philips Image Guided Therapy Corporation System and method for instant and automatic border detection
US10070827B2 (en) 2012-10-05 2018-09-11 Volcano Corporation Automatic image playback
US9324141B2 (en) 2012-10-05 2016-04-26 Volcano Corporation Removal of A-scan streaking artifact
US9858668B2 (en) 2012-10-05 2018-01-02 Volcano Corporation Guidewire artifact removal in images
US9307926B2 (en) 2012-10-05 2016-04-12 Volcano Corporation Automatic stent detection
US9367965B2 (en) 2012-10-05 2016-06-14 Volcano Corporation Systems and methods for generating images of tissue
JP2015532536A (en) 2012-10-05 2015-11-09 デイビッド ウェルフォード, System and method for amplifying light
US9840734B2 (en) 2012-10-22 2017-12-12 Raindance Technologies, Inc. Methods for analyzing DNA
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
CN105308876B (en) 2012-11-29 2018-06-22 康宁光电通信有限责任公司 Remote unit antennas in distributing antenna system combines
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
US9113347B2 (en) 2012-12-05 2015-08-18 At&T Intellectual Property I, Lp Backhaul link for distributed antenna system
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
JP6322210B2 (en) 2012-12-13 2018-05-09 ボルケーノ コーポレイション Devices, systems, and methods for targeted intubation
WO2014099899A1 (en) 2012-12-20 2014-06-26 Jeremy Stigall Smooth transition catheters
US11406498B2 (en) 2012-12-20 2022-08-09 Philips Image Guided Therapy Corporation Implant delivery system and implants
EP2934282B1 (en) 2012-12-20 2020-04-29 Volcano Corporation Locating intravascular images
US10939826B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Aspirating and removing biological material
US10942022B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Manual calibration of imaging system
JP2016504589A (en) 2012-12-20 2016-02-12 ナサニエル ジェイ. ケンプ, Optical coherence tomography system reconfigurable between different imaging modes
US10058284B2 (en) 2012-12-21 2018-08-28 Volcano Corporation Simultaneous imaging, monitoring, and therapy
US10191220B2 (en) 2012-12-21 2019-01-29 Volcano Corporation Power-efficient optical circuit
US9383263B2 (en) 2012-12-21 2016-07-05 Volcano Corporation Systems and methods for narrowing a wavelength emission of light
CA2895769A1 (en) 2012-12-21 2014-06-26 Douglas Meyer Rotational ultrasound imaging catheter with extended catheter body telescope
JP2016501623A (en) 2012-12-21 2016-01-21 アンドリュー ハンコック, System and method for multipath processing of image signals
WO2014099760A1 (en) 2012-12-21 2014-06-26 Mai Jerome Ultrasound imaging with variable line density
US9612105B2 (en) 2012-12-21 2017-04-04 Volcano Corporation Polarization sensitive optical coherence tomography system
US9486143B2 (en) 2012-12-21 2016-11-08 Volcano Corporation Intravascular forward imaging device
JP2016508757A (en) 2012-12-21 2016-03-24 ジェイソン スペンサー, System and method for graphical processing of medical data
US10413317B2 (en) 2012-12-21 2019-09-17 Volcano Corporation System and method for catheter steering and operation
US10226597B2 (en) 2013-03-07 2019-03-12 Volcano Corporation Guidewire with centering mechanism
US9770172B2 (en) 2013-03-07 2017-09-26 Volcano Corporation Multimodal segmentation in intravascular images
CN105228518B (en) 2013-03-12 2018-10-09 火山公司 System and method for diagnosing coronal microvascular diseases
US20140276923A1 (en) 2013-03-12 2014-09-18 Volcano Corporation Vibrating catheter and methods of use
US11026591B2 (en) 2013-03-13 2021-06-08 Philips Image Guided Therapy Corporation Intravascular pressure sensor calibration
US9301687B2 (en) 2013-03-13 2016-04-05 Volcano Corporation System and method for OCT depth calibration
CN105120759B (en) 2013-03-13 2018-02-23 火山公司 System and method for producing image from rotation intravascular ultrasound equipment
US10292677B2 (en) 2013-03-14 2019-05-21 Volcano Corporation Endoluminal filter having enhanced echogenic properties
US10219887B2 (en) 2013-03-14 2019-03-05 Volcano Corporation Filters with echogenic characteristics
CN105208947B (en) 2013-03-14 2018-10-12 火山公司 Filter with echoing characteristic
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
WO2014199384A1 (en) 2013-06-12 2014-12-18 Corning Optical Communications Wireless, Ltd. Voltage controlled optical directional coupler
EP3008828B1 (en) 2013-06-12 2017-08-09 Corning Optical Communications Wireless Ltd. Time-division duplexing (tdd) in distributed communications systems, including distributed antenna systems (dass)
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
US9209902B2 (en) 2013-12-10 2015-12-08 At&T Intellectual Property I, L.P. Quasi-optical coupler
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US10659163B2 (en) 2014-09-25 2020-05-19 Corning Optical Communications LLC Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
US9628854B2 (en) 2014-09-29 2017-04-18 At&T Intellectual Property I, L.P. Method and apparatus for distributing content in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
CN104297875B (en) * 2014-10-13 2017-07-07 中天科技海缆有限公司 A kind of high pressure optoelectronic composite cable equipotential fiber unit and preparation method thereof
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9564947B2 (en) 2014-10-21 2017-02-07 At&T Intellectual Property I, L.P. Guided-wave transmission device with diversity and methods for use therewith
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9520945B2 (en) 2014-10-21 2016-12-13 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
WO2016071902A1 (en) 2014-11-03 2016-05-12 Corning Optical Communications Wireless Ltd. Multi-band monopole planar antennas configured to facilitate improved radio frequency (rf) isolation in multiple-input multiple-output (mimo) antenna arrangement
WO2016075696A1 (en) 2014-11-13 2016-05-19 Corning Optical Communications Wireless Ltd. Analog distributed antenna systems (dass) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (rf) communications signals
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9680670B2 (en) 2014-11-20 2017-06-13 At&T Intellectual Property I, L.P. Transmission device with channel equalization and control and methods for use therewith
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9954287B2 (en) * 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US9654173B2 (en) 2014-11-20 2017-05-16 At&T Intellectual Property I, L.P. Apparatus for powering a communication device and methods thereof
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
EP3235336A1 (en) 2014-12-18 2017-10-25 Corning Optical Communications Wireless Ltd. Digital interface modules (dims) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (dass)
WO2016098111A1 (en) 2014-12-18 2016-06-23 Corning Optical Communications Wireless Ltd. Digital- analog interface modules (da!ms) for flexibly.distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (dass)
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US20160249365A1 (en) 2015-02-19 2016-08-25 Corning Optical Communications Wireless Ltd. Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (das)
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10679767B2 (en) 2015-05-15 2020-06-09 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US10154493B2 (en) 2015-06-03 2018-12-11 At&T Intellectual Property I, L.P. Network termination and methods for use therewith
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10348391B2 (en) 2015-06-03 2019-07-09 At&T Intellectual Property I, L.P. Client node device with frequency conversion and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9608692B2 (en) 2015-06-11 2017-03-28 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US9836957B2 (en) 2015-07-14 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for communicating with premises equipment
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US10784670B2 (en) 2015-07-23 2020-09-22 At&T Intellectual Property I, L.P. Antenna support for aligning an antenna
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US10020587B2 (en) 2015-07-31 2018-07-10 At&T Intellectual Property I, L.P. Radial antenna and methods for use therewith
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US10051629B2 (en) 2015-09-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an in-band reference signal
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US10009901B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations
US9705571B2 (en) 2015-09-16 2017-07-11 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system
US10560214B2 (en) 2015-09-28 2020-02-11 Corning Optical Communications LLC Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS)
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US10074890B2 (en) 2015-10-02 2018-09-11 At&T Intellectual Property I, L.P. Communication device and antenna with integrated light assembly
US9882277B2 (en) 2015-10-02 2018-01-30 At&T Intellectual Property I, Lp Communication device and antenna assembly with actuated gimbal mount
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10051483B2 (en) 2015-10-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for directing wireless signals
US10665942B2 (en) 2015-10-16 2020-05-26 At&T Intellectual Property I, L.P. Method and apparatus for adjusting wireless communications
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US20180259676A1 (en) * 2017-03-10 2018-09-13 Eas Ip, Llc Litz Wire As Tracer Wire And Litz Wire Marker Tape
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
WO2023128506A1 (en) * 2021-12-31 2023-07-06 엘에스전선 주식회사 Submarine optical cable

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3801409A1 (en) * 1988-01-15 1989-07-27 Siemens Ag Fiber optic submarine cable with regenerator supply
US5202944A (en) * 1990-06-15 1993-04-13 Westech Geophysical, Inc. Communication and power cable
US5042903A (en) * 1990-07-30 1991-08-27 Westinghouse Electric Corp. High voltage tow cable with optical fiber
DE4337486A1 (en) * 1993-09-29 1995-03-30 Norddeutsche Seekabelwerke Ag Cable, in particular an optical overhead cable, and a method for producing the same
US6236789B1 (en) * 1999-12-22 2001-05-22 Pirelli Cables And Systems Llc Composite cable for access networks

Also Published As

Publication number Publication date
US20080247716A1 (en) 2008-10-09
CH705337B1 (en) 2013-02-15
EP1902337A1 (en) 2008-03-26
WO2007006167A1 (en) 2007-01-18

Similar Documents

Publication Publication Date Title
CA2614986A1 (en) Electrooptical communications and power cable
US6463198B1 (en) Micro composite fiber optic/electrical cables
EP0784220B1 (en) Fiber optic micro cable
EP0969302B1 (en) Composite cable for access networks
CA1254418A (en) Pressure resistant submarine optical fiber cable
US5222173A (en) Electro-optical overhead wire with at least 24 light wave guides
CA2324089C (en) High fiber count, compact, loose tube optical fiber cable employing ribbon units and flexible buffer tubes
CA2315605A1 (en) Composite fiber optic/coaxial electrical cables
GB1598438A (en) Overhead electric transmission systems
US5822484A (en) Lightweight optical groundwire
CA1258387A (en) Pressure resistant optical fiber cable
CA1255136A (en) Pressure resistant submarine optical fiber cable
GB2085187A (en) Overhead cables and earth conductors including optical fibres
CN101819833A (en) Photoelectric composite cable for FTTH access
GB2227855A (en) Optical fibre cable
CN110739101B (en) High-strength photoelectric composite cable
CN219143163U (en) High-power submarine optical cable based on multi-core optical fibers
GB2262357A (en) Composite overhead electric and optical fibre ribbon conductor
CN1851512A (en) Optical cable
CN218159763U (en) High-strength water-blocking dragging photoelectric composite cable
CN214175726U (en) Coaxial photoelectric composite cable structure
CN217405134U (en) Flat structure photoelectric composite floating cable
CN116013599A (en) Photoelectric hybrid cable for park wiring
CN217788077U (en) Photoelectric composite cable
AU594532B2 (en) Optical fibre submarine cable

Legal Events

Date Code Title Description
FZDE Discontinued