CA2655111C - Fibrous materials and compositions - Google Patents

Fibrous materials and compositions Download PDF

Info

Publication number
CA2655111C
CA2655111C CA2655111A CA2655111A CA2655111C CA 2655111 C CA2655111 C CA 2655111C CA 2655111 A CA2655111 A CA 2655111A CA 2655111 A CA2655111 A CA 2655111A CA 2655111 C CA2655111 C CA 2655111C
Authority
CA
Canada
Prior art keywords
fibrous material
fibrous
acid
inch
percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA2655111A
Other languages
French (fr)
Other versions
CA2655111A1 (en
Inventor
Marshall Medoff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xyleco Inc
Original Assignee
Xyleco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xyleco Inc filed Critical Xyleco Inc
Publication of CA2655111A1 publication Critical patent/CA2655111A1/en
Application granted granted Critical
Publication of CA2655111C publication Critical patent/CA2655111C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/08Conditioning or physical treatment of the material to be shaped by using wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/0026Recovery of plastics or other constituents of waste material containing plastics by agglomeration or compacting
    • B29B17/0042Recovery of plastics or other constituents of waste material containing plastics by agglomeration or compacting for shaping parts, e.g. multilayered parts with at least one layer containing regenerated plastic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/081Gamma radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/082X-rays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/087Particle radiation, e.g. electron-beam, alpha or beta radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/0056Other disintegrating devices or methods specially adapted for specific materials not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/08Separating or sorting of material, associated with crushing or disintegrating
    • B02C23/10Separating or sorting of material, associated with crushing or disintegrating with separator arranged in discharge path of crushing or disintegrating zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/08Separating or sorting of material, associated with crushing or disintegrating
    • B02C23/14Separating or sorting of material, associated with crushing or disintegrating with more than one separator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B17/0412Disintegrating plastics, e.g. by milling to large particles, e.g. beads, granules, flakes, slices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/08Making granules by agglomerating smaller particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0005Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fibre reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/24Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/30Organic compounds compounds not mentioned before (complexes)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/16Butanols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0217Mechanical separating techniques; devices therefor
    • B29B2017/0224Screens, sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B2017/0424Specific disintegrating techniques; devices therefor
    • B29B2017/0476Cutting or tearing members, e.g. spiked or toothed cylinders or intermeshing rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0029Perfuming, odour masking or flavouring agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0032Pigments, colouring agents or opacifiyng agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/065Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts containing impurities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2201/00Use of cellulose, modified cellulose or cellulose derivatives, e.g. viscose, as reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0059Degradable
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2203/00Fermentation products obtained from optionally pretreated or hydrolyzed cellulosic or lignocellulosic material as the carbon source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/52Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49801Shaping fiber or fibered material

Abstract

This invention relates to the fibrous mate.pi.als, methods of making fibrous materials, compositions that include fibrous materials and a resin, or compositions that included the fibrous materials and bacteria and/or enzymes In addition, the use of the fibrous materials compositions are disclosed. For example, the fibrous materials can be operated on by a microorganism to produce a fuel compnsing hydrogen, an alcohol such as ethanol, an organic acid and/or hydrocarbon

Description

FIBROUS MATERIALS AND COMPOSITIONS
TECHNICAL FIELD

This invention relates to fibrous materials and to compositions.
BACKGROUND
Fibrous materials, e.g., cellulosic and lignocellulosic materials, are produced, processed, and used in large quantities in a number of applications.
Often such fibrous materials are used once, and then discarded as waste.

Various fibrous materials, their uses and applications have been described in U.S. Patent Nos. 6,448,307, 6,258,876, 6,207,729, 5,973,035 and 5,952,105.

SUMMARY
Generally, this invention relates to fibrous materials, methods of making fibrous materials, compositions that include fibrous materials (e.g., composites that include the fibrous materials and a resin, or compositions that include the fibrous materials and bacteria and/or an enzyme), and to uses of the same. For example, the compositions can be used to make ethanol, or a by-product, such as a protein or lignin, or applied to a structure as insulation.

Any of the fibrous materials disclosed herein can be used in combination with any of the fibrous materials, resins, additives, or other components disclosed in U.S. Patent Nos. 6,448,307, 6,258,876, 6,207,729, 5,973,035 and 5,952,105. In turn, these fibrous materials and/or components can be used in any of the applications, products, procedures, et cetera disclosed in any of these patents or in this application.

The fibrous materials or compositions that include the fibrous materials can be, e.g., associated with, blended with, adjacent to, surrounded by, or within a structure or carrier (e.g., a netting, a membrane, a flotation device, a bag, a shell, or a biodegradable substance). Optionally, the structure or carrier may itself be made from a fibrous material, or of a composition that includes a fibrous material.
In some embodiments, the fibrous material is combined with a material, such as a protic acid, that enhances the rate of biodegradation of the fibrous material. In some embodiments, the fibrous material is combined with a material that retards degradation of the fibrous material, such as a buffer.

The ratio of fibrous materials to the other components of the compositions will depend upon the nature of the components, and can be readily adjusted for a specific product application.

Any of the fibrous materials described herein, including any of the fibrous materials made by any of the methods described herein, can be used, e.g., to form composites with resin, or can be combined with bacteria and/or one or more enzymes to produce a valuable product, such as a fuel (e.g., ethanol, a hydrocarbon, or hydrogen).

In one aspect, the invention features methods of making fibrous materials.
The methods include shearing a fiber source to provide a first fibrous material, and passing the first fibrous material through a first screen having an average opening size of 1.59 mm or less (1/16 inch, 0.0625 inch) to provide a second fibrous material. The fiber source can, e.g., be cut into pieces or strips of confetti-like material prior to the shearing.

According to one aspect of the present invention, there is provided a method of making a fuel, the method comprising: shearing a fiber source that is a cellulosic or lignocellulosic material to provide a first fibrous material;
passing the first fibrous material through a first screen having an average opening size of about 1.59 mm or less (1/16 inch, 0.0625 inch) to provide a second fibrous material; and combining the second fibrous material with a bacterium and/or enzyme, the bacterium and/or enzyme utilizing the second fibrous material to produce a fuel comprising hydrogen, an alcohol, an organic acid and/or a hydrocarbon; wherein the second fibrous material has a
2 BET (Brunauer, Emmet and Teller) surface area of greater than about 0.25 m2/g and a porosity of greater than 25%.

According to another aspect of the present invention, there is provided a method of making a fuel, the method comprising: shearing a fiber source that is a cellulosic or lignocellulosic material to provide a first fibrous material; passing the first fibrous material through a first screen having an average opening size of about 1.59 mm or less (1/16 inch, 0.0625 inch) to provide a second fibrous material having a BET
(Brunauer, Emmet and Teller) surface area of greater than about 0.25 m2/g and a porosity of greater than 25%; hydrolyzing the second fibrous material to provide a hydrolyzed material; and combining the hydrolyzed material with bacterium and/or enzyme, the bacterium and/or enzyme utilizing the hydrolyzed material to produce a fuel comprising hydrogen, an alcohol, an organic acid and/or a hydrocarbon.

In some embodiments, the average opening size of the first screen is less than 0.79 mm (1/32 inch, 0.03125 inch), e.g., less than 0.40 mm (1/64 inch, 0.015625 inch), less than 0.20 mm (1/128 inch, 0.0078125 inch), or even less than 0.10 mm (1/256 inch, 0.00390625 inch).

In specific implementations, the shearing is performed with a rotary knife cutter. If desired, the shearing can be performed while the fiber source is dry (e.g., having less than 0.25 percent by weight absorbed water), hydrated, or even while the fiber source is partially or fully submerged in a liquid, such as water or isopropanol.

The second fibrous material can, e.g., be collected in a bin having a pressure below nominal atmospheric pressure, e.g., at least 10 percent below nominal atmospheric pressure, at least 50 percent below nominal atmospheric pressure, or at least 75 percent below nominal atmospheric pressure.

The second fibrous material can, e.g., be sheared once or numerous times, e.g., twice, thrice, or even more, e.g., ten times. Shearing can "open up"
and/or "stress" the fibrous materials, making the materials more dispersible, e.g., in a solution or in a resin.

2a The second fibrous material can be, e.g._ sheared and the Ic=511:.#3? j fibrous material passed tarea h g the >a tsi'si .a.

3C. sec nd ti broius material can be sheared, and the u i ng fibrous i aterial passed -trough i. second screen haying an average opening Sze less than first providing 6 a third Brous 1 ateria^:.

A rat# 5 of c aver ge length-to-diameter a io of the second à hrous mat Vial to an average ,L #? ??-~i3r4 T 3. t. rdt.so of the third fibrous mate .i El can be, u-.g ., less than 1 .5, es thha n 1.4, less than 115, or even less than LL
.

~.l D \.,f < ~e a ga;
T 'he b~\,..{3:iC~ fibrous taiii be, ~..-~.y ~?ai55 a`ia~E~,1': a SrC~.d screen :, ha<iti. _`r an OM-1,11-rage 0 opening size 'Was than the first screen.

2 `,e shearing and passing can be, Q.&, performed wncunrcnaly.

The second fibrous material can have an average le .1:^Eo-diaifinete. ratio ol"
'. f L # t=# ttlhav greater than 251i:I, or even greater than 50/..

Fos example, an average length of the Second fibrous mate #al C`sEn be e w``e n 50..5 15 mm and 2,45 mm, e.g., between 0.75 mm and 1,0 is?m, For ex iampl , an iv e atge 'Ei iadt of the C?.nd fibrous mater al can be between 5 l.tm and 5031 `.m. e.g., betweel-i 10 ti..m ai#, 30 m.

t ..dard1 deviation of a. length of the second fibrous material c n be Jess than 60 A standard, ~.p<s. \ i ge i g the N~ ju,.t t 3 a n ,LY:a$t of all average ~Il~,t~l~a~ , t33 C. second fibrous z.li..~#ea.F,e.g., ~less tht1:E~. O k =..+
peEt...,#atof"A:a~a 20 to so-me=bodimQuts, a BET suwface area of tile second fibrous matenal is greater than n00 ni +g eg., gueater thaii. 1.0 ni Va'3. greater than 1.5 rn. g, greater than 1,75 m tom;, 0 x 2/ Ã , greater than 25.0 rr, 'gF eat.. t :1_iIE ).f t i' fps, greater than ~ .5 m g, greater t' an ': :.

or even C>ff e ter= than 100.0 In the ,,E 'i q some eodiMi nits, a porosity of rE sceond fibrous iniaLerial is groi'e'r than 25 u c eeiii,, greater than 50 percent greater tF~iiii# 75 percent, greater than 85 per e#:'s, greater than 90 percent, greater t an 92 percent, 'enter than 95 percent, or even greater than })9 ner>ent.

#i t~.t t :%\',Il , i i{Ã +.1> t:ntent .
in sped fie embod nie"nts the screen is formed by The fiber source can include, e.g., a cellulosic iliateri al, a ligii.oeciluao ale materia' .

Iii sd?.m eo ida tints, the fiber source Includes Ei. blend of .,# 5; e.g,, fibers derived ?E

from is paper source and fibers derived from. a textile source, cotton.

In another aspect. the invention f atures methods of inakilig that i , Y, ~ j _ x "t include S 7t ai.?.s ?:?d F source `. 3 pre i ti, a #: J*. fibrous .i EEtC
iaa, and passing t ho fibrous 4%

9f71ar ,.i . i l through a first scree . to provide a second fibrous material.
A ratio of an average engt i'to t iiifa et r ratio of the first fibrous la.W`r'lfl to 5 1 : rt average iGf. `g .j= Z f tae ~ nat}:-tot,= t second fihr o,as ,r aterial rs less than I .?.

in another asneL O he invention feawres methods of makir fibrous f:t ice fix?
that u ilnclud. shearing a fiber source to provide a first fibrous slate pit.;
passing the ; l.slrc t.s material through a fast screen t i provide a second fibrous, inateria`, and then. shearing the :ecz# tf fibrous material again to provide a 1-iirtf fibrous lateÃia.l.

in another aspect, the invention . z. J.T w composites tar Compositions made fto,am any of the fibrous ? \#a.tteri als described erein. exam pie, comp sition can include xil? S' .;ill{
fibrous mmatirri; is d sccri ed herein and a bacterium < lc .'c? an enr=y ~i3e. The compositions that include any of the fibrous mate1iais described herein and dhe bclk.,. :
ulA, iI( of enzyme can be in. dry state, or they can include a liquid, such as water.

For e`a nple, the composite can be in the : of'.m of a stepping stool, -pipes, panels, decking mater: rls, board"", housings, sheets, blocks, bricks, poles, fencing I .C 1a#~i~ i. doors, 15, shutters, awwnings shades,s:igiis, f anics, window casings, backboards flooring, tiles, railroad ties, tw s, tool handles, stalls, films, wrap:,, tapes, boxes, cask ets, racks, casings, )inders, dividers, ails, m,_:ts, ar: mes, bookcases, ul cures i hairs, table s, desks, to ' , ivc, me , pa lets b.'.lr.iarl `, piers, oats, masts, septic tank, c^. l.t+_31^.11zt1 panels. computer sousing trove- and below g':"1 and electrical casings, fu rniture., picnic tables, bench s 20 shelters , r i'4 s, nang r` s Qrv rs, caskets, book covers, canes and crutches.

In another aspect, the in =entior features fibrous materials h-haA:1,Ig an average lcm -to diameter ratio of greater than 5, and having a standard deviation of _t fiber en"th of less t ran s xty percent of an average fiber length.
For e:xanxple, the average length-to-diameter ratio an be. gr'ea'ter than 30 C. o., 2\3 greater than 1 5 , greater than 25;1, greater than 35"1, greater than 45/1, or e eft 1 _ .
than 5t'/1.

For e ample, the i w~ erase lei gt:( can he between 0.5 mm õ nd 2.5 mn , ? 5 `S thes > features y: \ eilat,t making ~ 'i~'1.t5 it>.at?.,irt11` that In .s:s{`=:.
i" aspect, =t, the invention invention i,h`s t,3 " .:3 include ~ti~ caf g a fiber source to provide a first: fibrous i13 <at( pal collecting the first fibrous 3f nuteriaz and then shearing the first fibrous to 3 t?i # C '.?fad fibrous material.

in another aspect, the invention feature:," methods of .iii aking a useful i.wnal, such as c, f # f' e methods include she 3 in g a fiber so ruce ' to provide a first a# :3 ous ri 2aterial;
passirig the fir :1 fibrous nuiter'ia through a first screen having an average opening size of about 1.59 i 1#, or less (1/16 inch, 0.0625 incI to provide a second fibrous material: and owribining the second fibrous material wit ."a a bacterium and/or enzyme, the bacterium tiaii+.. L:# Cl -,n. . tili:Izfly; the second tibrotis a a`ivt.erial to producer a fuel that includes vdi oaa il, an alcohol, an organic acid and.'orr a hydro .g.;bon, The alcohol can be., e.g:, nethanol, ethanol, propano tio# #opwiol.bufa#1ol, ethyle,n e glycol, ps ?A?Yi ?e Est y (? ; 4-butane (ho", Ã ycein, or f l# fl't i of .fie i=E Z3 ?; , the Organic car, be, C'9" malofeic acid, succinic acid, giutaric acid, oleic C. id lfnoloic icid.
l v_?iic acid, lactic acit . y-a ydroxyhuty is acid, or mixtures of these a ciids, an the I: dme irhui can be, 'met bane, ethane, ropa?ie, isobutene, pone afnc, ll he.kalle, or 0 fe' isfii'e s o these lis droc;a#'1' o s, ~r#>. to wlllbinftln z With the bacterium ancti or enzyme, any of the fibrous zi'=ate3ial described herein can be hydrolyzed to break down hi iher molecular weight carbohydrates into lower molecular wei`-Slit carbohydrates.

?.n at:? l'ier aspect, t ho inventtion. features Triethods of Timak.in a use . ll material. , uch i as a fuel, by shewin a Ober source or a fibrous -material, and then combining it with a bacterium and e?, an enzyme. For example, the fiber source can be sheared ti-Ice to pro? : a1e a fibrous ,l ate i w id then the fibrous '#l at =i ial Carl 130 C:'9i'31:
;tips ` Wall a bnmerilln, "Ind"

an ;i,iothe aspect, the #.i~t 1.,f.ion rcatures ix?et ods ofdenslf ian fibrous c' p1'5x1 iz, ? `;i. The :i `ethods i clude she ariiig a fiber source to provide a i%~ srz ~.w '..os"a f `S material, co a*i.ning tx e fibii i.ts rn,,,terial with a bacterium and or enzyme to provide ii.;,-Aerial cc-f.rio?SifioTa t Tavzi lsula ii:tf? the composition in a s ibstan ially gas impermeable 111'11.c..aal and removing entrapped gas; from the eiicapsulatecs composition to dens$ '4' the composiaiwl a or exaniple,, the gas iMPO Ãimieablematerial can be in the tbrm of a ~3ce4 , and 21 the composition can be tie al '#ili'f by e.=vacuatia'ig air from the bag, and then sealing the hag.
In another aspect, the i vention features con-riposites that include a fibrous T:? aterial, a r sis` i and a For '.;-il A?là 4 the fibrous material can have an aver ge engtllwlE}^allci.i#aete ratio of g eater than 5, and a standard deviation of a fiber length of less than sixty percent of an average fiber length, i n son-le kill?, odilnents, the composite additionally 1neri.idcs a plgiilent.
the In solm implemale.i tat3ons, thdye soaked into or ,zkz accd on the.
fibers.

in another aspect, the invention features methods ofmaking com >sites that `=, ,czdde dyeing a ffibi'4>as #iate#laiti 3 t._ One fibrous material with a resin; and t1r3i.C?:g{ a co ipoJite from the v: 1~ 22~Si.fC11.X^,~~ .r .{1.? anoll1'` asp ct,, the invention. :at 3res methods of waking cornG'osite that inc. id0 Ãf~ x%3.Ã'#. :i i tii to .a resi Gel ro id ¾? i. e/reS#13 Ci?#li #:Ã1 motion f +3#?'13I.tiÃng th s{ %t' i?k3.
combination ' 3 ith a fibrous materird; and ttbianing a composite f.' .in the dy 4ex3:
c#,~,,-n inatku- ari fibrous mate.ia .

.she tt nx~ piss?lour niaterÃa ', as used herein; is a material at ?Y `:,hides numà E' E h loose, >t4 rete and separable fibers. F# Ã` example a fibrous can be prepared from a poi coated. piper or a bleached Kraft paper fiber source by si#eari 'i T .g., "vi th a rotsia'v kajfe Cutter, F he term ,screen", as used herein me ins a ill :i'Ii% er capable of sisvviingmateri o i L= 3?ilit to siz ti.g, a perforated pate, cylinder or t'i:e like, or a wire I:?'i+."'h or i z.'s i i Fl .t .
?r# #l #: l ;iii'#ats and/oz aspects can have any one of, or combà at ons ulf, . the following 15 idvan ages, The .fib o s materials are opened up i nd.') stressed, making the fileate ici?4 lilor'e dis crsib~ie, e.g., in a s lut#on or in a resit?, and making them more ~l? i pt_ le to ch amen .
enzymatic o,,- biological og'icai attack. Th : fibrous à aterials can h e. e.
L itively n= now ~'i1s' i:t' iaiii t:'si _Et igt o Ca31:1 ete ratios distribution, such that ti,e.ir propernos are cons st av-, defined, For example when. blended w th a i iolten resin or a so ton, the filet's of the ! 3 fibrous ?c.te i:als can ?_? % :y f he rheoi y of the molten resin. or solution in a consistent and r ti?L.able marine ,, e.g . resulting in rosin/fibrous, mat.eriaal combinations Inn are, e.g., Lan a:
t mold and xtziii For example, t1 he is?i'Ã u II3:liÃ.Ã':Ãiii can, silt' pass openings or channels, such as those }i. urid in or associated to i t. Ãi]_ Lctioi, Ã eld %, e.-'- "?ate s 2? hot :C:#.i?tl e0 \ +K good Cr .;S. c#.iS Molded i?'t.IS3 ~?,iL?~"ir i.bl"i !ti ?I:.9t4=l"~a1i4 G.b>~
G~~`~ii, , g~;3C?~x satc?ct,. ii iish;
15 e. f wi i. few visible speckles o a rgfi pai i G4 iF d/o r1 g g-I(n.'rate , particles, a All publications. patent applications, patents, and other inentioned herein tli'.. by t's..fC;i'Li1tE.. ln t';?<.#: Ln%lte14' fE?I alla "G_?.cit :h:.y i:=lK_:iÃili.

% tie a# c.ta?#i s and advantages of the Invention will. be apparent from -lt fs?IlC ing C
detailei i. +. scriptio_i,,, and from the claims..

so DEiSS_ R;<. DRklN-VINCS

Fig. I i:^ block diagram illustrating Conversion ofa fiber Source into, a first and second fibrous inalerial.

S

E its is a ,,,ross sectiona: vie v of a r-otarykni c cutter, igs 8 are top views of a variety of screens made tom monofilaments, Fig. `S is block diagram illustrating conversion cs a fiber source into a first, second and third fibrous r -aaterial.

th of Figs. . PA and 1013 air;.phot~, o trap,hs of fiber sources, s'. F. i tYt,, I
,A t3e,ai7~ at f a :,hotogzap.of a poi y co, tZ+x F paper container, :iriL: to lT at id Fig, L := ~ Kraft I PB
being a phIto Yr ph of i.Ãablcachid paper .. ~ p~:aer-r lI .

1 am d y 11, are re~:ea ro g fibrous ~a. al p od.-~.=..d7 e ~ i t; +. 5 ~.. ~,.aa~~.ai~ C:Etr e,:~ i3~i~"i#~E.~~~ of a ? material it s: p I'f.i po`il' co ted paper at 25 X magna ica.tioà and 1000 X magnification.
respectively. T no.
x`ibrous >matv:r iaa was produced on a rotary knife cutter on wt . _ a screen Wit:_ Figs. 13 and ? 4 are scan ning electron niicographs of a fibrous material 'proiai.ce:
_ rom bleached raft bo rdit paper at 25.1 T rwgni.f cation and 1000.

respect v ea r. The fibrous material was produced on a rotary knife cutter u6 11 sCrcel "I
s Figs. 15 and 16 are scanning electron. micrographs 'of a fibrous naatorial produced from bleached raft board paper at 25 X magnification : nd 1000 X
magnification, respectively 'The fibrous maateria was twice sheared on a rotary knife cutler Unlizinga screen wAh x 6 `x 't openings during each 1 ii777f4?.

.'i and arc ca:~nin electron micro a, ., of a i ro Ã.:it3te a3 .bier+ Lac u from bleach s aft board paper at 25 X. mxagii.rlication and e 000 X m 1,gi.fc lt:.imi, resit :;T? el v'. T' ,C fibrous material r~ ias thrice sheared on rot ry kite cutter. During the x tF t shear iili. a 1 /8 .inch screen was used, din- the second sheanna, a 1 /16 inch screen.
was Used, inn ,,uT"i.nr, the third sheai'n~ a 1/32 inch screen ,'as used.

2 5 g ice;, i`. is a block C i`agranl illustra.tin4g reveabble bulk E
ensificat oÃ'i of a fibrous mater'i.al composition, DETAILED DESCRip,riON

Referring to Fig. 1,a fiber source 10 is shearer e.g.. in a rotary kni e.
cutter, to provide a firsti ~.~?'x ?ii .mattiii a'7. first fibrous material 12 is passed through a i:st.
screen 16 having an average opening size of 1. .59 mm o less (1..l 6 aich., 0.0625 inch) i o 3s{3vide a second fibrous 1 ic:rer$cil 14. If dCs.i'4L.1, fiber sE,iii'.e 10 t`.<a:i? be stir. prior to the shearing, e.&, With a shredder. For example, when a paper is used as ,he fiber Z}..irce 1 0, the pa per cam, into r are, e e Y iz i' e ttttt i'., i a az can be first cut i:iÃtC. strips that a e,&, 1/4- to f .+õ. i tn -c wide, using, r s4area .

C g.< a counter-rotating screw shredder, such as those ià inuf.ictured t `
Munson (Utica MY), As an alternative à o shreddin , the paper can be reduced in size by cu ing to C esir d si ,i-ts3?i a ifills tine d tÃÃt I Fort example.. the guillotine cutter can be used to cut i+. à e paper into sheets that are, e.~:, I %) inches wide by 12 : .4hes loi'~..s its some embodmients, the shearing of fiber source 10 and the pass i g o the resu ting first fibrous ma %rial 12 t ..rough first screen 16 are performed cori urrer ly. The s13 111M, and tae passi `iÃg can also be performed in a b3.tch-typc process.

or e ample a ,r oturv i it tw` cutter can be us ed to con urge It {shear the fiber ,`tlzir :E
#l 0 and screen the first fibrous material 12. .Ren't'ing to Fig. a rotary knife. Cutter 20 includes a hopper 22 that can be loaded with a shreddQd fiber source 10=
prepared by shedding fiber source. 10. Shred=ded fiber source 10' is sheared .,eÃwcen station ir4 ales 24 and rotating blades 26 to provide a first fibrous material .l First fibrous t a eri zl. 12 Passe' through screen 16 having the dimensions described above, and the resuhi~tf ~5 6 i?a3C2 b ous material , is c pÃu:red in bin 30. To aid in the collection Eat t..
;second fibrous .m erial 14, bin 30 can have a. pressure blow nominal at , pheric pressure, e.g leas t l0 percent velow nominal atmospheric pressure, e.g., at least 25 :Terce.nt below nominal m{} lets,., atmospheric 1essur at least ISO percent below it ll:ii l = _ ~ ~''ia z atmospheric Press-LIT-Q, r at .~ s .
..
7 \ `:t,.~ \ i,:Y Y. T'.1 iat~i'1{}:i~Sl7t:Ã' Yis`v pressure. r~`~ stii, arz[=', In s~.aiilfi. i.tis3Eft~ > Si t:oat=s 4 Int.~~., Z'a4 ! itiai~lt S~;}iirG:L 1 . :}+F
ia~,.i,.G=Ã.`:i aa = .8 r:~ii.iatà ..

0 (Fig, 2) is utilized to maintain the bin below nominal atnno;sphe pre s it'd Shearing can be advantageous for "opening rup and "stressing"' the fibrous materials, making t .e materials more dis.pet sible, ez.g.,, in a solution or in a resip., and making them more s sceptible to chemical,enz:5'matic or biologicid attack. Without ;taishin? to b :
bound by any particular theoryit is believed, at least in some embodiments, that shearing 6 can t nctionalize fiber surfaces with functional groups, -mcill as hydroxyl or carboxylic acid g`rou s, w ii "3 can, help dispense T rs iia m y m r ` `: x ) tic " y s . i w .=~ e.g., hthe fieolt ~ J V Ain o 'Mn . ia. a chAm ià or 11he fiber source can be sheared in a, dry s eate, a hydrated state S e.g .
having up to ton percent. by "eight absorbed water), or in a wet :bate, C 'g, having, betwclm about H".. percent s a mil about : ? per e'nt by weight. ~.vater. The fiber s }uirce can even be she red while part alk, or fully submeAged under a liquid, such as sv'stet, ethanol. isopropan<ol.

The fiber '-source can also be she rcdt in under a Ras (Such as a stream or aitmosph i=
of " t t=. c` than air), "\v stye~if or F3wfTi'9~, it ~ i?:t.~-. ,.cis. air), e v,,g., S.>.~~ w~.=S:.i7, or stG''mrm K

Other methods of making the fibrous materials include stone grinding, mechanical ripping or tearing, pin grinding or air attrition milling.

If desired, the fibrous materials can be separated, e.g., continuously or in batches, into fractions according to their length, width, density, material type, or some combination of these attributes. For example, for forming composites, it is often desirable to have a relatively narrow distribution of fiber lengths. In addition, e.g., when making compositions that include bacteria and/or an enzyme, it is often desirable to use a substantially single material as a feedstock.

For example, ferrous materials can be separated from any of the fibrous materials by passing a fibrous material that includes a ferrous material past a magnet, e.g., an electromagnet, and then passing the resulting fibrous material through a series of screens, each screen having different sized apertures.

The fibrous materials can also be separated, e.g., by using a high velocity gas, e.g., air. In such an approach, the fibrous materials are separated by drawing off different fractions, which can be characterized photonically, if desired.
Such a separation apparatus is discussed in Lindsey et al, U.S. Patent No.
6,883,667.
The fibrous materials can be used immediately following their preparation, or they can may be dried, e.g., at approximately 105 C for 4-18 hours, so that the moisture content is, e.g., less than about 0.5% before use.

If desired, lignin can be removed from any of the fibrous materials that include lignin, such as lignocellulosic materials. Also, if desired, the fibrous material can be sterilized to kill any microorganisms that may be on the fibrous material. For example, the fibrous material can be sterilized by exposing the fibrous material to radiation, such as infrared radiation, ultraviolet radiation, or an ionizing radiation, such as gamma radiation.
The fibrous materials can also be sterilized by temperature adjustment, e.g., heating or cooling the fibrous material under conditions and for a sufficient time to kill any microorganisms, or by employing a chemical sterilant, such as bleach (e.g., sodium hypochlorite), chlorhexidine, or ethylene oxide. The fibrous materials can also be sterilized by using a competitive organism, such as yeast against bacteria.

Referring to Figs. 3-8, in some embodiments, the average opening size of the first screen 16 is less than 0.79 mm (1/32 inch, 0.03125 inch), e.g., less than 0.51 mm (1/50 inch, 0.02000 inch), less than 0.40 mm (1/64 inch, 0.015625 inch), less than 0.23 mm (0.009 9a fl`e`a), l:a..ss t .:n 0.20 mm (1.128 ieb, 0.00 8125 inch `ess than 0.18 mix 60,00 inch less than 0.13 mu-t(0.005 Inch), or evE .1 loss than loss t? an 010mm (1/256 i i h, ().003190625 inch). Screen 3.6 is prepared by interweaving moniofl inents 52 having an ap7 opriate di.aiii t.'t to give Jne dae=sired opening s ize. For ex.a iple, the iÃ
Ã:'nofilarÃ' entts be made of a etal, e.g., stainless steel. As the opening sizes get saunter, structural demands on the mono:f laiaients m ti' become greater. For exa uple, for opening siizes less than 0,40 -innn, it can be advantageous to à iake= the screens from monofilamcnis made from a aerial other than stainless steel, e gittaÃinia.ÃTa ` l Vt..l :
y j ~ilt:aliliti,. alloys, "ll.f~;~ F.1-Fa.~Ã'~311.Ã3n..S .Ã3Uta:E.~t, [?liE~.StZ.#' ncc,diurn, rhenia.;1i, ceramics. or glass, In some eÃIib dim :nAts, the screen is mare 3Til Ã
ljas i T i: ! `
3f,t ~+av"i~~? di: getÃiS.=.`* t into .g., cut inthe plate u7i? a w,. C uwf it ~~fa F t` '~ s"..
% lya eJ

In some, embodir'a': ents, the second fibrous 14 is sheaa ed. and passed à r tÃgl ffic. first screen 16, or a different sized screen. In some e Ix-Aimen:. s, the second 'lib oÃ.:s material 114 is pas-sod through õi iab.=G'LilaLa screen having all average open .ice? size L.<li#;.; to, or less than th,~%tt of rrst scree n 16.

Refs i %; to Fig, 9, a third fibrous material 62 can e prep red xrofl.t t:ie , econd fibrous r iater.ial 14 by shearing the second fibrous material 14 and passing the result ng materiall hough a second screen 60 having an average opening size less t;'.-,n the first s e "e , 1~
cellulosic t fl cl:L~dl i`nt ~
FibeT.-sources iÃ:t lud cfiber sourà rsa ,[a~u paper and Paper products cts lilà s..ac4rsi ` t w ~ à if ~ At poi'tr, Ã=z~ate:d paper), Rt llia,t. ` s a. Figs. paper.) and f i_ (Kraft ito lifltÃt fiber sources. including wood, and wood-related materials, e.g., ttaaticl;
board. Other suitable xibi~r sources include natural aber sources, grasses, rice hulls, bagasse, c.att o.n, Jute, hemp, flax, bamboo, sisal, ahaca, straw, corn cobs, rice hulls, coconut i3 i fiber s<?urce=s hi ` 3 to cel.iulose co nt nt. e. ;, cotton; synthe'til`y -1'#be so roesõ C ` ., extÃ'LÃ+. ed y am (oriented yarn or uõ-oriented yarn) or carbon fiber sources: inorganic, fiber sources; and ti Vial fiber source's.. Nat ral or synthetic fiber sources can be obtained from fi girl scrap textile 4 ral `"C c When ~x:tÃ.. ,tlr_a,..aata,.~s? e.g., aa.2.at:5lsa'iii`S or they can be post LdariSÃ.a.1lit-r waste, 4M.t ~., i<#hM. paper , products are used. as fiber sources, they can be virgin ateriaal ;, e.g scra vir,in materials, or they can be post- onsu_rncr w<ste. Aside. from it i t i4l::n.aterials, p o&
cu. astam :~ , ;'=Ei industrial tL ofr l). and pruc "'SIu waste ( .g., effluent from paper Processing) Car, "Aso be used as fiber sources, Also., the fiber source can. be obtained or derived turn human u.y ` t rage), animal or plant wastes. Additional fiber sources hate l' en described iii U.S.
tip Patent Nos. 6,448,307, 6,258,876, 6,207,729, 5,973,035 and 5,952,105.
Blends of any of the above fibrous sources may be used.

Generally, the fibers of the fibrous materials can have a relatively large average length-to-diameter ratio (e.g., greater than 20-to-1), even if they have been sheared more than once. In addition, the fibers of the fibrous materials described herein may have a relatively narrow length and/or length-to-diameter ratio distribution.
Without wishing to be bound by any particular theory, it is currently believed that the relatively large average length-to-diameter ratio and the relatively narrow length and/or length-to-diameter ratio distribution are, at least in part, responsible for the ease at which the fibrous materials are dispersed in a resin, e.g., a molten thermoplastic resin.
It is also believed that the relatively large average length-to-diameter ratio and the relatively narrow length and/or length-to-diameter ratio distribution are, at least in part, responsible for the consistent properties of the fibrous materials, the predictable rheology modification the fibrous materials impart on a resin, the ease at which the combinations of the fibrous materials and resins are cast, extruded and injection molded, the ease in which the fibrous materials pass through small, often torturous channels and openings, and the excellent surface finishes possible with molded parts, e.g., glossy finishes and/or finishes substantially devoid of visible speckles.

As used herein, average fiber widths (i.e., diameters) are those determined optically by randomly selecting approximately 5,000 fibers. Average fiber lengths are corrected length-weighted lengths, BET (Brunauer, Emmet and Teller) surface areas are multi-point surface areas, and porosities are those determined by mercury porosimetry.

The average length-to-diameter ratio of the second fibrous material 14 can be, e.g. greater than 8/1, e.g., greater than 10/1, greater than 15/1, greater than 20/1, greater than 25/1, or greater than 50/1. An average length of the second fibrous material 14 can be, e.g., between about 0.5 mm and 2.5 mm, e.g., between about 0.75 mm and 1.0 mm, and an average width (i.e., diameter) of the second fibrous material 14 can be, e.g., between about 5 m and 50 gm, e.g., between about 10 m and 30 pm.

In some embodiments, a standard deviation of the length of the second fibrous material 14 is less than 60 percent of an average length of the second fibrous material 14, e.g., less than 50 percent of the average length, less than 40 percent of the average length, less than 25 percent of the average length, less than 10 percent of the average length, less than 5 percent of the average length, or even less than 1 percent of the average length.

11a In some embodiments, a Bi"T surface area of the second fbro,,ks lateri al 14 is e.g., greater than 0.25 ? rte, greater than 0.5 mI 2/g, ;y,t ater t w<? .i,' greater than. 0-11 , n i , cs greater t t ali 5 I1 `' "' than 1. 75 131 cx greater ti I`ii1 `i x 1-'12/ `~
t , titer thtl r-:; z gY greater 'tz an .lTa greater F ,a h_,`c?. 60 4,.
W ~, tF. ,, gre,z`ter than 25 ail les r ~. glea:e:r than 35 m r' ea ..I than 5t ,~. ~.. g t. ,3 60 l h eawr ,?.IT, ;' i?~ .'mss IF ater than 1 lOt) 111 % ?, greater than 15 fa fix[ a ' than 200 I$`:} or even greater than, 250, t1 },"g, A porosity of the second hi?.r Fug mate'iÃal
3.4 can be, greater than 20 p 'rent, greater than 25 percent, greater than 35 percent, greater `t ?an 50 1 p.I_ 60 T`r~;I.C.:.: > aE, greater 1'.ia.l1 r#~ tan 70 penes, e.g, =a-`~
E..O.~.i~itr , is .I,,;t~.:z t,l ~~I'i.al'~~.I than 80 i3s`,'.IcLA, greater than S5 t3crcent greater than 90 percent, greater than 92 percent, greater than 94 e. : =tt f -f. >.t ~=r. than ` -a a Rt (F tt a"a n 5 t=_FZ a a (. ! r or a , p E.ent, t,z e at<: . p rc.s.la. 1.,<It i than } E e percent, 1,3 ..:i"
x.icz.: }_ # or I `' :F;
greater than 99.5 p rce#3t.

in some embod1 rents, a ratio of the average l ngth- o diameter ratio of the first fibrous material 12 to the average length-to-diameter ratio of the second 11bro s material 14 iL e.g.' less than 1 .5, e.g., less than 1.4. less than, I.25, less than. `,1.
less than 1,0:5, less c. 11 s i 1.05, less t. tan 13,025, or even substantially equal to 1.

In par .le..,:#iar emuod.Imeznts, to second fibrous material 14 is sheared again and the resulting fibrous mate r ral passed through a second screen. having an average opening size less than the 151st screen to provide a third fibrous material $2 In such instanc s, aI ratio of the a:. {,xrage longth to dialer 'r ratio of à e second t,s..nateI al 14 to the avtfragge length 20' to diameter ratio` of the third 1. brous material. 62 can be e.g., less than 1.5, e ti;., less: tha 1. less t4 an 1.25, or even less h n 1.1.

In sonic :. ^ I aliment , the third fibrous material 62 is passed through a third ; creei, to t?rod.tiCC a ?bunt fihrouus material. The 1?berth felbrous material :a be, o.&, passed through a ltnirt,i si reen to produce a fifth material. Similar screening processes can be 25 repeated s.s an y timnios as desired to produce the desired, fibrous material having the desired pro ernes.

In some ennbodime Its, the desired fibrous material in 1 fiber,; having an average `.k lt-t 1 T<LI1: c=#.l1 ratio i} greater than 5 and having a standard deptia:on o the f bC r eI g ffi ii .q))ql'ACa.~ is less than Sixty percent t of t~.1`tr'cl~/Ã.'Ii~yC=I1y:1p2gt"~, For S:'=K.i]r1~31~.', .~lt=ca`lti%G~c.~;C'~lt'.'1'i`~ t:l-yt)5-.greatey~ }. than 25 E . greater than S, . and the cC# {.3am et .w ratio can be greater t' than 0/f e.&' a~.c {i.1j ?,,:? '..x 6.: i:?1 c. 1 t1``t,-iil about I.I.5 nun and ,?..?
5m.,..ye. ., between about 0.75 1 aim and 1.0 mm. An average widen of the fibrous material can be between :about. 5 um and 50 unir e t between about 1 ? pivn and 30 pnn, For e?:i n.iple, the ,standard deviation, can be le s than 50 percent of the average length, e.g., less than 40 percent, less than 30 percent, less than 25 percent, less than 20 percent, less than 10 percent, less than 5 percent, or even less than 1 percent of the average length. A desirable fibrous material can have, e.g., a BET surface area of greater than 0.5 m2/g, e.g., greater than 1.0 m2/g, greater than 1.5 m2/g, greater than 1.75 m2/g, greater than 5 m2/g, greater than 10 m2/g, greater than 25.0 m2/g, greater than 50.0 m2/g, greater than 75.0 m2/g, or even greater than 100.0 m2/g. A desired material can have, e.g., a porosity of greater than 70 percent, e.g., greater than 80 percent, greater than 87.5 percent, greater than 90 percent, greater than 92.5, greater than 95, greater than 97.5, or even greater than 99 percent. A particularly preferred embodiment has a BET surface area of greater than 1.25 m2/g and a porosity of greater than 85 percent.

FIBROUS MATERIAL/RESIN COMPOSITES

Composites including any of the fibrous materials or blends of any of the fibrous materials described herein (including any of the fibrous materials disclosed in U.S. Patent Nos. 6,448,307, 6,258,876, 6,207,729, 5,973,035 and 5,952,105), e.g., the first 12 or second fibrous material 14, and a resin, e.g., a thermoplastic resin or a thermosetting resin, can be prepared by combining the desired fibrous material and the desired resin. The desired fibrous material can be combined with the desired resin, e.g., by mixing the fibrous material and the resin in an extruder or other mixer. To form the composite, the fibrous material can be combined with the resin as the fibrous material itself or as a densified fibrous material that can be re-opened during the combining. Such a densified material is discussed in International Publication No. WO 2006/102543.

Examples of thermoplastic resins include rigid and elastomeric thermoplastics. Rigid thermoplastics include polyolefins (e.g., polyethylene, polypropylene, or polyolefin copolymers), polyesters (e.g., polyethylene terephthalate), polyamides (e.g., nylon 6, 6/12 or 6/10), and polyethyleneimines.
Examples of elastomeric thermoplastic resins include elastomeric styrenic copolymers (e.g., styrene-ethylene-butylene-styrene copolymers), polyamide elastomers (e.g., polyether-polyamide copolymers) and ethylene-vinyl acetate copolymer.

In some embodiments, the thermoplastic resin has a melt flow rate of between 10 g/10 minutes to 60 g/10 minutes, e.g., between 20 g/10 minutes to 50 g/10 minutes, or between 30 g/10 minutes to 45 g/10 minutes, as measured using ASTM 1238.

13a IM some embodiments, compatible blends of any oftlie ; bt`_tw flicianoplxstÃc resi.ns ca ii be used.

In some embodiments, the thermoplastic resin has a pol d spas. index (P11)1), ix-.
zi i aitio of the weight average molecular weight to iI? . E~wEiT b s'< 3"s 4 molecular ~z= E i of treater than 1.5, e.g. greater than 2.0 greater than 2.:Z greater than 5Ø %
rt or oven greater than 10Ø

f In speci,icc mbodimeÃ#Ãs, poly'oieins or blends of po olefin, are at i ized as the tie mo l s i_ c resin-.., t'} xa mp,es c "f thermosetting, resins include natural rubber, b' , adien+.
rubber and In addition to the desired fibrous ià atcriai and rein, additives, e.g , in the form of a, solid or a liquid, c azn be added to the combination of the Iibruus materia .
and .esin. Fo example, s itable additives include tillers such as calciu :aibonatt graphite, -v ollasi rite, micca, glass, filacr glass, s'. eia, and talc; inorganic flame retardant` such as, alumina # Ãtitiii'i3tc' or mUgnà sizinn 1y4. roxi' e;; organic t `.fine retardants such as c i1orinated or bioi,t#nated organic compounds; ground Consttuc.tion Waste, ,,rou it; tire rubber, cai"b'xi ft rs or, #ietal tà ers or powders ahaninum, s tainless steel). These additives can 'ein.,bre extend, or i lane electrical. mechanical or compatibility properties, Other aiditi t'es include fragi inec's, cm1pling agent, compa ihiliizers, poi p onylene, 20 processing aids, lubricants, v&, fluorinated polyethylene, plasticizers, an' ioxidants, opacif.eis, heat stabilize s, colorants. foaming agents, impact odife s, polymers, e.g.9 d33e`;raÃaable polyin ri, ph o biocides, antistatic agents, e.g., ;tai c.rzt`s or ?_thox 'i5 fed fat a0=id <i.i2'iines. Suitable antistatic compounds is etude carbon blacks, carbon fibers, Tnetal. tillery`s.(cationic ( comp #,n nds) e,, quatgernmr`!{

25 co-mlxmnds, e.;] , i \ chioro~ Li R r xypro Ja t i:31 v)S i~iT .S23~_wl ium t'1 lori at=

i ikanolemides. and arnines. Representative degradable polymers include p lyh;
drox. j, Ads, e ' . p{'..'s l a. ti cs, pok'i glycol des and c:opolyine of lactic cid and glycolic acid~
poiyth `idi('x %h#.stynr acid), - 7\ai it)Y b ~c r e c''-:t<. , oly[la :t`iL
~' # G . :3r tact dY e;j.
poly[ gi yi olide co-(e-eapmlactone)], .p lycarhonates, poiy(ami.so acid, *

s ~~ vdroxyÃa11~ Ã at polya ihydrides, polyorthoesters one blends ofÃhese polymers.
In some embo iments. the fibrous mate gal is ste]i i.zed prior to combining w'ith a resit` to kill an `microorganisms that may be on the f m:F:ti:i iateriall. For exa'naple, the fibrous material can he sterilized by exposing the fibrous material to adiation by hotting, the fibrous material under conditions and for a sufficient time to kill any microorganisms, e.g., boiling at normal atmospheric pressure; or by employing chemical sterilants.

It can be advantageous to make the composite smell and/or look like natural wood, e.g., cedarwood. For example, the fragrance, e.g., natural wood fragrance, can be compounded into the resin used to make the composite. In some implementations, the fragrance is compounded directly into the resin as an oil. For example, the oil can be compounded into the resin using a roll mill, e.g., a Banbury mixer or an extruder, e.g., a twin-screw extruder with counter-rotating screws. An example of a Banbury mixer is the F-Series Banbury mixer, manufactured by Farrel.
An example of a twin-screw extruder is the WP ZSK 50 MEGAcompunderTM, manufactured by Krupp Werner & Pfleiderer. After compounding, the scented resin can be added to the fibrous material and extruded or molded. Alternatively, master batches of fragrance-filled resins are available commercially from International Flavors and Fragrances, under the tradename PolylffTM or from the RTP Company. In some embodiments, the amount of fragrance in the composite is between about 0.005 %
by weight and about 10 % by weight, e.g., between about 0.1 % and about 5 % or 0.25 %
and about 2.5 %.

Other natural wood fragrances include evergreen or redwood. Other fragrances include peppermint, cherry, strawberry, peach, lime, spearmint, cinnamon, anise, basil, bergamot, black pepper, camphor, chamomile, citronella, eucalyptus, pine, fir, geranium, ginger, grapefruit, jasmine, juniperberry, lavender, lemon, mandarin, marjoram, musk, myrhh, orange, patchouli, rose, rosemary, sage, sandalwood, tea tree, thyme, wintergreen, ylang ylang, vanilla, new car or mixtures of these fragrances. In some embodiments, the amount of fragrance in the fibrous material-fragrance combination is between about 0.005 % by weight and about 20 % by weight, e.g., between about 0.1 % and about 5 % or 0.25 % and about 2.5 %. Even other fragrances and methods are described in International Publication No. WO
2006/12543.

Any of the fibrous material described above, e.g., the first 12 or second fibrous material 14, together with a resin, can be used to form articles such as pipes, panels, decking materials, boards, housings, sheets, blocks, bricks, poles, fencing, members, doors, shutters, awnings, shades, signs, frames, window casings, backboards, flooring, tiles, railroad ties, trays, tool handles, stalls, films, wraps, tapes, boxes, baskets, racks, casings, binders, dividers, walls, mats, frames, bookcases, sculptures, chairs, tables, desks, toys, games, 15a pallets wharves. ~ ~ ,r, ? , boats, il7:a.S1S, septic tMirik`. automotive panels, computer housings, s 3i3 `v and ii tow.- o Lind electrical casings, fu ÃaÃtur ., i picnic tabl s= bench-s, sh It r trio:!
s Mangers. servers. book covers, cares, crutches, insulation, thread. clot, riovElties, house wares and structures.

T lie fibrous '1 1aterial may be dyed before combining with the rosin and compounding to foi`.it1 the composites described above. In some embodiments, this dy;eeii7g c in be helpful in i'aas i#3e or la dJ rig ti1e fibrous material, +espe4udlS' Y irge i :gl"',i331' ctt3:Ãot-is ol. t h : fibrous, materiall in molded or extruded parts. Such a when pr sent in relatively high LE?i3centi't ~ilons can show -up as speckles in .he surfaces of t1he.molded or extruded parts, For example, he d :sired fibrous material can be dyed using an acid dye, diÃec dye or ti. re3:ctive dye. Such dyes are available from Spectra Dyes. Kearny. NJ or Keystone aniline Corp<mtion, Chic go, 11- Specific examples of dyes include S ECTRA"m LIGHT
Y1..LLOW 20, SPE;C.TRACID" k' YELLOW 4 GL CONC 200, SPEC, a'RANYIYM
SET
R 1ODAMINF. 5, SPEC T AMYL M NEUTR:. L RED B.
P ECTRAMIN N n.
BENZOPE' 'URINE, S P(:TR A. )lA ` ` BLACK. 013, SPECTRA \'.IINIUM
'11) RQl10IS E 0, and S P E 1 R A:N41N E M GR;: Y 1,VI, 200%, eac} being available from Spei~ctra Dyes .

In some eil bt ; meats, resin color concentrates pig tints are blended 2D with dyes. %k } z ;i su E blends are then compounded, ith the desired fib o.i.s inat.riial, Ã .e Sit us 'Ã aterial i:3 i Y be dyed in-sit during the compound ng. Color C _} 1L
=ntrat s are s:.~ 1iz'*=2]3L. e3a+.3i~t31'isi:a.I~t., l"_.XA MPE ES

25 Scanning electron .i7.`,,iS:i 33 7Ã:I7las were obtained on a JEOL 65000 field E' 13, s ion sC:amn.io electron ` lcroscope. Fiber l ongths and widths (i.L=, diameters) a eie= deter33`Ã.ined:
by integrated Paper Services, IIic. , A pit it o. \V i US , an automated a1? a l .e (TAPPI
T2'71), BET surf.3cc area was determined by k1licio.-T critics Analytical Services, as were po osik i` ii;l ulk density.

tar~i'fton O Fibrous; NI.a. iital F3'o i Polv."CSated1.P L er A 1 500 Bound skid of virgin, liai fgallon juice cartons nmd of it:=i prin`1ed nolycoated white Kraft hoard having a bulk density' of 2Ã0 lb:/f was obtain; d from 1t international Paper. The .material was cut into pieces 8 I..4 inches by i I
inches using a guillotine cutter t^ id fb to a '.' t5 1unson rotary Lknitfe~ cutter, Model SC 30.3 Model SC {O is C
equipped with tihur rot try blades, four fixed blades, and a discharge s,;;..reen . wa4'~ing 1 if inch openings. The gap between the rotary and fixed blades was set to approximate) 0J)20 inch. The rotary knife cuttt ..v:3~,>ed the confetti-like pieces( across he knife-edges, tearing the nieces apart and releasing a fibrous material at a rate of about one pound per hour. The fibrous material had a BET surface area of 0,9748 rl- 1/fig 1 0.0167 y g, a Porosity o l., pf 89.04`7 :if.rc\nt and a bulk density ( O.53 psia of 0. F260 g niL. An avw,~' ge iena tw of 2\ fl, s k fibers was i .J 11 .1.41 Ãt-tI3 and average aaverage width of the fibers was 0.02" g1v3 1.4; an II`'.`ic,i.3;

nuucr1rF z grt<lphs the c r .t,a. to c are shown > a l t1br{ 3ta~3Ã s an d I.> at ~5 > magnification and 1000 X ma ificat on. resne tn' t'`, Ja r3 I? I iC3?c rLiti 13.3 Of ibro ~'iii'=t 3c3ti From Bleached Kraft Board A 1500 pound skid of v-,-gin bleached white Krafi board I av i>3 Y a bulk density ol f 1I?= It as ~.`btane .ITom In te +.l :t<3. al Paper. The material 'x.15 =11:t.
into ÃÃ of s 8 :1# 1 es by I l : nch :s using a;.;uillo ine cutter and fed to a Munson rotar- ? knife cutter. Model SC #..
The discharg screen had 1 /8 inch opelnings. 'File gap ba w ee the rotary and ta: i blades was set to approximately 0,020 inch. The rot:ry:nil` cutter sheared the, coiifeffi -like i es. es, releasing a fibrous irr . YaI aI. a rate of about one pound per hour. a lie fibrous 20 material had a BET surface area of 1, 1316 ~ ~> , ' . .I11 i1 rte , w it rosin s3A'' .r 285 percent j r '@,-.0, 5 v t; 1~-~` r 4i + ` is1 .~: . <`~, 3 1 average I t:=>1 -i l 7 { 3.,a ,t. a bulk ~.>IL ~~[;Y341t~' 13s1 i`3.~ C3 t" ~~~.,.+'~õ,, a3 of F1lbei's was ',,061 n-ni .'n man avera-c width of the fibers was 0,0245 trin3, giving an average L/t) of '"3:l , Scanning electron micrographs of the. fibrous maters l are shown in igs. 13 and 14 at 25 X magnification and 1000 X magnif cation, respectively.

Pj '" tÃon, O ,,yi :c_ S13oaÃ`Qd 'i rous-4r ate a From l lg= : ` e t3 , I Ãytu ~L _ 3f\
`~ 1.r..` pound { skid of virgin bleached t white j 4''i ar'~ having Y~
density, of S:_!
.5L::,, white .{~Y. 5~3 ~ `)1~i7.r. ~} ii bulk .~` ' .~1.

lb. 3 was obtained from International Paper, The material was cut into Pieces 8 1/4 Ãnehes 30 , I i> the guillotine cutter a fed to a Munson 3"Mary knife cute , Model 8(230.
s sin g a an The discharge screen had I / 16 inch openings. The gap bet.4 eel the rotary .uaQ ixed blades Was, set ral a;<)P'"t~' 5.#1õ.0 ?1iL15; `I'1Lrf~tar~' 1%33i f ; ~:ti>s ~~a... ~ff., ~.i.,t.t~r the :>~'0=t:1-õi"ke pieces, r"ye2.iasi.)rn#', afibrous {omaterial. at a rate of about one pound per.
~y.ou/r. I'll materil estfltin`?

z> ) y oynt the fIyst shear t was ~( .god back into the same setup described 'above ve and siJ.eaTod again.

h resalt.i$ a ei:.rous material had a BET surface area of :.4408.1 O',,W15,61 ig a porosity of 9U998 percent and a bulk density(@U3 psi) of 0,11 298 `F` a.. Ar.
a.`c' is l 84th o ti?e; fibers was 0r 9i rztm and an average width of the fibe was .?
.? 6 f73I1'F ?wing an Fib iai ,.. 'D of 34:1. Scan?_ii electr?r itiF rt?klu ~ s 4} ?L'`
.ibaous'n,materia are 51off.'.n in Pigs. ati16 at 25 X. magnification and 1000 X magnification, respe i v en =
4-Example 4 -:} ..z ..... n OfTbrice Sheared Fibrous Material Po Ble :.}~e&t ra1Ã 3;? _ A 1500 pound skid of virgin bleached white Kra board having a bulk d{ niity of i'i?, ft was obtained from International Paper. The material was cut into pieces 8 ..`~ inche ;Y 1 i r zasi?Z~
= inch"-'s x g a 3 (Yif tt`<I and fed to L~i ~ iFif? siiF rotary i r. t :lai>r S.i 1,i.Etftirii cutter ti7iE_ ; Model , ?:
The =
=Tie_La ch rge screen had 1/8 inch openings. The pp be'tw; ,on tii otar id f xsd blades was set to approximately 0.020 inch. The rotary knife cutter sheared he confetti-like pieces across the ~~i if t= ` t 5:= The material resultiun from the .rst shearing a ibd back into the sa,? e setp and Bile screen was replaced with a l6 inch s.-,aeon. I 'his material was sheave d.
The material 'e i:sting from the second shearing wfl tt.tt into f :t a>?~ F?
<1i1: the screen was replaced with a 1/32 inch screen. The ri.sui:ii#;u}
fibrous material lead a ;,urface area of 1,6897 n:i z hh a .'ss a, Porosity of 1 r 3 `?~.rs =r?t i?$7 F 'ii.i tten sit (a,0, i? T:a) o f}, i i s t .:: tt n N a[ L a}g t i 3 n1 o TD'` `
fibers was 0.324 it in and an avenge width of the fibers was 0.0262 inin, giving al.~ average 91 g `. t?: ?' i; ing electron mierographs of the fibrous material are shown in Figs. I7 and l s' at 25 magnification and 100) X Triapfficati.ovi, respectively O J ER COMPOSITIONS AND USES OF THE . I ROUS MAJITRJAL

Compositions can be prepar : that iriclude any oft-he fibrous Material", described 25 herein, incikidin4 any of the fibrous materials, resins, additives or other c ) mponents -,closed in L:.s. Patent Nos, 6,448,307, 6,258,87 , 63 2,07, t 2t3 5,973,03 S
and 952,1 (05), For example. any of the fibrous materials described herein can. he combined with a solllid, i liquid or a . z v; a a chemical i.i chemical tt) fFki 4it5Fi (in the,olid or liquid statti),as is i`,?armaceutit it t=e.cx an antibiotic), : n aagi'ic-Lift raI material 4 t'.. .; plant seeds, a fertilizer.

JL herbicides C>z peso i i 3, or an enzyme Or as formulation ti at includes en'< rocs. Co ltpositl iris that ~(iin =ludee one or more type of bacteria or bacteria 1-n cor binatiosK with one or rfior'e enf`Ymess can also be prepared.

S

Such compositions can take advantage of the fibrous 'materia s iesin<&1le pÃope rties.
For example, an of the t brous matct. `i.F._ s um he used to absorb chemicais, pcot 3t;a!iy z3`'SZ?.i 3in l times their ow weigh For example, It fibrous "nF3tericit can be used absorb spilled oil; or other chemicals,, Comb Sling those fibrous materials , i -#. a xicr e gaE isila, such as a bacteiiitun, that can ni tabolize t hte oil or chcn- ical can aid in cleanup. For >sxaia illy the fibrous. ma .erials can be combined with solutions .3a e nzymes, dried, ..z, .?..., used in pot bedding, or combined with a pharmaceutical and us d for delivering a therapeutic agent, such as a drug. If desired, the ab Ãs i'l a i.als ~ ~ be combined with a d yititl.i 3C ~~y's3~bL`Ã eri a as olygl4 .t..1#.c aitcid, .
ofyltactr :.ti.' acid 3`.e3,,d F' `.4 =<. N . ..
and 'i 0 copol ni3. } `` . s {: f glycnl.Ã# aallactic acid. Other degradable materials that can be used sed }' a l C

been i cuss ? a ove, c onmosÃtions that include fibrous materials, C 'g., ceiilÃdoslc or L:?Foced F tti# :
materials and, e .g., chemical;, or chemical forilliiir_Ftions. in the solid, liquid or gaseous st..ite,, can be prepared. e.g,,, in ViiÃous iilunersioll, spraying, or blending apparatuses, For t~ exanipli tae compositions can be prepared us nq ribbon blenders, cone ble.n ers, double cone blenders, and Patterson-Kelly W" blenders.

if des red, lignin can be removed from any of the fibrous l > iia `,` lat include lignin, 3, ch as Fr;ilt3c eli:ll;,1S t i l iterial , Also, if desired, the fibrous la e.. Ãal can be sterilized to kill any inic=roorganisins that. iiis y be on the fibrous m3 .ate,i<al. ,For example, the 20 air rouss materiail can >be sterilized by exposing the Jfpbrous i uttetial ".t. iadiat lion, such as infrared iadi tion, ultraviolet rady ia iooi ,) or an i01117i radiation,{ such as gamma .radiation.

i)1. 'h can also be sterilized by cheating the l braus nuac ial undeyr conditions and t'or a sufficient time'. to kill any 1 I.s :P'C3Lt.F' ?elil:i siTl , or by 'l plo i # a chemical sterih t, such as bleach (C,;.;'., sodium hypochlori_t), chiorhex dine, or ethylene oxide.

Any of the fibrous materials can be `washed, c:s , with a .iQu.id such as water, to, remove ;yundesirabl impurities anrf for L ontClmin ilia :.

In a -specific appl:ratioÃ` the fibrous- material, can be. usod as af;;.odstook for various 31`ivF'd33rg #FY 3 ià , Such as yeas and bacteria, that can '.E i`mei:t or otherwise work on '3.t-it fibrous nlatert ear to produce a useful material, such as a fuel e.g. art alcohol, an organic a, hydrocarbon (. -ydi, igei,, or ~_ rote,' l.i e al:coholll produced can be a monohydroxy alcoho51 c;F'... ethanol, rat a, 3 3 41 3'?alb v S' :1.ti C3hol, t Y~, ethylene glycol or glyc _.rin. Ex n ?.'es of alcohols.- .tt: s an produced include anethanol, .t'n~rlll 3F"{3i~<1iÃf}ai, isop L>f iai ol, its tia33, ethyl ethylene co propylene glycol, 1,4-butane diol, glycerin or mixtures of these alcohols. The organic acid produced can a monocarboxylic acid or a polycarboxylic acid. Examples of organic acids include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic, palmitic acid, stearic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, oleic acid, linoleic acid, glycolic acid, lactic acid, y-hydroxybutyric acid or mixtures of these acids. The hydrocarbon produced can be, e.g., an alkane or an alkene. Examples of hydrocarbons that can be produced include methane, ethane, propane, isobutene, pentane, n-hexane or mixtures of these hydrocarbons.

In a particular embodiment, a fiber source that includes a cellulosic and/or lignocellulosic fiber source is sheared to provide a first fibrous material. The first fibrous material is then passed through a first screen having an average opening size of about 1.59 mm or less (1/16 inch, 0.0625 inch) to provide a second fibrous material. The second fibrous material is combined with a bacterium and/or enzyme.
In this particular embodiment, the bacterium and/or enzyme is capable of utilizing the second fibrous material directly without pre-treatment to produce a fuel that includes hydrogen, an alcohol, an organic acid and/or a hydrocarbon.

In some embodiments, prior to combining the bacteria and/or enzyme, the fibrous material is sterilized to kill any microorganisms that may be on the fibrous material. For example, the fibrous material can be sterilized by exposing the fibrous material to radiation, such as infrared radiation, ultraviolet radiation, or an ionizing radiation, such as gamma radiation. The microorganisms can also be killed using chemical sterilants, such as bleach (e.g., sodium hypochlorite), chlorhexidine, or ethylene oxide.

In a particular embodiment, the cellulosic and/or lignocellulosic material of the fibrous material is first broken down into lower molecular weight sugars, which are then added to a solution of yeast and/or bacteria that ferment the lower molecular weight sugars to produce ethanol. The cellulosic and/or lignocellulosic material can be broken down using chemicals, such as acids or bases, by enzymes, or by a combination of the two. Chemical hydrolysis of cellulosic materials is described by Bjerre, in Biotechnol.
Bioeng., 49:568 (1996) and Kim in Biotechnol. Prog., 18:489 (2002).

Bioethanol strategies are discussed by DiPardo in Journal of Outlook for Biomass Ethanol Production and Demand (EIA Forecasts), 2002; Sheehan in Biotechnology Progress, 15:8179, 1999; Martin in Enzyme Microbes Technology, 31:274, 2002; Greer in BioCycle, 61-65, April 2005; Lynd in Microbiology and Molecular Biology Reviews, 66:3, 506-577, 2002; Ljungdahl et al. in U.S.
Patent No. 4,292,406; and Bellamy in U.S. Patent No. 4,094,742.

Referring now to Fig. 19, a fibrous material having a low bulk density can be combined with a microorganism, e.g., freeze-dried yeast or bacteria, and/or a enzyme, and then revertibly densified to a fibrous material composition having a higher bulk density. For example, a fibrous material composition having a bulk density of 0.05 g/cm3 can be densified by sealing the fibrous material in a relatively gas impermeable structure, e.g., a bag made of polyethylene or a bag made of alternating layers of polyethylene and a nylon, and then evacuating the entrapped gas, e.g., air, from the structure. After evacuation of the air from the structure, the fibrous material can have, e.g., a bulk density of greater than 0.3 g/cm3, e.g., 0.5 g/cm3, 0.6 g/cm3, 0.7 g/cm3 or more, e.g., 0.85 g/cm3. This can be advantageous when it is desirable to transport the fibrous material to another location, e.g., a remote manufacturing plant, where the fibrous material composition can be added to a solution, e.g., to produce ethanol. After piercing the substantially gas impermeable structure, the densified fibrous material reverts to nearly its initial bulk density, e.g., greater than 60 percent of its initial bulk density, e.g., 70 percent, 80 percent, 85 percent or more, e.g., 95 percent of its initial bulk density. To reduce static electricity in the fibrous material, an anti-static agent can be added to the fibrous material. For example, a chemical anti-static compound, e.g., a cationic compound, e.g., quaternary ammonium compound, can be added to the fibrous material.

In some embodiments, the structure, e.g., bag, is formed of a material that dissolves in a liquid, such as water. For example, the structure can be formed from a polyvinyl alcohol so that it dissolves when in contact with a water-based system. Such embodiments allow densified structures to be added directly to solutions, e.g., that include a microorganism, without first releasing the contents of the structure, e.g., by cutting.

OTHER EMBODIMENTS

While certain embodiments have been described, other embodiments are possible.

While some embodiments use screens to provide a desired fibrous material, in some embodiments, no screens are used to make the desired fibrous. For example, in some embodiments, a fiber source is sheared between a first pair of blades that defines a first gap, resulting in a first fibrous material. The first fibrous material is then sheared between a 21a second pair of t'lia`t define a socond gap that .Ãs smaller than `. 1e first lap, resulting i t?
Second fibrous material. Sinliklr screening processes ca be à e caWd as à an r t Ã,T~t s as desr od to produce hedesired fibrous material having the desired properties.

In some en bodiments, a ratio of all average ratio first fibrous material to, an a cri>gõ lcngth-to-diameter of the Second fibrous material s Iu s than.
I . ?, Still 3 ,i I '1 bod ,l~tz 4 c3Ã within the Scope of the t bllowing claims.

'3 7

Claims (7)

CLAIMS:
1. A method of making a fuel, the method comprising:

shearing a fiber source that is a cellulosic or lignocellulosic material to provide a first fibrous material;

passing the first fibrous material through a first screen having an average opening size of about 1.59 mm or less (1/16 inch, 0.0625 inch) to provide a second fibrous material; and combining the second fibrous material with a bacterium and/or enzyme, the bacterium and/or enzyme utilizing the second fibrous material to produce a fuel comprising hydrogen, an alcohol, an organic acid and/or a hydrocarbon;

wherein the second fibrous material has a BET (Brunauer, Emmet and Teller) surface area of greater than about 0.25 m2/g and a porosity of greater than 25%
2. The method of claim 1, wherein the alcohol is selected from the group consisting of methanol, ethanol, propanol, isopropanol, butanol, ethylene glycol, propylene glycol, 1,4-butane diol, glycerin, and mixtures thereof.
3. The method of claim 1 or 2, wherein the organic acid is selected from the group consisting of formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic, palmitic acid, stearic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, oleic acid, linoleic acid, glycolic acid, lactic acid, .gamma.-hydroxybutyric acid and mixtures thereof.
4. The method of any one of claims 1 to 3, wherein the hydrocarbon is selected from the group consisting of methane, ethane, propane, isobutene, pentane, n-hexane, and mixtures thereof.
5. The method of any one of claims 1 to 4, wherein the second fibrous material has a BET (Brunauer, Emmet and Teller) surface area of greater than about 1.25 m2/g.
6. The method of any one of claims 1 to 4, wherein the second fibrous material has a porosity of greater than about 85 percent.
7. A method of making a fuel, the method comprising:

shearing a fiber source that is a cellulosic or lignocellulosic material to provide a first fibrous material;

passing the first fibrous material through a first screen having an average opening size of about 1.59 mm or less (1/16 inch, 0.0625 inch) to provide a second fibrous material having a BET (Brunauer, Emmet and Teller) surface area of greater than about 0.25 m2/g and a porosity of greater than 25%;

hydrolyzing the second fibrous material to provide a hydrolyzed material; and combining the hydrolyzed material with bacterium and/or enzyme, the bacterium and/or enzyme utilizing the hydrolyzed material to produce a fuel comprising hydrogen, an alcohol, an organic acid and/or a hydrocarbon.
CA2655111A 2006-06-15 2007-06-12 Fibrous materials and compositions Expired - Fee Related CA2655111C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/453,951 US7708214B2 (en) 2005-08-24 2006-06-15 Fibrous materials and composites
US11/453,951 2006-06-15
PCT/US2007/070972 WO2007146922A2 (en) 2006-06-15 2007-06-12 Fibrous materials and compositions

Publications (2)

Publication Number Publication Date
CA2655111A1 CA2655111A1 (en) 2007-12-21
CA2655111C true CA2655111C (en) 2013-01-08

Family

ID=38832774

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2655111A Expired - Fee Related CA2655111C (en) 2006-06-15 2007-06-12 Fibrous materials and compositions

Country Status (24)

Country Link
US (6) US7708214B2 (en)
EP (4) EP3492173A3 (en)
KR (1) KR101159628B1 (en)
CN (2) CN101541432A (en)
AP (1) AP2464A (en)
AU (1) AU2007257741B2 (en)
BR (3) BR122017001646B1 (en)
CA (1) CA2655111C (en)
DK (2) DK2032261T3 (en)
EA (1) EA013498B1 (en)
ES (2) ES2558308T3 (en)
HU (2) HUE028695T2 (en)
IL (3) IL195910A (en)
LT (1) LT3012025T (en)
MX (2) MX2008016029A (en)
MY (3) MY159433A (en)
NZ (3) NZ609636A (en)
PL (3) PL2032261T3 (en)
RU (1) RU2434945C2 (en)
SI (2) SI2032261T1 (en)
TR (1) TR201807349T4 (en)
UA (1) UA93719C2 (en)
WO (1) WO2007146922A2 (en)
ZA (1) ZA200900054B (en)

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7537826B2 (en) * 1999-06-22 2009-05-26 Xyleco, Inc. Cellulosic and lignocellulosic materials and compositions and composites made therefrom
US7708214B2 (en) * 2005-08-24 2010-05-04 Xyleco, Inc. Fibrous materials and composites
US20150328347A1 (en) 2005-03-24 2015-11-19 Xyleco, Inc. Fibrous materials and composites
EP2564931B1 (en) * 2005-03-24 2014-08-06 Xyleco, Inc. Methods of making fibrous materials
EA025362B1 (en) 2006-10-26 2016-12-30 Ксилеко, Инк. Processing biomass
US7867358B2 (en) 2008-04-30 2011-01-11 Xyleco, Inc. Paper products and methods and systems for manufacturing such products
US8236535B2 (en) 2008-04-30 2012-08-07 Xyleco, Inc. Processing biomass
NL1035521C2 (en) * 2008-06-03 2009-12-07 Majac B V Method for recycling used clothing and household textiles.
US7900857B2 (en) * 2008-07-17 2011-03-08 Xyleco, Inc. Cooling and processing materials
MY153759A (en) 2009-02-11 2015-03-13 Xyleco Inc Processing biomass
NZ600967A (en) 2009-02-11 2013-06-28 Xyleco Inc Saccharifying biomass
WO2010093835A2 (en) 2009-02-11 2010-08-19 Xyleco, Inc. Processing biomass
AU2013203080B9 (en) * 2009-05-20 2015-09-10 Xyleco, Inc. Processing biomass
MY158952A (en) * 2009-05-20 2016-11-30 Xyleco Inc Processing biomass
NZ596930A (en) 2009-05-20 2014-06-27 Xyleco Inc Bioprocessing
PL2432865T3 (en) 2009-05-20 2018-08-31 Xyleco Inc Processing biomass
MX2011012494A (en) 2009-05-28 2012-02-21 Gp Cellulose Gmbh Modified cellulose from chemical kraft fiber and methods of making and using the same.
US9512237B2 (en) 2009-05-28 2016-12-06 Gp Cellulose Gmbh Method for inhibiting the growth of microbes with a modified cellulose fiber
US9511167B2 (en) 2009-05-28 2016-12-06 Gp Cellulose Gmbh Modified cellulose from chemical kraft fiber and methods of making and using the same
US9512563B2 (en) 2009-05-28 2016-12-06 Gp Cellulose Gmbh Surface treated modified cellulose from chemical kraft fiber and methods of making and using same
US20100319865A1 (en) * 2009-06-19 2010-12-23 Weyerhaeuser Nr Company Pulp for Odor Control
DK2507023T3 (en) * 2009-12-01 2023-10-30 Vive Textile Recycling Spolka Z O O PROCEDURE FOR RECYCLING USED CLOTHING AND HOUSEHOLD TEXTILES
EA201891588A3 (en) 2010-01-20 2019-04-30 Ксилеко, Инк. DISPERSION OF INITIAL RAW MATERIALS AND MATERIAL PROCESSING
SG10201602598WA (en) 2010-01-20 2016-05-30 Xyleco Inc Method and system for saccharifying and fermenting a biomass feedstock
US9604387B2 (en) 2010-04-22 2017-03-28 Forest Concepts, LLC Comminution process to produce wood particles of uniform size and shape with disrupted grain structure from veneer
US8734947B2 (en) * 2010-04-22 2014-05-27 Forst Concepts, LLC Multipass comminution process to produce precision wood particles of uniform size and shape with disrupted grain structure from wood chips
US8871346B2 (en) 2010-04-22 2014-10-28 Forest Concepts, LLC Precision wood particle feedstocks with retained moisture contents of greater than 30% dry basis
US8497019B2 (en) 2010-04-22 2013-07-30 Forest Concepts, LLC Engineered plant biomass particles coated with bioactive agents
US8497020B2 (en) 2010-04-22 2013-07-30 Forest Concepts, LLC Precision wood particle feedstocks
US8507093B2 (en) * 2010-04-22 2013-08-13 Forest Concepts, LLC Comminution process to produce precision wood particles of uniform size and shape with disrupted grain structure from wood chips
US9005758B2 (en) 2010-04-22 2015-04-14 Forest Concepts, LLC Multipass rotary shear comminution process to produce corn stover particles
US8481160B2 (en) 2010-04-22 2013-07-09 Forest Concepts, LLC Bimodal and multimodal plant biomass particle mixtures
US9061286B2 (en) 2010-04-22 2015-06-23 Forest Concepts, LLC Comminution process to produce precision wood particles of uniform size and shape with disrupted grain structure from wood chips
US8034449B1 (en) * 2010-04-22 2011-10-11 Forest Concepts, LLC Engineered plant biomass feedstock particles
US8758895B2 (en) 2010-04-22 2014-06-24 Forest Concepts, LLC Engineered plant biomass particles coated with biological agents
US9440237B2 (en) * 2010-04-22 2016-09-13 Forest Concepts, LLC Corn stover biomass feedstocks with uniform particle size distribution profiles at retained field moisture contents
AU2011279924B2 (en) 2010-07-19 2015-01-29 Xyleco, Inc. Processing biomass
US8651403B2 (en) * 2010-07-21 2014-02-18 E I Du Pont De Nemours And Company Anhydrous ammonia treatment for improved milling of biomass
US20120024859A1 (en) * 2010-07-30 2012-02-02 Francesco Longoni Container
CN102478716B (en) * 2010-11-30 2013-08-28 东莞冠狄塑胶有限公司 Manufacturing method of glasses rack sheet material
US8722773B2 (en) 2011-02-14 2014-05-13 Weyerhaeuser Nr Company Polymeric composites
US8757092B2 (en) 2011-03-22 2014-06-24 Eco-Composites Llc Animal bedding and associated method for preparing the same
US9737047B2 (en) * 2011-03-22 2017-08-22 Ccd Holdings Llc Method for the treatment, control, minimization, and prevention of bovine mastitis
US8765010B2 (en) 2011-03-22 2014-07-01 Eco-Composites Llc Lignocellulosic fibrous composites and associated methods for preparing the same
US9181134B1 (en) 2011-04-27 2015-11-10 Israzion Ltd. Process of converting textile solid waste into graphite simple or complex shaped manufacture
AU2012268700B2 (en) 2011-05-23 2017-02-02 Gp Cellulose Gmbh Softwood kraft fiber having improved whiteness and brightness and methods of making and using the same
US8329455B2 (en) 2011-07-08 2012-12-11 Aikan North America, Inc. Systems and methods for digestion of solid waste
FI124380B (en) * 2011-11-15 2014-07-31 Upm Kymmene Corp Composite product, method of manufacture of a composite product and its use, and final product
TWI628331B (en) 2012-01-12 2018-07-01 Gp纖維股份有限公司 A low viscosity kraft fiber having reduced yellowing properties and methods of making and using the same
US9328231B2 (en) * 2012-02-14 2016-05-03 Weyerhaeuser Nr Company Composite polymer
JP6242859B2 (en) 2012-04-18 2017-12-06 ゲーペー ツェルローゼ ゲーエムベーハー Use of surfactants to treat pulp and improve kraft pulp incorporation into fibers for the production of viscose and other secondary fiber products
UA116630C2 (en) 2012-07-03 2018-04-25 Ксілеко, Інк. METHOD OF CONVERTING SUGAR TO FURFURYL ALCOHOL
EP2890539B1 (en) 2012-08-28 2018-10-31 UPM-Kymmene Corporation Method for manufacturing a composite product, and composite product so produced
PL2708643T3 (en) * 2012-09-14 2018-10-31 Mediterranea Solutions S.U.A.R.L. Method for pretreating biomasses prior to conversion to biofuel
JP5948222B2 (en) * 2012-11-02 2016-07-06 ユニ・チャーム株式会社 Separation apparatus and separation method for material related to absorbent article
US9682488B2 (en) * 2013-01-15 2017-06-20 Barry Beyerlein Double-barrel trimmer for plant materials
EP2954115B1 (en) 2013-02-08 2022-01-12 GP Cellulose GmbH Softwood kraft fiber having an improved a-cellulose content and its use in the production of chemical cellulose products
US10138598B2 (en) 2013-03-14 2018-11-27 Gp Cellulose Gmbh Method of making a highly functional, low viscosity kraft fiber using an acidic bleaching sequence and a fiber made by the process
EP2971338A2 (en) 2013-03-15 2016-01-20 GP Cellulose GmbH A low viscosity kraft fiber having an enhanced carboxyl content and methods of making and using the same
US9650489B2 (en) * 2013-09-27 2017-05-16 Toyo Seikan Group Holdings, Ltd. Method for degrading biodegradable resin
JP5977726B2 (en) * 2013-11-07 2016-08-24 鈴鹿エンヂニヤリング株式会社 Rubber bale shredding method and apparatus
US10227623B2 (en) 2013-11-24 2019-03-12 E I Du Pont De Nemours And Company High force and high stress destructuring of cellulosic biomass
DE202014001280U1 (en) * 2014-02-11 2014-04-04 Landpack GmbH & Co. KG Insulated packaging for thermal insulation or shock absorption from straw or hay
US9809011B1 (en) 2014-06-11 2017-11-07 Giuseppe Puppin Composite fabric member and methods
DE102014225105B4 (en) * 2014-12-08 2019-01-03 Currenta Gmbh & Co.Ohg Process for the mechanical treatment of carbon fibers
US10456959B2 (en) * 2015-01-21 2019-10-29 TieBam, Inc. Bamboo railroad tie manufacturing system
ITUA20164301A1 (en) * 2016-05-24 2017-11-24 Maria Giovanna Gamberini TERMOCOMPATTATORE
US11078630B2 (en) * 2016-11-03 2021-08-03 Oregon State University Molded pomace pulp products and methods
CA3040734A1 (en) 2016-11-16 2018-05-24 Gp Cellulose Gmbh Modified cellulose from chemical fiber and methods of making and using the same
WO2019050960A1 (en) 2017-09-05 2019-03-14 Poet Research, Inc. Methods and systems for propagation of a microorganism using a pulp mill and/or a paper mill waste by-product, and related methods and systems
CA3080669A1 (en) 2017-10-27 2019-05-02 Xyleco, Inc. Processing biomass
US11697538B2 (en) * 2018-06-21 2023-07-11 First Quality Tissue, Llc Bundled product and system and method for forming the same
US11738927B2 (en) * 2018-06-21 2023-08-29 First Quality Tissue, Llc Bundled product and system and method for forming the same
SG11202112275VA (en) 2019-05-23 2021-12-30 Bolt Threads Inc A composite material, and methods for production thereof
CN114102789B (en) * 2021-11-12 2023-04-07 浙江品阁木业有限公司 Dewatering device of modified fiberboard raw material
CN114957964B (en) * 2022-06-17 2023-03-31 宋伟杰 Degradable automobile foot mat material and preparation method thereof

Family Cites Families (364)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1824221A (en) 1928-10-24 1931-09-22 Masonite Corp Process and apparatus for disintegration of fibrous material
US2519442A (en) 1944-04-28 1950-08-22 Saint Gobain Compositions containing cellulosic filler united by polyvinyl chloride
US2516847A (en) 1944-12-01 1950-08-01 Masonite Corp Process of sizing exploded fibers
US2558378A (en) 1947-01-15 1951-06-26 Delaware Floor Products Inc Composition for floor and wall covering comprising plasticized vinyl resin and filler and method of making same
US2635976A (en) 1948-06-15 1953-04-21 Plywood Res Foundation Method of making synthetic constructional boards and products thereof
US2658828A (en) 1948-09-15 1953-11-10 Chemloch Corp Process of combining synthetic resins and other materials with cellulose
US2665261A (en) 1950-05-12 1954-01-05 Allied Chem & Dye Corp Production of articles of high impact strength
US2680102A (en) 1952-07-03 1954-06-01 Homasote Company Fire-resistant product from comminuted woody material, urea, or melamine-formaldehyde, chlorinated hydrocarbon resin, and hydrated alumina
US2757150A (en) 1953-01-30 1956-07-31 Weyerhaeuser Timber Co Preparing hot-moldable thermosetting resin and cellulose fiber mixtures
US2935763A (en) 1954-09-01 1960-05-10 Us Rubber Co Method of forming pellets of a synthetic rubber latex and a particulate resin
US2789903A (en) 1954-09-02 1957-04-23 Celanese Corp Process for production of shaped articles comprising fibrous particles and a copolymer of vinyl acetate and an ethylenically unsaturated acid
US3308218A (en) 1961-05-24 1967-03-07 Wood Conversion Co Method for producing bonded fibrous products
US3493527A (en) 1962-06-07 1970-02-03 George Berthold Edward Schuele Moldable composition formed of waste wood or the like
GB1046246A (en) 1962-06-07 1966-10-19 George Berthold Edward Schuele Improvements in or relating to the utilisation of natural fibrous materials
US3645939A (en) 1968-02-01 1972-02-29 Us Plywood Champ Papers Inc Compatibilization of hydroxyl containing materials and thermoplastic polymers
US3516953A (en) 1968-03-25 1970-06-23 Ernest Herbert Wood Granular,free-flowing,synthetic thermosetting aminoplast resin molding composition containing defiberized alpha-cellulosic pulp of a certain fiber length wherein said filler is substantially the sole filler present
US3596314A (en) 1968-11-26 1971-08-03 Hitco Apparatus for forming a densified fibrous article
US3697364A (en) 1970-04-16 1972-10-10 Monsanto Co Discontinuous cellulose reinforced elastomer
US3836412A (en) 1970-04-16 1974-09-17 Monsanto Co Preparation of discontinuous fiber reinforced elastomer
US3718536A (en) 1970-04-22 1973-02-27 Thilmany Pulp & Paper Co Composite board and method of manufacture
US3671615A (en) 1970-11-10 1972-06-20 Reynolds Metals Co Method of making a composite board product from scrap materials
US3709845A (en) 1971-07-06 1973-01-09 Monsanto Co Mixed discontinuous fiber reinforced composites
JPS5654335B2 (en) 1972-07-11 1981-12-24
SE368793B (en) 1972-11-03 1974-07-22 Sonesson Plast Ab
JPS594447B2 (en) 1972-12-28 1984-01-30 日石三菱株式会社 synthetic paper
CH570869A5 (en) 1973-03-23 1976-05-14 Icma San Giorgio S R L Ind Cos
US4305901A (en) 1973-07-23 1981-12-15 National Gypsum Company Wet extrusion of reinforced thermoplastic
SE398134B (en) 1973-11-19 1977-12-05 Sunden Olof PROCEDURE FOR MODIFICATION OF CELLULOSIAN FIBERS BY SILIC ACID AND IMPREGNATION SOLUTION FOR PERFORMANCE OF THE PROCEDURE
US4056591A (en) 1973-12-26 1977-11-01 Monsanto Company Process for controlling orientation of discontinuous fiber in a fiber-reinforced product formed by extrusion
SE7415817L (en) 1974-01-18 1975-07-21 Baehre & Greten
US3943079A (en) 1974-03-15 1976-03-09 Monsanto Company Discontinuous cellulose fiber treated with plastic polymer and lubricant
US4016232A (en) 1974-05-02 1977-04-05 Capital Wire And Cable, Division Of U.S. Industries Process of making laminated structural member
US3956541A (en) 1974-05-02 1976-05-11 Capital Wire & Cable, Division Of U. S. Industries Structural member of particulate material and method of making same
US4020212A (en) 1974-09-13 1977-04-26 Phillips Petroleum Company Polyolefin fibers useful as fiberfill treated with finishing agent comprising an organopolysiloxane and a surface active softener
US3956555A (en) 1974-09-23 1976-05-11 Potlatch Corporation Load carrying member constructed of oriented wood strands and process for making same
US4058580A (en) 1974-12-02 1977-11-15 Flanders Robert D Process for making a reinforced board from lignocellulosic particles
FR2296513A1 (en) 1974-12-31 1976-07-30 Inst Nat Rech Chimique MANUFACTURING PROCESS OF FINISHED OR SEMI-FINISHED PRODUCTS FROM MIXTURES OF WASTE OF DIFFERENT SYNTHETIC RESINS
US4097648A (en) 1975-02-10 1978-06-27 Capital Wire & Cable, Division Of U.S. Industries, Inc. Laminated structural member and method of making same
US3985927A (en) 1975-02-24 1976-10-12 Nekoosa Edwards Paper Company, Inc. Compositions and method for producing a chemical watermark on finished paper products
US4045603A (en) 1975-10-28 1977-08-30 Nora S. Smith Construction material of recycled waste thermoplastic synthetic resin and cellulose fibers
NO138127C (en) 1975-12-01 1978-07-12 Elopak As PROCEDURE FOR "MUNICIPAL" WASTE AA MANUFACTURING RAW MATERIAL FOR PRESS BODIES
DE2610721C3 (en) 1976-03-13 1978-12-21 Rehau-Plastiks Gmbh, 8673 Rehau Use of a plastic-wood flour mixture for the production of insulation material for the electrical industry
US4112038A (en) 1976-09-02 1978-09-05 Lowe Paper Company Method for producing molded articles
US4204010A (en) 1976-09-17 1980-05-20 W. R. Grace & Co. Radiation curable, ethylenically unsaturated thixotropic agent and method of preparation
DE2647944C2 (en) 1976-10-22 1979-04-12 Rolf 8502 Zirndorf Schnause Method and device for the production of moldings from thermoplastics and a sheet-shaped, chipped, fibrous, non-thermoplastic material
CA1099858A (en) 1976-11-11 1981-04-28 Heikki Mamers Recovery of fibre from laminated carton boards
US4263184A (en) 1977-01-05 1981-04-21 Wyrough And Loser, Inc. Homogeneous predispersed fiber compositions
FR2381804A1 (en) 1977-02-28 1978-09-22 Solvay MOLDABLE COMPOSITIONS BASED ON THERMOPLASTIC POLYMERS AND VEGETABLE FIBROUS MATERIALS AND USE OF THESE COMPOSITIONS FOR CALENDERING AND THERMOFORMING
US4184311A (en) * 1977-03-25 1980-01-22 Rood Leonard D Fire retardant insulation
NL184773C (en) 1977-04-19 1989-11-01 Lankhorst Touwfab Bv METHOD FOR PROCESSING THERMOPLASTIC PLASTIC MATERIAL INTO AN ARTICLE WITH THE PROCESSING AND PROCESSING PROPERTIES OF WOOD.
US4123489A (en) * 1977-05-17 1978-10-31 Flett Development Company Method for converting waste paper products into useful forms
US4145389A (en) 1977-08-22 1979-03-20 Smith Teddy V Process for making extruded panel product
US4277428A (en) 1977-09-14 1981-07-07 Masonite Corporation Post-press molding of man-made boards to produce contoured furniture parts
US4508595A (en) 1978-05-25 1985-04-02 Stein Gasland Process for manufacturing of formed products
DE2831616C2 (en) 1978-07-19 1984-08-09 Kataflox Patentverwaltungs-Gesellschaft mbH, 7500 Karlsruhe Process for producing a non-combustible molded body
US4244847A (en) 1978-08-10 1981-01-13 The Gates Rubber Company Fibrated admix or polymer and process therefore
US4202804A (en) 1978-09-11 1980-05-13 Desoto, Inc. Viscosity stable, stainable wood textured caulking composition containing water immiscible organic solvent
JPS5944963B2 (en) 1978-10-06 1984-11-02 ロンシール工業株式会社 Method for manufacturing vinyl chloride sheet with printed shibori pattern
DE2845112C3 (en) 1978-10-17 1981-11-05 Casimir Kast Gmbh & Co Kg, 7562 Gernsbach Process and plant for the production of mats from cellulosic fibers and process for the production of molded parts from these
DE7831283U1 (en) 1978-10-20 1979-04-05 Werz Furnier Sperrholz Stackable pallet with integrated stacking cam
US4248820A (en) 1978-12-21 1981-02-03 Board Of Control Of Michigan Technological University Method for molding apertures in molded wood products
US4440708A (en) 1978-12-21 1984-04-03 Board Of Control Of Michigan Technological University Method for molding articles having non-planar portions from matted wood flakes
US4237226A (en) * 1979-02-23 1980-12-02 Trustees Of Dartmouth College Process for pretreating cellulosic substrates and for producing sugar therefrom
US4303019A (en) 1979-03-07 1981-12-01 Board Of Control Of Michigan Technological University Articles molded from papermill sludge
US5628830A (en) 1979-03-23 1997-05-13 The Regents Of The University Of California Enzymatic hydrolysis of biomass material
US4311621A (en) 1979-04-26 1982-01-19 Kikkoman Corporation Process for producing a filler for adhesive for bonding wood
US4239679A (en) 1979-06-27 1980-12-16 Diamond Shamrock Corporation High bulk density rigid poly(vinyl chloride) resin powder composition and preparation thereof
US4279790A (en) 1979-07-05 1981-07-21 Kabushiki Kaisha Mikuni Seisakusho Composite material compositions using wasterpaper and method of producing same
SE8005194L (en) 1979-07-17 1981-01-18 Lion Corp THERMOPLASTIC COMPOSITION AND SET TO FORM FORM THEREOF
AU553080B2 (en) * 1979-08-10 1986-07-03 Timothy Warren Gilder Method of forming wood fibres
US4248743A (en) 1979-08-17 1981-02-03 Monsanto Company Preparing a composite of wood pulp dispersed in a polymeric matrix
WO1981000588A1 (en) 1979-08-29 1981-03-05 M Hewitt Cored plastics profiles and manufacture of frames for windows and the like therefrom
US4265846A (en) 1979-10-05 1981-05-05 Canadian Patents And Development Limited Method of binding lignocellulosic materials
US4393020A (en) 1979-12-20 1983-07-12 The Standard Oil Company Method for manufacturing a fiber-reinforced thermoplastic molded article
CA1173380A (en) 1980-02-19 1984-08-28 Michael I. Sherman Acid hydrolysis of biomass for ethanol production
US4480035A (en) 1980-06-09 1984-10-30 Sukomal Roychowdhury Production of hydrogen
FR2483966A1 (en) 1980-06-10 1981-12-11 Rhone Poulenc Textile SOLUTIONS CONFORMABLE FROM CELLULOSE MIXTURES AND VINYL POLYCHLORIDE AND FORM ARTICLES THEREOF
US4323625A (en) 1980-06-13 1982-04-06 Monsanto Company Composites of grafted olefin polymers and cellulose fibers
US4328136A (en) 1980-12-30 1982-05-04 Blount David H Process for the production of cellulose-silicate products
US4400470A (en) 1981-01-14 1983-08-23 Wisconsin Alumni Research Foundation Use of co-cultures in the production of ethanol by the fermentation of biomass
US4414267A (en) 1981-04-08 1983-11-08 Monsanto Company Method for treating discontinuous cellulose fibers characterized by specific polymer to plasticizer and polymer-plasticizer to fiber ratios, fibers thus treated and composites made from the treated fibers
US4376144A (en) 1981-04-08 1983-03-08 Monsanto Company Treated fibers and bonded composites of cellulose fibers in vinyl chloride polymer characterized by an isocyanate bonding agent
US4359534A (en) 1981-04-28 1982-11-16 The United States Of America As Represented By The Secretary Of Agriculture Conversion of D-xylose to ethanol by the yeast Pachysolen tannophilus
US4511656A (en) 1981-05-15 1985-04-16 Purdue Research Foundation Direct fermentation of D-xylose to ethanol by a xylose-fermenting yeast mutant
US4368268A (en) 1981-05-15 1983-01-11 Purdue Research Foundation Direct fermentation of D-xylose to ethanol by a xylose-fermenting yeast mutant
US4426470A (en) 1981-07-27 1984-01-17 The Dow Chemical Company Aqueous method of making reinforced composite material from latex, solid polymer and reinforcing material
HU183546B (en) 1981-08-19 1984-05-28 Muanyagipari Kutato Intezet Process for preparing a combined substance containing a thermoplastic material, a fibrous polymeric skeleton substance of natural origin and an insaturated polyester
DE3147989A1 (en) 1981-12-04 1983-06-16 Hoechst Ag, 6230 Frankfurt DECORATIVE, IN PARTICULAR PLATE-SHAPED MOLDED PART, METHOD FOR THE PRODUCTION THEREOF AND THE USE THEREOF
EP0108068B1 (en) 1981-12-11 1993-06-02 KUBAT, Josef Method to produce composites based on cellulose or lignocellulosic materials and plastics
US4382108A (en) 1981-12-21 1983-05-03 The Upjohn Company Novel compositions and process
US4738723A (en) 1981-12-24 1988-04-19 Gulf States Asphalt Co. Asbestos-free asphalt composition
CA1196461A (en) 1982-03-03 1985-11-12 Sadao Nishibori Method for manufacturing wood-like molded product
US4420351A (en) 1982-04-29 1983-12-13 Tarkett Ab Method of making decorative laminated products such as tiles, panels or webs from cellulosic materials
US4455709A (en) 1982-06-16 1984-06-26 Zanini Walter D Floor mounted guide and shim assembly for sliding doors
US4562218A (en) 1982-09-30 1985-12-31 Armstrong World Industries, Inc. Formable pulp compositions
DE3472565D1 (en) 1983-03-23 1988-08-11 Chuo Kagaku Co Production of resin foam by aqueous medium
BG39560A1 (en) 1983-08-25 1986-07-15 Natov Polyvinylchloride composition
US4520530A (en) 1983-09-02 1985-06-04 Akiva Pinto Fiber feeding apparatus with a pivoted air exhaust wall portion
DE3336647A1 (en) 1983-10-08 1985-04-25 Hoechst Ag, 6230 Frankfurt MOLDING DIMENSIONS BASED ON VINYL CHLORIDE POLYMERISATS AND METHOD FOR THE PRODUCTION OF FILMS FROM THESE SHAPING MATERIALS FOR THE PREPARATION OF COUNTERFEIT-SECURE SECURITIES
DE3346469A1 (en) 1983-12-22 1985-07-18 Heggenstaller, Anton, 8892 Kühbach METHOD AND DEVICE FOR EXTRUDING PLANT SMALL PARTS MIXED WITH BINDERS, IN PARTICULAR SMALL WOOD PARTS
US4609624A (en) 1984-02-03 1986-09-02 Les Services De Consultation D.B. Plus Limitee Process for producing isopropyl alcohol from cellulosic substrates
GB8404000D0 (en) 1984-02-15 1984-03-21 Unilever Plc Wiping surfaces
US4597928A (en) 1984-03-23 1986-07-01 Leningradsky Tekhnologichesky Institute Tselljulozno-Bumazhnoi Promyshlennosti Method for fiberboard manufacture
JPS60206604A (en) 1984-03-30 1985-10-18 Ota Shoji Conversion of lignocellulose material into recomposed compound
DE3417712A1 (en) 1984-05-12 1985-11-14 Andreas 8077 Reichertshofen Pöhl BOOK PRESS
JPS6131447A (en) 1984-07-23 1986-02-13 Kanegafuchi Chem Ind Co Ltd Thermoplastic woody composition
FR2568164B1 (en) 1984-07-27 1987-09-04 Ostermann Michel PROCESS FOR PRODUCING DECORATIVE PRODUCTS FROM FRAGMENTS OR PIECES OF WOOD AND PRODUCTS OBTAINED
US4713291A (en) 1984-09-06 1987-12-15 Mitsubishi Rayon Company Ltd. Fragrant fiber
DE3472654D1 (en) 1984-09-20 1988-08-18 Werz Pressholz Werzalit Pallet
DE3446139A1 (en) 1984-12-18 1986-06-19 Andreas Peter Dipl.-Ing. 8200 Rosenheim Pöhl POT FOR METAL COATING
US4610900A (en) 1984-12-19 1986-09-09 Sadao Nishibori Wood-like molded product of synthetic resin
JPS61151266A (en) 1984-12-25 1986-07-09 Chisso Corp Cellulosic filler for thermoplastic resin
DE3504686A1 (en) * 1985-02-12 1986-08-14 Hercules Vollkornmühlenbäckerei GmbH, 4000 Düsseldorf Process for producing a storable ready-to-use sour dough/flour mixture
DE3507640A1 (en) 1985-03-05 1986-09-11 Hubert 5778 Meschede Möller METHOD FOR PRODUCING REINFORCED PROFILE PARTS
US4812410A (en) 1985-04-12 1989-03-14 George Weston Limited Continuous process for ethanol production by bacterial fermentation
US4717742A (en) 1985-05-29 1988-01-05 Beshay Alphons D Reinforced polymer composites with wood fibers grafted with silanes - grafting of celluloses or lignocelluloses with silanes to reinforce the polymer composites
US5104411A (en) 1985-07-22 1992-04-14 Mcneil-Ppc, Inc. Freeze dried, cross-linked microfibrillated cellulose
US4911700A (en) 1985-07-22 1990-03-27 Mcneil-Ppc, Inc. Cross-linked microfibrillated cellulose prepared from pure generating particles
US4840903A (en) 1985-08-08 1989-06-20 The United States Of America As Represented By The United States Department Of Energy Process for producing ethanol from plant biomass using the fungus paecilomyces sp.
US4716062A (en) 1985-11-08 1987-12-29 Max Klein Composite materials, their preparation and articles made therefrom
US4659754A (en) 1985-11-18 1987-04-21 Polysar Limited Dispersions of fibres in rubber
US4865788A (en) 1985-12-02 1989-09-12 Sheller-Globe Corporation Method for forming fiber web for compression molding structural substrates for panels and fiber web
US4734236A (en) 1985-12-02 1988-03-29 Sheller-Globe Corporation Method for forming fiber web for compression molding structural substrates for panels
US4663225A (en) 1986-05-02 1987-05-05 Allied Corporation Fiber reinforced composites and method for their manufacture
US4833181A (en) 1986-07-25 1989-05-23 Tonen Sekiyukagaku Kabushiki Kaisha Polyolefin composition containing cellulose fibers and a deodorizer
GB8618729D0 (en) 1986-07-31 1986-09-10 Wiggins Teape Group Ltd Fibrous structure
JPH0679811B2 (en) 1986-08-06 1994-10-12 トヨタ自動車株式会社 Method for manufacturing wood-based molded body
DE3630937A1 (en) 1986-09-11 1988-03-24 Rehau Ag & Co USE OF NATURAL CELLULOSE FIBERS AS ADDITIVE TO POLYVINYL CHLORIDE
US4810445A (en) 1986-09-26 1989-03-07 Fortifiber Corporation Process for making pressboard from poly-coated paper
US4769274A (en) 1986-12-22 1988-09-06 Tarkett Inc. Relatively inexpensive thermoformable mat of reduced density and rigid laminate which incorporates the same
US4769109A (en) 1986-12-22 1988-09-06 Tarkett Inc. Relatively inexpensive thermoformable mat and rigid laminate formed therefrom
US4791020A (en) 1987-02-02 1988-12-13 Novacor Chemicals Ltd. Bonded composites of cellulose fibers polyethylene
DE3726921A1 (en) 1987-02-10 1988-08-18 Menzolit Gmbh SEMI-FINISHED PRODUCT AND METHOD AND DEVICE FOR PRODUCING MOLDED SEMI-PREPARED PRODUCTS FROM THERMOPLAST
US4818604A (en) 1987-03-27 1989-04-04 Sub-Tank Renewal Systems, Inc. Composite board and method
DE3714828A1 (en) 1987-05-01 1988-11-17 Rettenmaier Stefan METHOD FOR PRODUCING BITUMEN MASSES
US4840902A (en) 1987-05-04 1989-06-20 George Weston Limited Continuous process for ethanol production by bacterial fermentation using pH control
US4746688A (en) 1987-05-21 1988-05-24 Ford Motor Company Remoldable, wood-filled acoustic sheet
ES2027653T3 (en) 1987-05-23 1992-06-16 Mario Miani METHOD OF MANUFACTURING PANELS, APPARATUS TO MAKE THIS METHOD AND PANELS OBTAINED WITH THEM.
DE3718545A1 (en) 1987-06-03 1988-12-22 Signode System Gmbh EDGE PROTECTION PROFILE SECTION AND METHOD FOR PRODUCING THE SAME
DE3725965A1 (en) 1987-08-05 1989-02-16 Signode System Gmbh METHOD FOR PRODUCING MOLDED BODIES FROM PAPER AND A THERMOPLASTIC PLASTIC
FR2622833B1 (en) 1987-11-06 1990-04-27 Omnium Traitement Valorisa PROCESS AND INSTALLATION FOR THE MANUFACTURE OF MOLDED OR EXTRUDED OBJECTS FROM WASTE CONTAINING PLASTIC MATERIALS
CN1017881B (en) 1987-12-16 1992-08-19 库特·赫尔德·法布里肯特 Apparatus and method for manufacturing wood plank
BR8807863A (en) 1987-12-22 1990-10-09 Willem Hemmo Kampen PROCESS AND APPARATUS FOR THE PRODUCTION OF ETHANOL, GLYCER, SUCCINIC ACID AND DRY GRAINS OF FLUID FREELY AND SOLUBLE ELEMENTS
FR2625645B1 (en) 1988-01-13 1991-07-05 Wogegal Sa PROCESS AND INSTALLATION FOR PRODUCING A PRODUCT AS A CULTURE SUPPORT
US4854204A (en) 1988-03-03 1989-08-08 Am International Incorporated Rotary knife paper trimmer with long life shearing surfaces for trimming thick and shingled paper products
US5183837A (en) 1988-03-30 1993-02-02 Presidenza Del Consiglio Dei Ministri - Ufficio Del Ministro Per Il Coordinamento Delle Iniziativae Per La Ricerca Scientifica E Tecnologica Process for binding cellulosic materials with a binding agent of an aqueous emulsions of polyisocyanates and cellulose ether
US4927579A (en) 1988-04-08 1990-05-22 The Dow Chemical Company Method for making fiber-reinforced plastics
US5424202A (en) 1988-08-31 1995-06-13 The University Of Florida Ethanol production by recombinant hosts
US5554520A (en) 1988-08-31 1996-09-10 Bioenergy International, L.C. Ethanol production by recombinant hosts
US5028539A (en) 1988-08-31 1991-07-02 The University Of Florida Ethanol production using engineered mutant E. coli
US5487989A (en) 1988-08-31 1996-01-30 Bioenergy International, L.C. Ethanol production by recombinant hosts
US4963603A (en) 1989-05-24 1990-10-16 Armstrong World Industries, Inc. Composite fiberboard and process of manufacture
DE3841310C1 (en) 1988-12-08 1990-06-07 Werzalit Ag + Co, 7141 Oberstenfeld, De
DE3842072C1 (en) 1988-12-14 1989-12-28 Pallmann Maschinenfabrik Gmbh & Co Kg, 6660 Zweibruecken, De
US5582682A (en) 1988-12-28 1996-12-10 Ferretti; Arthur Process and a composition for making cellulosic composites
AU623471B2 (en) 1989-01-09 1992-05-14 Peter T. Locke A composite board and method of producing same
US4929498A (en) 1989-01-31 1990-05-29 James River Corporation Of Virginia Engineered-pulp wet wiper fabric
DE3903022C1 (en) 1989-02-02 1990-04-26 Hermann Berstorff Maschinenbau Gmbh, 3000 Hannover, De
US4973440A (en) 1989-03-15 1990-11-27 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method for production of fiber-reinforced thermosetting resin molding material
US5093058A (en) 1989-03-20 1992-03-03 Medite Corporation Apparatus and method of manufacturing synthetic boards
US5432000A (en) 1989-03-20 1995-07-11 Weyerhaeuser Company Binder coated discontinuous fibers with adhered particulate materials
US5230959A (en) 1989-03-20 1993-07-27 Weyerhaeuser Company Coated fiber product with adhered super absorbent particles
US5498478A (en) 1989-03-20 1996-03-12 Weyerhaeuser Company Polyethylene glycol as a binder material for fibers
CA1332987C (en) 1989-04-19 1994-11-08 Govinda Raj Process for chemical treatment of discontinuous cellulosic fibers and composites of polyethylene and treated fibers
US5008310A (en) 1989-05-15 1991-04-16 Beshay Alphons D Polymer composites based cellulose-V
US5076503A (en) * 1989-07-12 1991-12-31 Cook Robert L Size reduction processing apparatus for solid material
CA2014089C (en) 1989-07-21 1997-01-14 Vernon L. Lamb Apparatus and method for making pressboard from poly-coated paper using relative movement of facing webs
BR9007558A (en) 1989-07-24 1992-06-23 A C I Int Ltd PERFECTED LAMINATED MATERIAL AND PROCESS FOR ITS PRODUCTION
US5075359A (en) 1989-10-16 1991-12-24 Ici Americas Inc. Polymer additive concentrate
DE69016194T2 (en) 1989-11-16 1995-05-24 Mitsui Petrochemical Ind RESIN MIXTURE FOR FILMS AND METHOD FOR PRODUCING FILMS USING THE RESIN MIXTURE.
US5002713A (en) 1989-12-22 1991-03-26 Board Of Control Of Michigan Technological University Method for compression molding articles from lignocellulosic materials
US7109005B2 (en) 1990-01-15 2006-09-19 Danisco Sweeteners Oy Process for the simultaneous production of xylitol and ethanol
FI86440C (en) 1990-01-15 1992-08-25 Cultor Oy FRAME FOR SAMPLING OF XYLITOL OR ETHANOL.
US5124519A (en) 1990-01-23 1992-06-23 International Paper Company Absorbent microwave susceptor composite and related method of manufacture
US5064692A (en) 1990-02-15 1991-11-12 International Paper Company Method for producing paper products having increased gloss in which surface characteristics of a release film are imparted to coated substrates
US5082605A (en) 1990-03-14 1992-01-21 Advanced Environmental Recycling Technologies, Inc. Method for making composite material
US5096406A (en) 1990-03-14 1992-03-17 Advanced Environmental Recycling Technologies, Inc. Extruder assembly for composite materials
US5096046A (en) 1990-03-14 1992-03-17 Advanced Environmental Recycling Technologies, Inc. System and process for making synthetic wood products from recycled materials
US5088910A (en) 1990-03-14 1992-02-18 Advanced Environmental Recycling Technologies, Inc. System for making synthetic wood products from recycled materials
US5213021A (en) 1990-03-14 1993-05-25 Advanced Environmental Recycling Technologies, Inc. Reciprocating cutter assembly
US5759680A (en) 1990-03-14 1998-06-02 Advanced Environmetal Recycling Technologies, Inc. Extruded composite profile
US5084135A (en) 1990-03-27 1992-01-28 Advanced Environmental Recycling Technologies, Inc. Recycling plastic coated paper product waste
US5268074A (en) 1990-03-27 1993-12-07 Advanced Environmental Recycling Technologies, Inc. Method for recycling polymeric film
US5100603A (en) 1990-04-30 1992-03-31 Neefe Charles W Method of recycling multimaterial containers
EP0510228B1 (en) * 1990-05-23 1997-01-22 Didier-Werke Ag Method and apparatus for opening of a fiber agglomerate
US5134023A (en) 1990-07-05 1992-07-28 Forintek Canada Corp. Process for making stable fiberboard from used paper and fiberboard made by such process
US5100545A (en) 1990-12-03 1992-03-31 Advanced Environmental Recycling Technologies, Inc. Separation tank
DE4042222A1 (en) 1990-12-29 1992-07-02 Pwa Industriepapier Gmbh METHOD FOR REPROCESSING THERMOPLAST COATED PACKAGING MATERIALS AND THERMOPLASTIC MATERIAL FOR FURTHER PROCESSING
US5075057A (en) 1991-01-08 1991-12-24 Hoedl Herbert K Manufacture of molded composite products from scrap plastics
US5100791A (en) 1991-01-16 1992-03-31 The United States Of America As Represented By The United States Department Of Energy Simultaneous saccharification and fermentation (SSF) using cellobiose fermenting yeast Brettanomyces custersii
US5134944A (en) 1991-02-28 1992-08-04 Keller Leonard J Processes and means for waste resources utilization
WO1992016686A1 (en) 1991-03-21 1992-10-01 Advanced Recycling Technologies, Inc. Method for recycling plastic coated paper product waste and polymeric film
US5372939A (en) 1991-03-21 1994-12-13 The United States Of America As Represented By The United States Department Of Energy Combined enzyme mediated fermentation of cellulous and xylose to ethanol by Schizosaccharoyces pombe, cellulase, β-glucosidase, and xylose isomerase
US5824246A (en) 1991-03-29 1998-10-20 Engineered Composites Method of forming a thermoactive binder composite
US5173257A (en) * 1991-04-03 1992-12-22 Pearson Erich H Continuous process and apparatus for the separation of recyclable material from and the disinfection of infectious medical waste
US5543205A (en) 1991-06-14 1996-08-06 Corrcycle, Inc. Composite article made from used or surplus corrugated boxes or sheets
US5366790A (en) 1991-06-14 1994-11-22 Liebel Henry L Composite article made from used or surplus corrugated boxes or sheets
US5194461A (en) 1991-06-26 1993-03-16 University Of Northern Iowa Foundation Structural materials from recycled high density polyethylene and herbaceous fibers, and method for production
US5196069A (en) 1991-07-05 1993-03-23 The United States Of America As Represented By The United States National Aeronautics And Space Administration Apparatus and method for cellulose processing using microwave pretreatment
US5374474A (en) 1991-09-26 1994-12-20 Earth Partners, Inc. Composite board and method of manufacture
IT1251723B (en) 1991-10-31 1995-05-23 Himont Inc POLYOLEFINIC COMPOSITES AND PROCEDURE FOR THEIR PREPARATION
US5198074A (en) 1991-11-29 1993-03-30 Companhia Industreas Brasileiras Portela Process to produce a high quality paper product and an ethanol product from bamboo
EP0555509A1 (en) 1992-02-14 1993-08-18 Carl Schenck Ag High-speed tensile testing machine
US5348871A (en) 1992-05-15 1994-09-20 Martin Marietta Energy Systems, Inc. Process for converting cellulosic materials into fuels and chemicals
US5508183A (en) 1992-05-15 1996-04-16 Martin Marietta Energy Systems, Inc. Enhanced attrition bioreactor for enzyme hydrolysis or cellulosic materials
US5372878A (en) 1992-06-23 1994-12-13 Yamasa Momi Kikaku Co., Ltd. Slackened or creased fibrous sheet
US5285973A (en) 1992-07-15 1994-02-15 Advanced Environmental Recycling Technologies, Inc. Close tolerance shredder
US5308896A (en) 1992-08-17 1994-05-03 Weyerhaeuser Company Particle binders for high bulk fibers
US5352480A (en) 1992-08-17 1994-10-04 Weyerhaeuser Company Method for binding particles to fibers using reactivatable binders
US6340411B1 (en) 1992-08-17 2002-01-22 Weyerhaeuser Company Fibrous product containing densifying agent
EP1219744B1 (en) 1992-08-17 2004-10-20 Weyerhaeuser Company Particle binders
CA2100319C (en) 1992-08-31 2003-10-07 Michael J. Deaner Advanced polymer/wood composite structural member
US6004668A (en) 1992-08-31 1999-12-21 Andersen Corporation Advanced polymer wood composite
US5773138A (en) 1992-08-31 1998-06-30 Andersen Corporation Advanced compatible polymer wood fiber composite
US5985429A (en) 1992-08-31 1999-11-16 Andersen Corporation Polymer fiber composite with mechanical properties enhanced by particle size distribution
US5981067A (en) 1992-08-31 1999-11-09 Andersen Corporation Advanced compatible polymer wood fiber composite
CA2100320C (en) 1992-08-31 2011-02-08 Michael J. Deaner Advanced polymer wood composite
US5406768A (en) 1992-09-01 1995-04-18 Andersen Corporation Advanced polymer and wood fiber composite structural component
US5821111A (en) 1994-03-31 1998-10-13 Bioengineering Resources, Inc. Bioconversion of waste biomass to useful products
US5370999A (en) 1992-12-17 1994-12-06 Colorado State University Research Foundation Treatment of fibrous lignocellulosic biomass by high shear forces in a turbulent couette flow to make the biomass more susceptible to hydrolysis
US5298102A (en) 1993-01-08 1994-03-29 Sorbilite Inc. Expanding pressure chamber for bonding skins to flat and shaped articles
US5284610A (en) 1993-02-09 1994-02-08 Kang Na Hsiung Enterprise Co., Ltd. High molecular absorbent sheet manufacturing process and the related equipment
US5441801A (en) 1993-02-12 1995-08-15 Andersen Corporation Advanced polymer/wood composite pellet process
US5350370A (en) 1993-04-30 1994-09-27 Kimberly-Clark Corporation High wicking liquid absorbent composite
FR2704863B1 (en) 1993-05-04 1995-06-23 Simmaco THERMOSETTING COMPOSITION, IN PARTICULAR FOR BODYWORK OF MOTOR VEHICLES, PROCESS FOR OBTAINING SAME AND RECYCLING PROCESS.
US5472651A (en) 1993-05-28 1995-12-05 Repete Corporation Optimizing pellet mill controller
CN1055940C (en) 1993-07-28 2000-08-30 生物技术生物自然包装有限两合公司 Reinforced biodegradable polymer
DE4331747A1 (en) 1993-09-20 1995-03-23 Wuenning Paul Extruded, fiber-reinforced natural material granulate for thermoplastic processing, and process for its production
EP0723698A4 (en) 1993-10-15 1997-11-05 Georgia Power Co Squirrel shield device
US5437766A (en) 1993-10-22 1995-08-01 The Procter & Gamble Company Multi-ply facial tissue paper product comprising biodegradable chemical softening compositions and binder materials
US5516472A (en) 1993-11-12 1996-05-14 Strandex Corporation Extruded synthetic wood composition and method for making same
US5540244A (en) 1993-12-07 1996-07-30 Advanced Environmental Recycling Technologies, Inc. Method and apparatus for cleaning and recycling post-consumer plastic films
US5571703A (en) 1993-12-23 1996-11-05 Controlled Environmental Systems Corporation Municipal solid waste processing facility and commercial ethanol production process
US5791262A (en) 1994-02-14 1998-08-11 The Fabri-Form Co. Reinforced plastic pallet
KR200144868Y1 (en) 1995-01-10 1999-06-15 최진호 Mop fixing device of vacuum cleaner
US5480602A (en) 1994-06-17 1996-01-02 Nagaich; Laxmi Extruded particle board
US5439749A (en) 1994-08-18 1995-08-08 Andersen Corporation Composite wood structure
US5705369A (en) * 1994-12-27 1998-01-06 Midwest Research Institute Prehydrolysis of lignocellulose
US5746958A (en) 1995-03-30 1998-05-05 Trex Company, L.L.C. Method of producing a wood-thermoplastic composite material
US5837506A (en) 1995-05-11 1998-11-17 The Trustee Of Dartmouth College Continuous process for making ethanol
US5585155A (en) 1995-06-07 1996-12-17 Andersen Corporation Fiber reinforced thermoplastic structural member
US5932456A (en) 1995-06-07 1999-08-03 Ingram-Howell, L.L.C. Production of ethanol and other fermentation products from biomass
US5677154A (en) 1995-06-07 1997-10-14 Ingram-Howell, L.L.C. Production of ethanol from biomass
US5735916A (en) 1995-07-13 1998-04-07 Lucas; James Lewis Process for production of lignin fuel, ethyl alcohol, cellulose, silica/silicates, and cellulose derivatives from plant biomass
US5876641A (en) 1995-07-31 1999-03-02 Andersen Corporation In-line process for injection of foam material into a composite profile
US5705216A (en) 1995-08-11 1998-01-06 Tyson; George J. Production of hydrophobic fibers
US5643359A (en) 1995-11-15 1997-07-01 Dpd, Inc. Dispersion of plant pulp in concrete and use thereof
US5753474A (en) 1995-12-26 1998-05-19 Environmental Energy, Inc. Continuous two stage, dual path anaerobic fermentation of butanol and other organic solvents using two different strains of bacteria
US5851469A (en) 1995-12-27 1998-12-22 Trex Company, L.L.C. Process for making a wood-thermoplastic composite
US5948524A (en) 1996-01-08 1999-09-07 Andersen Corporation Advanced engineering resin and wood fiber composite
US5819491A (en) 1996-01-22 1998-10-13 L.B. Plastics Limited Modular construction elements
JP3626274B2 (en) 1996-04-09 2005-03-02 アイン・エンジニアリング株式会社 Composite film regeneration processing method and apparatus
EP0956590A1 (en) 1996-04-29 1999-11-17 Parker-Hannifin Corporation Conformal thermal interface material for electronic components
US5882564A (en) 1996-06-24 1999-03-16 Andersen Corporation Resin and wood fiber composite profile extrusion method
US20040005461A1 (en) 1996-07-11 2004-01-08 Nagle Dennis C. Carbonized wood-based materials
US5874263A (en) 1996-07-31 1999-02-23 The Texas A&M University System Method and apparatus for producing organic acids
NZ336455A (en) * 1996-12-20 2001-04-27 Usf Filtration & Separations A method for cleaning porous membranes using a gas bubble system
US5733758A (en) 1997-01-10 1998-03-31 Nguyen; Quang A. Tower reactors for bioconversion of lignocellulosic material
US6357197B1 (en) 1997-02-05 2002-03-19 Andersen Corporation Polymer covered advanced polymer/wood composite structural member
US5948505A (en) 1997-03-28 1999-09-07 Andersen Corporation Thermoplastic resin and fiberglass fabric composite and method
US6333181B1 (en) 1997-04-07 2001-12-25 University Of Florida Research Foundation, Inc. Ethanol production from lignocellulose
US6102690A (en) 1997-04-07 2000-08-15 Univ. Of Florida Research Foundation, Inc. Recombinant organisms capable of fermenting cellobiose
EP1011577A4 (en) 1997-05-13 2004-06-16 Weyerhaeuser Co Reticulated absorbent composite
US6122877A (en) 1997-05-30 2000-09-26 Andersen Corporation Fiber-polymeric composite siding unit and method of manufacture
US5916780A (en) 1997-06-09 1999-06-29 Iogen Corporation Pretreatment process for conversion of cellulose to fuel ethanol
US6130076A (en) 1997-06-19 2000-10-10 University Of Florida Research Foundation, Inc. Ethanol production using a soy hydrolysate-based medium or a yeast autolysate-based medium
US5942424A (en) 1997-06-19 1999-08-24 Lockheed Martin Energy Research Corporation Method for the enzymatic production of hydrogen
US6043392A (en) 1997-06-30 2000-03-28 Texas A&M University System Method for conversion of biomass to chemicals and fuels
US5882905A (en) 1997-08-01 1999-03-16 The United States Of America As Represented By The Secretary Of Agriculture Thermostable α-L-arabinofuranosidase from Aureobasidium pullulans
US5968362A (en) 1997-08-04 1999-10-19 Controlled Enviromental Systems Corporation Method for the separation of acid from sugars
US5952105A (en) 1997-09-02 1999-09-14 Xyleco, Inc. Poly-coated paper composites
US20030187102A1 (en) * 1997-09-02 2003-10-02 Marshall Medoff Compositions and composites of cellulosic and lignocellulosic materials and resins, and methods of making the same
US20030032702A1 (en) 1997-09-02 2003-02-13 Marshall Medoff Compositions and composites of cellulosic and lignocellulosic materials and resins, and methods of making the same
US5973035A (en) 1997-10-31 1999-10-26 Xyleco, Inc. Cellulosic fiber composites
US20020010229A1 (en) 1997-09-02 2002-01-24 Marshall Medoff Cellulosic and lignocellulosic materials and compositions and composites made therefrom
US6448307B1 (en) 1997-09-02 2002-09-10 Xyleco, Inc. Compositions of texturized fibrous materials
US6054207A (en) 1998-01-21 2000-04-25 Andersen Corporation Foamed thermoplastic polymer and wood fiber profile and member
US6015703A (en) 1998-03-10 2000-01-18 Iogen Corporation Genetic constructs and genetically modified microbes for enhanced production of beta-glucosidase
AU3950799A (en) 1998-04-20 1999-11-08 Forskarpatent I Syd Ab Genetically engineered yeast and mutants thereof for the efficient fermentation of lignocellulose hydrolysates
US6420626B1 (en) 1999-06-08 2002-07-16 Buckeye Technologies Inc. Unitary fluid acquisition, storage, and wicking material
ZA200004369B (en) * 1998-07-02 2002-05-29 Procter & Gamble Carbon fiber filters.
US6270883B1 (en) 1998-10-09 2001-08-07 The United States Of America As Represented By The Secretary Of Agriculture Composites containing cellulosic pulp fibers and methods of making and using the same
US6703227B2 (en) 1999-02-11 2004-03-09 Renessen Llc Method for producing fermentation-based products from high oil corn
US7074603B2 (en) 1999-03-11 2006-07-11 Zeachem, Inc. Process for producing ethanol from corn dry milling
DE60039973D1 (en) 1999-03-11 2008-10-02 Zeachem Inc PROCESS FOR THE MANUFACTURE OF ETHANOL
BR9902606B1 (en) 1999-06-23 2011-04-19 catalytic cellulignin fuel.
US6746976B1 (en) 1999-09-24 2004-06-08 The Procter & Gamble Company Thin until wet structures for acquiring aqueous fluids
US6409841B1 (en) 1999-11-02 2002-06-25 Waste Energy Integrated Systems, Llc. Process for the production of organic products from diverse biomass sources
WO2001032715A1 (en) 1999-11-02 2001-05-10 Waste Energy Integrated Sytems, Llc Process for the production of organic products from lignocellulose containing biomass sources
US6258175B1 (en) 1999-11-03 2001-07-10 Gene E. Lightner Method to produce fermentable sugars from a lignocellulose material
WO2001060752A1 (en) 2000-02-17 2001-08-23 Forskningscenter Risø A method for processing lignocellulosic material
ES2166316B1 (en) 2000-02-24 2003-02-16 Ct Investig Energeticas Ciemat PROCEDURE FOR THE PRODUCTION OF ETHANOL FROM LIGNOCELLULOSIC BIOMASS USING A NEW THERMOTOLERING YEAST.
PT1282686E (en) 2000-05-15 2007-11-07 Scandinavian Technology Group A recombinant yeast for lignocellulose raw materials
US20020019614A1 (en) 2000-05-17 2002-02-14 Woon Paul S. Absorbent articles having improved performance
US20020137154A1 (en) 2000-06-26 2002-09-26 Ingram Lonnie O?Apos;Neal Methods for improving cell growth and alcohol production during fermentation
CA2411479A1 (en) 2000-06-26 2002-01-03 Lonnie O. Ingram Methods and compositions for simultaneous saccharification and fermentation
AU2001265820A1 (en) 2000-07-04 2002-01-14 Neurosearch A/S Steric isomers of fused tropane derivatives and their use as monoamine neurotransmitter re-uptake inhibitors
US20020012980A1 (en) * 2000-07-25 2002-01-31 Wisconsin Alumni Research Foundation Method for simultaneous saccharification and fermentation of spent cellulose sausage casings
US6620503B2 (en) 2000-07-26 2003-09-16 Kimberly-Clark Worldwide, Inc. Synthetic fiber nonwoven web and method
US6423145B1 (en) 2000-08-09 2002-07-23 Midwest Research Institute Dilute acid/metal salt hydrolysis of lignocellulosics
US6596209B2 (en) 2000-08-10 2003-07-22 California Agriboard Llc Production of particle board from agricultural waste
AU2002210409A1 (en) 2000-11-10 2002-05-21 Novozymes A/S Ethanol process
US6908995B2 (en) 2001-01-05 2005-06-21 David H. Blount Production of carbohydrates, alcohol and resins from biomass
JP4077158B2 (en) * 2001-01-10 2008-04-16 株式会社メニコン Plant fiber degrading agent and method for treating plant waste using the same
WO2002057317A1 (en) 2001-01-16 2002-07-25 Biomass Conversions, Llc Disruption of plant material to readily hydrolyzable cellulosic particles
ES2280503T3 (en) 2001-02-28 2007-09-16 Iogen Energy Corporation METHOD FOR PROCESSING LIGNOCELLULOSIC RAW MATERIAL FOR INCREASED PRODUCTION OF XYLOSA AND ETHANOL.
US20030021915A1 (en) 2001-06-15 2003-01-30 Vivek Rohatgi Cellulose - polymer composites and related manufacturing methods
PL197595B1 (en) 2001-07-12 2008-04-30 Kazimierz Chrzanowski Method and system of manufacture of methane and generation of electric and thermal energy
US6835560B2 (en) 2001-10-18 2004-12-28 Clemson University Process for ozonating and converting organic materials into useful products
FI20012091A0 (en) 2001-10-29 2001-10-29 Valtion Teknillinen Fungal microorganism with improved performance in biotechnological processes
US20030125688A1 (en) 2001-11-30 2003-07-03 Keane James M. Adhesive system for mechanically post-treated absorbent structures
US6837956B2 (en) 2001-11-30 2005-01-04 Kimberly-Clark Worldwide, Inc. System for aperturing and coaperturing webs and web assemblies
US6962722B2 (en) 2001-12-04 2005-11-08 Dawley Larry J High protein corn product production and use
US8558058B2 (en) 2001-12-06 2013-10-15 Applied Biotechnology Institute Monocotyledonous seed expressing exo-1,4B-glucanase
AU2002346656A1 (en) 2001-12-06 2003-06-23 Prodigene, Inc. Methods for the cost-effective saccharification of lignocellulosic biomass
US6824682B2 (en) 2001-12-18 2004-11-30 Best Biofuels Llc C/O Smithfield Foods, Inc. System and method for extracting energy from agricultural waste
WO2003062430A1 (en) 2002-01-23 2003-07-31 Royal Nedalco B.V. Fermentation of pentose sugars
JP4001488B2 (en) * 2002-01-28 2007-10-31 アキレス株式会社 Package for carrier chip for immobilizing microorganisms
US6670035B2 (en) 2002-04-05 2003-12-30 Arteva North America S.A.R.L. Binder fiber and nonwoven web
US6743507B2 (en) 2002-06-07 2004-06-01 Rayonier Products And Financial Services Company Cellulose fiber reinforced composites having reduced discoloration and improved dispersion and associated methods of manufacture
US6855182B2 (en) 2002-07-17 2005-02-15 Rayonier Products And Financial Services Company Lignocellulose fiber composite with soil conditioners
GB0218012D0 (en) 2002-08-05 2002-09-11 Ciba Spec Chem Water Treat Ltd Production of a fermentation product
GB0218021D0 (en) 2002-08-05 2002-09-11 Ciba Spec Chem Water Treat Ltd Production of a fermentation product
DK1578964T4 (en) 2002-12-20 2013-12-02 Novozymes As Polypeptides with cellobiohydrolase II activity and polynucleotides encoding the same
CN1788083B (en) 2003-03-10 2011-10-05 诺维信公司 Alcohol product processes
US7604967B2 (en) 2003-03-19 2009-10-20 The Trustees Of Dartmouth College Lignin-blocking treatment of biomass and uses thereof
US20040187863A1 (en) 2003-03-25 2004-09-30 Langhauser Associates Inc. Biomilling and grain fractionation
AU2004236724B2 (en) 2003-05-02 2008-07-10 Cargill Inc. Genetically modified yeast species and fermentation processes using genetically modified yeast
US20040253696A1 (en) 2003-06-10 2004-12-16 Novozymes North America, Inc. Fermentation processes and compositions
CN108486086A (en) 2003-07-02 2018-09-04 维莱尼姆公司 Dextranase, encode they nucleic acid and preparation and use their method
WO2005079190A2 (en) 2003-09-12 2005-09-01 Midwest Research Institute Production of ethanol and high-protein feed co-products from high-solids conversion of cereal grains and legumes
US7504245B2 (en) 2003-10-03 2009-03-17 Fcstone Carbon, Llc Biomass conversion to alcohol using ultrasonic energy
SE526429C2 (en) 2003-10-24 2005-09-13 Swedish Biofuels Ab Intensifying fermentation of carbohydrate substrate for, e.g. producing one to five carbon alcohols, involves using amino acid leucine, isoleucine, and/or valine as source of nitrogen
CA2545981A1 (en) 2003-12-01 2005-06-16 Swetree Technologies Ab Fermentation process, starter culture and growth medium
WO2005069849A2 (en) 2004-01-16 2005-08-04 Novozymes North America, Inc Fermentation processes
WO2005067531A2 (en) 2004-01-16 2005-07-28 Novozymes Inc. Methods for degrading lignocellulosic materials
DK2305703T3 (en) 2004-01-30 2014-06-16 Novozymes Inc Polypeptides with cellulolytic enhancing activity and polynucleotides encoding them
CN1965078B (en) 2004-02-06 2013-09-18 诺维信股份有限公司 Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
JP4463719B2 (en) * 2004-04-22 2010-05-19 日本特殊陶業株式会社 Organic-inorganic composite porous body, method for producing fibrous organic substance, and method for producing organic-inorganic composite porous body
US20060014260A1 (en) 2004-05-07 2006-01-19 Zhiliang Fan Lower cellulase requirements for biomass cellulose hydrolysis and fermentation
WO2005113459A1 (en) 2004-05-13 2005-12-01 Cornell Research Foundation, Inc. Self-pressurizing, self-purifying system and method for methane production by anaerobic digestion
SE0401303D0 (en) 2004-05-19 2004-05-19 Forskarpatent I Syd Ab Ethanol productivities of microbial strains in fermentation of dilute-acid hydrolyzates depending on their furan reduction capacities
FI118012B (en) 2004-06-04 2007-05-31 Valtion Teknillinen Process for producing ethanol
US6998374B2 (en) 2004-06-14 2006-02-14 Carl Niedbala Composition and method for cleaning gelatin encapsulated products comprising a non-volatile silicone/volatile silicone mixture
ITMI20041646A1 (en) 2004-08-11 2004-11-11 Ocrim Spa PROCEDURE FOR THE PRODUCTION OF ETHANOL WITH THE USE OF CORN FLOURS
WO2006031757A1 (en) 2004-09-10 2006-03-23 Rutgers, The State University Energy production from the treatment of organic waste material comprising immiscible polymer blend membrane
US8309324B2 (en) 2004-11-10 2012-11-13 University Of Rochester Promoters and proteins from Clostridium thermocellum and uses thereof
CA2599577A1 (en) 2005-03-04 2006-09-14 Verenium Corporation Nucleic acids and proteins and methods for making and using them
BRPI0609140A2 (en) 2005-03-15 2010-02-17 Verenium Corp cellulases, nucleic acids that encode them and methods for their production and use
US7708214B2 (en) * 2005-08-24 2010-05-04 Xyleco, Inc. Fibrous materials and composites
EP1869197A2 (en) 2005-04-12 2007-12-26 E.I. Dupont De Nemours And Company Treatment of biomass to obtain ethanol
WO2006113683A2 (en) 2005-04-19 2006-10-26 Archer-Daniels-Midland Company Process for the production of animal feed and ethanol and novel feed
CA2910102A1 (en) 2005-04-26 2006-11-02 Novozymes A/S Hydrolysis of arabinoxylan
US8501463B2 (en) 2005-05-03 2013-08-06 Anaerobe Systems Anaerobic production of hydrogen and other chemical products
AU2006254627A1 (en) 2005-06-03 2006-12-07 Iogen Energy Corporation Method of continuous processing of lignocellulosic feedstocks
US20060292677A1 (en) 2005-06-22 2006-12-28 Brad Ostrander Use of corn with low gelatinization temperature for production of fermentation-based products
US8652817B2 (en) 2005-07-01 2014-02-18 Univeristy Of Florida Research Foundation, Inc. Recombinant host cells and media for ethanol production
CA2959268A1 (en) 2005-07-19 2007-01-25 Inbicon A/S Method and apparatus for conversion of cellulosic material to ethanol
US20090258106A1 (en) * 2005-07-20 2009-10-15 Robert Jansen Corn Wet Milling Process
US20070020375A1 (en) * 2005-07-20 2007-01-25 Robert Jansen Corn wet milling process
US7135308B1 (en) 2006-02-28 2006-11-14 Propulsion Logic, Llc Process for the production of ethanol from algae
US9090915B2 (en) * 2008-04-22 2015-07-28 Wisconsin Alumni Research Foundation Sulfite pretreatment for biorefining biomass
NZ596930A (en) * 2009-05-20 2014-06-27 Xyleco Inc Bioprocessing
US8146841B2 (en) * 2010-07-26 2012-04-03 Glass Processing Solutions, Llc Production of clean glass particles from post-consumer waste

Also Published As

Publication number Publication date
NZ609636A (en) 2014-07-25
AU2007257741B2 (en) 2010-07-15
US20130334725A1 (en) 2013-12-19
EP3135379B1 (en) 2019-02-27
EP2032261A2 (en) 2009-03-11
CN101541432A (en) 2009-09-23
MX342620B (en) 2016-10-06
HUE028695T2 (en) 2016-12-28
US20130189738A1 (en) 2013-07-25
MY159431A (en) 2017-01-13
SI2032261T1 (en) 2016-05-31
WO2007146922A2 (en) 2007-12-21
RU2434945C2 (en) 2011-11-27
HUE038356T2 (en) 2018-10-29
PL3012025T3 (en) 2018-07-31
PL2032261T3 (en) 2016-07-29
US8544773B2 (en) 2013-10-01
EP3492173A2 (en) 2019-06-05
CA2655111A1 (en) 2007-12-21
BR122017001646B1 (en) 2019-10-22
AU2007257741A1 (en) 2007-12-21
KR20090023684A (en) 2009-03-05
EP2032261A4 (en) 2013-04-10
BRPI0713417A2 (en) 2012-03-27
DK3012025T3 (en) 2018-06-14
BRPI0713417B1 (en) 2019-04-02
EP3012025B1 (en) 2018-04-25
MY147493A (en) 2012-12-14
AP2464A (en) 2012-09-14
EA013498B1 (en) 2010-04-30
ES2558308T3 (en) 2016-02-03
US20110244533A1 (en) 2011-10-06
CN103131483A (en) 2013-06-05
US8413915B2 (en) 2013-04-09
US7708214B2 (en) 2010-05-04
IL195910A (en) 2013-10-31
EP3012025A3 (en) 2016-08-03
NZ598177A (en) 2013-08-30
AP2008004725A0 (en) 2008-12-31
US7980495B2 (en) 2011-07-19
EA200970015A1 (en) 2009-06-30
RU2009101224A (en) 2010-07-20
US20180339428A1 (en) 2018-11-29
LT3012025T (en) 2018-06-11
DK2032261T3 (en) 2016-03-14
IL228131A (en) 2015-07-30
UA93719C2 (en) 2011-03-10
IL228130A (en) 2015-05-31
EP2032261B1 (en) 2015-12-30
MX2008016029A (en) 2009-02-20
WO2007146922A3 (en) 2009-02-26
EP3135379A1 (en) 2017-03-01
ZA200900054B (en) 2009-12-30
US20100267097A1 (en) 2010-10-21
NZ620525A (en) 2015-08-28
US20070045456A1 (en) 2007-03-01
PL3135379T3 (en) 2019-08-30
ES2674252T3 (en) 2018-06-28
IL195910A0 (en) 2009-09-01
EP3492173A3 (en) 2019-09-11
KR101159628B1 (en) 2012-06-27
TR201807349T4 (en) 2018-06-21
SI3012025T1 (en) 2018-06-29
MY159433A (en) 2017-01-13
BR122018075069B1 (en) 2019-07-16
US8757525B2 (en) 2014-06-24
EP3012025A2 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
CA2655111C (en) Fibrous materials and compositions
EP2508263B1 (en) Method of densifying fibrous material
US10059035B2 (en) Fibrous materials and composites
JP2004359939A (en) Biodegradable resin composition and its molded article

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20210614