CA2659479C - Self-aligned nanotube field effect transistor and method of fabricating same - Google Patents

Self-aligned nanotube field effect transistor and method of fabricating same Download PDF

Info

Publication number
CA2659479C
CA2659479C CA2659479A CA2659479A CA2659479C CA 2659479 C CA2659479 C CA 2659479C CA 2659479 A CA2659479 A CA 2659479A CA 2659479 A CA2659479 A CA 2659479A CA 2659479 C CA2659479 C CA 2659479C
Authority
CA
Canada
Prior art keywords
nanotube
carbon
field effect
effect transistor
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA2659479A
Other languages
French (fr)
Other versions
CA2659479A1 (en
Inventor
Joerg Appenzeller
Phaedon Avouris
Kevin K. Chan
Philip G. Collins
Richard Martel
Hon-Sum Philip Wong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Priority to CA2695715A priority Critical patent/CA2695715C/en
Publication of CA2659479A1 publication Critical patent/CA2659479A1/en
Application granted granted Critical
Publication of CA2659479C publication Critical patent/CA2659479C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0676Nanowires or nanotubes oriented perpendicular or at an angle to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/936Specified use of nanostructure for electronic or optoelectronic application in a transistor or 3-terminal device
    • Y10S977/938Field effect transistors, FETS, with nanowire- or nanotube-channel region
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/94Specified use of nanostructure for electronic or optoelectronic application in a logic circuit

Abstract

A self-aligned carbon-nanotube field effect transistor semiconductor device comprises a carbon-nanotube [104] deposited on a substrate [102], a source and a drain [106-107] formed at a first end and a second end of the carbon-nanotube [104], respectively, and a gate [112] formed substantially over a portion of the carbon-nanotube [104], separated from the carbon-nanotube by a dielectric film [111].

Description

. . . . . . . . .. .. .. . . . .

SELF-ALIGNED NANOTUBE FIELD EFFECT TRANSISTOR AND
METHOD OF FABRICATING SANE
BACKGROTJND OF THE INVENTION

1. Field of the Invention The present invention relates to field effect transistors, and more particularly, to carbon-nanotube field effect transistors.
2. Discussion of the Related Art In the field of molecular nanoelectronics, few materials show as much promise as nanotubes, and in particular carbon nanotubes, which comprise hollow cylinders of graphite, angstroms in diameter. Nanotubes can be implemented in electronic devices such as diodes and transistors, depending on the nanotube's electrical characteristics. Nanotubes are unique for their size, shape, and physical properties.
Structurally a carbon-nanotube resembles a hexagonal lattice of carbon rolled into a cylinder.

Besides exhibiting intriguing quantum behaviors at low temperature, carbon nanotubes exhibit at least two important characteristics: a nanotube can be either metallic or semiconductor depending on its chirality (i.e., conformational geometry). Metallic nanotubes can carry extremely large current densities with constant resistivity. Semiconducting nanotubes can be electrically switched on and off as field-effect transistors (FETs). The two types may be covalently joined (sharing electrons). These characteristics point to nanotubes as excellent materials for making nanometer-sized semiconductor circuits.

In addition, carbon nanotubes are one-dimensional electrical conductors, meaning that only one-dimensional quantum mechanical mode carries the current. This can be a significant advantage with respect to the device performance of a carbon-nanotube based transistor since scattering in the material is significantly suppressed. Less scattering means a better performance of the device.

For a three terminal device, such as an FET, a gate (the third terminal) needs to be isolated from the electrically active channel region as well as a source and a drain. For this purpose a dielectric material, e.g., silicon dioxide can be used. To improve device characteristics in silicon devices, the thickness of this layer can be reduced. This reduction increases the gate capacitance and improves the gate-to-channel coupling. For standard silicon field-effect devices the gate capacitance scales inversely proportional to the dielectric film thickness. For currently manufactured high-performance processors, the Si02 thickness is less than 4nm. Significantly, further reduction can be difficult to achieve since gate leakage through the dielectric film increases exponentially for an oxide thickness below 4nm.

However, the gate capacitance for a carbon-nanotube transistor does not scale inversely proportional with the dielectric film thickness. Instead, carbon-nanotubes follow a logarithmic scaling law. In comparison with a standard silicon field-effect transistor, the gate capacitance for a carbon-nanotube transistor can be larger because of the cylindrical geometry of these objects.

No known system or method has implemented a nanotube to achieve performance and smaller size in an FET. Therefore, a need exists for a system and method of preparing nanotube based FETs.

SUMARY OF THE INVENTION

According to an embodiment of the present invention, a self-aligned carbon-nanotube field effect transistor semiconductor device is provided. The device comprises a carbon-nanotube deposited on a substrate, a source and a drain formed at a first end and a second end of the carbon-nanotube, respectively, and a gate formed substantially over a portion of the carbon-nanotube, separated from the carbon-nanotube by a dielectric film.

The substrate comprises a thermal oxide deposited over a silicon substrate. The thermal oxide is about 150 nanometers thick.

The gate is further separated from the carbon-nanotube by an oxide layer. A portion of the gate is separated from the source and the drain by a nitride spacer.

The device further comprises a passivation dielectric layer over the device.

The device comprises an alignment mark in the substrate to which the source and the drain are aligned.

. . . . . . . . . . . . . .. . . . 1 .. . . . . .

The gate wraps around the dielectric film and the carbon-nanotube to contact a back side of the carbon-nanotube.

According to an embodiment of the present invention, a carbon-nanotube field effect transistor semiconductor device is provided. The device comprises a vertical carbon-nanotube wrapped in a dielectric material, a source and a drain formed on a first side and a second side of the carbon-nanotube, respectively, a bilayer nitride complex through which a band strap of each of the source and the drain is formed connecting the carbon-nanotube wrapped in the dielectric material to the source and the drain, and a gate formed substantially over a portion of the carbon-nanotube.

The device comprises a metal catalyst at a base of the carbon-nanotube.

According to one embodiment of the present invention, a method is provided for forming a self-aligned carbon-nanotube field effect transistor semiconductor device. The method comprises depositing a nanotube on a thermal oxide substrate, wherein the substrate includes an alignment mark, forming a metal contact at each end of the nanotube, wherein a first metal contact is a source and a second metal contact is a drain, and depositing an amorphous silicon layer over the device. The method further comprises forming nitride spacers on opposing sides of each metal contact,depositing a high k dielectric film over the device, oxidizing the amorphous silicon, and forming a gate substantially between the source and the drain, and over the nanotube.

The method comprises depositing a passivation dielectric over the device.

The nanotube is a single-walled nanotube. The metal contacts are formed using a photoresist.

According to an embodiment of the present invention, a method is provided for forming a self-aligned carbon-nanotube field effect transistor semiconductor device. The method comprises depositing a nanotube on a thermal oxide substrate, wherein the substrate includes an alignment mark, forming a metal contact by reactive ion etch at each end of the nanotube, wherein a first metal contact is a source and a second metal contact is a drain, and forming nitride spacers on opposing sides of each metal contact. The method further comprises depositing a high k dielectric film over the device, and forming a gate substantially between the source and the drain and over the nanotube.

The method comprises depositing a passivation dielectric over the device.

According to an embodiment of the present invention, a method is provided for forming a self-aligned carbon-nanotube field effect transistor semiconductor device. The method comprises depositing a nanotube on a thermal oxide substrate, wherein the substrate includes an alignment mark, and forming an amorphous silicon pillar over each end of the nanotube. The method further comprises isolating the amorphous silicon pillars with a layer of oxide, forming a gate dielectric layer between amorphous silicon pillars, and forming a gate substantially between the amorphous silicon pillars and over the nanotube. The method comprises forming a nitride layer over the gate, forming oxide spacers on each side of the gate, replacing the amorphous silicon with metal contacts, wherein a first metal contact is a source and a second metal contact is a drain, and depositing a passivation dielectric over the device.

According to another embodiment of the present invention, a method is provided for forming a self-aligned carbon-nanotube field effect transistor semiconductor device.
The method comprises depositing a metal catalyst on a thermal oxide substrate, depositing a low temperature oxide layer over the device, etching a trench through the oxide, the metal catalyst and into a thermal oxide underlying the metal catalyst, and etching the low temperature oxide layer to form oxide islands. The method further comprises stripping exposed metal catalyst, growing a nanotube between metal catalyst beneath the oxide islands, and wrapping the nanotube in a gate dielectric. The method comprises forming nitride spacers on the opposing surfaces of the oxide islands, forming a gate substantially between the oxide islands by chemical vapor deposition and over the nanotube, and depositing a passivation dielectric over the device.

According to an embodiment of the present invention, a method is provided for forming a self-aligned carbon-nanotube field effect transistor semiconductor device. The method comprises growing a nanotube vertically from a metal catalyst forming on a surface of the semiconductor device, forming a nitride block structure, and wrapping the nanotube in a gate dielectric. The method comprises depositing a gate metal separated from the metal catalyst by the dielectric layer, depositing a nitride layer, and forming gate metal pillars capped with the nitride layer. The method forms nitride spacers around the pillars, deposits a drain metal substantially between the pillars separated from the gate metal by the dielectric layer, and deposits a passivation dielectric over the device.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the present invention will be described below in more detail, with reference to the accompanying drawings:

Figs. la-i illustrate a source/drain first carbon-nanotube field effect transistor according to an embodiment of the present invention;

Figs. 2a-b illustrate another source/drain first carbon-nanotube field effect transistor according to an embodiment of the present invention;

Figs. 3a-g illustrate a gate first carbon-nanotube field effect transistor according to an embodiment of the present invention;

Figs. 4a-d illustrate a carbon-nanotube field effect transistor comprising a nanotube grown in place according to an embodiment of the present invention;

Figs. 5a-n illustrate a carbon-nanotube field effect transistor comprising a nanotube grown in place vertically according to an embodiment of the present invention; and Figs. 6a-b illustrate directed assembly of nanotubes according to an embodiment of the present invention.
DETAILED DESCRIPTION OF PREFERRED EBMODIMENTS

According to an embodiment of the present invention, a gate, a source and a drain of a field effect transistor (FET) are self-aligned, thereby reducing overlap capacitances.

According to an embodiment of the present invention, a carbon-nanotube FET can be fabricated using a pattern transfer by lift-off etch, wherein the source and the drain are formed before the gate. Referring to Figs. la-i, an alignment mark 101 is formed in a thermal oxide 102 and silicon substrate 103. The alignment mark 101 is a high precision feature that can be used as a reference when positioning patterns. The thermal oxide 102 is deposited over the silicon 103. The silicon can be, for example, P+ doped (0.010-cm, about 3x1018cm3). A nanotube 104 can be deposited on the thermal oxide 102 and a photoresist 105 can be positioned by photolithography. The nanotube can be deposited in the form of a slurry, where nanotube deposition is random. The nanotube can be deposited by directed assembly, as described below. The photoresist exposes the ends of the nanotube. Metal contacts 106-107 are formed in the trenches that expose the nanotube ends. The metal can be, for example, Cobalt (Co), Nickel (Ni), . . . . ... ... ... , . . .. . .

Tungsten (W), or Titanium (Ti). The metal can be deposited over the device, filling the trenches exposing the ends of the nanotube 104. The photoresist 105 can be stripped. The metal deposited in the trenches form source/drain contacts 106-107.

An amorphous Silicon (a-Si) 108 can be deposited over the device. A Nitride layer 109 can be deposited over the a-Si layer. The Nitride can be etched to form spacers, e.g., 110 on the sides of the metal contacts 106-107. The amorphous silicon 108 can be selectively removed or wet chemically oxidized. A

gate dielectric film 111 can be deposited over the device.
Here as in the following methods, the dielectric can be silicon dioxide as well as any other high-k dielectric material, for example, Hf02. A gate 112 can be formed substantially between the metal contacts 106-107 forming the source and drain, for example by CVD and etching. A
passivation dielectric layer 113 is deposited over the device.
The source, drain and gate 112 are self-aligned to the alignment mark 101.

Alternatively, the source/drain can be formed before the gate with a reactive ion etch (RIE). Referring to Figs. 2a-b, a method forms the source/drain, 106-107, first using RIE to define the source/drain metal. The RIE needs to be isolated from the carbon-nanotube 104. A nitride layer 201 can be deposited over the device and etched from the areas surrounding the metal contact. Nitride spacers, e.g., 202, can be formed on the sides of the metal contacts. A gate dielectric 203 is deposited over the device. The gate metal 204 is formed substantially between the source and the drain, 106-107. A passivation dielectric 205 can be deposited over the device. The thermal oxide can be approximately 150nm thick.

According to another embodiment of the present invention, the gate can be formed before the source/drain. Amorphous silicon 301 can be deposited over the ends of the nanotube 104. The a-Si can be covered with an oxide layer 302. A gate dielectric 303 can be deposited between the a-Si, e.g., 301. A

gate 304 can be formed substantially between the a-Si pillars, e.g., 301. A nitride layer 305 can be formed over the gate metal 304. Oxide spacers, e.g., 306 can be formed on the ends of the gate metal 304. The exposed corners of the a-Si/oxide can be stripped, exposing the a-Si. The remaining a-Si surrounding the gate metal can be removed by RIE. Metal contacts 307-308 can be deposited in the area previously occupied by the a-Si. The metal contacts 307-308 are connected to the nanotube 104 that runs beneath the gate dielectric 303 and gate metal 304. The metal contacts 307-308 form the source and the drain of the device. The metal contacts 307-308 can be aligned to the alignment mark 101 deposited in the thermal oxide 102 and silicon 103 substrate. A passivation dielectric 309 can be deposited over the device.

According to an embodiment of the present invention, a carbon-nanotube FET can be grown in place. The source/drain can be formed before the gate. An amorphous silicon layer 401 is deposited over the thermal oxide layer 102. A low temperature oxide (LTO) layer 402 can be deposited over the metal catalyst. A trench can be etched from the oxide 402, amorphous silicon 401 and thermal oxide 102. The amorphous silicon 401 can be partially under cut from below the oxide 402. A metal catalyst 401B, for example, Fe, Co, Ni or Fe/Mo can be self-assembled on the edges of the undercut amorphous silicon film 401. The carbon-nanotube 403 can be grown between the remaining portions of the metal catalyst 401B, wherein a portion of the nanotube is suspended over the thermal oxide 102. A gate dielectric film 404 can be deposited by chemical vapor deposition (CVD), wrapping the nanotube 403. Thus, the nanotube 403 can be completely covered with the gate dielectric, e.g., SiOa. Spacers, e.g., 405, can be formed on the sides of the oxide, e.g., 402. A gate 406 can be formed substantially between the oxide, e.g., 402. If the etch in the thermal oxide 102 is sufficiently deep, the gate metal 406 can surround the whole nanotube 403 and the dielectric film 404 stack. For this purpose the gate metal can be deposited by means of chemical vapor deposition to cover the back side of the nanotube/dielectric film stack. The wrapped around configuration offers a good gate-to-nanotube coupling. A
passivation dielectric 406 can be deposited over the surface of the device.

According to another embodiment of the present invention, a carbon-nanotube can be grown in place vertically. The nanotube can be grown vertically from, for example, a metal source at the base or a metal particle catalyst. Referring to Fig. 5a-n, a metal catalyst 501 can be formed on the silicon substrate 502. A first layer of Nitride 503 can be deposited over the device. An oxide layer 504 can be deposited over the first layer of Nitride 503. A second layer of Nitride 505 can be deposited over the oxide 504. A photoresist, e.g., 506, can be formed on the device by photolithography, wherein the metal catalyst 501 is exposed. A plurality of second metal catalysts, e.g., 507, are deposited over the device. The photoresist, e.g., 506, can stripped, such that the second catalyst, e.g., 507, formed on the first metal catalyst 501 remain. From each second metal catalyst, e.g., 507, a nanotube, e.g., 508, can be grown vertically. Thus, two-dimensional and three-dimensional arrays of nanotubes can be formed.

Vertical growth of the nanotubes occurs when the metal particle catalyst is placed in a pore aligned vertically to the substrate. In this case, the space for the growth is confined and forces the growth of the tube to follow the vertical direction. In principle, vertical pores such as in Fig. 5b can be made using the resists and pattern transfer.
An amorphous Silicon layer 509 can be deposited over the device. The device can be planarized down to the second Nitride layer 505. A portion of the Nitride-Oxide-Nitride layering, 503-505, can be removed from the device. A pillar surrounding the nanotubes, e.g., 508, and metal catalyst, 501 and 507, remains. A sacrificial layer 510 can be formed over the Nitride layer 505 the nanotubes 508 and the a-Si 509. The contact layer can be, for example, titanium or tungsten. The oxide layer 504 can be removed from between the layers of Nitride, 503 and 505. The a-Si 509 can be etched simultaneously with the oxide layer 504 from around the nanotubes, e.g., 508. Alternatively, the a-So 509 can be removed after the oxide layer 504 has been removed. A gate dielectric, e.g., 511, can be formed around the nanotubes, e.g., 508, over the metal catalyst 501 and under the sacrificial layer 510. Alternatively, for a two-dimensional array of nanotubes, the gate dielectric 511 can be deposited between the nanotubes. The sacrificial layer 510 can be removed, for example, by an etch. The gate metal 512 can be deposited over the surface of the device. A third Nitride layer 513 can be deposited over the gate metal 512. Portions of the gate metal 512 and the third nitride layer 513 can be removed. Pillars of gate metal and nitride spacers, e.g., 512 and 513, remain around the metal catalyst-nanotube structure.
Nitride spacers, e.g., 514, are formed around each pillar. A
drain 515 can be formed over the metal catalyst-nanotube structure, forming a FET. The passivation dielectric 516 can be deposited between FETs.

It should be noted that the exact mechanics of nanotube growth from a metal catalyst are not known. However, the process of growing a single-walled nanotube from a metal catalyst, for example, Cobalt (CO) over alumina-supported Molybdenum (Mo) particles, can be implemented in a number of ways.

According to an embodiment of the present invention, nanotubes can be put in place by a method of directed assembly rather than deposited or grown as described above. Directed assembly can be used for horizontal and vertical deposition of a nanotube using selective deposition driven by a chemical or a physical process. The selective deposition can include forming an adhesion layer or chemical groups acting as receptors to favor a desired deposition of tubes in a given position. Figs. 6a and 6b show methods for horizontal and vertical directed assembly, respectively. A nanotube 601 can be prepared comprising predetermined chemical groups 602, for example, a DNA strand or a thiol group, at each end. The nanotube 601 can be brought into the proximity of a substrate 603 comprising receptors 604, for example, where DNA is implemented, a complementary DNA strand can be used. Where a thiol group is used, gold particles or a contact shape comprising gold, can be designed to bond with the chemical groups 602 of the nanotube 601. The nanotube 601 can thus be placed on the substrate 603 according to directed assembly.

For improved performance high-K dielectric films, those having a high dielectric constant, can be used as gate insulators. The capacitance of a carbon-nanotube FET does not significantly change as a function of the thickness of the dielectric film, thus, it can be difficult to achieve the desired capacitance, even with thin gate dielectric films.
Aluminum oxide A1203 (k = 9) as well as Hafnium oxide (Hf02) (k = 20) are promising candidates in this context. CVD-aluminum can be oxidized to generate a high-K gate dielectric or CVD-Al203(Hf02 can be deposited directly. Compared with Si02, these materials increase the gate capacitance by a factor of up to five, and can have a larger impact on the device performance than reducing the dielectric film thickness. Since nanotubes are pFETs in an air environment and become nFETs in vacuum and inert gases like Argon (Ar) after annealing, the device can be annealed before the deposition of the dielectric film is added. This converts the tubes into nFETs. Capping them in situ with the dielectric also prevents tubes from becoming pFETs again. For a complementary technology the dielectric film on FETs, which should be turned into pFETS, can be locally removed - also allowing the FETs to be doped. A
CVD deposition at low temperature coats these devices again (without an extra annealing step before).

Since all structures (pFETs and nFETs) are covered with oxide (or any other suitable dielectric film) no short is generated when the gate electrode is fabricated. CVD can be used for the deposition of the gate. Using chemical vapor deposition for fabrication schemes as described in Figs. 4 and 5 can ensure that nanotubes that are already wrapped in a dielectric film become completely surrounded by the metal gate. This can be important for good gate-to-nanotube coupling. The gate metal can be patterned and removed where desired. Source and drain electrodes can be opened for electrical access.

Having described preferred embodiments for carbon-nanotube FETs and methods of making same, it is noted that modifications and variations can be made by persons skilled in the art in light of the above teachings. It is therefore to be understood that changes may be made in the particular embodiments of the invention disclosed which are within the scope and spirit of the invention as defined by the appended claims. Having thus described the invention with the details and particularity required by-the patent laws, what is claimed and desired protected by Letters Patent is set forth in the appended claims.

Claims (10)

What is claimed is:
1. A carbon-nanotube field effect transistor semiconductor device comprising:
a vertical carbon-nanotube wrapped in a dielectric material;
a source formed at a first end of the carbon-nanotube;
a drain formed at a second end of the carbon-nanotube;
a nitride block structure comprising a first nitride layer and a second nitride layer disposed above the first nitride layer, wherein the nitride block structure is disposed at side portions of the carbon-nanotube; and a gate metal pillar wrapping the dielectric material and separating the first and second nitride layers.
2. The carbon-nanotube field effect transistor semiconductor device of claim 1, further comprising a metal catalyst at a base of the carbon-nanotube.
3. The carbon-nanotube field effect transistor semiconductor device of claim 1, wherein the gate metal pillar has a height greater than the carbon-nanotube.
4. The carbon-nanotube field effect transistor semiconductor device of claim 1, further comprising a first metal catalyst formed on a silicon substrate and a second metal catalyst formed on the first metal catalyst at a base of the carbon-nanotube.
5. The carbon-nanotube field effect transistor semiconductor device of claim 1, further comprising a plurality of vertical carbon-nanotubes.
6. The carbon-nanotube field effect transistor semiconductor device of claim 1, further comprising a third nitride layer formed on at least a portion of the gate metal pillar.
7. The carbon-nanotube field effect transistor semiconductor device of claim 1, further comprising at least one nitride spacer wrapping the gate metal pillar.
8. The carbon-nanotube field effect transistor semiconductor device of claim 1, further comprising a passivation dielectric layer formed around the device.
9. The carbon-nanotube field effect transistor semiconductor device of claim 1, further comprising a plurality of gate metal pillars formed substantially over a portion of the nitride block structure.
10. A method for forming a self-aligned carbon-nanotube field effect transistor semiconductor device comprising the steps of:
growing a nanotube vertically from a metal catalyst forming on a surface of the semiconductor device;
forming a nitride block structure;
wrapping the nanotube in a gate dielectric;
depositing a gate metal, separated from the metal catalyst by the gate dielectric;
depositing a nitride layer;
forming gate metal pillars capped with the nitride layer;
forming nitride spacers around the pillars;
depositing a drain metal substantially between the pillars, separated from the gate metal by the dielectric layer; and depositing a passivation dielectric over the device.
CA2659479A 2002-03-20 2003-02-19 Self-aligned nanotube field effect transistor and method of fabricating same Expired - Fee Related CA2659479C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA2695715A CA2695715C (en) 2002-03-20 2003-02-19 Self-aligned nanotube field effect transistor and method of fabricating same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/102,365 US6891227B2 (en) 2002-03-20 2002-03-20 Self-aligned nanotube field effect transistor and method of fabricating same
US10/102,365 2002-03-20
CA2479024A CA2479024C (en) 2002-03-20 2003-02-19 Self-aligned nanotube field effect transistor and method of fabricating same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CA2479024A Division CA2479024C (en) 2002-03-20 2003-02-19 Self-aligned nanotube field effect transistor and method of fabricating same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CA2695715A Division CA2695715C (en) 2002-03-20 2003-02-19 Self-aligned nanotube field effect transistor and method of fabricating same

Publications (2)

Publication Number Publication Date
CA2659479A1 CA2659479A1 (en) 2003-10-02
CA2659479C true CA2659479C (en) 2010-07-13

Family

ID=28040198

Family Applications (3)

Application Number Title Priority Date Filing Date
CA2479024A Expired - Fee Related CA2479024C (en) 2002-03-20 2003-02-19 Self-aligned nanotube field effect transistor and method of fabricating same
CA2659479A Expired - Fee Related CA2659479C (en) 2002-03-20 2003-02-19 Self-aligned nanotube field effect transistor and method of fabricating same
CA2695715A Expired - Fee Related CA2695715C (en) 2002-03-20 2003-02-19 Self-aligned nanotube field effect transistor and method of fabricating same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CA2479024A Expired - Fee Related CA2479024C (en) 2002-03-20 2003-02-19 Self-aligned nanotube field effect transistor and method of fabricating same

Family Applications After (1)

Application Number Title Priority Date Filing Date
CA2695715A Expired - Fee Related CA2695715C (en) 2002-03-20 2003-02-19 Self-aligned nanotube field effect transistor and method of fabricating same

Country Status (14)

Country Link
US (6) US6891227B2 (en)
EP (2) EP1485958B1 (en)
JP (1) JP4493344B2 (en)
KR (1) KR100714932B1 (en)
CN (2) CN1669160B (en)
AT (2) ATE551734T1 (en)
AU (1) AU2003224668A1 (en)
BR (1) BR0308569A (en)
CA (3) CA2479024C (en)
IL (2) IL164066A0 (en)
MX (1) MXPA04008984A (en)
PL (1) PL373571A1 (en)
TW (1) TW586165B (en)
WO (1) WO2003081687A2 (en)

Families Citing this family (267)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7563711B1 (en) * 2001-07-25 2009-07-21 Nantero, Inc. Method of forming a carbon nanotube-based contact to semiconductor
US20070178477A1 (en) * 2002-01-16 2007-08-02 Nanomix, Inc. Nanotube sensor devices for DNA detection
US20040253741A1 (en) * 2003-02-06 2004-12-16 Alexander Star Analyte detection in liquids with carbon nanotube field effect transistor devices
US20060228723A1 (en) * 2002-01-16 2006-10-12 Keith Bradley System and method for electronic sensing of biomolecules
US6891227B2 (en) * 2002-03-20 2005-05-10 International Business Machines Corporation Self-aligned nanotube field effect transistor and method of fabricating same
JP3804594B2 (en) * 2002-08-02 2006-08-02 日本電気株式会社 Catalyst supporting substrate, carbon nanotube growth method using the same, and transistor using carbon nanotubes
US7135728B2 (en) * 2002-09-30 2006-11-14 Nanosys, Inc. Large-area nanoenabled macroelectronic substrates and uses therefor
AU2003283973B2 (en) 2002-09-30 2008-10-30 Oned Material Llc Large-area nanoenabled macroelectronic substrates and uses therefor
AU2003282558A1 (en) * 2002-10-11 2004-05-04 Massachusetts Institute Of Technology Nanopellets and method of making nanopellets
AU2003304248A1 (en) * 2002-10-29 2005-01-13 President And Fellows Of Harvard College Carbon nanotube device fabrication
US7253434B2 (en) * 2002-10-29 2007-08-07 President And Fellows Of Harvard College Suspended carbon nanotube field effect transistor
JP4501339B2 (en) * 2002-11-29 2010-07-14 ソニー株式会社 Method for manufacturing pn junction element
US6933222B2 (en) * 2003-01-02 2005-08-23 Intel Corporation Microcircuit fabrication and interconnection
CA2419704A1 (en) 2003-02-24 2004-08-24 Ignis Innovation Inc. Method of manufacturing a pixel with organic light-emitting diode
US6696327B1 (en) * 2003-03-18 2004-02-24 Intel Corporation Method for making a semiconductor device having a high-k gate dielectric
US20100244262A1 (en) 2003-06-30 2010-09-30 Fujitsu Limited Deposition method and a deposition apparatus of fine particles, a forming method and a forming apparatus of carbon nanotubes, and a semiconductor device and a manufacturing method of the same
WO2005019095A1 (en) * 2003-08-20 2005-03-03 Qucor Pty Ltd Fabricating nanoscale and atomic scale devices
TWI239071B (en) * 2003-08-20 2005-09-01 Ind Tech Res Inst Manufacturing method of carbon nano-tube transistor
DE10340926A1 (en) * 2003-09-03 2005-03-31 Technische Universität Ilmenau Abteilung Forschungsförderung und Technologietransfer Process for the production of electronic components
US7105851B2 (en) * 2003-09-24 2006-09-12 Intel Corporation Nanotubes for integrated circuits
JP5250615B2 (en) * 2003-10-28 2013-07-31 株式会社半導体エネルギー研究所 Semiconductor device
WO2005050305A1 (en) * 2003-11-18 2005-06-02 Nikon Corporation Display device manufacturing method and display device
US7374793B2 (en) * 2003-12-11 2008-05-20 International Business Machines Corporation Methods and structures for promoting stable synthesis of carbon nanotubes
US7038299B2 (en) * 2003-12-11 2006-05-02 International Business Machines Corporation Selective synthesis of semiconducting carbon nanotubes
DE102004001340A1 (en) * 2004-01-08 2005-08-04 Infineon Technologies Ag Method for fabricating a nanoelement field effect transistor, nanoelement field effect transistor and nanoelement arrangement
DE102004003374A1 (en) * 2004-01-22 2005-08-25 Infineon Technologies Ag Semiconductor circuit breaker as well as a suitable manufacturing process
US20050167655A1 (en) * 2004-01-29 2005-08-04 International Business Machines Corporation Vertical nanotube semiconductor device structures and methods of forming the same
US7211844B2 (en) * 2004-01-29 2007-05-01 International Business Machines Corporation Vertical field effect transistors incorporating semiconducting nanotubes grown in a spacer-defined passage
US7829883B2 (en) 2004-02-12 2010-11-09 International Business Machines Corporation Vertical carbon nanotube field effect transistors and arrays
KR101050468B1 (en) * 2004-02-14 2011-07-19 삼성에스디아이 주식회사 Biochip and Biomolecule Detection System Using the Same
US7253431B2 (en) * 2004-03-02 2007-08-07 International Business Machines Corporation Method and apparatus for solution processed doping of carbon nanotube
US7019391B2 (en) * 2004-04-06 2006-03-28 Bao Tran NANO IC packaging
US20050218398A1 (en) * 2004-04-06 2005-10-06 Availableip.Com NANO-electronics
US7862624B2 (en) * 2004-04-06 2011-01-04 Bao Tran Nano-particles on fabric or textile
US7330369B2 (en) 2004-04-06 2008-02-12 Bao Tran NANO-electronic memory array
US20050218397A1 (en) * 2004-04-06 2005-10-06 Availableip.Com NANO-electronics for programmable array IC
US7498641B2 (en) * 2004-05-28 2009-03-03 Taiwan Semiconductor Manufacturing Company, Ltd. Partial replacement silicide gate
US7109546B2 (en) * 2004-06-29 2006-09-19 International Business Machines Corporation Horizontal memory gain cells
US7129097B2 (en) * 2004-07-29 2006-10-31 International Business Machines Corporation Integrated circuit chip utilizing oriented carbon nanotube conductive layers
US20060063318A1 (en) * 2004-09-10 2006-03-23 Suman Datta Reducing ambipolar conduction in carbon nanotube transistors
KR101025846B1 (en) * 2004-09-13 2011-03-30 삼성전자주식회사 Transistor of semiconductor device comprising carbon nano-tube channel
US7462890B1 (en) 2004-09-16 2008-12-09 Atomate Corporation Nanotube transistor integrated circuit layout
US7776307B2 (en) * 2004-09-16 2010-08-17 Etamota Corporation Concentric gate nanotube transistor devices
US7943418B2 (en) * 2004-09-16 2011-05-17 Etamota Corporation Removing undesirable nanotubes during nanotube device fabrication
US7345296B2 (en) * 2004-09-16 2008-03-18 Atomate Corporation Nanotube transistor and rectifying devices
US7233071B2 (en) * 2004-10-04 2007-06-19 International Business Machines Corporation Low-k dielectric layer based upon carbon nanostructures
US20070246784A1 (en) * 2004-10-13 2007-10-25 Samsung Electronics Co., Ltd. Unipolar nanotube transistor using a carrier-trapping material
US7226818B2 (en) 2004-10-15 2007-06-05 General Electric Company High performance field effect transistors comprising carbon nanotubes fabricated using solution based processing
CN100420033C (en) * 2004-10-28 2008-09-17 鸿富锦精密工业(深圳)有限公司 Field effect transistor
US7405129B2 (en) * 2004-11-18 2008-07-29 International Business Machines Corporation Device comprising doped nano-component and method of forming the device
US7582534B2 (en) * 2004-11-18 2009-09-01 International Business Machines Corporation Chemical doping of nano-components
WO2006086074A2 (en) * 2004-12-16 2006-08-17 William Marsh Rice University Carbon nanotube substrates and catalyzed hot stamp for polishing and patterning the substrates
US7202173B2 (en) * 2004-12-20 2007-04-10 Palo Alto Research Corporation Incorporated Systems and methods for electrical contacts to arrays of vertically aligned nanorods
US7598516B2 (en) 2005-01-07 2009-10-06 International Business Machines Corporation Self-aligned process for nanotube/nanowire FETs
US8362525B2 (en) * 2005-01-14 2013-01-29 Nantero Inc. Field effect device having a channel of nanofabric and methods of making same
US7598544B2 (en) * 2005-01-14 2009-10-06 Nanotero, Inc. Hybrid carbon nanotude FET(CNFET)-FET static RAM (SRAM) and method of making same
CA2495726A1 (en) 2005-01-28 2006-07-28 Ignis Innovation Inc. Locally referenced voltage programmed pixel for amoled displays
US7535016B2 (en) * 2005-01-31 2009-05-19 International Business Machines Corporation Vertical carbon nanotube transistor integration
US7772125B2 (en) * 2005-02-10 2010-08-10 Panasonic Corporation Structure in which cylindrical microstructure is maintained in anisotropic groove, method for fabricating the same, and semiconductor device, TFT driving circuit, panel, display and sensor using the structure in which cylindrical microstructure is maintained in anisotropic groove
US20100065820A1 (en) * 2005-02-14 2010-03-18 Atomate Corporation Nanotube Device Having Nanotubes with Multiple Characteristics
US20060180859A1 (en) * 2005-02-16 2006-08-17 Marko Radosavljevic Metal gate carbon nanotube transistor
US7671398B2 (en) * 2005-02-23 2010-03-02 Tran Bao Q Nano memory, light, energy, antenna and strand-based systems and methods
US7126207B2 (en) * 2005-03-24 2006-10-24 Intel Corporation Capacitor with carbon nanotubes
AU2006336262B2 (en) * 2005-04-06 2011-10-13 President And Fellows Of Harvard College Molecular characterization with carbon nanotube control
US7271079B2 (en) * 2005-04-06 2007-09-18 International Business Machines Corporation Method of doping a gate electrode of a field effect transistor
KR101109623B1 (en) * 2005-04-07 2012-01-31 엘지디스플레이 주식회사 TFT for display device and method of fabricating of the same
KR101145146B1 (en) * 2005-04-07 2012-05-14 엘지디스플레이 주식회사 TFT and method of fabricating of the same
US7781862B2 (en) * 2005-05-09 2010-08-24 Nantero, Inc. Two-terminal nanotube devices and systems and methods of making same
US7479654B2 (en) 2005-05-09 2009-01-20 Nantero, Inc. Memory arrays using nanotube articles with reprogrammable resistance
US7141727B1 (en) * 2005-05-16 2006-11-28 International Business Machines Corporation Method and apparatus for fabricating a carbon nanotube transistor having unipolar characteristics
US7230286B2 (en) * 2005-05-23 2007-06-12 International Business Machines Corporation Vertical FET with nanowire channels and a silicided bottom contact
US7838943B2 (en) * 2005-07-25 2010-11-23 International Business Machines Corporation Shared gate for conventional planar device and horizontal CNT
US20070031318A1 (en) * 2005-08-03 2007-02-08 Jie Liu Methods of chemically treating an electrically conductive layer having nanotubes therein with diazonium reagent
US7485908B2 (en) * 2005-08-18 2009-02-03 United States Of America As Represented By The Secretary Of The Air Force Insulated gate silicon nanowire transistor and method of manufacture
US7371677B2 (en) * 2005-09-30 2008-05-13 Freescale Semiconductor, Inc. Laterally grown nanotubes and method of formation
US7492015B2 (en) * 2005-11-10 2009-02-17 International Business Machines Corporation Complementary carbon nanotube triple gate technology
KR100792402B1 (en) 2005-12-28 2008-01-09 주식회사 하이닉스반도체 Method for manufacturing semiconductor device with dual poly gate
US8394664B2 (en) * 2006-02-02 2013-03-12 William Marsh Rice University Electrical device fabrication from nanotube formations
US20070183189A1 (en) * 2006-02-08 2007-08-09 Thomas Nirschl Memory having nanotube transistor access device
US8759811B2 (en) * 2006-02-14 2014-06-24 Raytheon Company Particle encapsulated nanoswitch
KR100668355B1 (en) * 2006-02-16 2007-01-12 삼성전자주식회사 Unipolar nanotube transistor having carrier-trapping material and field effect transistor having the same
US8124503B2 (en) 2006-03-03 2012-02-28 William Marsh Rice University Carbon nanotube diameter selection by pretreatment of metal catalysts on surfaces
KR100777265B1 (en) * 2006-03-30 2007-11-20 고려대학교 산학협력단 a top gate thin film transistor using nano particle and a method for manufacturing thereof
US8785058B2 (en) 2006-04-07 2014-07-22 New Jersey Institute Of Technology Integrated biofuel cell with aligned nanotube electrodes and method of use thereof
US7626190B2 (en) 2006-06-02 2009-12-01 Infineon Technologies Ag Memory device, in particular phase change random access memory device with transistor, and method for fabricating a memory device
US7714386B2 (en) 2006-06-09 2010-05-11 Northrop Grumman Systems Corporation Carbon nanotube field effect transistor
DE102006026949A1 (en) * 2006-06-09 2007-12-13 Infineon Technologies Ag Resistive switching memory e.g. phase change random access memory, component, has nano wire transistor or nano tube- or nano fiber-access-transistor, having transistor-gate-area, which is part of word-line
US7393699B2 (en) 2006-06-12 2008-07-01 Tran Bao Q NANO-electronics
US20070290394A1 (en) * 2006-06-20 2007-12-20 International Business Machines Corporation Method and structure for forming self-planarizing wiring layers in multilevel electronic devices
US20080135892A1 (en) * 2006-07-25 2008-06-12 Paul Finnie Carbon nanotube field effect transistor and method of making thereof
FR2897978A1 (en) * 2006-08-03 2007-08-31 Commissariat Energie Atomique Memory cell for storing e.g. binary information, has field effect memory and access transistors including respective source and drain, where source and drain form additional electrode that is connected to additional control line
JP5168888B2 (en) * 2006-11-20 2013-03-27 日本電気株式会社 Semiconductor device and manufacturing method thereof
KR100912111B1 (en) * 2006-12-04 2009-08-13 한국전자통신연구원 Schottky barrier nanowire field effect transistor and method for fabricating the same
US8168495B1 (en) 2006-12-29 2012-05-01 Etamota Corporation Carbon nanotube high frequency transistor technology
US9806273B2 (en) * 2007-01-03 2017-10-31 The United States Of America As Represented By The Secretary Of The Army Field effect transistor array using single wall carbon nano-tubes
DE102007001130B4 (en) * 2007-01-04 2014-07-03 Qimonda Ag Method for producing a through-connection in a layer and arrangement with a layer with through-connection
US7511344B2 (en) * 2007-01-17 2009-03-31 International Business Machines Corporation Field effect transistor
US8039870B2 (en) * 2008-01-28 2011-10-18 Rf Nano Corporation Multifinger carbon nanotube field-effect transistor
WO2008128164A1 (en) * 2007-04-12 2008-10-23 The Penn State Research Foundation Accumulation field effect microelectronic device and process for the formation thereof
US9209246B2 (en) 2007-04-12 2015-12-08 The Penn State University Accumulation field effect microelectronic device and process for the formation thereof
US20080272361A1 (en) * 2007-05-02 2008-11-06 Atomate Corporation High Density Nanotube Devices
US7964143B2 (en) 2007-06-20 2011-06-21 New Jersey Institute Of Technology Nanotube device and method of fabrication
US8546027B2 (en) 2007-06-20 2013-10-01 New Jersey Institute Of Technology System and method for directed self-assembly technique for the creation of carbon nanotube sensors and bio-fuel cells on single plane
US7736979B2 (en) 2007-06-20 2010-06-15 New Jersey Institute Of Technology Method of forming nanotube vertical field effect transistor
US7858454B2 (en) * 2007-07-31 2010-12-28 Rf Nano Corporation Self-aligned T-gate carbon nanotube field effect transistor devices and method for forming the same
CN101442105B (en) * 2007-11-21 2010-06-09 中国科学院化学研究所 Organic field effect transistor and special source/drain electrode and preparation method thereof
JP2011522394A (en) * 2007-12-31 2011-07-28 エータモタ・コーポレイション End contact type vertical carbon nanotube transistor
KR100930997B1 (en) * 2008-01-22 2009-12-10 한국화학연구원 Carbon Nanotube Transistor Manufacturing Method and Carbon Nanotube Transistor
US8847249B2 (en) 2008-06-16 2014-09-30 Soraa, Inc. Solid-state optical device having enhanced indium content in active regions
US7858506B2 (en) * 2008-06-18 2010-12-28 Micron Technology, Inc. Diodes, and methods of forming diodes
US8143148B1 (en) * 2008-07-14 2012-03-27 Soraa, Inc. Self-aligned multi-dielectric-layer lift off process for laser diode stripes
US8805134B1 (en) 2012-02-17 2014-08-12 Soraa Laser Diode, Inc. Methods and apparatus for photonic integration in non-polar and semi-polar oriented wave-guided optical devices
US8767787B1 (en) 2008-07-14 2014-07-01 Soraa Laser Diode, Inc. Integrated laser diodes with quality facets on GaN substrates
CN105762249A (en) 2008-08-04 2016-07-13 Soraa有限公司 White Light Devices Using Non-polar Or Semipolar Gallium Containing Materials And Phosphors
US8284810B1 (en) 2008-08-04 2012-10-09 Soraa, Inc. Solid state laser device using a selected crystal orientation in non-polar or semi-polar GaN containing materials and methods
US8063454B2 (en) * 2008-08-13 2011-11-22 Micron Technology, Inc. Semiconductor structures including a movable switching element and systems including same
US9494615B2 (en) * 2008-11-24 2016-11-15 Massachusetts Institute Of Technology Method of making and assembling capsulated nanostructures
US7893492B2 (en) * 2009-02-17 2011-02-22 International Business Machines Corporation Nanowire mesh device and method of fabricating same
US8247886B1 (en) 2009-03-09 2012-08-21 Soraa, Inc. Polarization direction of optical devices using selected spatial configurations
US8837545B2 (en) 2009-04-13 2014-09-16 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
DE112010001615T5 (en) * 2009-04-13 2012-08-02 Soraa, Inc. Structure of an optical element using GaN substrates for laser applications
US8634442B1 (en) 2009-04-13 2014-01-21 Soraa Laser Diode, Inc. Optical device structure using GaN substrates for laser applications
US10108079B2 (en) 2009-05-29 2018-10-23 Soraa Laser Diode, Inc. Laser light source for a vehicle
US8427590B2 (en) 2009-05-29 2013-04-23 Soraa, Inc. Laser based display method and system
US8509275B1 (en) 2009-05-29 2013-08-13 Soraa, Inc. Gallium nitride based laser dazzling device and method
US9829780B2 (en) 2009-05-29 2017-11-28 Soraa Laser Diode, Inc. Laser light source for a vehicle
US9250044B1 (en) 2009-05-29 2016-02-02 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser diode dazzling devices and methods of use
US9800017B1 (en) 2009-05-29 2017-10-24 Soraa Laser Diode, Inc. Laser device and method for a vehicle
US8247887B1 (en) 2009-05-29 2012-08-21 Soraa, Inc. Method and surface morphology of non-polar gallium nitride containing substrates
US8895352B2 (en) * 2009-06-02 2014-11-25 International Business Machines Corporation Method to improve nucleation of materials on graphene and carbon nanotubes
US8574673B2 (en) * 2009-07-31 2013-11-05 Nantero Inc. Anisotropic nanotube fabric layers and films and methods of forming same
US8128993B2 (en) * 2009-07-31 2012-03-06 Nantero Inc. Anisotropic nanotube fabric layers and films and methods of forming same
CN101997035B (en) * 2009-08-14 2012-08-29 清华大学 Thin film transistor
US8355418B2 (en) 2009-09-17 2013-01-15 Soraa, Inc. Growth structures and method for forming laser diodes on {20-21} or off cut gallium and nitrogen containing substrates
US8750342B1 (en) 2011-09-09 2014-06-10 Soraa Laser Diode, Inc. Laser diodes with scribe structures
US9583678B2 (en) 2009-09-18 2017-02-28 Soraa, Inc. High-performance LED fabrication
US8841652B2 (en) * 2009-11-30 2014-09-23 International Business Machines Corporation Self aligned carbide source/drain FET
US20110127492A1 (en) * 2009-11-30 2011-06-02 International Business Machines Corporation Field Effect Transistor Having Nanostructure Channel
WO2011068028A1 (en) * 2009-12-04 2011-06-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element, semiconductor device, and method for manufacturing the same
US8143113B2 (en) * 2009-12-04 2012-03-27 International Business Machines Corporation Omega shaped nanowire tunnel field effect transistors fabrication
US8129247B2 (en) 2009-12-04 2012-03-06 International Business Machines Corporation Omega shaped nanowire field effect transistors
US8455334B2 (en) * 2009-12-04 2013-06-04 International Business Machines Corporation Planar and nanowire field effect transistors
US8384065B2 (en) * 2009-12-04 2013-02-26 International Business Machines Corporation Gate-all-around nanowire field effect transistors
US8173993B2 (en) * 2009-12-04 2012-05-08 International Business Machines Corporation Gate-all-around nanowire tunnel field effect transistors
US8097515B2 (en) * 2009-12-04 2012-01-17 International Business Machines Corporation Self-aligned contacts for nanowire field effect transistors
JP2013515359A (en) * 2009-12-21 2013-05-02 アイメック Double gate nanostructure FET
KR101301463B1 (en) 2009-12-25 2013-08-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
US8101474B2 (en) * 2010-01-06 2012-01-24 International Business Machines Corporation Structure and method of forming buried-channel graphene field effect device
US8722492B2 (en) * 2010-01-08 2014-05-13 International Business Machines Corporation Nanowire pin tunnel field effect devices
US8905588B2 (en) 2010-02-03 2014-12-09 Sorra, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US10147850B1 (en) 2010-02-03 2018-12-04 Soraa, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US8436403B2 (en) * 2010-02-05 2013-05-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including transistor provided with sidewall and electronic appliance
JP5601848B2 (en) * 2010-02-09 2014-10-08 三菱電機株式会社 Method for manufacturing SiC semiconductor device
US9362390B2 (en) 2010-02-22 2016-06-07 Nantero, Inc. Logic elements comprising carbon nanotube field effect transistor (CNTFET) devices and methods of making same
WO2011105198A1 (en) * 2010-02-26 2011-09-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20110233513A1 (en) * 2010-03-29 2011-09-29 International Business Machines Corporation Enhanced bonding interfaces on carbon-based materials for nanoelectronic devices
US8324940B2 (en) 2010-04-13 2012-12-04 International Business Machines Corporation Nanowire circuits in matched devices
US8361907B2 (en) 2010-05-10 2013-01-29 International Business Machines Corporation Directionally etched nanowire field effect transistors
US8324030B2 (en) 2010-05-12 2012-12-04 International Business Machines Corporation Nanowire tunnel field effect transistors
US8451876B1 (en) 2010-05-17 2013-05-28 Soraa, Inc. Method and system for providing bidirectional light sources with broad spectrum
US8513099B2 (en) * 2010-06-17 2013-08-20 International Business Machines Corporation Epitaxial source/drain contacts self-aligned to gates for deposited FET channels
US9450143B2 (en) 2010-06-18 2016-09-20 Soraa, Inc. Gallium and nitrogen containing triangular or diamond-shaped configuration for optical devices
US8404539B2 (en) 2010-07-08 2013-03-26 International Business Machines Corporation Self-aligned contacts in carbon devices
WO2012014786A1 (en) 2010-07-30 2012-02-02 Semiconductor Energy Laboratory Co., Ltd. Semicondcutor device and manufacturing method thereof
US8835231B2 (en) 2010-08-16 2014-09-16 International Business Machines Corporation Methods of forming contacts for nanowire field effect transistors
US8536563B2 (en) 2010-09-17 2013-09-17 International Business Machines Corporation Nanowire field effect transistors
US8816319B1 (en) 2010-11-05 2014-08-26 Soraa Laser Diode, Inc. Method of strain engineering and related optical device using a gallium and nitrogen containing active region
US9048170B2 (en) 2010-11-09 2015-06-02 Soraa Laser Diode, Inc. Method of fabricating optical devices using laser treatment
US8597967B1 (en) 2010-11-17 2013-12-03 Soraa, Inc. Method and system for dicing substrates containing gallium and nitrogen material
US9595813B2 (en) 2011-01-24 2017-03-14 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a substrate member
US9025635B2 (en) 2011-01-24 2015-05-05 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US9093820B1 (en) 2011-01-25 2015-07-28 Soraa Laser Diode, Inc. Method and structure for laser devices using optical blocking regions
US9287684B2 (en) 2011-04-04 2016-03-15 Soraa Laser Diode, Inc. Laser package having multiple emitters with color wheel
US8471249B2 (en) * 2011-05-10 2013-06-25 International Business Machines Corporation Carbon field effect transistors having charged monolayers to reduce parasitic resistance
US9606607B2 (en) 2011-05-17 2017-03-28 Ignis Innovation Inc. Systems and methods for display systems with dynamic power control
US8455365B2 (en) 2011-05-19 2013-06-04 Dechao Guo Self-aligned carbon electronics with embedded gate electrode
US8492748B2 (en) 2011-06-27 2013-07-23 International Business Machines Corporation Collapsable gate for deposited nanostructures
US8486778B2 (en) * 2011-07-15 2013-07-16 International Business Machines Corporation Low resistance source and drain extensions for ETSOI
US8729529B2 (en) * 2011-08-03 2014-05-20 Ignis Innovation Inc. Thin film transistor including a nanoconductor layer
US8686431B2 (en) 2011-08-22 2014-04-01 Soraa, Inc. Gallium and nitrogen containing trilateral configuration for optical devices
WO2013043544A1 (en) * 2011-09-19 2013-03-28 California Institute Of Technology Translocation and nucleotide reading mechanisms for sequencing nanodevices
US8803129B2 (en) * 2011-10-11 2014-08-12 International Business Machines Corporation Patterning contacts in carbon nanotube devices
US8971370B1 (en) 2011-10-13 2015-03-03 Soraa Laser Diode, Inc. Laser devices using a semipolar plane
US8629010B2 (en) 2011-10-21 2014-01-14 International Business Machines Corporation Carbon nanotube transistor employing embedded electrodes
US8569121B2 (en) * 2011-11-01 2013-10-29 International Business Machines Corporation Graphene and nanotube/nanowire transistor with a self-aligned gate structure on transparent substrates and method of making same
US8912025B2 (en) 2011-11-23 2014-12-16 Soraa, Inc. Method for manufacture of bright GaN LEDs using a selective removal process
US8772782B2 (en) 2011-11-23 2014-07-08 International Business Machines Corporation Transistor employing vertically stacked self-aligned carbon nanotubes
JP5887881B2 (en) * 2011-11-28 2016-03-16 株式会社リコー Wiring formation method
US9385169B2 (en) 2011-11-29 2016-07-05 Ignis Innovation Inc. Multi-functional active matrix organic light-emitting diode display
US8895417B2 (en) 2011-11-29 2014-11-25 International Business Machines Corporation Reducing contact resistance for field-effect transistor devices
US8772910B2 (en) 2011-11-29 2014-07-08 International Business Machines Corporation Doping carbon nanotubes and graphene for improving electronic mobility
US8642432B2 (en) 2011-12-01 2014-02-04 International Business Machines Corporation N-dopant for carbon nanotubes and graphene
US9663369B2 (en) 2011-12-16 2017-05-30 International Business Machines Corporation Cerium (IV) salts as effective dopant for carbon nanotubes and graphene
WO2013100906A1 (en) * 2011-12-27 2013-07-04 Intel Corporation Carbon nanotube semiconductor devices and deterministic nanofabrication methods
US10224413B1 (en) * 2012-01-30 2019-03-05 Northrop Grumman Systems Corporation Radio-frequency carbon-nanotube field effect transistor devices with local backgates and methods for making same
JP2013179274A (en) * 2012-02-09 2013-09-09 Nippon Telegr & Teleph Corp <Ntt> Field effect transistor and manufacturing method of the same
US9020003B1 (en) 2012-03-14 2015-04-28 Soraa Laser Diode, Inc. Group III-nitride laser diode grown on a semi-polar orientation of gallium and nitrogen containing substrates
US9343871B1 (en) 2012-04-05 2016-05-17 Soraa Laser Diode, Inc. Facet on a gallium and nitrogen containing laser diode
EP2674996A1 (en) * 2012-06-15 2013-12-18 Imec VZW Method for growing nanostructures in recessed structures
US8741756B2 (en) 2012-08-13 2014-06-03 International Business Machines Corporation Contacts-first self-aligned carbon nanotube transistor with gate-all-around
US8786018B2 (en) 2012-09-11 2014-07-22 International Business Machines Corporation Self-aligned carbon nanostructure field effect transistors using selective dielectric deposition
US8735869B2 (en) * 2012-09-27 2014-05-27 Intel Corporation Strained gate-all-around semiconductor devices formed on globally or locally isolated substrates
US8823059B2 (en) 2012-09-27 2014-09-02 Intel Corporation Non-planar semiconductor device having group III-V material active region with multi-dielectric gate stack
US9978904B2 (en) 2012-10-16 2018-05-22 Soraa, Inc. Indium gallium nitride light emitting devices
US8796096B2 (en) 2012-12-04 2014-08-05 International Business Machines Corporation Self-aligned double-gate graphene transistor
US8609481B1 (en) 2012-12-05 2013-12-17 International Business Machines Corporation Gate-all-around carbon nanotube transistor with selectively doped spacers
US8900975B2 (en) 2013-01-03 2014-12-02 International Business Machines Corporation Nanopore sensor device
JP5637231B2 (en) * 2013-03-04 2014-12-10 富士通株式会社 Method for manufacturing field effect transistor
US9721505B2 (en) 2013-03-08 2017-08-01 Ignis Innovation Inc. Pixel circuits for AMOLED displays
JP6376788B2 (en) 2013-03-26 2018-08-22 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method thereof
US9048216B2 (en) 2013-04-17 2015-06-02 International Business Machines Corporation Self aligned embedded gate carbon transistors
US9193585B2 (en) 2013-06-07 2015-11-24 International Business Machines Corporation Surface modification using functional carbon nanotubes
US8841189B1 (en) * 2013-06-14 2014-09-23 International Business Machines Corporation Transistor having all-around source/drain metal contact channel stressor and method to fabricate same
JP2015032662A (en) * 2013-08-01 2015-02-16 株式会社東芝 Semiconductor device and manufacturing method of the same
US9406888B2 (en) * 2013-08-07 2016-08-02 GlobalFoundries, Inc. Carbon nanotube device
US9419189B1 (en) 2013-11-04 2016-08-16 Soraa, Inc. Small LED source with high brightness and high efficiency
CN104576324A (en) * 2013-12-21 2015-04-29 上海大学 Carbon-based electron manufacture and interconnection method
CA2872563A1 (en) 2014-11-28 2016-05-28 Ignis Innovation Inc. High pixel density array architecture
US9859394B2 (en) 2014-12-18 2018-01-02 Agilome, Inc. Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
US10006910B2 (en) 2014-12-18 2018-06-26 Agilome, Inc. Chemically-sensitive field effect transistors, systems, and methods for manufacturing and using the same
US9618474B2 (en) 2014-12-18 2017-04-11 Edico Genome, Inc. Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
WO2016100049A1 (en) 2014-12-18 2016-06-23 Edico Genome Corporation Chemically-sensitive field effect transistor
US10020300B2 (en) 2014-12-18 2018-07-10 Agilome, Inc. Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
US9857328B2 (en) 2014-12-18 2018-01-02 Agilome, Inc. Chemically-sensitive field effect transistors, systems and methods for manufacturing and using the same
US9502673B2 (en) * 2015-03-31 2016-11-22 International Business Machines Corporation Transistor devices with tapered suspended vertical arrays of carbon nanotubes
US10217819B2 (en) * 2015-05-20 2019-02-26 Samsung Electronics Co., Ltd. Semiconductor device including metal-2 dimensional material-semiconductor contact
CA2898282A1 (en) 2015-07-24 2017-01-24 Ignis Innovation Inc. Hybrid calibration of current sources for current biased voltage progra mmed (cbvp) displays
US10657895B2 (en) 2015-07-24 2020-05-19 Ignis Innovation Inc. Pixels and reference circuits and timing techniques
US10373554B2 (en) 2015-07-24 2019-08-06 Ignis Innovation Inc. Pixels and reference circuits and timing techniques
US9787963B2 (en) 2015-10-08 2017-10-10 Soraa Laser Diode, Inc. Laser lighting having selective resolution
JP6851166B2 (en) 2015-10-12 2021-03-31 株式会社半導体エネルギー研究所 Manufacturing method of semiconductor device
US10276698B2 (en) 2015-10-21 2019-04-30 International Business Machines Corporation Scalable process for the formation of self aligned, planar electrodes for devices employing one or two dimensional lattice structures
CA2909813A1 (en) 2015-10-26 2017-04-26 Ignis Innovation Inc High ppi pattern orientation
US9577204B1 (en) 2015-10-30 2017-02-21 International Business Machines Corporation Carbon nanotube field-effect transistor with sidewall-protected metal contacts
US9837394B2 (en) 2015-12-02 2017-12-05 International Business Machines Corporation Self-aligned three dimensional chip stack and method for making the same
US10396300B2 (en) 2015-12-03 2019-08-27 International Business Machines Corporation Carbon nanotube device with N-type end-bonded metal contacts
EP3459115A4 (en) 2016-05-16 2020-04-08 Agilome, Inc. Graphene fet devices, systems, and methods of using the same for sequencing nucleic acids
US10665798B2 (en) * 2016-07-14 2020-05-26 International Business Machines Corporation Carbon nanotube transistor and logic with end-bonded metal contacts
US10665799B2 (en) * 2016-07-14 2020-05-26 International Business Machines Corporation N-type end-bonded metal contacts for carbon nanotube transistors
US10825681B2 (en) * 2016-08-13 2020-11-03 Applied Materials, Inc. 3D CTF integration using hybrid charge trap layer of sin and self aligned SiGe nanodot
GB2554362B (en) * 2016-09-21 2020-11-11 Pragmatic Printing Ltd Transistor and its method of manufacture
CN106229348A (en) * 2016-09-22 2016-12-14 京东方科技集团股份有限公司 Thin film transistor (TFT) and manufacture method, array base palte, display device
DE102017222059A1 (en) 2016-12-06 2018-06-07 Ignis Innovation Inc. Pixel circuits for reducing hysteresis
US10714018B2 (en) 2017-05-17 2020-07-14 Ignis Innovation Inc. System and method for loading image correction data for displays
US10141528B1 (en) * 2017-05-23 2018-11-27 International Business Machines Corporation Enhancing drive current and increasing device yield in n-type carbon nanotube field effect transistors
US10193090B2 (en) * 2017-06-20 2019-01-29 Taiwan Semiconductor Manufacturing Co., Ltd. Method of manufacturing a semiconductor device and a semiconductor device
JP7118973B2 (en) 2017-08-04 2022-08-16 株式会社半導体エネルギー研究所 semiconductor equipment
US11025899B2 (en) 2017-08-11 2021-06-01 Ignis Innovation Inc. Optical correction systems and methods for correcting non-uniformity of emissive display devices
US10771155B2 (en) 2017-09-28 2020-09-08 Soraa Laser Diode, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
CN107706307B (en) * 2017-10-13 2020-05-19 深圳市华星光电半导体显示技术有限公司 Carbon nanotube thin film transistor and manufacturing method thereof
CN107819037B (en) * 2017-12-07 2023-10-27 苏州大学 Fin type field effect transistor using carbon nano tube as conductive groove and preparation method thereof
US10333088B1 (en) 2017-12-12 2019-06-25 International Business Machines Corporation Carbon nanotube transistor with carrier blocking using thin dielectric under contact
US10222474B1 (en) 2017-12-13 2019-03-05 Soraa Laser Diode, Inc. Lidar systems including a gallium and nitrogen containing laser light source
US10971078B2 (en) 2018-02-12 2021-04-06 Ignis Innovation Inc. Pixel measurement through data line
US10551728B1 (en) 2018-04-10 2020-02-04 Soraa Laser Diode, Inc. Structured phosphors for dynamic lighting
CN109560125B (en) * 2018-11-27 2022-03-11 湖南工业大学 Metal stacked source-drain electrode field effect transistor and manufacturing method thereof
US11239637B2 (en) 2018-12-21 2022-02-01 Kyocera Sld Laser, Inc. Fiber delivered laser induced white light system
US11421843B2 (en) 2018-12-21 2022-08-23 Kyocera Sld Laser, Inc. Fiber-delivered laser-induced dynamic light system
US11884202B2 (en) 2019-01-18 2024-01-30 Kyocera Sld Laser, Inc. Laser-based fiber-coupled white light system
KR20200130778A (en) * 2019-05-10 2020-11-20 삼성디스플레이 주식회사 Method of manufacturing thin film transistor, method of manufacturing display apparatus and thin film transistor substrate
CN110364438B (en) * 2019-05-29 2023-05-05 北京华碳元芯电子科技有限责任公司 Transistor and method for manufacturing the same
CN110571333B (en) * 2019-08-13 2023-06-30 北京元芯碳基集成电路研究院 Manufacturing method of undoped transistor device
DE102020109756A1 (en) * 2019-08-29 2021-03-04 Taiwan Semiconductor Manufacturing Co., Ltd. TRANSISTORS WITH CHANNELS FORMED FROM LOW DIMENSIONAL MATERIALS AND METHOD OF FORMING THE SAME
US11417729B2 (en) 2019-08-29 2022-08-16 Taiwan Semiconductor Manufacturing Company, Ltd. Transistors with channels formed of low-dimensional materials and method forming same
CN113644112B (en) * 2020-05-11 2022-07-15 北京华碳元芯电子科技有限责任公司 Transistor and manufacturing method
CN116194404A (en) * 2020-08-17 2023-05-30 株式会社村田制作所 Semiconductor sensor
WO2023097120A1 (en) * 2021-11-29 2023-06-01 Duke University Metallic single-walled carbon nanotube hybrid assemblies and superstructures

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2137806B (en) * 1983-04-05 1986-10-08 Standard Telephones Cables Ltd Ion implantation in semiconductor bodies
CA1308496C (en) * 1988-02-18 1992-10-06 Rajiv V. Joshi Deposition of tungsten on silicon in a non-self-limiting cvd process
JPH02206130A (en) * 1989-02-06 1990-08-15 Nec Corp Manufacture of mos-type field-effect transistor
JP2717234B2 (en) * 1991-05-11 1998-02-18 株式会社 半導体エネルギー研究所 Insulated gate field effect semiconductor device and method of manufacturing the same
JP3403231B2 (en) * 1993-05-12 2003-05-06 三菱電機株式会社 Semiconductor device and manufacturing method thereof
JP3460863B2 (en) * 1993-09-17 2003-10-27 三菱電機株式会社 Method for manufacturing semiconductor device
JP3393237B2 (en) * 1994-10-04 2003-04-07 ソニー株式会社 Method for manufacturing semiconductor device
US6025635A (en) 1997-07-09 2000-02-15 Advanced Micro Devices, Inc. Short channel transistor having resistive gate extensions
AU764872B2 (en) * 1998-10-23 2003-09-04 Merck Frosst Canada & Co. Combination product comprising an E-type prostaglandin ligand and a cox-2 selective inhibitor and methods of use
US6022771A (en) * 1999-01-25 2000-02-08 International Business Machines Corporation Fabrication of semiconductor device having shallow junctions and sidewall spacers creating taper-shaped isolation where the source and drain regions meet the gate regions
ATE465519T1 (en) * 1999-02-22 2010-05-15 Clawson Joseph E Jr ELECTRONIC COMPONENT BASED ON NANOSTRUCTURES
JP2000275678A (en) * 1999-03-26 2000-10-06 Matsushita Electric Ind Co Ltd Thin-film semiconductor device and its production
SE517833C2 (en) 1999-11-26 2002-07-23 Ericsson Telefon Ab L M Method of manufacturing a bipolar silicon transistor to form base regions and open an emitter window as well as bipolar silicon transistor made according to the method
US7335603B2 (en) 2000-02-07 2008-02-26 Vladimir Mancevski System and method for fabricating logic devices comprising carbon nanotube transistors
US6407435B1 (en) 2000-02-11 2002-06-18 Sharp Laboratories Of America, Inc. Multilayer dielectric stack and method
KR100360476B1 (en) 2000-06-27 2002-11-08 삼성전자 주식회사 Vertical nano-size transistor using carbon nanotubes and manufacturing method thereof
KR100327496B1 (en) * 2000-06-27 2002-03-15 윤종용 Vertical nano-size transistor using carbon nanotubes and manufacturing method thereof
EP1299914B1 (en) 2000-07-04 2008-04-02 Qimonda AG Field effect transistor
KR100350794B1 (en) * 2000-11-20 2002-09-05 엘지전자 주식회사 Spin valve SET using a carbon nanotube
GB2364933B (en) * 2000-07-18 2002-12-31 Lg Electronics Inc Method of horizontally growing carbon nanotubes
DE10036897C1 (en) * 2000-07-28 2002-01-03 Infineon Technologies Ag Field effect transistor used in a switching arrangement comprises a gate region between a source region and a drain region
US6664143B2 (en) * 2000-11-22 2003-12-16 North Carolina State University Methods of fabricating vertical field effect transistors by conformal channel layer deposition on sidewalls
US6423583B1 (en) * 2001-01-03 2002-07-23 International Business Machines Corporation Methodology for electrically induced selective breakdown of nanotubes
US6524920B1 (en) * 2001-02-09 2003-02-25 Advanced Micro Devices, Inc. Low temperature process for a transistor with elevated source and drain
JP3731486B2 (en) * 2001-03-16 2006-01-05 富士ゼロックス株式会社 Transistor
JP4225716B2 (en) * 2001-09-11 2009-02-18 富士通株式会社 Semiconductor device with cylindrical multilayer structure
US7084507B2 (en) * 2001-05-02 2006-08-01 Fujitsu Limited Integrated circuit device and method of producing the same
EP1415351A1 (en) 2001-07-26 2004-05-06 Technische Universiteit Delft Electronic device using carbon nanotubes
US6515325B1 (en) * 2002-03-06 2003-02-04 Micron Technology, Inc. Nanotube semiconductor devices and methods for making the same
US6891227B2 (en) * 2002-03-20 2005-05-10 International Business Machines Corporation Self-aligned nanotube field effect transistor and method of fabricating same
TWI220269B (en) * 2002-07-31 2004-08-11 Ind Tech Res Inst Method for fabricating n-type carbon nanotube device
US20040144972A1 (en) * 2002-10-04 2004-07-29 Hongjie Dai Carbon nanotube circuits with high-kappa dielectrics
MY134672A (en) 2004-05-20 2007-12-31 Japan Tobacco Inc Stable crystal of 4-oxoquinoline compound

Also Published As

Publication number Publication date
US20120142158A1 (en) 2012-06-07
KR100714932B1 (en) 2007-05-04
TW200304679A (en) 2003-10-01
US20050056826A1 (en) 2005-03-17
CN1669160B (en) 2012-02-01
ATE516600T1 (en) 2011-07-15
US8138491B2 (en) 2012-03-20
CN101807668B (en) 2012-05-30
WO2003081687A2 (en) 2003-10-02
ATE551734T1 (en) 2012-04-15
US20080017899A1 (en) 2008-01-24
US7635856B2 (en) 2009-12-22
TW586165B (en) 2004-05-01
US7897960B2 (en) 2011-03-01
KR20040086474A (en) 2004-10-08
JP4493344B2 (en) 2010-06-30
AU2003224668A8 (en) 2003-10-08
WO2003081687A3 (en) 2004-09-30
US8637374B2 (en) 2014-01-28
BR0308569A (en) 2007-04-03
CN101807668A (en) 2010-08-18
US20030178617A1 (en) 2003-09-25
US20100001260A1 (en) 2010-01-07
EP1485958B1 (en) 2012-03-28
CA2695715C (en) 2011-06-07
CA2659479A1 (en) 2003-10-02
EP1485958A2 (en) 2004-12-15
CA2479024A1 (en) 2003-10-02
US6891227B2 (en) 2005-05-10
CN1669160A (en) 2005-09-14
MXPA04008984A (en) 2005-02-17
US7253065B2 (en) 2007-08-07
JP2006508523A (en) 2006-03-09
AU2003224668A1 (en) 2003-10-08
IL164066A0 (en) 2005-12-18
EP1748503A3 (en) 2007-08-15
PL373571A1 (en) 2005-09-05
CA2479024C (en) 2010-02-16
EP1748503B1 (en) 2011-07-13
IL164066A (en) 2009-12-24
EP1748503A2 (en) 2007-01-31
US20090309092A1 (en) 2009-12-17
CA2695715A1 (en) 2003-10-02

Similar Documents

Publication Publication Date Title
CA2659479C (en) Self-aligned nanotube field effect transistor and method of fabricating same
US7892956B2 (en) Methods of manufacture of vertical nanowire FET devices
US7598516B2 (en) Self-aligned process for nanotube/nanowire FETs

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed
MKLA Lapsed

Effective date: 20120220