CA2669560A1 - Resource allocation, scheduling, and signaling for grouping real time services - Google Patents

Resource allocation, scheduling, and signaling for grouping real time services Download PDF

Info

Publication number
CA2669560A1
CA2669560A1 CA002669560A CA2669560A CA2669560A1 CA 2669560 A1 CA2669560 A1 CA 2669560A1 CA 002669560 A CA002669560 A CA 002669560A CA 2669560 A CA2669560 A CA 2669560A CA 2669560 A1 CA2669560 A1 CA 2669560A1
Authority
CA
Canada
Prior art keywords
wtru
node
voice
radio resource
signaling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002669560A
Other languages
French (fr)
Inventor
Jin Wang
Arty Chandra
John S. Chen
Mohammed Sammour
Stephen E. Terry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
InterDigital Technology Corp
Original Assignee
Interdigital Technology Corporation
Jin Wang
Arty Chandra
John S. Chen
Mohammed Sammour
Stephen E. Terry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39092742&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CA2669560(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Interdigital Technology Corporation, Jin Wang, Arty Chandra, John S. Chen, Mohammed Sammour, Stephen E. Terry filed Critical Interdigital Technology Corporation
Publication of CA2669560A1 publication Critical patent/CA2669560A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • H04W4/08User group management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Abstract

The present invention is a method and apparatus for resource allocation signaling for grouping user real time services. Uplink signaling for voice activity reporting of each user's transition between an active state and an inactive voice state is sent from a wireless transmit/receive unit to a Node B. Radio resource allocation to users of a wireless communication system varies based on user measurement reporting, a pre-determined pattern such as frequency hopping, or a pseudorandom function. Grouping methods are adjusted to better utilize the voice activity factor, so that statistical multiplexing can be used to more efficiently utilize physical resources.

Description

RESOURCE ALLOCATION, SCHEDULING, AND SIGNALING
FOR GROUPING REAL TIME SERVICES
[0002] FIELD OF THE INVENTION
[0003] The present invention is related to the status reporting, resource allocation, scheduling, and signaling for grouping real time services (RTS) in a long term evolution (LTE) or high speed packet service (HSPA) system. In particular, the present invention relates to resource allocation and signaling methods at the medium access control (MAC) and physical (PHY) layers to efficiently make the scheduling decision, by fully utilizing the voice silent and active behavior when voice over Internet Protocol (VoIP) users are supported on a packet switched basis in LTE or HSPA.
[0004] BACKGROUND
[0005] The objective of Evolved UTRA and UTRAN is to develop a radio access network towards a high data rate, low latency, packet optimized system with improved system capacity and coverage. In order to achieve this objective, an evolution of the radio interface as well as the radio network architecture should be considered. For example, instead of using code division multiple access (CDMA) which is currently used in 3GPP, orthogonal frequency division multiple access (OFDMA) and frequency division multiple access (FDMA) are proposed air interface technologies to be used in the downlink and uplink transmissions respectively. One change is that all packet switched service in LTE, which means all the voice calls, will be made on a packet switched basis. This leads to many challenges in the LTE system design to support VoIP service.
[0006] While VoIP users can utilize the same benefit of advanced link adaptation and statistical multiplexing techniques that are used in the LTE
system as data users, the greatly increased number of users that may be served by the system because of the smaller voice packet sizes can place a significant burden on the control and feedback mechanisms of the LTE

system. The existing resource allocation and feedback mechanisms are typically not designed to deal with a large peak-to-average number of allocations, as found with VoIP users on the system.
[0007] Traditional cellular voice traffic has some distinguishing attributes, such as vocoder output at fixed intervals, well-defined maximum and minimum rates (output can be comfort noise, full rate, sub-rate, etc.), and traffic with a fractional voice activity factor (VAF) of approximately 35-50%.
The VAF is a percentage of time that a user is speaking. It is desirable to exploit these attributes to schedule a large number of voice users with minimal resources for control signaling both for resource assignment and feedback.
[0008] Grouping users in similar radio conditions has been proposed by the prior art to reduce the amount of signaling and feedback required to support voice traffic in LTE. It was proposed that groups be associated with particular sub-frames to exploit the known traffic characteristics and thus allow for statistical multiplexing based on the VAF and retransmission requirements.
[0009] According to one prior art proposal, the network can exploit the VAF to overload the group with a user population larger than what a typical sub-frame would be able to support for the voice packets. For example, at 5 MHz it is expected that three or four users can be supported for voice services in a 0.5 ms sub-frame. With a typical VAF of 0.4, it should be possible to define a group of eight to ten users.
[0010] This general grouping principle is shown in Figure 1, with users grouped based on their channel conditions. The rationale is that users in similar channel conditions would be supported with similar channel attributes such as modulation, coding rate, etc. Figure 2 shows how to use a bitmap to assign radio resource blocks within a group of user equipments (UEs). Note that the group scheduling is a type of persistent scheduling with fast on/off control, which uses the preconfigured assignment of a smaller group of UEs to a sub-frame to reduce the number of addressable UEs in that sub-frame. As shown in Figure 2, in a first sub-frame, radio resources are allocated to UE
1, UE2, UE7, UE8, and UE9. If UE2 acknowledges a previous transmission and no longer needs the radio resource, that resource is free to be reassigned. In a second sub-frame, radio resources are allocated to UE1, UE3, UE7, UE8, and UE9.
[0011] The following problems are identified from the LTE system and existing proposals:
[0012] 1. Detailed signaling options for grouping services are missing from current proposals.
[0013] 2. The radio resources are allocated to the voice users on a semi-static basis. Due to the voice silent and active state transition, it is efficient to allocate the radio resources of a voice,user to other users or services if that voice user is in the silent period. The Evolved UTRA Node B (eNB) can monitor the voice activity to all UEs to be transmitted in the downlink (DL) easily and make an efficient resource assignment and signal that decision to the UEs. If an eNB needs to re-allocate radio resources that are assigned to a UE for uplink (UL) voice service to other services or other UEs, there is a problem if this UE is in the voice silent period because the eNB cannot monitor the UL UE's voice activity and thus cannot make the efficient UL
resource scheduling decision.
[0014] 3. The channel condition is varying continuously and the radio resource block assigned to each UE for voice service cannot be in a fixed pattern, otherwise it will lead to performance degradation. Performance degradation can include, for example, a lost voice packet due to the deep fading channel if the assigned radio resource is fixed during the entire VoIP
service. Consecutive lost voice packets can distort the reception by the listener, which can result in an unacceptable level of service. For example, when UE grouping is used, the radio resources assigned to UEs within a VoIP
group cannot be in a fixed order. Some methods need to be proposed to change the resource allocation pattern and with relevant signaling to support the resource permutation.
[0015] 4. If the UE grouping method is used for VoIP service to efficiently use the radio resources by utilizing the voice on-off activity to reduce the overhead, there will be a problem if the number of UEs within a group is too small. Considering the VAF, which is between 35-50%, if only ten voice users are grouped together as proposed in the prior art in one 0.5ms sub-frame, it is not statistically correct that there are always less than or equal to four active users and six inactive users within one group. The system will have to assign new radio resources to UEs within a group if there are more UEs than available resources, which will cause extra overhead.
[0016] By considering the VAF, the grouping method can be used appropriately only if a large number of UEs are grouped together, so that it can be assumed that statistically there are around 35-50% active voice users and the rest are inactive voice users. So either more than ten UEs have to be grouped together or some resource scheduling methods have to be proposed.
Also, having the same number of UEs within one group is not flexible to reflect channel and voice traffic volume.
[0017] SUMMARY
[0018] The present invention is a method and apparatus for resource allocation signaling for grouping user real time services. Uplink signaling for voice activity reporting of each user's transition between an active state and an inactive voice state is sent from a wireless transmit/receive unit to a Node B. Radio resource allocation to users of a wireless communication system varies based on user measurement reporting, a pre-determined pattern such as frequency hopping, or a pseudorandom function. Grouping methods are adjusted to better utilize the voice activity factor, so that statistical multiplexing can be used to more efficiently utilize physical resources.
[0019] BRIEF DESCRIPTION OF THE DRAWINGS
[0020] A more detailed understanding of the invention may be had from the following description of a preferred embodiment, given by way of example and to be understood in conjunction with the accompanying drawings wherein:
[0021] Figure 1 shows a 20 ms resource allocation with assignments for UEs in a single group;
[0022] Figure 2 shows a radio resource assignment using a bitmap based on a UE grouping;
[0023] Figure 3 is a flowchart of a method for signaling for grouping services;
[0024] Figure 4 is a flowchart of a method for reassigning resources based on a DL voice activity report;
[0025] Figure 5 is a flowchart of a method for reassigning resources based on a UL voice activity report;
[0026] Figure 6 is a flow diagram of a method for verifying a UL voice activity report in connection with reassigning resources; and [0027] Figure 7 is a diagram of a system constructed to check voice state activity and to assign radio resources.
[0028] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0029] Hereafter, the term "wireless transmitJreceive unit" (WTRU) includes, but is not limited to, a user equipment, a mobile station, a fixed or mobile subscriber unit, a pager, or any other type of device capable of operating in a wireless environment. When referred to hereafter, the term "base station" includes, but is not limited to, a Node B, an eNB, a site controller, an access point, or any other type of interfacing device in a wireless environment.
[0030] Although the embodiments of the present invention are described in reference to LTE as a specific example, another applicable example includes HSPA systems when similar services are supported. Although VoIP operation is presented as one specific example, the embodiments of the present invention may also support any intermittent transmitting applications.
[0031] Signaling for Grouping Services [0032] In a first embodiment of the present invention, signaling for grouping services is proposed. In signaling for grouping services, it is preferable that the radio resource block allocation for WTRUs within one group be included in the L1 common control channel. The number of bits to signal the radio resource block assignment is dependent on how many radio bearers (RBs) will be used for assignment. For example, if 16 RBs are assigned, then four bits are required for signaling purposes.
[0033] During group configuration, a set of common control resources is assigned and signaled explicitly or implicitly to the WTRUs for grouping purposes. From the common control channel, the WTRU is signaled the position of the bitmap, the list of assigned RBs, and HARQ process information if it is not sent in the common control channel. There are three options for using the common control channel to signal the grouping of WTRUs:
[0034] a) only include the WTRU ID and RB assignment information;
[00351 b) include the WTRU ID, RB assignment information, and HARQ
process information; or [00361 c) only include RB assignment information and HARQ process information.
[0037] Besides using the L1 control channel to signal the WTRU
grouping, another option is to signal the grouping through a radio resource control (RRC) configuration message. The RRC configuration message includes the location of the following contents: the resource assignment bitmap, the RB assignment, and the HARQ process information, as well as other necessary information. The position of a particular WTRU inside the bitmap is also signaled, so that the WTRU knows which bit is to trigger its activity. For example, one WTRU should know that the third position in the bitmap is an indication for that WTRU. Whether the HARQ processes are on or off can be signaled along with the RB assignment. The timing from which transmission time interval (TTI) the WTRU should read this information is also included. Beginning from the signaled TTI, the WTRU reads the content from the signaled position to obtain the necessary information.
[0038] Figure 3 is a flow diagram of a method 300 for signaling for grouping services. The eNB assigns resources to the WTRUs for grouping purposes (step 302). As noted above, there are two different ways to communicate the resource assignments from the eNB to the WTRUs: over a common control channel and by an RRC configuration message. If the common control channel is used (step 304), the RB assignment information is sent (step 306) along with one or more pieces of information: the WTRU ID (step 308), the WTRI ID and HARQ process information (step 310), or HARQ process information (step 312). After sending the resource assignment information, the method terminates (step 314).
[0039] If the resource assignment information is sent by an RRC
configuration message (step 320), the eNB sends the location of the resource assignment bitmap, the RB assignment, HARQ process information, and TTI
information to the WTRUs (step 322). After sending the resource assignment information, the method terminates (step 314).
[0040] Deactivation and re-assignment of radio resources can also be done through an RRC message to the WTRU. When deactivating resources, the eNB provides an indication to the WTRU that the grouping period is done.
When re-assigning resources, an RRC message contains the new radio resource allocation message.

[0041] Voice Activity Report in UL
[0042] In a second embodiment, the UL includes a WTRU's voice activity report. In DL, the eNB can detect the voice state transition between the silent state and the active state using a voice codec with a voice activity/silence detector, or just monitor missing voice data and/or silence indication packets. After the detection, the eNB can efficiently assign radio resources from the WTRUs that are in the silent state to other WTRUs that are in the active state. The new resource assignment is signaled to the WTRUs from the eNB. 1 [0043] Figure 4 is a flowchart of a method 400 for reassigning resources based on a DL voice activity report. The eNB detects a voice state transition by the WTRU (step 402). The eNB assigns radio resources from WTRUs that are in the silent state to WTRUs that are in the active state (step 404). The eNB signals new radio resource assignments to the WTRUs (step 406) and the method terminates (step 408).

[0044] Re-allocation of UL resources is also scheduled and assigned by the eNB. To be able to do so, the eNB needs to have knowledge of the active/silent voice state transition of each WTRU, so that it can assign the resources that are not used due to a WTRU being in a silent period to other voice users or other services. The new resource assignment decision should be signaled to the WTRUs in a timely manner. The voice activity transition on the UL can only be detected at a WTRU, so the detection of the voice activity transition should be efficiently and immediately reported to the eNB.
[0045] Figure 5 is a flowchart of a method 500 for reassigning resources based on a UL voice activity report. The voice state transition is detected at the WTRU (step 502) and is reported to the eNB (step 504). The eNB assigns radio resources from WTRUs that are in the silent state to WTRUs that are in the active state (step 506). The eNB signals new radio resource assignments to the WTRUs (step 508) and the method terminates (step 510).
[0046] The following options are proposed to report voice on-off activity in the UL. In a first embodiment, a one bit status report is added to indicate voice on-off activity from the WTRU, and is used only when voice activity transits between the on and off states. There are several options to realize this reporting in the UL.
[0047] (1) L1 signaling options for activation include:
[0048] (a) Using physical control signaling, which could be multiplexed with other UL L1 signalings such as HARQ, ACK/NAK, CQI, etc. For example, a bit value of one (1) is used to indicate the active state and a bit value of zero (0) is used to indicate silent state or vice versa with single bit signaling. Preferably, the control signaling parameter is multi-purpose, providing a general indication that a known physical channel allocation should be established/maintained or released.
[0049] (b) Use of an UL periodic dedicated channel. The voice activity change indication can be sent from the UL periodic dedicated channel if no other channels are available. This indication is important when the WTRU
voice activity transits from off to on, which requires the WTRU to report. to the eNB as soon as possible, so that the eNB can quickly assign the UL resources to the WTRU for its UL voice service.
[0050] (c) Use of a synchronous RACH, where the voice activity change indication is sent on the synchronous RACH, which has a small access delay.
[0051] (2) L1 signaling for deactivation can be in associated signaling of the last data packet, for a predetermined (configured or specified) repetition pattern following the last data packet on a synchronous PRACH or UL
periodic dedicated channel, or with no UL data packet transmitted.
[0052] (3) L2/L3 signaling options include the following:
[0053] (a) Adding an indication in the MAC header, which could be a variant of other UL buffer occupancy signaling.
[0054] - (b) Adding an indication to be piggybacked with an UL L2 packet, which can be used if a piggybacked packet will not cause a long delay.
A short delay is important when the WTRU transits from the silent state to the active state, because it requires an immediate resource allocation from the eNB.
[0055] (c) Sending a new MAC control packet.
[0056] (d) Adding an indication within RLC status reports from the WTRU, with the same short delay requirement as using the piggyback feedback option.
[0057] (e) Adding an indication to existing RRC signaling, with the same short delay requirement as using the piggyback feedback option.
[0058] (f) Adding an indication to a scheduling information (SI) message or to a buffer size message.
[0059] Depending on its location (L1 or L2/L3), the one bit indicating the voice on-off status report is protected either by repetition coding or by a CRC
in order to minimize the probability of it being misinterpreted. Because if the status report is erroneously received, the eNB risks taking a wrong decision, e.g., allocating or de-allocating resources when it should have not. The WTRU
can detect if something erroneous has happened via a timer mechanism (e.g., it sent an indication that its voice state is active but never received an allocation) or via receiving an unexpected message (e.g., the WTRU receives a resource assignment message when its voice activity is silent, or it receives a resource de-allocation message when its voice activity is active). Upon detecting such an error, the WTRU can either re-send the voice activity status report or send another report to indicate that an error has occurred.
[0060] When the eNB detects the silent state from one WTRU, the resources for that WTRU can be allocated to other VoIP WTRUs, other services, or different WTRUs.
[0061] Two examples of ways to de-allocate a resource are described below:
[0062] (a) Upon signaling the silence indication, the WTRU can automatically (on its own) forfeit the resource, which can be efficient in the sense that the eNB can simply allocate the resource immediately to another WTRU.
[0063] (b) The WTRU does not forfeit the resource on its own, but rather waits to receive a resource de-allocation message from the eNB.
[0064] In the latter case, it is preferable to have a combined resource allocation message that can target more than one WTRU (e.g., two WTRUs).
The combined message informs one WTRU that its UL resource has been de-allocated and informs another WTRU that it has been allocated an UL
resource. This resource de-allocation signal is also used so that a misinterpreted UL activation/deactivation indication can be recognized and corrected by the WTRU.
[0065] In another method (not shown), the eNB can try to detect or predict voice activity in the UL, based on the DL voice activity for the user.
The rationale is that there is a negative correlation between UL voice activity and DL voice activity, since most of the time (but not always 100% of the time) one person is talking (e.g., DL voice is active) while the other person is listening (e.g., UL voice is inactive). The eNB can make use of DL voice activity information for a particular user for increasing or decreasing the UL
resources assigned, e.g., the eNB can analyze the voice activity in the DL and gradually increase or decrease the UL resources accordingly.

[0066] Figure 6 is a flow diagram of a method 600 for verifying a UL
voice activity report in connection with reassigning resources between a WTRU 602 and an eNB 604. It is noted that while Figure 6 shows only one WTRU, the principles of the method 600 apply to any number of WTRUs. The WTRU 602 detects an UL voice state transition between the active state and the silent state (step 610). The WTRU 602 notifies the eNB 604 of the voice state transition (step 612) and starts an internal timer (step 614).
[0067] The eNB 604 assigns radio resources from WTRUs that are in the silent state to WTRUs that are in the active state (step 616). The eNB 604 then signals the new radio resource assignments to the WTRU (step 618).
[0068] At the WTRU 602, a determination is made whether the timer has expired (step 620). If the timer has expired, then the WTRU 602 sends an error report to the eNB 604 or resends its voice status (step 622) and the method terminates (step 624). Sending an error report or resending the voice status is performed, as noted above, as a check whether the current voice state of the WTRU 602 was correctly reported.
[0069] At the eNB 604, a determination is made whether the WTRU 602 sent an error report (step 626). If the WTRU 602 sent an error report, the eNB
604 assigns the radio resource for the WTRU 602 to other services in the WTRU or to a different WTRU (step 628) and the method terminates (step 624). If the WTRU 602 did not send an error report (step 626), a check is made whether the voice status resent by the WTRU 602 is a transition from the active state to the inactive state (step 630). If the WTRU 602 has entered the inactive voice state, then the eNB 604 assigns the radio resource for the WTRU 602 to other services in the WTRU or to a different WTRU (step 628) and the method terminates (step 624). If the WTRU 602 has entered the active voice state (step 630), then the eNB 604 assigns radio resources to the WTRU 602 and the method terminates (step 624).
[0070] If the timer has not expired (step 620), then a check is made whether the WTRU 602 has received an unexpected message (step 634). If the WTRU 602 has received an unexpected message, then the WTRU 602 sends an error report to the eNB 604 or resends its voice status (step 622) and the method terminates (step 624).
[0071] If the WTRU 602 has not received an unexpected message (step 634), then a determination is made whether the WTRU 602 has received a new radio resource allocation from the eNB 604 (step 636). If the WTRU 602 has received a new radio resource allocation, then the method terminates (step 624). If the WTRU 602 has not received a new resource allocation (step 636), then this series of checks is repeated, starting from checking whether the timer has expired (step 620), as described above.

[0072] Pattern Variation of Allocated Radio Resources [0073] In accordance with a third embodiment of the present invention, the order of the radio resource block assignment varies instead of being fixed, regardless if WTRU grouping is used or not. Varying radio resource block assignment avoids assigning the same radio resource block to a specific WTRU
that may encounter an adverse bursty channel condition. For example in WTRU grouping, if there are users numbered from 1 to 10 and WTRUs 1, 3, 4, and 7 are in the bitmap, this means that WTRU 1 is always assigned to radio resource block X(assuming that the radio resource blocks are enumerated) and this assignment cannot adapt to channel variations.
[0074] In this embodiment, the radio resource block assignment is randomized for persistent voice users and even within the WTRU grouping.
The randomization can be dynamic or semi-static based on the system configuration, performance requirements, or measurement results. The eNB
decides which scheme to use. The proposed options are described as follows:
[0075] (1) Randomization of the radio resource block assignment can be realized by a pseudorandom function iterated by the radio resource block numbers or the frame numbers. Selection of the pseudorandom function is an implementation decision, because an "optimal" function is best selected based on simulation results, which in turn are based on network specifics and as such, will vary from network to network. The permutation of radio resource blocks can be configured to a predefined period. It is noted that the length of the predefined period depends on the buffer occupancy and the length of service that is expected. The parameters used in the pseudorandom function should also be configurable.
[0076] (2) Randomization of the radio resource block assignment can also be realized by applying frequency hopping with a known pattern.
Selection of the pattern is an implementation decision, because an "optimal"
pattern is best selected based on simulation results, which in turn are based on network specifics and as such, will vary from network to network. The frequency hopping pattern should be configurable and signaled to the WTRUs.
The frequency hopping can be configured to a predefined period.
[0077] (3) Based on the channel quality measured at the WTRU, the WTRU reports the preferred radio resource block in terms of the measurement results at the WTRU. Except for the channel quality indicator (CQI), the WTRU can report the preferred resource allocation to the eNB by indicating the radio resource block IDs. The eNB makes the final scheduling decision by considering the WTRU's recommendation and other factors, including, but not limited to, cell load condition, interference level, other WTRU's service requests, and service priorities, comprehensively.
[0078] In order to signal the dynamic or semi-static resource scheduling as described above, explicit signaling is preferable. Thus, the following methods are applied. In a first method, single bit signaling is replaced with multiple bit signaling in the bitmap per WTRU to achieve the randomness of resource allocation. In a second method, the number of signaling bits per WTRU can be variable. These signaling bits should at least signal the following information to the WTRUs within a group: (a) the voice silent/active state; (b) the resource block assignment if there is a change from the initial or previous allocation; and (c) if an asynchronous HARQ scheme is used, then the HARQ ID and the resource sequence number (RSN) need to be signaled if association of the HARQ process to the radio resource block changes.
[0079] It is further proposed that a dynamic switch occurs between the common and dedicated control channels. For example, the control information such as the RB assignment and the HARQ process information can be either in the common control channel or the dedicated control channel. This depends on the size of the information that is inside the common control channel. For example, if a large number of WTRUs are to be in one group (e.g., over one hundred), then there may be too much scheduling information contained inside the common control channel, which would exceed the control channel's capacity. The control information to indicate the switch is either signaled in the common control part or through RRC configuration.

[0080] Efficient and Flexible Voice User Multiplexing [0081] According to a fourth embodiment of the present invention, statistical multiplexing of voice users is performed according to the cell voice traffic volume. The number of voice users to be multiplexed should be greater than a threshold so that the VAF is a statistical average number. The number of voice users within a multiplexing group varies according to the traffic volume and the channel quality, so that the size of the bitmaps of different WTRU groups may be different. If the number of active voice users within one multiplexing group exceeds the available radio resources within one group at an instant in time, the eNB can schedule radio resources from other WTRU
groups that may not use their full allocated radio resources.

[0082] System To Check Voice State and Assign Radio Resources [0083] Figure 7 is a diagram of a system 700 constructed to check voice state activity and to assign radio resources. The system 700 includes a WTRU
702 and an eNB 704. The WTRU 702 includes a transmitter/receiver 710 and an antenna 712 connected to the transmitter/receiver 710. A voice state transition detector 714 communicates with the transmitter/receiver 710 and a timer 716. The timer 716 communicates with a timer expiration handler 718, which in turn communicates with the transmitter/receiver 710. A radio resource assignment receiver 720 communicates with the transmitter/receiver 710 and the timer 716. An unexpected message handler 722 communicates with the transmitter/receiver 710.

[0084] The eNB 704 includes a transmitter/receiver 730 and an antenna 732 connected to the transmitter/receiver 730. A voice state transition detector 734 communicates with the transmitter/receiver 730 and a radio resource assignment device 736, which in turn communicates with the transmitter/receiver 730. An error report handler communicates with the transmitter/receiver 730 and the radio resource assignment device 736.
[0085] In operation, the system 700 can perform the methods 400, 500, and 600 described above. In regard to the method 400, the voice state transition detector 734 in the eNB 704 detects when the WTRU 702 changes between the voice active state and the voice silent state. The voice state transition detector 734 informs the radio resource assignment device 736 of the voice state change, and the radio resource assignment device 736 assigns or reassigns radio resources as needed from WTRUs in the silent state to WTRUs in the active state. The new radio resource assignments are forwarded to the transmitter/receiver 730 which sends the new radio resource assignments to the WTRU 702.
[0086] In regard to the method 500, the voice state transition detector 714 in the WTRU 702 detects when the WTRU 702 changes between the voice active state and the voice silent state. The voice state is forwarded to the transmitter/receiver 710 which reports the voice state to the eNB 704. At the eNB 704, the transmitter/receiver 730 receives the voice state of the WTRU
702 and forwards it to the voice state transition detector 734. The voice state transition detector 734 informs the radio resource assignment device 736 of the voice state change, and the radio resource assignment device 736 assigns or reassigns radio resources as needed from WTRUs in the silent state to WTRUs in the active state. The new radio resource assignments are forwarded to the transmitter/receiver 730 which sends the new radio resource assignments to the WTRU 702.
[0087] In regard to the method 600, the voice state transition detector 714 in the WTRU 702 detects when the WTRU 702 changes between the voice active state and the voice silent state. The voice state is forwarded to the transmitter/receiver 710 which reports the voice state to the eNB 704. At the eNB 704, the transmitter/receiver 730 receives the voice state of the WTRU
702 and forwards it to the voice state transition detector 734. The voice state transition detector 734 informs the radio resource assignment device 736 of the voice state change, and the radio resource assignment device 736 assigns or reassigns radio resources as needed from WTRUs in the silent state to WTRUs in the active state. The new radio resource assignments are forwarded to the transmitter/receiver 730 which sends the new radio resource assignments to the WTRU 702.
[0088] The voice state transition detector 714 also informs the timer 716, which begins to run. If the timer 716 expires, the timer informs the timer expiration handler 718, which sends an error report or resends the voice status to the eNB 704 via the transmitter/receiver 710. If the eNB 704 receives an error report, it is passed from the transmitter/receiver 730 to the error report handler 738, which in turn informs the radio resource assignment device 736. The radio resource assignment device 736 assigns the radio resource to a different service in the same WTRU 702 or assigns the radio resource to a different WTRU. This new radio resource assignment is forwarded to the transmitter/receiver 730 which sends the new radio resource assignments to the WTRU 702.
[0089] If the eNB receives a resent voice status, it is forwarded to the voice state transition detector 734. If the resent voice status indicates that the WTRU 702 is in the silent state, the voice state transition detector 734 informs the radio resource assignment device 736. The radio resource assignment device 736 assigns the radio resource to a different service in the same WTRU 702 or assigns the radio resource to a different WTRU. This new radio resource assignment is forwarded to the transmitter/receiver 730 which sends the new radio resource assignments to the WTRU 702.
[0090] If the timer 716 has not expired and the WTRU 702 receives an unexpected message, the unexpected message handler 722 sends an error report or resends the voice status to the eNB 704 via the transmitter/receiver 710. The eNB handles the error report or the resent voice status as described above. If the timer 716 has not expired and the WTRU 702 receives a new radio resource allocation, the radio resource assignment receiver 720 informs the timer 716, which then stops.

[0091] The present invention may be implemented in any type of wireless communication system or network, as desired, particularly in the WTRU, base station, or eNB. By way of example, the present invention may be implemented in any type of IEEE 802 type system, wideband code division multiple access (WCDMA), universal mobile telecommunications system (UMTS)-frequency division duplex (FDD), UMTS-time division duplex (TDD), time division synchronous code division multiple access (TDSCDMA), orthogonal frequency division multiplexing (OFDM)-multiple input multiple output (MIMO), or any other type of wireless communication system. The present invention may also be implemented on a digital signal processor (DSP); software; hardware; an integrated circuit, such as an application specific integrated circuit (ASIC), multiple integrated circuits, logical programmable gate array (LPGA), multiple LPGAs, discrete components, or a combination of integrated circuit(s), LPGA(s), and discrete component(s). The present invention is preferably implemented at the physical layer (radio or digital baseband), data link layer, or network layer.
[0092] Although the features and elements of the present invention are described in the preferred embodiments in particular combinations, each feature or element can be used alone without the other features and elements of the preferred embodiments or in various combinations with or without other features and elements of the present invention. The methods or flow charts provided in the present invention may be implemented in a computer program, software, or firmware tangibly embodied in a computer-readable storage medium for execution by a general purpose computer or a processor.
Examples of computer-readable storage mediums include a read only memory (ROM), a random access memory (RAM), a register, cache memory, semiconductor memory devices, magnetic media such as internal hard disks and removable disks, magneto-optical media, and optical media such as CD-ROM disks, and digital versatile disks (DVDs).

[0093] Suitable processors include, by way of example, a general purpose processor, a special purpose processor, a conventional processor, a digital signal processor (DSP), a plurality of microprocessors, one or more microprocessors in association with a DSP core, a controller, a microcontroller, Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs) circuits, any other type of integrated circuit (IC), and/or a state machine.
[0094] A processor in association with software may be used to implement a radio frequency transceiver for use in a wireless transmit receive unit (WTRU), user equipment (UE), terminal, base station, radio network controller (RNC), or any host computer. The WTRU may be used in conjunction with modules, implemented in hardware and/or software, such as a camera, a video camera module, a videophone, a speakerphone, a vibration device, a speaker, a microphone, a television transceiver, a hands free headset, a keyboard, a Bluetooth module, a frequency modulated (FM) radio unit, a liquid crystal display (LCD) display unit, an organic light-emitting diode (OLED) display unit, a digital music player, a media player, a video game player module, an Internet browser, and/or any wireless local area network (WLAN) module.

[0095] Embodiments [0096] 1. A method for signaling grouping information to a group of wireless transmit/receive units (WTRUs).
[0097] 2. The method according to embodiment 1, wherein the method includes the steps of assigning radio resources to the group and signaling the radio resources to the WTRUs in the group over a common control channel including the radio bearer assignment.
[0098] 3. The method according to embodiment 2, wherein the signaling step further includes signaling the WTRU identifier.
[0099] 4. The method according to embodiments 2 or 3, wherein the signaling step further includes signaling hybrid automatic repeat request information.

[0100] 5. The method according to embodiment 1, wherein the method includes the . steps of assigning radio resources to the group and signaling the radio resources to the WTRUs in the group by sending a radio resource control configuration message including a location of a resource assignment bitmap, a radio bearer assignment, and hybrid automatic repeat request information.
[0101] 6. The method according to embodiment 5, wherein the configuration message further includes a position of a particular WTRU in the resource assignment bitmap, whereby the WTRU knows where in the bitmap to look for its resource assignment.
[0102] 7. The method according to embodiments 5 or 6, wherein the configuration message further includes transmission time interval information, whereby the WTRU knows when to read the resource assignment information.
[0103] 8. A method for assigning resources in a wireless communication system based on a downlink voice activity report.
[0104] 9. The method according to embodiment 8, wherein the method includes the steps of detecting a voice state transition of a wireless transmit/receive unit (WTRU) by a Node B, assigning radio resources by the Node B from a WTRU in a silent voice state to a WTRU in an active voice state, and signaling the new radio resource assignments from the Node B to all WTRUs in communication with the Node B.
[0105] 10. The method according to embodiment 9, wherein the Node B is an'evolved universal terrestrial radio access Node B.
[0106] 11. The method according to embodiments 9 or 10, wherein the Node B predicts an uplink voice activity level of the WTRU based on the downlink voice activity of the WTRU.
[0107] 12. The method according to one of embodiments 9-11, wherein the Node B adjusts the radio resources allocated to the WTRU based on the predicted uplink voice activity level.
[0108] 13. A method for assigning resources in a wireless communication system based on an uplink voice activity report.

[0109] 14. The method according to embodiment 13, wherein the method includes the steps of detecting a voice state transition at a wireless transmit/receive unit (WTRU), reporting the voice state from the WTRU to a Node B, assigning radio resources by the Node B from a WTRU in a silent voice state to a WTRU in an active voice state, and signaling the new radio resource assignment from the Node B to the WTRU in the active voice state.
[0110] 15. The method according to embodiment 14, wherein the Node B is an evolved universal terrestrial radio access Node B.
[0111] 16. The method according to embodiments 14 or 15, wherein the reporting step includes sending a status report from the WTRU to the Node B.
[0112] 17. The method according to embodiment 16, wherein the status report includes one bit to indicate the voice state of the WTRU.
[0113] 18. The method according to embodiments 16 or 17, wherein the status report is sent from the WTRU to the Node B by physical control signaling.
[0114] 19. The method according to embodiments 16 or 17, wherein the status report is sent from the WTRU to the Node B over an uplink periodic dedicated channel.
[0115] 20. The method according to embodiment 19, wherein the uplink periodic dedicated channel is used if no other channels are available.
[0116] 21. The method according to embodiments 16 or 17, wherein the status report is sent from the WTRU to the Node B over a synchronous random access channel.
[0117] 22. The method according to embodiments 16 or 17, wherein the status report is sent from the WTRU to the Node B with the last data packet sent from the WTRU to the Node B.
[0118] 23. The method according to embodiments 16 or 17, wherein the status report is sent from the WTRU to the Node B as part of a medium access control header.

[0119] 24. The method according to embodiments 16 or 17, wherein the status report is sent from the WTRU to the Node B piggybacked with another uplink Layer 2 packet.
[0120] 25. The method according to embodiments 16 or 17, wherein the status report is sent from the WTRU to the Node B in a medium access control packet.
[0121] 26. The method according to embodiments 16 or 17, wherein the status report is sent from the WTRU to the Node B as part of a radio link control status report.
[0122] 27. The method according to embodiments 16 or 17, wherein the status report is sent from the WTRU to the Node B using radio resource control signaling.
[0123] 28. The method according to embodiments 16 or 17, wherein the status report is sent from the WTRU to the Node B as part of a scheduling information message.
[0124] 29. The method according to embodiments 16 or 17, wherein the status report is sent from the WTRU to the Node B as part of a buffer size message.
[0125] 30. The method according to one of embodiments 16-29, wherein the status report is protected by using repetition coding, wherein a possibility of misinterpreting the status report is reduced.
[0126] 31. The method according to one of embodiments 16-29, wherein the status report is protected by using a cyclic redundancy check, wherein a possibility of misinterpreting the status report is reduced.
[0127] 32. The method according to embodiment 14, wherein the assigning step includes the WTRU automatically forfeiting the radio resource when the WTRU sends an indication that it is in the silent state.
[0128] 33. The method according to embodiment 14, wherein the assigning step includes the Node B sending a resource de-allocation message to the WTRU, instructing the WTRU to release the radio resource.

[0129] 34. The method according to embodiment 33, wherein the de-allocation message further includes an allocation message to a second WTRU, the second WTRU being allocated the radio resource released by the WTRU.
[0130] 35. The method according to embodiment 14, further comprising the step of verifying the voice state report.
[0131] 36. The method according to embodiment 35, wherein the verifying step includes the steps of starting a timer at the WTRU after sending the voice state report to the Node B, determining whether an unexpected message was received at the WTRU before the timer expires, and if an unexpected message was not received then determining whether a new resource allocation was received at the WTRU before the timer expires.
[0132] 37. The method according to embodiment 36, wherein if the timer expires, the WTRU sends an error report to the Node B and the method at the WTRU terminates.
[0133] 38. The method according to embodiment 37, wherein upon receipt of the error report, the Node B assigns the radio resource to a different service in the WTRU.
[0134] 39. The method according to embodiment 37, wherein upon receipt of the error report, the Node B assigns the radio resource to a different WTRU.
[0135] 40. The method according to embodiment 36, wherein if the timer expires, the WTRU resends the voice status report to the Node B and the method terminates at the WTRU.
[0136] 41. The method according to embodiment 40, wherein if the WTRU is entering the silent voice state, the Node B assigns the radio resource to a different service in the WTRU.
[0137] 42. The method according to embodiment 40, wherein if the WTRU is entering the silent voice state, the Node B assigns the radio resource to a different WTRU.
[0138] 43. The method according to embodiment 40, wherein if the WTRU is entering the active voice state, the Node B assigns radio resources to the WTRU.

[0139] 44. The method according to embodiment 36, wherein if the WTRU receives an unexpected message, the WTRU sends an error report to the Node B and the method terminates at the WTRU.
[0140] 45. The method according to embodiment 44, wherein upon receipt of the error report, the Node B assigns the radio resource to a different service in the WTRU.
[0141] 46. The method according to embodiment 44, wherein upon receipt of the error report, the Node B assigns the radio resource to a different WTRU.
[0142] 47. The method according to embodiment 36, wherein if the WTRU receives an unexpected message, the WTRU resends the voice`status report to the Node B and the method terminates at the WTRU.
[0143] 48. A method for assigning radio resources to a group of wireless transmit/receive units (WTRUs).
[0144] 49. The method according to embodiment 48, wherein the method includes the steps of grouping a plurality of WTRUs; assigning radio resources to the group of WTRUs; randomizing a radio resource block assignment, whereby the radio resource block assignment is varied; and signaling the radio resource block assignment to the WTRUs in the group.
[0145] 50. The method according to embodiment 49, wherein the randomizing step includes using a pseudorandom function.
[0146] 51. The method according to embodiment 50, wherein the pseudorandom function is iterated by a radio resource block number.
[0147] 52. The method according to embodiment 50, wherein the pseudorandom function is iterated by a frame number.
[0148] 53. The method according to embodiment 49, wherein the randomizing step includes using frequency hopping with a known pattern.
[0149] 54. The method according to embodiment 49, wherein the randomizing step includes the steps of measuring a channel quality at the WTRU, selecting a preferred radio resource block at the WTRU based on the measured channel quality, reporting the preferred radio resource block from the WTRU to the Node B, and analyzing the preferred radio resource block by the Node B.
[0150] 55. The method according to embodiment 54, wherein the analyzing step includes considering at least one additional factor selected from the group consisting of: cell load condition, interference level, service requests from other WTRUs, and service priorities.
[0151] 56. The method according to embodiment 49, wherein the signaling step includes using multiple bit signaling.
[0152] 57. The method according to embodiment 56, wherein the multiple bit signaling includes information relating to the voice state of the WTRU and the radio resource block assignment.
[0153] 58. The method according to embodiments 56 or 57, wherein the multiple bit signaling includes information relating to a hybrid automatic repeat request identifier.
[0154] 59. The method according to embodiment 49, wherein the signaling step includes using a common control channel.
[0155] 60. The method according to embodiment 49, wherein the signaling step includes using a dedicated control channel.
[0156] 61. A method for voice user multiplexing in a wireless communication system.
[0157] 62. The method according to embodiment 61, wherein the method includes the steps of assigning a plurality of voice users to a group and multiplexing the voice users in the group such that a voice activity factor for the group is a statistical average number.
[0158] 63. The method according to embodiment 62, wherein the multiplexing step includes performing a statistical multiplexing based on voice traffic volume in a cell.
[0159] 64. The method according to embodiment 62, wherein a number of users to be multiplexed is based on a threshold to achieve a desired voice activity factor.
[0160] 65. The method according to embodiment 62, wherein a number of users to be multiplexed is based on voice traffic volume.

[0161] 66. The method according to embodiment 62, wherein a number of users to be multiplexed is based on channel quality.
[0162] 67. The method according to embodiment 62, further comprising the step of scheduling radio resources from a different group if a number of active voice users in a group exceeds the radio resources available to the group.
[0163] 68. A wireless transmit/receive unit (WTRU) for use in a wireless communication system includes a transmitter/receiver; an antenna connected to the transmitter/receiver; a voice state transition detector in communication with the transmitter/receiver, the voice state transition detector configured to detect when the WTRU transitions between a voice active state and a voice silent state and to report the current voice state of the WTRU to a Node B with which the WTRU communicates; a radio resource assignment receiver in communication with the transmitter/receiver, the radio resource assignment receiver configured to receive radio resource assignment information; a timer in communication with the voice state transition detector and the radio resource assignment receiver, the timer configured to count a predetermined period of time after the WTRU changes voice states; a timer exception handler in communication with the timer and the transmitter/receiver, the timer exception handler configured to perform an action when the timer expires; and an unexpected message handler in communication with the transmitter/receiver, the unexpected message handler configured to perform an action if the WTRU receives an unexpected message after the timer has been started.
[0164] 69. The WTRU according to embodiment 68, wherein the timer exception handler is configured to send an error report to the Node B
after the timer expires.
[0165] 70. The WTRU according to embodiment 68, wherein the timer exception handler is configured to resend the voice state of the WTRU to the Node B after the timer expires.
[0166] 71. The WTRU according to one of embodiments 68-70, wherein the unexpected message handler is configured to send an error report to the Node B if an unexpected message is received after the timer has been started.
[0167] 72. The WTRU according to one of embodiments 68-70, wherein the unexpected message handler is configured to resend the voice state of the WTRU to the Node B if an unexpected message is received after the timer has been started.
[0168] 73. A Node B for use in a wireless communication system includes a transmitter/receiver; an antenna connected to the transmitter/receiver; a voice state transition detector in communication with the transmitter/receiver, the voice state transition detector configured to detect when a wireless transmit/receive unit (WTRU) in communication with the Node B transitions between a voice active state and a voice silent state;
a radio resource assignment device in communication with the transmitter/receiver and the voice state transition detector, the radio resource assignment device configured to assign radio resources based on a current voice state of the WTRU; and an error report handler in communication with the transmitter/receiver and the radio resource assignment device, the error report handler configured to handle an error received by the Node B from the WTRU.
[0169] - 74. The Node B according to embodiment 73 wherein the radio resource assignment device is further configured to assign radio resources based on a received error report.
[0170] 75. The Node B according to embodiments 73 or 74, wherein the radio resource assignment device is configured to assign radio resources from a WTRU in the voice silent state to a WTRU in the voice active state.
[0171] 76. The Node B according to one of embodiments 73-75, wherein the radio resource assignment device is configured to assign radio resources to a different service in the same WTRU.
[0172] 77. The Node B according to one of embodiments 73-75, wherein the radio resource assignment device is configured to assign radio resources to a different WTRU.

[0173] 78. The Node B according to one of embodiments 73-77, wherein the error report handler is configured to inform the radio resource assignment device of the received error report.
* * *

Claims (74)

1. A method for signaling grouping information to a group of wireless transmit/receive units (WTRUs), comprising:
assigning radio resources to the group; and, signaling the radio resource assignment to the WTRUs in the group over a common control channel including the radio bearer assignment.
2. The method according to claim 1, wherein the signaling further includes signaling a WTRU identifier.
3. The method according to claim 1, wherein the signaling further includes signaling hybrid automatic repeat request information.
4. The method according to claim 1, wherein the signaling further includes signaling a WTRU identifier and hybrid automatic repeat request information.
5. A method for signaling grouping information to a group of wireless transmit/receive units (WTRUs), comprising:
assigning radio resources to the group; and signaling the radio resource assignment to the WTRUs in the group by sending a radio resource control configuration message including a resource assignment bitmap, a radio bearer assignment, and hybrid automatic repeat request information.
6. The method according to claim 5, wherein the configuration message further includes a position of a particular WTRU in the resource assignment bitmap, whereby the WTRU knows where in the bitmap to look for its resource assignment.
7. The method according to claim 5, wherein the configuration message further includes transmission time interval information, whereby the WTRU knows when to read the resource assignment information.
8. A method for assigning resources in a wireless communication system based on a downlink voice activity report, comprising:
detecting a voice state transition of a wireless transmit/receive unit (WTRU);
assigning radio resources by a Node B from a WTRU in a silent voice state to a WTRU in an active voice state;
signaling the new radio resource. assignments from the Node B to all WTRUs in communication with the Node B.
9. The method according to claim 8, wherein the Node B is an evolved universal terrestrial radio access Node B.
10. The method according to claim 8, wherein the Node B predicts an uplink voice activity level of the WTRU based on the downlink voice activity of the WTRU.
11. The method according to claim 10, wherein the Node B adjusts the radio resources allocated to the WTRU based on the predicted uplink voice activity level.
12. A method for assigning resources in a wireless communication system based on an uplink voice activity report, comprising:.
detecting a voice state transition of a wireless transmit/receive unit (WTRU);
receiving a voice state report from the WTRU at a Node B;
assigning radio resources by the Node B from a WTRU in a silent voice state to a WTRU in an active voice state;

signaling the new radio resource assignment from the Node B to the WTRU in the active voice state.
13. The method according to claim 12, wherein the Node B is an evolved universal terrestrial radio access Node B.
14. The method according to claim 12, wherein the receiving includes receiving a status report from the WTRU at the Node B.
15. The method according to claim 14, wherein the status report includes one bit to indicate the voice state of the WTRU.
16. The method according to claim 14, wherein the status report is sent from the WTRU to the Node B by physical control signaling.
17. The method according to claim 14, wherein the status report is received at the Node B over an uplink periodic dedicated channel.
18. The method according to claim 17, wherein the uplink periodic dedicated channel is used if no other channels are available.
19. The method according to claim 14, wherein the status report is received at the Node B over a synchronous random access channel.
20. The method according to claim 14, wherein the status report is received at the Node B with the last data packet sent from the WTRU to the Node B.
21. The method according to claim 14, wherein the status report is received at the Node B as part of a medium access control header.
22. The method according to claim 14, wherein the status report is received at the Node B piggybacked with another uplink Layer 2 packet.
23. The method according to claim 14, wherein the status report is received at the Node B in a medium access control packet.
24. The method according to claim 14, wherein the status report is received at the Node B as part of a radio link control status report.
25. The method according to claim 14, wherein the status report is received at the Node B using radio resource control signaling.
26. The method according to claim 14, wherein the status report is received at the Node B as part of a scheduling information message.
27. The method according to claim 14, wherein the status report is received at the Node B as part of a buffer size message.
28. The method according to claim 14, wherein the status report is protected by using repetition coding, wherein a possibility of misinterpreting the status report is reduced.
29. The method according to claim 14, wherein the status report is protected by using a cyclic redundancy check, wherein a possibility of misinterpreting the status report is reduced.
30. The method according to claim 12, wherein the assigning includes the WTRU automatically forfeiting the radio resource when the WTRU indicates that it is in the silent state.
31. The method according to claim 12, wherein the assigning includes the Node B sending a resource de-allocation message to the WTRU, instructing the WTRU to release the radio resource.
32. The method according to claim 31, wherein the de-allocation message further includes an allocation message to a second WTRU, the second WTRU being allocated the radio resource released by the WTRU.
33. The method according to claim 12, further comprising verifying the voice state report.
34. The method according to claim 33, wherein the verifying includes:
starting a timer after receiving the voice state report at the Node B;
determining whether an unexpected message was received at the WTRU before the timer expires; and if an unexpected message was not received then determining whether a new resource allocation was received at the WTRU before the timer expires.
35. The method according to claim 34, wherein if the timer expires, an error report is received at the Node B.
36. The method according to claim 35, wherein upon receipt of the error report, the Node B assigns the radio resource to a different service in the WTRU.
37. The method according to claim 35, wherein upon receipt of the error report, the Node B assigns the radio resource to a different WTRU.
38. (Canceled)
39. The method according to claim 34, wherein if the timer expires and the WTRU is entering the silent voice state, the Node B assigns the radio resource to a different service in the WTRU.
40. The method according to claim 34, wherein if the timer expires and the WTRU is entering the silent voice state; the Node B assigns the radio resource to a different WTRU.
41. The method according to claim 34, wherein if the timer expires and the WTRU is entering the active voice state, the Node B assigns radio resources to the WTRU.
42. The method according to claim 34, wherein if the WTRU receives an unexpected message, an error report is received at the Node B.
43. The method according to claim 42, wherein upon receipt of the error report, the Node B assigns the radio resource to a different service in the WTRU.
44. The method according to claim 42, wherein upon receipt of the error report, the Node B assigns the radio resource to a different WTRU.
45. (Canceled)
46. A method for assigning radio resources to a group of wireless transmit/receive units (WTRUs), comprising:
grouping a plurality of WTRUs;
assigning radio resources to the group of WTRUs;

randomizing a radio resource block assignment, whereby the radio resource block assignment is varied, thereby avoiding assigning the same radio resource block to one of the group of WTRUs; and signaling the radio resource block assignment to the WTRUs in the group.
47. The method according to claim 46, wherein the randomizing includes using a pseudorandom function.
48. The method according to claim 47, wherein the pseudorandom function is iterated by a radio resource block number.
49. The method according to claim 47, wherein the pseudorandom function is iterated by a frame number.
50. The method according to claim 46, wherein the randomizing includes using frequency hopping with a known pattern.
51. The method according to claim 46, wherein the randomizing includes:
measuring a channel quality;
selecting a preferred radio resource block based on the measured channel quality;
receiving a report of the preferred radio resource block at the Node B;
and analyzing the preferred radio resource block.
52. The method according to claim 51, wherein the analyzing includes considering at least one additional factor of: cell load condition, interference level, service requests from other WTRUs, or service priorities.
53. The method according to claim 46, wherein the signaling includes using multiple bit signaling.
54. The method according to claim 53, wherein the multiple bit signaling includes information relating to the voice state of the WTRU and the radio resource block assignment.
55. The method according to claim 54, wherein the multiple bit signaling further includes information relating to a hybrid automatic repeat request identifier.
56. The method according to claim 46, wherein the signaling includes using a common control channel.
57. The method according to claim 46, wherein the signaling includes using a dedicated control channel.
58. A method for voice user multiplexing in a wireless communication system, comprising:
assigning a plurality of voice users to a group; and multiplexing the voice users in the group such that a voice activity factor for the group is a statistical average number.
59. The method according to claim 58, wherein the multiplexing includes performing a statistical multiplexing based on voice traffic volume in a cell.
60. The method according to claim 58, wherein a number of users to be multiplexed is based on a threshold to achieve a desired voice activity factor.
61. The method according to claim 58, wherein a number of users to be multiplexed is based on voice traffic volume.
62. The method according to claim 58, wherein a number of users to be multiplexed is based on channel quality.
63. The method according to claim 58, further comprising:
scheduling radio resources from a different group if a number of active voice users in a group exceeds the radio resources available to the group.
64. A wireless transmit/receive unit (WTRU), comprising:
a transmitter/receiver;
an antenna connected to said transmitter/receiver:
a voice state transition detector in communication with said transmitter/receiver, said voice state transition detector configured to detect when the WTRU transitions between a voice active state and a voice silent state and to report the current Voice state of the WTRU to a Node B with which the WTRU communicates;
a radio resource assignment receiver in communication with said transmitter/receiver, said radio resource assignment receiver configured to receive radio resource assignment information;
a timer in communication with said voice state transition detector and said radio resource assignment receiver, said timer configured to count a predetermined period of time after the WTRU changes voice states;
a timer exception handler in communication with said timer and said transmitter/receiver, said timer exception handler configured to perform an action when said timer expires; and an unexpected message handler in communication with said transmitter/receiver, said unexpected message handler configured to perform an action if the WTRU receives an unexpected message after said timer has been started.
65. The WTRU according to claim 64, wherein said timer exception handler is configured to send an error report to the Node B after the timer expires.
66. The WTRU according to claim 64, wherein said timer exception handler is configured to resend the voice state of the WTRU to the Node B
after the timer expires.
67. The WTRU according to claim 64, wherein said unexpected message handler is configured to send an error report to the Node B if an unexpected message is received after said timer has been started.
68. The WTRU according to claim 64, wherein said unexpected message handler is configured to resend the voice state of the WTRU to the Node B if an unexpected message is received after said timer has been started.
69. A Node B, comprising:
a transmitter/receiver;
an antenna connected to said transmitter/receiver;
a voice state transition detector in communication with said transmitter/receiver, said voice state transition detector configured to detect when a wireless transmit/receive unit (WTRU) in communication with the Node B transitions between a voice active state and a voice silent state;
a radio resource assignment device in communication with said transmitter/receiver and said voice state transition detector, said radio resource assignment device configured to assign radio resources based on a current voice state of the WTRU; and an error report handler in communication with said transmitter/receiver and said radio resource assignment device, said error report handler configured to handle an error received by the Node B from the WTRU.
70. The Node B according to claim 69, wherein said radio resource assignment device is further configured to assign radio resources based on a received error report.
71. The Node B according to claim 69, wherein said radio resource assignment device is configured to assign radio resources from a WTRU in the voice silent state to a WTRU in the voice active state.
72. The Node B according to claim 69, wherein said radio resource assignment device is configured to assign radio resources to a different service in the same WTRU.
73. The Node B according to claim 69, wherein said radio resource assignment device is configured to assign radio resources to a different WTRU.
74. The Node B according to claim 69, wherein said error report handler is configured to inform said radio, resource assignment device of the received error report.
CA002669560A 2006-08-21 2007-08-17 Resource allocation, scheduling, and signaling for grouping real time services Abandoned CA2669560A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US83902206P 2006-08-21 2006-08-21
US60/839,022 2006-08-21
PCT/US2007/018279 WO2008024283A2 (en) 2006-08-21 2007-08-17 Resource allocation, scheduling, and signaling for grouping real time services

Publications (1)

Publication Number Publication Date
CA2669560A1 true CA2669560A1 (en) 2008-02-28

Family

ID=39092742

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002669560A Abandoned CA2669560A1 (en) 2006-08-21 2007-08-17 Resource allocation, scheduling, and signaling for grouping real time services

Country Status (14)

Country Link
US (4) US8165594B2 (en)
EP (1) EP2070372A2 (en)
JP (1) JP2010502103A (en)
KR (2) KR20090057395A (en)
CN (1) CN101507302A (en)
AR (1) AR062457A1 (en)
AU (1) AU2007288318A1 (en)
BR (1) BRPI0714627A2 (en)
CA (1) CA2669560A1 (en)
IL (1) IL197028A0 (en)
MX (1) MX2009001972A (en)
RU (1) RU2009110150A (en)
TW (1) TW200814693A (en)
WO (1) WO2008024283A2 (en)

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070242653A1 (en) * 2006-04-13 2007-10-18 Futurewei Technologies, Inc. Method and apparatus for sharing radio resources in an ofdma-based communication system
KR101424258B1 (en) 2006-08-23 2014-08-13 엘지전자 주식회사 Method for performing random access procedure in wirelss communication system
US20080056187A1 (en) * 2006-08-31 2008-03-06 Futurewei Technologies, Inc. System For Grouping Users To Share Time-Frequency Resources In A Wireless Communication System
US8259773B2 (en) * 2006-10-31 2012-09-04 Alcatel Lucent Method and apparatus for multiplexing code division multiple access and single carrier frequency division multiple access transmissions
US8411709B1 (en) * 2006-11-27 2013-04-02 Marvell International Ltd. Use of previously buffered state information to decode in an hybrid automatic repeat request (H-ARQ) transmission mode
KR101796712B1 (en) * 2007-02-02 2017-11-10 미쓰비시덴키 가부시키가이샤 Communication method, base station, mobile communication system and mobile station
US20080228878A1 (en) * 2007-03-15 2008-09-18 Tao Wu Signaling Support for Grouping Data and Voice Users to Share the Radio Resources in Wireless Systems
KR20080084533A (en) 2007-03-16 2008-09-19 엘지전자 주식회사 A method of data communication in mobile communication system
KR101397048B1 (en) * 2007-03-21 2014-05-20 엘지전자 주식회사 Method of transmitting data in a wireless communication system
KR101364926B1 (en) * 2007-03-23 2014-02-21 삼성전자주식회사 Method and apparatus for scheduling in mobile communication system
US20080253326A1 (en) * 2007-04-13 2008-10-16 Qualcomm Incorporated Synchronous adaptive harq
US8064390B2 (en) 2007-04-27 2011-11-22 Research In Motion Limited Uplink scheduling and resource allocation with fast indication
US20080267168A1 (en) * 2007-04-27 2008-10-30 Zhijun Cai Slow Adaptation of Modulation and Coding for Packet Transmission
US9137821B2 (en) 2007-05-02 2015-09-15 Qualcomm Incorporated Flexible signaling of resources on a control channel
KR101476190B1 (en) * 2007-05-10 2014-12-24 엘지전자 주식회사 Methods of performing data communication in wireless communication system
WO2008151411A1 (en) * 2007-06-15 2008-12-18 Research In Motion Limited System and method for large packet delivery during semi persistently allocated session
EP2479933B1 (en) 2007-06-15 2013-08-28 Research In Motion Limited Semi-persistent and dynamic scheduling and discontinuous reception control
WO2008151409A1 (en) * 2007-06-15 2008-12-18 Research In Motion Limited System and method for link adaptation overhead reduction
US7873011B2 (en) * 2007-08-08 2011-01-18 Nokia Corporation Apparatus, method and computer program product for bi-directional resource allocation to decrease signaling for retransmissions
WO2009021314A1 (en) * 2007-08-14 2009-02-19 Research In Motion Limited System and method for handling of large ip packets during voip session
WO2009026285A2 (en) * 2007-08-20 2009-02-26 Research In Motion Limited System and method for retransmissions in a discontinuous reception configured system
US7944927B2 (en) * 2007-09-14 2011-05-17 Intel Corporation Efficient use of persistent scheduling with OFDMA wireless communications
US8059632B2 (en) * 2007-09-14 2011-11-15 Sharp Laboratories Of America, Inc. Method and system for transmission of channel quality indicators (CQIs) by mobile devices in a wireless communications network
EP2632210A1 (en) * 2007-09-14 2013-08-28 Research In Motion Limited System and method for discontinuous reception control start time
US8717979B2 (en) * 2007-10-25 2014-05-06 Telefonaktiebolaget Lm Ericsson (Publ) Multiplexing multiple unsolicited grant service (UGS) users onto a same radio resource
US8542725B1 (en) 2007-11-14 2013-09-24 Marvell International Ltd. Decision feedback equalization for signals having unequally distributed patterns
US20090135807A1 (en) * 2007-11-27 2009-05-28 Shweta Shrivastava Persistent scheduling of harq retransmissions
EP2225910A4 (en) * 2007-12-29 2012-10-03 Alcatel Lucent Persistent scheduling method and apparatus based on semi-grouping and statistically multiplexing
KR100925441B1 (en) * 2008-01-07 2009-11-06 엘지전자 주식회사 A method for scheduling of distributed virtual resource blocks
KR100913099B1 (en) * 2008-01-07 2009-08-21 엘지전자 주식회사 A method for scheduling of distributed virtual resource blocks
KR100904433B1 (en) * 2008-01-07 2009-06-24 엘지전자 주식회사 A method for scheduling of distributed virtual resource blocks
US8331284B2 (en) * 2008-03-03 2012-12-11 Qualcomm Incorporated Method of assigning traffic resources to one or more access terminals
US8565325B1 (en) 2008-03-18 2013-10-22 Marvell International Ltd. Wireless device communication in the 60GHz band
WO2009133493A1 (en) * 2008-04-30 2009-11-05 Koninklijke Philips Electronics N.V. A method for communicating in a network and radio stations therefor
TWI395976B (en) * 2008-06-13 2013-05-11 Teco Image Sys Co Ltd Light projection device of scanner module and light arrangement method thereof
JP5309708B2 (en) * 2008-06-16 2013-10-09 富士通株式会社 Mobile station and data transmission method
EP2139179A1 (en) * 2008-06-26 2009-12-30 THOMSON Licensing Method and apparatus for reporting state information
US8737383B2 (en) * 2008-07-07 2014-05-27 Intel Corporation Techniques for enhanced persistent scheduling with efficient link adaptation capability
US8498342B1 (en) 2008-07-29 2013-07-30 Marvell International Ltd. Deblocking filtering
US8345533B1 (en) 2008-08-18 2013-01-01 Marvell International Ltd. Frame synchronization techniques
US8249010B2 (en) 2008-11-05 2012-08-21 Huawei Technologies Co., Ltd. Method and apparatus for feeding back and receiving acknowledgement information of semi-persistent scheduling data packets
CN101499882B (en) * 2008-11-05 2011-05-04 华为技术有限公司 Semi-static scheduling data packet response information feedback, receiving method and apparatus thereof
US8948208B2 (en) 2008-11-07 2015-02-03 Qualcomm Incorporated Conveying information through phase offset on PSS relative to DL-RS
KR100956828B1 (en) * 2008-11-13 2010-05-11 엘지전자 주식회사 A method and apparatus for indicating deactivation of semi-persistent scheduling
US20120106466A1 (en) * 2008-12-16 2012-05-03 Nokia Corporation System and method to avoid downlink control channel coverage limitation in a communication system
KR101542408B1 (en) 2009-03-23 2015-08-06 엘지전자 주식회사 METHOD FOR controlling access of terminal to Home eNodeB
KR101569031B1 (en) 2009-03-23 2015-11-13 엘지전자 주식회사 METHOD FOR controlling access of terminal to Home eNodeB
US8520771B1 (en) 2009-04-29 2013-08-27 Marvell International Ltd. WCDMA modulation
CN101882946A (en) * 2009-05-08 2010-11-10 三星电子株式会社 Frequency-hopping method in GERAN (GSM EDGE Radio Access Network)/VAMOS (Voice services over Adaptive Multi-user channelson One Slot) system
US8599768B2 (en) * 2009-08-24 2013-12-03 Intel Corporation Distributing group size indications to mobile stations
US8995365B2 (en) 2009-08-25 2015-03-31 Interdigital Patent Holdings, Inc. Method and apparatus for managing group communications
US8327189B1 (en) 2009-12-22 2012-12-04 Emc Corporation Diagnosing an incident on a computer system using a diagnostics analyzer database
EP3694247A1 (en) * 2010-04-02 2020-08-12 Interdigital Patent Holdings, Inc. Method and apparatus for supporting communication via a relay node
US8817771B1 (en) 2010-07-16 2014-08-26 Marvell International Ltd. Method and apparatus for detecting a boundary of a data frame in a communication network
KR101443061B1 (en) * 2010-11-12 2014-09-26 한국전자통신연구원 Adhoc multimedia group communication terminal robust packet loss and operating method thereof
CN102076015A (en) * 2010-11-16 2011-05-25 上海华为技术有限公司 Method and device for controlling voice activity factor
US9143901B2 (en) * 2011-05-27 2015-09-22 Qualcomm Incorporated Group ID and QOS group identification for stream multiplexing in multicast and broadcast systems
CN102523574B (en) * 2011-12-13 2015-03-18 华为终端有限公司 LTE (long term evolution) single-card double-standby multi-mode terminal and CS (circuit switched) service and PS (packet switched) service concurrent processing method thereof
CN103313417A (en) * 2012-03-16 2013-09-18 北京新岸线移动多媒体技术有限公司 Resource scheduling method, device and system
CN103458386B (en) * 2012-05-29 2016-12-14 华为技术有限公司 A kind of method and device of data transmission
CN107809307B (en) * 2012-09-18 2023-11-28 北京璟石知识产权管理有限公司 Communication method, terminal and transmission point
US9301306B2 (en) * 2013-05-28 2016-03-29 Honeywell International Inc. Self-organizing OFDMA system for broadband communication
KR102039382B1 (en) 2013-07-31 2019-11-04 삼성전자 주식회사 Method for discovering WLAN and apparatus thereof
WO2015018044A1 (en) * 2013-08-08 2015-02-12 Telefonaktiebolaget L M Ericsson (Publ) Methods and devices for random access
CN105024846A (en) * 2014-04-30 2015-11-04 中兴通讯股份有限公司 Heterogeneous network management method and system, and network element management and network management systems
US9014147B1 (en) * 2014-05-27 2015-04-21 Bandwidth.Com, Inc. Techniques for establishing a communication handoff threshold using user feedback
CN110740028B (en) 2014-08-07 2021-12-28 Lg电子株式会社 Method for determining transmission resource block pool of terminal in D2D communication and device thereof
US10772087B2 (en) * 2015-11-14 2020-09-08 Qualcomm Incorporated Physical layer signaling techniques in wireless communications systems
JP6775163B2 (en) * 2015-12-11 2020-10-28 パナソニックIpマネジメント株式会社 Wireless base stations, wireless terminals, wireless communication systems and audio signal communication methods
EP3182778B1 (en) * 2015-12-18 2019-10-16 Deutsche Telekom AG Scheduling method, system and base station for mobile networks with bursty traffic
US10678596B2 (en) 2016-02-24 2020-06-09 Alibaba Group Holding Limited User behavior-based dynamic resource capacity adjustment
KR102333510B1 (en) 2016-03-30 2021-12-01 아이디에이씨 홀딩스, 인크. Standalone L2 processing and control architecture of 5G flexible RAT system
KR102277760B1 (en) 2016-03-30 2021-07-19 아이디에이씨 홀딩스, 인크. Handling user plane in wireless systems
CN107889216B (en) * 2016-09-30 2022-04-29 中兴通讯股份有限公司 Data transmitting and receiving method and device, base station and terminal
CN109804578B (en) * 2016-10-14 2022-03-08 瑞典爱立信有限公司 Method and apparatus for allocating radio resources in a wireless network
CN108024352A (en) * 2016-11-03 2018-05-11 索尼公司 Electronic equipment and method for resource management apparatus, database and object
WO2019036492A1 (en) * 2017-08-14 2019-02-21 Cohere Technologies Transmission resource allocation by splitting physical resource blocks
KR20200086667A (en) 2017-11-10 2020-07-17 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 HARQ number determination method, network device, terminal and computer storage medium
CN113678480A (en) * 2019-04-30 2021-11-19 富士通株式会社 Method and device for transmitting and receiving side link data
US11362795B2 (en) 2020-06-26 2022-06-14 Sprint Spectrum L.P. Reduction of TTI bundling in view of proactive imposition of air-interface resource reservation for a device class
US11602005B2 (en) * 2021-03-16 2023-03-07 Verizon Patent And Licensing Inc. Enhanced Namf interface to support radio resource control inactive state

Family Cites Families (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5299198A (en) 1990-12-06 1994-03-29 Hughes Aircraft Company Method and apparatus for exploitation of voice inactivity to increase the capacity of a time division multiple access radio communications system
US5570349A (en) 1994-06-07 1996-10-29 Stanford Telecommunications, Inc. Wireless direct sequence spread spectrum digital cellular telephone system
DE69428492T2 (en) * 1993-06-04 2002-05-23 Motorola Inc METHOD AND DEVICE FOR DYNAMICALLY SETTING A MAXIMUM NUMBER OF PARTICIPANTS ON A PHYSICAL CHANNEL
JP2768275B2 (en) * 1994-09-21 1998-06-25 日本電気株式会社 Demand assignment multiplexer
JP2875976B2 (en) * 1996-01-29 1999-03-31 三星電子株式会社 Orthogonal frequency division multiplexing method and synchronization method, and orthogonal frequency division multiplexing modulator and demodulator
US5896375A (en) * 1996-07-23 1999-04-20 Ericsson Inc. Short-range radio communications system and method of use
US6643262B1 (en) * 1997-08-29 2003-11-04 Telefonaktiebolaget Lm Ericsson (Publ) System and method for dynamic sharing of connection resources
KR100236903B1 (en) 1997-11-17 2000-01-15 김영환 Signal terminal alignment method of mobile communication system
US6728257B1 (en) * 1998-08-28 2004-04-27 The Board Of Trustees Of The University Of Illinois Fluid flow fair scheduling emulation in wireless shared channel packet communication network
US6456850B1 (en) * 1999-08-17 2002-09-24 Lucent Technologies Inc. Method for preventing overload conditions in communication systems
US6600917B1 (en) * 1999-10-04 2003-07-29 Telefonaktiebolaget Lm Ericsson (Publ) Telecommunications network broadcasting of service capabilities
US6928057B2 (en) * 2000-02-08 2005-08-09 Agere Systems Inc. Translation system and related method for use with a communication device
EP1126651A1 (en) * 2000-02-16 2001-08-22 Lucent Technologies Inc. Link adaptation for RT-EGPRS
CA2813651C (en) * 2000-03-03 2014-07-08 Qualcomm Incorporated Method and apparatus for participating in group communication services in an existing communication system
US6954465B2 (en) 2000-03-22 2005-10-11 At&T Corp. Dynamic channel assignment
US6898195B1 (en) * 2000-05-09 2005-05-24 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for sustaining conversational services in a packet switched radio access network
WO2002032166A1 (en) * 2000-10-09 2002-04-18 Nokia Corporation Connection release in a two-layer communication network
US6804528B1 (en) 2000-11-03 2004-10-12 Lucent Technologies, Inc. Apparatus and method for use in the multicast of traffic data in wireless multiple access communications systems
US7027415B1 (en) * 2001-03-20 2006-04-11 Arraycomm, Inc. Dynamic allocation and de-allocation of multiple communication channels for bandwidth on-demand
US6487183B1 (en) * 2001-12-21 2002-11-26 Nortel Networks Limited Activity based resource assignment medium access control protocol
TWI287935B (en) * 2002-05-01 2007-10-01 Interdigital Tech Corp Point to multi-point services using high speed shared channels in wireless communication systems
US7551546B2 (en) * 2002-06-27 2009-06-23 Nortel Networks Limited Dual-mode shared OFDM methods/transmitters, receivers and systems
US6876636B2 (en) * 2002-07-09 2005-04-05 Qualcomm Inc. Method and system for a multicast service initiation in a communication system
KR100827137B1 (en) 2002-08-16 2008-05-02 삼성전자주식회사 Method for serving multimedia broadcast/multicast service in mobile communication system
JP4013729B2 (en) * 2002-10-24 2007-11-28 日本電気株式会社 Mobile communication system, mobile station, base station, and packet communication method used therefor
US8107885B2 (en) * 2002-10-30 2012-01-31 Motorola Mobility, Inc. Method and apparatus for providing a distributed architecture digital wireless communication system
FI115189B (en) * 2002-12-13 2005-03-15 Nokia Corp Method of establishing a packet switching connection and cellular network utilizing the method and terminal of a cellular network
US7349338B2 (en) * 2003-04-15 2008-03-25 Lucent Technologies Inc Scheduler and method for scheduling transmissions in a communication network
KR100689477B1 (en) * 2003-04-30 2007-03-02 삼성전자주식회사 Method and system for fast call setup in wreless telecommunication system
US7408913B2 (en) * 2003-05-12 2008-08-05 Lucent Technologies Inc. Method of real time hybrid ARQ
CN100593289C (en) * 2003-05-12 2010-03-03 Lg电子株式会社 Method of generating reverse data rate information in mobile communication system
CN100576937C (en) * 2003-11-27 2009-12-30 Ut斯达康(中国)有限公司 Radio channel resource distributes and method of rate control in the code division multiple address communication system
US7430431B2 (en) * 2003-12-03 2008-09-30 Nortel Networks Limited Recovering the reverse link in a cellular mobile communication system
EP1565026B1 (en) * 2004-02-12 2019-04-03 Samsung Electronics Co., Ltd. Methods of efficiently transmitting control information for multimedia broadcast/multicast service
US7206594B2 (en) * 2004-02-17 2007-04-17 Vocera Communications, Inc. Wireless communication chat room system and method
KR100754658B1 (en) * 2004-03-12 2007-09-03 삼성전자주식회사 Method for operation of hybrid automatic repeat request in a broadband wireless communication system
US7546132B2 (en) * 2004-04-19 2009-06-09 Lg Electronics, Inc. Communication of point to multipoint service information in wireless communication system
EP1596613A1 (en) * 2004-05-10 2005-11-16 Dialog Semiconductor GmbH Data and voice transmission within the same mobile phone call
US20050265373A1 (en) * 2004-05-28 2005-12-01 Khan Farooq U Method of reducing overhead in data packet communication
US7580388B2 (en) 2004-06-01 2009-08-25 Lg Electronics Inc. Method and apparatus for providing enhanced messages on common control channel in wireless communication system
WO2005120109A1 (en) * 2004-06-04 2005-12-15 Nortel Networks Limited Method and system for soft handoff in mobile broadband systems
WO2005122622A1 (en) * 2004-06-07 2005-12-22 Nortel Networks Limited Handoffs and handoff selection in a wireless access network
US7616711B2 (en) * 2004-07-20 2009-11-10 Qualcomm Incorporated Frequency domain filtering to improve channel estimation in multicarrier systems
GB2417167B (en) * 2004-08-13 2007-02-14 Ipwireless Inc Apparatus and method for communicating user equipment specific information in cellular communication system
US7130610B2 (en) 2004-09-10 2006-10-31 Motorola Inc. Wireless communication device for receiving an emergency broadcast message
US8081999B2 (en) * 2004-09-14 2011-12-20 Nokia Corporation Enhanced assisted cell change
US7809064B2 (en) * 2004-11-15 2010-10-05 Industrial Technology Research Institute Systems and methods of flexible power management applicable to digital broadcasting
US7974621B2 (en) * 2004-11-18 2011-07-05 Sprint Spectrum L.P. Method and apparatus for transitioning between radio link protocols in a packet-based real-time media communication system
US7385959B1 (en) * 2005-02-28 2008-06-10 Marvell International Ltd. Power-efficient channel condition feedback for OFDM channels
US8620314B2 (en) * 2005-03-10 2013-12-31 Qualcomm Incorporated Apparatus and methods for determining connection quality of a wireless device on a wireless communications network
US20060252449A1 (en) * 2005-04-26 2006-11-09 Sridhar Ramesh Methods and apparatus to provide adaptive power save delivery modes in wireless local area networks (LANs)
WO2006135201A1 (en) * 2005-06-15 2006-12-21 Electronics And Telecommunications Research Institute Wireless communication system with protocol architecture for improving latency
WO2007032649A1 (en) * 2005-09-15 2007-03-22 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving status report comprising received status of packet data in a mobile communication system
US8040849B2 (en) * 2005-09-15 2011-10-18 Qualcomm Incorporated Maintaining a data connection during a dormant data session with a wireless communication network
US20090022098A1 (en) * 2005-10-21 2009-01-22 Robert Novak Multiplexing schemes for ofdma
DE102005051275A1 (en) * 2005-10-26 2007-05-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Information signals transmitting device for satellite system, has orthogonal frequency-division multiplexing control stage allocating different groups of carriers, which are emitted by spatial emitters, with different information
US8774019B2 (en) * 2005-11-10 2014-07-08 Apple Inc. Zones for wireless networks with relays
US7684806B2 (en) * 2005-11-21 2010-03-23 Intel Corporation Device, system and method of point to multipoint communication
JP4856189B2 (en) * 2005-11-23 2012-01-18 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Method, computer program, and base station for prediction-based processing resource allocation in non-resident base stations
KR101268200B1 (en) * 2006-01-05 2013-05-27 엘지전자 주식회사 Radio resource allocating method in mobile communication system
KR101211807B1 (en) * 2006-01-05 2012-12-12 엘지전자 주식회사 Method for managing synchronization state for mobile terminal in mobile communication system
US8249607B2 (en) * 2006-03-29 2012-08-21 Motorola Mobility, Inc. Scheduling in wireless communication systems
US7633903B2 (en) 2006-05-10 2009-12-15 Telefonaktiebolaget L M Ericsson (Publ) Packet data support node and method of activating packet flow contexts during handover
US8238322B2 (en) * 2006-06-30 2012-08-07 Nokia Corporation Optimizing of channel allocation in a wireless communications system
US8229427B2 (en) * 2006-07-14 2012-07-24 Qualcomm Incorporated Status validation for terminals in a wireless communication system
US20080020778A1 (en) * 2006-07-19 2008-01-24 Samsung Electronics Co., Ltd. Method for efficient persistent resource assignment in communication systems
US20080026744A1 (en) * 2006-07-27 2008-01-31 Nokia Corporation Providing dynamically controlled CQI technique adapted for available signaling capacity
US8923321B2 (en) * 2006-07-28 2014-12-30 Motorola Mobility Llc Apparatus and method for handling control channel reception/decoding failure in a wireless VoIP communication system
US20080049692A1 (en) * 2006-08-23 2008-02-28 Motorola, Inc. Apparatus and Method For Resource Allocation and Data Transmission Using Heterogeneous Modulation Formats in a Wireless Packet Communication System
US7974353B2 (en) * 2006-08-31 2011-07-05 Futurewei Technologies, Inc. Method and system for resource allocation for OFDM wireless networks
US20080062944A1 (en) * 2006-09-08 2008-03-13 Motorola, Inc. Apparatus and Method For Automatic Repeat Request Signalling With Reduced Retransmission Indications in a Wireless VoIP Communication System
US20080188247A1 (en) * 2007-02-02 2008-08-07 Ipwireless, Inc. Hierarchical organization of paging groups
US8614985B2 (en) * 2007-06-15 2013-12-24 Futurewei Technologies, Inc. Method and apparatus for sharing a group resource in a wireless SDMA system
WO2014065525A1 (en) * 2012-10-25 2014-05-01 엘지전자 주식회사 Method for transceiving downlink signal in wireless communication system and apparatus therefor

Also Published As

Publication number Publication date
MX2009001972A (en) 2009-04-15
WO2008024283A3 (en) 2008-09-04
RU2009110150A (en) 2010-09-27
US11889493B2 (en) 2024-01-30
AR062457A1 (en) 2008-11-12
AU2007288318A1 (en) 2008-02-28
WO2008024283A2 (en) 2008-02-28
US8165594B2 (en) 2012-04-24
JP2010502103A (en) 2010-01-21
US20210377964A9 (en) 2021-12-02
US11172493B2 (en) 2021-11-09
US20210112569A1 (en) 2021-04-15
US11871400B2 (en) 2024-01-09
KR20090084929A (en) 2009-08-05
US20210112570A1 (en) 2021-04-15
CN101507302A (en) 2009-08-12
BRPI0714627A2 (en) 2013-05-07
TW200814693A (en) 2008-03-16
US20080090583A1 (en) 2008-04-17
EP2070372A2 (en) 2009-06-17
US20120176993A1 (en) 2012-07-12
IL197028A0 (en) 2009-11-18
KR20090057395A (en) 2009-06-05

Similar Documents

Publication Publication Date Title
US11889493B2 (en) Method and apparatus for uplink transmissions
JP4870785B2 (en) Service quality-based resource determination and allocation apparatus and procedure in high-speed packet access evolution and long-term evolution systems
US9549402B2 (en) Method and apparatus for utilizing multiple carriers in high speed packet access communications technical field
JP4920721B2 (en) Method and apparatus for scheduling transmission of uplink data using terminal identifier in mobile communication system supporting uplink packet data service
DK2485558T3 (en) Method and apparatus for providing and using a non-conflict based channel in a wireless communication system
EP2374316B1 (en) Providing control information for multi-carrier uplink transmission
AU2009294982B2 (en) Semi-persistent scheduled resource release procedure in a mobile communication network
KR20130130097A (en) Method and apparatus for selecting multiple transport formats and transmitting multiple transport blocks simultaneously with multiple h-arq processes

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued