CA2742268A1 - Differentiation of human embryonic stem cells to the pancreatic endocrine lineage - Google Patents

Differentiation of human embryonic stem cells to the pancreatic endocrine lineage Download PDF

Info

Publication number
CA2742268A1
CA2742268A1 CA2742268A CA2742268A CA2742268A1 CA 2742268 A1 CA2742268 A1 CA 2742268A1 CA 2742268 A CA2742268 A CA 2742268A CA 2742268 A CA2742268 A CA 2742268A CA 2742268 A1 CA2742268 A1 CA 2742268A1
Authority
CA
Canada
Prior art keywords
cells
cell
inhibitor
markers characteristic
expressing markers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA2742268A
Other languages
French (fr)
Other versions
CA2742268C (en
Inventor
Alireza Rezania
Benjamin Fryer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Janssen Biotech Inc
Original Assignee
Centocor Ortho Biotech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centocor Ortho Biotech Inc filed Critical Centocor Ortho Biotech Inc
Publication of CA2742268A1 publication Critical patent/CA2742268A1/en
Application granted granted Critical
Publication of CA2742268C publication Critical patent/CA2742268C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0606Pluripotent embryonic cells, e.g. embryonic stem cells [ES]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0018Culture media for cell or tissue culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0601Invertebrate cells or tissues, e.g. insect cells; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0676Pancreatic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/25Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving enzymes not classifiable in groups C12Q1/26 - C12Q1/66
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/117Keratinocyte growth factors (KGF-1, i.e. FGF-7; KGF-2, i.e. FGF-12)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/155Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/16Activin; Inhibin; Mullerian inhibiting substance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/38Hormones with nuclear receptors
    • C12N2501/39Steroid hormones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/40Regulators of development
    • C12N2501/405Cell cycle regulated proteins, e.g. cyclins, cyclin-dependant kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/40Regulators of development
    • C12N2501/41Hedgehog proteins; Cyclopamine (inhibitor)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/998Proteins not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells

Abstract

The present invention provides a method for increasing the expression of MAFA
in cells expressing markers characteristic of the pancreatic endocrine lineage comprising the steps of culturing the cells expressing markers characteristic of the pancreatic endocrine lineage in medium comprising a sufficient amount of a cyclin-dependent kinase inhibitor to cause an increase in expression of MAFA.

Description

DIFFERENTIATION OF HUMAN EMBRYONIC STEM CELLS TO THE PANCREATIC ENDOCRINE
LINEAGE

[0001] The present invention claims priority to application serial number 61/110,287, filed October 31, 2008.

FIELD OF THE INVENTION
[0002] The present invention provides methods to promote the differentiation of pluripotent stem cells. In particular, the present invention provides a method to increase the expression of MAFA in cells expressing markers characteristic of the pancreatic endocrine lineage.

BACKGROUND
[0003] Advances in cell-replacement therapy for Type I diabetes mellitus and a shortage of transplantable islets of Langerhans have focused interest on developing sources of insulin-producing cells, or R cells, appropriate for engraftment. One approach is the generation of functional R cells from pluripotent stem cells, such as, for example, embryonic stem cells.
[0004] In vertebrate embryonic development, a pluripotent cell gives rise to a group of cells comprising three germ layers (ectoderm, mesoderm, and endoderm) in a process known as gastrulation. Tissues such as, for example, thyroid, thymus, pancreas, gut, and liver, will develop from the endoderm, via an intermediate stage. The intermediate stage in this process is the formation of definitive endoderm.
Definitive endoderm cells express a number of markers, such as, HNF-3 beta, GATA4, MIXL1, CXCR4 and SOX17.
[0005] Formation of the pancreas arises from the differentiation of definitive endoderm into pancreatic endoderm. Cells of the pancreatic endoderm express the pancreatic-duodenal homeobox gene, PDX1. In the absence of PDX1, the pancreas fails to develop beyond the formation of ventral and dorsal buds. Thus, PDX1 expression marks a critical step in pancreatic organogenesis. The mature pancreas contains, among other cell types, exocrine tissue and endocrine tissue. Exocrine and endocrine tissues arise from the differentiation of pancreatic endoderm.
[0006] Cells bearing the features of islet cells have reportedly been derived from embryonic cells of the mouse. For example, Lumelsky et al. (Science 292:1389, 2001) report differentiation of mouse embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Soria et al. (Diabetes 49:157, 2000) report that insulin-secreting cells derived from mouse embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice.
[0007] In one example, Hori et al. (PNAS 99: 16105, 2002) disclose that treatment of mouse embryonic stem cells with inhibitors of phosphoinositide 3-kinase (LY294002) produced cells that resembled R cells.
[0008] In another example, Blyszczuk et al. (PNAS 100:998, 2003) reports the generation of insulin-producing cells from mouse embryonic stem cells constitutively expressing Pax4.
[0009] Micallef et al. reports that retinoic acid can regulate the commitment of embryonic stem cells to form Pdxl positive pancreatic endoderm. Retinoic acid is most effective at inducing Pdxl expression when added to cultures at day 4 of embryonic stem cell differentiation during a period corresponding to the end of gastrulation in the embryo (Diabetes 54:301, 2005).
[0010] Miyazaki et al. reports a mouse embryonic stem cell line over-expressing Pdxl. Their results show that exogenous Pdxl expression clearly enhanced the expression of insulin, somatostatin, glucokinase, neurogenin3, P48, Pax6, and HNF6 genes in the resulting differentiated cells (Diabetes 53: 1030, 2004).
[0011] Skoudy et al. reports that activin A (a member of the TGF-(3 superfamily) upregulates the expression of exocrine pancreatic genes (p48 and amylase) and endocrine genes (Pdxl, insulin, and glucagon) in mouse embryonic stem cells. The maximal effect was observed using 1nM activin A. They also observed that the expression level of insulin and Pdxl mRNA was not affected by retinoic acid; however, 3nM FGF7 treatment resulted in an increased level of the transcript for Pdxl (Biochem.
J. 379:
749, 2004).
[0012] Shiraki et al. studied the effects of growth factors that specifically enhance differentiation of embryonic stem cells into Pdxl positive cells. They observed that TGF-(32 reproducibly yielded a higher proportion of Pdxl positive cells (Genes Cells.
2005 Jun; 10(6): 503-16.).
[0013] Gordon et al. demonstrated the induction of brachyury+/HNF-3beta+
endoderm cells from mouse embryonic stem cells in the absence of serum and in the presence of activin along with an inhibitor of Wnt signaling (US 2006/0003446A1).
[0014] Gordon et al. (PNAS, Vol 103, page 16806, 2006) states "Wnt and TGF-beta/ nodal/
activin signaling simultaneously were required for the generation of the anterior primitive streak".
[0015] However, the mouse model of embryonic stem cell development may not exactly mimic the developmental program in higher mammals, such as, for example, humans.
[0016] Thomson et al. isolated embryonic stem cells from human blastocysts (Science 282:114, 1998). Concurrently, Gearhart and coworkers derived human embryonic germ (hEG) cell lines from fetal gonadal tissue (Shamblott et al., Proc. Natl.
Acad.
Sci. USA 95:13726, 1998). Unlike mouse embryonic stem cells, which can be prevented from differentiating simply by culturing with Leukemia Inhibitory Factor (LIF), human embryonic stem cells must be maintained under very special conditions (U.S. Pat. No. 6,200,806; WO 99/20741; WO 01/51616).
[0017] D'Amour et al. describes the production of enriched cultures of human embryonic stem cell-derived definitive endoderm in the presence of a high concentration of activin and low serum (Nature Biotechnology 2005). Transplanting these cells under the kidney capsule of mice resulted in differentiation into more mature cells with characteristics of some endodermal organs. Human embryonic stem cell-derived definitive endoderm cells can be further differentiated into Pdxl positive cells after addition of FGF-10 (US 2005/0266554A1).
[0018] D'Amour et al. (Nature Biotechnology - 24, 1392 - 1401 (2006)) states:
"We have developed a differentiation process that converts human embryonic stem (hES) cells to endocrine cells capable of synthesizing the pancreatic hormones insulin, glucagon, somatostatin, pancreatic polypeptide and ghrelin. This process mimics in vivo pancreatic organogenesis by directing cells through stages resembling definitive endoderm, gut-tube endoderm, pancreatic endoderm and endocrine precursor en route to cells that express endocrine hormones".
[0019] In another example, Fisk et al. reports a system for producing pancreatic islet cells from human embryonic stem cells (US2006/0040387A1). In this case, the differentiation pathway was divided into three stages. Human embryonic stem cells were first differentiated to endoderm using a combination of sodium butyrate and activin A. The cells were then cultured with TGF-(3 antagonists such as Noggin in combination with EGF or betacellulin to generate Pdxl positive cells. The terminal differentiation was induced by nicotinamide.
[0020] In one example, Benvenistry et al. states: "We conclude that over-expression of Pdxl enhanced expression of pancreatic enriched genes, induction of insulin expression may require additional signals that are only present in vivo" (Benvenistry et al, Stem Cells 2006; 24:1923-1930).
[0021] Cyclins have been implicated in beta cell function. For example, Li1ja et al report that CdkS is present in the insulin-secreting pancreatic 3-cell (J. Biol. Chem., Vol. 276, Issue 36, 34199-34205, September 7, 2001). Li1ja et al states "CdkS is present in (-cells and acts as a positive regulator of insulin exocytosis."
[0022] In another example, Marzo et al states "Cdk4 knockin mice have significantly increased beta cell mass and are physiologically functional, indicating that Cdk4 is a potential target for pancreatic beta cell mass regeneration in Type 1 diabetes"
(Diabetalogia, Vol. 47, Number 4, 686-694, April 1, 2004.)
[0023] In another example, Ubeda et al report that inhibition of cyclin-dependant kinase 5 activity protects pancreatic beta cells from glucotoxicity (J. Biol. Chem., Vol. 281, Issue 39, 28858-28864, September 29, 2006).
[0024] In another example, Wei et al report CdkS-dependent regulation of glucose-stimulated insulin secretion (Nature Medicine 11, 1104-1108 (1 October 2005.)
[0025] In another example, Vanderford et al state "MafA is a basic leucine zipper transcription factor expressed within the beta cells of the pancreas and is required to maintain normal glucose homeostasis as it is involved in various aspects of beta cell biology. MafA protein levels are known to increase in response to high glucose through mechanisms that have yet to be fully characterized. We investigated whether discrete intracellular signaling events control mafA expression. We found that the general kinase inhibitor staurosporine induces mafA expression without altering the stability of the protein. Inhibition of the MAP-kinase JNK mimics the effects of staurosporine on the expression of mafA. Calmodulin kinase and calcium signaling are also important in stimulating mafA expression by high glucose. However, staurosporine, JNK, and calmodulin kinase have different effects on the induction of insulin expression. These data reveal that MafA levels are tightly controlled by the coordinated action of multiple kinase pathways." (Archives of Biochemistry and Biophysics (2008), doi: 10.1016/j.abb.2008.10.001).
[0026] Therefore, there still remains a significant need to develop methods for differentiating pluripotent stem cells into pancreatic endocrine cells, pancreatic hormone expressing cells, or pancreatic hormone secreting cells. The present invention provides methods to increase the expression of MAFA in cells expressing markers characteristic of the pancreatic endocrine lineage.

SUMMARY
[0027] In one embodiment, the present invention provides a method for increasing the expression of MAFA in cells expressing markers characteristic of the pancreatic endocrine lineage comprising the steps of culturing the cells expressing markers characteristic of the pancreatic endocrine lineage in medium comprising a sufficient amount of a cyclin-dependant kinase inhibitor to cause an increase in expression of MAFA.

BRIEF DESCRIPTION OF THE DRAWINGS
[0028] Figure 1, panel a shows the effect of compounds from the EMD Calbiochem kinase inhibitor library on the ratio of insulin to glucagon expression in cells expressing markers characteristic of the pancreatic endocrine lineage, as determined by real-time PCR. The alphanumeric label corresponds to the compound identity as shown in Table 1. Panel b shows the effect of compounds from the EMD Calbiochem kinase inhibitor library on the ratio of MAFA to ARX4 expression in cells expressing markers characteristic of the pancreatic endocrine lineage, as determined by real-time PCR. The alphanumeric label corresponds to the compound identity as shown in Table 1.
[0029] Figure 2 A) shows a 4x micrograph of cells treated according to the methods described in Example 1, at day 4 of the stage 6 treatment. B) shows a 4x micrograph of cells treated with 0.5 M of the compound PubChemlD# 5330812 at day 4 of treatment. C) shows a 4x micrograph of cells treated with 1 M of the compound PubChemlD# 5330812 at day 4 of treatment. D) shows a 20x micrograph of cells treated according to the methods described in Example 1, at day 6 of the stage treatment. E) shows a 20x micrograph of cells treated with 0.5 M of the compound PubChemlD# 5330812 at day 6 of treatment. F) shows a 20x micrograph of cells treated with 1 M of the compound PubChemlD# 5330812 at day 6 of treatment.
[0030] Figure 3 shows the expression of the 23 genes indicated, in cells expressing markers characteristic of the pancreatic endocrine lineage following a five-day treatment of 0.5 M (dark bars) or 1.0 M (light bars) of the compound PubChem ID#5330812.
Expression levels were determined at day 0, day 2 and day 5.
[0031] Figure 4 shows the effect of CDK inhibitor III treatment on the expression of markers characteristic of the pancreatic endocrine lineage in cells treated with Stage 7 of the differentiation protocol described in Example 4.
[0032] Figure 5 shows the effect of CDK inhibitor III treatment on the dithazone staining of islet-like clusters.
[0033] Figure 6 shows the expression of insulin, synaptophysin and glucagon in insulin-producing cells produced according to the methods described in Example 5.
Expression of the proteins indicated was determined by FACS.
[0034] Figure 7 shows the expression of insulin, synaptophysin and glucagon in insulin-producing cells produced according to the methods described in Example 5.
Expression of the proteins indicated was determined by FACS.
[0035] Figure 8 shows the expression of MAFA (Panel a) and insulin (Panel b), in insulin-producing cells, produced by the methods of the present invention. Samples of cells were taken for PCR analysis at days 1, 2, 3, and 4. Following 4 days of treatment with CDK inhibitor, the CDK inhibitor was removed from culture and the cells were cultured additional 4 days in DMEM-F12 + 1% B27 + 20 ng/ml of activin A. At the end of the four days, samples were collected in triplicate for PCR analysis.
[0036] Figure 9 shows the effect of compounds from the EMD Calbiochem kinase inhibitor library I on the expression of MAFA in cells expressing markers characteristic of the pancreatic endocrine lineage, as determined by real-time PCR.
[0037] Figure 10 shows the effect of genestein on the mRNA expression of insulin, glucagon, somatostatin and MAFA in cells expressing markers characteristic of the pancreatic endocrine lineage, as determined by real-time PCR.

DETAILED DESCRIPTION
[0038] For clarity of disclosure, and not by way of limitation, the detailed description of the invention is divided into the following subsections that describe or illustrate certain features, embodiments or applications of the present invention.

Definitions
[0039] Stem cells are undifferentiated cells defined by their ability at the single cell level to both self-renew and differentiate to produce progeny cells, including self-renewing progenitors, non-renewing progenitors, and terminally differentiated cells.
Stem cells are also characterized by their ability to differentiate in vitro into functional cells of various cell lineages from multiple germ layers (endoderm, mesoderm and ectoderm), as well as to give rise to tissues of multiple germ layers following transplantation and to contribute substantially to most, if not all, tissues following injection into blastocysts.
[0040] Stem cells are classified by their developmental potential as: (1) totipotent, meaning able to give rise to all embryonic and extraembryonic cell types; (2) pluripotent, meaning able to give rise to all embryonic cell types; (3) multipotent, meaning able to give rise to a subset of cell lineages but all within a particular tissue, organ, or physiological system (for example, hematopoietic stem cells (HSC) can produce progeny that include HSC (self- renewal), blood cell restricted oligopotent progenitors, and all cell types and elements (e.g., platelets) that are normal components of the blood); (4) oligopotent, meaning able to give rise to a more restricted subset of cell lineages than multipotent stem cells; and (5) unipotent, meaning able to give rise to a single cell lineage (e.g. , spermatogenic stem cells).
[0041] Differentiation is the process by which an unspecialized ("uncommitted") or less specialized cell acquires the features of a specialized cell such as, for example, a nerve cell or a muscle cell. A differentiated or differentiation-induced cell is one that has taken on a more specialized ("committed") position within the lineage of a cell.
The term "committed", when applied to the process of differentiation, refers to a cell that has proceeded in the differentiation pathway to a point where, under normal circumstances, it will continue to differentiate into a specific cell type or subset of cell types, and cannot, under normal circumstances, differentiate into a different cell type or revert to a less differentiated cell type. De-differentiation refers to the process by which a cell reverts to a less specialized (or committed) position within the lineage of a cell. As used herein, the lineage of a cell defines the heredity of the cell, i.e., which cells it came from and what cells it can give rise to. The lineage of a cell places the cell within a hereditary scheme of development and differentiation. A lineage-specific marker refers to a characteristic specifically associated with the phenotype of cells of a lineage of interest and can be used to assess the differentiation of an uncommitted cell to the lineage of interest.
[0042] "(3-cell lineage" refers to cells with positive gene expression for the transcription factor PDX-1 and at least one of the following transcription factors: NGN3, NKX2.2, NKX6. 1, NEUROD, ISL1, HNF3 beta, MAFA, PAX4, or PAX6. Cells expressing markers characteristic of the R cell lineage include R cells.
[0043] "Cells expressing markers characteristic of the definitive endoderm lineage", as used herein, refers to cells expressing at least one of the following markers:
SOX17, GATA4, HNF3 beta, GSC, CER1, Nodal, FGF8, Brachyury, Mix-like homeobox protein, FGF4 CD48, eomesodermin (EOMES), DKK4, FGF17, GATA6, CXCR4, C-Kit, CD99, or OTX2. Cells expressing markers characteristic of the definitive endoderm lineage include primitive streak precursor cells, primitive streak cells, mesendoderm cells and definitive endoderm cells.
[0044] "Cells expressing markers characteristic of the pancreatic endoderm lineage", as used herein, refers to cells expressing at least one of the following markers:
PDX1, HNF1 beta, PTF1 alpha, HNF-, or HB9. Cells expressing markers characteristic of the pancreatic endoderm lineage include pancreatic endoderm cells, primitive gut tube cells, and posterior foregut cells.
[0045] "Cells expressing markers characteristic of the pancreatic endocrine lineage", as used herein, refers to cells expressing at least one of the following markers:
NGN3, NEUROD, ISL1, PDX1, NKX6.1, PAX4, NGN3, or PTF1 alpha. Cells expressing markers characteristic of the pancreatic endocrine lineage include pancreatic endocrine cells, pancreatic hormone expressing cells, and pancreatic hormone secreting cells, and cells of the (3-cell lineage.
[0046] "Definitive endoderm", as used herein, refers to cells which bear the characteristics of cells arising from the epiblast during gastrulation and which form the gastrointestinal tract and its derivatives. Definitive endoderm cells express the following markers:
HNF3 beta, GATA4, SOX17, Cerberus, OTX2, goosecoid, C-Kit, CD99, or MIXL1.
[0047] "Extraembryonic endoderm", as used herein, refers to a population of cells expressing at least one of the following markers: SOX7, AFP, or SPARC.
[0048] "Markers", as used herein, are nucleic acid or polypeptide molecules that are differentially expressed in a cell of interest. In this context, differential expression means an increased level for a positive marker and a decreased level for a negative marker. The detectable level of the marker nucleic acid or polypeptide is sufficiently higher or lower in the cells of interest compared to other cells, such that the cell of interest can be identified and distinguished from other cells using any of a variety of methods known in the art.
[0049] "Mesendoderm cell", as used herein, refers to a cell expressing at least one of the following markers: CD48, eomesodermin (EOMES), SOX17, DKK4, HNF3 beta, GSC, FGF17, or GATA6.
[0050] "Pancreatic endocrine cell", or "pancreatic hormone expressing cell", as used herein, refers to a cell capable of expressing at least one of the following hormones:
insulin, glucagon, somatostatin, or pancreatic polypeptide.
[0051] "Pancreatic endoderm cell", as used herein, refers to a cell capable of expressing at least one of the following markers: NGN3, NEUROD, ISL1, PDX1, PAX4, or NKX2.2.
[0052] "Pancreatic hormone producing cell", as used herein, refers to a cell capable of producing at least one of the following hormones: insulin, glucagon, somatostatin, or pancreatic polypeptide.
[0053] "Pancreatic hormone secreting cell" as used herein, refers to a cell capable of secreting at least one of the following hormones: insulin, glucagon, somatostatin, and pancreatic polypeptide.
[0054] "Posterior foregut cell", as used herein, refers to a cell capable of secreting at least one of the following markers: PDX1, HNF1, PTF1 alpha, HNF6, HB9, or PROX1.
[0055] "Pre-primitive streak cell", as used herein, refers to a cell expressing at least one of the following markers: Nodal, or FGF8.
[0056] "Primitive gut tube cell", as used herein, refers to a cell capable of secreting at least one of the following markers: HNF1, or HNF4A.
[0057] "Primitive streak cell", as used herein, refers to a cell expressing at least one of the following markers: Brachyury, Mix-like homeobox protein, or FGF4.

Isolation, Expansion and Culture of Pluripotent Stem Cells Characterization of Pluripotent Stem Cells
[0058] Pluripotent stem cells may express one or more of the stage-specific embryonic antigens (SSEA) 3 and 4, and markers detectable using antibodies designated Tra-1-60 and Tra-1-81 (Thomson et al., Science 282:1145, 1998). Differentiation of pluripotent stem cells in vitro results in the loss of SSEA-4, Tra- 1-60, and Tra-1-81 expression (if present) and increased expression of SSEA-1. Undifferentiated pluripotent stem cells typically have alkaline phosphatase activity, which can be detected by fixing the cells with 4% paraformaldehyde, and then developing with Vector Red as a substrate, as described by the manufacturer (Vector Laboratories, Burlingame Calif.) Undifferentiated pluripotent stem cells also typically express Oct-4 and TERT, as detected by RT-PCR.
[0059] Another desirable phenotype of propagated pluripotent stem cells is a potential to differentiate into cells of all three germinal layers: endoderm, mesoderm, and ectoderm tissues. Pluripotency of pluripotent stem cells can be confirmed, for example, by injecting cells into severe combined immunodeficient (SCID) mice, fixing the teratomas that form using 4% paraformaldehyde, and then examining them histologically for evidence of cell types from the three germ layers.
Alternatively, pluripotency may be determined by the creation of embryoid bodies and assessing the embryoid bodies for the presence of markers associated with the three germinal layers.
[0060] Propagated pluripotent stem cell lines may be karyotyped using a standard G-banding technique and compared to published karyotypes of the corresponding primate species. It is desirable to obtain cells that have a "normal karyotype," which means that the cells are euploid, wherein all human chromosomes are present and not noticeably altered.

Sources ofPluripotent Stem Cells
[0061] The types of pluripotent stem cells that may be used include established lines of pluripotent cells derived from tissue formed after gestation, including pre-embryonic tissue (such as, for example, a blastocyst), embryonic tissue, or fetal tissue taken any time during gestation, typically but not necessarily before approximately 10-12 weeks gestation. Non-limiting examples are established lines of human embryonic stem cells or human embryonic germ cells, such as, for example the human embryonic stem cell lines H1, H7, and H9 (WiCell). Also contemplated is use of the compositions of this disclosure during the initial establishment or stabilization of such cells, in which case the source cells would be primary pluripotent cells taken directly from the source tissues. Also suitable are cells taken from a pluripotent stem cell population already cultured in the absence of feeder cells. Also suitable are mutant human embryonic stem cell lines, such as, for example, BG01v (BresaGen, Athens, GA).
[0062] In one embodiment, human embryonic stem cells are prepared as described by Thomson et al. (U.S. Pat. No. 5,843,780; Science 282:1145, 1998; Curr. Top.
Dev.
Biol. 38:133 ff., 1998; Proc. Natl. Acad. Sci. U.S.A. 92:7844, 1995).

Culture ofPluripotent Stem Cells
[0063] In one embodiment, pluripotent stem cells are typically cultured on a layer of feeder cells that support the pluripotent stem cells in various ways. Alternatively, pluripotent stem cells are cultured in a culture system that is essentially free of feeder cells, but nonetheless supports proliferation of pluripotent stem cells without undergoing substantial differentiation. The growth of pluripotent stem cells in feeder-free culture without differentiation is supported using a medium conditioned by culturing previously with another cell type. Alternatively, the growth of pluripotent stem cells in feeder-free culture without differentiation is supported using a chemically defined medium.
[0064] For example, Reubinoff et al (Nature Biotechnology 18: 399 - 404 (2000)) and Thompson et al (Science 6 November 1998: Vol. 282. no. 5391, pp. 1145 - 1147) disclose the culture of pluripotent stem cell lines from human blastocysts using a mouse embryonic fibroblast feeder cell layer.
[0065] Richards et al, (Stem Cells 21: 546-556, 2003) evaluated a panel of 11 different human adult, fetal and neonatal feeder cell layers for their ability to support human pluripotent stem cell culture. Richards et al, states: "human embryonic stem cell lines cultured on adult skin fibroblast feeders retain human embryonic stem cell morphology and remain pluripotent".
[0066] US20020072117 discloses cell lines that produce media that support the growth of primate pluripotent stem cells in feeder-free culture. The cell lines employed are mesenchymal and fibroblast-like cell lines obtained from embryonic tissue or differentiated from embryonic stem cells. US20020072117 also discloses the use of the cell lines as a primary feeder cell layer.
[0067] In another example, Wang et al (Stem Cells 23: 1221-1227, 2005) discloses methods for the long-term growth of human pluripotent stem cells on feeder cell layers derived from human embryonic stem cells.
[0068] In another example, Stojkovic et al (Stem Cells 2005 23: 306-314, 2005) disclose a feeder cell system derived from the spontaneous differentiation of human embryonic stem cells.
[0069] In a further example, Miyamoto et al (Stem Cells 22: 433-440, 2004) disclose a source of feeder cells obtained from human placenta.
[0070] Amit et al (Biol. Reprod 68: 2150-2156, 2003) discloses a feeder cell layer derived from human foreskin.
[0071] In another example, Inzunza et al (Stem Cells 23: 544-549, 2005) disclose a feeder cell layer from human postnatal foreskin fibroblasts.
[0072] US6642048 discloses media that support the growth of primate pluripotent stem (pPS) cells in feeder-free culture, and cell lines useful for production of such media.
US6642048 states: "This invention includes mesenchymal and fibroblast-like cell lines obtained from embryonic tissue or differentiated from embryonic stem cells.
Methods for deriving such cell lines, processing media, and growing stem cells using the conditioned media are described and illustrated in this disclosure."
[0073] In another example, W02005014799 discloses conditioned medium for the maintenance, proliferation and differentiation of mammalian cells.

states: "The culture medium produced in accordance with the present invention is conditioned by the cell secretion activity of marine cells, in particular, those differentiated and immortalized transgenic hepatocytes, named MMH (Met Murine Hepatocyte)."
[0074] In another example, Xu et al (Stem Cells 22: 972-980, 2004) discloses conditioned medium obtained from human embryonic stem cell derivatives that have been genetically modified to over express human telomerase reverse transcriptase.
[0075] In another example, US20070010011 discloses a chemically defined culture medium for the maintenance of pluripotent stem cells.
[0076] An alternative culture system employs serum-free medium supplemented with growth factors capable of promoting the proliferation of embryonic stem cells. For example, Cheon et al (BioReprod DOI: 10. 1095/biolreprod. 105.046870, October 19, 2005) disclose a feeder-free, serum-free culture system in which embryonic stem cells are maintained in unconditioned serum replacement (SR) medium supplemented with different growth factors capable of triggering embryonic stem cell self-renewal.
[0077] In another example, Levenstein et al (Stem Cells 24: 568-574, 2006) disclose methods for the long-term culture of human embryonic stem cells in the absence of fibroblasts or conditioned medium, using media supplemented with bFGF.
[0078] In another example, US20050148070 discloses a method of culturing human embryonic stem cells in defined media without serum and without fibroblast feeder cells, the method comprising: culturing the stem cells in a culture medium containing albumin, amino acids, vitamins, minerals, at least one transferrin or transferrin substitute, at least one insulin or insulin substitute, the culture medium essentially free of mammalian fetal serum and containing at least about 100 ng/ml of a fibroblast growth factor capable of activating a fibroblast growth factor signaling receptor, wherein the growth factor is supplied from a source other than just a fibroblast feeder layer, the medium supported the proliferation of stem cells in an undifferentiated state without feeder cells or conditioned medium.
[0079] In another example, US20050233446 discloses a defined media useful in culturing stem cells, including undifferentiated primate primordial stem cells. In solution, the media is substantially isotonic as compared to the stem cells being cultured.
In a given culture, the particular medium comprises a base medium and an amount of each of bFGF, insulin, and ascorbic acid necessary to support substantially undifferentiated growth of the primordial stem cells.
[0080] In another example, US6800480 states "In one embodiment, a cell culture medium for growing primate-derived primordial stem cells in a substantially undifferentiated state is provided which includes a low osmotic pressure, low endotoxin basic medium that is effective to support the growth of primate-derived primordial stem cells.
The basic medium is combined with a nutrient serum effective to support the growth of primate-derived primordial stem cells and a substrate selected from the group consisting of feeder cells and an extracellular matrix component derived from feeder cells.
The medium further includes non-essential amino acids, an anti-oxidant, and a first growth factor selected from the group consisting of nucleosides and a pyruvate salt."
[0081] In another example, US20050244962 states: "In one aspect the invention provides a method of culturing primate embryonic stem cells. One cultures the stem cells in a culture essentially free of mammalian fetal serum (preferably also essentially free of any animal serum) and in the presence of fibroblast growth factor that is supplied from a source other than just a fibroblast feeder layer. Ina preferred form, the fibroblast feeder layer, previously required to sustain a stem cell culture, is rendered unnecessary by the addition of sufficient fibroblast growth factor."
[0082] In a further example, W02005065354 discloses a defined, isotonic culture medium that is essentially feeder-free and serum-free, comprising: a. a basal medium;
b. an amount of bFGF sufficient to support growth of substantially undifferentiated mammalian stem cells; c. an amount of insulin sufficient to support growth of substantially undifferentiated mammalian stem cells; and d. an amount of ascorbic acid sufficient to support growth of substantially undifferentiated mammalian stem cells.
[0083] In another example, W02005086845 discloses a method for maintenance of an undifferentiated stem cell, said method comprising exposing a stem cell to a member of the transforming growth factor-beta (TGF-(3) family of proteins, a member of the fibroblast growth factor (FGF) family of proteins, or nicotinamide (NIC) in an amount sufficient to maintain the cell in an undifferentiated state for a sufficient amount of time to achieve a desired result.
[0084] The pluripotent stem cells may be plated onto a suitable culture substrate. In one embodiment, the suitable culture substrate is an extracellular matrix component, such as, for example, those derived from basement membrane or that may form part of adhesion molecule receptor-ligand couplings. In one embodiment, a the suitable culture substrate is MATRIGEL (Becton Dickenson). MATRIGEL is a soluble preparation from Engelbreth-Holm Swarm tumor cells that gels at room temperature to form a reconstituted basement membrane.
[0085] Other extracellular matrix components and component mixtures are suitable as an alternative. Depending on the cell type being proliferated, this may include laminin, fibronectin, proteoglycan, entactin, heparan sulfate, and the like, alone or in various combinations.
[0086] The pluripotent stem cells may be plated onto the substrate in a suitable distribution and in the presence of a medium that promotes cell survival, propagation, and retention of the desirable characteristics. All these characteristics benefit from careful attention to the seeding distribution and can readily be determined by one of skill in the art.
[0087] Suitable culture media may be made from the following components, such as, for example, Dulbecco's modified Eagle's medium (DMEM), Gibco # 11965-092;
Knockout Dulbecco's modified Eagle's medium (KO DMEM), Gibco #10829-018;
Ham's F12/50% DMEM basal medium; 200 mM L-glutamine, Gibco # 15039-027;
non-essential amino acid solution, Gibco 11140-050; (3-mercaptoethanol, Sigma #
M7522; human recombinant basic fibroblast growth factor (bFGF), Gibco # 13256-029.

Formation of Pancreatic Hormone Producing Cells from Pluripotent Stem Cells
[0088] In one embodiment, the present invention provides a method for producing pancreatic hormone producing cells from pluripotent stem cells, comprising the steps of:

a. Culturing pluripotent stem cells, b. Differentiating the pluripotent stem cells into cells expressing markers characteristic of the definitive endoderm lineage, c. Differentiating the cells expressing markers characteristic of the definitive endoderm lineage into cells expressing markers characteristic of the pancreatic endoderm lineage, and d. Differentiating the cells expressing markers characteristic of the pancreatic endoderm lineage into cells expressing markers characteristic of the pancreatic endocrine lineage.
[0089] Pluripotent stem cells suitable for use in the present invention include, for example, the human embryonic stem cell line H9 (NIH code: WA09), the human embryonic stem cell line HI (NIH code: WA01), the human embryonic stem cell line H7 (NIH
code: WA07), and the human embryonic stem cell line SA002 (Cellartis, Sweden).
Also suitable for use in the present invention are cells that express at least one of the following markers characteristic of pluripotent cells: ABCG2, cripto, CD9, FOXD3, Connexin43, Connexin45, OCT4, SOX2, NANOG, hTERT, UTF1, ZFP42, SSEA3, SSEA4, Tral-60, or Tral-81.
[0090] Markers characteristic of the definitive endoderm lineage are selected from the group consisting of SOX17, GATA4, HNF3 beta, GSC, CER1, NODAL, FGF8, Brachyury, Mix-like homeobox protein, FGF4 CD48, eomesodermin (EOMES), DKK4, FGF17, GATA6, CXCR4, C-Kit, CD99, and OTX2. Suitable for use in the present invention is a cell that expresses at least one of the markers characteristic of the definitive endoderm lineage. In one aspect of the present invention, a cell expressing markers characteristic of the definitive endoderm lineage is a primitive streak precursor cell.
In an alternate aspect, a cell expressing markers characteristic of the definitive endoderm lineage is a mesendoderm cell. In an alternate aspect, a cell expressing markers characteristic of the definitive endoderm lineage is a definitive endoderm cell.
[0091] Markers characteristic of the pancreatic endoderm lineage are selected from the group consisting of PDX1, HNF1 beta, PTF1 alpha, HNF6, HB9 and PROX1. Suitable for use in the present invention is a cell that expresses at least one of the markers characteristic of the pancreatic endoderm lineage. In one aspect of the present invention, a cell expressing markers characteristic of the pancreatic endoderm lineage is a pancreatic endoderm cell.
[0092] Markers characteristic of the pancreatic endocrine lineage are selected from the group consisting of NGN3, NEUROD, ISL1, PDX1, NKX6.1, PAX4, NGN3, and PTF1 alpha. In one embodiment, a pancreatic endocrine cell is capable of expressing at least one of the following hormones: insulin, glucagon, somatostatin, and pancreatic polypeptide. Suitable for use in the present invention is a cell that expresses at least one of the markers characteristic of the pancreatic endocrine lineage. In one aspect of the present invention, a cell expressing markers characteristic of the pancreatic endocrine lineage is a pancreatic endocrine cell. The pancreatic endocrine cell may be a pancreatic hormone expressing cell. Alternatively, the pancreatic endocrine cell may be a pancreatic hormone secreting cell.
[0093] In one aspect of the present invention, the pancreatic endocrine cell is a cell expressing markers characteristic of the R cell lineage. A cell expressing markers characteristic of the R cell lineage expresses Pdxl and at least one of the following transcription factors: NGN3, NKX2.2, NKX6. 1, NEUROD, ISL1, HNF3 beta, MAFA, PAX4, or PAX6. In one aspect of the present invention, a cell expressing markers characteristic of the R cell lineage is a R cell.

Formation of Cells Expressing Markers Characteristic of the Definitive Endoderm Lineage
[0094] Pluripotent stem cells may be differentiated into cells expressing markers characteristic of the definitive endoderm lineage by any method in the art or by any method proposed in this invention.
[0095] For example, pluripotent stem cells may be differentiated into cells expressing markers characteristic of the definitive endoderm lineage according to the methods disclosed in D'Amour et al, Nature Biotechnology 23, 1534 - 1541 (2005).
[0096] For example, pluripotent stem cells may be differentiated into cells expressing markers characteristic of the definitive endoderm lineage according to the methods disclosed in Shinozaki et al, Development 131, 1651 - 1662 (2004).
[0097] For example, pluripotent stem cells may be differentiated into cells expressing markers characteristic of the definitive endoderm lineage according to the methods disclosed in McLean et al, Stem Cells 25, 29 - 38 (2007).
[0098] For example, pluripotent stem cells may be differentiated into cells expressing markers characteristic of the definitive endoderm lineage according to the methods disclosed in D'Amour et al, Nature Biotechnology 24, 1392 - 1401 (2006).
[0099] For example, pluripotent stem cells may be differentiated into cells expressing markers characteristic of the definitive endoderm lineage by culturing the pluripotent stem cells in medium containing activin A in the absence of serum, then culturing the cells with activin A and serum, and then culturing the cells with activin A
and serum of a different concentration. An example of this method is disclosed in Nature Biotechnology 23, 1534 - 1541 (2005).
[0100] For example, pluripotent stem cells may be differentiated into cells expressing markers characteristic of the definitive endoderm lineage by culturing the pluripotent stem cells in medium containing activin A in the absence of serum, then culturing the cells with activin A with serum of another concentration. An example of this method is disclosed in D' Amour et al, Nature Biotechnology, 2005.
[0101] For example, pluripotent stem cells may be differentiated into cells expressing markers characteristic of the definitive endoderm lineage by culturing the pluripotent stem cells in medium containing activin A and a Wnt ligand in the absence of serum, then removing the Wnt ligand and culturing the cells with activin A with serum. An example of this method is disclosed in Nature Biotechnology 24, 1392 - 1401 (2006).
[0102] For example, pluripotent stem cells may be differentiated into cells expressing markers characteristic of the definitive endoderm lineage by treating the pluripotent stem cells according to the methods disclosed in US patent application Ser.
No.
11/736,908, assigned to LifeScan, Inc.
[0103] For example, pluripotent stem cells may be differentiated into cells expressing markers characteristic of the definitive endoderm lineage by treating the pluripotent stem cells according to the methods disclosed in US patent application Ser.
No.
11/779,311, assigned to LifeScan, Inc.
[0104] For example, pluripotent stem cells may be differentiated into cells expressing markers characteristic of the definitive endoderm lineage by treating the pluripotent stem cells according to the methods disclosed in US patent application Ser.
No.
60/990,529.
[0105] For example, pluripotent stem cells may be differentiated into cells expressing markers characteristic of the definitive endoderm lineage by treating the pluripotent stem cells according to the methods disclosed in US patent application Ser.
No.
61/076,889.
[0106] For example, pluripotent stem cells may be differentiated into cells expressing markers characteristic of the definitive endoderm lineage by treating the pluripotent stem cells according to the methods disclosed in US patent application Ser.
No.
61/076,900.
[0107] For example, pluripotent stem cells may be differentiated into cells expressing markers characteristic of the definitive endoderm lineage by treating the pluripotent stem cells according to the methods disclosed in US patent application Ser.
No.
61/076,908.
[0108] For example, pluripotent stem cells may be differentiated into cells expressing markers characteristic of the definitive endoderm lineage by treating the pluripotent stem cells according to the methods disclosed in US patent application Ser.
No.
61/076,915.

Differentiation of Cells Expressing Markers Characteristic of the Definitive Endoderm Lineage
[0109] Formation of cells expressing markers characteristic of the definitive endoderm lineage may be determined by testing for the presence of the markers before and after following a particular protocol. Pluripotent stem cells typically do not express such markers. Thus, differentiation of pluripotent cells is detected when cells begin to express them.
[0110] The efficiency of differentiation may be determined by exposing a treated cell population to an agent (such as an antibody) that specifically recognizes a protein marker expressed by cells expressing markers characteristic of the definitive endoderm lineage.
[0111] Methods for assessing expression of protein and nucleic acid markers in cultured or isolated cells are standard in the art. These include quantitative reverse transcriptase polymerase chain reaction (RT-PCR), Northern blots, in situ hybridization (see, e.g., Current Protocols in Molecular Biology (Ausubel et al., eds. 2001 supplement)), and immunoassays such as immunohistochemical analysis of sectioned material, Western blotting, and for markers that are accessible in intact cells, flow cytometry analysis (FACS) (see, e.g., Harlow and Lane, Using Antibodies: A Laboratory Manual, New York: Cold Spring Harbor Laboratory Press (1998)).
[0112] Characteristics of pluripotent stem cells are well known to those skilled in the art, and additional characteristics of pluripotent stem cells continue to be identified.
Pluripotent stem cell markers include, for example, the expression of one or more of the following: ABCG2, cripto, FOXD3, Connexin43, Connexin45, OCT4, SOX2, NANOG, hTERT, UTF1, ZFP42, SSEA3, SSEA4, Tral-60, or Tral-81.
[0113] After treating pluripotent stem cells with the methods of the present invention, the differentiated cells may be purified by exposing a treated cell population to an agent (such as an antibody) that specifically recognizes a protein marker, such as CXCR4, expressed by cells expressing markers characteristic of the definitive endoderm lineage.

Formation of Cells Expressing Markers Characteristic of the Pancreatic Endoderm Lineage
[0114] Cells expressing markers characteristic of the definitive endoderm lineage may be differentiated into cells expressing markers characteristic of the pancreatic endoderm lineage by any method in the art or by any method proposed in this invention.
[0115] For example, cells expressing markers characteristic of the definitive endoderm lineage may be differentiated into cells expressing markers characteristic of the pancreatic endoderm lineage according to the methods disclosed in D'Amour et al, Nature Biotechnology 24, 1392 - 1401 (2006).
[0116] For example, cells expressing markers characteristic of the definitive endoderm lineage are further differentiated into cells expressing markers characteristic of the pancreatic endoderm lineage, by treating the cells expressing markers characteristic of the definitive endoderm lineage with a fibroblast growth factor and the hedgehog signaling pathway inhibitor KAAD-cyclopamine, then removing the medium containing the fibroblast growth factor and KAAD-cyclopamine and subsequently culturing the cells in medium containing retinoic acid, a fibroblast growth factor and KAAD-cyclopamine. An example of this method is disclosed in Nature Biotechnology 24, 1392 - 1401 (2006).
[0117] In one aspect of the present invention, cells expressing markers characteristic of the definitive endoderm lineage are further differentiated into cells expressing markers characteristic of the pancreatic endoderm lineage, by treating the cells expressing markers characteristic of the definitive endoderm lineage with retinoic acid and at least one fibroblast growth factor for a period of time, according to the methods disclosed in US patent application Ser. No. 11/736,908, assigned to LifeScan, Inc.
[0118] In one aspect of the present invention, cells expressing markers characteristic of the definitive endoderm lineage are further differentiated into cells expressing markers characteristic of the pancreatic endoderm lineage, by treating the cells expressing markers characteristic of the definitive endoderm lineage with retinoic acid and at least one fibroblast growth factor for a period of time, according to the methods disclosed in US patent application Ser. No. 11/779,311, assigned to LifeScan, Inc.
[0119] In one aspect of the present invention, cells expressing markers characteristic of the definitive endoderm lineage are further differentiated into cells expressing markers characteristic of the pancreatic endoderm lineage, by treating the cells expressing markers characteristic of the definitive endoderm lineage according to the methods disclosed in US patent application Ser. No. 60/990,529.

Detection of Cells Expressing Markers Characteristic of the Pancreatic Endoderm Lineage
[0120] Markers characteristic of the pancreatic endoderm lineage are well known to those skilled in the art, and additional markers characteristic of the pancreatic endoderm lineage continue to be identified. These markers can be used to confirm that the cells treated in accordance with the present invention have differentiated to acquire the properties characteristic of the pancreatic endoderm lineage. Pancreatic endoderm lineage specific markers include the expression of one or more transcription factors such as, for example, HLXB9, PTF1 alpha, PDX1, HNF6, or HNF1 beta.
[0121] The efficiency of differentiation may be determined by exposing a treated cell population to an agent (such as an antibody) that specifically recognizes a protein marker expressed by cells expressing markers characteristic of the pancreatic endoderm lineage.
[0122] Methods for assessing expression of protein and nucleic acid markers in cultured or isolated cells are standard in the art. These include quantitative reverse transcriptase polymerase chain reaction (RT-PCR), Northern blots, in situ hybridization (see, e.g., Current Protocols in Molecular Biology (Ausubel et al., eds. 2001 supplement)), and immunoassays such as immunohistochemical analysis of sectioned material, Western blotting, and for markers that are accessible in intact cells, flow cytometry analysis (FACS) (see, e.g., Harlow and Lane, Using Antibodies: A Laboratory Manual, New York: Cold Spring Harbor Laboratory Press (1998)).

Formation of Cells Expressing Markers Characteristic of the Pancreatic Endocrine Lineage
[0123] Cells expressing markers characteristic of the pancreatic endoderm lineage may be differentiated into cells expressing markers characteristic of the pancreatic endocrine lineage by any method in the art or by any method disclosed in this invention.
[0124] For example, cells expressing markers characteristic of the pancreatic endoderm lineage may be differentiated into cells expressing markers characteristic of the pancreatic endocrine lineage according to the methods disclosed in D'Amour et al, Nature Biotechnology 24, 1392 - 1401 (2006).
[0125] For example, cells expressing markers characteristic of the pancreatic endoderm lineage are further differentiated into cells expressing markers characteristic of the pancreatic endocrine lineage, by culturing the cells expressing markers characteristic of the pancreatic endoderm lineage in medium containing DAPT and exendin 4, then removing the medium containing DAPT and exendin 4 and subsequently culturing the cells in medium containing exendin 1, IGF-1 and HGF. An example of this method is disclosed in Nature Biotechnology 24, 1392 - 1401 (2006).
[0126] For example, cells expressing markers characteristic of the pancreatic endoderm lineage are further differentiated into cells expressing markers characteristic of the pancreatic endocrine lineage, by culturing the cells expressing markers characteristic of the pancreatic endoderm lineage in medium containing exendin 4, then removing the medium containing exendin 4 and subsequently culturing the cells in medium containing exendin 1, IGF-1 and HGF. An example of this method is disclosed in D' Amour et al, Nature Biotechnology, 2006.
[0127] For example, cells expressing markers characteristic of the pancreatic endoderm lineage are further differentiated into cells expressing markers characteristic of the pancreatic endocrine lineage, by culturing the cells expressing markers characteristic of the pancreatic endoderm lineage in medium containing DAPT and exendin 4. An example of this method is disclosed in D' Amour et al, Nature Biotechnology, 2006.
[0128] For example, cells expressing markers characteristic of the pancreatic endoderm lineage are further differentiated into cells expressing markers characteristic of the pancreatic endocrine lineage, by culturing the cells expressing markers characteristic of the pancreatic endoderm lineage in medium containing exendin 4. An example of this method is disclosed in D' Amour et al, Nature Biotechnology, 2006.
[0129] In one aspect of the present invention, cells expressing markers characteristic of the pancreatic endoderm lineage are further differentiated into cells expressing markers characteristic of the pancreatic endocrine lineage, by treating the cells expressing markers characteristic of the pancreatic endoderm lineage with a factor that inhibits the Notch signaling pathway, according to the methods disclosed in US patent application Ser. No. 11/736,908, assigned to LifeScan, Inc.
[0130] In one aspect of the present invention, cells expressing markers characteristic of the pancreatic endoderm lineage are further differentiated into cells expressing markers characteristic of the pancreatic endocrine lineage, by treating the cells expressing markers characteristic of the pancreatic endoderm lineage with a factor that inhibits the Notch signaling pathway, according to the methods disclosed in US patent application Ser. No. 11/779,311, assigned to LifeScan, Inc.
[0131] In one aspect of the present invention, cells expressing markers characteristic of the pancreatic endoderm lineage are further differentiated into cells expressing markers characteristic of the pancreatic endocrine lineage, by treating the cells expressing markers characteristic of the pancreatic endoderm lineage with a factor that inhibits the Notch signaling pathway, according to the methods disclosed in US patent application Ser. No. 60/953,178, assigned to LifeScan, Inc.
[0132] In one aspect of the present invention, cells expressing markers characteristic of the pancreatic endoderm lineage are further differentiated into cells expressing markers characteristic of the pancreatic endocrine lineage, by treating the cells expressing markers characteristic of the pancreatic endoderm lineage according to the methods disclosed in US patent application Ser. No. 60/990,529.
[0133] In one aspect of the present invention, the present invention provides a method for increasing the expression of markers associated with the pancreatic endocrine lineage comprising treating cells expressing markers characteristic of the pancreatic endocrine lineage with medium comprising a sufficient amount of a TGF-(3 receptor agonist to cause an increase in expression of markers associated with the pancreatic endocrine lineage according to the methods disclosed in US patent application Ser. No.
61/110,278.

Detection of Cells Expressing Markers Characteristic of the Pancreatic Endocrine Lineage
[0134] Markers characteristic of cells of the pancreatic endocrine lineage are well known to those skilled in the art, and additional markers characteristic of the pancreatic endocrine lineage continue to be identified. These markers can be used to confirm that the cells treated in accordance with the present invention have differentiated to acquire the properties characteristic of the pancreatic endocrine lineage.
Pancreatic endocrine lineage specific markers include the expression of one or more transcription factors such as, for example, NGN3, NEUROD, or ISL1.
[0135] Markers characteristic of cells of the R cell lineage are well known to those skilled in the art, and additional markers characteristic of the R cell lineage continue to be identified. These markers can be used to confirm that the cells treated in accordance with the present invention have differentiated to acquire the properties characteristic of the 3-cell lineage. R cell lineage specific characteristics include the expression of one or more transcription factors such as, for example, PDX1, NKX2.2, NKX6. 1, ISL1, PAX6, PAX4, NEUROD, HNF1 beta, HNF6, HNF3 beta, or MAFA, among others. These transcription factors are well established in the art for identification of endocrine cells. See, e.g., Edlund (Nature Reviews Genetics 3: 524-632 (2002)).
[0136] The efficiency of differentiation may be determined by exposing a treated cell population to an agent (such as an antibody) that specifically recognizes a protein marker expressed by cells expressing markers characteristic of the pancreatic endocrine lineage. Alternatively, the efficiency of differentiation may be determined by exposing a treated cell population to an agent (such as an antibody) that specifically recognizes a protein marker expressed by cells expressing markers characteristic of the R cell lineage.
[0137] Methods for assessing expression of protein and nucleic acid markers in cultured or isolated cells are standard in the art. These include quantitative reverse transcriptase polymerase chain reaction (RT-PCR), Northern blots, in situ hybridization (see, e.g., Current Protocols in Molecular Biology (Ausubel et al., eds. 2001 supplement)), and immunoassays such as immunohistochemical analysis of sectioned material, Western blotting, and for markers that are accessible in intact cells, flow cytometry analysis (FACS) (see, e.g., Harlow and Lane, Using Antibodies: A Laboratory Manual, New York: Cold Spring Harbor Laboratory Press (1998)).
[0138] In one aspect of the present invention, the efficiency of differentiation is determined by measuring the percentage of insulin positive cells in a given cell culture following treatment. In one embodiment, the methods of the present invention produce about 100% insulin positive cells in a given culture. In an alternate embodiment, the methods of the present invention produce about 90% insulin positive cells in a given culture. In an alternate embodiment, the methods of the present invention produce about 80% insulin positive cells in a given culture. In an alternate embodiment, the methods of the present invention produce about 70% insulin positive cells in a given culture. In an alternate embodiment, the methods of the present invention produce about 60% insulin positive cells in a given culture. In an alternate embodiment, the methods of the present invention produce about 50% insulin positive cells in a given culture. In an alternate embodiment, the methods of the present invention produce about 40% insulin positive cells in a given culture. In an alternate embodiment, the methods of the present invention produce about 30% insulin positive cells in a given culture. In an alternate embodiment, the methods of the present invention produce about 20% insulin positive cells in a given culture. In an alternate embodiment, the methods of the present invention produce about 10% insulin positive cells in a given culture. In an alternate embodiment, the methods of the present invention produce about 5% insulin positive cells in a given culture.
[0139] In one aspect of the present invention, the efficiency of differentiation is determined by measuring glucose-stimulated insulin secretion, as detected by measuring the amount of C-peptide released by the cells. In one embodiment, cells produced by the methods of the present invention produce about 1000ng C-peptide/pg DNA. In an alternate embodiment, cells produced by the methods of the present invention produce about 900ng C-peptide/pg DNA. In an alternate embodiment, cells produced by the methods of the present invention produce about 800ng C-peptide/pg DNA. In an alternate embodiment, cells produced by the methods of the present invention produce about 700ng C-peptide/pg DNA. In an alternate embodiment, cells produced by the methods of the present invention produce about 600ng C-peptide/pg DNA. In an alternate embodiment, cells produced by the methods of the present invention produce about 500ng C-peptide/pg DNA. In an alternate embodiment, cells produced by the methods of the present invention produce about 400ng C-peptide/pg DNA. In an alternate embodiment, cells produced by the methods of the present invention produce about 500ng C-peptide/pg DNA. In an alternate embodiment, cells produced by the methods of the present invention produce about 400ng C-peptide/pg DNA. In an alternate embodiment, cells produced by the methods of the present invention produce about 300ng C-peptide/pg DNA. In an alternate embodiment, cells produced by the methods of the present invention produce about 200ng C-peptide/pg DNA. In an alternate embodiment, cells produced by the methods of the present invention produce about 100ng C-peptide/pg DNA. In an alternate embodiment, cells produced by the methods of the present invention produce about 90ng C-peptide/pg DNA. In an alternate embodiment, cells produced by the methods of the present invention produce about 80ng C-peptide/pg DNA. In an alternate embodiment, cells produced by the methods of the present invention produce about 70ng C-peptide/pg DNA. In an alternate embodiment, cells produced by the methods of the present invention produce about 60ng C-peptide/pg DNA. In an alternate embodiment, cells produced by the methods of the present invention produce about 50ng C-peptide/pg DNA. In an alternate embodiment, cells produced by the methods of the present invention produce about 40ng C-peptide/pg DNA. In an alternate embodiment, cells produced by the methods of the present invention produce about 30ng C-peptide/pg DNA. In an alternate embodiment, cells produced by the methods of the present invention produce about 20ng C-peptide/pg DNA. In an alternate embodiment, cells produced by the methods of the present invention produce about lOng C-peptide/pg DNA.

Increasing Expression of MAFA in Cells Expressing Markers Characteristic of the Pancreatic Endocrine Lineage
[0140] In one embodiment, the present invention provides a method for increasing the expression of MAFA in cells expressing markers characteristic of the pancreatic endocrine lineage comprising the steps of culturing the cells expressing markers characteristic of the pancreatic endocrine lineage in medium comprising a sufficient amount of a cyclin-dependant kinase inhibitor to cause an increase in expression of MAFA.
[0141] The cyclin dependant kinase inhibitor may inhibit cyclin dependant kinase 1.
Alternatively, the cyclin dependant kinase inhibitor may inhibit cyclin dependant kinase 2. Alternatively, the cyclin dependant kinase inhibitor may inhibit cyclin dependant kinase 4. Alternatively, the cyclin dependant kinase inhibitor may inhibit cyclin dependant kinase 5. Alternatively, the cyclin dependant kinase inhibitor may inhibit cyclin dependant kinase 9. Alternatively, the cyclin dependant kinase inhibitor may inhibit multiple isoforms of cyclin dependant kinase, in any combination thereof.
[0142] The cyclin dependant kinase inhibitor may be a protein. Alternatively, the cyclin dependant kinase inhibitor may be a peptide. Alternatively, the cyclin dependant kinase inhibitor may be a small molecule. In one embodiment, the small molecule cyclin dependant kinase inhibitor is selected from the group consisting of 7-n-Butyl-6-(4-hydroxyphenyl)[5H]pyrrolo[2,3-b]pyrazine, 9-Nitro-7,12-dihydroindolo[3,2-d][1]benzazepin-6(5H)-one, 3-(6-Oxo-9-nitro-5,6,7,12-tetrahydroindolo[3,2-d][1]benzazepin-2-yl)propionitrile, (2R)-2-((6-((3-Amino-5-chlorophenyl)amino)-(1-methylethyl)-9H-purin-2-yl)amino)-3-methyl-l-butanol, Arcyriaflavin A, [6-Benzylamino-2-(3-hydroxypropylamino)-9-isopropylpurine, Butyrolactone I, (Z)-1-(3-Ethyl-5-methoxy-2,3-dihydrobenzothiazol-2-ylidene)propan-2-one, 2-(3-Hydroxypropylamino)-6-(o-hydroxybenzylamino)-9-isopropylpurine, 1-(2,6-Dichlorophenyl)-1,5-dihydro-6-((4-(2-hydroxyethoxy)phenyl)methyl)-3-(1-methylethyl)-4H-pyrazolo[3,4-d]pyrimidin-4-one, Cdk/ Cyclin Inhibitory Peptide III, 3 -(2 -Chloro-3 -indolylmethylene)- 1, 3 -dihydroindol-2 -one, Ethyl-(6-hydroxy-4-phenylbenzo[4,5]furo[2,3-b])pyridine-3-carboxylate, RO-3306, N-(cis-2-Aminocyclohexyl)-N-(3-chlorophenyl)-9-ethyl-9H-purine-2,6-diamine, 6-Cyclohexylmethoxy-2-(4'-sulfamoylanilino)purine, 5-Amino-3-((4-(aminosulfonyl)phenyl)amino)-N-(2,6-difluorophenyl)-1H-1,2,4-triazole-l-carbothioamide, 3-Amino-lH-pyrazolo[3,4-b]quinoxaline, Cdk2 Inhibitor I, Cdk2 Inhibitor II, 2(bis-(Hydroxyethyl)amino)-6-(4-methoxybenzylamino)-9-isopropylpurine, 4-(6-Cyclohexylmethoxy-9H-purin-2-ylamino)-N,N-diethylbenzamide, N4-(6-Aminopyrimidin-4-yl)-sulfanilamide, (4-(2-Amino-4-methylthiazol-5-yl)pyrimidin-2-yl)-(3-nitrophenyl)amine, 2-Bromo-12,13-dihydro-5H-indolo[2,3-a]pyrrolo[3,4-c]carbazole-5,7(6H)-dione, 1,4-Dimethoxyacridine-9(lOH)-thione, 5-(N-(4-Methylphenyl)amino)-2-methyl-4,7-dioxobenzothiazole, 4-(3,5-Diamino-1Hpyrazol-4-ylazo)-phenol, 2-(2-Hydroxyethylamino)-6-(3-chloroanilino)-9-isopropylpurine, Fascaplysin, Indirubin-3'-monoxime, Indirubin-3'-monoxime, 5-Iodo-, Indirubin-3'-monoxime-5-sulphonic Acid, Isogranulatimide, 2-(2-Hydroxyethylamino)-6-benzylamino-9-methylpurine, 6-(2-Hydroxybenzylamino)-2-((1R)-(hydroxymethyl)propyl)amino)-9-isopropylpurine, 5-Bromo-3-(2-(4-Fluorophenyl)-2-oxoethylidine)- 1, 3 -dihydroindol-2 -one, N6,N6-Dimethyladenine, 2-(1 R-Is opropyl-2-hydroxyethylamino)-6-(3 -chloroanilino)-9-isopropyl-purine, rapamycin, 2-(R)-(1-Ethyl-2-hydroxyethylamino)-6-benzylamino-9-isopropylpurine, Scytonemin, 3-[1-(3H-Imidazol-4-yl)-meth-(Z)-ylidene]-5-methoxy-1,3-dihydroindol-2-one, and 4-(3'-Hydroxyphenyl)amino-6,7-dimethoxyquinazoline.
[0143] In one embodiment, the cyclin dependant kinase is ethyl-(6-hydroxy-4-phenylbenzo[4,5]furo[2,3-b])pyridine-3-carboxylate. In one embodiment, ethyl-(6-hydroxy-4-phenylbenzo[4,5]furo[2,3-b])pyridine-3-carboxylate is added to cells expressing markers characteristic of the endocrine lineage at a concentration from about 0.1 M to about 10 M for about one to seven days.
[0144] In one embodiment, cells expressing markers characteristic of the endocrine lineage are treated with ethyl-(6-hydroxy-4-phenylbenzo[4,5]furo[2,3-b])pyridine-3-carboxylate for about one to about seven days.
[0145] The present invention is further illustrated, but not limited by, the following examples.

EXAMPLES
Example 1 Differentiation of Human Embryonic Stem Cells of the Cell Line Hl to Pancreatic Endocrine Cells in the Absence of Fetal Bovine Serum
[0146] Cells of the human embryonic stem cells line H 1 at passage 52 were cultured on MATRIGEL -coated dishes (1:30 dilution) and exposed to the following differentiation protocol, in order to differentiate the cells to cells expressing markers characteristic of the pancreatic endocrine lineage.

a. RPMI medium supplemented with 2% BSA (Catalog# 152401, MP
Biomedical, Ohio), and 100 ng/ml activin A (R&D Systems, MN) plus 20 ng/ml WNT-3a (Catalog# 1324-WN-002, R&D Systems, MN) plus 8 ng/ml of bFGF (Catalog# 100-18B, PeproTech, NJ), for one day followed by treatment with RPMI media supplemented with 2% BSA and 100 ng/ml activin A plus 8 ng/ml of bFGF for an additional two days (Stage 1), then b. DMEM/F 12 + 2% BSA + 50 ng/ml FGF7 + 0.25 M Cyclopamine- KAAD
(#239804, Calbiochem, CA) for two days (Stage 2), then c. DMEM/F12 + 1% B27 (Invitrogen, CA) + 50 ng/ml FGF7 + 0.25 M
Cyclopamine- KAAD + 2 M Retinoic acid (RA) (Sigma, MO) + 100 ng/ml of Noggin (R & D Systems, MN) for four days (Stage 3), then d. DMEM/F12 + 1% B27 (Invitrogen, CA) + 100 ng/ml Noggin + 1 M DAPT
(a gamma-secretase inhibitor) (Catalog# 565784, Calbiochem, CA) + 1 M
ALKS inhibitor II (Catalog# 616452, Calbiochem, Ca) + 100 ng/ml of Netrin-4 (R&D Systems, MN) for three days (Stage 4), then e. DMEM/F12 + 1% B27 (Invitrogen, CA) + 1 M ALKS inhibitor II
(Calbiochem, Ca) for seven days (Stage 5).
[0147] Medium was changed daily. At each stage the cell number was calculated using a hemocytometer and RNA was collected for PCR analysis. All samples were collected in triplicate.

Example 2 Screening of the Effects of Compounds from the EMD Kinase Inhibitor Library II on Cells that have been Treated according to the Differentiation Protocol Outlined in Example 1
[0148] Cells of the human embryonic stem cell line H1 at passage 44 were seeded onto MATRIGELTM coated 24-well dishes (1:30 dilution), and differentiated according to the methods described in Example 1 up to stage 5. Following this, the cells were treated for four days in DMEM/F12 + 1% B27 containing a compound from an EMD
Calbiochem compound library (Catalog# 539745, Calbiochem, San Diego, Ca) at a final concentration of 1 M. Wells containing vehicle were included as a control.
Throughout the protocol media was changed daily. All samples were treated in duplicate. At the completion of this treatment RNA was collected for PCR
analysis.
Samples were analyzed by real-time PCR for expression of insulin, glucagon, MAFA, and Arx4. Results are expressed as a ratio insulin/glucagon (Figure 1, panel a), or MAFA versus ARX4 (Figure 1, panel b) of the treated samples relative to the untreated control, as measured by real-time PCR. The corresponding PubChem Compound ID# for each well # is listed in Table 1.
[0149] Treatment of cells expressing markers characteristic of the pancreatic endocrine lineage with compounds A6, B7, B8, or C2 at a 1 M concentration resulted in an insulin/ glucagon expression ratio of approximately 3.0 or higher (see Figure 1, panel a).
[0150] We next examined the effect of these compounds on the ratio of MAFA/ARX4, and we observed that treatment of cells expressing markers characteristic of the pancreatic endocrine lineage with several of the compounds resulted in a much greater change in the ratio of MAFA to ARX4 than other compounds tested in the library: Cells treated with compound C2 showed a ratio of MAFA/ARX4 of approximately 1000.
Treatment of cells expressing markers characteristic of the pancreatic endocrine lineage with compound C2 resulted in a MAFA/ARX4 ratio of approximately 100.
(See Figure 1, panel b).

Example 3 The Effects of Cyclin Dependant Kinase Inhibitor Treatment on Insulin and MAFA Expression in Cells that have been Treated according to the Differentiation Protocol Outlined in Example 1
[0151] Several of the compounds that increased the ratio of insulin to glucagon expression, or MAFA to ARX4 expression in Example 2 were cyclin dependant kinase inhibitors.
One such compound was PubChem Compound ID# 5330797 (5-Amino-3-((4-(aminosulfonyl)phenyl)amino)-N-(2,6-difluorophenyl)-1H-1,2,4-triazole-l-carbothioamide) (Catalogue # 217714; Calbiochem, San Diego, Ca). To confirm these observations, cells of the human embryonic stem cell line H1 at passage 42 were cultured in 10cm2 MATRIGEL -coated dishes and treated according to the methods described in Example 1 up to stage 5. After stage 5, the cells were treated with DMEM/F12 containing 1% B27 containing 1 M PubChem Compound ID# 5330797 for six days. Medium was changed every other day. Samples of cells were taken for real-time PCR prior to treatment with the compound, and at days two and five of compound treatment.
[0152] Characteristic micrographs of the cells at day 4 or day 6 of compound treatment versus untreated controls are shown in Figure 2. Untreated cells are highly packed (Figure 3, panels a and d) and it is difficult to distinguish individual cells. However, after treatment with 0.5 M or 1 M of PubChem Compound ID#5330797 for six days, individual nuclei became visible (Figures 2, panels e and f) as compared to the untreated control (Figure 2, panel d), indicating that there was differentiation occurring in the cell population. This was also accompanied by some cell death, which can be seen by gaps in the layer of cells as shown in Figure 2, panels b and c.
[0153] Treatment of cells with PubChem Compound ID# 5330797 resulted in the increase in expression of insulin, glucagon, MAFA, MAFB and somatostatin, albeit to differing degrees. The relative induction of gene expression per treatment as compared to day 0 (pretreatment) cultures is shown in Figures 3, panels a-v. Cells expressing markers characteristic of the pancreatic endocrine lineage that were treated with 1 M
PubChem Compound ID# 5330797 resulted in an approximately 1.5 fold increase in glucagon expression at 48 hrs of treatment. This expression declined to below pretreatment levels after 5 days of treatment. No increase in glucagon expression was observed with treatment of 0.5 M PubChem Compound ID# 5330797. (See Figure 3, panel a).
[0154] Cells expressing markers characteristic of the pancreatic endocrine lineage that were treated with 1 M PubChem Compound ID# 5330797 for five days resulted in an approximately 1.5 fold increase in insulin expression. (See Figure 3, panel b).
[0155] Cells expressing markers characteristic of the pancreatic endocrine lineage that were treated with 1 M PubChem Compound ID# 5330797 for five days resulted in an approximately 200 fold increase in MAFA expression. (See Figure 3, panel d).
[0156] Cells expressing markers characteristic of the pancreatic endocrine lineage that were treated with 0.5 M PubChem Compound ID# 5330797 for five days resulted in an approximately 1.5 fold increase in MAFB expression. (See Figure 3, panel c). A
dose-dependent increase in the expression of somatostatin was observed (Figure 3, panel e).
[0157] No change in the expression of amylase was observed in cells expressing markers characteristic of the pancreatic endocrine lineage that were treated with PubChem Compound ID# 5330797 for five days. (See Figure 3, panel f). However, decreases in the level of expression of PAX4 (Figure 3, panel h), NKX6.1 (Figure 3, panel k), PDX1 (Figure 3, panel 1), NEUROD (Figure 3, panel o), and BRN4 (Figure 3, panel q) was observed.

Example 4 Cyclin Dependant Kinase Inhibitor Treatment Increased the Expression of MAFA in Islet-Like Clusters.
[0158] Cells of the human embryonic stem cell line H1 at passage 52 were cultured on MATRIGEL coated dishes (1:30 dilution) and differentiated according to the methods described in Example 1. An additional stage (Stage 6) was added, in order to further mature the cells expressing markers characteristic of the pancreatic endocrine lineage. Stage 6 in this example consisted of a seven day treatment in DMEM/F12 +
1% B27 (Invitrogen, CA). The medium was changed daily.
[0159] After stage 6, the cells were treated for 5 mins at room temperature with 1X accutase (Sigma, MO). The accutase was removed, and DMEM/12 + 1% B27 was added to the cells. The attached cells were removed using a cell scarper and gently resuspended and passed through a 40 m cell strainer. The cells retained on the strainer were removed by rinsing in basal media and cultured in suspension on Ultra-Low culture plates (Catalogue# 3471, Corning, Ma). The cells were then treated as follows: The cells were cultured in DMEM/F12 + 1 % B27, containing 20 ng/ml of activin A (AA), 1 m of CDK inhibitor III (Catalog# 217714, Calbiochem, Ca) for 10 days (Stage 7). Cells treated with vehicle were included as controls. Samples were collected at days 7 through 10 for PCR analysis and dithizone staining. The cells cultured in suspension according to the methods outlined in this example assumed a morphology similar to pancreatic islet clusters. Treatment with CDK inhibitor III did not appear to affect the morphology of the islet like clusters.
[0160] Figure 4, panels a-i shows the effect of CDK inhibitor III treatment on gene expression profile of the cell clusters. Treatment with of CDK inhibitor III
increased the expression of markers associated with the pancreatic endocrine lineage and in particular increased the expression of the pro-insulin transcription factor, MAFA.
[0161] Figure 5, panels a-b shows the effect of CDK inhibitor III on dithazone (DTZ) staining of clusters. Cell clusters treated with CDK inhibitor and stained with DTZ, showed a more reddish staining pattern as compared to clusters not treated with the CDK inhibitor III.

Example 5 FACS Analysis of Insulin Producing Cells Produced by the Methods of the Present Invention.
[0162] Cells of the human embryonic stem cell line H1 at passage 42 were cultured on MATRIGEL -coated plates, and differentiated into insulin producing cells using the following protocol:

a. RPMI medium supplemented with 2% BSA (Catalog# 152401, MP
Biomedical, Ohio), and 100 ng/ml activin A (R&D Systems, MN) plus 20 ng/ml WNT-3a (Catalog# 1324-WN-002, R&D Systems, MN) plus 8 ng/ml of bFGF (Catalog# 100-18B, PeproTech, NJ), for one day followed by treatment with RPMI media supplemented with 2% BSA and 100 ng/ml activin A plus 8 ng/ml of bFGF for an additional two days (Stage 1), then b. DMEM/F 12 + 2% BSA + 50 ng/ml FGF7 + 0.25 M Cyclopamine- KAAD
(#239804, Calbiochem, CA) for two days (Stage 2), then c. DMEM/F12 + 1% B27 (Invitrogen, CA) + 50 ng/ml FGF7 + 0.25 M
Cyclopamine- KAAD + 2 M Retinoic acid (RA) (Sigma, MO) + 100 ng/ml of Noggin (R & D Systems, MN) for four days (Stage 3), then d. DMEM/F12 + 1% B27 (Invitrogen, CA) + 100 ng/ml Noggin + 1 M DAPT
(a gamma-secretase inhibitor) (Catalog# 565784, Calbiochem, CA) + 1 M
ALK5 inhibitor II (Catalog# 616452, Calbiochem, Ca) + 100 ng/ml of Netrin-4 (R&D Systems, MN) for three days (Stage 4), then e. DMEM/F12 + 1% B27 (Invitrogen, CA) + 1 M ALK5 inhibitor II
(Calbiochem, Ca) for seven days (Stage 5), then f. DMEM/F12 + 1% B27 for seven days (Stage 6), then g. Treatment with Accutase for 5 minutes, followed by scraping to remove any remaining attached cells. The cell suspension was then passed through a 40 m cell strainer. The cells retained on the strainer were removed by rinsing in basal media and cultured in suspension on Ultra-Low culture plates in DMEM-High Glucose (Catalogue# 11995-073, Invitrogen, Ca) + 1 % B27 +
20 ng/ml of activin A (AA) 1 m of CDK inhibitor III (Catalog# 217714, Calbiochem, Ca) for 5 days (Stage 7).
[0163] Islet-like clusters were dispersed into single cells using TrypLE
Express (Invitrogen, Carlsbad, CA) and washed in cold PBS. For fixation, the cells were resuspended in 200-300 l Cytofix/Cytoperm Buffer (BD 554722, BD, Ca) and incubated for 30 min at 4 C. Cells were washed two times in 1 ml Perm/Wash Buffer Solution (BD
554723) and resuspended in 100 l staining/blocking solution containing 2%
normal goat serum in Perm/Wash buffer. For flow cytometric analysis, cells were stained with the following primary antibodies: Anti-Insulin (Rabbit mAb, Cell Signaling No.

C27C9; 1:100 dilution); Anti-Glucagon (Mouse Mab, Sigma No. G2654, 1:100);
Anti-Synaptophysin (Rabbit Polyclonal antibody, DakoCytomation No A0010, 1:50).
Cells were incubated for 30 min at 4 C followed by two washes in Perm/Wash buffer and a further 30 min incubation in appropriate secondary antibodies as follows: Goat anti-Rabbit Alexa 647 (Invitrogen No. A21246) or Goat anti-Mouse 647 (Invitrogen No. A21235); Goat anti-Rabbit R-PE (BioSource No. AL14407). All secondary antibodies were used at a 1:200 dilution. Cells were washed at least once in Perm/Wash buffer and analyzed using BD FACSArray. At least 10,000 events were acquired for analysis. Controls included undifferentiated H1 cells and the 3-TC
(CRL-11506TH ATCC, VA) cell line.
[0164] Figure 6, panels a-c show the percentage insulin positive, synapthophysin positive, and glucagon positive cells in cells following treatment with Stage 7, in medium containing vehicle. Figure 7, panels a-c shows the percentage insulin positive, synapthophysin positive, and glucagon positive cells following treatment with Stage 7 in medium containing 1 M CDK inhibitor III for 5 days. The number of single hormonal insulin positive cells increased from 3% to 8% following treatment with the CDK inhibitor. Additionally, the percentage of poly hormonal (insulin and glucagon positive) cells decreased following treatment with the CDK inhibitor.

Example 6 Kinetics of CDK Inhibitor-Induced MAFA Expression.
[0165] Cells of the human embryonic stem cell line H1 at passage 42 were cultured on MATRIGEL -coated plates, and differentiated into insulin producing cells using the following protocol:

a. RPMI medium supplemented with 2% BSA (Catalog# 152401, MP
Biomedical, Ohio), and 100 ng/ml activin A (R&D Systems, MN) plus 20 ng/ml WNT-3a (Catalog# 1324-WN-002, R&D Systems, MN) plus 8 ng/ml of bFGF (Catalog# 100-18B, PeproTech, NJ), for one day followed by treatment with RPMI media supplemented with 2% BSA and 100 ng/ml activin A plus 8 ng/ml of bFGF for an additional two days (Stage 1), then b. DMEM/F 12 +2% BSA + 50 ng/ml FGF7 + 0.25 M Cyclopamine- KAAD
(#239804, Calbiochem, CA) for two days (Stage 2), then c. DMEM/F12 + 1% B27 (Invitrogen, CA) + 50 ng/ml FGF7 + 0.25 M
Cyclopamine- KAAD + 2 M Retinoic acid (RA) (Sigma, MO) + 100 ng/ml of Noggin (R & D Systems, MN) for four days (Stage 3), then d. DMEM/F12 + 1% B27 (Invitrogen, CA) + 100 ng/ml Noggin + 1 M DAPT
(a gamma-secretase inhibitor) (Catalog# 565784, Calbiochem, CA) + 1 M
ALKS inhibitor II (Catalog# 616452, Calbiochem, Ca) + 100 ng/ml of Netrin-4 (R&D Systems, MN) for three days (Stage 4), then e. DMEM/F12 + 1% B27 (Invitrogen, CA) + 1 M ALKS inhibitor II
(Calbiochem, Ca) for seven days (Stage 5), then f. DMEM/F12 + 1% B27 for seven days (Stage 6), then g. Treatment with Accutase for 5 minutes, followed by scraping to remove any remaining attached cells. The cell suspension was then passed through a 40 m cell strainer. The cells retained on the strainer were removed by rinsing in basal media and cultured in suspension on Ultra-Low culture plates in DMEM-High Glucose (Catalogue# 11995-073, Invitrogen, Ca) + 1 % B27 +
20 ng/ml of activin A (AA) 2 pm of CDK inhibitor III (Catalog# 217714, Calbiochem, Ca) for 1-8 days (Stage 7).
[0166] Samples were collected for PCR analysis at days 1, 2, 3, and 4.
Following 4 days of treatment with CDK inhibitor, the CDK inhibitor was removed from culture and the cells were cultured additional 4 days in DMEM-F12 + 1% B27 + 20 ng/ml of activin A. At the end of the four days, samples were collected in triplicate for PCR
analysis.
[0167] Figure 8, panels a-b show expression pattern of MAFA and insulin at various time points of stage 7. CDK inhibitor treatment resulted in significant increase in MAFA
and insulin expression which increased as a function of time. However, removal of CDK inhibitor resulted in a significant drop to both MAFA and insulin expression, in samples obtained four days after removal of the compound.

Example 7 Screening of the Effects of Compounds from the BIOMOLTM Kinase Inhibitor Library on Cells that have been Treated According to the Differentiation Protocol Outlined in Example 1.
[0168] Cells of the human embryonic stem cell line H1 at passage 51 were seeded onto MATRIGEL -coated 24-well dishes (1:30 dilution), and differentiated according to the methods described in Example 1 up to stage 5. Following this, the cells were grown for one day in DMEM/F12 + 1% B27 and then treated for six days in DMEM/F12 + 1% B27 containing a compound from a BIOMOLTM compound library (Catalog# 2832, BIOMOL, Plymouth Meeting, Pa) at a final concentration of 4 M.
Wells containing vehicle were included as a control. Throughout the treatment protocol media containing vehicle or compound was changed every other day. All samples were treated in duplicate. At the completion of this treatment RNA was collected for PCR analysis. Samples were analyzed by real-time PCR for expression of insulin, glucagon, MAFA, and ARX4. Results are expressed as a ratio insulin/glucagon (Table 2), or MAFA versus Arx4 (Table 2) of the treated samples relative to the untreated control, as measured by real-time PCR. The corresponding catalog#, CAS#, and compound name or ID number for each alpha numeric well# is listed in Table 3.
[0169] Treatment of cells expressing markers characteristic of the pancreatic endocrine lineage with compounds C8 or F1 at a 4 M concentration resulted in an insulin/
glucagon expression ratio of approximately 10.0 or higher. Cells treated with D9 had an insulin/ glucagon expression ratio of approximately 1840.0 (Table 2).
[0170] We next examined the effect of these compounds on the ratio of MAFA/ARX4, and we observed that treatment of cells expressing markers characteristic of the pancreatic endocrine lineage with several of the compounds resulted in a much greater change in the ratio of MAFA to ARX4 than other compounds tested in the library: Cells treated with compound B6 or F1 showed a ratio of MAFA/ARX4 of approximately greater than 10. Treatment of cells expressing markers characteristic of the pancreatic endocrine lineage with compound C8 resulted in a MAFA/ ARX4 ratio of approximately 84, while cells treated with D9 had a MAFA/ ARX4 ratio of approximately 212. (Table 2).

Example 8 The Effect of Cyclin Dependant Kinase Inhibitors on Insulin and MAFA
Expression in Cells Treated according to the Differentiation Protocol Outlined in Example 1.
[0171] Cells of the human embryonic stem cell line H1 at passage 51 were seeded onto MATRIGELTM coated 24-well dishes (1:30 dilution), and differentiated according to the methods described in Example 1 up to stage 5. Following this, the cells were grown for eight days in DMEM/F12 + 1% B27 and then treated for four days in DMEM/F 12 + 1% B27 containing a cyclin dependent kinase inhibitor at a final concentration of 0.6125, 1.25, or 5.0 M. We tested 6 inhibitors: PubChem ID#
5330812 (EMD cat# 217714), PubChem ID# 4566 (EMD cat#217713), PubChem ID#
5330797 (EMD cat# 219476), PubChem ID# 73292 (EMD cat#341251), PubChem ID# 4592 (EMD cat#495620), and PubChem ID# 160355 (EMD cat #557360). Wells containing vehicle were included as a control. Throughout the treatment protocol media containing vehicle or compound was changed every other day. All samples were treated in duplicate. At the completion of this treatment RNA was collected for PCR analysis. Samples were analyzed by real-time PCR for expression of insulin, glucagon, MAFA, and ARX4. Results are expressed as the fold change relative to the vehicle treated control, as measured by real-time PCR.
[0172] We observed that the compounds PubChem ID# 5330812, PubChem ID# 4566, PubChem ID# 5330797, and PubChem ID# 73292 all stimulated MAFA expression at the concentrations tested (Table 4). PubChem ID# 4592 and PubChem ID# 160355 did not stimulate MAFA at the concentrations tested (Table 4). The compounds PubChem ID# 5330812, PubChem ID# 4566, PubChem ID# 5330797, PubChem ID#
4592 and PubChem ID# 160355 all appeared to stimulate insulin expression (Table 4). The compound PubChem ID# 5330797 reduced both glucagon and Arx4 expression (Table 4) while stimulating MAFA expression.

Example 9 Differentiation of Human Embryonic Stem Cells of the Cell Line Hl to Pancreatic Endocrine Cells with DMEM containing 25mM glucose (DMEM-HG), Lacking Fetal Bovine Serum
[0173] Cells of the human embryonic stem cells line H 1 were cultured on MATRIGEL -coated dishes (1:30 dilution) and differentiated into cells expressing markers characteristic of the pancreatic endocrine lineage using the following protocol:

a. RPMI medium supplemented with 2% BSA (Catalog# 152401, MP
Biomedical, Ohio), and 100 ng/ml activin A (R&D Systems, MN) plus 20 ng/ml WNT-3a (Catalog# 1324-WN-002, R&D Systems, MN) plus 8 ng/ml of bFGF (Catalog# 100-18B, PeproTech, NJ), for one day followed by treatment with RPMI media supplemented with 2% BSA and 100 ng/ml activin A plus 8 ng/ml of bFGF for an additional two days (Stage 1), then b. RPMI medium supplemented with 2% BSA + 50 ng/ml FGF7 + 0.25 M
Cyclopamine- KAAD (#239804, Calbiochem, CA) for two days (Stage 2), then c. DMEM-HG + 1% B27 (Invitrogen, CA) + 50 ng/ml FGF7 + 0.25 M
Cyclopamine- KAAD + 2 M Retinoic acid (RA) (Sigma, MO) + 100 ng/ml of Noggin (R & D Systems, MN) for six days (Stage 3), then d. DMEM-HG + 1% B27 (Invitrogen, CA) + 100 ng/ml Noggin + 1 M ALKS
inhibitor II (Catalog# 616452, Calbiochem, Ca) for three days (Stage 4), then e. DMEM-HG + 1% B27 (Invitrogen, CA) + 1 M ALKS inhibitor II
(Calbiochem, Ca) for seven days (Stage 5).
[0174] Medium was changed daily. At each stage the cell number was calculated using a hemocytometer and RNA was collected for PCR analysis. All samples were collected in triplicate.

Example 10 Screening of the Effects of Compounds from the EMD Kinase Inhibitor Library I on Cells Treated according to the Differentiation Protocol Outlined in Example
[0175] Cells of the human embryonic stem cell line H1 at passage 45 were seeded onto MATRIGEL -coated 24-well dishes (1:30 dilution), and differentiated according to the methods described in Example 9 up to stage 5. Following this, the cells were fed and treated on day 1, 3, and 5 of stage 5 with media comprising DMEM-HG, 1%

(Invitrogen, CA), 1 M ALKS inhibitor II (Calbiochem, Ca) and a compound from an EMD Calbiochem compound library 1 solubilized in DMSO (Catalog# 539744, Calbiochem, San Diego, Ca) and treated at a final concentration of 2.5 M.
Wells containing vehicle were included as a control. Throughout the protocol media was changed daily except at stage 5 when media was changed every other day. All samples were treated in duplicate.
[0176] At the completion of this treatment RNA was collected for PCR analysis.
Samples were analyzed by real-time PCR for expression of MAFA. Results are expressed as the fold increase in MAFA expression versus untreated H1 human embryonic stem cells (Table 5), as measured by real-time PCR.
[0177] Treatment of cells expressing markers characteristic of the pancreatic endocrine lineage with compounds A4 (Cat#, 124001, Akt Inhibitor IV), E8 (Cat# 527450, PKR
Inhibitor), and F9 (Cat#539648, Staurosporine, N-benzoyl-) at a 2.5 M
concentration resulted in an increase in MAFA expression at least 4 fold higher than vehicle treated controls (Table 5). Treatment with the compound E6 (Cat# 521233, PDGF Receptor Tyrosine Kinase Inhibitor IV) at a 2.5 M concentration resulted in an increase in MAFA expression at least 2.5 fold higher than vehicle treated controls (Table 5).

Example 11 Screening of the Effects of Compounds from the EMD Kinase Inhibitor Library II on Cells Treated according to the Differentiation Protocol Outlined in Example 9
[0178] Cells of the human embryonic stem cell line H1 at passage 46 were seeded onto MATRIGEL -coated 24-well dishes (1:30 dilution), and differentiated according to the methods described in Example 9 up to stage 5. Following this, the cells were fed and treated on day 1, 3, and 5 of stage 5 with media comprising DMEM-HG, 1%

(Invitrogen, CA), 1 M ALKS inhibitor II (Calbiochem, Ca) (Stage 5) and a compound from an EMD Calbiochem compound library II solubilized in DMSO
(Tables 1 and 6, Calbiochem, San Diego, Ca) and treated at a final concentration of 2.5 M. Wells containing vehicle were included as a control. Throughout the protocol media was changed daily except at stage 5 when media was changed every other day. All samples were treated in duplicate.
[0179] At the completion of this treatment RNA was collected for PCR analysis.
Samples were analyzed by real-time PCR for expression of MAFA. Results for compounds that stimulated the expression of MAFA are shown and expressed as the fold increase in MAFA expression versus control samples (Figure 9), as measured by real-time PCR.
[0180] Treatment of cells expressing markers characteristic of the pancreatic endocrine lineage with either: Alsterpaullone, 2-Cyanoethyl; SU9516; Alsterpaullone;
Cdkl/2 Inhibitor III; Casein Kinase I Inhibitor, D4476; or MEK1/2 Inhibitor at a 2.5 M
concentration resulted in a 4.5 fold increase in MAFA expression versus untreated controls (Table 7).

Example 12 Inhibiting Cell Cycle Progression in Cells Expressing Markers Characteristic of the Pancreatic Endocrine Lineage with Small Molecule Inhibitors Promotes MAFA Expression in Cells Expressing Markers Characteristic of the Pancreatic Endocrine Lineage
[0181] Cell growth resulting from cell cycle progression can be activated and maintained by stimulating cells with extracellular growth factors. Growth factors bind to the extracellular domains of growth factor receptors, inducing a conformational switch in the receptor's intracellular domain. This shift initiates receptor dimerization and activation of tyrosine kinases located on the intracellular domain of the receptor leading to phosphorylation and activation of multiple serine/threonine kinases downstream, ultimately resulting in cell cycle progression and cell proliferation.
[0182] Under normal physiologic conditions mature pancreatic beta cells, characterized by expression of insulin and the transcription factor MAFA, are quiescent and tend to remain in GO of the cell cycle. Yet, in order to generate enough cells to form a functional organ and meet the needs of a mature animal, the cells expressing markers characteristic of the pancreatic endocrine lineage of the present invention must be cell cycling. Consequently, at some point in embryonic development, the cells expressing markers characteristic of the pancreatic endocrine lineage of the present invention differentiate to beta cells and transition from an actively cell-cycling proliferating cell, to a quiescent cell.
[0183] Our data indicate that by inhibiting cell cycle progression by blocking signaling cascades with small molecule kinase inhibitors, we can induce the cells expressing markers characteristic of the pancreatic endocrine lineage to express MAFA, a marker of mature pancreatic beta cells. Kinase inhibitors targeted to a growth factor receptor, (PDGF Receptor Tyrosine Kinase Inhibitor IV), or inhibitors which disrupt kinases downstream of tyrosine kinase receptors (MEK1/2 Inhibitor, PKR Inhibitor, or Akt Inhibitor IV) disrupt proliferative growth factor/kinase based signaling resulting in cell cycle arrest and induction of MAFA expression. Use of a broad spectrum inhibitor like staurosporine, can effectively induce MAFA, however it is also cytotoxic at effective concentrations. More directed compounds like cyclin dependent kinase inhibitors (Alsterpaullone, 2-Cyanoethyl; SU9516; Alsterpaullone; or Cdkl/2 Inhibitor III) induce MAFA with less toxicity than a broad spectrum inhibitor like staurosporine.
[0184] In order to determine if a broad spectrum kinase inhibitor could induce MAFA
expression and a more mature phenotype in the cells expressing markers characteristic of the pancreatic endocrine lineage of the present invention we differentiated human ES cells according to the methods described in example 9, and treated them on days 1, 3, and 5 of stage 5 with the protein-tyrosine kinase inhibitor, Genistein, which has been shown to induce G2 phase arrest in human and murine cell lines and inhibit multiple kinases. At doses of 10 and 30ng/ml the endocrine hormones insulin, somatostatin, and the transcription factor MAFA, all showed increased expression versus untreated controls, while at IOng/ml the endocrine hormone glucagon had increased expression (Figure 10). We observed significant toxicity at a 100ng/ml dose of genistein that correlated with loss of insulin, glucagon, and somatostatin expression.
[0185] These data indicate that by inhibiting cell cycle progression by blocking signaling cascades with small molecule kinase inhibitors targeted to inhibit signal transduction from a growth factor receptor tyrosine kinase through intracellular signaling kinases to the nucleus and cyclin dependent kinases, we can induce the cells expressing markers characteristic of the pancreatic endocrine lineage of the present invention to express MAFA, a marker of mature pancreatic beta cells.
[0186] Publications cited throughout this document are hereby incorporated by reference in their entirety. Although the various aspects of the invention have been illustrated above by reference to examples and preferred embodiments, it will be appreciated that the scope of the invention is defined not by the foregoing description but by the following claims properly construed under principles of patent law.

tic o .
4.1 c~ o A

o c ti N Q U ti No N (S7 M ( C) E (.n v- Ca (c ( CF) M I ti co C0 E 3 N ice- M
r= co as M 0 C:, t~ (a 00 N N 0 (0 -- (D
a) M N M 00 M 00 U o r- ;-- IC) N (t) Y, fi i M in in Y~ i() F N (t) ml (D -It Ln~ m .01 in~ 0) 0 x N M in (C I- M C) N CO 'IT In (C I-- 00 C) o 0 0 0 0 0 0 0 0 0=_________ 0 N- (.n as -- ( ( (n --- C
CfS; co (o C J y co 00 M {) M N tt = C) N
d o (D to M M r,- 0) ~ co co J N M
M "4- C~ M m co M o Chi 31F M (.0 r:õ C
It 0 M 0 00 O N m N in CM ct 1. q.
C ¾
(f) Lm , LO :.C. 3 0) ec _ Cfl in co a) Ln ((7 N co (C) (C N- 00 C) O N M (f) (C N- 00 C) U U U U U U U U U U U U U U U U U U CD CD
E i m (? N LO co e LO o; (C sr Ca 'N C, qty (C
~~ 37) M (Do N Co CS C (N C0 a0 (N et 0) C0 h N In C) 3 - 0 N tt (; N `" co N ((7 00 C M N c CC) a) M
(C co N Ca C0 C ~~ C) U ¾a rM ssy a M, (D Ca (.n (t) In N (.n (.n (e) C co 0) in N M "T in (0 N- 00 C) N M (f) (0 N- 00 C) m m m m m m m m m m LL LL LL LL LL LL LL LL LL LL
in LO
a); CC
M CS) M I`- (CJ ( KV' M
N! CC) C3 (S J Cr N ( M S 3 M co CC) (0 (f? (Xi 0 n i M N d' co 0 C5) C': N-M. C0 tt' f (,n N C0 CO in in YL2 0) N 01, S) M 0) 00 in (L) (0 N (.n L(7 (D N (0 U ; (N (C C r N (C L-- M C0 a v-- ~¾
LO co in (r) M c m (s) w w a) (n (() N N M in (0 N- 00 C) N M in (0 N- 00 C ) <<<<<<<< < W W W W W W W W w w Table 2. The Effect of compounds of the BIOMOL Inhibitor compound library on the Ratio ofInsulin/glucagon and MAFA/Arx4 expression as determined by real-time PCR in Cells Expressing Markers Characteristic of the Pancreatic Endocrine Lineage. The AlphaNumeric well# corresponds to the compound identity in Table 3.

Ratio vs. Control Well # Insulin to GlucagonMAFA to Arx4 B1 1.6 0.9 B2 2.4 1.3 B3 2.9 2.9 B4 1.1 2.0 B5 1.3 1.3 B6 1.6 16.3 B7 1.3 0.5 B8 1.6 0.5 B9 1.1 1.5 B10 1.2 1.5 1311 1.1 2.1 B12 1.0 2.0 Cl 0.7 0.8 C2 0.9 1.0 C3 1.3 0.9 C4 1.2 1.7 C5 1.0 1.1 C6 1.6 1.2 C7 4.3 0.2 C8 40.2 84.3 C9 0.8 0.5 C10 2.3 1.9 Cli 1.1 0.4 C12 1.0 0.4 D1 2.7 1.2 D2 3.4 1.3 D3 1.7 2.1 D4 5.8 6.4 D5 1.4 1.1 D6 1.8 3.9 D7 1.7 0.6 D8 2.8 5.1 D9 1842.5 212.6 D10 0.9 1.3 D11 1.0 0.7 D12 1.1 2.5 El 1.1 0.9 E2 0.8 0.8 E3 1.2 1.0 E4 2.1 1.3 E5 1.3 1.1 E6 2.0 1.5 E7 4.8 0.2 E8 3.7 0.0 E9 1.0 0.8 E10 0.6 0.2 Ell 1.0 0.3 E12 0.8 0.2 Fl 10.3 9.5 F2 2.9 1.9 F3 2.6 2.5 F4 1.5 2.7 F5 1.9 1.4 F6 1.6 1.2 F7 1.9 0.6 F8 1.5 0.6 F9 1.0 1.4 F 10 5.4 3.4 Fli 0.8 1.9 F12 1.0 1.4 G1 0.8 1.2 G2 0.6 1.1 G3 2.0 1.6 G4 1.3 1.6 G5 1.7 1.5 G6 1.5 1.3 G7 4.6 0.2 G8 3.9 0.4 G9 1.0 0.7 G10 1.3 0.7 Gil 1.9 0.6 G12 1.4 0.8 H1 3.1 0.6 H2 1.8 3.5 H3 1.8 3.9 H4 1.2 4.0 H5 1.8 2.0 H6 1.4 2.9 H7 1.5 0.6 H8 2.1 0.8 vehicle control 1.0 1.0 Table 3. AlphaNumeric Well Label and the Corresponding Catalog#, CAS#, and Compound Name or ID Number for the BIOMOL Kinase Inhibitor compound library PLATE LOCATION CATALOG # CAS # COMPOUND NAME OR ID
NUMBER

B6 EI-156 62996-74-1 Staurosporine B9 EI-185 125697-92-9 Lavendustin A

B11 El- 191 118409-57-7 Tyrphostin 23 B12 EI-187 118409-58-8 Tyrphostin 25 C1 EI-257 122520-85-8 Tyrphostin 46 C2 EI-188 122520-86-9 Tyrphostin 47 C3 EI-189 122520-90-5 Tyrphostin 51 C4 El- 190 2826-26-8 Tyrphostin 1 C5 EI-335 116313-73-6 Tyrphostin AG 1288 C6 EI-277 63177-57-1 Tyrphostin AG 1478 C7 AC-1133 71897-07-9 Tyrphostin AG 1295 C8 EI-215 10537-47-0 Tyrphostin 9 C9 EI-247 HNMPA (Hydroxy-2-naphthalenylmethylphosphonic acid) C11 EI-271 10083-24-6 Piceatannol D6 ST-415 19545-26-7 Wortmannin D8 EI-226 548-04-9 Hypericin D9 EI-283 138489-18-6 Ro 31-8220 D10 EI-155 123-78-4 Sphingosine El EI-184 91742-10-8 HA-1004 E3 EI-232 HDBA (2-Hydroxy-5-(2,5-dihydroxybenzylamino)benzoic acid) E8 CC-100 452-06-2 2-Aminopurine E9 CC-202 158982-15-1 N9-Isopropyl-olomoucine ElO CC-200 101622-51-9 Olomoucine Ell CC-201 101622-50-8 iso-Olomoucine E12 CC-205 186692-46-6 Roscovitine Fl EI-293 24386-93-4 5-lodotubercidin F9 AC-1121 6865-14-1 Palmitoyl-DL-carnitine Cl F 10 EI-270 82-08-6 Rottlerin F11 EI-147 446-72-0 Genistein F12 ST-110 486-66-8 Daidzein G1 El- 146 63177-57-1 Erbstatin analog G2 AC-1142 6151-25-3 Quercetin dihydrate G6 EI-231 53-85-0 DRB (5,6-Dichloro-1-0-D-ribofuranosylbenzimidazole) G7 EI-273 HBDDE (2,2',3,3',4,4'-Hexahydroxy-1,1'-biphenyl-6,6'-dimethanol dimethyl ether) G9 CC-206 479-41-4 Indirubin G10 CC-207 160807-49-8 Indirubin-3'-monoxime G12 EI-310 142273-20-9 Kenpaullone H1 EI-328 121-40-4 Terreic acid H2 EI-332 35943-35-2 Triciribine H6 EI-345 520-36-5 Apigenin H7 EI-346 BML-265 (Erlotinib analog) H8 A-275 53123-88-9 Rapamycin Table 4. The Effect of compounds of the BIOMOL Inhibitor compound library on the Expression of Insulin, glucagon, MAFA and Arx4 in Cells Expressing Markers Characteristic of the Pancreatic Endocrine Lineage Concentration and PubChem ID# MAFA Insulin Glucagon Arx4 0.61 M 5330812 46.3 0.9 0.26 0.68 1.25 M 5330812 209.2 1.3 0.31 0.66 5.0 M 5330812 2909.9 66.3 4.71 0.92 0.61 M 4566 1.0 1.0 0.77 0.78 1.25 M 4566 0.8 1.1 0.90 0.78 5.0 M 4566 1.0 1.1 0.96 0.69 0.61 M 5330797 0.7 0.6 0.34 0.36 1.25 M 5330797 1.5 0.8 0.25 0.37 5.0 M 5330797 6.3 1.3 0.04 0.16 0.61 M 73292 0.7 0.7 0.29 0.38 1.25 M 73292 1.3 1.0 0.25 0.42 5.0 M 73292 3.1 0.8 0.13 0.33 0.61 M 4592 0.9 0.9 0.81 0.61 1.25 M 4592 1.0 1.0 0.70 0.54 5.0 M 4592 0.6 1.3 1.08 0.77 0.61 M 160355 0.9 0.9 0.76 0.77 1.25 M 160355 0.7 1.0 0.61 0.65 5.0 M 160355 0.8 1.1 0.59 0.86 Vehicle Treated 1.0 1.0 1.00 1.00 Table S. AlphaNumeric Well Label and the Corresponding Catalog#, and Compound Name or ID Number for the EMD Calbiochem Kinase Inhibitor compound library I

Gene Plate Induction Location Catalog# Compound Name vs. H1:
MAFa A10 197221 Bcr-abl Inhibitor 1.5 All 203290 Bisindolylmaleimide I 0.8 A12 DMSO Control 1.5 A2 121767 AG 1024 0.8 A3 121790 AGL 2043 0.8 A4 124011 Akt Inhibitor IV 45.7 A5 124012 Akt Inhibitor V, Triciribine 0.9 A6 124018 Akt Inhibitor VIII, Isozyme-Selective, Akti-1/2 1.6 A7 124020 Akt Inhibitor X 1.4 A8 521275 PDK1/Akt/Flt Dual Pathway Inhibitor 2.1 A9 189404 Aurora Kinase Inhibitor II 1.3 B10 317200 DMBI 1.9 B11 324673 EGFR/ErbB-2 Inhibitor 2.4 B12 DMSO Control 1.9 B2 203297 Bisindolylmaleimide IV 1.9 B3 203696 BPIQ-I 1.6 B4 220285 Chelerythrine Chloride 2.3 B5 234505 Compound 56 1.8 B6 260961 DNA-PK Inhibitor II 2.0 B7 260962 DNA-PK Inhibitor III 2.2 B8 528100 PI-103 1.9 B9 266788 Diacylglycerol Kinase Inhibitor II 1.5 C10 375670 Herbimycin A, Streptomyces sp. 1.3 C11 343022 Flt-3 Inhibitor III 1.1 C12 DMSO Control 1.1 C2 324674 EGFR Inhibitor 3.5 C3 324840 EGFR/ErbB-2/ErbB-4 Inhibitor 0.9 C4 343020 Flt-3 Inhibitor 0.6 C5 343021 Flt-3 Inhibitor II 0.5 C6 344036 cFMS Receptor Tyrosine Kinase Inhibitor 2.2 C7 365250 Go 6976 1.9 C8 365251 Go 6983 1.0 C9 371806 GTP-14564 0.7 D10 440203 LY 303511 1.7 D11 448101 Met Kinase Inhibitor 2.1 D12 BLANK 1.7 D2 407248 IGF-1 R Inhibitor II 1.6 D3 407601 IRAK-1/4 Inhibitor 2.2 D4 420099 JAK Inhibitor I 1.4 D5 420104 JAK3 Inhibitor II 2.0 D6 420121 JAK3 Inhibitor IV 1.7 D7 420126 JAK3 Inhibitor VI 1.9 D8 428205 Lck Inhibitor 1.9 D9 440202 LY 294002 2.3 E10 528106 PI 3-Kg Inhibitor 1.6 Ell 528108 PI 3-Kbinhibitor II 1.4 E12 BLANK 1.6 E2 513035 PD 158780 0.8 E3 513040 PD 174265 1.0 E4 521231 PDGF Receptor Tyrosine Kinase Inhibitor II 0.8 E5 521232 PDGF Receptor Tyrosine Kinase Inhibitor III 1.7 E6 521233 PDGF Receptor Tyrosine Kinase Inhibitor IV 5.5 E7 521234 PDGF RTK Inhibitor 1.9 E8 527450 PKR Inhibitor 24.6 E9 527455 PKR Inhibitor, Negative Control 1.5 F10 567805 Src Kinase Inhibitor I 2.3 F11 572660 SU11652 1.7 F12 DMSO Control 2.1 F2 529574 PP3 1.3 F3 529581 PP1 Analog II, 1 NM-PP1 2.3 F4 539652 PKCbII/EGFR Inhibitor 1.8 F5 539654 PKCb Inhibitor 1.6 F6 553210 Rapamycin 1.2 F7 555553 Rho Kinase Inhibitor III, Rockout 1.7 F8 555554 Rho Kinase Inhibitor IV 2.3 F9 539648 Staurosporine, N-benzoyl- 11.7 G10 658550 AG 1295 1.4 G 11 658551 AG 1296 1.1 G12 DMSO Control 1.2 G2 574711 Syk Inhibitor 1.2 G3 574712 Syk Inhibitor II 0.8 G4 574713 Syk Inhibitor III 1.1 G5 616451 TGF-b RI Kinase Inhibitor 1.1 G6 616453 TGF-b RI Inhibitor III 1.6 G7 658390 AG 9 1.5 G8 658401 AG 490 1.4 G9 658440 AG 112 1.4 H10 189405 Aurora Kinase Inhibitor III 2.0 H11 569397 Staurosporine, Streptomyces sp. 0.0*
H12 DMSO Control 1.5 H2 658552 AG 1478 2.7 H3 676480 VEGF Receptor 2 Kinase Inhibitor I 1.7 H4 676481 VEGF Receptor Tyrosine Kinase Inhibitor II 1.0 H5 676482 VEGF Receptor Tyrosine Kinase Inhibitor III, KRN633 1.6 H6 676485 VEGF Receptor 2 Kinase Inhibitor II 1.0 H7 676487 VEGF Receptor 2 Kinase Inhibitor III 1.1 H8 676489 VEGF Receptor 2 Kinase Inhibitor IV 2.1 H9 260964 DNA-PK Inhibitor V 1.5 Table 6. AlphaNumeric Well Label, Corresponding Catalog#, and Compound #

for EMD Calbiochem Kinase Inhibitor II compound library Well # Catalog # Compound #
Al DMSO

A3 118500 ATM Kinase Inhibitor A4 118501 ATM/ATR Kinase Inhibitor A5 126870 Alsterpaullone A6 126871 Alsterpaullone, 2-Cyanoethyl A7 128125 Aloisine A, RP107 A8 128135 Aloisine, RP106 A9 164640 Aminopurvalanol A
A10 171260 AMPK Inhibitor, Compound C
All 189405 Aurora Kinase Inhibitor III

Bl DMSO
B2 189406 Aurora Kinase/Cdk Inhibitor B3 402085 Indirubin-3'-monoxime B5 203600 Bohemine B6 217695 Cdkl Inhibitor B7 217696 Cdkl Inhibitor, CGP74514A
B8 217714 Cdkl/2 Inhibitor III
B9 217720 Cdkl/5 Inhibitor B10 218696 Casein Kinase I Inhibitor, D4476 Bll 218710 Casein Kinase II Inhibitor III, TBCA

Cl DMSO
C2 219476 Cdk4 Inhibitor C3 219477 Cdk4 Inhibitor II, NSC 625987 C4 219478 Cdk4 Inhibitor III
C5 219479 Cdc2-Like Kinase Inhibitor, T0003 C6 220486 Chk2 Inhibitor II
C7 234503 Compound 52 C8 238803 Cdk2 Inhibitor III
C9 238804 Cdk2 Inhibitor IV, NU6140 C10 219491 Cdk/Crk Inhibitor Cl l 328009 ERK Inhibitor III

Dl DMSO
D2 688000 ROCK Inhibitor, Y-27632 D3 328007 ERK Inhibitor II, FR180204 D4 328008 ERK Inhibitor II, Negative control D5 341251 Fascaplysin, Synthetic D6 361540 GSK-3b Inhibitor I
D7 361541 GSK-3b Inhibitor II
D8 361549 GSK-3b Inhibitor VIII

D9 361550 GSK-3 Inhibitor IX
D10 361551 GSK-3 Inhibitor X
D11 361553 GSK-3b Inhibitor XI

El DMSO

E3 361555 GSK-3 Inhibitor XIII
E4 371957 Isogranulatimide E6 401481 IKK-2 Inhibitor IV
E7 402081 Indirubin Derivative E804 E8 420119 JNK Inhibitor II
E9 420123 JNK Inhibitor, Negative Control E10 420129 JNK Inhibitor V
Ell 420136 JNK Inhibitor IX

Fl DMSO
F2 475863 MK2a Inhibitor F3 420135 JNK Inhibitor VIII
F4 420298 K-252a, Nocardiopsis sp.
F5 422000 Kenpaullone F7 444937 MEK Inhibitor I
F8 444938 MEK Inhibitor II
F9 444939 MEK1/2 Inhibitor F10 454861 MNK1 Inhibitor Fl l 481406 NF-KB Activation Inhibitor G2 506121 p38 MAP Kinase Inhibitor III
G3 506126 p38 MAP Kinase Inhibitor G7 540500 Purvalanol A
G8 361554 GSK3b Inhibitor XII, TWS119 G9 371963 H-89, Dihydrochloride G10 559387 SB 202474, Negative control for p38 MAPK inhibition studies H3 371970 HA 1077, Dihydrochloride Fasudil H7 567731 Sphingosine Kinase Inhibitor H8 569397 Staurosporine, Streptomyces sp.

H11 616373 Tp12 Kinase Inhibitor Table 7. Fold Induction of MAFA expression by several Compounds from the EMD Kinase Inhibitor Library II on Cells Treated according to the Differentiation Protocol Outlined in Example 9 fold vs.
well# control cat# drug name A6 24.8 Alsterpaullone, 2-126871 C anoeth l H10 18.0 572650 SU9516 A5 15.3 126870 Alsterpaullone B8 8.2 217714 Cdk1/2 Inhibitor III
B10 5.7 218696 Casein Kinase I Inhibitor, MEK1/2 Inhibitor F9 4.92 444939

Claims

What is claimed is:
1. A method for increasing the expression of MAFA in cells expressing markers characteristic of the pancreatic endocrine lineage comprising the steps of culturing the cells expressing markers characteristic of the pancreatic endocrine lineage in medium comprising a sufficient amount of a cyclin-dependant kinase inhibitor to cause an increase in expression of MAFA.
CA2742268A 2008-10-31 2009-10-23 Differentiation of human embryonic stem cells to the pancreatic endocrine lineage Active CA2742268C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11028708P 2008-10-31 2008-10-31
US61/110,287 2008-10-31
PCT/US2009/061774 WO2010051223A1 (en) 2008-10-31 2009-10-23 Differentiation of human embryonic stem cells to the pancreatic endocrine lineage

Publications (2)

Publication Number Publication Date
CA2742268A1 true CA2742268A1 (en) 2010-05-06
CA2742268C CA2742268C (en) 2020-02-18

Family

ID=41404335

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2742268A Active CA2742268C (en) 2008-10-31 2009-10-23 Differentiation of human embryonic stem cells to the pancreatic endocrine lineage

Country Status (14)

Country Link
US (3) US9234178B2 (en)
EP (1) EP2346988B1 (en)
JP (1) JP5785088B2 (en)
KR (1) KR101712085B1 (en)
CN (2) CN102272291B (en)
AU (3) AU2009308967C1 (en)
BR (1) BRPI0919885A2 (en)
CA (1) CA2742268C (en)
ES (1) ES2634445T3 (en)
MX (1) MX2011004565A (en)
PL (1) PL2346988T3 (en)
RU (3) RU2522001C2 (en)
WO (1) WO2010051223A1 (en)
ZA (1) ZA201103985B (en)

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8017395B2 (en) 2004-12-17 2011-09-13 Lifescan, Inc. Seeding cells on porous supports
WO2006133052A2 (en) 2005-06-08 2006-12-14 Centocor, Inc. A cellular therapy for ocular degeneration
US8741643B2 (en) 2006-04-28 2014-06-03 Lifescan, Inc. Differentiation of pluripotent stem cells to definitive endoderm lineage
US9080145B2 (en) 2007-07-01 2015-07-14 Lifescan Corporation Single pluripotent stem cell culture
DK2185693T3 (en) 2007-07-31 2019-09-23 Lifescan Inc DIFFERENTIZING HUMAN EMBRYONIC STEM CELLS
CN107574142B (en) 2007-11-27 2021-07-06 生命扫描有限公司 Differentiation of human embryonic stem cells
CA2715878C (en) 2008-02-21 2017-06-13 Centocor Ortho Biotech Inc. Methods, surface modified plates and compositions for cell attachment, cultivation and detachment
KR20180018839A (en) 2008-06-30 2018-02-21 얀센 바이오테크 인코포레이티드 Differentiation of pluripotent stem cells
US9234178B2 (en) 2008-10-31 2016-01-12 Janssen Biotech, Inc. Differentiation of human pluripotent stem cells
JP2012507289A (en) 2008-10-31 2012-03-29 ヤンセン バイオテツク,インコーポレーテツド Differentiation of human embryonic stem cells into the pancreatic endocrine system
EP2366022B1 (en) 2008-11-20 2016-04-27 Janssen Biotech, Inc. Methods and compositions for cell attachment and cultivation on planar substrates
MX356756B (en) 2008-11-20 2018-06-11 Centocor Ortho Biotech Inc Pluripotent stem cell culture on micro-carriers.
US8785185B2 (en) 2009-07-20 2014-07-22 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
JP6219568B2 (en) 2009-07-20 2017-10-25 ヤンセン バイオテツク,インコーポレーテツド Differentiation of human embryonic stem cells
JP5819825B2 (en) 2009-07-20 2015-11-24 ヤンセン バイオテツク,インコーポレーテツド Differentiation of human embryonic stem cells
RU2664864C1 (en) 2009-12-23 2018-08-23 Янссен Байотек, Инк. Ways to increase expression of ngn3 and nkx6.1 in pancreatic endocrine cells
MX343786B (en) 2009-12-23 2016-11-22 Janssen Biotech Inc Differentiation of human embryonic stem cells.
JP6013196B2 (en) 2010-03-01 2016-10-25 ヤンセン バイオテツク,インコーポレーテツド Method for purifying cells derived from pluripotent stem cells
RU2587634C2 (en) 2010-05-12 2016-06-20 Янссен Байотек, Инк. Differentiation of human embryo stem cells
ES2585028T3 (en) 2010-08-31 2016-10-03 Janssen Biotech, Inc. Differentiation of pluripotent stem cells
ES2659393T3 (en) 2010-08-31 2018-03-15 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
KR101851956B1 (en) 2010-08-31 2018-04-25 얀센 바이오테크 인코포레이티드 Differentiation of human embryonic stem cells
AT510456B1 (en) * 2010-09-27 2012-11-15 Univ Wien Tech THIAZOLAMINE DERIVATIVES AS CELL DIFFERENTIATOR ACCUMULATORS
CA2821562A1 (en) * 2010-11-02 2012-05-10 National University Corporation Kumamoto University Method of producing intestinal cells
EP3282015B1 (en) * 2010-12-03 2020-05-20 BioNTech RNA Pharmaceuticals GmbH Method for cellular rna expression
WO2012145569A1 (en) 2011-04-22 2012-10-26 Signal Pharmaceuticals, Llc Substituted diaminocarboxamide and diaminocarbonitrile pyrimidines, compositions thereof, and methods of treatment therewith
WO2012150707A1 (en) 2011-05-02 2012-11-08 国立大学法人熊本大学 Low molecular weight compound which promotes induction of differentiation of stem cells into insulin-producing cells and method for inducing differentiation of stem cells into insulin-producing cells using low molecular weight compound
CN108220224A (en) 2011-06-21 2018-06-29 诺沃—诺迪斯克有限公司 Definitive entoderm is effectively induced from pluripotent stem cell
EP2733140A4 (en) * 2011-07-15 2014-11-26 Univ Nihon Indirubin derivative having highly selective cytotoxicity for malignant tumors
RU2705001C2 (en) * 2011-12-22 2019-11-01 Янссен Байотек, Инк. Differentiation of human embryonic stem cells into single-hormonal insulin-positive cells
CA2866590A1 (en) 2012-03-07 2013-09-12 Janssen Biotech, Inc. Defined media for expansion and maintenance of pluripotent stem cells
AU2013259706A1 (en) * 2012-05-07 2014-10-30 Janssen Biotech, Inc. Differentiation of human embryonic stem cells into pancreatic endoderm
JP6469003B2 (en) * 2012-06-08 2019-02-13 ヤンセン バイオテツク,インコーポレーテツド Differentiation of human embryonic stem cells into pancreatic endocrine cells
EP2893000B1 (en) 2012-09-03 2019-04-10 Novo Nordisk A/S Generation of pancreatic endoderm from pluripotent stem cells using small molecules
GB201216796D0 (en) * 2012-09-20 2012-11-07 Cambridge Entpr Ltd In vitro pancreatic differentiation
JP6557146B2 (en) 2012-12-31 2019-08-07 ヤンセン バイオテツク,インコーポレーテツド Culture of human embryonic stem cells at the air-liquid interface for differentiation from pluripotent stem cells to pancreatic endocrine cells
EP2938723B1 (en) 2012-12-31 2023-02-01 Janssen Biotech, Inc. Differentiation of human embryonic stem cells into pancreatic endocrine cells using hb9 regulators
US10370644B2 (en) 2012-12-31 2019-08-06 Janssen Biotech, Inc. Method for making human pluripotent suspension cultures and cells derived therefrom
EP4039798A1 (en) 2012-12-31 2022-08-10 Janssen Biotech, Inc. Suspension and clustering of human pluripotent cells
CN103194424A (en) * 2013-03-28 2013-07-10 于涛 Method for inducing embryonic stem cell into pancreatic tissue-like cells
US20170029778A1 (en) 2013-06-11 2017-02-02 President And Fellows Of Harvard College Sc-beta cells and compositions and methods for generating the same
JP6636427B2 (en) * 2013-08-30 2020-01-29 ノヴォ ノルディスク アー/エス Generation of endocrine progenitor cells from human pluripotent stem cells using small molecules
NZ715903A (en) 2014-01-30 2017-06-30 Signal Pharm Llc Solid forms of 2-(tert-butylamino)-4-((1r,3r,4r)-3-hydroxy-4-methylcyclohexylamino)-pyrimidine-5-carboxamide, compositions thereof and methods of their use
CA2949056A1 (en) * 2014-05-16 2015-11-19 Janssen Biotech, Inc. Use of small molecules to enhance mafa expression in pancreatic endocrine cells
EP3233808B1 (en) 2014-12-16 2021-07-14 Signal Pharmaceuticals, LLC Medical uses comprising methods for measurement of inhibition of c-jun n-terminal kinase in skin
ES2877642T3 (en) 2014-12-16 2021-11-17 Signal Pharm Llc Formulations of 2- (tert-butylamino) -4 - ((1R, 3R, 4R) -3-hydroxy-4-methylcyclohexylamino) -pyrimidine-5-carboxamide
WO2016100930A1 (en) 2014-12-18 2016-06-23 President And Fellows Of Harvard College Methods for generating stem cell-derived b cells and methods of use thereof
WO2016100898A1 (en) 2014-12-18 2016-06-23 President And Fellows Of Harvard College Serum-free in vitro directed differentiation protocol for generating stem cell-derived b cells and uses thereof
EP3250557A4 (en) 2015-01-29 2018-06-20 Signal Pharmaceuticals, LLC Isotopologues of 2-(tert-butylamino)-4-((1r,3r,4r)-3-hydroxy-4-methylcyclohexylamino)-pyrimidine-5-carboxamide
AU2016297784B2 (en) 2015-07-24 2020-12-24 Celgene Corporation Methods of synthesis of (1R,2R,5R)-5-amino-2-methylcyclohexanol hydrochloride and intermediates useful therein
MA45479A (en) 2016-04-14 2019-02-20 Janssen Biotech Inc DIFFERENTIATION OF PLURIPOTENT STEM CELLS IN ENDODERMAL CELLS OF MIDDLE INTESTINE
MA45502A (en) 2016-06-21 2019-04-24 Janssen Biotech Inc GENERATION OF FUNCTIONAL BETA CELLS DERIVED FROM HUMAN PLURIPOTENT STEM CELLS WITH GLUCOSE-DEPENDENT MITOCHONDRIAL RESPIRATION AND TWO-PHASE INSULIN SECRETION RESPONSE
JP2018014972A (en) * 2016-07-29 2018-02-01 国立大学法人大阪大学 Method for producing a differentiation-induced cell population from which undifferentiated cells are removed
JP7139951B2 (en) * 2017-01-05 2022-09-21 味の素株式会社 Insulin-producing cell differentiation induction promoter
US20190390169A1 (en) * 2017-03-03 2019-12-26 Kyoto University Pancreatic progenitor cell production method
US10767164B2 (en) 2017-03-30 2020-09-08 The Research Foundation For The State University Of New York Microenvironments for self-assembly of islet organoids from stem cells differentiation
US10391156B2 (en) 2017-07-12 2019-08-27 Viacyte, Inc. University donor cells and related methods
CN111630155A (en) 2017-11-15 2020-09-04 森玛治疗公司 Islet cell preparative compositions and methods of use
EP3833365A4 (en) 2018-08-10 2022-05-11 Vertex Pharmaceuticals Incorporated Stem cell derived islet differentiation
US10724052B2 (en) 2018-09-07 2020-07-28 Crispr Therapeutics Ag Universal donor cells
EP3975926A1 (en) 2019-05-31 2022-04-06 W.L. Gore & Associates, Inc. A biocompatible membrane composite
US20220233299A1 (en) 2019-05-31 2022-07-28 W. L. Gore & Associates, Inc. Cell encapsulation devices with controlled oxygen diffusion distances
JP2022534545A (en) 2019-05-31 2022-08-01 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド biocompatible membrane composite
US20220234006A1 (en) 2019-05-31 2022-07-28 W. L. Gore & Associates, Inc. A biocompatible membrane composite
CA3150233A1 (en) 2019-09-05 2021-03-11 Alireza Rezania Universal donor cells
JP2022547505A (en) 2019-09-05 2022-11-14 クリスパー セラピューティクス アクチェンゲゼルシャフト universal donor cells
JP2024503291A (en) 2020-12-31 2024-01-25 クリスパー セラピューティクス アクチェンゲゼルシャフト universal donor cells
CN113234664A (en) * 2021-05-11 2021-08-10 澳门大学 Preparation method and application of pancreatic progenitor cells
WO2024008810A1 (en) * 2022-07-06 2024-01-11 Novo Nordisk A/S Differentiation of stem cells to pancreatic endocrine cells

Family Cites Families (240)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3209652A (en) 1961-03-30 1965-10-05 Burgsmueller Karl Thread whirling method
AT326803B (en) 1968-08-26 1975-12-29 Binder Fa G MESHWARE AND METHOD OF MANUFACTURING THE SAME
US3935067A (en) 1974-11-22 1976-01-27 Wyo-Ben Products, Inc. Inorganic support for culture media
CA1201400A (en) 1982-04-16 1986-03-04 Joel L. Williams Chemically specific surfaces for influencing cell activity during culture
US4499802A (en) 1982-09-29 1985-02-19 Container Graphics Corporation Rotary cutting die with scrap ejection
US4537773A (en) 1983-12-05 1985-08-27 E. I. Du Pont De Nemours And Company α-Aminoboronic acid derivatives
US4557264A (en) 1984-04-09 1985-12-10 Ethicon Inc. Surgical filament from polypropylene blended with polyethylene
US5215893A (en) 1985-10-03 1993-06-01 Genentech, Inc. Nucleic acid encoding the ba chain prodomains of inhibin and method for synthesizing polypeptides using such nucleic acid
US5089396A (en) 1985-10-03 1992-02-18 Genentech, Inc. Nucleic acid encoding β chain prodomains of inhibin and method for synthesizing polypeptides using such nucleic acid
US4737578A (en) 1986-02-10 1988-04-12 The Salk Institute For Biological Studies Human inhibin
US5863531A (en) 1986-04-18 1999-01-26 Advanced Tissue Sciences, Inc. In vitro preparation of tubular tissue structures by stromal cell culture on a three-dimensional framework
US5567612A (en) 1986-11-20 1996-10-22 Massachusetts Institute Of Technology Genitourinary cell-matrix structure for implantation into a human and a method of making
US5759830A (en) 1986-11-20 1998-06-02 Massachusetts Institute Of Technology Three-dimensional fibrous scaffold containing attached cells for producing vascularized tissue in vivo
CA1340581C (en) 1986-11-20 1999-06-08 Joseph P. Vacanti Chimeric neomorphogenesis of organs by controlled cellular implantation using artificial matrices
NZ229354A (en) 1988-07-01 1990-09-26 Becton Dickinson Co Treating polymer surfaces with a gas plasma and then applying a layer of endothelial cells to the surface
EP0363125A3 (en) 1988-10-03 1990-08-16 Hana Biologics Inc. Proliferated pancreatic endocrine cell product and process
US5837539A (en) 1990-11-16 1998-11-17 Osiris Therapeutics, Inc. Monoclonal antibodies for human mesenchymal stem cells
RU2139351C1 (en) 1991-04-25 1999-10-10 Чугаи Сейяку Кабусики Кайся H- and l-chains of monoclonal antibody pm-1 (monat) to human il-6r receptor and their v-region, modified monat, its h- and l-chains and their v-regions, cdr-sequence, dna-sequence
US5449383A (en) 1992-03-18 1995-09-12 Chatelier; Ronald C. Cell growth substrates
GB9206861D0 (en) 1992-03-28 1992-05-13 Univ Manchester Wound healing and treatment of fibrotic disorders
CA2114282A1 (en) 1993-01-28 1994-07-29 Lothar Schilder Multi-layered implant
JP3525221B2 (en) 1993-02-17 2004-05-10 味の素株式会社 Immunosuppressants
JP2813467B2 (en) 1993-04-08 1998-10-22 ヒューマン・セル・カルチャーズ・インコーポレーテッド Cell culture methods and media
US5523226A (en) 1993-05-14 1996-06-04 Biotechnology Research And Development Corp. Transgenic swine compositions and methods
GB9310557D0 (en) 1993-05-21 1993-07-07 Smithkline Beecham Plc Novel process and apparatus
TW257671B (en) 1993-11-19 1995-09-21 Ciba Geigy
US6001647A (en) 1994-04-28 1999-12-14 Ixion Biotechnology, Inc. In vitro growth of functional islets of Langerhans and in vivo uses thereof
US6703017B1 (en) 1994-04-28 2004-03-09 Ixion Biotechnology, Inc. Reversal of insulin-dependent diabetes by islet-producing stem cells, islet progenitor cells and islet-like structures
US5834308A (en) 1994-04-28 1998-11-10 University Of Florida Research Foundation, Inc. In vitro growth of functional islets of Langerhans
US6083903A (en) 1994-10-28 2000-07-04 Leukosite, Inc. Boronic ester and acid compounds, synthesis and uses
DE69525971T3 (en) 1994-12-29 2013-01-10 Chugai Seiyaku K.K. USE OF A PM-1 ANTIBODY OR AN MH 166 ANTIBODY FOR REINFORCING THE ANTI-TUMOR EFFECT OF CISPLATINE OR CARBOPLATIN
US5843780A (en) 1995-01-20 1998-12-01 Wisconsin Alumni Research Foundation Primate embryonic stem cells
US5718922A (en) 1995-05-31 1998-02-17 Schepens Eye Research Institute, Inc. Intravitreal microsphere drug delivery and method of preparation
US5908782A (en) 1995-06-05 1999-06-01 Osiris Therapeutics, Inc. Chemically defined medium for human mesenchymal stem cells
JP2001522357A (en) 1997-04-24 2001-11-13 オーソ−マクニール・フアーマシユーチカル・インコーポレーテツド Substituted imidazoles useful for treating inflammatory diseases
ES2285779T3 (en) 1997-07-03 2007-11-16 Osiris Therapeutics, Inc. MESENQUIMATOSAS HUMAN MOTHER CELLS OF PERIPHERAL BLOOD.
AU9393398A (en) 1997-09-16 1999-04-05 Egea Biosciences, Inc. Method for the complete chemical synthesis and assembly of genes and genomes
US6670127B2 (en) 1997-09-16 2003-12-30 Egea Biosciences, Inc. Method for assembly of a polynucleotide encoding a target polypeptide
US6800480B1 (en) 1997-10-23 2004-10-05 Geron Corporation Methods and materials for the growth of primate-derived primordial stem cells in feeder-free culture
US6372779B1 (en) 1997-12-29 2002-04-16 Ortho Pharmaceutical Corporation Anti-inflammatory compounds
JP4740452B2 (en) 1998-03-18 2011-08-03 オシリス セラピューティクス,インコーポレイテッド Methods, compositions and methods of using mesenchymal stem cells for the prevention and treatment of immune responses in transplantation
MY132496A (en) 1998-05-11 2007-10-31 Vertex Pharma Inhibitors of p38
US6413773B1 (en) 1998-06-01 2002-07-02 The Regents Of The University Of California Phosphatidylinositol 3-kinase inhibitors as stimulators of endocrine differentiation
US7410798B2 (en) 2001-01-10 2008-08-12 Geron Corporation Culture system for rapid expansion of human embryonic stem cells
US6667176B1 (en) 2000-01-11 2003-12-23 Geron Corporation cDNA libraries reflecting gene expression during growth and differentiation of human pluripotent stem cells
US6610540B1 (en) 1998-11-18 2003-08-26 California Institute Of Technology Low oxygen culturing of central nervous system progenitor cells
US6413556B1 (en) 1999-01-08 2002-07-02 Sky High, Llc Aqueous anti-apoptotic compositions
IL144359A0 (en) 1999-01-21 2002-05-23 Vitro Diagnostics Inc Immortalized cell lines and methods of making the same
US6815203B1 (en) 1999-06-23 2004-11-09 Joslin Diabetes Center, Inc. Methods of making pancreatic islet cells
US6333029B1 (en) 1999-06-30 2001-12-25 Ethicon, Inc. Porous tissue scaffoldings for the repair of regeneration of tissue
US6306424B1 (en) 1999-06-30 2001-10-23 Ethicon, Inc. Foam composite for the repair or regeneration of tissue
WO2001023528A1 (en) 1999-09-27 2001-04-05 University Of Florida Research Foundation Reversal of insulin-dependent diabetes by islet-producing stem cells, islet progenitor cells and islet-like structures
US6685936B2 (en) 1999-10-12 2004-02-03 Osiris Therapeutics, Inc. Suppressor cells induced by culture with mesenchymal stem cells for treatment of immune responses in transplantation
US20030082155A1 (en) 1999-12-06 2003-05-01 Habener Joel F. Stem cells of the islets of langerhans and their use in treating diabetes mellitus
JP2003517592A (en) 1999-12-13 2003-05-27 ザ スクリプス リサーチ インスティチュート Markers for identification and isolation of islet α and β precursors
US7005252B1 (en) 2000-03-09 2006-02-28 Wisconsin Alumni Research Foundation Serum free cultivation of primate embryonic stem cells
US7439064B2 (en) 2000-03-09 2008-10-21 Wicell Research Institute, Inc. Cultivation of human embryonic stem cells in the absence of feeder cells or without conditioned medium
US6436704B1 (en) 2000-04-10 2002-08-20 Raven Biotechnologies, Inc. Human pancreatic epithelial progenitor cells and methods of isolation and use thereof
US6458589B1 (en) 2000-04-27 2002-10-01 Geron Corporation Hepatocyte lineage cells derived from pluripotent stem cells
CN1449439A (en) 2000-06-26 2003-10-15 株式会社雷诺再生医学研究所 Cell fraction containing cells capable of differentiating into nervous system cells
WO2002059083A2 (en) 2000-10-23 2002-08-01 Smithkline Beecham Corporation Novel compounds
ES2263681T3 (en) 2000-12-08 2006-12-16 Ortho-Mcneil Pharmaceutical, Inc. INDAZOLIL-SUBSTITUTED PIRROLINE COMPOUNDS AS INHIBITORS OF THE KINASA.
MXPA03005139A (en) 2000-12-08 2004-01-29 Ortho Mcneil Pharm Inc Macroheterocylic compounds useful as kinase inhibitors.
US6599323B2 (en) 2000-12-21 2003-07-29 Ethicon, Inc. Reinforced tissue implants and methods of manufacture and use
EP1366148A2 (en) 2001-01-24 2003-12-03 THE GOVERNMENT OF THE UNITED STATES OF AMERICA, represented by THE DEPARTMENT OF HEALTH &amp; HUMAN SERVICES Differentiation of stem cells to pancreatic endocrine cells
TR201819416T4 (en) 2001-01-25 2019-01-21 The United States Of America Represented By The Sec Dep Of Health And Human Services Formulation of boronic acid compounds.
US6656488B2 (en) 2001-04-11 2003-12-02 Ethicon Endo-Surgery, Inc. Bioabsorbable bag containing bioabsorbable materials of different bioabsorption rates for tissue engineering
US20050054102A1 (en) 2001-04-19 2005-03-10 Anna Wobus Method for differentiating stem cells into insulin-producing cells
JP4296781B2 (en) 2001-04-24 2009-07-15 味の素株式会社 Stem cells and methods for separating them
WO2002092756A2 (en) 2001-05-15 2002-11-21 Rappaport Family Institute For Research In The Medical Sciences Insulin producing cells derived from human embryonic stem cells
US6626950B2 (en) 2001-06-28 2003-09-30 Ethicon, Inc. Composite scaffold with post anchor for the repair and regeneration of tissue
KR100418195B1 (en) 2001-07-05 2004-02-11 주식회사 우리기술 Apparatus and method for multi-testing insulation of power cables
GB0117583D0 (en) 2001-07-19 2001-09-12 Astrazeneca Ab Novel compounds
CA2456981C (en) 2001-08-06 2012-02-28 Bresagen, Inc. Alternative compositions and methods for the culture of stem cells
US6617152B2 (en) 2001-09-04 2003-09-09 Corning Inc Method for creating a cell growth surface on a polymeric substrate
EP1298201A1 (en) 2001-09-27 2003-04-02 Cardion AG Process for the production of cells exhibiting an islet-beta-cell-like state
EP1444345A4 (en) 2001-10-18 2004-12-08 Ixion Biotechnology Inc Conversion of liver stem and progenitor cells to pancreatic functional cells
AU2002363659B2 (en) 2001-11-15 2008-09-25 Children's Medical Center Corporation Methods of isolation, expansion and differentiation of fetal stem cells from chorionic villus, amniotic fluid, and placenta and therapeutic uses thereof
KR101008868B1 (en) 2001-12-07 2011-01-17 제론 코포레이션 Islet cells from human embryonic stem cells
EP1921133B1 (en) 2001-12-07 2015-05-20 Cytori Therapeutics, Inc. System for processing lipoaspirate cells
AU2002218893A1 (en) 2001-12-21 2003-07-09 Thromb-X Nv Compositions for the in vitro derivation and culture of embryonic stem (es) cell lines with germline transmission capability
CA2471540A1 (en) 2001-12-28 2003-07-10 Cellartis Ab A method for the establishment of a pluripotent human blastocyst-derived stem cell line
US20030162290A1 (en) 2002-01-25 2003-08-28 Kazutomo Inoue Method for inducing differentiation of embryonic stem cells into functioning cells
DE10214095C1 (en) * 2002-03-28 2003-09-25 Bernd Karl Friedrich Kremer Producing dedifferentiated, programmable stem cells of human monocytic origin using culture medium having M-CSF and IL-3, useful in treating cirrhosis, pancreatic insufficiency, kidney failure, cardiac infarction and stroke
EP1498478A1 (en) 2002-04-17 2005-01-19 Otsuka Pharmaceutical Co., Ltd. Method of forming pancreatic beta cells from mesenchymal cells
US20040161419A1 (en) 2002-04-19 2004-08-19 Strom Stephen C. Placental stem cells and uses thereof
ES2300573T3 (en) 2002-05-08 2008-06-16 Janssen Pharmaceutica Nv KINASE INHIBITORS REPLACED WITH PIRROLINA.
US20060003446A1 (en) 2002-05-17 2006-01-05 Gordon Keller Mesoderm and definitive endoderm cell populations
AU2003228255A1 (en) 2002-05-28 2003-12-19 Becton, Dickinson And Company Pancreatic acinar cells into insulin-producing cells
KR20050008787A (en) 2002-06-05 2005-01-21 얀센 파마슈티카 엔.브이. Bisindolyl-maleimid derivatives as kinase inhibitors
GB0212976D0 (en) 2002-06-06 2002-07-17 Tonejet Corp Pty Ltd Ejection method and apparatus
CN1171991C (en) 2002-07-08 2004-10-20 徐如祥 Culture process of human nerve stem cell
US6877147B2 (en) 2002-07-22 2005-04-05 Broadcom Corporation Technique to assess timing delay by use of layout quality analyzer comparison
US7838290B2 (en) 2002-07-25 2010-11-23 The Scripps Research Institute Hematopoietic stem cells and methods of treatment of neovascular eye diseases therewith
CA2494040A1 (en) 2002-07-29 2004-02-05 Es Cell International Pte Ltd. Multi-step method for the differentiation of insulin positive, glucose
WO2004016747A2 (en) 2002-08-14 2004-02-26 University Of Florida Bone marrow cell differentiation
EP1539928A4 (en) 2002-09-06 2006-09-06 Amcyte Inc Cd56 positive human adult pancreatic endocrine progenitor cells
US9969977B2 (en) 2002-09-20 2018-05-15 Garnet Biotherapeutics Cell populations which co-express CD49c and CD90
US20040062753A1 (en) 2002-09-27 2004-04-01 Alireza Rezania Composite scaffolds seeded with mammalian cells
AU2003285172A1 (en) 2002-11-08 2004-06-03 The Johns Hopkins University Human embryonic stem cell cultures, and compositions and methods for growing same
US7144999B2 (en) 2002-11-23 2006-12-05 Isis Pharmaceuticals, Inc. Modulation of hypoxia-inducible factor 1 alpha expression
AU2003302702B2 (en) 2002-12-05 2008-08-07 Technion Research & Development Foundation Ltd. Cultured human pancreatic islets, and uses thereof
ES2571355T3 (en) 2002-12-16 2016-05-24 Technion Res & Dev Foundation Culture system without feeder cells or xenocontaminants for human embryonic stem cells
US20050118148A1 (en) * 2002-12-20 2005-06-02 Roland Stein Compositions and methods related to mammalian Maf-A
CA2514539C (en) 2003-01-29 2012-03-06 Takeda Pharmaceutical Company Limited Process for producing coated preparation
RU2359671C2 (en) * 2003-01-29 2009-06-27 Такеда Фармасьютикал Компани Лимитед Method of obtaining of preparation with covering
US20070154981A1 (en) 2003-02-14 2007-07-05 The Board Of Trustees Of The Leland Stanford Junior University Insulin-producing cells derived from stem cells
WO2004073633A2 (en) 2003-02-14 2004-09-02 The Board Of Trustees Of The Leland Stanford Junior University Methods and compositions for modulating the development of stem cells
CA2520861A1 (en) 2003-03-27 2004-10-14 Ixion Biotechnology, Inc. Method for transdifferentiation of non-pancreatic stem cells to the pancreatic pathway
US20060194315A1 (en) 2003-03-31 2006-08-31 Condie Brian G Compositions and methods for the control, differentiaton and/or manipulation of pluripotent cells through a gamma-secretase signaling pathway
US20090203141A1 (en) 2003-05-15 2009-08-13 Shi-Lung Lin Generation of tumor-free embryonic stem-like pluripotent cells using inducible recombinant RNA agents
EP1641913B1 (en) 2003-06-27 2016-01-06 DePuy Synthes Products, Inc. Postpartum cells derived from umbilical cord tissue, and methods of making and using the same
IL161903A0 (en) 2003-07-17 2005-11-20 Gamida Cell Ltd Ex vivo progenitor and stem cell expansion for usein the treatment of disease of endodermally- deri ved organs
ITRM20030395A1 (en) 2003-08-12 2005-02-13 Istituto Naz Per Le Malattie Infettive Lazz CULTURE GROUND FOR MAINTENANCE, PROLIFERATION AND DIFFERENTIATION OF MAMMALIAN CELLS.
US20050042595A1 (en) 2003-08-14 2005-02-24 Martin Haas Banking of multipotent amniotic fetal stem cells
US7157275B2 (en) 2003-08-15 2007-01-02 Becton, Dickinson And Company Peptides for enhanced cell attachment and growth
WO2005021728A2 (en) 2003-08-27 2005-03-10 Stemcells California, Inc. Enriched pancreatic stem cell and progenitor cell populations, and methods for identifying, isolating and enriching for these populations
EP1696899A1 (en) 2003-12-17 2006-09-06 Allergan, Inc. Methods for treating retinoid responsive disorders using selective inhibitors of cyp26a and cyp26b
US20060030042A1 (en) 2003-12-19 2006-02-09 Ali Brivanlou Maintenance of embryonic stem cells by the GSK-3 inhibitor 6-bromoindirubin-3'-oxime
CN109628371B (en) 2003-12-23 2021-02-19 维亚希特公司 Definitive endoderm
US20050266554A1 (en) 2004-04-27 2005-12-01 D Amour Kevin A PDX1 expressing endoderm
US7625753B2 (en) 2003-12-23 2009-12-01 Cythera, Inc. Expansion of definitive endoderm cells
EP1709159B1 (en) 2003-12-23 2019-05-15 Viacyte, Inc. Definitive endoderm
TWI334443B (en) 2003-12-31 2010-12-11 Ind Tech Res Inst Method of single cell culture of undifferentiated human embryonic stem cells
US20050233446A1 (en) 2003-12-31 2005-10-20 Parsons Xuejun H Defined media for stem cell culture
WO2005071066A1 (en) 2004-01-23 2005-08-04 Board Of Regents, The University Of Texas System Methods and compositions for preparing pancreatic insulin secreting cells
US7794704B2 (en) 2004-01-23 2010-09-14 Advanced Cell Technology, Inc. Methods for producing enriched populations of human retinal pigment epithelium cells for treatment of retinal degeneration
WO2005080551A2 (en) 2004-02-12 2005-09-01 University Of Newcastle Upon Tyne Stem cells
US7964401B2 (en) 2004-02-19 2011-06-21 Kyoto University Screening method for somatic cell nuclear reprogramming substance affecting ECAT2 and ECAT3
JP2008500809A (en) 2004-03-09 2008-01-17 ライフスキャン・インコーポレイテッド Methods for generating insulin producing cells
EP1730261A4 (en) 2004-03-10 2007-11-28 Univ California Compositions and methods for growth of embryonic stem cells
WO2005097980A2 (en) 2004-03-26 2005-10-20 Geron Corporation New protocols for making hepatocytes from embryonic stem cells
WO2005097977A2 (en) 2004-04-01 2005-10-20 Wisconsin Alumni Research Foundation Differentiation of stem cells to endoderm and pancreatic lineage
KR101278421B1 (en) 2004-04-27 2013-07-15 비아싸이트, 인크. Pdx1 expressing endoderm
JP5687816B2 (en) 2004-07-09 2015-03-25 ヴィアサイト,インコーポレイテッド Methods for identifying factors for differentiating definitive endoderm
MX2007001772A (en) 2004-08-13 2007-07-11 Univ Georgia Res Found Compositions and methods for self-renewal and differentiation in human embryonic stem cells.
WO2006026473A2 (en) 2004-08-25 2006-03-09 University Of Georgia Research Foundation, Inc. METHODS AND COMPOSITIONS UTILIZING MYC AND GSK3ß TO MANIPULATE THE PLURIPOTENCY OF EMBRYONIC STEM CELLS
DE102004043256B4 (en) 2004-09-07 2013-09-19 Rheinische Friedrich-Wilhelms-Universität Bonn Scalable process for culturing undifferentiated stem cells in suspension
CN101044235B (en) 2004-09-08 2013-01-02 威斯康星校友研究基金会 Culturing human embryonic stem cells
NZ553235A (en) 2004-09-08 2009-11-27 Wisconsin Alumni Res Found Culturing human pluripotent stem cells
JP2008527039A (en) * 2005-01-19 2008-07-24 メルク エンド カムパニー インコーポレーテッド Fluorinated aminoalkyl-4-oxo-3,4-dihydropyrido [3,4-d] pyridine as a mitotic kinesin inhibitor
EP1859026A2 (en) 2005-01-31 2007-11-28 ES Cell International Pte Ltd. Directed differentiation of embryonic stem cells and uses thereof
CN101188942B (en) 2005-03-04 2011-11-30 生命扫描有限公司 Adult pancreatic derived stromal cells
GB0505970D0 (en) 2005-03-23 2005-04-27 Univ Edinburgh Culture medium containing kinase inhibitor, and uses thereof
WO2006113470A2 (en) 2005-04-15 2006-10-26 Geron Corporation Cancer treatment by combined inhibition of proteasome and telomerase activities
CN100425694C (en) 2005-04-15 2008-10-15 北京大学 Method of inducing embryo stem cell to differentiate toward pancreatic cell
US20080227656A1 (en) 2005-04-26 2008-09-18 Flemming Besenbacher Biosurface Structure Array
KR20080024194A (en) 2005-06-10 2008-03-17 아이알엠 엘엘씨 Compounds that maintain pluripotency of embryonic stem cells
WO2006138433A2 (en) 2005-06-14 2006-12-28 The Regents Of The University Of California Induction of cell differentiation by class i bhlh polypeptides
US20060287912A1 (en) * 2005-06-17 2006-12-21 Vinayak Raghuvamshi Presenting advertising content
US20080199959A1 (en) 2005-06-21 2008-08-21 Ge Healthcare Bio-Sciences Ab Method For Cell Culture
WO2007002086A2 (en) 2005-06-22 2007-01-04 Geron Corporation Suspension culture of human embryonic stem cells
ATE439349T1 (en) 2005-06-30 2009-08-15 Janssen Pharmaceutica Nv CYCLIC ANILINOPYRIDINOTRIAZINES AS GSK-3 INHIBITORS
WO2007012144A1 (en) 2005-07-29 2007-02-01 Australian Stem Cell Centre Limited Compositions and methods for growth of pluripotent cells
US20080194021A1 (en) 2005-07-29 2008-08-14 Mays Robert W Use of a Gsk-3 Inhibitor to Maintain Potency of Culture Cells
WO2007025234A2 (en) 2005-08-26 2007-03-01 The Trustees Of Columbia University In The City Of New York Generation of pancreatic endocrine cells from primary duct cell cultures and methods of use for treatment of diabetes
AU2006285467A1 (en) 2005-09-02 2007-03-08 Agency For Science, Technology And Research Method of deriving mesenchymal stem cells
US9422521B2 (en) 2005-09-12 2016-08-23 Es Cell International Pte Ltd. Differentiation of pluripotent stem cells with a kinase inhibitor or PGI2
CA2625883A1 (en) 2005-10-14 2007-04-26 Regents Of The University Of Minnesota Differentiation of non-embryonic stem cells to cells having a pancreatic phenotype
ES2687233T3 (en) 2005-10-27 2018-10-24 Viacyte, Inc. Endoderm of the dorsal and ventral proximal intestine expressing PDX-1
CN103113463B (en) 2005-12-13 2015-02-18 国立大学法人京都大学 Nuclear reprogramming factor
WO2007082963A1 (en) 2006-01-18 2007-07-26 Fundación Instituto Valenciano De Infertilidad Human embryo stem-cell lines and methods for using same
WO2007101130A2 (en) 2006-02-23 2007-09-07 Novocell, Inc. Compositions and methods useful for culturing differentiable cells
SG10201405380QA (en) 2006-03-02 2014-10-30 Cythera Inc Endocrine precursor cells, pancreatic hormone-expressing cells and methods of production
US7695965B2 (en) 2006-03-02 2010-04-13 Cythera, Inc. Methods of producing pancreatic hormones
US8741643B2 (en) 2006-04-28 2014-06-03 Lifescan, Inc. Differentiation of pluripotent stem cells to definitive endoderm lineage
EP2021462B1 (en) 2006-04-28 2019-01-09 Lifescan, Inc. Differentiation of human embryonic stem cells
US8685730B2 (en) 2006-05-02 2014-04-01 Wisconsin Alumni Research Foundation Methods and devices for differentiating pluripotent stem cells into cells of the pancreatic lineage
GB2452186B (en) 2006-05-02 2011-01-26 Wisconsin Alumni Res Found Method of differentiating stem cells into cells of the endoderm and pancreatic lineage
US7964402B2 (en) 2006-05-25 2011-06-21 Sanford-Burnham Medical Research Institute Methods for culture and production of single cell populations of human embryonic stem cells
CN101541953A (en) 2006-06-02 2009-09-23 佐治亚大学研究基金会 Pancreatic and liver endoderm cells and tissue by differentiation of definitive endoderm cells obtained from human embryonic stems
US20090298169A1 (en) 2006-06-02 2009-12-03 The University Of Georgia Research Foundation Pancreatic and Liver Endoderm Cells and Tissue by Differentiation of Definitive Endoderm Cells Obtained from Human Embryonic Stems
US8415153B2 (en) 2006-06-19 2013-04-09 Geron Corporation Differentiation and enrichment of islet-like cells from human pluripotent stem cells
CN100494359C (en) 2006-06-23 2009-06-03 中日友好医院 Method for in vitro amplifying and in 3D solid culturing for nerve stem cell
EP2046946B8 (en) 2006-06-26 2017-01-25 Lifescan, Inc. Pluripotent stem cell culture
US20080003676A1 (en) 2006-06-26 2008-01-03 Millipore Corporation Growth of embryonic stem cells
WO2008004990A2 (en) 2006-07-06 2008-01-10 Es Cell International Pte Ltd Method for stem cell culture and cells derived therefrom
AU2007277364B2 (en) 2006-07-26 2010-08-12 Viacyte, Inc. Methods of producing pancreatic hormones
US20080044390A1 (en) * 2006-08-11 2008-02-21 Xiaowei Jin Methods and compositions for the treatment of neurodegenerative disorders
KR101331510B1 (en) 2006-08-30 2013-11-20 재단법인서울대학교산학협력재단 Media compostions containing low concentrations of glucose useful for human embryonic stem cells, differentiation method of human embryonic stem cells into insulin-producing cells or cell clusters using thereof, and insulin-producing cells or cell clusters differentiated thereby
JP2008099662A (en) 2006-09-22 2008-05-01 Institute Of Physical & Chemical Research Method for culturing stem cell
US20080091234A1 (en) 2006-09-26 2008-04-17 Kladakis Stephanie M Method for modifying a medical implant surface for promoting tissue growth
MX2009004096A (en) 2006-10-17 2009-06-16 Stiefel Laboratories Talarazole metabolites.
US20100323442A1 (en) 2006-10-17 2010-12-23 Emmanuel Edward Baetge Modulation of the phosphatidylinositol-3-kinase pathway in the differentiation of human embryonic stem cells
US8835163B2 (en) 2006-10-18 2014-09-16 The Board Of Trustees Of The University Of Illinois Embryonic-like stem cells derived from adult human peripheral blood and methods of use
WO2008056779A1 (en) 2006-11-09 2008-05-15 Japan As Represented By The President Of International Medical Center Of Japan Method for culture and passage of primate embryonic stem cell, and method for induction of differentiation of the embryonic stem cell
TW200836749A (en) 2007-01-09 2008-09-16 Vioquest Pharmaceuticals Inc Compositions including triciribine and bortezomib and derivatives thereof and methods of use thereof
KR20090115142A (en) 2007-01-30 2009-11-04 유니버시티 오브 조지아 리서치 파운데이션, 인코포레이티드 Early mesoderm cells, a stable population of mesendoderm cells that has utility for generation of endoderm and mesoderm lineages and multipotent migratory cells(mmc)
GB0703188D0 (en) 2007-02-19 2007-03-28 Roger Land Building Large scale production of stem cells
WO2008148105A1 (en) 2007-05-25 2008-12-04 Medistem Laboratories, Inc. Endometrial stem cells and methods of making and using same
CN101861386A (en) 2007-07-18 2010-10-13 生命扫描有限公司 The differentiation of human embryo stem cell
DK2185693T3 (en) 2007-07-31 2019-09-23 Lifescan Inc DIFFERENTIZING HUMAN EMBRYONIC STEM CELLS
ES2665434T3 (en) 2007-07-31 2018-04-25 Lifescan, Inc. Differentiation of pluripotent stem cells using human feeder cells
WO2009027644A2 (en) 2007-08-24 2009-03-05 Stichting Het Nederlands Kanker Instituut Composition
WO2009061442A1 (en) 2007-11-06 2009-05-14 Children's Medical Center Corporation Method to produce induced pluripotent stem (ips) cells form non-embryonic human cells
CN107574142B (en) 2007-11-27 2021-07-06 生命扫描有限公司 Differentiation of human embryonic stem cells
SG154367A1 (en) 2008-01-31 2009-08-28 Es Cell Int Pte Ltd Method of differentiating stem cells
WO2009096049A1 (en) 2008-02-01 2009-08-06 Kyoto University Differentiated cells originating in artificial pluripotent stem cells
EP2250252A2 (en) 2008-02-11 2010-11-17 Cambridge Enterprise Limited Improved reprogramming of mammalian cells, and the cells obtained
CA2715878C (en) 2008-02-21 2017-06-13 Centocor Ortho Biotech Inc. Methods, surface modified plates and compositions for cell attachment, cultivation and detachment
JPWO2009110215A1 (en) 2008-03-03 2011-07-14 独立行政法人科学技術振興機構 Ciliary cell differentiation induction method
WO2009116951A2 (en) 2008-03-17 2009-09-24 Agency For Science, Technology And Research Microcarriers for stem cell culture
US8338170B2 (en) 2008-04-21 2012-12-25 Viacyte, Inc. Methods for purifying endoderm and pancreatic endoderm cells derived from human embryonic stem cells
WO2009131568A1 (en) 2008-04-21 2009-10-29 Cythera, Inc. Methods for purifying endoderm and pancreatic endoderm cells derived from human embryonic stem cells
WO2009132083A2 (en) 2008-04-22 2009-10-29 President And Fellows Of Harvard College Compositions and methods for promoting the generation of pdx1+ pancreatic cells
US7939322B2 (en) 2008-04-24 2011-05-10 Centocor Ortho Biotech Inc. Cells expressing pluripotency markers and expressing markers characteristic of the definitive endoderm
US8623648B2 (en) 2008-04-24 2014-01-07 Janssen Biotech, Inc. Treatment of pluripotent cells
US20090298178A1 (en) 2008-06-03 2009-12-03 D Amour Kevin Allen Growth factors for production of definitive endoderm
DK2297319T3 (en) 2008-06-03 2015-10-19 Viacyte Inc GROWTH FACTORS FOR PREPARING DEFINITIVE ENDODERM
KR20180018839A (en) 2008-06-30 2018-02-21 얀센 바이오테크 인코포레이티드 Differentiation of pluripotent stem cells
DE102008032236A1 (en) 2008-06-30 2010-04-01 Eberhard-Karls-Universität Tübingen Isolation and / or identification of stem cells with adipocytic, chondrocytic and pancreatic differentiation potential
US20100028307A1 (en) 2008-07-31 2010-02-04 O'neil John J Pluripotent stem cell differentiation
US20110224221A1 (en) * 2008-10-01 2011-09-15 Sharpless Norman E Hematopoietic protection against ionizing radiation using selective cyclin-dependent kinase 4/6 inhibitors
US20120010178A1 (en) * 2008-10-21 2012-01-12 President And Fellows Of Harvard College Methods and compounds for treatment of neurodegenerative disorders
US9234178B2 (en) 2008-10-31 2016-01-12 Janssen Biotech, Inc. Differentiation of human pluripotent stem cells
JP2012507289A (en) 2008-10-31 2012-03-29 ヤンセン バイオテツク,インコーポレーテツド Differentiation of human embryonic stem cells into the pancreatic endocrine system
CA2907326A1 (en) 2008-11-04 2010-05-14 Chad Green Stem cell aggregate suspension compositions and methods for differentiation thereof
US8008075B2 (en) 2008-11-04 2011-08-30 Viacyte, Inc. Stem cell aggregate suspension compositions and methods of differentiation thereof
EP2356227B1 (en) 2008-11-14 2018-03-28 Viacyte, Inc. Encapsulation of pancreatic cells derived from human pluripotent stem cells
MX356756B (en) 2008-11-20 2018-06-11 Centocor Ortho Biotech Inc Pluripotent stem cell culture on micro-carriers.
DK2356218T3 (en) 2008-12-05 2017-08-21 Inserm (Institut Nat De La Santé Et De La Rech Médicale) METHOD AND MEDIUM FOR NEURAL DIFFERENTIZATION OF PLURIPOTENT CELLS
US8785185B2 (en) 2009-07-20 2014-07-22 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
JP6219568B2 (en) 2009-07-20 2017-10-25 ヤンセン バイオテツク,インコーポレーテツド Differentiation of human embryonic stem cells
FI20096288A0 (en) 2009-12-04 2009-12-04 Kristiina Rajala Formulations and Methods for Culturing Stem Cells
MX343786B (en) 2009-12-23 2016-11-22 Janssen Biotech Inc Differentiation of human embryonic stem cells.
JP5762979B2 (en) 2009-12-29 2015-08-12 武田薬品工業株式会社 Method for producing pancreatic hormone-producing cells
WO2011108993A1 (en) 2010-03-02 2011-09-09 National University Of Singapore Culture additives to boost stem cell proliferation and differentiation response
EP3199623B1 (en) 2010-03-31 2021-07-28 The Scripps Research Institute Reprogramming cells
CN103068970A (en) 2010-04-25 2013-04-24 西奈山医学院 Generation of anterior foregut endoderm from pluripotent cells
RU2587634C2 (en) 2010-05-12 2016-06-20 Янссен Байотек, Инк. Differentiation of human embryo stem cells
WO2011160066A1 (en) 2010-06-17 2011-12-22 Regents Of The University Of Minnesota Production of insulin producing cells
BR112013002811A8 (en) 2010-08-05 2020-01-28 Wisconsin Alumni Res Found simplified basic means for human pluripotent cell culture
ES2585028T3 (en) 2010-08-31 2016-10-03 Janssen Biotech, Inc. Differentiation of pluripotent stem cells
WO2012117333A1 (en) 2011-02-28 2012-09-07 Stempeutics Research Malaysia Sdn Bhd Isolation and expansion of adult stem cells, their therapeutic composition and uses thereof
US20130274184A1 (en) 2011-10-11 2013-10-17 The Trustees Of Columbia University In The City Of New York Er stress relievers in beta cell protection
RU2705001C2 (en) 2011-12-22 2019-11-01 Янссен Байотек, Инк. Differentiation of human embryonic stem cells into single-hormonal insulin-positive cells
US10519422B2 (en) 2012-02-29 2019-12-31 Riken Method of producing human retinal pigment epithelial cells
JP6469003B2 (en) 2012-06-08 2019-02-13 ヤンセン バイオテツク,インコーポレーテツド Differentiation of human embryonic stem cells into pancreatic endocrine cells
US8859286B2 (en) 2013-03-14 2014-10-14 Viacyte, Inc. In vitro differentiation of pluripotent stem cells to pancreatic endoderm cells (PEC) and endocrine cells
SG10201708332WA (en) 2013-03-15 2017-11-29 Jackson Lab Isolation of non-embryonic stem cells and uses thereof

Also Published As

Publication number Publication date
RU2011121842A (en) 2012-12-10
JP2012507292A (en) 2012-03-29
CN107904201A (en) 2018-04-13
AU2009308967C1 (en) 2017-04-20
MX2011004565A (en) 2011-07-28
WO2010051223A1 (en) 2010-05-06
RU2687378C1 (en) 2019-05-13
US10421948B2 (en) 2019-09-24
PL2346988T3 (en) 2017-10-31
BRPI0919885A2 (en) 2015-08-11
ZA201103985B (en) 2018-11-28
RU2522001C2 (en) 2014-07-10
AU2016204685B2 (en) 2017-10-19
CA2742268C (en) 2020-02-18
AU2018200452A1 (en) 2018-02-08
US20170355963A1 (en) 2017-12-14
RU2014114039A (en) 2015-10-20
AU2009308967B2 (en) 2016-04-07
US20100112693A1 (en) 2010-05-06
KR20110077016A (en) 2011-07-06
CN102272291B (en) 2018-01-16
ES2634445T3 (en) 2017-09-27
US9234178B2 (en) 2016-01-12
CN102272291A (en) 2011-12-07
US20160160182A1 (en) 2016-06-09
RU2664226C2 (en) 2018-08-15
KR101712085B1 (en) 2017-03-03
CN107904201B (en) 2021-11-16
AU2016204685A1 (en) 2016-07-21
US9752126B2 (en) 2017-09-05
EP2346988B1 (en) 2017-05-31
EP2346988A1 (en) 2011-07-27
AU2009308967A1 (en) 2010-05-06
JP5785088B2 (en) 2015-09-24

Similar Documents

Publication Publication Date Title
US10421948B2 (en) Methods for making pancreatic endocrine cells
US9133439B2 (en) Differentiation of human embryonic stem cells
US20170081634A1 (en) Differentiation of human embryonic stem cells
EP2611909B1 (en) Differentiation of human embryonic stem cells
CA2809303C (en) Differentiation of human embryonic stem cells

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20141016