CA2885785A1 - Self positioning tracheal tube clearance mechanism using whisks - Google Patents

Self positioning tracheal tube clearance mechanism using whisks Download PDF

Info

Publication number
CA2885785A1
CA2885785A1 CA2885785A CA2885785A CA2885785A1 CA 2885785 A1 CA2885785 A1 CA 2885785A1 CA 2885785 A CA2885785 A CA 2885785A CA 2885785 A CA2885785 A CA 2885785A CA 2885785 A1 CA2885785 A1 CA 2885785A1
Authority
CA
Canada
Prior art keywords
whisks
cleaning
lumen
distal
tracheal tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA2885785A
Other languages
French (fr)
Inventor
Jennifer S. Stadelman
Adrienne A. Hershey
Joseph A. Cesa
F. Anthony Headley, Jr.
John Brewer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avent Inc
Original Assignee
Avent Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avent Inc filed Critical Avent Inc
Publication of CA2885785A1 publication Critical patent/CA2885785A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/70Cleaning devices specially adapted for surgical instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/04Tracheal tubes
    • A61M16/0434Cuffs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/04Tracheal tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/04Tracheal tubes
    • A61M16/0463Tracheal tubes combined with suction tubes, catheters or the like; Outside connections
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • A61M25/0082Catheter tip comprising a tool
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/70Cleaning devices specially adapted for surgical instruments
    • A61B2090/701Cleaning devices specially adapted for surgical instruments for flexible tubular instruments, e.g. endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M2025/0019Cleaning catheters or the like, e.g. for reuse of the device, for avoiding replacement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2209/00Ancillary equipment
    • A61M2209/10Equipment for cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/02Cleaning pipes or tubes or systems of pipes or tubes
    • B08B9/027Cleaning the internal surfaces; Removal of blockages
    • B08B9/032Cleaning the internal surfaces; Removal of blockages by the mechanical action of a moving fluid, e.g. by flushing
    • B08B9/035Cleaning the internal surfaces; Removal of blockages by the mechanical action of a moving fluid, e.g. by flushing by suction

Abstract

A device (300) for cleaning the interior wall of a catheter (20) has a cleaning lumen (302) and a non-inflatable removal element comprising whisks. The whisks are configured around of the cleaning lumen and each whisk has a first position when unconstrained and a second position when within the catheter. The removal element self-positions the device concentrically within the catheter. Suction is desirably applied to the cleaning lumen during use.

Description

SELF POSITIONING TRACHEAL TUBE CLEARANCE MECHANISM USING
WHISKS
The present disclosure relates to cleaning mechanisms for the central (breathing) lumen of tracheal tubes.
Tracheal intubation involves the insertion of a hollow tubular device, known lo as a tracheal tube, into the trachea of a patient. The tube may be inserted through the mouth or, less desirably, the nose or may be inserted through the neck by way of an incision in the front of the throat. If inserted through the mouth or nose the tube is referred to as an endotracheal tube, if through the front of the throat the tube is referred to as a tracheostomy or trach tube. The two types of tubes will be referred to as tracheal tubes herein. The tracheal tube passes into the trachea and terminates at a position above the carina, anterior to a position between the second and fourth thoracic vertebrate. Gases may then be introduced through the central lumen of the tracheal tube and into the lungs of the patient.
The primary purpose of tracheal intubation is to mechanically ventilate the patient's lungs when the patient is incapable of normal breathing induced ventilation. Intubation may also be used to apply anesthetic gases during surgical intervention. It is desirable to seal the passageway around the tracheal tube in order to maintain enough air pressure to force the air into the lungs during mechanical ventilation and to prevent escape of gases past the tube (i.e.
"short circuiting" or bypassing of the lungs). Such a seal may be produced by the use of an inflatable cuff or balloon surrounding the tracheal tube near its distal end.
When the tracheal tube has been introduced into the patient's trachea, the inflatable cuff will normally be located about 3 to 5 centimeters above the carina and within the tube-like trachea.
Once inflated, the cuff will engage the wall of the trachea and thereby seal the trachea and prevent the gases being introduced through the tracheal tube from simply reversing course after exiting the distal end of the tube and traveling back up and around the tube to exit the mouth. While treatment of this sort has proved successful for patients having chronic or acute respiratory diseases, there is a constant risk of several complications.
One of the most common complications in mechanical ventilation is known as ventilator associated (or acquired) pneumonia or VAP. Patients receiving tracheal intubation sometimes develop this pneumonia from an infection of the io lungs, possibly induced by contaminated secretions, mucus or biofilm entering the trachea and the lungs after growing in the warm, moist environment in the central lumen of the tracheal tube. Removing these secretions from the tracheal tube lumen would likely reduce the risk of such infections.
In addition, it has been reported that extu bated endotracheal tubes had significantly decreased luminal volume and radius compared to unused tubes.
Even small changes in the luminal radius result in large changes in resistance to airflow-leading to an increased work of breathing, difficulty in breathing and increased length of hospital stays. The build-up of tenacious secretions within the tracheal tube can lead to difficulty in weaning off the mechanical ventilator, the need for emergency tracheal tube replacement, or the need for tracheostomy, all of which place the patient at greater risk of additional complications.
A number of attempts have been made to develop cleaning mechanisms for the central lumen of tracheal tubes. UK patent application GB 2482618 to Airway Medix Spolka Z.O.O. discusses a cleaning device having a balloon on the distal end and having a source of pressurized liquid and a source of suction to wash the interior of the central lumen and remove the liquid and biofilm. US patent 8,157,919 to Endoclear LLC provides a medical tube cleaning apparatus with a mechanically actuated, non-inflatable cleaning member. No liquid or suction are used.
What is needed is a mechanism for thorough cleaning of the central tracheal tube lumen.
2 SUMMARY
This disclosure relates to a device (cleaning device, self-positioning cleaning device, or self-positioning tracheal tube cleaning device) for cleaning the interior walls of a breathing lumen, e.g., a catheter or a tracheal tube. The device has a cleaning lumen and a non-inflatable removal element that has a first position lo a second position with respect to the cleaning lumen. The removal element comprises whisks, a proximal collar and a distal collar. Each whisk has an elongated shape and comprises a distal end, a proximal end, and an intermediate portion between these ends. The whisks are or similar shape. Each whisk end joins to a respective collar. The distal collar joins to the cleaning lumen while the proximal collar slides along a portion of the exterior side (surface) of the cleaning lumen.
The whisks can change position with respect to the cleaning lumen, for example, each whisk has a portion that is capable of being in proximity to the cleaning lumen when compressed, but being distanced away from the cleaning lumen when unconstrained. The removal element self-positions the device concentrically within the tracheal tube. Suction is desirably applied to the cleaning lumen during use.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 shows a cleaning device with whisks in a second position as it is withdrawn from a tracheal tube.
Figure 2 shows a cleaning device with whisks in another second position.
The cleaning lumen, distal port, whisks and lateral openings are clearly visible.
The whisks in this second position are in close proximity to the cleaning lumen.
Figure 3 shows a cleaning device having whisks in an unconstrained position, i.e. the first position, as is typical outside the tracheal tube.
The cleaning lumen, distal port, whisks and lateral openings are clearly visible.
3 DETAILED DESCRIPTION
Reference will now be made in detail to one or more embodiments, examples of which are illustrated in the drawings. It should be understood that features illustrated or described as part of one embodiment may be used with another embodiment to yield still a further embodiment.
lo Suction catheters are well known and widely commercially available for many medical uses. Suctioning may be performed using an "open" or "closed" system.
In the open system, the suction catheter is merely a flexible plastic tube that is inserted into the tracheal tube breathing lumen with a source of suction connected to the proximal end of the suction catheter. Anything that the suction catheter touches before entering the lumen is preferably maintained in a sterile condition so a "sterile field" is created on or next to the patient. The suction catheter must be carefully handled after it is used since it will be coated with the patient's secretions.
In contrast, in the "closed" system, for example that disclosed in US patent
4,569,344, a device which may be used to suction secretions is enclosed within a generally cylindrical plastic bag to eliminate or minimize contamination of the suction catheter prior to use. This is generally referred to as a "closed suction catheter" and is available under the trade name TRACH CARE @ (BALLARD@
Medical Products) from Kimberly-Clark Corporation.
Disclosed is a device that enters the tracheal tube either by opening the ventilation circuit or by entering through an access port that gives access to the tracheal tube. The device has a proximal end, a distal end, and the removal element between these ends. The distal end of the device enters the tracheal tube first. The device may contain markings which indicate its advancement through the tracheal tube and may convey to the user information about the location of the device, e.g., when the distal end of the device reaches the distal end of the tracheal tube. The cleaning lumen of the device must of course be smaller than the interior diameter of the tracheal tube. The removal element must deform to fit within the interior of the tracheal tube. The whisks take on a second position when the device is inserted within the interior of the tracheal tube. The proximal collar reversibly slides along a portion of the exterior of the cleaning lumen when the whisks transition between the first and second positions.
The removal element comprises a plurality of whisks that are non-inflatable.
The whisks strive to take on the first position, the unconstrained position, due to an intentional bias for a portion of each whisk to be a predetermined maximum distance away from the exterior of the cleaning lumen. When within the tracheal tube the whisks take on a second position such that portions of each whisk contact the interior of the tracheal tube.
Suction is desirably applied to the cleaning lumen during use.
The removal element self-positions the device to be generally concentric with the tracheal tube when the cleaning lumen is within the tracheal tube.
This self-positioning is caused by the bias of the whisks, their spacing around the cleaning lumen, and the radial dimensions of the cleaning lumen and the tracheal tube interior.
The removal element has a maximum radial dimension in the first position.
In second positions the removal element has its largest radial dimension less than the maximum of the first position. This change occurs in response to constraining forces applied to the whisks, e.g., within the tracheal tube; this change allows the cleaning device to fit through openings that are smaller than the maximum radial dimension of the removal element. The transition (change) between the first and second positions is repeatedly reversible.
The whisks are configured around the cleaning lumen and their distal ends are anchored to the cleaning lumen via the distal collar. The proximal ends of the whisks are maintained in close proximity to the cleaning lumen via their attachment to the sliding proximal collar. The proximal collar moves from a first location to a second location with respect to the distal collar when the whisks move from one constrained condition to another, i.e., different second positions, or to the unconstrained position, and vice versa. As a consequence of their attachment, the whisk proximal ends follow the location changes of the proximal collar and the
5 intermediate whisk portions adjust their radial dimensions, while the distal whisk ends remain fixed in place.
In the conventional use of an endotracheal tube, air is delivered to the patient's lungs through the breathing channel or lumen inside the tube 20. The tube 20 has a balloon cuff 30 that desirably seals against the trachea 10 such that secretions above the cuff and outside the tube do not move downwardly into the lungs (Figure 1). Further discussion of the functioning to the balloon cuff may be found, for example, in US patent 6,802,317 to Goebel. Mucus may nevertheless build up within the breathing channel or lumen of the tube, causing a decrease in the cross-sectional area of the lumen, thus increasing the resistance to air flow within the lumen and so decreasing the air flow to the patient's lungs. The mucus may also harbor unwanted bacteria that may thrive in the warm, moist environment inside the tube.
Figure 1 shows a self-positioning tracheal tube cleaning device 300 advancing within a tracheal tube, with the whisks 306 constrained in a second position against the cleaning lumen 302. This device 300 has a port 304 on the distal end of the cleaning lumen 302 and lateral ports 308 that are in fluid communication with the interior of the cleaning lumen. The device 300 has a removal element comprising whisks 306 spaced apart individually or in clusters around the cleaning lumen 302, the whisks 306 are fixed to the cleaning lumen 302 at a distal collar 310 but not fixed to the cleaning lumen 302 at a proximal collar 312. It is believed that a minimum of three individual whisks or three clusters of an equal number of whisks are needed to self-center the cleaning device and that they should be equally spaced about the cleaning lumen, e.g. 120 degrees from each other when there are only three whisks or whisk clusters. The cleaning device 300 may be a modified closed suction catheter as described above. The cleaning device 300 wipes the interior of the tracheal tube and removes secretion build-up every time it is retracted within the tracheal tube. The wiping is a result of whisk portions contacting the interior wall of the tracheal tube; the contact increases as the proximal collar slides towards the distal collar.
6
7 PCT/1B2013/058675 The whisks 306 around the cleaning lumen 302 are biased to an unconstrained state, the first position, in which the whisks 306 has a maximum radial dimension. Within the tracheal tube 20 the whisks span the distance between the interior wall of the tracheal tube and the exterior surface of the cleaning lumen 302. Each whisk 306 has a distal end 316 and a proximal end 314 io with a bending region 318 and an intermediate portion 320 between these ends.
The bending region 318 and the intermediate region 320 can be the same. The stiffness of the whisks 306 may vary between the distal and proximal ends 316, 314 to encourage the whisks to move towards the first position, but allow moving to and from various second positions. For example, the whisk portion near the distal end 316 (or distal collar) may be more stiff than the whisk portion near the proximal end 314 (or proximal collar) to allow the proximal collar 312 to more easily move downwardly as the cleaning device is withdrawn from the trach tube.
Each of the whisks 306 can have a uniform or a varying cross-sectional shape between the proximal and distal collars, e.g., the cross-sectional shape can be bowed or curved with the concave portion facing towards the exterior of the cleaning lumen 302. The whisks may also taper in dimensions from their intermediate portions to one or both ends.
The distal ends 316 are fixedly attached to the exterior of the cleaning lumen 302 at the distal collar 310. The proximal ends 314 are connected to each other directly or by intermediate material to form a proximal collar 312 that encircles the cleaning lumen 302 but is not attached to the cleaning lumen 302.
The proximal collar 312 reversibly slides along the cleaning lumen 302 between a maximum and minimum limit as the whisks 306 change from their biased constrained state. The maximum limit is where the proximal collar 312 is most proximally positioned as allowed by the collective whisks 306 and the respective whisk ends 314, 316 are farthest apart. Conversely, the minimal limit is where the proximal collar 312 is nearest the location where the distal ends 316 of the whisks 306 are attached to the cleaning lumen 302.
The whisks 306 on the sides of the cleaning lumen 302 can straighten with respect to the axial direction of the device 300 as device 300 is moved through the tracheal tube since the proximal collar 312 of the whisks 306 is not fixed on the cleaning lumen 302. As the distal movement of the device within the tracheal tube ceases, the bias of the whisks (to assume the first position) forces the whisks 306 to move outwardly from the cleaning lumen. As a result of the bias, the whisks contact the inner walls of the tube as the device 300 and this contact increases as io device 300 is withdrawn, loosening any deposits and directing them toward the lateral ports 308. The contact of the whisks 306 with the inner wall of the tracheal tube is enhanced when the bending region 318 of each whisk 306 attains the unconstrained state or enhances the bowing of the whisks 306 beyond the unconstrained state. Suction applied to the proximal end (not shown) of the device 300 pulls the deposits into the cleaning lumen 302 through the lateral ports and the distal port 304.
Figures 2 and 3 show the cleaning device 300 with the cleaning lumen 302, distal port 304, whisks 306 and lateral openings 308 components clearly visible. The whisks 306 are in a maximally constrained second position in Figure 2 and in an unconstrained position, i.e., the first position, in Figure 3. The whisks 306 change positions when the proximal collar 312 moves from a first location to a second location with respect to the distal collar, i.e. it moves distally when intermediate portions of whisks 306 bend outwardly from the cleaning lumen 302. When the intermediate portions of the whisk contact the interior wall of the tracheal tube, the whisks 306 self-position the device 300 generally in the center of the tracheal tube breathing lumen. The cleaning device 300 may optionally have a film (not shown) covering the distal half of the whisks 306 to assist in catching any mucus that may escape the suction port 304 and lateral openings 308.
While the present disclosure has been described in connection with certain preferred embodiments it is to be understood that the subject matter encompassed by way of the present disclosure is not to be limited to those specific embodiments.
On the contrary, it is intended for the subject matter of the disclosure to include all alternatives, modifications and equivalents as can be included within the spirit and scope of the following claims.
8

Claims (7)

We claim:
1. A device for cleaning the interior wall of a catheter having deposits comprising a cleaning lumen and a removal element having whisks capable of changing from a first position to a second position.
2. The device of claim 1 wherein said whisks each have a portion that has a bias to deflect away from the cleaning lumen
3. The device of 1 wherein said cleaning lumen has a distal port and lateral ports, the whisks are spaced apart individually or in clusters around the cleaning lumen, each whisk has a distal end that is fixed to the cleaning lumen at a distal collar and has a proximal end not fixed to the cleaning lumen at a proximal collar, and wherein suction applied to a proximal end of said cleaning lumen pulls said deposits through said lateral and distal ports.
4. The device of claim 3 wherein a whisk portion near the distal collar is stiffer than a whisk portion near the proximal collar.
5. The device of claim 1 having a film covering the distal half of the whisks to assist in catching any deposits that may escape the distal and lateral ports.
6. The device of claim 1 wherein suction is applied to said cleaning lumen as said device is inserted and removed from said catheter.
7. The device of claim 2 wherein said whisks are in a second position and center the device within the catheter with respect to the interior wall.
CA2885785A 2012-09-28 2013-09-19 Self positioning tracheal tube clearance mechanism using whisks Abandoned CA2885785A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201261707259P 2012-09-28 2012-09-28
US61/707,259 2012-09-28
US14/026,139 US20140090195A1 (en) 2012-09-28 2013-09-13 Self Positioning Tracheal Tube Clearance Mechanism Using Whisks
US14/026,139 2013-09-13
PCT/IB2013/058675 WO2014049497A1 (en) 2012-09-28 2013-09-19 Self positioning tracheal tube clearance mechanism using whisks

Publications (1)

Publication Number Publication Date
CA2885785A1 true CA2885785A1 (en) 2014-04-03

Family

ID=50383856

Family Applications (3)

Application Number Title Priority Date Filing Date
CA2885780A Active CA2885780C (en) 2012-09-28 2013-09-18 Self positioning tracheal tube clearance mechanism using skives
CA2885782A Active CA2885782C (en) 2012-09-28 2013-09-18 Self positioning tracheal tube clearance mechanism using a collar
CA2885785A Abandoned CA2885785A1 (en) 2012-09-28 2013-09-19 Self positioning tracheal tube clearance mechanism using whisks

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CA2885780A Active CA2885780C (en) 2012-09-28 2013-09-18 Self positioning tracheal tube clearance mechanism using skives
CA2885782A Active CA2885782C (en) 2012-09-28 2013-09-18 Self positioning tracheal tube clearance mechanism using a collar

Country Status (7)

Country Link
US (3) US9480537B2 (en)
EP (3) EP2900304B1 (en)
JP (3) JP6302914B2 (en)
AU (3) AU2013322221B2 (en)
CA (3) CA2885780C (en)
MX (3) MX354055B (en)
WO (3) WO2014049492A1 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011126812A1 (en) 2010-03-29 2011-10-13 Endoclear, Llc Airway cleaning and visualization
DK2393538T3 (en) 2009-02-06 2017-11-27 Endoclear Llc Devices for cleaning endotracheal tubes
US8468637B2 (en) 2009-02-06 2013-06-25 Endoclear Llc Mechanically-actuated endotracheal tube cleaning device
US9445714B2 (en) 2010-03-29 2016-09-20 Endoclear Llc Endotracheal tube coupling adapters
GB201119794D0 (en) 2011-11-16 2011-12-28 Airway Medix Spolka Z O O Ballooned ventilation tube cleaning device
AU2012235744A1 (en) 2011-03-29 2013-11-14 Airway Medix S.A. Ballooned ventilation tube cleaning device
CA2860301C (en) 2012-01-15 2019-04-23 Triticum Ltd. Device and method for removing occlusions in a biological vessel
US10004863B2 (en) 2012-12-04 2018-06-26 Endoclear Llc Closed suction cleaning devices, systems and methods
WO2015013513A1 (en) * 2013-07-25 2015-01-29 Covidien Lp Multifunctional telescoping cleaning device
EP3151898B1 (en) 2014-06-03 2021-03-24 Endoclear LLC Cleaning devices, systems and methods
US10500360B1 (en) 2014-08-29 2019-12-10 Teleflex Life Sciences Unlimited Company Catheter for cleaning of tracheal ventilation tubes
WO2016120864A2 (en) 2015-01-28 2016-08-04 Triticum Ltd. Device and method for removing occlusions in a biological vessel
WO2017079643A1 (en) * 2015-11-05 2017-05-11 Cedars-Sinai Medical Center Endotracheal cleaning suction brush
US11452831B2 (en) 2016-01-06 2022-09-27 Airway Medix S.A. Closed suction system
GB2546082B (en) 2016-01-06 2018-05-16 Airway Medix S A Closed suction system
US10946153B2 (en) 2016-05-16 2021-03-16 Teleflex Life Sciences Pte. Ltd. Mechanical user control elements for fluid input module
CN106215294B (en) * 2016-08-16 2018-06-08 中国人民解放军总医院 Tracheostomy cannula
US10470840B2 (en) 2016-12-29 2019-11-12 Aaron WYNKOOP Surgical suction clearing device
US10636324B2 (en) * 2017-12-21 2020-04-28 Laerdal Medical As Device for training tracheal suctioning
US11547525B2 (en) 2018-06-06 2023-01-10 Tel Hashomer Medical Research Infrastructure And Services Ltd. Endotracheal tube cleaning device system and method
DE102018133503A1 (en) * 2018-12-21 2020-06-25 Aesculap Ag Rinsing tool for a handpiece of a surgical instrument
CN110792970A (en) * 2019-11-07 2020-02-14 湖南一肯照明有限公司 Novel energy-saving LED illuminating lamp
US11925745B1 (en) * 2019-11-27 2024-03-12 Clearflow, Inc. Clearance system for medical tubes such as surgical drains
US11927002B2 (en) * 2021-04-23 2024-03-12 Kamran Yazdani Hair entrapment filter system
KR102373996B1 (en) * 2021-06-15 2022-03-15 장준영 Suction tip for cleaning intubation tube
US20230142752A1 (en) * 2021-11-03 2023-05-11 2Xl Corporation Clearing rod
CN114308928B (en) * 2021-12-17 2023-05-09 深圳市中微泽电子有限公司 Medical treatment is with gynaecology's straw belt cleaning device
CN117244123B (en) * 2023-11-14 2024-02-06 北京安吉贝玛健康科技有限公司 Respiratory tract cleaning device

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4569344A (en) 1984-07-23 1986-02-11 Ballard Medical Products Aspirating/ventilating apparatus and method
JPS62211074A (en) * 1986-03-07 1987-09-17 ボ−ド・オブ・リ−ジエンツ、ザ・ユニバ−シテイ−・オブ・テキサス・システム Suction catheter with leading end balloon
JP2620250B2 (en) * 1987-04-27 1997-06-11 ボード・オブ・リージェンツ、ザ・ユニバーシティー・オブ・テキサス・システム Catheter assembly
FR2617720A1 (en) 1987-07-08 1989-01-13 Medipro DEVICE FOR DESOBSTRUCTING INTUBATION PROBES AND IN VIVO TRACHEOTOMY CANNULAS
US5143062A (en) * 1990-10-26 1992-09-01 Mallinckrodt Medical, Inc. Endotracheal tube having irrigation means
US5168593A (en) * 1991-11-01 1992-12-08 Mill-Rose Laboratories, Inc. Tool for cleaning endoscopes
IT1255648B (en) 1992-07-30 1995-11-09 Giuseppe Zucchi DEVICE FOR THE CLEANING AND INTERNAL DISSTRUCTION OF TUBULAR BODIES FOR MEDICAL USE TO BE INTRODUCED IN THE HUMAN BODY, IN PARTICULAR ENDOTRACHEAL TUBES, DRAINAGES, PROBES AND URETHRAL AND SIMILAR CATHETERS
US5297310A (en) * 1993-01-21 1994-03-29 Dennis Cox Cleaning brush for endoscopes
US5535756A (en) * 1994-01-06 1996-07-16 Parasher; Vinod K. Catheter with simultaneous brush cytology and scrape biopsy capability
US5702413A (en) * 1996-01-11 1997-12-30 Scimed Life Systems, Inc. Curved bristle atherectomy device and method
US6494208B1 (en) * 1996-03-11 2002-12-17 Orlando Morejon Endotracheal tube cleaning apparatus
US7060135B2 (en) 1996-03-11 2006-06-13 Orlando Morejon Endotracheal tube cleaning apparatus and method
US5836032A (en) * 1997-09-30 1998-11-17 Hondo; Leslie H. Apparatus for removing hair from a drain
EP1061984B2 (en) 1998-03-09 2010-03-03 Kimberly-Clark Worldwide, Inc. Tracheal breathing apparatus
AUPP537098A0 (en) * 1998-08-20 1998-09-10 Novapharm Research (Australia) Pty Ltd Endoscope cleaning device
JP2000175923A (en) * 1998-12-15 2000-06-27 Asahi Intecc Co Ltd Foreign matter removing device
US6775873B2 (en) * 2000-02-09 2004-08-17 Eugene H. Luoma Apparatus for removing hair from a drain
AU3654902A (en) 2000-11-03 2002-05-21 Cleveland Clinic Foundation Catheter for removal of solids from surgical drains
US6638294B1 (en) * 2001-08-30 2003-10-28 Advanced Cardiovascular Systems, Inc. Self furling umbrella frame for carotid filter
US7121336B2 (en) * 2002-11-11 2006-10-17 Mcginnis Chemical, Inc Well scrubber
US20090049627A1 (en) * 2005-06-30 2009-02-26 Novapharm Research (Australia) Pty Ltd. Device for use in cleaning endoscopes
US20080172066A9 (en) * 2005-07-29 2008-07-17 Galdonik Jason A Embolectomy procedures with a device comprising a polymer and devices with polymer matrices and supports
US7527058B2 (en) 2006-06-14 2009-05-05 Medical Device Group, Inc. Respiratory suction catheter assembly
US20080269774A1 (en) * 2006-10-26 2008-10-30 Chestnut Medical Technologies, Inc. Intracorporeal Grasping Device
US8262645B2 (en) * 2007-11-21 2012-09-11 Actuated Medical, Inc. Devices for clearing blockages in in-situ artificial lumens
CN102056532B (en) * 2008-04-08 2014-06-11 杰特普雷普有限公司 Body passage cleansing device
US8739968B2 (en) * 2008-12-02 2014-06-03 S.C. Johnson & Son, Inc. Drain clog remover
US8468637B2 (en) 2009-02-06 2013-06-25 Endoclear Llc Mechanically-actuated endotracheal tube cleaning device
WO2011126812A1 (en) 2010-03-29 2011-10-13 Endoclear, Llc Airway cleaning and visualization
CA2670689A1 (en) * 2009-06-03 2011-01-03 Gabe Coscarella Duct cleaning attachment for a vacuum
US20110186052A1 (en) 2010-02-01 2011-08-04 Orlando Morejon Cleaning assembly for an endotracheal tube
DE102010026774B4 (en) 2010-07-10 2017-09-21 Karl Storz Gmbh & Co. Kg Device for cleaning channels of medical instruments
JP2011104388A (en) * 2011-01-13 2011-06-02 Microvention Inc Catheter for embolectomy and handling method thereof
PL396436A1 (en) 2011-09-26 2013-04-02 Airway Medix Spólka Z Ograniczona Odpowiedzialnoscia Balloon device for cleaning the intubation tubes

Also Published As

Publication number Publication date
WO2014049492A1 (en) 2014-04-03
AU2013322226A1 (en) 2015-03-19
EP2900304A1 (en) 2015-08-05
EP2900304B1 (en) 2017-05-03
EP2900307A1 (en) 2015-08-05
US20140090195A1 (en) 2014-04-03
CA2885780C (en) 2020-10-27
JP6298467B2 (en) 2018-03-20
US9131988B2 (en) 2015-09-15
US9480537B2 (en) 2016-11-01
MX354055B (en) 2018-02-09
JP2015530179A (en) 2015-10-15
CA2885780A1 (en) 2014-04-03
MX2015003803A (en) 2015-07-17
CA2885782A1 (en) 2014-04-03
EP2900307B1 (en) 2017-06-07
AU2013322222B2 (en) 2017-07-13
AU2013322221A1 (en) 2015-03-19
JP6302914B2 (en) 2018-03-28
AU2013322222A1 (en) 2015-03-19
JP2015530180A (en) 2015-10-15
MX2015003805A (en) 2015-07-17
EP2900308A1 (en) 2015-08-05
AU2013322221B2 (en) 2017-07-13
EP2900308B1 (en) 2017-05-31
MX353974B (en) 2018-02-07
US20140090194A1 (en) 2014-04-03
US20140090642A1 (en) 2014-04-03
WO2014049493A1 (en) 2014-04-03
MX2015003804A (en) 2015-07-17
JP2015530178A (en) 2015-10-15
WO2014049497A1 (en) 2014-04-03
CA2885782C (en) 2021-05-18

Similar Documents

Publication Publication Date Title
EP2900308B1 (en) Self positioning tracheal tube clearance mechanism using whisks
US10850062B2 (en) Cleaning devices, systems and methods
US10245401B2 (en) Subglottic suctioning system
AU2015204288B2 (en) Subglottic suctioning system
JP2023553536A (en) Perfusion endoluminal suction inner cannula system

Legal Events

Date Code Title Description
FZDE Discontinued

Effective date: 20180919