CN100459146C - 用于mosfet的铟-硼双盐注入 - Google Patents

用于mosfet的铟-硼双盐注入 Download PDF

Info

Publication number
CN100459146C
CN100459146C CNB038232146A CN03823214A CN100459146C CN 100459146 C CN100459146 C CN 100459146C CN B038232146 A CNB038232146 A CN B038232146A CN 03823214 A CN03823214 A CN 03823214A CN 100459146 C CN100459146 C CN 100459146C
Authority
CN
China
Prior art keywords
salt
channel region
indium
boron
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB038232146A
Other languages
English (en)
Other versions
CN1685517A (zh
Inventor
C·维伯
G·施勒姆
I·波斯特
M·施泰特尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of CN1685517A publication Critical patent/CN1685517A/zh
Application granted granted Critical
Publication of CN100459146C publication Critical patent/CN100459146C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1041Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface
    • H01L29/1045Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface the doping structure being parallel to the channel length, e.g. DMOS like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • H01L21/2652Through-implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/2658Bombardment with radiation with high-energy radiation producing ion implantation of a molecular ion, e.g. decaborane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface

Abstract

一种方法,包括形成具有沟道区域的晶体管器件;将第一盐注入沟道区域;以及将不同的第二盐注入沟道区域。一种装置,包括形成在基板上的栅极电极;形成在基板中、栅极电极下、以及接点之间的沟道区域;沟道区域中的包括第一种类的第一盐注入物;以及沟道区域中的包括不同的第二种类的第二盐注入物。

Description

用于MOSFET的铟-硼双盐注入
背景
领域
电路器件和用于形成电路器件的方法。
背景
场效应晶体管(FET)是诸如多处理器或其它电路之类的集成电路的普通元件。晶体管一般包括形成于半导体基板中的源极和漏极结区域(junctionregion),以及形成于基板的表面上的栅极电极。栅极长度一般为源极和漏极结区域之间的距离。在基板内,栅极电极下且位于源极和漏极结之间的基板的区域一般被称为沟道,沟道长度为源极和漏极结之间的距离。
如上所述,许多晶体管器件形成在半导体基板中。为了提高基板的半导体材料的电导率,将掺杂剂引入(例如注入)基板中。具有代表性的是,N型晶体管器件可用诸如砷之类的N型掺杂剂掺杂源极和漏极区域(以及栅极电极)。在先前已形成的P型电导率的阱(well)中形成N型结区域。合适的P型掺杂剂是硼。
晶体管器件一般以下述方式工作。通过基板上建立与源极和漏极结的接触,载流子(例如电子、空穴)在源极结和漏极结之间流动。为了建立载流子流,必须将足够的电压施加到栅极电极,以在沟道中形成载流子的反型层。该电压的最小量一般称为阈电压(Vt)。
一般来说,当制造相同尺寸的多个晶体管时,希望器件之间的性能特性如阈电压相类似。一般来说,阈电压随着栅极长度的减小而趋于降低。当然,性能常常取决于晶体管尺寸中的降低(例如更快开关、芯片上更多的器件等),它支配着半导体加工业的目标。当栅极电极长度接近小于100纳米(nm)的尺寸时,发现阈电压迅速下降或降低。因此,即使是栅极电极长度中的小变化(例如与目标长度相差10纳米),也可能显著地影响阈电压。
理想的是,在关于目标栅极长度的一定范围的栅极长度中,阈电压应为恒定,以构成制造裕度。在一方面,为了促进在可接受的栅极长度范围内更恒定的阈电压,可在栅极边缘下引入局部注入的掺杂剂(N型金属氧化物半导体FET(NMOSFET)中为P型,P型金属氧化物半导体FET(PMOSFET)中为N型)。这种注入物被称为是“盐”(halo)注入物。注入的掺杂剂有助于提高沟道边缘周围的掺杂浓度,从而增加阈电压。一个效果是降低目标尺寸器件的阈电压,同时维持最坏情况尺寸器件的阈电压。
用于NMOSFET的典型的盐注入物包括硼(如氟化硼(BF2))和铟(In)。用于PMOSFET的盐注入物包括砷、锑、磷。就NMOSFET而言,铟是特别优选的掺杂剂,因为铟沟道从器件的表面形成倒向的剖面轮廓。相对于不具有相同的倒向的剖面轮廓的硼掺杂剂来说,这种关于铟的浓度分布曲线有助于降低满足器件中给定的漏电流(Ioff)所要求的阈电压。与铟有关的一个问题是铟实现了达到最差情况漏电流所要求的浓度之下的固溶性状态。从而,为了以小漏电流为目标(例如在小于100nm(nm)的器件上大约40纳安(na)的数量级),仅仅铟类盐注入物是不能实现这种目标的。
附图简述
通过下面的详细说明、所附的权利要求以及附图,本发明的特征、方面及优点将变得完全清楚,附图中:
图1示出了包括具有第一盐注入的晶体管器件的电路基板的一部分的截面图。
图2示出了第二盐注入后的图1的器件。
图3示出了对于所选定的漏电流,基板中的盐浓度对栅极长度的关系的图形表示。
图4示出了硅基板中P型掺杂剂的掺杂剂浓度。
图5示出了对于硅基板的阈电压对P型掺杂剂浓度的关系的图形表示。
图6示出了对于P型掺杂剂的漏电流对阈电压的关系的图形表示。
图7示出了对于NMOSFET器件的阈电压对栅极长度的关系的图形表示。
图8示出了对于NMOSFET的漏电流对栅极长度的关系的图形表示。
图9示出了基板上器件的数量对栅极长度的关系的图形表示。
图10示出了对于基板上的器件的数量,驱动电流对栅极长度的关系的图形表示。
图11示出了对于晶体管器件的驱动电流对漏电流的关系的图形表示。
详细说明
如上所述,铟是较佳的NMOSFET沟道掺杂剂(例如盐掺杂剂),因为它的倒向的浓度分布曲线导致较低的阈电压和提高的驱动电流。然而,对于更小的器件,例如具有60nm或更小的目标栅极长度的器件,仅用铟作为盐掺杂剂是不可接受的,因为它的固溶度限度易于防止铟以足够高的水平掺杂入NMOSFET沟道以维持合理的最坏情况下的漏电流。
图1示出了其上形成晶体管器件的电路基板的一部分的剖面侧视图。结构100包括例如以硅为代表的半导体材料的基板110。在图1中的基板110中和基板110上形成的是晶体管器件。作为代表,该晶体管器件是形成在P型阱120中的NMOSFET。该晶体管器件包括形成在基板110的表面上的栅极电极130,具有栅极长度170。该晶体管器件还包括源极结140和漏极结150。在NMOSFET中,源极结140和漏极结150都是N型的,一般栅极电极130也为N型。源极结140包括(通过在形成衬垫部135之前的注入物)形成为例如自对准栅极电极130的尖端(tip)注入物145。(通过在形成衬垫部135之后的注入物)源极结140的大小与栅极电极130上的衬垫部135对准。类似地,漏极结150包括基本与栅极电极130对准的注入物155(例如轻微掺杂的漏极)。漏极结150的大小与栅极电极130上的衬垫部135对准。
图1还示出基板110的沟道区域160中的单盐注入物。在晶体管器件是NMOSFET的实施例中,第一注入物180例如是铟。可通过以例如25°至30°的倾角将诸如铟离子之类的掺杂剂离子引入基板110中来形成盐注入物。引入第一盐180的一种方法是在形成栅极电极之后(但在形成衬垫部之前)的注入操作,从而栅极电极充当对准的注入掩模。
图2示出了第二盐引入之后的图1的结构。对于所示的代表性的NMOSFET来说,第一盐180是铟类的,第二盐190是例如硼类的(例如二氟化硼)。可根据与引入第一盐类似的技术,通过注入来引入第二盐190。
在第一盐180是铟,第二盐190是硼或类似种类的例子中,涉及多种盐的一个技术包括将第一盐180引入到基板110的沟道120中达到用于硅的铟的固溶度,一般为2E18cm-3。在注入铟类达到铟固溶度之后,以对于某一栅极长度的器件实现目标阈电压来说足够量的程度注入硼种类作为第二盐190。理解到已经确定了铟和硼掺杂剂的合适的量,而引入两者的顺序可以变化。
在上述实施例中,引入铟种类的第一盐(例如第一盐180),并引入第二盐(例如第二盐190)。从而,结构100包括引入沟道120中的两种盐。所描述的掺杂剂包括铟和硼种类。理解到,对于NMOSFET或PMOSFET来说,其它种类也类似适用。在一个例子中,在减少的栅极长度(例如大约70纳米或更小)以实现目标阈电压、漏电流和驱动电流的上下文环境中,选择并引入铟直到其固溶度。图3示出了对于所选定的例如40nA的漏电流(Ioff),硅基板中的盐浓度对栅极长度的关系的图形表示。图3示出,随着栅极长度减少到大约100nm以后,铟饱和,并且不能单独地实现所希望的漏电流。图4代表性地示出了硅基板中的盐浓度。图3说明了满足漏电流要求(例如3E18cm-3)而要求的浓度大于铟固溶度(例如大约2E18cm-3)。
图5示出了阈电压对掺杂剂浓度的关系的图形表示。图5说明了铟在其固溶度饱和。图6示出漏电流对阈电压的关系的图形表示。图6说明了铟在其固溶度再次饱和(例如大约100纳安/微米)。从而,就实现目标阈电压和目标漏电流而言,使用除了包括铟种类的盐注入物之外的额外的盐注入物。如图5和图6所示,可使用硼种类的第二盐注入物来实现目标阈电压和目标漏电流。
根据上述图形表示,例如,其中最差情况栅极长度器件的漏电流(Ioff)是例如100纳安/微米,目标栅极长度例如是60纳米,可将铟种类引入作为第一盐直到其固溶度,可将例如硼种类的第二盐引入直到建立了支持所述漏电流而要求的阈电压为止。
图7和图8示出了与对于某一栅极长度器件的阈电压和漏极电流相关联的图形表示。这两个图形表示说明了与制造器件有关的制造裕度,特别是可接受的栅极长度中的偏差。作为代表,出于解释的目的,目标栅极长度为70纳米(nm),而最坏栅极长度大约10nm。如图7所例示的那样,盐注入物易于降低目标尺寸器件的阈电压,同时维持最差情况尺寸器件的阈电压。然而,对于各种栅极长度的漏电流影响示于图8。作为代表,对于现有技术铟盐和硼阱类型(铟盐/硼阱)器件,最差情况栅极长度漏电流与目标栅极长度器件相比较,最差情况和目标之间的差异是大约10倍因数。从而,即使最差情况器件可能支配总漏电流,诸如所描述的多盐器件也能趋于以代表性的两倍的因数降低最差情况器件和目标器件的漏电流之间的差异。
虽然最差情况栅极长度器件趋于支配漏电流,但是目标器件趋于支配驱动电流。图9和10示出了诸如上述的多盐器件和现有技术单盐/硼阱器件。图9示出了基板上形成的器件和它们对应的栅极长度的表示。器件基本上采用钟形曲线。图10示出了用于在利用如现有技术那样铟盐/硼阱的情况下形成的器件以及按照多(铟和硼)盐器件形成的器件的典型驱动电流。图10示出了多(铟和硼)盐器件有助于在目标栅极长度获得更高的驱动电流,因为它们在目标栅极长度具有更高的漏电流。图11示出了晶体管器件的驱动电流对漏电流的图形表示。
在前述的详细描述中,说明了具体的实施例,包括单独的铟和硼注入物的双盐器件。然而,显然可对其作出各种修改和变化,而不背离如权利要求中所提出的本发明的较宽的要旨和范围。例如,已经对N型器件(P型掺杂剂)描述了铟和硼注入物。设想到可以类似的方式对N型器件引入其它掺杂剂(例如多盐)。可选地,对于P型器件,设想到可在多盐工艺中引入诸如砷和磷之类的N型掺杂剂,其中要优化例如驱动电流和漏电流的效果,但不限于此。因此,说明书和附图应被认为是说明性的而非限制性的。

Claims (8)

1.一种形成电路器件的方法,其特征在于,所述方法包括:
形成具有沟道区域的晶体管器件;
将包括铟的第一盐注入沟道区域,其中所述沟道区域中的所述第一盐的浓度是相当于所述沟道区域的材料中的包括铟的第一盐的固溶度的量;以及
将包括硼的第二盐注入沟道区域,其中第二盐不同于第一盐。
2.如权利要求1所述的方法,其特征在于,选择第二盐的量,以实现比仅通过注入第一盐而能实现的最小漏电流小的漏电流。
3.如权利要求1所述的方法,其特征在于,以25°至30°的倾角范围将第一盐注入沟道区域。
4.一种形成电路器件的方法,其特征在于,所述方法包括:
将包括铟的第一盐注入晶体管器件的沟道区域,其中所述沟道区域中的所述第一盐的浓度是相当于所述沟道区域的材料中的包括铟的第一盐的固溶度的量;以及
以足够实现该器件的目标阈电压的量,将包括硼的第二盐注入沟道区域,其中第二盐不同于第一盐。
5.如权利要求4所述的方法,其特征在于,以25°至30°的倾角范围将第一盐注入沟道区域。
6.一种形成电路器件的方法,其特征在于,所述方法包括:
根据目标栅极长度在基板上形成多个晶体管;
将包括铟的第一盐注入所述多个晶体管中的每一个的沟道区域,其中所述沟道区域中的所述第一盐的浓度是相当于所述沟道区域的材料中的包括铟的第一盐的固溶度的量;
以足够实现对于不同于目标栅极长度的最差情况可接受的栅极长度的目标阈电压的量,将包括硼的第二盐注入所述多个晶体管中的每一个的沟道区域,其中第二盐不同于第一盐。
7.如权利要求6所述的方法,其特征在于,以25°至30°的倾角范围将第一盐注入沟道区域。
8.一种电路器件,其特征在于,所述装置包括:
形成在基板上的栅极电极;
形成在基板中、栅极电极下、以及两个结区域之间的沟道区域;
沟道区域中的包括铟的第一盐注入物,其中所述沟道区域中的所述第一盐的浓度是相当于所述沟道区域的材料中的包括铟的第一盐的固溶度的量;以及
沟道区域中的包括硼的第二盐注入物,其中第二盐不同于第一盐。
CNB038232146A 2002-09-30 2003-09-19 用于mosfet的铟-硼双盐注入 Expired - Fee Related CN100459146C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/261,715 US7226843B2 (en) 2002-09-30 2002-09-30 Indium-boron dual halo MOSFET
US10/261,715 2002-09-30

Publications (2)

Publication Number Publication Date
CN1685517A CN1685517A (zh) 2005-10-19
CN100459146C true CN100459146C (zh) 2009-02-04

Family

ID=32030044

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038232146A Expired - Fee Related CN100459146C (zh) 2002-09-30 2003-09-19 用于mosfet的铟-硼双盐注入

Country Status (6)

Country Link
US (1) US7226843B2 (zh)
EP (1) EP1547154A1 (zh)
CN (1) CN100459146C (zh)
AU (1) AU2003272623A1 (zh)
TW (1) TWI246191B (zh)
WO (1) WO2004032241A1 (zh)

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2794898B1 (fr) 1999-06-11 2001-09-14 France Telecom Dispositif semi-conducteur a tension de seuil compensee et procede de fabrication
US6838329B2 (en) * 2003-03-31 2005-01-04 Intel Corporation High concentration indium fluorine retrograde wells
US7250647B2 (en) * 2003-07-03 2007-07-31 Micron Technology, Inc. Asymmetrical transistor for imager device
US7009248B2 (en) * 2003-10-02 2006-03-07 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device with asymmetric pocket implants
JP4767843B2 (ja) 2004-04-14 2011-09-07 富士通セミコンダクター株式会社 半導体装置及びその製造方法
US20060068556A1 (en) * 2004-09-27 2006-03-30 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the same
US20070148926A1 (en) * 2005-12-28 2007-06-28 Intel Corporation Dual halo implant for improving short channel effect in three-dimensional tri-gate transistors
US7449373B2 (en) * 2006-03-31 2008-11-11 Intel Corporation Method of ion implanting for tri-gate devices
US8354718B2 (en) * 2007-05-22 2013-01-15 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device including an arrangement for suppressing short channel effects
KR101416316B1 (ko) * 2007-12-12 2014-07-08 삼성전자주식회사 국부적인 할로 이온 영역을 포함하는 전계 효과트랜지스터, 이를 포함하는 반도체 메모리, 메모리 카드 및시스템
US8278197B2 (en) * 2008-05-30 2012-10-02 International Business Machines Corporation Method to tailor location of peak electric field directly underneath an extension spacer for enhanced programmability of a prompt-shift device
JP5357473B2 (ja) * 2008-09-09 2013-12-04 ルネサスエレクトロニクス株式会社 半導体集積回路装置
US7960238B2 (en) * 2008-12-29 2011-06-14 Texas Instruments Incorporated Multiple indium implant methods and devices and integrated circuits therefrom
US7829939B1 (en) * 2009-04-20 2010-11-09 International Business Machines Corporation MOSFET including epitaxial halo region
US8273617B2 (en) 2009-09-30 2012-09-25 Suvolta, Inc. Electronic devices and systems, and methods for making and using the same
US8421162B2 (en) 2009-09-30 2013-04-16 Suvolta, Inc. Advanced transistors with punch through suppression
US8426917B2 (en) * 2010-01-07 2013-04-23 International Business Machines Corporation Body-tied asymmetric P-type field effect transistor
US8643107B2 (en) * 2010-01-07 2014-02-04 International Business Machines Corporation Body-tied asymmetric N-type field effect transistor
US8530286B2 (en) 2010-04-12 2013-09-10 Suvolta, Inc. Low power semiconductor transistor structure and method of fabrication thereof
US8569128B2 (en) 2010-06-21 2013-10-29 Suvolta, Inc. Semiconductor structure and method of fabrication thereof with mixed metal types
US8759872B2 (en) 2010-06-22 2014-06-24 Suvolta, Inc. Transistor with threshold voltage set notch and method of fabrication thereof
US8377783B2 (en) 2010-09-30 2013-02-19 Suvolta, Inc. Method for reducing punch-through in a transistor device
US8404551B2 (en) 2010-12-03 2013-03-26 Suvolta, Inc. Source/drain extension control for advanced transistors
US8461875B1 (en) 2011-02-18 2013-06-11 Suvolta, Inc. Digital circuits having improved transistors, and methods therefor
US8525271B2 (en) 2011-03-03 2013-09-03 Suvolta, Inc. Semiconductor structure with improved channel stack and method for fabrication thereof
US8400219B2 (en) 2011-03-24 2013-03-19 Suvolta, Inc. Analog circuits having improved transistors, and methods therefor
US8748270B1 (en) 2011-03-30 2014-06-10 Suvolta, Inc. Process for manufacturing an improved analog transistor
US8796048B1 (en) 2011-05-11 2014-08-05 Suvolta, Inc. Monitoring and measurement of thin film layers
US8999861B1 (en) 2011-05-11 2015-04-07 Suvolta, Inc. Semiconductor structure with substitutional boron and method for fabrication thereof
US8811068B1 (en) 2011-05-13 2014-08-19 Suvolta, Inc. Integrated circuit devices and methods
US8569156B1 (en) 2011-05-16 2013-10-29 Suvolta, Inc. Reducing or eliminating pre-amorphization in transistor manufacture
US8735987B1 (en) 2011-06-06 2014-05-27 Suvolta, Inc. CMOS gate stack structures and processes
US8995204B2 (en) 2011-06-23 2015-03-31 Suvolta, Inc. Circuit devices and methods having adjustable transistor body bias
US8629016B1 (en) 2011-07-26 2014-01-14 Suvolta, Inc. Multiple transistor types formed in a common epitaxial layer by differential out-diffusion from a doped underlayer
US8748986B1 (en) 2011-08-05 2014-06-10 Suvolta, Inc. Electronic device with controlled threshold voltage
KR101891373B1 (ko) 2011-08-05 2018-08-24 엠아이이 후지쯔 세미컨덕터 리미티드 핀 구조물을 갖는 반도체 디바이스 및 그 제조 방법
US8645878B1 (en) 2011-08-23 2014-02-04 Suvolta, Inc. Porting a circuit design from a first semiconductor process to a second semiconductor process
US8614128B1 (en) 2011-08-23 2013-12-24 Suvolta, Inc. CMOS structures and processes based on selective thinning
US8713511B1 (en) 2011-09-16 2014-04-29 Suvolta, Inc. Tools and methods for yield-aware semiconductor manufacturing process target generation
US9236466B1 (en) 2011-10-07 2016-01-12 Mie Fujitsu Semiconductor Limited Analog circuits having improved insulated gate transistors, and methods therefor
US9082633B2 (en) * 2011-10-13 2015-07-14 Xilinx, Inc. Multi-die integrated circuit structure with heat sink
CN102446720B (zh) * 2011-11-08 2016-08-10 上海华力微电子有限公司 一种存储器单元的制备方法
US8895327B1 (en) 2011-12-09 2014-11-25 Suvolta, Inc. Tipless transistors, short-tip transistors, and methods and circuits therefor
US8819603B1 (en) 2011-12-15 2014-08-26 Suvolta, Inc. Memory circuits and methods of making and designing the same
US8883600B1 (en) 2011-12-22 2014-11-11 Suvolta, Inc. Transistor having reduced junction leakage and methods of forming thereof
US8599623B1 (en) 2011-12-23 2013-12-03 Suvolta, Inc. Circuits and methods for measuring circuit elements in an integrated circuit device
US8877619B1 (en) 2012-01-23 2014-11-04 Suvolta, Inc. Process for manufacture of integrated circuits with different channel doping transistor architectures and devices therefrom
US8970289B1 (en) 2012-01-23 2015-03-03 Suvolta, Inc. Circuits and devices for generating bi-directional body bias voltages, and methods therefor
US9093550B1 (en) 2012-01-31 2015-07-28 Mie Fujitsu Semiconductor Limited Integrated circuits having a plurality of high-K metal gate FETs with various combinations of channel foundation structure and gate stack structure and methods of making same
US9406567B1 (en) 2012-02-28 2016-08-02 Mie Fujitsu Semiconductor Limited Method for fabricating multiple transistor devices on a substrate with varying threshold voltages
US8863064B1 (en) 2012-03-23 2014-10-14 Suvolta, Inc. SRAM cell layout structure and devices therefrom
US9299698B2 (en) 2012-06-27 2016-03-29 Mie Fujitsu Semiconductor Limited Semiconductor structure with multiple transistors having various threshold voltages
US8753944B2 (en) * 2012-07-17 2014-06-17 Texas Instruments Incorporated Pocket counterdoping for gate-edge diode leakage reduction
US8637955B1 (en) 2012-08-31 2014-01-28 Suvolta, Inc. Semiconductor structure with reduced junction leakage and method of fabrication thereof
US9112057B1 (en) 2012-09-18 2015-08-18 Mie Fujitsu Semiconductor Limited Semiconductor devices with dopant migration suppression and method of fabrication thereof
US9041126B2 (en) 2012-09-21 2015-05-26 Mie Fujitsu Semiconductor Limited Deeply depleted MOS transistors having a screening layer and methods thereof
CN104854698A (zh) 2012-10-31 2015-08-19 三重富士通半导体有限责任公司 具有低变化晶体管外围电路的dram型器件以及相关方法
US8816754B1 (en) 2012-11-02 2014-08-26 Suvolta, Inc. Body bias circuits and methods
US9093997B1 (en) 2012-11-15 2015-07-28 Mie Fujitsu Semiconductor Limited Slew based process and bias monitors and related methods
US9070477B1 (en) 2012-12-12 2015-06-30 Mie Fujitsu Semiconductor Limited Bit interleaved low voltage static random access memory (SRAM) and related methods
US9112484B1 (en) 2012-12-20 2015-08-18 Mie Fujitsu Semiconductor Limited Integrated circuit process and bias monitors and related methods
US9268885B1 (en) 2013-02-28 2016-02-23 Mie Fujitsu Semiconductor Limited Integrated circuit device methods and models with predicted device metric variations
US8994415B1 (en) 2013-03-01 2015-03-31 Suvolta, Inc. Multiple VDD clock buffer
US8988153B1 (en) 2013-03-09 2015-03-24 Suvolta, Inc. Ring oscillator with NMOS or PMOS variation insensitivity
US9299801B1 (en) 2013-03-14 2016-03-29 Mie Fujitsu Semiconductor Limited Method for fabricating a transistor device with a tuned dopant profile
US9112495B1 (en) 2013-03-15 2015-08-18 Mie Fujitsu Semiconductor Limited Integrated circuit device body bias circuits and methods
US9449967B1 (en) 2013-03-15 2016-09-20 Fujitsu Semiconductor Limited Transistor array structure
US9478571B1 (en) 2013-05-24 2016-10-25 Mie Fujitsu Semiconductor Limited Buried channel deeply depleted channel transistor
US8976575B1 (en) 2013-08-29 2015-03-10 Suvolta, Inc. SRAM performance monitor
US9710006B2 (en) 2014-07-25 2017-07-18 Mie Fujitsu Semiconductor Limited Power up body bias circuits and methods
US9319013B2 (en) 2014-08-19 2016-04-19 Mie Fujitsu Semiconductor Limited Operational amplifier input offset correction with transistor threshold voltage adjustment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1284204A (zh) * 1997-11-28 2001-02-14 英国国防部 场效应晶体管
CN1434983A (zh) * 2000-06-08 2003-08-06 国际商业机器公司 具有晕圈源极/漏极扩散的芯片上的无晕圈非整流接触

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5985727A (en) * 1997-06-30 1999-11-16 Sun Microsystems, Inc. Method for forming MOS devices with retrograde pocket regions and counter dopant regions buried in the substrate surface
US6555437B1 (en) * 2001-04-27 2003-04-29 Advanced Micro Devices, Inc. Multiple halo implant in a MOSFET with raised source/drain structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1284204A (zh) * 1997-11-28 2001-02-14 英国国防部 场效应晶体管
CN1434983A (zh) * 2000-06-08 2003-08-06 国际商业机器公司 具有晕圈源极/漏极扩散的芯片上的无晕圈非整流接触

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Double Pocket Architecture Using Indium and BoronforSub-100nm MOSFETs. Shinji Odanaka et al.IEEE ELECTRON DEVICE LETTERS,Vol.22 No.7. 2001 *

Also Published As

Publication number Publication date
WO2004032241A1 (en) 2004-04-15
CN1685517A (zh) 2005-10-19
AU2003272623A1 (en) 2004-04-23
TWI246191B (en) 2005-12-21
TW200417012A (en) 2004-09-01
US20040061187A1 (en) 2004-04-01
EP1547154A1 (en) 2005-06-29
US7226843B2 (en) 2007-06-05

Similar Documents

Publication Publication Date Title
CN100459146C (zh) 用于mosfet的铟-硼双盐注入
EP0752722B1 (en) Fet with stable threshold voltage and method of manufacturing the same
KR100863921B1 (ko) 반도체 장치 및 그 제조 방법
KR101098161B1 (ko) 개선된 아키텍처를 가지는 ldmos 소자
CN101647108B (zh) 在场效应晶体管中形成不对称叠加电容的结构和方法
CN1866541B (zh) 场效应晶体管和制造场效应晶体管的方法
KR20110126760A (ko) L 형상 스페이서를 사용하는 비대칭 전계-효과 트랜지스터의 제조 및 구조
EP0419128A1 (en) Silicon MOSFET doped with germanium to increase lifetime of operation
CN1623237A (zh) 完全耗尽型绝缘层上硅结构的掺杂方法和包含所形成掺杂区的半导体器件
EP0718892A2 (en) Semiconductor device including insulated gate bipolar transistor and method of fabricating the same
CN101484985A (zh) 半导体器件及其制造方法
US6734493B2 (en) Lateral double diffused metal oxide semiconductor (LDMOS) device with aligned buried layer isolation layer
TW201539757A (zh) 積體電路及其製造方法
US6413824B1 (en) Method to partially or completely suppress pocket implant in selective circuit elements with no additional mask in a cmos flow where separate masking steps are used for the drain extension implants for the low voltage and high voltage transistors
US6544853B1 (en) Reduction of negative bias temperature instability using fluorine implantation
US6548868B1 (en) ESD protection clamp with internal zener diode
Koeneke et al. Lightly doped Schottky MOSFET
Vestling et al. A novel high-frequency high-voltage LDMOS transistor using an extended gate RESURF technology
KR100854892B1 (ko) 고전압 소자의 제조 방법
CN101826527A (zh) 半导体器件、制造半导体器件的方法和闪存器件
KR100587605B1 (ko) 고전압 트랜지스터 및 그 제조방법
KR20030006941A (ko) 비휘발성 반도체 기억 장치 및 그 제조 방법
US8372704B2 (en) Semiconductor integrated device and manufacturing method for the same
KR100319449B1 (ko) 극소 채널 소자의 제조방법
KR20070012181A (ko) 메모리 셀들 및 관련 구조에서 단락 채널 효과들을감소시키는 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090204

Termination date: 20180919