CN100470898C - 燃料电池系统 - Google Patents

燃料电池系统 Download PDF

Info

Publication number
CN100470898C
CN100470898C CNB2005100542468A CN200510054246A CN100470898C CN 100470898 C CN100470898 C CN 100470898C CN B2005100542468 A CNB2005100542468 A CN B2005100542468A CN 200510054246 A CN200510054246 A CN 200510054246A CN 100470898 C CN100470898 C CN 100470898C
Authority
CN
China
Prior art keywords
flow channel
dividing plate
fuel
hole
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005100542468A
Other languages
English (en)
Other versions
CN1658421A (zh
Inventor
李东勋
权镐真
金周龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Publication of CN1658421A publication Critical patent/CN1658421A/zh
Application granted granted Critical
Publication of CN100470898C publication Critical patent/CN100470898C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本发明涉及一种包括具有电能发生器的堆的燃料电池系统,其包括:设置在膜电极组件两个表面的隔板,转化燃料以产生氢气并向堆供应氢气的重整器,向重整器供应燃料的燃料供应单元,向堆供应空气的空气供应单元,向堆供应冷却水的冷却水供应单元,以及形成在隔板上、并且流过来自冷却水供应单元的冷却水的流动通道部。

Description

燃料电池系统
技术领域
本发明涉及一种燃料电池系统,更具体地说是涉及一种燃料电池系统堆和堆的冷却结构。
背景技术
通常,燃料电池是一种产生电能的系统,它借助于空气中所包含的氧与诸如甲醇、乙醇和天然气等含碳氢化合物的原料中所包含的氢之间的化学反应将化学能转化为电能。某些燃料电池也产生作为化学反应副产物的热,热能够与电能同时使用。
这种燃料电池基于所用电解质的不同种类被划分为以下种类,包括:工作温度大约在150℃至200℃的磷酸盐燃料电池,工作在大约600℃至700℃高温的熔融碳酸盐燃料电池,工作在1000℃以上高温的固态氧化物燃料电池,以及工作在室温或者100℃或更低温度的高分子电解质膜燃料电池和碱性燃料电池。所有的燃料电池其工作原理都基本相同,但彼此在燃料类型、工作温度、催化剂和电解质方面是不同的。
近年来发展起来的高分子电解质膜燃料电池(polymer electrolytemembrane fuel cell,PEMFC)与其它燃料电池相比,具有优越的输出性能、更低的工作温度、以及快速的启动和响应特性。它采用重整甲醇、乙醇和天然气等所获得的氢作为燃料。因此,PEMFC具有广阔的应用领域,例如用于车辆的可移动电源、家庭或者建筑物用的分布式电源,和电子设备用的小型电源。
上述高分子电解质膜燃料电池需要一个称为堆的燃料电池主体、一个燃料箱、和从燃料箱向堆提供燃料的一个燃料泵。这种高分子电解质膜燃料电池还包括一个重整器,它将来自燃料箱的燃料转化以生成氢气,然后将氢气提供给堆。储存在燃料箱中的燃料通过燃料泵提供给重整器。随后,重整器将燃料转化并生成氢气。堆中的氢气和氧气相互反应,从而产生电能。
或者,这种燃料电池可采用一种直接的甲醇燃料电池(DMFC)方案,其向堆直接提供液态甲醇燃料。与高分子电解质膜燃料电池不同,DMFC燃料电池不需要重整器。
在上述的燃料电池系统中,堆具有一个塔形结构,其中有几个或几十个电能发生器,每个发生器具有一个膜电极组件(MEA)和隔板(或双极板)。膜电极组件包括一个阳极(亦称为“燃料电极”或者“氧化电极”)和一个阴极(亦称为“空气电极”或者“还原电极”),两者通过一个插入它们之间的电解质膜相互连接。隔板同时起到通路的作用,通过它供应燃料电池反应所需的氧气和氢气,它还作为一个导体,连接串连的每个膜电极组件的阳极和阴极。通过隔板,含有氢的燃料气体提供给阳极,含有氧的氧气提供给阴极。通过这种相互作用,在阳极发生燃料气体的氧化反应,而在阴极发生氧气的还原反应。由反应所产生的电子运动还产生了副产物水和热。
在这种燃料电池系统中,堆应当保持一个适当的温度,以稳定电解质膜,并防止其性能恶化。为使堆的温度适当,传统的燃料电池系统采用典型的空气冷却系统,其中在工作中由堆产生的热量被温度相对较低的空气所冷却;或者采用水冷系统,其中向堆提供冷却水,以冷却由堆产生的热。
水冷系统需要一个使冷却水流入堆的附加冷却板,这就很难减小燃料电池系统的总体积。
在传统的燃料电池系统中,当含有水分的未反应空气从堆中流出,并排放到温度相对较低的大气中时,水分与大气接触之后冷凝。这就必需提供一个用以储存或者循环由未反应的空气冷凝所产生的水的附加装置,但这样就会更加难以减小燃料电池系统的总体积。另外,用于驱动附加元件的热负荷或电负荷进一步恶化了整个燃料电池系统的效率和性能。
进而,传统的燃料电池系统加热了产生电能和通过重整器产生氢气所需的液态燃料。由于加热燃料进一步增大了热负荷,整个燃料电池系统的效率和性能就下降了。
发明内容
本发明解决了上述的问题,并且本发明要解决的技术问题是提供一种较小的燃料电池系统,在隔板的全部区域具有适当的温度梯度,以提高性能,并有效地利用堆和重整器所产生的热能。
本发明的一个方面提供了一种包括具有电能发生器的堆的燃料电池系统,其包括:设置在膜电极组件两面的隔板;一个重整器,转换燃料以产生氢气,并将氢气提供给堆;燃料供应单元,将燃料供应给重整器;和一个空气供应单元,将空气供应给堆。另外,系统包括:向堆供应冷却水的一个冷却水供应单元,和形成在隔板中的、来自冷却水供应单元的冷却水从其流过的一个流动通道部。
燃料供应单元可以包括:一个燃料箱,与重整器连接,并储存包含氢的液态燃料;和与燃料箱相连的一个燃料泵。空气供应单元可以包括与堆相连的一个空气泵。冷却水供应单元可以包括:一个冷却水箱,与流动通道部相连,并储存冷却水;和一个冷却水泵,与冷却水箱相连。
第一通道可形成在隔板的一个表面上,允许空气流入膜电极组件;以及第二通道可形成在隔板的另一表面上,允许氢气流入膜电极组件。
隔板可包括:第一入口,向第一通道供应空气;第一出口,排放在通过第一通道时未反应的空气;第二入口,向第二通道供应氢气;和第二出口,排放在通过第二通道时未反应的空气。
流动通道部可包括:第一流动通道,形成在隔板上,与氢气和空气供应给第一通道和第二通道的区域相对应;和第二流动通道,形成在隔板上,与氢气和空气流入第一通道和第二通道的区域相对应。
第一流动通道可以具有流入冷却水的第一通孔、冷却水从其流出的第二通孔、和将第一通孔和第二通孔相互连接的第一凹槽。
第二流动通道可以具有流入冷却水的第三通孔、冷却水从其流出的第四通孔、和将第三通孔和第四通孔相互连接的第二凹槽。
流动通道部可以进一步包括第三流动通道,其形成在隔板上,与氢气和空气从第一和第二通道流出的区域相对应。
第三流动通道可以具有:第五通孔,流过第一和第二流动通道的冷却水流入该通孔;冷却水从其流出的第六通孔;和将第五通孔和第六通孔相互连接的第三凹槽。
本发明的另一个方面提供了一种包括由电能发生器组成的堆的燃料电池系统,其包括:设置在膜电极组件两面的隔板;一个重整器,转换燃料以生成氢气并将氢气供应给堆;一个燃料供应单元,将燃料供应给重整器;和一个空气供应单元,将空气供应给堆。它还包括:一个冷却水供应单元,向堆供应冷却水;一个流动通道部,形成在隔板上,流过来自冷却水供应单元的冷却水;和一个第一热交换器。该第一热交换器与空气供应单元和堆连接,并设置在二者之间,该堆还与冷却水供应单元和流动通道部相连接。
第一热交换器可包括:第一供应管,与空气供应单元和隔板连接,并向隔板供应空气;和至少一个第二供应管,与冷却水供应单元以及第一和第二流动通道连接,并与第一供应管相接触。
本发明的另一个方面,提供了一种包括具有电能发生器的堆的燃料电池系统,其包括:设置在膜电极组件两面的隔板;一个重整器,转换燃料以生成氢气并将氢气供应给堆;一个燃料供应单元,将燃料供应给重整器;和一个空气供应单元,将空气供应给堆。另外,它包括:一个冷却水供应单元,向堆供应冷却水;和一个流动通道部,形成在隔板上,流过来自冷却水供应单元的冷却水。这种系统还可包括:一个第一热交换器,与空气供应单元和堆连接,并设置在二者之间,第一热交换器还与冷却水供应单元和流动通道部相连接;和第二热交换器,与重整器和堆连接,并设置在二者之间,还与流动通道部相连接。
第二热交换器可包括:一个第三供应管,与重整器和隔板相连接,其向隔板供应氢气;和至少一个第四供应管,与第一、第二和第三流动通道相连接,并与第三供应管相接触。
燃料电池系统进一步可包括一个第三热交换器,与燃料供应单元和重整器相连接,并设置在二者之间,还与流动通道部相连接。第三热交换器可包括:一个第五供应管,其与燃料供应单元和重整器相连接,并向重整器供应燃料;和至少一个第六供应管,与第三流动通道相连接,并与第五供应管相接触。
燃料电池系统可采用一种高分子电解质膜燃料电池(PEMFC)的方案。
附图说明
本发明的上述和其它特性及优点,将通过参照附图对其示例性实施例的详细描述,而变得更清楚。
图1是表示根据本发明一个实施例的燃料电池系统的整体构造的示意图;
图2是表示图1所示的堆的构造的分解透视图;
图3是表示图2所示的隔板的构造的透视图;
图4是表示图3所示的隔板的正视图;
图5是表示图3所示的隔板的后视图;
图6是图1所示的第一热交换器的剖面示意图;
图7是图1所示的第二热交换器的剖面示意图;
图8是图1所示的第三热交换器的剖面示意图。
具体实施方式
在下文中,将参照附图对本发明的实施例进行详细描述,以使本领域的普通技术人员能够容易地将实施例付诸实施。但是,由于本发明可实施为各种形式,因此本发明并不局限于下文所述的实施例。
图1是一个示意图,表示根据本发明一个实施例的燃料电池系统的整体构造。
参见图1,根据本发明的一个燃料电池系统100采用高分子电解质膜燃料电池(PEMFC),其中碳氢燃料,例如甲醇、乙醇、天然气等,被转化而产生富含氢的气体。氢和外界空气之间的反应产生了电流。
根据本发明的燃料电池系统100主要包括一个堆10,它将通过氢气和空气之间的化学反应产生的化学能转化为电能而发电。它还包括:一个重整器20,其将包含氢的燃料转化而产生氢气,并将氢气供应给堆10;一个燃料供应单元30,将燃料供应给重整器20;和一个空气供应单元40,将外界空气供应给堆10。
本发明可实施为一个直接的甲醇燃料电池(DMFC)系统,其中液态燃料可直接供应给堆10以产生电。在这种直接的甲醇燃料电池系统中,与PEMFC系统不同,不需要重整器20。
下文中,将参考PEMFC系统对本发明进行描述。
燃料供应单元30包括:一个燃料箱31,用于存储液态燃料;和一个燃料泵33,与燃料箱31连接,以排出存储在燃料箱31中的燃料。在根据本发明的燃料电池系统100中,燃料可包括含碳氢的化合物,例如甲醇、乙醇、天然气等,还可包括一些添加的水。
空气供应单元40包括一个以预定压力吸入外界空气的空气泵41。
上述重整器20具有传统重整器的构造。它从氢气中去除有害材料,例如一氧化碳,还通过重整反应将自燃料供应单元30供应的燃料转化为氢气。
也就是说,重整器20具有重整燃料的一个重整部,和一个用来去除一氧化碳的一氧化碳去除部。重整部通过一个催化反应,例如蒸汽重整、部分氧化或自然反应等,将燃料转化为富含氢的被重整气体。一氧化碳去除部利用催化反应,例如水气转化、选择氧化、或采用分隔膜的氢提纯等,从被重整气体中去除一氧化碳。
重整器20包括一个主体25,其具有一个入口21和一个出口23。主体25具有重整部和一氧化碳去除部。结果,来自燃料供应单元30的燃料通过入口21流入主体25,经重整部和一氧化碳去除部被重整的氢气通过出口23排放。
参见图1至5,根据本发明的堆10包括至少一个电能发生器11,其被供应了由重整器20转化的氢气和由空气供应单元40吸入的外界空气。这个堆通过其间的电化学反应产生电能。
电能发生器11是产生电能的单元电池,包括:一个膜电极组件(MEA),其氧化还原氢气和外界空气;和隔板13,其向膜电极组件12供应氢气和空气。在电能发生器11中,隔板13设置在膜电极组件12的两侧。在堆10中,多个电能发生器11连续设置,从而形成一个燃料电池。
膜电极组件12具有传统膜电极组件的构造,其中电解质膜插在构成其两面的阳极和阴极之间。通过隔板13向阳极供应氢气,阳极包括通过氧化反应将氢气转化为电子和氢离子的一个催化剂层。阳极还具有允许电子和氢离子平稳移动的一个气体扩散层(GDL)。通过隔板13向阴极供应空气,阴极包括通过还原反应和GDL将氧转化为电子和氧离子的一个催化剂层。电解质膜是一种固态高分子电解质,厚度为50至200μm,并具有一种将由阳极的催化剂层产生的氢离子移动到阴极的催化剂层的离子交换功能。
隔板13的第一表面与膜电极组件12的阴极紧密接触,而另一表面,第二表面与膜电极组件12的阳极紧密接触。这样,隔板13起到电导体的功能,串连阳极和阴极。隔板13还起到通道的作用,分别向阳极和阴极供应膜电极组件12的氧化和还原反应所需的氢气和空气。
根据本实施例,向膜电极组件12的阴极供应空气的第一通道14形成在隔板13的第一表面13a上(见图4);向膜电极组件12的阳极供应氢气的第二通道15形成在隔板13的第二表面13b上(见图5)。
与膜电极组件12的阳极或阴极紧密接触的端板(未图示)可分别设置在堆10的最外侧。在与膜电极组件12紧密接触的接触面上,可形成一个向阴极供应空气的通道和一个向阳极供应氢气的通道。
在隔板13中形成有:向第一通道14供应空气的第一入口16,通过第一通道14排放未反应的空气的第一出口17,向第二通道15供应重整器20产生的氢气的第二入口18,以及通过第二通道15排放未反应的氢气的第二出口19。第一入口16和第二入口18、以及第一出口17和第二出口19嵌在隔板13中。
第一入口16嵌在隔板13的一侧,以连通第一通道14的起始端。第二入口18嵌在隔板13的另一侧,以连通第二通道15的起始端。第一出口17嵌在隔板13的另一侧,以连通第一通道14的末端。第二出口19嵌在隔板13的另一侧,以连通第二通道15的末端。
换句话说,在隔板13第一表面13a上的第一入口16与第一通道14连通,而第二入口18则不与第一通道14连通。相反地,在隔板13第二表面13b上的第二入口18与第二通道15连通,但第一入口16则不与第二通道15相连通。
另外,在隔板13的第一表面13a上,第一出口17连通第一通道14,但第二出口19则不与第一通道14相连通。相反地,在隔板13的第二表面13b上,第二出口19连通第二通道15,但第一出口17不与第二通道15相连通。
具有上述构造的电能发生器11通过下面的化学反应产生电和水。
阳极反应:H2→2H++2e-
阴极反应:1/2O2+2H++2e-→H2O
总反应:H2+1/2O2→H2O+电流+热
依照上述化学反应,氢气通过隔板13供应给膜电极组件12的阳极,而空气通过隔板13供应给阴极。当氢气流入阳极时,氢在催化剂层中分解为电子和质子(氢离子)。当质子通过电解质膜的时候,在催化剂的帮助下,电子、氧离子和质子结合生成水。由阳极产生的电子不经过电解质膜,但通过外电路移向阴极。
当运行根据本发明的燃料电池系统100时,堆10的电能发生器11还产生了作为副产物的热。热量使得膜电极组件12变干燥,从而引起堆10的性能恶化。堆10将包含大量水分的未反应的空气从电能发生器11中排出。
将来自冷却水供应单元50的冷却水循环至隔板13以便为隔板13的全部区域提供适当的温度梯度,根据本发明的燃料电池系统能够防止膜电极组件12被热量干燥,还能够冷凝未反应空气中的水分。
为了完成这个目的,在隔板13中形成允许来自冷却水供应单元50的冷却水通过的至少一个流动通道。冷却水供应单元50可包括:用于存储例如水或者其它冷却剂的一个冷却水箱51;和一个冷却水泵53,其与冷却水箱51相连接,以预定泵供液量排出存储在冷却水箱51中的水。
根据本实施例的流动通道部包括一个第一流动通道61,其形成在第一和第二通道14和15的各自的外侧,对应于氢气和空气流入第一和第二通道14和15的区域。它还包括第二流动通道62,形成在第一和第二通道14和15的外侧,对应于氢气和空气沿第一和第二通道14和15流动的区域。进而,第三流动通道63形成在第一和第二通道14和15的外侧,对应于氢气和空气相对于第一和第二通道14和15流出的区域。
这里,第一流动通道61形成在第一和第二入口16和18侧的边缘,对应于图中的x方向。第二流动通道62形成在关于第一和第二入口16和18的、第一和第二通道14和15的外边缘,对应于图中的y方向。第三流动通道63形成在第一和第二出口17和19的边缘,对应于图中的x方向。这里,“边缘”是指隔板13上没有形成第一和第二通道14和15、第一和第二入口16和18、以及第一和第二出口17和19的部位。
第一流动通道61具有:第一通孔61a,来自冷却水供应单元50的冷却水可流入该通孔;第二通孔61b,冷却水可充分地从其流过;以及第一凹槽61c,将第一通孔61a和第二通孔61b相互连接。这里,第一凹槽61c相对于隔板13的第一表面13a来说,将第一通孔61a和第二通孔61b相互连接,并相对于第二表面13b来说,将第一通孔61a和第二通孔61b相互连接。
第二流动通道62具有:第三通孔62a,来自冷却水供应单元50的冷却水流入该通孔;第四通孔62b,冷却水可充分地从其流过;以及第二凹槽62c,将第三通孔62a和第四通孔62b相互连接。这里,第二凹槽62c相对于隔板13的第一表面13a来说,将第三通孔62a和第四通孔62b相互连接,并相对于第二表面13b来说,将第三通孔62a和第四通孔62b相互连接。
第三流动通道63具有:第五通孔63a,流过第一和第二流动通道61和62的冷却水可流入该通孔;第六通孔62b,大部分可充分地从其流过;以及第三凹槽63c,将第五通孔63a和第六通孔63b相互连接。这里,第三凹槽63c相对于隔板13的第一表面13a来说,将第五通孔63a和第六通孔63b相互连接,并相对于第二表面13b来说,将第五通孔63a和第六通孔63b相互连接。
本发明的燃料电池系统100还可包括第一热交换器70,其通过与来自空气供应单元40的空气接触可将来自冷却水供应单元50的冷却水进一步冷却。第一热交换器还可向第一和第二流动通道61和62供应冷却水,并可充分地冷却作用于隔板13的热。
图6是概略表示图1所示的第一热交换器70的结构的剖视图。
参见图1至6,根据本实施例的第一热交换器70包括:第一供应管73,其与空气供应单元40和隔板13相连接;和至少一个第二供应管75,其分别与冷却水供应单元50以及第一和第二流动通道61和62相连接。
第一供应管73向第一通道14供应电能发生器11中产生电所需的空气。第一供应管73具有管状外形,分别与空气供应单元40的空气泵41和隔板13的第一入口16相连接。第一供应管73设置在第一管71的内部,第一管71的内径大于第一供应管73的外径。
第二供应管75向第一和第二流动通道61和62供应来自冷却水供应单元50的冷却水。第二供应管75具有管状外形,分别与冷却水供应单元50的冷却水箱51以及第一和第二流动通道61和62相连接。第二供应管75分别与第一流动通道61的第一通孔61a和第二流动通道62的第三通孔62a相连接。在本实施例中,第二供应管75设置在第一管71的内部。也就是说,多个第二供应管75设置在第一供应管73的外圆周表面和第一管71的内圆周表面之间,并与第一供应管73的外圆周表面接触。
当冷却水通过在来自冷却水供应单元50经由第二供应管75供应的冷却水和经由第一供应管供应的空气之间的热交换被进一步冷却时,冷却水被供应给第一和第二流动通道61和62。结果,流过第一和第二流动通道61和62时,具有相对较低温度的冷却水缓和了隔板13中氢气和空气流入区域的温升,并且维持了从隔板13的近似中间部位前进区域处恒定的温度。
根据本发明的燃料电池系统100还可包括第二热交换器80,其在流过第一和第二流动通道61和62时被第一热交换器70加热的冷却水与由重整器20排放的相对高温的氢气之间传递热量,其向第三流动通道63供应进一步被加热的冷却水以加热隔板13的第一出口17侧,从而使从第一出口17排放的未反应的空气蒸发。
图7是概略表示图1所示的第二热交换器80的结构的剖视图。
参见图1至7,根据本实施例的第二热交换器80包括:第三供应管83,与重整器20和堆10相连接;和至少一个第四供应管85,分别与隔板13的第一、第二和第三流动通道61、62和63相连接。
第三供应管83向第二通道15供应由重整器20产生的氢气。第三供应管83具有管状外形,并与重整器20的出口23和隔板13的第二入口18相连接。第三供应管83设置在第二管81的内部,第二管81的内径大于第三供应管83的外径。
第四供应管85抽回在流过第一和第二流动通道61和62时被加热至预定温度的冷却水,通过与重整器20所产生的氢气的热交换来进一步加热冷却水,然后向第三流动通道63供应加热后的冷却水。第四供应管85具有管状外形,其一端封闭而另一端开放,开放端分别与第一、第二和第三流动通道61、62和63相连接。第四供应管85分别与第一流动通道61的第二通孔61b、第二流动通道62的第四通孔62b、以及第三流动通道63的第五通孔63a相连接。第四供应管85设置在第二管81的内部。也就是说,多个第四供应管85设置在第三供应管83的外圆周面和第二管81的内圆周面之间,并与第三供应管83的外圆周面相接触。
因此,在流经第一和第二流动通道61和62时被第一热交换器70加热的冷却水经由第四供应管85流出,通过与来自重整器20经由第三供应管83供应的相对高温的氢气的热交换被进一步加热,并然后供应给第三流动通道63,从而将经由隔板13的第一出口17排放的未反应空气中的水分蒸发。也就是说,被加热的冷却水冷却了以预定温度排放的未反应空气流过的隔板13,从而将经由隔板13的第一出口17排放的未反应空气中的水分蒸发。
根据本发明的燃料电池系统100还可包括通过在第二热交换器80中具有相对高温的冷却水(已经蒸发掉从隔板13的第一出口17排放出的未反应空气中的水分的冷却水)和从燃料供应单元30供应给重整器20的燃料之间的热交换来预加热燃料的第三热交换器90。
图8是概略表示图1所示的第三热交换器90的结构的剖视图。
参见图1至8,根据本实施例的第三热交换器90包括:第五供应管93,与燃料供应单元30和重整器20相连接;和至少一个第六供应管95,与隔板13的第三流动通道63相连接。
第五供应管93向重整器20供应从燃料供应单元30排放的燃料。第五供应管93具有管状外形,并与燃料供应单元30的燃料箱31和重整器20的入口21相连接。第五供应管93设置在第三管91的内部,第三管91的内径大于第五供应管93的外径。
第六供应管95向第五供应管93供应第二热交换器80中的冷却水,该冷却水具有相对高温并且在流过第三流动通道63时将从隔板13的第一出口17排放出的未反应空气中的水分蒸发掉。第六供应管95具有管状外形,其一端闭合而另一端开放,且开放端与第三流动通道63的第六通孔63b相连接。第六供应管95设置在第三管91的内部。也就是说,多个第六供应管95设置在第五供应管93的外圆周面和第三管91的内圆周面之间,且与第五供应管93的外圆周面相接触。
因此,第二热交换器80中具有相对高温并在流过第三流动通道63的过程中将经由隔板13的第一出口17排放出的未反应空气中的水分蒸发掉的冷却水经由第六供应管95流出,该冷却水通过与来自燃料供应单元30经由第五供应管93供应的、具有相对低温的燃料热交换来预加热燃料。
下面将详细描述具有上述构造的根据本实施例的燃料电池系统的运行。
首先,在燃料电池系统100的初始驱动模式中,燃料供应单元30的燃料泵33被启动,存储在燃料箱31中的液态燃料经由第五供应管93供应给重整器20。然后,重整器20转化燃料并产生氢气。随后,氢气经由第三供应管83被供应给隔板13的第二入口18。空气供应单元40的空气泵41被启动,从而经由第一供应管73向隔板13的第一入口16供应外界空气。
然后,空气经由隔板13的第一通道14被供应给膜电极组件12的阴极,氢气则经由隔板13的第二通道15供应给膜电极组件12的阳极电极。这里,燃料和氢气可经由通道被燃料泵33抽吸。
当氢气和空气被供应给电能发生器11时,它通过氢气和空气之间的反应产生了电和水以及一定的热量。为了减小过热对系统造成的损害,冷却水泵53被启动,来自冷却水箱51的冷却水经由第二供应管75排放。同时,空气供应单元40启动了空气泵41,并经由第一供应管73向隔板13的第一入口16供应外界空气。由于冷却水与经由第一供应管73供应的空气经过了热交换,则冷却水较其起始状态可保持更低的温度。
随后,冷却水经由第二供应管75供应给第一和第二流动通道61和62,在流经第一和第二流动通道61和62时,其减轻了氢气和空气流入隔板13的区域处的温升,并且保持了隔板13的外围区域的恒定温度。这里,冷却水可通过冷却水泵53的泵供液量流过流动通道部。
随后,流经第一和第二流动通道61和62的冷却水经由第四供应管85排放。这时,重整器20正在重整来自燃料供应单元30的燃料以产生具有相对高温的氢气,并正在经由第三供应管83将氢气供应给隔板13的第二入口18。
所以,由于经由第四供应管85从第一和第二流动通道61和62排放的冷却水经过了与来自第三供应管83的氢气的热交换,排放的冷却水通过与氢气的热交换保持继续被加热。被加热的冷却水经由第四供应管85被供应给第三流动通道63。这时,堆10经由隔板13的第一出口17排放出含有水分的未反应的空气。即,由于与氢气的热交换而具有相对高温的冷却水当流经第三流动通道63时加热了未反应的空气的排放区域,使得由隔板13的第一出口17排放出的未反应空气中的水分能够被蒸发而不会被冷凝,与传统情形不同。
接着,流经第三流动通道63的冷却水经由第六供应管95被排放。这时,燃料供应单元30正在经由第五供应管93向重整器20供应液态燃料。
也就是说,经由第六供应管95从第三流动通道63排放出的冷却水通过与燃料的热交换预加热经由第五供应管93供应的燃料。这时,冷却水可经由一个特别通道被再次供应给冷却水箱51。
在根据本发明的燃料电池系统中,通过为隔板的全部区域提供一个预定温度梯度,就能够防止膜电极组件由于产生电能时带来的热量对其造成损害。另外,通过将堆中排放出的未反应的空气中的水分冷凝,堆和重整器中产生的热量可用作驱动整个系统所需的能源。所以,就能够进一步提高整个系统的性能和热效率。
由于省略了传统的冷却板,而且冷却水流经的流动通道部位于隔板本身中,还可以减小整个系统的体积。
虽然已经描述了本发明的示范性实施例,但本发明并不局限于这些示范性的实施例,而是可以做出各种形式的修改,而不脱离所附权利要求、本发明的详细说明和附图的范围。所以,这样的修改就自然属于本发明的范围。

Claims (22)

1.一种燃料电池系统,包括:
一堆,具有电能发生器,包括设置在膜电极组件两面上的隔板;
一燃料供应单元,向所述堆供应燃料;
一空气供应单元,向所述堆供应空气;和
一流动通道,其配置为形成在所述隔板中并且冷却剂流经所述流动通道,
其中,所述流动通道包括凹槽和成对的通孔,所述成对的通孔配置来使冷却剂从所述隔板的一侧向相对的一侧通过,并且所述凹槽将所述成对的通孔彼此连接;以及
其中,允许所述空气流入所述膜电极组件的第一通道被形成在所述隔板的一个表面上,允许所述燃料流入所述膜电极组件的第二通道被形成在所述隔板的另一个表面上;
其中所述流动通道包括:
第一流动通道,形成在所述隔板上,对应于所述燃料和所述空气供应给所述第一通道和所述第二通道的区域;和
第二流动通道,形成在所述隔板上,对应于所述燃料和所述空气流入所述第一通道和所述第二通道的区域。
2.根据权利要求1所述的燃料电池系统,其中所述燃料供应单元包括:
一燃料箱,与重整器连接并存储含有氢的液态燃料;和
一燃料泵,与所述燃料箱相连接。
3.根据权利要求1所述的燃料电池系统,其中所述空气供应单元包括:
与所述堆连接的一空气泵。
4.根据权利要求1所述的燃料电池系统,其中所述隔板包括:
第一入口,向所述第一通道供应所述空气;
第一出口,排放出流经所述第一通道时未反应的空气;
第二入口,向所述第二通道供应所述燃料;以及
第二出口,排放出流经所述第二通道时未反应的燃料。
5.根据权利要求1所述的燃料电池系统,其中所述成对的通孔包括:
第一通孔,所述冷却剂流入该第一通孔;以及
第二通孔,所述冷却剂从所述第二通孔流出;
其中,所述第一流动通道包括第一凹槽,将所述第一通孔和所述第二通孔相互连接。
6、根据权利要求1所述的燃料电池系统,其中所述成对的通孔包括:
第三通孔,所述冷却剂流入该第三通孔;以及
第四通孔,所述冷却剂从所述第四通孔流出;
其中,所述第二流动通道包括第二凹槽,将所述第三通孔和所述第四通孔相互连接。
7、根据权利要求1所述的燃料电池系统,其中所述流动通道进一步包括:
第三流动通道,形成在所述隔板上,对应于所述燃料和所述空气从所述第一通道和所述第二通道流出的区域。
8、根据权利要求7所述的燃料电池系统,其中所述成对的通孔包括:
第五通孔,流经所述第一和第二流动通道的冷却剂流入该第五通孔;以及
第六通孔,所述冷却剂从该第六通孔流出;和
其中,所述第三流动通道包括第三凹槽,将所述第五通孔和所述第六通孔相互连接。
9、一种燃料电池系统,包括:
具有电能发生器的堆;
转化燃料以产生氢气的重整器;
向所述重整器供应所述燃料的燃料供应单元;
向所述堆供应空气的空气供应单元;
向所述堆供应冷却剂的冷却剂供应单元;
流动通道部,形成在所述隔板上,从所述冷却剂供应单元供应的冷却剂通过该流动通道部;和
第一热交换器,与所述空气供应单元和所述堆相连接,还与所述冷却剂单供应单元和所述流动通道部相连接,
其中所述电能发生器包括设置在所述膜电极组件的两个表面的隔板;
其中所述流动通道部包括形成在所述隔板上、对应于氢气和空气被供应给所述堆的区域的第一流动通道,和形成所述隔板上、对应于氢气和空气流入所述堆的区域的第二流动通道;以及
其中所述第一热交换器连接到所述流动通道部的第一流动通道和第二流动通道。
10、根据权利要求9所述的燃料电池系统,
其中允许空气流入所述膜电极组件的第一通道形成在所述隔板的一个表面上,以及
其中允许氢气流入所述膜电极组件的第二通道形成在所述隔板的另一个表面上。
11、根据权利要求10的燃料电池系统,其中所述第一热交换器包括:
第一供应管,与所述空气供应单元和所述隔板相连接并且向所述隔板供应空气;以及
至少一个第二供应管,与所述冷却剂供应单元以及与所述第一供应管接触的所述第一和第二流动通道相连接。
12、一种燃料电池系统,包括:
具有电能发生器的堆;
转化燃料以产生氢气的重整器;
向所述重整器供应所述燃料的燃料供应单元;
向所述堆供应空气的空气供应单元;
向所述堆供应冷却剂的冷却剂供应单元;
流动通道部,形成在所述隔板中,从所述冷却剂供应单元供应的冷却剂通过该流动通道部;
第一热交换器,与所述空气供应单元和所述堆相连接,还与所述冷却剂单供应单元和所述流动通道部相连接;以及
第二热交换器,与所述重整器和所述堆连接,还与所述流动通道部相连接,
其中所述电能发生器包括设置在所述膜电极组件的两个表面的隔板;
其中,所述流动通道部包括形成在所述隔板上、对应于氢气和空气供应给所述堆的区域的第一流动通道,形成在所述隔板上、对应于氢气和空气流入所述堆的区域的第二流动通道,和形成在所述隔板上、对应于氢气和空气从所述堆流出的区域的第三流动通道;
其中,所述第一热交换器连接到所述流动通道部的第一流动通道和第二流动通道,所述第二热交换器连接到所述流动通道部的第一、第二和第三流动通道。
13、根据权利要求12所述的燃料电池系统,
其中允许空气流入所述膜电极组件的第一通道形成在所述隔板的一个表面上,以及
其中允许氢气流入所述膜电极组件的第二通道形成在所述隔板的另一个表面上。
14、根据权利要求13所述的燃料电池系统,
其中所述第二热交换器包括:
第三供应管,与所述重整器和所述隔板相连接,并且向所述隔板供应氢气,
其中至少一个第四供应管与所述第一、第二和第三流动通道相连接并与所述第三供应管接触。
15、根据权利要求13所述的燃料电池系统,进一步还包括:
第三热交换器,与所述燃料供应单元和所述重整器连接,还与所述流动通道部的第三流动通道相连接。
16、根据权利要求15所述的燃料电池系统,其中第三热交换器包括:
第五供应管,与所述燃料供应单元和所述重整器相连接,并向所述重整器供应燃料;以及
至少一个第六供应管,与所述第三流动通道相连接并与所述第五供应管接触。
17、根据权利要求1所述的燃料电池系统,其中所述堆包括:
一高分子电解质膜。
18、根据权利要求9所述的燃料电池系统,其中所述堆包括:
一高分子电解质膜。
19、根据权利要求12所述的燃料电池系统,其中所述堆包括:
一高分子电解质膜。
20、一种堆,包括:
一电能发生器,包括设置在膜电极组件的两个表面上的隔板,
其中,流动通道配置为形成在所述隔板中并且冷却剂流经所述流动通道,以及
其中,所述流动通道包括凹槽和成对的通孔,所述成对的通孔配置来使冷却剂从所述隔板的一侧向相对的一侧通过,并且所述凹槽将所述成对的通孔彼此连接;以及
其中,用于将空气提供到所述膜电极组件的第一通道形成在隔板的一个表面上,和用于将氢气提供到所述膜电极组件的第二通道形成在所述隔板的另一个表面上;
其中所述流动通道部包括:
第一流动通道,形成在所述隔板上,对应于氢气和空气供应给所述第一通道和所述第二通道的区域;以及
第二流动通道,形成在所述隔板上,对应于氢气和空气流入所述第一通道和所述第二通道的区域。
21、根据权利要求20所述的堆,其中所述流动通道部进一步包括:
第三流动通道,形成在所述隔板上,对应于氢气和空气从所述第一和第二通道排出的区域。
22、一种隔板,包括:
流动通道,配置为形成在所述隔板中并且冷却剂流经所述流动通道,
其中,所述流动通道包括凹槽和成对的通孔,所述成对的通孔配置来使冷却剂从所述隔板的一侧向相对的一侧通过,并且所述凹槽将所述成对的通孔彼此连接;以及
用于将空气提供到膜电极组件的第一通道形成在隔板的一个表面上,和用于将燃料提供到膜电极组件的第二通道形成在所述隔板的另一个表面上;
其中所述流动通道包括:
第一流动通道,形成在所述隔板上,对应于所述燃料和所述空气供应给所述第一通道和所述第二通道的区域;和
第二流动通道,形成在所述隔板上,对应于所述燃料和所述空气流入所述第一通道和所述第二通道的区域。
CNB2005100542468A 2004-01-30 2005-01-31 燃料电池系统 Expired - Fee Related CN100470898C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020040006000A KR100542200B1 (ko) 2004-01-30 2004-01-30 연료 전지 시스템
KR6000/2004 2004-01-30
KR6000/04 2004-01-30

Publications (2)

Publication Number Publication Date
CN1658421A CN1658421A (zh) 2005-08-24
CN100470898C true CN100470898C (zh) 2009-03-18

Family

ID=34909925

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100542468A Expired - Fee Related CN100470898C (zh) 2004-01-30 2005-01-31 燃料电池系统

Country Status (4)

Country Link
US (1) US7537851B2 (zh)
JP (1) JP4243592B2 (zh)
KR (1) KR100542200B1 (zh)
CN (1) CN100470898C (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100658289B1 (ko) 2005-11-29 2006-12-14 삼성에스디아이 주식회사 가열기체 유입부를 갖는 분리판 및 이를 구비한 연료전지시스템
CN1333484C (zh) * 2005-12-31 2007-08-22 清华大学 常压燃料电池空气增湿系统
KR100801430B1 (ko) * 2006-10-16 2008-02-05 현대하이스코 주식회사 연료전지용 분리판, 이를 구비하는 연료전지 시스템 및연료전지 스택
AU2007325180B2 (en) * 2006-11-30 2011-06-23 Shell Internationale Research Maatschappij B.V. Systems and processes for producing hydrogen and carbon dioxide
US20100304258A1 (en) * 2009-05-26 2010-12-02 Chan Alistair K System and method of altering temperature of an electrical energy storage device or an electrochemical energy generation device using high thermal conductivity materials
US20100304259A1 (en) * 2009-05-26 2010-12-02 Searete Llc. A Limited Liability Corporation Of The State Of Delaware Method of operating an electrical energy storage device or an electrochemical energy generation device using high thermal conductivity materials during charge and discharge
US20100304257A1 (en) * 2009-05-26 2010-12-02 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System and method of operating an electrical energy storage device or an electrochemical energy generation device using microchannels and high thermal conductivity materials
US8715875B2 (en) * 2009-05-26 2014-05-06 The Invention Science Fund I, Llc System and method of operating an electrical energy storage device or an electrochemical energy generation device using thermal conductivity materials based on mobile device states and vehicle states
US8101293B2 (en) * 2009-05-26 2012-01-24 The Invention Science Fund I, Llc System for altering temperature of an electrical energy storage device or an electrochemical energy generation device using high thermal conductivity materials based on states of the device
US8802266B2 (en) * 2009-05-26 2014-08-12 The Invention Science Fund I, Llc System for operating an electrical energy storage device or an electrochemical energy generation device using microchannels based on mobile device states and vehicle states
JP5079146B2 (ja) * 2010-02-05 2012-11-21 パナソニック株式会社 高分子電解質形燃料電池
US8785069B2 (en) * 2010-04-23 2014-07-22 Samsung Sdi Co., Ltd Fuel cell system having a reformer
US9406996B2 (en) 2014-01-22 2016-08-02 Agc Automotive Americas R&D, Inc. Window assembly with transparent layer and an antenna element
US9806398B2 (en) 2014-01-22 2017-10-31 Agc Automotive Americas R&D, Inc. Window assembly with transparent layer and an antenna element
DE102015100704B3 (de) * 2015-01-19 2015-11-05 Zentrum für Brennstoffzellen-Technik GmbH Kathodenplatte eines Bipolarelements und Verfahren zum Betreiben einer solchen Kathodenplatte
KR101677670B1 (ko) * 2015-03-27 2016-11-29 주식회사 두산 전기 탈이온 장치를 구비한 연료전지 시스템
CN110316002A (zh) * 2019-06-10 2019-10-11 上海航天智慧能源技术有限公司 一种用于户外应急需求的救能车

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60113955U (ja) 1984-01-10 1985-08-01 株式会社 富士電機総合研究所 燃料電池
JP2761059B2 (ja) * 1989-06-28 1998-06-04 三菱重工業株式会社 固体高分子電解質型燃料電池
JP3352716B2 (ja) * 1992-03-31 2002-12-03 株式会社東芝 固体高分子電解質型燃料電池装置
RU2174728C2 (ru) * 1994-10-12 2001-10-10 Х Пауэр Корпорейшн Топливный элемент, использующий интегральную технологию пластин для распределения жидкости
JP3282066B2 (ja) * 1995-08-16 2002-05-13 ヤマハ発動機株式会社 燃料電池システム
US6967183B2 (en) * 1998-08-27 2005-11-22 Cabot Corporation Electrocatalyst powders, methods for producing powders and devices fabricated from same
US5945232A (en) * 1998-04-03 1999-08-31 Plug Power, L.L.C. PEM-type fuel cell assembly having multiple parallel fuel cell sub-stacks employing shared fluid plate assemblies and shared membrane electrode assemblies
US6232006B1 (en) * 1998-12-18 2001-05-15 International Fuel Cells Llc Dual coolant loop fuel cell power plant
US6638654B2 (en) * 1999-02-01 2003-10-28 The Regents Of The University Of California MEMS-based thin-film fuel cells
JP2001043871A (ja) * 1999-07-29 2001-02-16 Aisin Seiki Co Ltd 固体高分子電解質型燃料電池
JP2001143720A (ja) 1999-11-12 2001-05-25 Mitsubishi Heavy Ind Ltd 燃料電池用セパレータ
US20010028968A1 (en) * 2000-03-02 2001-10-11 Uwe Griesmeier Fuel cell system and method of operating same
TW496010B (en) * 2000-03-23 2002-07-21 Sanyo Electric Co Solid high molcular type fuel battery
JP2001313053A (ja) 2000-04-28 2001-11-09 Daikin Ind Ltd 燃料電池システム
JP2002025591A (ja) 2000-07-13 2002-01-25 Matsushita Electric Ind Co Ltd 燃料電池発電システム
JP3395765B2 (ja) 2000-07-24 2003-04-14 松下電器産業株式会社 高分子電解質型燃料電池コージェネレーションシステム
EP1180656A1 (de) * 2000-08-18 2002-02-20 Renzmann + Grünewald GmbH Spiralwärmeaustauscher
US6670062B2 (en) * 2001-05-31 2003-12-30 Plug Power Inc. Methods and systems for humidifying fuel for use in fuel processors and fuel cell systems
KR100599776B1 (ko) * 2004-05-25 2006-07-13 삼성에스디아이 주식회사 연료 전지 시스템 및 그 스택
KR20060087100A (ko) * 2005-01-28 2006-08-02 삼성에스디아이 주식회사 연료 전지용 스택과 이를 갖는 연료 전지 시스템

Also Published As

Publication number Publication date
US7537851B2 (en) 2009-05-26
JP2005216848A (ja) 2005-08-11
CN1658421A (zh) 2005-08-24
KR20050077984A (ko) 2005-08-04
US20050202295A1 (en) 2005-09-15
JP4243592B2 (ja) 2009-03-25
KR100542200B1 (ko) 2006-01-10

Similar Documents

Publication Publication Date Title
CN100470898C (zh) 燃料电池系统
KR100589408B1 (ko) 연료 전지 시스템
EP1962358B1 (en) Fuel cell stack and fuel cell system having the same
US7514170B2 (en) Fuel cell system
JP2005340207A (ja) 燃料電池システムおよび燃料電池用スタック
EP1995814B1 (en) Fuel cell stack
KR100536201B1 (ko) 연료 전지 시스템의 스택 냉각장치 및 이를 채용한 연료전지 시스템
CN100353600C (zh) 燃料电池系统
KR100796656B1 (ko) 연료 전지 시스템
KR100560495B1 (ko) 연료 전지 시스템의 개질기 및 이를 채용한 연료 전지시스템
KR101147233B1 (ko) 연료 전지 시스템 및 그 스택
KR100542199B1 (ko) 연료 전지 시스템
KR100570698B1 (ko) 연료 전지 시스템 및 이에 사용되는 개질기
KR100515308B1 (ko) 연료 전지 시스템
KR101107072B1 (ko) 연료 전지 시스템 및 개질기
KR20050108431A (ko) 연료 전지용 스택 및 연료 전지 시스템
KR100627389B1 (ko) 연료 전지 시스템 및 그 스택
KR20050121910A (ko) 연료전지 시스템, 스택, 및 세퍼레이터

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090318

Termination date: 20160131

EXPY Termination of patent right or utility model