CN100538878C - 可编程导体随机存取存储器以及向其中写入的方法 - Google Patents

可编程导体随机存取存储器以及向其中写入的方法 Download PDF

Info

Publication number
CN100538878C
CN100538878C CNB028281470A CN02828147A CN100538878C CN 100538878 C CN100538878 C CN 100538878C CN B028281470 A CNB028281470 A CN B028281470A CN 02828147 A CN02828147 A CN 02828147A CN 100538878 C CN100538878 C CN 100538878C
Authority
CN
China
Prior art keywords
voltage
memory element
conductor
chalcogen
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB028281470A
Other languages
English (en)
Other versions
CN1620699A (zh
Inventor
G·哈斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Publication of CN1620699A publication Critical patent/CN1620699A/zh
Application granted granted Critical
Publication of CN100538878C publication Critical patent/CN100538878C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0009RRAM elements whose operation depends upon chemical change
    • G11C13/0011RRAM elements whose operation depends upon chemical change comprising conductive bridging RAM [CBRAM] or programming metallization cells [PMCs]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0023Address circuits or decoders
    • G11C13/0026Bit-line or column circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/12Bit line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, equalising circuits, for bit lines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/009Write using potential difference applied between cell electrodes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/79Array wherein the access device being a transistor

Abstract

本发明提供一种改进的写入电路和方法,用于写入可编程导体随机存取存储器(PCRAM)单元。该方法包括把位线预充电为第一电压以及把第二电压施加到硫属存储元件的第一端子。把硫属存储元件的第二端子有选择地耦合到位线,以便在存储元件上产生足以把预定阻态写入该元件的电压。第一电压可采用两个不同的值来把两个不同的阻态编程到存储元件中。

Description

可编程导体随机存取存储器以及向其中写入的方法
技术领域
本发明涉及集成存储电路。更具体来讲,它涉及用于把数据写入可编程导体随机存取存储器(PCRAM)单元的方法。
背景技术
DRAM集成电路阵列已经存在了三十年以上,通过半导体制造技术和电路设计技术的进步,已经实现了它们在存储容量上的显著增加。这两种技术的极大进步也实现了越来越高的集成度,这允许显著减小存储阵列尺寸和成本,以及增加加工产量。
作为基本元件,DRAM存储单元通常包括存取晶体管(开关)和电容器,用于存储电荷形式的二进制数据比特。一种极性的电荷通常存储在电容器中以表示逻辑“高”(例如二进制“1”),而相反极性的存储电荷表示逻辑“低”(例如二进制“0”)。DRAM的基本缺陷在于,电容器中的电荷最终会泄漏,必须采取预防措施来“刷新”电容器电荷,否则存储单元所存储的数据比特会丢失。
另一方面,作为基本元件,传统SRAM的存储单元包括一个或多个存取晶体管以及经过互连而用作双稳锁存器的两个或两个以上集成电路器件形式的存储元件。这种双稳锁存器的一个实例是一对交叉耦合反相器。双稳锁存器不需要象DRAM存储单元那样被“刷新”,只要它们持续接收电源电压,便会长时期可靠地存储数据比特。但是,这种存储单元需要更大量的晶体管,从而要求比简单DRAM单元更多的硅资源,而且比DRAM单元汲取更多功率。
继续尝试识别能够存储数据状态且不需要大量刷新的其它形式的存储元件。最近的研究集中于可经过编程以呈现高或低稳定欧姆状态的电阻材料。这种材料的可编程电阻元件可编程(设置)为高阻态以存储例如二进制“1”数据比特,或者可编程为低阻态以存储二进制“0”数据比特。然后,通过检测提供由存取器件经由电阻存储元件切换的电流的读出电压的幅度,从而指明先前已经被编程到的稳定阻态,可取回所存储的数据比特。
一种特别有前景的可编程双稳电阻材料称为可编程金属化材料,又称作可编程导体材料。由这种材料组成的存储元件具有稳定静止高阻态,但可通过在存储元件上施加适当电压而编程为稳定低阻态。施加到存储元件上的适当幅度的反向电压可恢复高阻态。通过在可编程导体材料的表面上或穿过该表面生长导电枝晶来产生低阻态。可编程导体存储元件是非易失性的,因为低阻态不需要被刷新,或者如果需要刷新,则要经过较长时期,例如数天或数星期。
一种示范可编程导体材料包括具有扩散在其中的金属离子的硫属玻璃材料。具体实例是扩散有银(Ag)离子的锗:硒(GexSe1-x)。把银离子扩散到锗:硒材料中的一种方法是首先蒸发锗:硒玻璃,然后例如通过溅射、物理汽相淀积或本领域已知的其它技术,在玻璃上淀积薄的银层。银层最好是用小于600纳米的波长的电磁能量来照射,使得能量透过银并传送到银/玻璃分界面,从而破坏硫属材料的硫属键。因此,Ge:Se玻璃掺杂了银。在硫属玻璃上间隔的位置设置电极,以便提供用于写入和读取存储元件的电压。
目前,用于把数据写入可编程导体存储元件的电路正在开发中。与从高阻态到低阻态写入可编程导体存储元件相关的一个问题在于,驱动器用来以高电流提供写入电压,一旦存储元件转换到低阻态,则驱动器仍然提供高电流。这导致功率浪费。
发明内容
本发明提供一种改进的写入电路和方法,用于写入可编程导体随机存取存储器(PCRAM)单元,它减少了浪费的功率。这通过利用贮存在位线的寄生电容中的能量提供用于可编程导体存储元件的写入电压来实现。第一预定电压被施加到可编程导体存储元件的第一端子,位线被充电至第二预定电压。存取晶体管把预充电位线耦合到存储元件的第二端子,以及第一和第二电压的幅度和极性使存储元件被写为预期阻态。如果第一预定电压保持恒定,则把存储元件写到表示二进制值的特定电阻可通过把两个不同的电压用于第二电压来控制。由于没有提供电流的驱动器用来写入存储元件,因此减少了浪费的电流。
本发明涵盖一种用于写入存储元件的方法,所述方法包括:把导体预充电为第一电压值,所述第一电压通过与所述导体相关的电容保持在所述导体上;把可编程导体硫属存储元件耦合在所述导体上的所述第一电压与第二电压之间,以便在所述硫属存储元件中写入预定阻态,其中所述相关电容包括耦合到所述导体的电容器。
本发明还涵盖一种用于写入半导体存储单元的方法,所述方法包括:把第一预定电压施加到可编程导体硫属存储元件的第一端子;把所述存储单元所属的存储器阵列的位线充电为第二预定电压,所述位线具有贮存所述第二预定电压的寄生电容;把第三预定电压施加到晶体管的栅极,以便启用所述晶体管以及把所述位线耦合到所述可编程导体硫属存储元件的第二端子;以及在所述晶体管被启用时采用所述硫属存储元件两端的电压来建立所述硫属存储元件的阻态;其中,所述第一预定电压为或者约为电源电压的一半,所述第二预定电压为或者约为所述电源电压。
本发明还涵盖一种操作存储单元的方法,所述方法包括:把位线预充电为第一电压;把第二电压施加到硫属存储元件的第一端子;把所述硫属存储元件的第二端子连接到所述位线,以便在所述存储元件两端产生足以把预定阻态写入所述存储元件的电压;以及有选择地把至少一个电容器耦合到所述位线,以便接收和贮存所述第一电压。
本发明还涵盖一种存储器结构,包括:具有相关电容的导体;预充电电路,用于把所述导体预充电为第一电压,所述第一电压通过所述相关电容保持在所述导体上;可编程导体硫属存储元件,具有连接到第二电压的第一端子;以及存取器件,用于有选择地把所述硫属存储元件的第二端子耦合到所述导体,所述存取器件使所述第一和第二电压能够在所述硫属存储元件上建立足以把所述硫属存储元件编程为高或低阻态之一的电压;其中,所述预充电电路提供等于电源电压的第一电压,以便把高阻态编程到所述存储元件中,以及提供等于地电位的第二电压作为所述第一电压,以便把低阻态编程到所述存储元件中,所述第二电压为或者约为所述电源电压的一半。
本发明还涵盖一种半导体存储器,包括:具有相关电容的位线;具有第一和第二端子的可编程导体硫属存储元件,其中所述硫属存储元件在所述第一和第二端子之间;预充电电路,用于根据所述硫属存储元件的电阻编程的预期状态把所述位线预充电到两个可能的电压值之一,所述相关电容把预充电电压值保持在所述位线上;单元板,耦合到所述硫属存储元件的第一端子,用于把第三电压值提供给所述第一端子;以及存取晶体管,响应字线上的电压而有选择地把所述位线耦合到所述硫属存储元件的所述第二端子,从而根据所述单元板和位线上的电压值把所述存储元件编程为一种阻态,其中,所述相关电容包括耦合到所述导体的至少一个电容器。
本发明还涵盖一种存储单元,包括:具有第一和第二端子的硫属存储元件;第一存储器线;用于有选择地把所述第一存储器线预充电为第一或第二电压的电路;用于把第三电压提供给所述硫属存储元件的所述第一端子的电路;用于在所述第一存储器线已经被预充电之后可转换地把所述硫属存储元件的所述第二端子耦合到所述第一存储器线的器件,所述器件使电压被施加到所述硫属存储元件上,所述电压足以在所述硫属存储元件中写入两个预定阻态之一,这要根据在所述存储器线上预充电到所述第一电压还是第二电压而定;以及至少一个电容器,所述至少一个电容器耦合到所述存储器线,以便接收和保持所述预充电电压。
本发明还涵盖一种处理器系统,包括:处理器;以及耦合到所述处理器的半导体存储器,所述半导体存储器包括:具有相关电容的导体;预充电电路,用于把所述导体预充电为第一电压,所述第一电压通过所述相关电容保持在所述导体上;可编程导体硫属存储元件,具有连接到第二电压的一个端子;以及存取器件,用于有选择地把所述存储元件的第二端子耦合到所述导体,所述存取器件使所述第一和第二电压能够在所述硫属存储元件上建立足以把所述硫属存储元件编程为高或低阻态之一的电压;其中,所述预充电电路提供电源电压作为所述第一电压,以便把高阻态编程到所述存储元件中,以及提供地电位作为所述第一电压,以便把低阻态编程到所述存储元件中,而且所述第二电压为或约为所述电源电压的一半。
附图说明
通过以下参照附图提供的对本发明的优选实施例的详细说明,本发明的上述及其它优点和特点将变得更加明显,其中:
图1说明根据本发明的一个示范实施例、采用多个PCRAM存储单元的存储器阵列;
图2说明图1的PCRAM存储单元;
图3A表示描述根据本发明的一个示范实施例的操作流程的流程图;
图3B说明图1的PCRAM存储单元上的电压配置;
图4说明根据本发明的一个备选实施例、采用多个PCRAM存储单元的存储器阵列;以及
图5说明根据本发明的一个示范实施例、包含PCRAM存储器的基于处理器的系统的框图。
具体实施方式
参照图1-5所示的示范实施例来描述本发明。可以实现其它实施例,并且可对所公开的实施例进行其它变更,只要没有背离本发明的精神或范围。
术语“银”不仅用来包括元素银,而且包括具有其它痕量金属的银或者与半导体工业中已知的其它金属的各种合金组合中的银,只要这种银合金是导电的并且银的物理和电特性保持不变。同样,术语“锗”和“硒”不仅用来包括元素锗和硒,而且包括具有其它痕量金属的锗和硒或者与半导体工业中已知的其它金属的各种合金组合中的锗和硒,只要锗和硒的物理和电特性保持不变。
图1说明具有多个行线110、112、114和位(列)线116、118、120的存储器阵列100。在行和位线的各交叉点上,形成了PCRAM单元、如存储单元122。各存储单元(如122)包含存取晶体管124和可编程导体存储元件126。可编程导体存储元件可由掺杂Ag的Se:Ge的硫属玻璃成分构成。在题为“可用于存储器件及形成方法的硫属玻璃的化学计量”的美国申请序号09/941544中描述了用于元件126的适当的材料成分,通过引用将其公开结合于本文中。根据本发明的示范实施例,用作存储元件的锗:硒玻璃是从一系列锗:硒玻璃中选取的,其化学计量处于第一化学计量范围R1,包括Ge18Se82(在掺杂约为30%或以下时具有Ag的最大原子百分率)一直到Ge28Se72(在掺杂约为20%或以下时具有Ag的最大原子百分率),而且具有通式(Gex1Se1-x1)1-y1Agy1,其中18≤x1≤28,y1表示适合的银(Ag)原子百分率,这是将玻璃保持在玻璃形成区域的最大量。
可编程导体存储元件126的第一端子150耦合到公共单元板128。各存取晶体管124的一个源/漏端子耦合到相应的位线(如118),各存取晶体管124的另一个源/漏端子耦合到可编程导体存储元件126的第二端子152。各位线116、118、120还耦合到预充电电路130,使得位线可被预充电到两个预定值(例如为或者大约为Vdd以及为或者大约为地电压)其中之一,下面将会描述。另外还对列线(如图1的118)表示了寄生电容132,用来例如写入存储单元122。寄生电容具有约500fF的值,但这个值可随位线和存储器阵列体系结构而改变。
参见图2,较为详细地说明存储单元122的示意图。位线118耦合到预充电电路130,并且还耦合到存取晶体管124的第一源/漏端子,以及耦合到多个其它存取晶体管的相应的第一源/漏端子。存取晶体管124以及其它存取晶体管表示为n型互补金属氧化物半导体(CMOS)晶体管。但是,存取晶体管124可方便地由p型CMOS晶体管代替,只要其它元件和电压的相应极性进行相应的修改。可编程存储元件126的第一端子150耦合到公共单元板128。晶体管124的第二源/漏端子耦合到可编程导体存储元件126的第二端子。如上所述,可编程导体存储元件126可由掺杂了银的Ge:Se硫属玻璃制成,但也可使用本领域的技术人员已知的其它可编程导体材料。可编程导体存储元件126耦合到多个存储单元的公共单元板128。单元板128连接到用于向单元板128提供预定电压电平(例如为或者约为Vdd/2)的电压端子。图2所示的各存取晶体管124的栅极连接到相应的行线114。当足够的电压施加到行线、例如114时,使相关的存取晶体管124导通并导电。按照以下所述方式选择行线114、位线118和单元板128的电压,从而启用可编程导体存储元件126的读和写操作。
图3A和3B分别表示描述根据本发明的一个示范实施例的存储单元122的写操作的流程图和电压图表。在此示范处理流程中,假定可编程导体存储单元的以下参数:(i)从低阻态写到高阻态所需的元件126两端的电压为0.25V;(ii)所需电流约为10μA;(iii)从高阻态写到低阻态所需的元件126两端的电压为-0.25V;(iv)所需电流约为10μA;(v)低阻态约为10KΩ;以及(vi)高阻态为大于10MΩ的任何值。应该十分清楚,根据可编程导体存储元件126的材料成分和尺寸,可为PCRAM单元选择其它参数,只要未背离本发明的精神和范围。
参照图3A和图3B,写入过程在处理阶段300开始。在阶段302,位线、如位线118首先被预充电为或者大约为GND或Vdd,取决于该单元被编程为高阻态还是低阻态。如果单元转为高阻态,则位线118需要被预充电为地电压,如果单元转为低阻态,则位线需要被预充电为或者大约为Vdd。位线118经由分别耦合到位线118的预充电电路130被预充电为预定电压。为了此示范描述,假定位线电压为V1,存取晶体管124上的电压降为V2,存储元件126两端的电压为V3,单元板电压为V4,以及字线(晶体管124的栅极)电压为V5,如图3B所示。另外还假定Vdd为2.5V。因此,单元板128连接到V4的预定电压,该电压为或者约为Vdd/2、例如1.25V。注意,可编程导体存储元件126已经根据存储元件被写为低阻态(其中V3=-0.25V)或者被写为高阻态(其中V3=0.25V)对电压写入极性V3进行反向。另外,写为高阻态也被视为擦除操作。因此,如果单元122转为低阻态,则需要把位线118预充电为或者约为Vdd。但是,如果单元转为高阻态,则位线118需要被预充电为或者约为地电压。
一旦位线被预充电,则通过把预定电压V5施加到所选行线上来在处理阶段304烧制该行线。处理阶段300还表明,单元板保持为或者大约为Vdd/2。在本例中,为或者约为2.5V(Vdd)的预定行线电压V5足以使存取晶体管124导通。由于V1=2.5V、V4=1.25V,因此存取晶体管上的电压降V2约为1V(即伏特加上晶体管的电阻)。这留下存储元件126两端的0.25V的电压V3,足以把它从高阻态编程为低阻态,或者保持先前编程的低阻态不变。
如果位线118被预充电到V1,等于或者约为地电压,晶体管上的电压降V2约为0.2V,则存储元件126两端的电压V3为-1.05V,足以把它从低阻态编程为高阻态(又称作擦除)或保持先前编程的高阻态不变。
处理阶段308表明,存储元件126两端施加的电压通过存储元件放电,从而在其中写入所选电阻值。通过采用位线118的寄生电容132来保持预充电电压,消除了采用连接到电压源的晶体管驱动位线118的需要,从而在写操作过程中减少电流消耗。最后,在处理阶段310,在写操作结束时的位线118的电压下降到小于施加的单元板电压V4的值,例如,<等于或约等于Vdd/2。
为了读取存储单元122的内容,或者更具体来讲,为了读取存储单元122的可编程导体存储元件126的电阻值,低于+0.25V的电压差被施加到可编程导体存储元件126的两端。例如,0.2V的电压可用于读操作。这可通过读操作期间适当选择电压来实现。例如,2.45V的位线118的电压V1和1伏的电压降V2将在存储元件126两端产生0.2V。
现在参照图4,采用多个可编程导体存储单元122的存储阵列400表示为包括寄生电容132以及电容器134和晶体管136。前面结合图1所述的那些项目具有同样的参考标号,因此这里不再进行描述。电容器134被添加到列线118,以便在例如由电容132提供的列线118上的寄生电容不是高到足以存储预充电电压时提供附加电容。因此,可根据需要为写操作提供一个或多个附加电容器134。晶体管136在预充电操作之前或者在预充电操作时被启用,从而把一个或多个添加的电容器134耦合到位线118。在写操作之后,晶体管136“截止”,从而消除位线118上的附加电容,以免干扰存储器阵列100的其它操作的定时。
图5说明一种处理器系统500的框图,其中包括结合图1-4所述的可编程导体随机存取半导体存储器。例如,结合图1-4所述的PCRAM存储器阵列100可以是可配置为插入式存储器模块的随机存取存储器(RAM)508的组成部分。基于处理器的系统500可以是计算机系统或其它任何处理器系统。系统500包括中央处理器(CPU)502、例如微处理器,它通过总线520与软盘驱动器512、CD ROM驱动器514和RAM 508进行通信。必须指出,总线520可以是常用于基于处理器的系统的一系列总线和桥接器,但只是为了便于说明,总线520被表示为单一总线。输入/输出(I/O)装置(如监视器)504、506也可连接到总线520,但不是实施本发明所必需的。基于处理器的系统500还包括只读存储器(ROM)510,它也可用来存储软件程序。虽然图5的框图仅说明一个CPU 502,但图5的系统也可配置为用于执行并行处理的并行处理器机器。
虽然已经结合当时已知的优选实施例详细描述了本发明,但应该容易理解,本发明不限于所公开的实施例。相反,本发明可修改为结合前面没有说明的任何数量的变化、改变、替换或等效配置,但它们与本发明的精神和范围一致。例如,虽然已经结合具体的电压电平来描述本发明,但应该十分清楚,可使用与本文所述的那些电压电平极为不同的电压电平。另外,虽然已经结合存储元件126的具体极性来描述本发明,但本领域的技术人员理解,该极性可以反向,为写操作产生施加到晶体管、单元板和数字线上的不同电压电平。因此,本发明不受上述说明或附图的限制,而只受所附权利要求的范围的限制。

Claims (58)

1.一种用于写入存储元件的方法,所述方法包括:
把导体预充电为第一电压值,所述第一电压通过与所述导体相关的电容保持在所述导体上;
把可编程导体硫属存储元件耦合在所述导体上的所述第一电压与第二电压之间,以便在所述硫属存储元件中写入预定阻态,其中所述相关电容包括耦合到所述导体的电容器。
2.如权利要求1所述的方法,其特征在于,所述第一电压高于所述第二电压,以便在所述硫属存储元件中写入预定阻态。
3.如权利要求1所述的方法,其特征在于,所述第一电压低于所述第二电压,以便在所述硫属存储元件中写入预定阻态。
4.如权利要求1所述的方法,其特征在于,所述相关电容包括所述导体的寄生电容。
5.如权利要求1所述的方法,其特征在于,所述可编程导体硫属存储元件通过启用存取晶体管耦合到所述导体。
6.如权利要求2所述的方法,其特征在于,所述第一电压为或者约为电源电压,而所述第二电压约为电源电压的一半。
7.如权利要求3所述的方法,其特征在于,所述第一电压为地电压,而所述第二电压为或者约为电源电压的一半。
8.如权利要求1所述的方法,其特征在于,所述导体是与所述硫属存储元件相关的位线。
9.如权利要求1所述的方法,其特征在于,所述硫属存储元件包括硫属玻璃。
10.如权利要求9所述的方法,其特征在于,所述硫属玻璃包括掺杂了银的锗:硒玻璃成分。
11.一种用于写入半导体存储单元的方法,所述方法包括:
把第一预定电压施加到可编程导体硫属存储元件的第一端子;
把所述存储单元所属的存储器阵列的位线充电为第二预定电压,所述位线具有贮存所述第二预定电压的寄生电容;
把第三预定电压施加到晶体管的栅极,以便启用所述晶体管以及把所述位线耦合到所述可编程导体硫属存储元件的第二端子;以及
在所述晶体管被启用时采用所述硫属存储元件两端的电压来建立所述硫属存储元件的阻态;
其中,所述第一预定电压为或者约为电源电压的一半,所述第二预定电压为或者约为所述电源电压。
12.如权利要求11所述的方法,其特征在于,所述硫属存储元件两端的所述电压通过所述硫属存储元件放电,以便建立所述阻态。
13.如权利要求11所述的方法,其特征在于,所述第一预定电压为或者约为电源电压的一半,而所述第二预定电压为或者约为地电压。
14.如权利要求11所述的方法,其特征在于,施加第一预定电压的所述操作包括把与所述第一端子耦合的单元板耦合到所述第一预定电压的源。
15.如权利要求11所述的方法,其特征在于还包括有选择地把至少一个电容器耦合到所述位线以贮存所述第二预定电压的步骤。
16.如权利要求15所述的方法,其特征在于还包括使晶体管能够有选择地把至少一个电容器耦合到所述位线。
17.如权利要求11所述的方法,其特征在于,所述寄生电容具有大约500fF的值。
18.如权利要求11所述的方法,其特征在于,所述可编程导体硫属存储元件包括硫属玻璃。
19.如权利要求18所述的方法,其特征在于,所述硫属玻璃包括掺杂了银的Ge:Se玻璃成分。
20.一种操作存储单元的方法,所述方法包括:
把位线预充电为第一电压;
把第二电压施加到硫属存储元件的第一端子;
把所述硫属存储元件的第二端子连接到所述位线,以便在所述存储元件两端产生足以把预定阻态写入所述存储元件的电压;以及
有选择地把至少一个电容器耦合到所述位线,以便接收和贮存所述第一电压。
21.如权利要求20所述的方法,其特征在于,所述第二电压大于所述第一电压。
22.如权利要求20所述的方法,其特征在于,所述第一电压大于所述第二电压。
23.如权利要求20所述的方法,其特征在于,所述第一电压通过寄生电容保持在所述位线上。
24.如权利要求20所述的方法,其特征在于还包括操作晶体管以有选择地把所述至少一个电容器耦合到所述位线。
25.如权利要求20所述的方法,其特征在于,所述位线具有大约500fF的寄生电容。
26.如权利要求20所述的方法,其特征在于,所述硫属存储元件包括掺杂了银的Ge:Se玻璃成分。
27.如权利要求20所述的方法,其特征在于,所述连接还包括使晶体管能够把所述第二端子连接到所述位线。
28.如权利要求27所述的方法,其特征在于,所述晶体管由施加到所述晶体管的栅极的字线电压来启用。
29.一种存储器结构,包括:
具有相关电容的导体;
预充电电路,用于把所述导体预充电为第一电压,所述第一电压通过所述相关电容保持在所述导体上;
可编程导体硫属存储元件,具有连接到第二电压的第一端子;以及
存取器件,用于有选择地把所述硫属存储元件的第二端子耦合到所述导体,所述存取器件使所述第一和第二电压能够在所述硫属存储元件上建立足以把所述硫属存储元件编程为高或低阻态之一的电压;
其中,所述预充电电路提供等于电源电压的第一电压,以便把高阻态编程到所述存储元件中,以及提供等于地电位的第二电压作为所述第一电压,以便把低阻态编程到所述存储元件中,所述第二电压为或者约为所述电源电压的一半。
30.如权利要求29所述的存储器结构,其特征在于,所述存取器件为晶体管。
31.如权利要求29所述的存储器结构,其特征在于,所述相关电容包括所述导体的寄生电容。
32.如权利要求29所述的存储器结构,其特征在于,所述相关电容包括耦合到所述导体的至少一个电容器。
33.如权利要求29所述的存储器结构,其特征在于,所述相关电容包括所述导体的寄生电容以及耦合到所述导体的至少一个电容器。
34.如权利要求29所述的存储器结构,其特征在于,所述导体是位线,以及所述存取器件由施加到字线上的电压来启用。
35.如权利要求29所述的存储器结构,其特征在于,所述硫属存储元件包括硫属玻璃。
36.如权利要求35所述的存储器结构,其特征在于,所述硫属玻璃包括掺杂了银的Ge:Se玻璃成分。
37.一种半导体存储器,包括:
具有相关电容的位线;
具有第一和第二端子的可编程导体硫属存储元件,其中所述硫属存储元件在所述第一和第二端子之间;
预充电电路,用于根据所述硫属存储元件的电阻编程的预期状态把所述位线预充电到两个可能的电压值之一,所述相关电容把预充电电压值保持在所述位线上;
单元板,耦合到所述硫属存储元件的第一端子,用于把第三电压值提供给所述第一端子;以及
存取晶体管,响应字线上的电压而有选择地把所述位线耦合到所述硫属存储元件的所述第二端子,从而根据所述单元板和位线上的电压值把所述存储元件编程为一种阻态,其中,所述相关电容包括耦合到所述导体的至少一个电容器。
38.如权利要求37所述的半导体存储器,其特征在于,所述两个可能的电压值其中之一高于所述第三电压值,而所述两个可能的电压值中另一个低于所述第三电压值。
39.如权利要求37所述的半导体存储器,其特征在于,所述相关电容包括所述导体的寄生电容。
40.如权利要求37所述的半导体存储器,其特征在于还包括开关器件,用于有选择地把所述至少一个电容器耦合到所述位线。
41.如权利要求37所述的半导体存储器,其特征在于包括开关器件,用于有选择地把所述至少一个电容器耦合到所述位线。
42.如权利要求37所述的半导体存储器,其特征在于,所述硫属存储元件包括硫属玻璃。
43.如权利要求42所述的半导体存储器,其特征在于,所述硫属玻璃包括掺杂了银的Ge:Se玻璃成分。
44.如权利要求39所述的存储器,其特征在于,所述寄生电容具有大约500fF的值。
45.一种存储单元,包括:
具有第一和第二端子的硫属存储元件;
第一存储器线;
用于有选择地把所述第一存储器线预充电为第一或第二电压的电路;
用于把第三电压提供给所述硫属存储元件的所述第一端子的电路;
用于在所述第一存储器线已经被预充电之后可转换地把所述硫属存储元件的所述第二端子耦合到所述第一存储器线的器件,所述器件使电压被施加到所述硫属存储元件上,所述电压足以在所述硫属存储元件中写入两个预定阻态之一,这要根据在所述存储器线上预充电到所述第一电压还是第二电压而定;以及
至少一个电容器,所述至少一个电容器耦合到所述存储器线,以便接收和保持所述预充电电压。
46.如权利要求45所述的存储单元,其特征在于,所述第三电压处于所述第一和第二电压之间。
47.如权利要求45所述的存储单元,其特征在于,所述存储器线还包括用于保持所施加的预充电电压的寄生电容。
48.如权利要求45所述的存储单元,其特征在于还包括开关器件,用于有选择地把所述至少一个电容器耦合到所述存储器线。
49.如权利要求47所述的存储器,其特征在于,所述存储器线具有大约500fF的寄生电容。
50.如权利要求45所述的存储器,其特征在于,所述硫属存储元件包括掺杂了银的锗:硒玻璃成分。
51.一种处理器系统,包括:
处理器;以及
耦合到所述处理器的半导体存储器,所述半导体存储器包括:
具有相关电容的导体;
预充电电路,用于把所述导体预充电为第一电压,所述第一电压通过所述相关电容保持在所述导体上;
可编程导体硫属存储元件,具有连接到第二电压的一个端子;以及
存取器件,用于有选择地把所述存储元件的第二端子耦合到所述导体,所述存取器件使所述第一和第二电压能够在所述硫属存储元件上建立足以把所述硫属存储元件编程为高或低阻态之一的电压;
其中,所述预充电电路提供电源电压作为所述第一电压,以便把高阻态编程到所述存储元件中,以及提供地电位作为所述第一电压,以便把低阻态编程到所述存储元件中,而且所述第二电压为或约为所述电源电压的一半。
52.如权利要求51所述的处理器系统,其特征在于,所述存取器件为晶体管。
53.如权利要求51所述的处理器系统,其特征在于,所述相关电容包括所述导体的寄生电容。
54.如权利要求51所述的处理器系统,其特征在于,所述相关电容包括耦合到所述导体的至少一个电容器。
55.如权利要求51所述的处理器系统,其特征在于,所述相关电容包括所述导体的寄生电容以及耦合到所述导体的至少一个电容器。
56.如权利要求51所述的处理器系统,其特征在于,所述导体是位线,以及所述存取器件由施加到字线上的电压来启用。
57.如权利要求51所述的处理器系统,其特征在于,所述硫属存储元件包括硫属玻璃。
58.如权利要求57所述的处理器系统,其特征在于,所述硫属玻璃包括掺杂了银的Ge:Se玻璃成分。
CNB028281470A 2001-12-20 2002-12-16 可编程导体随机存取存储器以及向其中写入的方法 Expired - Fee Related CN100538878C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/022,722 US6873538B2 (en) 2001-12-20 2001-12-20 Programmable conductor random access memory and a method for writing thereto
US10/022,722 2001-12-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN2009101655847A Division CN101615426B (zh) 2001-12-20 2002-12-16 可编程导体随机存取存储器以及向其中写入的方法

Publications (2)

Publication Number Publication Date
CN1620699A CN1620699A (zh) 2005-05-25
CN100538878C true CN100538878C (zh) 2009-09-09

Family

ID=21811095

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2009101655847A Expired - Fee Related CN101615426B (zh) 2001-12-20 2002-12-16 可编程导体随机存取存储器以及向其中写入的方法
CNB028281470A Expired - Fee Related CN100538878C (zh) 2001-12-20 2002-12-16 可编程导体随机存取存储器以及向其中写入的方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN2009101655847A Expired - Fee Related CN101615426B (zh) 2001-12-20 2002-12-16 可编程导体随机存取存储器以及向其中写入的方法

Country Status (10)

Country Link
US (1) US6873538B2 (zh)
EP (2) EP2112664B1 (zh)
JP (1) JP4081011B2 (zh)
KR (1) KR100626505B1 (zh)
CN (2) CN101615426B (zh)
AT (2) ATE447760T1 (zh)
AU (1) AU2002364167A1 (zh)
DE (1) DE60234273D1 (zh)
TW (1) TWI223278B (zh)
WO (1) WO2003054887A1 (zh)

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7102150B2 (en) 2001-05-11 2006-09-05 Harshfield Steven T PCRAM memory cell and method of making same
US6951805B2 (en) * 2001-08-01 2005-10-04 Micron Technology, Inc. Method of forming integrated circuitry, method of forming memory circuitry, and method of forming random access memory circuitry
US6881623B2 (en) * 2001-08-29 2005-04-19 Micron Technology, Inc. Method of forming chalcogenide comprising devices, method of forming a programmable memory cell of memory circuitry, and a chalcogenide comprising device
US6955940B2 (en) * 2001-08-29 2005-10-18 Micron Technology, Inc. Method of forming chalcogenide comprising devices
US6646902B2 (en) 2001-08-30 2003-11-11 Micron Technology, Inc. Method of retaining memory state in a programmable conductor RAM
US6560155B1 (en) * 2001-10-24 2003-05-06 Micron Technology, Inc. System and method for power saving memory refresh for dynamic random access memory devices after an extended interval
US6791859B2 (en) 2001-11-20 2004-09-14 Micron Technology, Inc. Complementary bit PCRAM sense amplifier and method of operation
US6909656B2 (en) * 2002-01-04 2005-06-21 Micron Technology, Inc. PCRAM rewrite prevention
US6867064B2 (en) * 2002-02-15 2005-03-15 Micron Technology, Inc. Method to alter chalcogenide glass for improved switching characteristics
US6791885B2 (en) 2002-02-19 2004-09-14 Micron Technology, Inc. Programmable conductor random access memory and method for sensing same
US6847535B2 (en) 2002-02-20 2005-01-25 Micron Technology, Inc. Removable programmable conductor memory card and associated read/write device and method of operation
US6891749B2 (en) * 2002-02-20 2005-05-10 Micron Technology, Inc. Resistance variable ‘on ’ memory
US7151273B2 (en) 2002-02-20 2006-12-19 Micron Technology, Inc. Silver-selenide/chalcogenide glass stack for resistance variable memory
US6864500B2 (en) * 2002-04-10 2005-03-08 Micron Technology, Inc. Programmable conductor memory cell structure
US6858482B2 (en) * 2002-04-10 2005-02-22 Micron Technology, Inc. Method of manufacture of programmable switching circuits and memory cells employing a glass layer
US6731528B2 (en) * 2002-05-03 2004-05-04 Micron Technology, Inc. Dual write cycle programmable conductor memory system and method of operation
US6890790B2 (en) 2002-06-06 2005-05-10 Micron Technology, Inc. Co-sputter deposition of metal-doped chalcogenides
US6825135B2 (en) 2002-06-06 2004-11-30 Micron Technology, Inc. Elimination of dendrite formation during metal/chalcogenide glass deposition
US7364644B2 (en) 2002-08-29 2008-04-29 Micron Technology, Inc. Silver selenide film stoichiometry and morphology control in sputter deposition
US6864521B2 (en) 2002-08-29 2005-03-08 Micron Technology, Inc. Method to control silver concentration in a resistance variable memory element
US7010644B2 (en) * 2002-08-29 2006-03-07 Micron Technology, Inc. Software refreshed memory device and method
US7022579B2 (en) 2003-03-14 2006-04-04 Micron Technology, Inc. Method for filling via with metal
US6888771B2 (en) * 2003-05-09 2005-05-03 Micron Technology, Inc. Skewed sense AMP for variable resistance memory sensing
JP4322048B2 (ja) * 2003-05-21 2009-08-26 株式会社ルネサステクノロジ 半導体記憶装置
JP2005026576A (ja) * 2003-07-04 2005-01-27 Sony Corp 記憶装置
JP4290494B2 (ja) * 2003-07-08 2009-07-08 株式会社ルネサステクノロジ 半導体記憶装置
EP1505656B1 (en) * 2003-08-05 2007-01-03 STMicroelectronics S.r.l. Process for manufacturing a phase change memory array in Cu-damascene technology and phase change memory array manufactured thereby
US6903361B2 (en) * 2003-09-17 2005-06-07 Micron Technology, Inc. Non-volatile memory structure
US20050149969A1 (en) * 2004-01-06 2005-07-07 Vishnu Kumar TV graphical menu interface that provides browseable listing of connected removable media content
US7138687B2 (en) * 2004-01-26 2006-11-21 Macronix International Co., Ltd. Thin film phase-change memory
US7583551B2 (en) 2004-03-10 2009-09-01 Micron Technology, Inc. Power management control and controlling memory refresh operations
JP4553620B2 (ja) * 2004-04-06 2010-09-29 ルネサスエレクトロニクス株式会社 薄膜磁性体記憶装置
US7326950B2 (en) 2004-07-19 2008-02-05 Micron Technology, Inc. Memory device with switching glass layer
US7354793B2 (en) 2004-08-12 2008-04-08 Micron Technology, Inc. Method of forming a PCRAM device incorporating a resistance-variable chalocogenide element
US7365411B2 (en) 2004-08-12 2008-04-29 Micron Technology, Inc. Resistance variable memory with temperature tolerant materials
JP2006114087A (ja) 2004-10-13 2006-04-27 Sony Corp 記憶装置及び半導体装置
JP2006134398A (ja) 2004-11-04 2006-05-25 Sony Corp 記憶装置及び半導体装置
DE102004056911B4 (de) * 2004-11-25 2010-06-02 Qimonda Ag Speicherschaltung sowie Verfahren zum Auslesen eines Speicherdatums aus einer solchen Speicherschaltung
DE102004061548A1 (de) * 2004-12-21 2006-06-29 Infineon Technologies Ag Integration von 1T1R-CBRAM-Speicherzellen
US20060131555A1 (en) * 2004-12-22 2006-06-22 Micron Technology, Inc. Resistance variable devices with controllable channels
US7374174B2 (en) 2004-12-22 2008-05-20 Micron Technology, Inc. Small electrode for resistance variable devices
US7317200B2 (en) 2005-02-23 2008-01-08 Micron Technology, Inc. SnSe-based limited reprogrammable cell
US7709289B2 (en) 2005-04-22 2010-05-04 Micron Technology, Inc. Memory elements having patterned electrodes and method of forming the same
US7427770B2 (en) 2005-04-22 2008-09-23 Micron Technology, Inc. Memory array for increased bit density
JP2007018615A (ja) * 2005-07-08 2007-01-25 Sony Corp 記憶装置及び半導体装置
US7274034B2 (en) 2005-08-01 2007-09-25 Micron Technology, Inc. Resistance variable memory device with sputtered metal-chalcogenide region and method of fabrication
US7332735B2 (en) 2005-08-02 2008-02-19 Micron Technology, Inc. Phase change memory cell and method of formation
US7579615B2 (en) 2005-08-09 2009-08-25 Micron Technology, Inc. Access transistor for memory device
US7251154B2 (en) 2005-08-15 2007-07-31 Micron Technology, Inc. Method and apparatus providing a cross-point memory array using a variable resistance memory cell and capacitance
US20070047291A1 (en) * 2005-08-26 2007-03-01 Heinz Hoenigschmid Integrated memory circuit comprising a resistive memory element and a method for manufacturing such a memory circuit
US7257013B2 (en) * 2005-09-08 2007-08-14 Infineon Technologies Ag Method for writing data into a memory cell of a conductive bridging random access memory, memory circuit and CBRAM memory circuit
US7369424B2 (en) * 2005-11-09 2008-05-06 Industrial Technology Research Institute Programmable memory cell and operation method
US7518902B2 (en) 2005-12-23 2009-04-14 Infineon Technologies Ag Resistive memory device and method for writing to a resistive memory cell in a resistive memory device
DE102005061996B4 (de) * 2005-12-23 2016-02-18 Polaris Innovations Ltd. CBRAM-Speichereinrichtung und Verfahren zum Beschreiben einer Widerstandsspeicherzelle in einer CBRAM-Speichereinrichtung
US20070195580A1 (en) * 2006-02-23 2007-08-23 Heinz Hoenigschmid Memory circuit having a resistive memory cell and method for operating such a memory circuit
EP1835509A1 (de) * 2006-03-14 2007-09-19 Qimonda AG Speicherzelle, Speicher mit einer Speicherzelle und Verfahren zum Einschreiben von Daten in eine Speicherzelle
US7560723B2 (en) 2006-08-29 2009-07-14 Micron Technology, Inc. Enhanced memory density resistance variable memory cells, arrays, devices and systems including the same, and methods of fabrication
US7619917B2 (en) * 2006-11-28 2009-11-17 Qimonda North America Corp. Memory cell with trigger element
US8077495B2 (en) * 2006-12-05 2011-12-13 Spansion Llc Method of programming, erasing and repairing a memory device
US20080247218A1 (en) * 2007-04-04 2008-10-09 International Business Machines Corporation Design structure for implementing improved write performance for pcram devices
JP5503102B2 (ja) * 2007-07-04 2014-05-28 ピーエスフォー ルクスコ エスエイアールエル 相変化メモリ装置
KR101416878B1 (ko) * 2007-11-13 2014-07-09 삼성전자주식회사 파워 공급 회로 및 이를 구비하는 상 변화 메모리 장치
US7729163B2 (en) * 2008-03-26 2010-06-01 Micron Technology, Inc. Phase change memory
US8059447B2 (en) 2008-06-27 2011-11-15 Sandisk 3D Llc Capacitive discharge method for writing to non-volatile memory
US7978507B2 (en) * 2008-06-27 2011-07-12 Sandisk 3D, Llc Pulse reset for non-volatile storage
US8467236B2 (en) 2008-08-01 2013-06-18 Boise State University Continuously variable resistor
US7825479B2 (en) 2008-08-06 2010-11-02 International Business Machines Corporation Electrical antifuse having a multi-thickness dielectric layer
US8130528B2 (en) 2008-08-25 2012-03-06 Sandisk 3D Llc Memory system with sectional data lines
US8027209B2 (en) * 2008-10-06 2011-09-27 Sandisk 3D, Llc Continuous programming of non-volatile memory
KR101537316B1 (ko) * 2008-11-14 2015-07-16 삼성전자주식회사 상 변화 메모리 장치
US8279650B2 (en) 2009-04-20 2012-10-02 Sandisk 3D Llc Memory system with data line switching scheme
JP4796640B2 (ja) * 2009-05-19 2011-10-19 シャープ株式会社 半導体記憶装置、及び、電子機器
JP5688376B2 (ja) * 2010-01-06 2015-03-25 株式会社ヤクルト本社 経口用のdna損傷修復促進剤及びエラスターゼ活性抑制剤
US8929125B2 (en) 2013-02-20 2015-01-06 Micron Technology, Inc. Apparatus and methods for forming a memory cell using charge monitoring
US9178143B2 (en) * 2013-07-29 2015-11-03 Industrial Technology Research Institute Resistive memory structure
DE102014113030A1 (de) 2014-09-10 2016-03-10 Infineon Technologies Ag Speicherschaltungen und ein Verfahren zum Bilden einer Speicherschaltung
US9978810B2 (en) 2015-11-04 2018-05-22 Micron Technology, Inc. Three-dimensional memory apparatuses and methods of use
US10134470B2 (en) * 2015-11-04 2018-11-20 Micron Technology, Inc. Apparatuses and methods including memory and operation of same
US9659646B1 (en) * 2016-01-11 2017-05-23 Crossbar, Inc. Programmable logic applications for an array of high on/off ratio and high speed non-volatile memory cells
US10446226B2 (en) 2016-08-08 2019-10-15 Micron Technology, Inc. Apparatuses including multi-level memory cells and methods of operation of same
US9990992B2 (en) * 2016-10-25 2018-06-05 Arm Ltd. Method, system and device for non-volatile memory device operation
US10157670B2 (en) 2016-10-28 2018-12-18 Micron Technology, Inc. Apparatuses including memory cells and methods of operation of same

Family Cites Families (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3271591A (en) 1963-09-20 1966-09-06 Energy Conversion Devices Inc Symmetrical current controlling device
US3622319A (en) 1966-10-20 1971-11-23 Western Electric Co Nonreflecting photomasks and methods of making same
US3868651A (en) 1970-08-13 1975-02-25 Energy Conversion Devices Inc Method and apparatus for storing and reading data in a memory having catalytic material to initiate amorphous to crystalline change in memory structure
US3743847A (en) * 1971-06-01 1973-07-03 Motorola Inc Amorphous silicon film as a uv filter
US4267261A (en) * 1971-07-15 1981-05-12 Energy Conversion Devices, Inc. Method for full format imaging
US3961314A (en) * 1974-03-05 1976-06-01 Energy Conversion Devices, Inc. Structure and method for producing an image
US3966317A (en) * 1974-04-08 1976-06-29 Energy Conversion Devices, Inc. Dry process production of archival microform records from hard copy
US4177474A (en) 1977-05-18 1979-12-04 Energy Conversion Devices, Inc. High temperature amorphous semiconductor member and method of making the same
JPS5565365A (en) * 1978-11-07 1980-05-16 Nippon Telegr & Teleph Corp <Ntt> Pattern forming method
DE2901303C2 (de) 1979-01-15 1984-04-19 Max Planck Gesellschaft Zur Foerderung Der Wissenschaften E.V., 3400 Goettingen Festes Ionenleitermaterial, seine Verwendung und Verfahren zu dessen Herstellung
US4312938A (en) * 1979-07-06 1982-01-26 Drexler Technology Corporation Method for making a broadband reflective laser recording and data storage medium with absorptive underlayer
US4269935A (en) * 1979-07-13 1981-05-26 Ionomet Company, Inc. Process of doping silver image in chalcogenide layer
US4316946A (en) * 1979-12-03 1982-02-23 Ionomet Company, Inc. Surface sensitized chalcogenide product and process for making and using the same
US4499557A (en) * 1980-10-28 1985-02-12 Energy Conversion Devices, Inc. Programmable cell for use in programmable electronic arrays
US4405710A (en) 1981-06-22 1983-09-20 Cornell Research Foundation, Inc. Ion beam exposure of (g-Gex -Se1-x) inorganic resists
US4737379A (en) * 1982-09-24 1988-04-12 Energy Conversion Devices, Inc. Plasma deposited coatings, and low temperature plasma method of making same
US4545111A (en) * 1983-01-18 1985-10-08 Energy Conversion Devices, Inc. Method for making, parallel preprogramming or field programming of electronic matrix arrays
US4608296A (en) 1983-12-06 1986-08-26 Energy Conversion Devices, Inc. Superconducting films and devices exhibiting AC to DC conversion
US4795657A (en) * 1984-04-13 1989-01-03 Energy Conversion Devices, Inc. Method of fabricating a programmable array
US4668968A (en) * 1984-05-14 1987-05-26 Energy Conversion Devices, Inc. Integrated circuit compatible thin film field effect transistor and method of making same
US4843443A (en) * 1984-05-14 1989-06-27 Energy Conversion Devices, Inc. Thin film field effect transistor and method of making same
US4769338A (en) 1984-05-14 1988-09-06 Energy Conversion Devices, Inc. Thin film field effect transistor and method of making same
US4670763A (en) * 1984-05-14 1987-06-02 Energy Conversion Devices, Inc. Thin film field effect transistor
US4673957A (en) * 1984-05-14 1987-06-16 Energy Conversion Devices, Inc. Integrated circuit compatible thin film field effect transistor and method of making same
US4678679A (en) * 1984-06-25 1987-07-07 Energy Conversion Devices, Inc. Continuous deposition of activated process gases
US4646266A (en) * 1984-09-28 1987-02-24 Energy Conversion Devices, Inc. Programmable semiconductor structures and methods for using the same
US4664939A (en) * 1985-04-01 1987-05-12 Energy Conversion Devices, Inc. Vertical semiconductor processor
US4637895A (en) 1985-04-01 1987-01-20 Energy Conversion Devices, Inc. Gas mixtures for the vapor deposition of semiconductor material
US4710899A (en) 1985-06-10 1987-12-01 Energy Conversion Devices, Inc. Data storage medium incorporating a transition metal for increased switching speed
US4671618A (en) * 1986-05-22 1987-06-09 Wu Bao Gang Liquid crystalline-plastic material having submillisecond switch times and extended memory
US4766471A (en) 1986-01-23 1988-08-23 Energy Conversion Devices, Inc. Thin film electro-optical devices
US4818717A (en) * 1986-06-27 1989-04-04 Energy Conversion Devices, Inc. Method for making electronic matrix arrays
US4728406A (en) * 1986-08-18 1988-03-01 Energy Conversion Devices, Inc. Method for plasma - coating a semiconductor body
US4845533A (en) * 1986-08-22 1989-07-04 Energy Conversion Devices, Inc. Thin film electrical devices with amorphous carbon electrodes and method of making same
US4809044A (en) * 1986-08-22 1989-02-28 Energy Conversion Devices, Inc. Thin film overvoltage protection devices
US4853785A (en) 1986-10-15 1989-08-01 Energy Conversion Devices, Inc. Electronic camera including electronic signal storage cartridge
US4788594A (en) 1986-10-15 1988-11-29 Energy Conversion Devices, Inc. Solid state electronic camera including thin film matrix of photosensors
GB8627488D0 (en) * 1986-11-18 1986-12-17 British Petroleum Co Plc Memory matrix
US4847674A (en) * 1987-03-10 1989-07-11 Advanced Micro Devices, Inc. High speed interconnect system with refractory non-dogbone contacts and an active electromigration suppression mechanism
US4800526A (en) * 1987-05-08 1989-01-24 Gaf Corporation Memory element for information storage and retrieval system and associated process
US4775425A (en) 1987-07-27 1988-10-04 Energy Conversion Devices, Inc. P and n-type microcrystalline semiconductor alloy material including band gap widening elements, devices utilizing same
US4891330A (en) * 1987-07-27 1990-01-02 Energy Conversion Devices, Inc. Method of fabricating n-type and p-type microcrystalline semiconductor alloy material including band gap widening elements
US5272359A (en) 1988-04-07 1993-12-21 California Institute Of Technology Reversible non-volatile switch based on a TCNQ charge transfer complex
GB8910854D0 (en) 1989-05-11 1989-06-28 British Petroleum Co Plc Semiconductor device
US5159661A (en) 1990-10-05 1992-10-27 Energy Conversion Devices, Inc. Vertically interconnected parallel distributed processor
US5314772A (en) * 1990-10-09 1994-05-24 Arizona Board Of Regents High resolution, multi-layer resist for microlithography and method therefor
JPH0770731B2 (ja) * 1990-11-22 1995-07-31 松下電器産業株式会社 電気可塑性素子
US5341328A (en) 1991-01-18 1994-08-23 Energy Conversion Devices, Inc. Electrically erasable memory elements having reduced switching current requirements and increased write/erase cycle life
US5406509A (en) * 1991-01-18 1995-04-11 Energy Conversion Devices, Inc. Electrically erasable, directly overwritable, multibit single cell memory elements and arrays fabricated therefrom
US5536947A (en) * 1991-01-18 1996-07-16 Energy Conversion Devices, Inc. Electrically erasable, directly overwritable, multibit single cell memory element and arrays fabricated therefrom
US5534712A (en) * 1991-01-18 1996-07-09 Energy Conversion Devices, Inc. Electrically erasable memory elements characterized by reduced current and improved thermal stability
US5534711A (en) * 1991-01-18 1996-07-09 Energy Conversion Devices, Inc. Electrically erasable, directly overwritable, multibit single cell memory elements and arrays fabricated therefrom
US5166758A (en) 1991-01-18 1992-11-24 Energy Conversion Devices, Inc. Electrically erasable phase change memory
US5414271A (en) * 1991-01-18 1995-05-09 Energy Conversion Devices, Inc. Electrically erasable memory elements having improved set resistance stability
US5596522A (en) * 1991-01-18 1997-01-21 Energy Conversion Devices, Inc. Homogeneous compositions of microcrystalline semiconductor material, semiconductor devices and directly overwritable memory elements fabricated therefrom, and arrays fabricated from the memory elements
US5335219A (en) 1991-01-18 1994-08-02 Ovshinsky Stanford R Homogeneous composition of microcrystalline semiconductor material, semiconductor devices and directly overwritable memory elements fabricated therefrom, and arrays fabricated from the memory elements
US5296716A (en) * 1991-01-18 1994-03-22 Energy Conversion Devices, Inc. Electrically erasable, directly overwritable, multibit single cell memory elements and arrays fabricated therefrom
US5128099A (en) * 1991-02-15 1992-07-07 Energy Conversion Devices, Inc. Congruent state changeable optical memory material and device
US5219788A (en) * 1991-02-25 1993-06-15 Ibm Corporation Bilayer metallization cap for photolithography
US5177567A (en) * 1991-07-19 1993-01-05 Energy Conversion Devices, Inc. Thin-film structure for chalcogenide electrical switching devices and process therefor
US5359205A (en) 1991-11-07 1994-10-25 Energy Conversion Devices, Inc. Electrically erasable memory elements characterized by reduced current and improved thermal stability
US5238862A (en) 1992-03-18 1993-08-24 Micron Technology, Inc. Method of forming a stacked capacitor with striated electrode
US5512328A (en) * 1992-08-07 1996-04-30 Hitachi, Ltd. Method for forming a pattern and forming a thin film used in pattern formation
US5350484A (en) 1992-09-08 1994-09-27 Intel Corporation Method for the anisotropic etching of metal films in the fabrication of interconnects
BE1007902A3 (nl) * 1993-12-23 1995-11-14 Philips Electronics Nv Schakelelement met geheugen voorzien van schottky tunnelbarriere.
US5500532A (en) * 1994-08-18 1996-03-19 Arizona Board Of Regents Personal electronic dosimeter
JP2643870B2 (ja) * 1994-11-29 1997-08-20 日本電気株式会社 半導体記憶装置の製造方法
US5543737A (en) 1995-02-10 1996-08-06 Energy Conversion Devices, Inc. Logical operation circuit employing two-terminal chalcogenide switches
US6420725B1 (en) 1995-06-07 2002-07-16 Micron Technology, Inc. Method and apparatus for forming an integrated circuit electrode having a reduced contact area
US5879955A (en) * 1995-06-07 1999-03-09 Micron Technology, Inc. Method for fabricating an array of ultra-small pores for chalcogenide memory cells
WO1996041381A1 (en) 1995-06-07 1996-12-19 Micron Technology, Inc. A stack/trench diode for use with a multi-state material in a non-volatile memory cell
US5869843A (en) * 1995-06-07 1999-02-09 Micron Technology, Inc. Memory array having a multi-state element and method for forming such array or cells thereof
US5751012A (en) * 1995-06-07 1998-05-12 Micron Technology, Inc. Polysilicon pillar diode for use in a non-volatile memory cell
US5789758A (en) * 1995-06-07 1998-08-04 Micron Technology, Inc. Chalcogenide memory cell with a plurality of chalcogenide electrodes
US5714768A (en) * 1995-10-24 1998-02-03 Energy Conversion Devices, Inc. Second-layer phase change memory array on top of a logic device
US5694054A (en) 1995-11-28 1997-12-02 Energy Conversion Devices, Inc. Integrated drivers for flat panel displays employing chalcogenide logic elements
US5591501A (en) * 1995-12-20 1997-01-07 Energy Conversion Devices, Inc. Optical recording medium having a plurality of discrete phase change data recording points
US6653733B1 (en) * 1996-02-23 2003-11-25 Micron Technology, Inc. Conductors in semiconductor devices
US5687112A (en) 1996-04-19 1997-11-11 Energy Conversion Devices, Inc. Multibit single cell memory element having tapered contact
US5761115A (en) * 1996-05-30 1998-06-02 Axon Technologies Corporation Programmable metallization cell structure and method of making same
US5789277A (en) 1996-07-22 1998-08-04 Micron Technology, Inc. Method of making chalogenide memory device
US5998244A (en) * 1996-08-22 1999-12-07 Micron Technology, Inc. Memory cell incorporating a chalcogenide element and method of making same
US5883827A (en) * 1996-08-26 1999-03-16 Micron Technology, Inc. Method and apparatus for reading/writing data in a memory system including programmable resistors
US5761112A (en) * 1996-09-20 1998-06-02 Mosel Vitelic Corporation Charge storage for sensing operations in a DRAM
US6087674A (en) 1996-10-28 2000-07-11 Energy Conversion Devices, Inc. Memory element with memory material comprising phase-change material and dielectric material
US5825046A (en) 1996-10-28 1998-10-20 Energy Conversion Devices, Inc. Composite memory material comprising a mixture of phase-change memory material and dielectric material
US5781469A (en) * 1997-01-24 1998-07-14 Atmel Corporation Bitline load and precharge structure for an SRAM memory
US5846889A (en) 1997-03-14 1998-12-08 The United States Of America As Represented By The Secretary Of The Navy Infrared transparent selenide glasses
US5998066A (en) 1997-05-16 1999-12-07 Aerial Imaging Corporation Gray scale mask and depth pattern transfer technique using inorganic chalcogenide glass
US5933365A (en) 1997-06-19 1999-08-03 Energy Conversion Devices, Inc. Memory element with energy control mechanism
US6011757A (en) * 1998-01-27 2000-01-04 Ovshinsky; Stanford R. Optical recording media having increased erasability
US6297170B1 (en) 1998-06-23 2001-10-02 Vlsi Technology, Inc. Sacrificial multilayer anti-reflective coating for mos gate formation
US6141241A (en) 1998-06-23 2000-10-31 Energy Conversion Devices, Inc. Universal memory element with systems employing same and apparatus and method for reading, writing and programming same
US5912839A (en) * 1998-06-23 1999-06-15 Energy Conversion Devices, Inc. Universal memory element and method of programming same
US6388324B2 (en) * 1998-08-31 2002-05-14 Arizona Board Of Regents Self-repairing interconnections for electrical circuits
US6825489B2 (en) * 2001-04-06 2004-11-30 Axon Technologies Corporation Microelectronic device, structure, and system, including a memory structure having a variable programmable property and method of forming the same
US6487106B1 (en) * 1999-01-12 2002-11-26 Arizona Board Of Regents Programmable microelectronic devices and method of forming and programming same
US6177338B1 (en) * 1999-02-08 2001-01-23 Taiwan Semiconductor Manufacturing Company Two step barrier process
US6180456B1 (en) * 1999-02-17 2001-01-30 International Business Machines Corporation Triple polysilicon embedded NVRAM cell and method thereof
US6072716A (en) * 1999-04-14 2000-06-06 Massachusetts Institute Of Technology Memory structures and methods of making same
US6143604A (en) 1999-06-04 2000-11-07 Taiwan Semiconductor Manufacturing Company Method for fabricating small-size two-step contacts for word-line strapping on dynamic random access memory (DRAM)
US6350679B1 (en) * 1999-08-03 2002-02-26 Micron Technology, Inc. Methods of providing an interlevel dielectric layer intermediate different elevation conductive metal layers in the fabrication of integrated circuitry
US6188615B1 (en) * 1999-10-29 2001-02-13 Hewlett-Packard Company MRAM device including digital sense amplifiers
US6314014B1 (en) * 1999-12-16 2001-11-06 Ovonyx, Inc. Programmable resistance memory arrays with reference cells
JP2002050181A (ja) * 2000-02-07 2002-02-15 Toshiba Corp 半導体記憶装置
US6563164B2 (en) * 2000-09-29 2003-05-13 Ovonyx, Inc. Compositionally modified resistive electrode
US6404665B1 (en) * 2000-09-29 2002-06-11 Intel Corporation Compositionally modified resistive electrode
US6555860B2 (en) * 2000-09-29 2003-04-29 Intel Corporation Compositionally modified resistive electrode
US6567293B1 (en) * 2000-09-29 2003-05-20 Ovonyx, Inc. Single level metal memory cell using chalcogenide cladding
US6339544B1 (en) * 2000-09-29 2002-01-15 Intel Corporation Method to enhance performance of thermal resistor device
US6653193B2 (en) * 2000-12-08 2003-11-25 Micron Technology, Inc. Resistance variable device
US6696355B2 (en) * 2000-12-14 2004-02-24 Ovonyx, Inc. Method to selectively increase the top resistance of the lower programming electrode in a phase-change memory
US6569705B2 (en) * 2000-12-21 2003-05-27 Intel Corporation Metal structure for a phase-change memory device
US6534781B2 (en) * 2000-12-26 2003-03-18 Ovonyx, Inc. Phase-change memory bipolar array utilizing a single shallow trench isolation for creating an individual active area region for two memory array elements and one bipolar base contact
US6531373B2 (en) * 2000-12-27 2003-03-11 Ovonyx, Inc. Method of forming a phase-change memory cell using silicon on insulator low electrode in charcogenide elements
US6687427B2 (en) * 2000-12-29 2004-02-03 Intel Corporation Optic switch
US6727192B2 (en) * 2001-03-01 2004-04-27 Micron Technology, Inc. Methods of metal doping a chalcogenide material
US6348365B1 (en) * 2001-03-02 2002-02-19 Micron Technology, Inc. PCRAM cell manufacturing
US6570784B2 (en) * 2001-06-29 2003-05-27 Ovonyx, Inc. Programming a phase-change material memory
US6511867B2 (en) * 2001-06-30 2003-01-28 Ovonyx, Inc. Utilizing atomic layer deposition for programmable device
US6511862B2 (en) * 2001-06-30 2003-01-28 Ovonyx, Inc. Modified contact for programmable devices
US6514805B2 (en) * 2001-06-30 2003-02-04 Intel Corporation Trench sidewall profile for device isolation
US6673700B2 (en) * 2001-06-30 2004-01-06 Ovonyx, Inc. Reduced area intersection between electrode and programming element
US6951805B2 (en) * 2001-08-01 2005-10-04 Micron Technology, Inc. Method of forming integrated circuitry, method of forming memory circuitry, and method of forming random access memory circuitry
US6590807B2 (en) * 2001-08-02 2003-07-08 Intel Corporation Method for reading a structural phase-change memory
US20030047765A1 (en) 2001-08-30 2003-03-13 Campbell Kristy A. Stoichiometry for chalcogenide glasses useful for memory devices and method of formation
US6507061B1 (en) * 2001-08-31 2003-01-14 Intel Corporation Multiple layer phase-change memory
US7113474B2 (en) * 2001-09-01 2006-09-26 Energy Conversion Devices, Inc. Increased data storage in optical data storage and retrieval systems using blue lasers and/or plasmon lenses
US6545287B2 (en) * 2001-09-07 2003-04-08 Intel Corporation Using selective deposition to form phase-change memory cells
US6690026B2 (en) * 2001-09-28 2004-02-10 Intel Corporation Method of fabricating a three-dimensional array of active media
US6566700B2 (en) * 2001-10-11 2003-05-20 Ovonyx, Inc. Carbon-containing interfacial layer for phase-change memory
US6545907B1 (en) * 2001-10-30 2003-04-08 Ovonyx, Inc. Technique and apparatus for performing write operations to a phase change material memory device
US6576921B2 (en) * 2001-11-08 2003-06-10 Intel Corporation Isolating phase change material memory cells
US6512241B1 (en) * 2001-12-31 2003-01-28 Intel Corporation Phase change material memory device
US6671710B2 (en) * 2002-05-10 2003-12-30 Energy Conversion Devices, Inc. Methods of computing with digital multistate phase change materials
US6918382B2 (en) * 2002-08-26 2005-07-19 Energy Conversion Devices, Inc. Hydrogen powered scooter

Also Published As

Publication number Publication date
US20030117831A1 (en) 2003-06-26
AU2002364167A1 (en) 2003-07-09
TW200304150A (en) 2003-09-16
ATE551699T1 (de) 2012-04-15
JP2005514719A (ja) 2005-05-19
DE60234273D1 (de) 2009-12-17
KR100626505B1 (ko) 2006-09-20
TWI223278B (en) 2004-11-01
CN101615426B (zh) 2012-06-13
JP4081011B2 (ja) 2008-04-23
CN101615426A (zh) 2009-12-30
WO2003054887A1 (en) 2003-07-03
US6873538B2 (en) 2005-03-29
EP2112664B1 (en) 2012-03-28
EP2112664A1 (en) 2009-10-28
ATE447760T1 (de) 2009-11-15
EP1456851B1 (en) 2009-11-04
KR20040075022A (ko) 2004-08-26
EP1456851A1 (en) 2004-09-15
CN1620699A (zh) 2005-05-25

Similar Documents

Publication Publication Date Title
CN100538878C (zh) 可编程导体随机存取存储器以及向其中写入的方法
CN101958146B (zh) 一种存储器装置及其操作方法
CN100541654C (zh) 存储器件
CN1679116B (zh) 存储器件和基于处理器的系统
CN101261880B (zh) 可编程导体随机存取存储器以及用于检测它的方法
CN101414659B (zh) 多状态存储单元、存储设备及形成多状态存储单元的方法
US6462984B1 (en) Biasing scheme of floating unselected wordlines and bitlines of a diode-based memory array
CN101176161B (zh) 使用相变材料存储器元件的非易失性内容可寻址存储器
CN112602151A (zh) 用于对存储器单元进行编程的技术
US10255953B2 (en) Bi-directional RRAM decoder-driver
TW200822343A (en) Semiconductor memory device and layout structure of word line contacts
CN110033797B (zh) 存储系统及存储方法
CN113348511A (zh) 用于嵌入式应用的存储器
US6956760B2 (en) Ferroelectric random access memory
EP0274828A1 (en) Memory matrix

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090909

Termination date: 20121216