CN101006104A - 聚乙烯树脂的氧裁制 - Google Patents

聚乙烯树脂的氧裁制 Download PDF

Info

Publication number
CN101006104A
CN101006104A CNA2005800281080A CN200580028108A CN101006104A CN 101006104 A CN101006104 A CN 101006104A CN A2005800281080 A CNA2005800281080 A CN A2005800281080A CN 200580028108 A CN200580028108 A CN 200580028108A CN 101006104 A CN101006104 A CN 101006104A
Authority
CN
China
Prior art keywords
polyethylene
oxygen
volume
film
basically
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005800281080A
Other languages
English (en)
Other versions
CN101006104B (zh
Inventor
李东明
吕清泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Univation Technologies LLC
Original Assignee
Univation Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35908897&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN101006104(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Univation Technologies LLC filed Critical Univation Technologies LLC
Publication of CN101006104A publication Critical patent/CN101006104A/zh
Application granted granted Critical
Publication of CN101006104B publication Critical patent/CN101006104B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/295Feeding the extrusion material to the extruder in gaseous form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/253Preform
    • B29K2105/256Sheets, plates, blanks or films

Abstract

设想了使用含有0.5到70体积%氧的气体裁制聚乙烯的方法。所述裁制发生在混合机/挤出机的熔体输送区中,而不是在混合机/挤出机的加料区或熔融区。裁制的效果是,与在基本上没有氧或含氧气体存在下挤出/混合的相似的聚乙烯相比,降低了由所述裁制的聚乙烯制成的吹塑膜的雾度和/或增加了其光泽。

Description

聚乙烯树脂的氧裁制
发明的技术领域
本发明的实施方案提供了氧裁制(oxygen tailoring)聚乙烯树脂以改善由这种树脂制得的膜的光学性质的方法。
发明背景
树脂如聚乙烯均聚物或者共聚物树脂的裁制,是改变分子构造和由此改变树脂及其制品的本体性能的已知方法。裁制包括采用能够可控制地改变树脂的试剂如过氧化物或者氧来处理聚乙烯树脂。迄今,对聚乙烯树脂进行裁制的效果被认为专门地影响流变性质,并且与未裁制的(颗粒状)产品相比,一般可以显示零剪切粘度的增加、弹性(G’/G”)的增大和被裁制的丸粒的剪切稀化行为的增加。这些变化通过减少吹塑成型过程中的膨胀、减少管材挤出过程中的下垂、增加泡膜稳定性、降低薄膜再加工过程中的厚度波动,有利于将聚乙烯丸粒转化成最终的有用制品的方法。
WO 03/047839中提出氧裁制来增加剪切稀化行为,增大弹性,增加熔体张力,降低吹塑成型过程中的膨胀以及增加吹膜过程中的泡膜稳定性。该文献建议,这通过利用8至40%体积的氧在挤出机的熔体输送段来实现。没有提到光学性质方面的改善。
US 5739266中提出通过使聚乙烯与氧或者含氧的气体混合物接触在挤出机中改性聚乙烯。该文献建议聚合物与氧在聚合物熔融之前接触,并进一步建议所述氧接触在聚合物完全熔融之前进行。另外,该文献提出,聚合物-氧的接触可以发生在挤出机的任何部分,除了泵送或者熔体输送区。在该文献中提出的气体混合物含有1~50%体积的氧,当在挤出机的加料斗的气氛中测试时。再次地,没有提到光学性质方面的改善。
拥有裁制聚乙烯,尤其是聚乙烯薄膜树脂以提供具有改善的光学性质的聚乙烯树脂的改良方法,在商业上是有利的。
发明概述
我们想到了一种生产具有改善的光学性质的聚乙烯膜的方法,该方法包括:将聚乙烯提供给混合机/挤出机;输送聚乙烯通过混合机/挤出机,所述混合机/挤出机包括熔体输送区,其中在熔体输送区中所述聚乙烯基本上被熔融;使基本上熔融的聚乙烯与包含0.5到70体积%氧的气体混合物接触,以生产氧处理的聚乙烯,其中所述接触发生熔体输送区;和通过吹膜方法将所述氧处理过的聚乙烯挤出形成膜,其中所述膜的通过ASTM D1003测定的雾度比在基本上没有氧的相似条件下混合/挤出的可比较聚乙烯的雾度低至少10%。
另外,我们想到了一种生产用于吹膜的聚乙烯树脂的方法,该膜具有改善的光学性质,所述方法包括:将颗粒状的聚乙烯共聚物引入到混合机/挤出机中;将所述颗粒状的聚乙烯输送通过混合机/挤出机的加料区,和/或熔融区,和熔体输送区;将气体混合物引入到熔体输送区,该熔体输送区包含气体混合物、基本上被熔融的聚乙烯共聚物,所述气体混合物包含1%到30%体积的氧,所述气体混合物的其余部分包含非活性气体或者非活性气体的混合物,所述气体混合物以单一口、与在熔体输送区中的基本上熔融的聚乙烯共聚物的方向同向流动或者反向流动中之一的方式流动,从而形成氧处理的聚乙烯共聚物;进一步通过形成膜或者造粒并形成膜来加工所述氧处理的聚乙烯共聚物;其中所述聚乙烯共聚物具有0.912g/cm3-0.930g/cm3的密度,并且其通过ASTM D1003测定的雾度比从在基本上没有氧的条件下混合/挤出的聚乙烯共聚物制成的可比较膜的雾度低至少40%。
另外,我们想到了一种生产当使用吹膜方法时具有改善的膜性质的聚乙烯的方法,该方法包括:将颗粒状的聚乙烯引入到混合机/挤出机中;将所述颗粒状的聚乙烯输送通过混合机/挤出机的加料区,和/或熔融区,和熔体输送区;将气体混合物引入到熔体输送区,所述熔体输送区主要由挤出机螺杆元件和机筒、气体混合物和基本上熔融的聚乙烯组成;所述气体混合物包含1%到22%体积的氧,所述气体混合物的其余部分包含非活性气体或者非活性气体的混合物,所述气体混合物以单一口、与在熔体输送区中的基本上熔融的聚乙烯的方向同向流动或者反向流动中之一的方式流动,从而形成氧处理的聚乙烯;进一步通过造粒,或者形成膜,或者造粒并形成膜来加工所述氧处理的聚乙烯;其中所述聚乙烯具有0.912g/cm3-0.930g/cm3的密度,和比在基本上没有氧的条件下混合/挤出的可比较聚乙烯低至少50%的雾度和高至少100%的光泽度(MD)。
附图简要说明
图1为Kobe混合机的示意图。
图2为Farrel混合机的示意图。
图3为Werner-Pfleiderer混合机-挤出机的示意图。
发明详述
聚乙烯树脂
在本发明的实施方案中裁制的聚乙烯树脂可以包括密度为0.910g/cm3-0.930g/cm3,或者0.912g/cm3-0.930g/cm3,或者0.915g/cm3-0.925g/cm3的聚乙烯。聚乙烯可以是乙烯和一种或共聚单体的共聚物,具有两种以上共聚单体的聚合物,例如三元共聚物,也包括在此处所用术语“共聚物”的范围内。合适的共聚单体包括α-烯烃,例如C3-C20α-烯烃或者C3-C12α-烯烃。α-烯烃共聚单体可以是线型的或者支化的,并且如果需要可以使用两种或者更多种的共聚单体。合适的共聚单体的例子包括线型的C3-C12α-烯烃,以及具有一个或多个C1-C3烷基支链或者芳基的α-烯烃。具体的例子包括丙烯;1-丁烯;3-甲基-1-丁烯;3,3-二甲基-1-丁烯;1-戊烯;具有一个或多个甲基、乙基或者丙基取代基的1-戊烯;具有一个或多个甲基、乙基或者丙基取代基的1-己烯;具有一个或多个甲基、乙基或者丙基取代基的1-庚烯;具有一个或多个甲基、乙基或者丙基取代基的1-辛烯;具有一个或多个甲基、乙基或者丙基取代基的1-壬烯;乙基、甲基或者二甲基取代的1-癸烯;1-十二碳烯;和苯乙烯。应当认识到,上面的共聚单体列举仅仅是示例性的。
在另一实施方案中,聚乙烯树脂具有多峰或者单峰分子量分布和/或多峰或单峰组成分布。所述树脂可以在传统方法如单个或串联的气相流化床反应器、或者单个或串联的淤浆环管或者超临界环管反应器中,使用任何能够生产多峰树脂的催化剂来生产。使用的催化剂不受特别的限制,并且可以包括例如一种或多种齐格勒-纳塔催化剂和/或一种或多种茂金属催化剂。也可以使用催化剂的混合物。特别地,可以在一个反应器中在两种或更多种不同的催化剂存在下并同时发生活性聚合而进行聚合。所述两种或更多种催化剂可以是不同催化剂类型的,例如非茂金属催化剂和茂金属催化剂,以生产具有所需性质的聚乙烯树脂。可以将所述催化剂分别加入到反应器中,或者以物理混合物的形式加入到反应器中,或者每一催化剂颗粒可以含有超过一种的催化剂化合物。当催化剂包括生产不同分子量和/或不同共聚单体含量的聚合物的两种催化剂时,聚合物产物可以具有分子量、共聚单体或者两者的多峰分布。这种多峰产品可以具有不同于可以由任一种催化剂单独得到的产品或由每一种催化剂单独得到的各单峰树脂的反应器后混合所得产品的物理性质。
例如,美国专利5525678公开了一种包括生产相对低的分子量、高共聚单体含量的聚合物的锆金属茂和生产相对高的分子量、低共聚单体含量的聚合物的钛非茂金属的催化剂。典型地,乙烯是主要单体,并且加入少量的己烯或者其它α-烯烃以降低聚乙烯的密度。锆催化剂引入了大部分共聚单体和氢气,这样,在一个典型的例子中,大约85%的己烯和92%的氢气在低分子量聚合物中。加入水以通过控制锆催化剂的活性来控制总的分子量。
合适的催化剂的其它例子包括披露在美国专利4554265中的Zr/Ti催化剂;披露在美国专利5155079和5198399中的混合铬催化剂;披露在美国专利5395540和5405817中的Zr/V和Ti/V催化剂;披露在美国专利6271323中的铪/大体积配位体茂金属混合催化剂;和披露在美国专利6207606中的混合茂金属催化剂。
还考虑了至少两种聚乙烯的物理共混物,其中每一种聚乙烯可以在一个或多个反应器中生成,它们当被放在一起时具有多峰分子量分布和/或多峰组成分布。
这里讨论的任何聚乙烯树脂可以是仅一种催化剂或者聚烯烃催化剂的任意组合的产品。催化剂的类型包括任意一种或多种过渡金属催化剂,其部分由周期表中III,IV,V,VI,VII,VIII,IX,X,XI和XII族的元素组成。这些催化剂的一些的例子包括基于锆和铪的茂金属催化剂以及基于镁、铬、钛和钒的传统催化剂。
混合机-挤出机
聚乙烯树脂可以在混合机中加工,例如同向或反向旋转的、啮合或非啮合的双螺杆混合机或挤出机。这样的混合机是本领域公知的,并且可从各个货源如Coperion(Werner-Pfleiderer),Kobelco以及Farrel商购得到。通常通过料斗将所述树脂加到混合机的加料区,当树脂被压缩并被输往熔融区时,加料区中的温度一般低于树脂的熔融温度。典型地,在加料区中的温度为20到100℃,并可以通过冷却挤出机壁来维持在该温度。在熔融区,温度被提高以至少部分熔融所述树脂,或者熔融基本上全部树脂。在熔体输送区,温度要足以维持所述基本上熔融的树脂在熔融状态。这里,采用措辞“基本上全部”,我们意指大于95wt.%或大于97wt.%或大于99wt.%或者100%的聚乙烯被熔融。每个区可以只部分充满树脂;采用措辞“部分充满”,我们意指任意一个区或多个区的容积的10-99%被树脂和任何添加剂充填至这样的百分比。尽管术语“混合机”和“挤出机”经常被宽松地和可互换地使用,但本领域技术人员知道,混合机如市售的Kobe或Farrel混合机在相对低的压力下操作,典型地约100psi或更低,并且混合机内的各区一般不完全充满树脂。在挤出机如可以从例如Werner-Pfleiderer商购得到的挤出机中,至少在一些区中操作可以在较高的压力下,取决于用于那样的区的螺杆/机筒模块设计和该区填充树脂和/或树脂和添加剂的百分比,并且挤出机内各区中的一些区一般可以完全填充树脂,并且这样的区一般处于较高的压力下。
尽管不限于任何特定的混合机,但现在参照附图1说明本发明方法的一个实施方案,所述附图1显示了Kobe混合机10的示意图。混合机10包括加料区12,熔融区14和熔体输送区16。树脂和任选的添加剂在加料区12被提供给混合机10,并且向下游方向输送树脂经过熔融区14和熔体输送区16。门20将熔融区14与熔体输送区16分开。在附图1中,在熔体输送区16中显示了一个任选的放空口22。如上所述,树脂通常在熔融区14中至少部分熔融,并且一般地,在熔体输送区16中基本上完全熔融。将树脂输送经过混合机的排料口18并进一步加工,例如造粒。
现在参考图2,提到的是Farrel混合机30。混合机30包括加料区32,熔融区34以及熔体输送区36。将树脂和任选的添加剂在加料区32提供给混合机30,并且向下游方向输送树脂经过熔融区34和熔体输送区36。如上所述,树脂一般在熔融区34中至少部分熔融,并且一般地,在熔体输送区36中基本上完全熔融。将树脂输送经过混合机排料口38并被进一步加工,例如造粒。Farrel混合机没有将熔融区与熔体输送区分开的门,例如Kobe混合机的门20。但是,熔融区34和熔体输送区36被相应于混合元件44的顶点42的、由虚线40所示的狭窄空隙区有效地分开。一个任选的坝(未示出)可以在线40的位置上插在熔融区34和熔体输送区36之间。
现在参考图3,提到的是Werner-Pfleiderer挤出机,其中剖面(1)包括一个或多个机筒(2),和由模块元件组成的一个或多个螺杆(4)。颗粒或丸粒形式的树脂(聚乙烯)和任选的添加剂进料到加工段(1),并从进料端(3)输送到排料端(9),其中熔融区由螺杆(4)的捏合和反向输送元件产生,所述加工段被分成熔融区和熔体输送区(7)。所述树脂(聚乙烯)通过敞开的放空口(11)或者通过从注入口(10)注入含有氧的气体物流而仅在熔体输送区与含有氧的气体接触,在后一种情形下,气体物流(10)将逆着从左到右输送的熔融聚乙烯或者与所述从左到右输送的熔融聚乙烯反向而向上游流动,在该种情形下,气体混合物在敞开的放空口(11)离开。或者,注入口(10)可以设置在放空口(11)的上游,将气体混合物在注入口(10)注入,与熔融的树脂同向流动,并从放空口(11)排出。任何一种气体流动模型的实际效果是比在放空口的简单接触更长的停留/接触时间。或者,可以将专门元件(8)设置于(10)和(11)之间,以增加用于氧接触的界面生成,和增加熔体的局部停留时间。所述气体也可以通过单一口接触熔融的树脂,其中气体的进入和离开都发生在同一个口。可以使用超过一个的“单一口”。
树脂可以在下限为200(104℃)、或240(116℃)、或260(127℃)、或280(138℃)、或300(149℃)、或350(176℃)、或400(204℃)到上限为低于536(280℃)、或518(270℃)、或500(260℃)、或430(221℃),或低于420(216℃)或低于410(210℃)或低于400(204℃)的熔融温度下加工,其中熔体温度为在熔融区下游端的温度。此处所用的熔体温度为熔融的聚合物/聚乙烯的温度。一旦这样的聚合物/聚乙烯已经从固体的非熔态转变,熔融的聚合物/聚乙烯的温度可继续上升。不管实际温度多少,熔体温度被理解为是至少在其熔点的聚合物/聚乙烯的温度以及以上的温度。例如,在图1中,熔体温度为在门20的温度,在图2中,熔体温度为在顶点42的温度,而在图3中,熔体温度为在最后的机筒段之后加工段的排料端9的温度。
应当明白,可以使用除这里提到名称并在这里说明的那些混合机和/或挤出机以外的混合机和/或挤出机,只要该混合机或挤出机具有允许引入氧或者氧混合物的熔体输送区。
氧-气体混合物
树脂与氧或氧-气体混合物在熔体输送区中接触。氧或者氧-气体混合物可以通过例如一个或多个气体进入端口来提供。参考图1,例如,在一些实施方案中,氧或氧-气体混合物可以通过一个或多个入口24提供。参考图2,例如,在一些实施方案中,氧或氧-气体混合物可以通过一个或多个入口46提供。参考图3,例如,在一些实施方案中,氧或氧混合物可以通过一个或多个入口提供,如上所述。应当认识到,这些具体的入口位置仅仅是示例性的。在本发明的实施方案中,加料斗和/或加料区和/或熔融区基本上没有有意加入的氧或氧-气体混合物。采用措辞“基本上没有”,我们意指低于2%体积,或低于1%体积。
氧或氧-气体混合物可以以连续的气体流来提供,或者,氧可以间断地提供。在一个实施方案中,气体物流可以在放空口上游的位置注入到挤出机/混合机机筒中。所述气体可以与熔融的聚乙烯树脂反向流动,或者所述气体可以与熔融的聚乙烯同向流动。采用“氧”,我们意指氧、过氧化物或其它的反应性裁制剂。尽管我们讨论使用氧或者氧混合物作为裁制剂的实施方案,其它的裁制剂如过氧化物和/或其它自由基引发剂也可以使用。可用作自由基引发剂的偶氮化合物有:2,2′-偶氮(2,4-二甲基戊腈)[Vazo52];2,2′-偶氮二异丁腈[Vazo64];2,2′-偶氮二(2-甲基丁腈)[Vazo67]和1,1′-偶氮环己腈[Vazo88],以上每一种化合物都可以从E.I.Dupont得到。另外的自由基引发剂包括月桂酰过氧化物;过氧化苯甲酰;环己酮过氧化物;1,1-二(叔丁基过氧基)-3,3,5-三甲基环己烷;叔丁基过氧基异丙基碳酸酯;过醋酸叔丁酯;2,2-二(叔丁基过氧基)丁烷;过苯甲酸叔丁酯;二(1-(叔丁基过氧基)-1-甲基乙基环己烷;过氧化二枯基;2,5-二(叔丁基过氧基)-2,5-二甲基-3-己炔;叔丁基过氧化物;2,4-戊二酮过氧化物;和氢过氧化枯烯。
氧气可以作为基本上纯的气体或者作为气体混合物的一部分来提供。所述氧可以以预混合的气体混合物的形式提供,或者与稀释气体共同进料到挤出机中,通过调节氧/稀释气体相对流量来调节在得到的混合物中的氧的量。例如,氧和氮气以各自计量的流量进料到挤出机中,从而以希望的浓度将氧提供给挤出机。可以改变气体物流的氧含量,来控制裁制的水平或者对聚乙烯树脂的影响。在气体物流中的氧含量可以在0.1到7.9体积%、或者0.25到7.5体积%、或者0.5到7.0体积%、或者0.75到6.5体积%、或者1.0到6.0体积%、或者1.5到5.5体积%、或者2.0到5.0体积%、或者2.5到4.75体积%、或者2.75到4.5体积%、或者3到4体积%的范围内。
在另一实施方案中,氧含量可以在0.1到70体积%的范围内。这包括0.5体积%、或1体积%、或2体积%、或4体积%、或5体积%、或7体积%、或9体积%、或10体积%、或15体积%的下限,或者70体积%、或60体积%、或50体积%、或40体积%、或30体积%、或25体积%、或22体积%、或21体积%、或20体积%、或15体积%、或10体积%、或7.9体积%、或6体积%、或5体积%、或4体积%的上限。
气体混合物的其余气体可以是任何非可燃性的气体或气体混合物,例如氮气、氩气、氦气、氖气、氪气、氙气、二氧化碳或其混合物。在所述氧处理或“裁制”后,可以通过模口挤出所述树脂,并被造粒和冷却,或者可以被直接挤出成膜而不经过造粒,例如通过流延或吹膜方法。
如本领域中通常的做法,也可以将各种添加剂引入到挤出机中。
裁制
裁制是裁制剂如氧或诸如过氧化物之类的含氧试剂与聚合物之间的化学反应的结果。在一个实施方案中,所述裁制可以通过弹性的增加来度量,并可能受聚合物的温度、裁制剂(如氧)与聚合物之间接触的停留时间、裁制剂的浓度以及抗裁制剂如抗氧化剂和/或其它稳定剂的浓度或停留时间中一个或多个因素的影响。在如氧之类的裁制剂的情形下(其中氧在聚合物熔体中的相对溶解度与所述气体相比较低),大部分裁制反应发生在界面上,因此增加界面的表面积可以增加裁制的程度。上述这些变量中的任何一个也可以用来控制裁制过程。
在另一实施方案中,裁制可以通过雾度的降低或光泽的增加或者二者来度量。
在暴露于氧后,所述聚乙烯可以具有比在相似条件下但基本上不存在氧接触的情况下挤出/混合的(也可表述为未裁制的)相同聚乙烯低至少10或20或30或40或50%的雾度。
在暴露于氧后,所述聚乙烯可以具有比在相似条件下但基本上不存在氧接触的情况下挤出/混合的(也可表述为未裁制的)相同聚乙烯高至少20或30或40或50或60或70或80或90或100或110或120或130或140或150%的光泽。
采用措辞“相似条件”,我们意指除了正常的工艺波动外,挤出速率、各挤出机区段温度、螺杆型式和其它参数一般是相同的。采用措辞“未裁制的”,我们是指以使其流变性和/或光学性质的改变最小化的方式混合或挤出的颗粒聚烯烃。这种最小化可以通过如下方法实现:从被挤出/混合的颗粒树脂中排除裁制剂,和/或将聚烯烃与诸如氮气之类的非反应性气体或气体混合物一起挤出/混合,和/或将聚烯烃与高浓度的主抗氧剂和/或辅助抗氧剂一起挤出/混合,和/或将聚烯烃在相对低的熔融温度如低于200℃下挤出/混合。或者,未裁制意指在基本上无氧或氧混合物存在的情形下或在氮气或非反应性气体氛围下挤出/混合。采用“基本上无氧存在”,我们意指低于1体积%、或低于0.5体积%、或低于0.25体积%、或低于0.1体积%、或低于0.05体积%的氧或含氧气体如空气存在于给定的工艺或工艺段中。
在光学性质的情况下,我们还意指,当将裁制的和未裁制的树脂或膜进行比较时,已知影响光学性质的因素也基本上相同,例如模口和/或空气环的温度、冷却空气的温度。在流延膜中,这些因素还包括相同或相似的冷却辊温度。
裁制可能受到添加剂如抗氧剂和/或抗臭氧剂如亚磷酸酯和/或亚膦酸酯的影响。一般地,对于给定的温度、氧含量和/或停留时间,在聚合物中存在越多这样的添加剂,裁制剂的量和效果就越低。这样的添加剂可以以下限为0或2、或5、或10、或20、或30、或40ppm,上限为3000、或2500、或2000、或1500、或1000、或750、或500、或400、或300、或200、或100ppm的较低含量存在于聚乙烯树脂中,基于聚乙烯树脂、其它添加剂和任何任选的填料计。
本发明的其它具体实施方案包括生产可用于吹塑膜的聚乙烯树脂的方法,该膜具有改善的光学性质,所述方法包括:
a)将颗粒状的聚乙烯共聚物引入到混合机/挤出机中;
b)将所述颗粒状的聚乙烯输送通过混合机/挤出机的加料区,和/或熔融区,和熔体输送区;
c)将气体混合物引入到熔体输送区,该熔体输送区包含气体混合物、基本上被熔融的聚乙烯共聚物,所述气体混合物包含1%到30%体积的氧,所述气体混合物的其余部分包含非活性气体或者非活性气体的混合物,所述气体混合物以单一口、与在熔体输送区中的基本上熔融的聚乙烯共聚物的方向同向流动或者反向流动中之一的方式流动,从而形成氧处理的聚乙烯共聚物;
d)进一步通过i)形成膜;或者ii)造粒并形成膜来加工所述氧处理过的聚乙烯共聚物;其中所述聚乙烯共聚物具有0.912g/cm3至0.930g/cm3的密度,并且其通过ASTM D1003测定的雾度比从在基本上没有氧的条件下混合/挤出的聚乙烯共聚物制成的可比较膜的雾度低至少40%。
本发明的另一个实施方案是生产当使用吹膜方法时具有改善的膜性质的聚乙烯的方法,该方法包括:
a)将颗粒状的聚乙烯引入到混合机/挤出机中;
b)将所述颗粒状的聚乙烯输送通过混合机/挤出机的加料区,和/或熔融区,和熔体输送区;
c)将气体混合物引入到熔体输送区,所述熔体输送区基本上由挤出机螺杆元件和机筒、气体混合物和基本上熔融的聚乙烯组成;所述气体混合物包含1%到22%体积的氧,所述气体混合物的其余部分包含非活性气体或者非活性气体的混合物,所述气体混合物以单一口、与在熔体输送区中的基本上熔融的聚乙烯的方向同向流动或者反向流动中之一的方式流动,从而形成氧处理的聚乙烯;
d)进一步通过i)造粒,或者ii)形成膜,或者iii)造粒并形成膜来加工所述氧处理的聚乙烯;其中所述聚乙烯具有0.912g/cm3至0.930g/cm3的密度,和比在基本上没有氧的条件下混合/挤出的可比较聚乙烯低至少50%的雾度和高至少100%的光泽度(MD)。
实施例
膜厚度根据ASTM D374-94方法C来测量。
使用Measuretech Series 200仪器来确定膜厚度偏差。该仪器使用电容厚度计测量膜厚度。对于每个膜样品,当膜以横向方向通过所述厚度计时,在每英寸膜上测量十个膜厚度数值点。使用三个膜样品来确定厚度偏差。厚度偏差通过将膜厚度的整个范围(最大值减去最小值)除以平均厚度并将结果除以二来确定。厚度偏差以相对平均值的百分比变化表示。
除了膜厚度根据ASTM D374-94方法C测量外,使用ASTM D1709-98方法A中的程序来测定落镖冲击值。
除了膜厚度根据ASTM D374-94方法C测量外,使用ASTM D1922-94a中的程序来测定Elmendorf撕裂强度(机器方向即“MD”;和横向即“TD”)。
术语“熔体指数”是指根据ASTM D-1238条件E(190℃,2.16kg的负荷)测定的树脂的熔体流动速率,并且通常记为I2.16。术语“流动指数”是指根据ASTM D-1238条件F(190℃,21.6kg的负荷)测定的树脂的熔体流动速率,并且通常记为I21.6。熔体指数和流动指数的单位为g/10min,或等价地为dg/min。术语“MFR”是指比值I21.6/I2.16,并且是无量纲的。
比能量输入(SEI)是指相对于每单位重量的熔融加工的树脂输入到挤出机主传动装置的能量,并且以单位hp·hr/lb或kW·hr/kg来表示。
这里所用的“弹性”是在0.1s-1频率下的G’与G”的比值,其中G’和G”分别是储能(或弹性)模量和损耗(或粘性)模量。G’和G”根据ASTM D-4440-84来测量。测量在200℃下使用装有25mm平行板和约1.5mm缝隙的Rheometrics DSR500动态应力振动流变仪来进行。
密度(g/cm3)使用从根据ASTM D-1928-96程序C压缩模制的板上切下的样片测定,所述样片根据ASTM D618程序A陈化,并按照ASTMD1505-96测试。
百分雾度的测量根据ASTM测试方法D1003来进行,该方法测量在经过样品时通过前向散射而偏离入射光束的透射光。对于该测试方法,只有偏离平均超过2.5°的光通量被认为是雾。
膜的光泽通过BYK Gardner Micro-Gloss45°Reflectometer按照ASTM D 2457测量。
将氧提供到氧-氮气气体混合物中。氧含量通过改变氧和氮气的相对流量来控制。在数据表中报告的氧含量是由空气和氮气的体积流量计算得到的。
实施例A
用于裁制上述聚乙烯的装置是Coperion(Werner-Pfleiderer)ZSK-57同向旋转双螺杆挤出机。示意图为图3,并且该图显示了机器的加工段(1)。该加工段包括由模块元件形成的机筒(2)和螺杆(4)。树脂即呈颗粒或丸粒形式的Exceed1018CA(可得自Exxon MobilChemical Company,Houston,TX)是具有1.0g/10min的标称熔体指数、0.918g/cm3的标称密度的树脂,复配有500ppm的Irganox-1076(都可得自Ciba Specialty Chemicals,Basel,Switzerland)和2000ppm的Weston 399(可得自GE Specialty Chemicals)和800ppm的DynamarFX5920(可得自3M Company),将该树脂进料到加工段(1),并从进料端(3)输送到排料端(9)。所述加工段被分成由捏合和反向输送螺杆元件形成的熔融区(5)以及熔体输送区。
通过在敞开的放空口(11)注入氧、氧混合物或氮气(如表1中所示),或者更有效地从注入口(10)注入氧或氧混合物,而使所述树脂与氧在熔体输送区接触。在后一种情形下,所述气体物流逆着熔融树脂的熔体输送向上游流动,然后所述气体物流从开放的端口(11)选出。另外,中立的捏合元件被放置在(10)和(11)之间,以增加用于氧接触的界面产生和增加熔融树脂的局部停留时间。
所述气体物流中的氧含量源于环境空气或者大约是气体混合物的21%。
为了生产吹塑膜,将下列聚乙烯(下面表I中所示)在具有4″模口的2.5”Gloucester挤出机上挤出成薄膜,采用60mil的模口缝隙,2.5的吹胀比(BUR),约25英寸的霜白线高度,并且生产的薄膜具有1mil的标称厚度。
作为参考,使用市售的Exceed 1018CA。
表I
    雾度(%)     光泽     Elmendorf撕裂(g/mil)
说明     MD     TD     MD     TD
Exceed 1018CA批号A     19.8     36.7     36.7     268     418
Exceed 1018CA批号B     33.7     20.3     20.4     230     392
在N2下混合的Exceed 1018CA批号A     20.3     39.7     39.3     275     678
在空气下混合的Exceed 1018CA批号A     10.8     51     51.7     255     445
落镖冲击(g/mil)   1%割线模量(psi)   拉伸强度(psi)     拉伸断裂伸长率(%)
说明   MD   TD   MD   TD     MD     TD
Exceed 1018CA批号A     532   25740   29120   9967   8745     514     645
Exceed 1018CA批号B     647   25300   28330   10430   8470     522     645
在N2下混合的Exceed1018CA批号A     558   26700   30250   9400   7560     493     621
在空气下混合的Exceed1018CA批号A     522   26680   30500   9540   8990     506     663
前两种膜样品为被原样转化为吹塑膜的市售Exceed 1018CA。没有再进行混合。在第3行的膜为在ZSK-57中在氮气条件下混合并然后转变成吹塑膜的Exceed 1018CA批号A。在第4行的膜为在ZSK-57中在空气条件下混合并然后转变成吹塑膜的Exceed 1018CA批号A。

Claims (10)

1.一种生产具有改善的光学性质的聚乙烯膜的方法,该方法包括:
a)将聚乙烯提供给混合机/挤出机;
b)输送聚乙烯通过混合机/挤出机,所述混合机/挤出机包括熔体输送区,其中在熔体输送区中所述聚乙烯基本上被熔融;
c)使基本上熔融的聚乙烯与包含0.5到70体积%氧的气体混合物接触,以生产氧处理的聚乙烯,其中所述接触发生在熔体输送区;和
d)通过吹膜方法将所述氧处理过的聚乙烯挤出形成膜,其中所述膜的通过ASTM D1003测定的雾度比在基本上没有氧的相似条件下混合/挤出的可比较聚乙烯的雾度低至少10%。
2.权利要求1所述的方法,其中所述气体混合物包含的氧的下限为0.75体积%、或1.0体积%、或1.5体积%、或2.0体积%、或2.5体积%、或2.75体积%、或3.0体积%之一,和/或上限为70体积%、或60体积%、或50体积%、或40体积%、或30体积、或22体积之一。
3.权利要求1或2所述的方法,其中所述混合机/挤出机还包括加料区和/或熔融区。
4.权利要求3所述的方法,其中将所述气体混合物以单一口、与基本上熔融的聚乙烯反向流动或同向流动中的一种形式引入到所述熔体输送区。
5.权利要求4所述的方法,其中所述聚乙烯包含乙烯和下列中的一种或多种:丙烯;1-丁烯;3-甲基-1-丁烯;3,3-二甲基-1-丁烯;1-戊烯;具有一个或多个甲基、乙基或丙基取代基的1-戊烯;1-己烯;具有一个或多个甲基、乙基或丙基取代基的1-己烯;1-庚烯;具有一个或多个甲基、乙基或者丙基取代基的1-庚烯;1-辛烯;具有一个或多个甲基、乙基或者丙基取代基的1-辛烯;1-壬烯;具有一个或多个甲基、乙基或者丙基取代基的1-壬烯;乙基、甲基或者二甲基取代的1-癸烯;1-十二碳烯;或苯乙烯。
6.权利要求5所述的方法,其中所述聚乙烯具有比在相似条件下但基本上不存在氧的情况下挤出/混合的可比较聚乙烯低至少20或30或40或50%的雾度。
7.权利要求5所述的方法,其中所述聚乙烯具有比在相似条件下但基本上不存在氧的情况下挤出/混合的可比较聚乙烯高至少20、或30、或40、或50、或60、或70、或80、或90、或100、或110、或120、或130、或140、或150%的光泽(MD),所述光泽(MD)按照ASTMD2457通过BYK Gardner Micro-Gloss 45° Reflectometer测量。
8.权利要求1所述的方法,其中所述聚乙烯为单峰聚乙烯。
9.权利要求3所述的方法,其中所述基本上熔融的聚乙烯与所述气体混合物在主要由熔体输送区组成的混合机/挤出机的一段中接触。
10.权利要求1所述的方法,还包括在挤出形成吹塑膜之前将所述氧处理的聚乙烯造粒的步骤。
CN2005800281080A 2004-08-19 2005-07-19 聚乙烯树脂的氧裁制 Expired - Fee Related CN101006104B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US60290604P 2004-08-19 2004-08-19
US60/602,906 2004-08-19
US11/176,046 US7892466B2 (en) 2004-08-19 2005-07-07 Oxygen tailoring of polyethylene resins
US11/176,046 2005-07-07
PCT/US2005/025659 WO2006023188A2 (en) 2004-08-19 2005-07-19 Oxygen tailoring of polyethylene resins

Publications (2)

Publication Number Publication Date
CN101006104A true CN101006104A (zh) 2007-07-25
CN101006104B CN101006104B (zh) 2010-12-01

Family

ID=35908897

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005800281080A Expired - Fee Related CN101006104B (zh) 2004-08-19 2005-07-19 聚乙烯树脂的氧裁制

Country Status (6)

Country Link
US (1) US7892466B2 (zh)
EP (1) EP1781713B1 (zh)
CN (1) CN101006104B (zh)
BR (1) BRPI0514514A (zh)
CA (1) CA2577302C (zh)
WO (1) WO2006023188A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108183164A (zh) * 2016-12-08 2018-06-19 乐金显示有限公司 触敏元件、包含该元件的显示装置及制造该元件的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050012235A1 (en) * 2001-11-30 2005-01-20 Schregenberger Sandra D Oxygen tailoring of polyethylene resins
US8202940B2 (en) 2004-08-19 2012-06-19 Univation Technologies, Llc Bimodal polyethylene compositions for blow molding applications
CA2847628A1 (en) 2014-03-28 2015-09-28 Nova Chemicals Corporation Improved extrusion process
EP3784721B1 (en) 2018-04-27 2023-09-27 Dow Global Technologies LLC Non-foam polyolefin compositions for wire and cable coating
BR112023003324A2 (pt) 2020-09-22 2023-04-04 Dow Global Technologies Llc Copolímero bimodal, filme, e, método para fazer um filme soprado

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3551943A (en) 1966-12-19 1971-01-05 Exxon Research Engineering Co Controlled degradation
US3898209A (en) 1973-11-21 1975-08-05 Exxon Research Engineering Co Process for controlling rheology of C{HD 3{B {30 {0 polyolefins
JPS5231269B2 (zh) 1974-06-13 1977-08-13
US4115107A (en) 1976-12-14 1978-09-19 Aluminum Company Of America Method of producing metal flake
US4302565A (en) * 1978-03-31 1981-11-24 Union Carbide Corporation Impregnated polymerization catalyst, process for preparing, and use for ethylene copolymerization
US4173445A (en) 1978-07-17 1979-11-06 Monsanto Company Plastics extrusion apparatus
US4414364A (en) 1979-04-23 1983-11-08 Mcalister Roy E Stabilization of polyester
JPS5887013A (ja) 1981-11-18 1983-05-24 Japan Steel Works Ltd:The 連続混練造粒装置
JPS59166507A (ja) 1983-03-12 1984-09-19 Nissan Chem Ind Ltd 中空成形用樹脂の製造方法
CA1257050A (en) 1984-10-29 1989-07-04 Douglas C. Edwards Low molecular weight polymer process
US4814135A (en) 1987-12-22 1989-03-21 Union Carbide Corporation Process for extrusion
US5032562A (en) 1989-12-27 1991-07-16 Mobil Oil Corporation Catalyst composition and process for polymerizing polymers having multimodal molecular weight distribution
JP2607965B2 (ja) 1990-01-26 1997-05-07 東洋化成工業株式会社 ポリオレフイン系樹脂組成物
EP0457441A3 (en) 1990-04-24 1992-04-01 Mobil Oil Corporation Process for compounding a polymer with an antioxidant
EP0480643B1 (en) 1990-10-10 1996-05-22 Minnesota Mining And Manufacturing Company Graft copolymers and graft copolymer/protein compositions
US5338589A (en) * 1991-06-05 1994-08-16 Hoechst Aktiengesellschaft Polyethylene molding composition
US5562958A (en) * 1991-10-15 1996-10-08 The Dow Chemical Company Packaging and wrapping film
US5405917A (en) 1992-07-15 1995-04-11 Phillips Petroleum Company Selective admixture of additives for modifying a polymer
US5284613A (en) 1992-09-04 1994-02-08 Mobil Oil Corporation Producing blown film and blends from bimodal high density high molecular weight film resin using magnesium oxide-supported Ziegler catalyst
CA2077580A1 (en) 1992-09-04 1994-03-05 Kam Ho Asphalt/o-modified polyethylene
US5420220A (en) * 1993-03-25 1995-05-30 Mobil Oil Corporation LLDPE films
ATE176618T1 (de) 1993-06-16 1999-02-15 Union Carbide Chem Plastic Vorrichtung und verfahren zum kontinuierlichen pelletisieren von thermoplastischen kunststoffen
JP3390446B2 (ja) 1993-10-21 2003-03-24 モービル・オイル・コーポレーション 高分子量成分及び低分子量成分を含む樹脂組成物
ZA948934B (en) 1993-11-15 1996-05-10 Mobil Oil Corp Catalyst composition for use in the polymerization and copolymerization of ethylene
FR2723880B1 (fr) 1994-08-30 1997-01-03 Bp Chemicals Snc Procede pour modifier un polyethylene dans une extrudeuse
US5525678A (en) 1994-09-22 1996-06-11 Mobil Oil Corporation Process for controlling the MWD of a broad/bimodal resin produced in a single reactor
FI101546B (fi) * 1994-12-16 1998-07-15 Borealis Polymers Oy Polyeteenikompositio
US5594074A (en) 1995-02-21 1997-01-14 Shell Oil Company Process for improving processability of ultra low melt viscosity polymer
US5578682A (en) 1995-05-25 1996-11-26 Exxon Chemical Patents Inc. Bimodalization of polymer molecular weight distribution
US5587434A (en) 1995-10-13 1996-12-24 Union Carbide Chemicals & Plastics Technology Corporation Process for polymer degradation
US6454976B1 (en) 1996-06-26 2002-09-24 Union Carbide Chemicals & Plastics Technology Corporation Pelletizing of broad molecular weight polyethylene
US5728335A (en) * 1996-06-26 1998-03-17 Union Carbide Chemicals & Plastics Technology Corporation Process for extrusion
US5962598A (en) 1996-07-26 1999-10-05 Equistar Chemicals, Lp Polyethlene film composition having broad molecular weight distribution and improved bubble stability
JPH1171427A (ja) 1997-07-02 1999-03-16 Idemitsu Petrochem Co Ltd インフレーションフィルム成形用ポリエチレン系樹脂及びそれを用いたインフレーションフィルム
ES2189096T3 (es) 1998-02-13 2003-07-01 Union Carbide Chem Plastic Procedimiento de extrusion.
WO1999045062A1 (en) 1998-03-04 1999-09-10 Exxon Chemical Patents Inc. Product and method for making polyolefin polymer dispersions
JP2000044669A (ja) 1998-08-04 2000-02-15 Teijin Ltd 芳香族ポリカーボネートの製造方法および真空捕集系
US6248840B1 (en) 1998-12-28 2001-06-19 Phillips Petroleum Company Process to produce a composition
US20020014717A1 (en) 1999-03-31 2002-02-07 Susan Marie Kling Process for producing thermoplastic films by blown film extrusion and films produced thereby
US6444605B1 (en) 1999-12-28 2002-09-03 Union Carbide Chemicals & Plastics Technology Corporation Mixed metal alkoxide and cycloalkadienyl catalysts for the production of polyolefins
DE10013948A1 (de) 2000-03-21 2001-09-27 Basell Polyolefine Gmbh Verfahren zum Granulieren von thermoplastischen Polymeren
JP4054510B2 (ja) 2000-04-27 2008-02-27 住友化学株式会社 メタクリル酸メチル系樹脂加工品の製造方法
KR100501988B1 (ko) 2000-06-30 2005-07-18 아사히 가세이 가부시키가이샤 스티렌계 공중합체 조성물
US6548600B2 (en) 2000-09-22 2003-04-15 Dupont Dow Elastomers L.L.C. Thermoplastic elastomer compositions rheology-modified using peroxides and free radical coagents
US6884747B2 (en) * 2000-10-06 2005-04-26 Univation Technologies, Llc Linear low density polyethylenes with high melt strength and high melt index ratio
IT1319199B1 (it) 2000-10-11 2003-09-26 Dalmine Spa Metodo e dipositivo per l'ottenimento di provette sagomate in acciaiorichieste in prove di tensocorrosione.
SG96260A1 (en) 2000-11-17 2003-05-23 Mitsui Chemicals Inc Method for manufacturing olefinic thermoplastic elastomer composition
US6984698B2 (en) 2001-01-31 2006-01-10 Fina Technology, Inc. Polyethylene films for barrier applications
US6433103B1 (en) 2001-01-31 2002-08-13 Fina Technology, Inc. Method of producing polyethylene resins for use in blow molding
JP4814437B2 (ja) 2001-04-06 2011-11-16 株式会社プライムポリマー 変性ポリエチレン系樹脂の製造方法、変性ポリエチレン系樹脂及びそのフィルム
DE10217841B4 (de) 2001-04-23 2016-02-04 Mitsui Chemicals, Inc. Verfahren zur Herstellung einer Ethylenpolymer-Zusammensetzung, Teilchen aus Ethylenpolymer-Zusammensetzung und aus den Teilchen der Ethylenpolymer-Zusammensetzung erhaltene Folie
US6987148B2 (en) 2001-11-07 2006-01-17 Indian Petrochemicals Corporation Limited High performance polyolefin blends for industrial pallets other articles and a process for the preparation thereof
US20050012235A1 (en) 2001-11-30 2005-01-20 Schregenberger Sandra D Oxygen tailoring of polyethylene resins
CN100351067C (zh) 2001-11-30 2007-11-28 埃克森美孚化学专利公司 聚乙烯树脂的氧气修整
WO2004005357A1 (en) 2002-07-03 2004-01-15 Exxonmobil Chemical Patents Inc. Oxygen tailoring of polyethylene film resins
TW200504093A (en) 2003-05-12 2005-02-01 Dow Global Technologies Inc Polymer composition and process to manufacture high molecular weight-high density polyethylene and film therefrom
US20060038315A1 (en) 2004-08-19 2006-02-23 Tunnell Herbert R Iii Oxygen tailoring of polyethylene resins

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108183164A (zh) * 2016-12-08 2018-06-19 乐金显示有限公司 触敏元件、包含该元件的显示装置及制造该元件的方法
CN108183164B (zh) * 2016-12-08 2022-02-22 乐金显示有限公司 触敏元件、包含该元件的显示装置及制造该元件的方法

Also Published As

Publication number Publication date
EP1781713B1 (en) 2018-03-21
WO2006023188A2 (en) 2006-03-02
US20060038312A1 (en) 2006-02-23
CA2577302A1 (en) 2006-03-02
WO2006023188A3 (en) 2006-05-04
CN101006104B (zh) 2010-12-01
CA2577302C (en) 2011-01-11
EP1781713A2 (en) 2007-05-09
EP1781713A4 (en) 2010-02-03
BRPI0514514A (pt) 2008-06-10
US7892466B2 (en) 2011-02-22

Similar Documents

Publication Publication Date Title
CN101014631A (zh) 聚乙烯树脂的氧气修整
KR100891584B1 (ko) 퍼옥시드 가교된 에틸렌 중합체 내압 파이프 및 이의 제조방법
CA2387708C (en) Polyethylene moulding compound with an improved escr-stiffness relation and an improved swelling rate, a method for the production thereof and the use thereof
EP1927627B1 (en) Pipe having improved high temperature resistance
CN101006104B (zh) 聚乙烯树脂的氧裁制
US20100164133A1 (en) Oxygen Tailoring of Polyethylene Resins
CN100351067C (zh) 聚乙烯树脂的氧气修整
KR20080031490A (ko) 무기 충전제를 함유하는 멀티모달 폴리에틸렌 조성물을포함하는 압력 파이프
EP1655339A1 (en) Multimodal polyethylene composition obtainable with high activity catalyst
EP2130865B1 (en) Extrusion coating polyethylene composition
CN103183859B (zh) 含微交联组分的聚乙烯共混组合物及其管制品
CN114456474A (zh) 一种薄壁多层中空吹塑材料及其制备方法
CN102167855B (zh) 茂金属聚乙烯棚膜树脂组合物
US11680117B2 (en) Polyethylenes and processes for producing polyethylenes
US20240067807A1 (en) Polymer composition
CN116410536A (zh) 用于生产多层共挤重包装膜内层的母料及其制备方法、内层原料及包装膜
KR20220028396A (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101201

Termination date: 20200719

CF01 Termination of patent right due to non-payment of annual fee