CN101043990A - 使用喷雾干燥法制备实心陶瓷颗粒的方法 - Google Patents

使用喷雾干燥法制备实心陶瓷颗粒的方法 Download PDF

Info

Publication number
CN101043990A
CN101043990A CNA2005800302528A CN200580030252A CN101043990A CN 101043990 A CN101043990 A CN 101043990A CN A2005800302528 A CNA2005800302528 A CN A2005800302528A CN 200580030252 A CN200580030252 A CN 200580030252A CN 101043990 A CN101043990 A CN 101043990A
Authority
CN
China
Prior art keywords
slurry
particle
drier
atomizer
droplet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005800302528A
Other languages
English (en)
Inventor
S·卡诺瓦
T·C·帕拉马拉
J·C·伍德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carbo Ceramics Inc
Original Assignee
Carbo Ceramics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carbo Ceramics Inc filed Critical Carbo Ceramics Inc
Publication of CN101043990A publication Critical patent/CN101043990A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/04Clay; Kaolin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/16Evaporating by spraying
    • B01D1/18Evaporating by spraying to obtain dry solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/004Devices for shaping artificial aggregates from ceramic mixtures or from mixtures containing hydraulic binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/30Drying methods
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/36Reinforced clay-wares
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6306Binders based on phosphoric acids or phosphates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6306Binders based on phosphoric acids or phosphates
    • C04B35/6313Alkali metal or alkaline earth metal phosphates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/02Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air
    • F26B3/10Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour carrying the materials or objects to be dried with it
    • F26B3/12Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour carrying the materials or objects to be dried with it in the form of a spray, i.e. sprayed or dispersed emulsions or suspensions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/528Spheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Abstract

一种由煅烧的、未煅烧的或部分煅烧的原料的浆料制备基本上为圆球形的实心烧结颗粒的方法,其中该原料的氧化铝含量大于约40wt%。使用喷雾干燥法将该浆料加工为基本上为圆球形的实心烧结颗粒,其中该颗粒的平均粒径大于约200微米,堆积密度大于约1.40g/cc,并且表观比重大于约2.60。

Description

使用喷雾干燥法制备实心陶瓷颗粒的方法
发明背景
喷雾干燥包括将陶瓷流体进料雾化为微滴喷雾,该微滴在与热空气接触时被干燥为独立的粉末颗粒。主要用于被称为白色陶瓷产业的瓷砖和餐具产业的喷雾干燥已被用在许多工业应用中,包括电子陶瓷(半导体、电容器)和结构陶瓷(磨损部件、切削工具、生物医学部件)。
石油和天然气从具有多孔并且可渗透的地层的井中产出。地层的多孔性允许地层储存石油和天然气,并且地层的渗透性允许石油或天然气流体通过地层。地层的渗透性对于使石油和天然气流动至可以将其从井中抽出的位置是必不可少的。有时容纳天然气或石油的地层的渗透性不足以对石油和天然气进行经济的开采。在其它情况下,在井的操作过程中,地层的渗透性下降至进一步开采变得不经济这样的范围。在这种情况下,需要断开地层并在开放条件下通过支撑材料或支撑剂支撑断层。这种断裂通常通过液压完成,并且支撑材料或支撑剂是一种微粒材料,如沙子、玻璃珠或陶瓷颗粒,它们通过流体而运送到断层处。
本文中所描述的是一种使用喷雾干燥法制备基本上为圆球形的实心(solid)陶瓷颗粒的方法。当其烧结时,实心陶瓷颗粒适于用作支撑材料。
附图简述
图1是使用本文中所述的喷雾干燥法制备基本上为圆球形的烧结实心陶瓷颗粒的方法的图表。
图2图示了一种用于本文中所述的喷雾干燥法的干燥室,其中具有并流和逆流的结合。
图3图示了一种用于本文中所述的喷雾干燥法的干燥室,其中具有并流。
图4说明了使用本文中所述的喷雾干燥法制备基本上为圆球形的实心陶瓷颗粒的干燥室的尺寸放大。
详细描述
本发明特别描述了一种制备基本上为圆球形的实心烧结陶瓷颗粒的方法,所述陶瓷颗粒的平均粒径大于约200微米,堆积密度大于约1.40g/cc,并且表观比重大于约2.60。在某些实施方式中,该颗粒的平均粒径大于约300微米,或大于约400微米。本文中所用的术语“平均粒径”描述了由一批颗粒的筛选分布所计算得到的粒径。
本文中所用的术语“实心陶瓷颗粒”描述了内部空隙小于颗粒的约10体积%的陶瓷颗粒。在某些实施方式中,实心陶瓷颗粒的内部空隙小于颗粒的约5体积%。
现参见图1,使用喷雾干燥法制备基本上为圆球形的实心陶瓷颗粒的方法包括浆料制备100,雾化102,接触104,干燥106,排放108和烧结110。
在浆料制备100中,制备包含水和陶瓷原料的浆料,所述陶瓷原料中氧化铝含量大于约40wt%。该浆料通过共混、混合、搅拌或本领域普通技术人员公知的那些类似方法进行制备。该陶瓷原料可以是未煅烧的陶瓷材料,部分煅烧的陶瓷材料,煅烧的陶瓷材料或它们的组合。在某些实施方式中,陶瓷原料是可以由其制备基本上为圆球形实心陶瓷颗粒的材料,该材料含有天然存在的挥发物,并且该挥发物可包括水分、有机物和化学结合水(也称作“结合水”)。在某些实施方式中,天然存在的挥发物的量为陶瓷原料的约10-约40wt%。在其它实施方式中,该陶瓷原料是未煅烧的粘土,部分煅烧的粘土,煅烧的粘土或它们的组合。在另一些实施方式中,陶瓷原料是高岭土(kaolin clay)、铝矾土(bauxtic clay)或铝土矿(bauxite),其中任一种可以是煅烧的,部分煅烧的,或未煅烧的,以及它们的组合。
在某些实施方式中,该浆料进一步包含粘结剂,如聚乙烯醇、聚乙酸乙烯酯、甲基纤维素、糊精和糖蜜。粘结剂是用于提高颗粒强度的常规有机材料。在某些实施方式中,水可以用作粘结剂。
在另一些实施方式中,该浆料进一步包含分散剂,如胶体、聚合电解质、焦磷酸四钠、焦磷酸四钾、多磷酸盐、柠檬酸铵、柠檬酸铁铵和六偏磷酸钠。包含分散剂是用于通过降低浆料粘度而提高浆料的总固含量。如果含有分散剂,则浆料中所用分散剂的量在雾化浆料能力和制备实心球形颗粒能力之间取得平衡。
浆料中陶瓷原料、水、粘结剂(如果含有的话)和分散剂(如果含有的话)的相对量取决于实心陶瓷支撑剂的预期性能,但是其限定于能使浆料在雾化过程102中适合泵送通过压力喷嘴或转轮,并且能制备可以通过烧结而形成基本上为圆球形的实心陶瓷颗粒的生颗粒的那些量。在某些实施方式中,浆料中固含量范围为约50-约75wt%,而在其它实施方式中,固含量为约50-约60wt%,或约60-约70wt%。
在其中浆料包含粘结剂的实施方式中,粘结剂的量可以低于干燥陶瓷原料的约0.5wt%,或低于干燥陶瓷原料的约1.0wt%。
在其中浆料包含分散剂的实施方式中,分散剂的量可以低于干燥陶瓷原料的约0.3wt%,低于干燥陶瓷原料的约0.5wt%,或低于干燥陶瓷原料的约1.0wt%。
在雾化过程102中,将浆料进料至雾化设备中。适合的雾化设备包括但不限于转轮雾化器、压力喷嘴雾化器和双流体喷嘴雾化器。转轮、压力喷嘴和双流体喷嘴雾化器对于本领域普通技术人员来说是公知的,并且其包括可购于各种来源例如Niro,Inc.的喷雾干燥器中的那些。喷嘴设计对于本领域普通技术人员来说是公知的、明白的,其例如,K.Masters:″Spray Drying Handbook″,John Wiley andSons,New York(1979)。
是否使用转轮、压力喷嘴或双流体喷嘴雾化器取决于最终的干燥实心陶瓷颗粒中所希望的性能如粒径、分布和形状以及预期的生产能力。通常,转轮雾化器制备出细颗粒,而在一定压力下工作的压力喷嘴和双流体喷嘴可以制备出比较大的颗粒。
当使用转轮雾化器时,将陶瓷浆料进料至雾化器转轮的中部,并通过离心力移动至轮的周围。雾化在轮边缘进行。所得喷雾中微滴的粒径和粒径分布取决于给予浆料的能量的量以及在新形成的微滴和轮附近湍流空气流之间的摩擦效应。将微滴喷雾从轮水平喷出,但迅速跟随着由空气分散器形成的空气流型,所述空气分散器以一种受控形式指导热空气向下进入干燥室。在具有转轮雾化器的喷雾干燥器中所制备的陶瓷的粒径随着雾化器轮速的下降而增加。进料速率的作用在给定雾化器轮的最佳工作范围内并不大,在运行中进料速率的波动没有改变所制备的陶瓷粉末的粒径分布。和转轮雾化器一起使用的腔室的直径通常应足够大以便防止半湿的沉积物形成于雾化器水平面处的腔室壁处。相反,直径较小但大于圆筒高度的腔室可以与压力喷嘴和双流体喷嘴雾化器一起使用。
当使用压力喷嘴雾化器时,在一定压力下将浆料进料至喷嘴中。在使用双流体喷嘴时,通过独立的喷嘴进料浆料和干燥空气。加压空气进料,而浆料进料可以被加压或者是虹吸/重力进料。在本文中所述的使用双流体喷嘴的实例中,浆料进料被加压。
压能被转化为动能,并且浆料作为容易分裂为微滴的高速薄膜从喷嘴孔流出。由压力喷嘴雾化器或加压的双流体喷嘴制备的微滴粒径随压力反比例变化,而随进料速率和进料粘度正比例变化。压力喷嘴或加压的双流体喷嘴的容量随压力的平方根而变化。在希望是高进料速率和/或高容量的喷雾干燥的实施方式中,使用多喷嘴体系。
现在转到接触104,离开雾化设备的浆料微滴的喷雾与进入干燥室中的热干燥空气接触。微滴和干燥空气如何开始接触,以及微滴/颗粒如何通过干燥室通常可以描述为并流、逆流或它们的组合。在某些实施方式中,例如图2所示的那种实施方式中,具有并流和逆流结合的干燥室被示例和压力喷嘴雾化器一起使用。
图2是包含干燥室204和压力喷嘴202的喷雾干燥装置的简化图。喷雾干燥器通常包括附加组件,它们在本文中无需详述,因为喷雾干燥器及其组件对于本领域普通技术人员来说是公知的。在图2中,浆料由进料源200通过压力喷嘴202进料。虽然在图2中仅图示了一个压力喷嘴,但是可以使用多个喷嘴。适合进料浆料的各种类型的设备对于本领域普通技术人员来说是公知的,其可以包括例如,含或不含过滤器的进料泵。压力喷嘴202将浆料雾化为微滴,并将微滴向上喷雾至干燥室204中,这由箭头A进行图示。热空气由空气源206进料至干燥室204中,其通过进口208进入到干燥室204中,在其中所述热空气和浆料微滴接触。这样,热空气由高于将浆料喷雾至干燥室的位置的点进入,并以通常为向下的方向在该室中流动。开始,浆料微滴以通常为向上的方向在干燥室中流动,因此形成逆流。然而,在某些点上,微滴将结束(exhaust)它们的垂直轨迹,并开始以通常为向下的方向在该室中流动,因此形成并流。如图2所示的那种干燥室中的微滴具有延长的垂直轨迹,其提供了更长的空中干燥时间。虽然图2图示了与并流和逆流干燥室结合使用的压力喷嘴雾化器,但这种干燥室也可以和转轮雾化器以及双流体喷嘴雾化器一起使用。
在某些实施方式中,如图3所示的那种实施方式中,并流干燥室和压力喷嘴雾化器一起使用。图3是包含干燥室304和压力喷嘴302的喷雾干燥装置的简化图。浆料由进料源300通过压力喷嘴302进料。压力喷嘴302将浆料雾化为微滴,并将微滴以通常为向下的方向(表示为“A”)喷雾至干燥室304中。热空气由空气源306进料至干燥室304中,并以通常为向下的方向(表示为“B”)流入干燥室304中。这样,热空气和浆料微滴以通常为向下的方向在干燥室中流动,并由此形成并流。虽然图3图示了与并流干燥室一起使用的压力喷嘴雾化器,但并流干燥室也可以和转轮雾化器以及双流体喷嘴雾化器一起使用。
适合将热空气进料至用于干燥微滴的干燥室中的各种类型的设备对于本领域普通技术人员来说是公知的,其可以包括例如,含或不合空气过滤器的加热器。在干燥106中,当水分从微滴中蒸发时,形成了生陶瓷颗粒。当浆料被喷雾至干燥室204中并与热空气接触时,蒸发从微滴表面发生并且饱和蒸汽薄膜在微滴表面上形成。如果存在分散剂和粘结剂的话,则它们是可溶的。因此,当存在分散剂和/或粘结剂时,各个雾化的喷雾微滴含有不溶的陶瓷材料和可溶的添加剂。在喷雾干燥的蒸发阶段,可溶的粘结材料将其自身以薄膜形式涂覆在微滴表面上。
当继续干燥时,朝向微滴内部的水分蒸发了。根据本文中所述的方法,来自微滴内部的水分通过扩散而至少部分蒸发了,其通过填充在微滴中的实心颗粒,并朝着微滴表面扩散,然后通过微滴表面上的薄膜。当来自微滴内部的水分蒸发时,微滴表面上的薄膜朝着微滴内部向内生长。
尽管干燥空气的进口空气温度相对较高,但是微滴表面温度是低的。蒸发首先在恒速条件下发生,但是,当微滴接近最终残余水分含量的条件时,于是速率降低。由于微滴含有未溶解的固体,因此干燥曲线显现了一段明显的恒速时期的特征,这段时期有助于颗粒的球形化。在干燥时,由于水分蒸发过程中微滴粒径改变了,因此喷雾微滴的粒径分布也改变了。微滴和颗粒的聚结也可能发生,并且这可能归因于干燥室中的湍流空气流型以及温度和湿度水平的复杂分布。
由于微滴在通过干燥室喷出时通常不旋转,因此微滴的一面可能暴露于来自进口的空气,并且该空气比微滴另一面所暴露的空气要热(本文中分别称为“热面”和“冷面”)。在这种情况下,热面上的蒸发更快,并且在微滴表面上形成的薄膜在热面上比在冷面上更快地变厚。微滴中的液体和固体迁移至热面。在这一点上,希望冷面被向内拉,但这将产生具有凹痕的中空生颗粒,而不是本文中所述的实心生颗粒。然而,根据本文中所述的方法,颗粒是实心的而不是中空的,这是因为下列因素中的一种或多种:本文中所述重量百分比的固含量,本文中所述重量百分比的可溶物含量(分散剂和/或粘结剂)和本文中所述范围的空气进口温度。
对于固含量来说,可以使用固含量大于约50wt%的浆料制备本文中所述的基本上为圆球形的实心颗粒。根据某些实施方式,可以使用固含量约60-约70wt%的浆料制备基本上为圆球形的实心颗粒。
对于可溶物含量来说,粘结剂增加了浆料的粘度,这可能导致需要降低固含量以便保持能够雾化的浆料。然而,较低的固含量可能导致非实心的颗粒。而对于分散剂来说,它使固体更快地向颗粒表面运动,这也能够导致非实心的颗粒。因此,浆料中的可溶物含量(添加剂如粘结剂和分散剂的量)应和浆料的固含量保持平衡。优选使用由调节浆料粘度的需要而确定的最小量的粘结剂和/或分散剂。
对于空气进口的温度来说,根据本文中所述的方法对进入干燥室的空气的温度进行控制。因此,在某些实施方式中,空气进口温度范围为约100℃-约200℃,或约200℃-约300℃,或约300℃-约400℃,或约400℃-约500℃。在其它实施方式中,空气进口温度范围为约150℃-约200℃,或约200℃-约250℃。优选使用这些范围下端的温度以便降低颗粒的干燥速率,而这又有助于制备可以通过烧结而制备基本上为圆球形的实心陶瓷颗粒的生颗粒。
再参见图1,排放108包括生陶瓷颗粒从干燥室中的分离和排放。在某些实施方式中,使用两点排放体系。在两点排放体系中,生陶瓷颗粒最粗部分的主要排放从室的底部完成,较细部分的排放从旋风分离器和集尘室体系的底部完成。在某些其它实施方式中,使用单点排放体系。在单点排放体系中,生陶瓷颗粒的回收从干燥室中完成。例如,在图2和3所示的示意图中,在重力影响下生陶瓷颗粒至少部分从干燥室排放至排放210和310中。
除图2和3所示的组件外,适合的干燥装置可以进一步包括风扇和导管,废气净化设备(旋风分离器、集尘室、洗涤器)和控制仪表。本文中所述的这些另外的组件和设备以及它们在喷雾干燥法中的用途,对于本领域普通技术人员来说是公知的。
在排放108之后,然后使用常规的烧结设备烧结110生陶瓷颗粒以形成基本上为圆球形的实心陶瓷颗粒。烧结和实施烧结的设备对于本领域普通技术人员来说是公知的。例如,参见Fitzgibbon的美国专利No.4,427,068。在某些实施方式中,烧结在约1000℃-约1600℃的温度下在峰值温度下进行约20-约45分钟。
下列实施例说明了上述方法和颗粒。
实施例1
现在参见下表1,其报道了根据本文中所公开方法制备基本上为圆球形的实心陶瓷颗粒的9次试验的结果。表1中作为“n/a”所报道的值没有被确定。
具有表1所述浆料性能的九种浆料由CARBO Ceramics,Inc.(“CARBO”)Eufaula,Alabama制备,并从该公司获得。通常,这些浆料通过将未煅烧的铝矾性高岭土(bauxitic kaolin clay)和水及分散剂在Denver耐磨洗涤器中一起搅拌以得到具有所报道的固含量的浆料而进行制备。该粘土的氧化铝含量大于约50wt%,并且其是开采于Eufaula,Alabama地区的粘土共混物。所用分散剂是一种作为Rhone Poulenc Colloid 102而购买的聚丙烯酸铵。向浆料中加入以商品名Airvol购于Air Products and Chemicals Inc.且分子量为100,000Mn的聚乙烯醇(PVA),并且该浆料得自于CARBO并用作样品5和6。使用Sartorius水分天平在160℃下达30分钟来确定表1所报道的固含量。使用布氏粘度计和2号转子确定表1所报道的粘度数据(其以特定RPM下的厘泊(“cps”)进行报道),该粘度计购于Brookfield Engineering Laboratories,Middleboro,MA。根据布氏粘度计的规定操作程序对其进行操作。
根据表1所报道的雾化条件使浆料雾化。在表1所报道的温度和雾化压力下以表1所报道的进料速率将各种浆料进料至压力喷嘴雾化器中。所用特定雾化器装备有Niro Nozzle Tower中试装置,其具有直径为2.55米,圆筒高度为5.95米的干燥室,并且总喷雾高度为9米。为表1所报道的各个试验调整喷嘴设计,其中字母指示“AA”描述了喷嘴的腔室设计,数字指示“#.#”描述了喷嘴孔的直径(毫米)。这种字母和数字指示对于本领域普通技术人员来说是公知的、明白的。表1所报道的持续时间表明,为了从所用的特定喷嘴中制备浆料微滴而以指示速率泵送浆料的时间。
当雾化的浆料微滴离开压力喷嘴时,它们被暴露于表1所报道的干燥条件下。将热空气以所报道的速率进料至Niro Nozzle Tower中试装置的干燥室中,所述速率由热线风速计进行测量。所报道的干燥室进口和出口温度用热电偶进行确定。当水分因和热空气进料接触而从微滴中蒸发时,形成了具有表1所报道的生料性能的生陶瓷颗粒。用Mettler水分分析器在200℃下确定所报道的残余挥发物%达30分钟,其表明在干燥期间未从颗粒中蒸发出的水分。倾倒密度表示填满已知容积容器的生颗粒的量,而轻拍密度表示在填充容器时轻拍容器,并在这种情况下填满已知容积容器的生颗粒的量。
在静态炉中烧结生颗粒以制备基本上为圆球形的实心陶瓷颗粒。使用12℃/分钟的加热速率加热至1510℃的峰值温度并在该峰值温度下保持30分钟而完成烧结。烧结的实心陶瓷颗粒的烧结性能,如粒径、晶粒度(grain fineness number)、堆积密度、表观比重和压碎强度如下所报道。堆积密度、表观比重和压碎强度使用测试支撑剂用的API建议的操作规程RP60进行确定。
                                                               表1
 样品   1   2   3   4   5   6   7   8   9
 浆料性能:
 固体(wt%)   59.2   59.6   60.4   59.7   59.6   59.2   61.1   59.8   59.3
 粘结剂(PVA)(wt%)   0   0   0   0   0.1*   0.2*   0   0   0
 分散剂(wt%)   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3   0.3
 密度(g/cc)   1.58   1.58   1.59   1.57   1.59   1.58   1.59   1.60   n/a
 粘度(cps)
 6RPM   775   200   1375   625   875   475   425   225   500
 12RPM   638   163   1000   450   650   488   350   200   438
 30RPM   440   115   505   315   395   305   255   140   290
 60RPM   335   98   400   250   285   230   200   118   235
 雾化条件
 浆料温度℃ 23 22 22 23 23 22 23 22 22
 浆料进料速率(kg/hr) 211 254 254 n/a 190 233 n/a 288 220
 雾化压力(psig) 420 440 600 460 480 440 600 500 500
 喷嘴类型   SC 1.6   SC 1.6   SB 1.4   SB 1.4   SB 1.4   SB 1.4   SB 1.5   SB 1.4   SB 1.4
 持续时间(min.)   24   35   8   27   34   35   12   11   66
 干燥条件:
 干燥空气速率(kg/hr) 2930 3080 3000 3080 3090 3030 2730 2850 2670
 进口空气温度℃   231   276   221   220   210   210   260   209   231
 出口空气温度℃   118   115   116   110   101   102   126   101   105
                                                                 表1
  样品   1   2   3   4   5   6   7   8   9
  生料性能:
  残余挥发物,%   5.35   0.98   3.15   2.71   0.61   0.65   10.9   3.0   1.35
  倾倒密度,g/cc   0.81   0.78   0.81   0.79   0.81   0.79   0.88   0.80   0.80
  轻拍密度,g/cc   0.86   0.85   0.86   0.84   0.86   0.85   0.91   0.87   0.85
  粒径,微米
  90%小于   619   500   585   567   530   502   n/a   578   570
  50%小于   413   292   353   349   293   306   n/a   357   351
  10%小于   230   171   213   200   175   188   n/a   209   186
  产物重量,kg   49.5   72   12.5   51   74   72   26   24   140.5
  保留在具有以下美国目数的筛上(或底盘上)的百分比
  30   5.0   0.4   5.0   0.9   0.1   0.0   31.9   0.8   0.5
  40   34.4   7.9   23.7   20.4   4.4   1.4   31.6   16.8   7.6
  50   32.2   31.4   32.0   35.0   26.1   20.9   20.7   36.9   32.6
  70   16.0   27.3   22.0   21.8   30.6   32.9   9.3   23.2   35.3
  100   8.8   19.7   12.2   14.0   24.4   28.3   4.6   14.4   14.4
140 2.6 8.0 3.5 5.0 9.2 10.4 1.3 5.1
  200   0.6   3.1   1.0   1.7   3.1   3.3   0.3   1.6   8.7
  270   0.2   1.5   0.4   0.8   1.5   2.0   0.2   0.8
  底盘   0.1   0.7   0.2   0.4   0.6   0.7   0.1   0.3   0.9
  平均粒径,微米(包括底盘材料) 387 277 354 327 256 236 480 319 285
  烧结性能:
  筛,美国目
  30   0.6   0.1   0.6   0.1   0.0   0.0   12.5   0.1   0.0
  40   8.6   0.8   7.0   1.7   0.2   0.1   26.9   1.7   0.8
  50   38.8   14.6   29.1   23.9   10.1   4.4   30.5   25.1   12.9
  70   28.5   36.1   31.9   35.2   33.3   30.8   17.0   36.3   34.6
  100   16.8   30.0   22.2   25.2   34.0   39.4   9.4   23.9   32.2
  140   5.0   11.3   6.4   8.9   14.3   17.0   2.7   8.3   12.8
  200   1.3   3.9   1.7   2.8   4.6   5.0   0.7   2.7   4.1
  270   0.4   2.3   0.8   1.5   2.6   2.5   0.3   1.3   2.1
  底盘   0.1   1.0   0.3   0.7   0.9   0.8   0.1   0.6   0.5
  平均粒径,微米(包括底盘材料) 300 224 277 247 209 195 395 251 219
  晶粒度(GFN)(不包括底盘材料) 51.9 67.1 55.9 61.6 71.1 74.4 42.1 60.5 68.3
  晶粒度(GFN)(包括底盘材料) 52.2 69.5 56.6 63.3 73.2 76.2 42.4 61.9 69.5
  堆积密度(g/cc) 1.53 1.39 1.50 1.47 1.44 1.39 1.52 1.46 1.46
                                                              表1
  样品   1   2   3   4   5   6   7   8   9
  表观比重(ASG)   2.76   2.70   2.77   2.72   2.74   2.66   2.74   2.71   2.74
  在-50/+140上压碎
  7500psi%压碎   4.4   9.6   5.2   5.5   6.4   9.5   5.1   6.7   5.2
  10,000psi%压碎   n/a   12.3   5.9   7.5   9.3   12.8   12.3   7.9   6.6
*在从制备地点收到浆料后加入的PVA。
具有较高固体填充量的浆料(例如样品3和7)制备出在GFN和平均粒径上较大粒径的颗粒。样品3和7还具有较高的粘度,并制备出在GFN和平均粒径上具有第2和第3粗粒径的材料。相反,具有较高总可溶物含量的浆料(例如样品5和6,其包括粘结剂)制备出具有最高GFN且平均粒径最小的材料(这也表明制备出了较小的颗粒)。样品7制备出最大的颗粒,并且其进一步说明了九个样品中,样品7还含有最高的残余挥发物,这指示了从干燥室中排出的颗粒的自由水含量。样品7的残余挥发物含量表明,与从干燥室中排出的具有较低残余挥发物含量的那些样品(例如,样品5和6)相比,样品7被暴露至降低的干燥速率。因此,降低的干燥速率应有助于制备具有本文中所述性能的陶瓷颗粒。
实施例2
现在参见下表2,其报道了根据本文所公开方法制备基本上为圆球形的实心陶瓷颗粒的5次试验的结果。表2中作为“n/a”所报道的值没有被确定。
具有表2所报道的浆料性能的五种浆料通过将未煅烧的铝矾性高岭土和水及分散剂在高剪切Cowles溶解器中一起搅拌以得到具有所报道的固含量的浆料而进行制备。该粘土的氧化铝含量大于约50wt%,并且得自于JF Blecher。分散剂是六偏磷酸钠,并且在各种浆料中的含量是用于制备浆料的粘土干重的约0.15wt%。六偏磷酸钠购于Innophous Chemicals Inc.。向样品4和5中加入额外的120g六偏磷酸钠。以足以制备pH约为9.5的浆料的量向各种浆料中加入氢氧化铵。除了水以外,在任何浆料中都不使用粘结剂。
使用Ohaus MB45水分天平在190℃下确定表2所报道的浆料固含量直至所有物理水被除去。
使用布氏RVF粘度计和1号转子(在20rpm下)确定粘度数据,其中该粘度计购于Brookfield Engineering Laboratories,Middleboro,MA。根据布氏粘度计的规定操作程序对其进行操作。
在表2所报道的环境温度和雾化压力下将各种浆料进料至双流体喷嘴中。
对各种样品使用相同的喷嘴设计。该喷嘴类型是空气雾化喷嘴(Air Atomizing Nozzle)1/2JBC,其购于Spraying Systems,Inc.。根据本领域普通技术人员所公知的关于喷雾体系(SprayingSystem)喷嘴操作的Spraying Systems Catalog 60B Express(2000),该喷嘴被配置为圆形喷雾,外部混合,no.SU 70喷雾设置以及压力设置。使用外部混合,干燥室的空气进口不是在进入的浆料物流中。所用的特定双流体喷嘴雾化器被用于中试塔装置中,该装置具有直径为1.524米,圆筒高度为4.267米并且干燥体积为8.59立方米的干燥室。其总喷雾高度为5.587米。本实施例2所用的干燥室得自于Drytec North America LLC,Olympia Fields,IL。
当雾化的浆料微滴离开压力喷嘴时,它们被暴露于表2所报道的干燥条件下。将热空气以所报道的速率进料至干燥室中,其中所述速率使用通过旋风分离器容器的压力降进行测量。所报道的干燥室进口和出口温度用K型热电偶进行确定。
当水分因和热空气进料接触而从微滴中蒸发时,形成了具有表2所报道的生料性能的生陶瓷颗粒。基于完全的水分干燥损失,用CSC水分分析器确定所报道的残余挥发物%,其表明在干燥期间未从颗粒中蒸发出的水分。倾倒密度表示填满已知容积容器的生颗粒的量,而轻拍密度表示在填充容器时轻拍容器,并在这种情况下填满已知容积容器的生颗粒的量。
在CM快速温度静态实验室型炉中烧结筛分粒径为40/270(美国目)的生颗粒以制备基本上为圆球形的实心陶瓷颗粒。使用17℃/分钟的加热速率加热至1500℃的峰值温度并在该峰值温度下保持30分钟而完成烧结。烧结的实心陶瓷颗粒的烧结性能,如粒径、晶粒度、堆积密度、表观比重和压碎强度如下所报道。
堆积密度根据ANSI B74-4-1992方法进行确定,表观比重和压碎强度使用测试支撑剂用的API建议的操作规程RP60进行确定。
                                                   表2
  样品   1   2   3   4   5
  浆料性能:
  固体(wt%)   68.8   68.8   68.8   68.8   68.8
  分散剂(wt%)   0.15   0.15   0.15   0.15+120g   0.15+120g
  密度(g/cc)   n/a   n/a   n/a   n/a   n/a
  在20RPM下粘度(cps)   424   424   424   274   274
  雾化条件
  雾化压力(psig)   120   120   120   120   120
  干燥条件:
  干燥空气速率   N/A   N/A   N/A   N/A   N/A
  进口空气温度℃   172   156   186   153   175
  出口空气温度℃   129   118   135   118   129
  生料性能:
  残余挥发物,%   13.6   12.7   11.2   10.9   8.6
  倾倒密度,g/cc   1.01   1.02   1.03   .96   .98
  轻拍密度,g/cc   1.06   1.06   1.08   1.02   1.05
  粒径,微米
  90%小于   595.2   666.9   648.2   648.6   510.3
  50%小于   243.6   315.8   281.8   299.1   57.5
  10%小于   5.3   4.0   3.6   5.0   1.5
  保留在具有以下美国目数的筛上(或底盘上)的百分比
  30   29.2   34.8   35.7   30.0   21.9
  40   17.9   18.4   16.4   18.3   17.3
  50   16.3   15.8   14.2   16.2   17.8
  70   13.5   12.1   11.5   13.0   15.8
  100   9.8   8.4   8.8   9.8   12.7
                                            表2
  样品   1   2   3   4   5
  140   5.3   4.5   4.8   5.6   6.9
  200   2.6   2.7   2.7   2.6   3.2
  270   2.4   1.7   2.5   1.8   1.9
  底盘   3.0   1.6   3.4   2.6   2.5
  平均粒径,微米(包括底盘材料) 406 435 426 411 374
  烧结性能(40/270材料被烧结):
  筛,美国目
  30   0.1   0.0   0.0   0.0   0.0
  40   6.9   7.8   7.5   6.9   6.6
  50   29.6   29.9   30.2   29.4   31.3
  70   25.0   27.1   26.1   26.9   26.8
  100   19.2   18.6   17.8   18.5   16.5
  140   10.7   9.4   9.8   10.4   10.6
  200   4.8   4.1   4.6   4.8   4.9
  270   2.7   2.1   2.7   2.2   2.4
  底盘   1.1   1.0   1.2   0.9   0.9
  平均粒径,微米(包括底盘材料) 262 269 266 264 266
  晶粒度(GFN)(不包括底盘材料) 63.4 60.8 62.1 62.2 62.1
  堆积密度(g/cc)   1.51   1.46   1.47   1.48   1.48
  表观比重(ASG)   2.74   2.74   2.76   2.75   2.74
  在-50/+140上压碎
  7500psi%压碎   9.6   10.5   12.1   9.7   11.5
样品2和3的比较显示出,当干燥室的出口空气温度(因此同样进口空气温度)提高时(由样品2中的118℃至样品3中的135℃),生颗粒平均粒径从435微米下降至426微米。样品4和5的比较显示出,当干燥室的出口空气温度(因此同样进口空气温度)提高时(由样品4中的118℃至样品5中的129℃),生颗粒平均粒径从411微米下降至374微米。本领域普通技术人员明白,本文中所述的较高的干燥室出口空气温度表明了较高的进口空气温度。如样品2和3以及样品4和5之间的进口空气温度的减少表明用较低的进口空气温度可以制备出较大的颗粒。
样品2和4的比较显示出,当存在额外的分散剂时(样品4含有比样品2多120g的分散剂,因此也具有比样品2低的粘度),生颗粒平均粒径从435微米下降至411微米。与样品2相比,样品4额外的粘结剂和较低的粘度显示出,在较少粘结剂和较高粘度(即,样品2)的情况下可以制备出较大的颗粒。
另外,表2中所报道的堆积密度和ASG表明至少一部分烧结的颗粒是实心的。
此外,表2中所报道的值显示了具有适合用作支撑材料的粒径、堆积密度、表观比重和7500psi压碎强度的颗粒可以由本文中所述的浆料制备,并且可以用喷雾干燥器技术进行加工。
实施例3
现在参见下表3,其报道了根据本文中所公开方法制备基本上为圆球形的实心陶瓷颗粒的7次试验的结果。表3中作为“n/a”所报道的值没有被确定。
具有表3所报道的浆料性能的七种浆料通过将未煅烧的铝矾性高岭土和水及分散剂在高剪切Cowles溶解器中一起搅拌以得到具有所报道的固含量的浆料而进行制备。该粘土的氧化铝含量约为50wt%氧化铝,并且得自于JF Blecher。所用分散剂是以商品名C-211购于Kemira Chemicals的聚丙烯酸钠,并且其以表3中所报道的量使用,该量是用于制备浆料的干燥粘土的重量百分比。向样品4和5中加入其量约为用于制备浆料的干燥粘土的0.30wt%的分子量为25,000Mn的聚乙烯醇(PVA)。该PVA能够以商品名Elvanol购于DuPont。
使用Ohaus MB45水分天平在190℃下确定表3所报道的浆料固含量直至所有物理水被除去。使用布氏RVF粘度计和1号转子(在20rpm下)确定粘度数据,其中该粘度计购于Brookfield EngineeringLaboratories,Middleboro,MA。根据布氏粘度计的规定操作程序对其进行操作。
根据表3所报道的雾化条件雾化这些浆料。在表3所报道的环境温度和雾化压力下以表3所报道的进料速率将各种浆料进料至双流体喷嘴雾化器中。表3中所报道的持续时间表明,为了制备浆料微滴而以所指明的速率泵送浆料的时间。
对表3中所报道的各种样品使用相同的喷嘴设计。喷嘴类型是空气雾化喷嘴1/4J,其购于Spraying Systems,Inc.。根据本领域普通技术人员所公知的关于喷雾体系喷嘴操作的Spraying Systems Catalog60B Express(2000),该喷嘴被配置为扁平喷雾,外部混合,no.SUE45喷雾设置以及压力设置。该喷嘴被配置在Drytec Nozzle Tower中试装置中,该装置具有直径为1.000米,圆筒高度为2.000米的干燥室,并且其总喷雾高度为2.866米。
当雾化的浆料微滴离开压力喷嘴时,它们被暴露于表3所报道的干燥条件下。将热空气以所报道的速率进料至干燥室中,其中所述速率使用通过旋风分离器容器的压力降进行测量。所报道的干燥室进口和出口温度用K型热电偶进行确定。
当水分因和热空气进料接触而从微滴中蒸发时,形成了具有表3所报道的生料性能的生陶瓷颗粒。基于完全的水分干燥损失,用CSC水分分析器确定所报道的残余挥发物%,其表明在干燥期间未从颗粒中蒸发出的水分。倾倒密度表示填满已知容积容器的生颗粒的量,而轻拍密度表示在填充容器时轻拍容器,并在这种情况下填满已知容积容器的生颗粒的量。
在静态的Blue M Lindberg实验室型炉中烧结该生颗粒以制备基本上为圆球形的实心陶瓷颗粒。使用12℃/分钟的加热速率加热至1510℃的峰值温度并在该峰值温度下保持30分钟而完成烧结。烧结的实心陶瓷颗粒的烧结性能,如粒径、晶粒度、堆积密度、表观比重和压碎强度如下所报道。
堆积密度、表观比重和压碎强度使用测试支撑剂用的API建议的操作规程RP60进行确定。
                                                    表3
  样品   1   2   3   4   5   6   7
  浆料性能:
  固体(wt%)   64.6   64.6   64.6   59.9   59.9   68.2   50.0
  分散剂(wt%)   0.075   0.075   0.075   0.075   0.075   0.15   0.15
  PVA(wt%)   0   0   0   0.30   0.30   0   0
  密度(g/cc)   n/a   n/a   n/a   n/a   n/a   n/a   n/a
  在20RPM下粘度(厘泊) 282 282 282 430 430 334 n/a
  雾化条件
  浆料进料速率(gal/hr) 3.5 3.5 3.5 3.5 3.5 3.5 3.2
  雾化压力(psig) 80 80 70 70 60 60 60
  持续时间(min)   11   19   18   18   57   25   43
  干燥条件:
  干燥空气速率(kg/hr) 6.08 6.08 6.08 7.25 7.25 4.35 8.35
  进口空气温度℃   274   274   274   274   274   274   274
  出口空气温度℃   104   93   99   104   119   119   119
  生料性能:
  残余挥发物,%   3.8   4.6   4.4   1.0   0.6   8.3   0.6
  倾倒密度,g/cc   1.20   1.20   0.85   0.81   0.79   0.97   0.76
  轻拍密度,g/cc   1.25   1.25   0.90   0.86   0.84   1.01   0.80
  粒径,微米
  90%小于   14.17   47.82   16.92   17.63   16.69   97.81   5.92
  50%小于   3.13   3.51   2.82   3.16   3.74   5.21   1.64
  10%小于   0.84   0.78   0.78   0.83   0.90   1.00   1.42
  产物重量(kg)   1.248   2.187   2.061   1.087   3.458   3.958   1.144
  保留在具有以下美国目数的筛上(或底盘上)的百分比
  30   0.4   0.9   2.1   0.0   0.0   5.7   0.1
  40   1.3   4.2   4.5   0.2   0.1   15.1   0.1
  50   5.2   8.1   9.8   0.9   0.8   21.3   0.2
  70   12.4   12.8   13.7   3.0   4.0   25.7   0.3
  100   18.4   17.4   17.1   7.4   10.5   18.1   0.7
  140   19.4   17.4   17.1   7.4   10.5   18.1   0.7
  200   14.9   13.5   13.1   16.0   16.9   3.3   9.6
                                                    表3
  样品   1   2   3   4   5   6   7
  270   14.7   12.5   11.4   19.8   20.4   1.3   32.6
  底盘   13.3   13.2   10.8   39.8   33.5   0.6   53.4
  平均粒径,微米(包括底盘材料)   144   167   183   80   88   306   51
  烧结性能(30/270材料被烧结)
  筛,美国目
  30   0.0   0.0   0.0   0.0   0.0   0.0   0.0
  40   0.5   0.2   2.1   0.1   0.1   1.3   0.4
  50   1.6   2.2   5.6   0.5   0.6   12.6   0.7
  70   6.1   9.2   10.8   2.5   3.8   18.5   1.0
  100   17.5   21.5   22.0   13.8   16.3   35.4   2.8
  140   26.3   26.9   24.7   25.4   23.8   20.2   7.4
  200   18.8   17.8   15.8   22.9   21.2   6.9   12.6
  270   18.1   14.3   11.9   21.3   21.0   4.0   24.4
  底盘   11.1   7.9   7.1   13.5   13.2   1.1   50.7
  平均粒径,微米(包括底盘材料) 121 133 154 104 109 199 62
  晶粒度(GFN)(不包括底盘材料) 118 109.7 101.5 128.6 125.6 78.7 155.6
  堆积密度(g/cc)   1.47   1.44   1.45   1.28   1.26   1.58   1.22
  表观比重(ASG)   2.77   2.83   2.84   2.81   2.74   2.81   2.81
  在-50/+140上压碎
  7500psi%压碎   10.0   15.9   15.4   47.3   44.1   5.2   n/a
表3所述的示范性浆料说明了固含量大于约50wt%,大于约60wt%和大于约65wt%的浆料可以维持在适合通过喷雾干燥器的雾化设备进料的粘度下。浆料的固含量有助于本文中所述的实心的且基本上为圆球形的颗粒的形成。
表3中所报道的堆积密度和ASG表明至少一部分烧结的颗粒是实心的。用于加工本实施例3浆料的低进口空气温度(其由较低的出口空气温度确定)有助于实心颗粒的制备。此外,没有使用粘结剂制备表3所述的实心的且基本上为圆球形的颗粒。
另外,最大平均粒径的材料由最高残余挥发物的样品(样品6)制备。样品6的残余挥发物含量表明,与从干燥室中排出的具有较低残余挥发物含量的那些样品相比,样品6被暴露于降低的干燥速率中。因此,降低的干燥速率应有助于制备具有本文中所述性能的陶瓷颗粒。
再进一步,表3中所报道的值显示了具有适合用作支撑材料的粒径、堆积密度、表观比重和7500psi压碎强度的颗粒可以使用如本文中所述制备的浆料制备出,并且可以用喷雾干燥器技术进行加工。
实施例4
现在参见下表4,其报道了根据本文中所公开方法制备基本上为圆球形的实心陶瓷颗粒的7次试验的结果。表4中作为“n/a”所报道的值没有被确定。
该颗粒由约5加仑批料的浆料进行制备,其中所述浆料通过将煅烧的铝矾性高岭土和水及分散剂在高剪切Cowles溶解器中一起搅拌以得到固含量约为59.5wt%,在环境温度和60RPM下的粘度约为130厘泊,pH约为9.5(通过加入氢氧化铵)的浆料而进行制备,并且该浆料含有基于干燥粘土原料重量约0.03wt%的分散剂。
分散剂是由Kemira Chemicals生产并且商品名为C-211的聚丙烯酸钠。该粘土的氧化铝含量在煅烧过的基础上约为47wt%,并且作为煅烧材料(煅烧至约2wt%的灼烧损失)得自于CE Minerals,Andersonville GA。
该浆料没有立即通过喷雾干燥器加工,因此必须使用额外的分散剂改进其粘度以使粘度回到浆料能够被喷雾的值。当进行浆料第一次试验时,加入7.1g额外的C-211牌分散剂。在第一次试验后,加入7.2g额外的C-211牌分散剂,以使加入到浆料(批料)的总量为14.3g。在第二次试验后,没有加入额外的分散剂,因此如表4所报道的,额外的分散剂的总量保持为14.3g。
当进行喷雾以形成颗粒时,浆料具有如表4所报道的固含量和粘度。使用Ohaus MB45水分天平在190℃下确定表4所报道的浆料固含量直至所有物理水分被除去。使用布氏RVF粘度计和1号转子在20rpm下确定粘度数据,其中该粘度计购于BrookfieldEngineering Laboratories,Middleboro,MA。根据布氏粘度计的规定操作程序对其进行操作。
根据表4所报道的雾化条件雾化这些浆料。在表4所记报道的环境温度和雾化压力下以表4所报道的进料速率将各种浆料进料至双流体喷嘴雾化器中。表4中所报道的持续时间表明,为了制备浆料微滴而以所报道的速率泵送浆料的时间。
对表4中所报道的各种样品使用相同的喷嘴设计。喷嘴类型是空气雾化喷嘴1/4J,其购于Spraying Systems,Inc.。根据本领域普通技术人员所公知的关于喷雾体系喷嘴操作的Spraying Systems Catalog60B Express(2000),该喷嘴被配置为扁平喷雾,外部混合,no.SUE45喷雾设置以及压力设置。该喷嘴被配置在Drytec Nozzle Tower中试装置中,该装置具有直径为1.000米,圆筒高度为2.000米的干燥室,并且其总喷雾高度为2.866米。
当雾化的浆料微滴离开压力喷嘴时,它们被暴露于表4所报道的干燥条件下。将热空气以所报道的速率进料至干燥室中,其中所述速率使用通过旋风分离器容器的压力降进行测量。所报道的干燥室进口和出口温度用K型热电偶进行确定。
当水分因和热空气进料接触而从微滴中蒸发时,形成了具有表4所报道的生料性能的生陶瓷颗粒。基于完全的水分干燥损失,用CSC水分分析器确定所报道的残余挥发物%,其表明在干燥期间未从颗粒中蒸发出的水分。倾倒密度表示填满已知容积容器的生颗粒的量,而轻拍密度表示在填充容器时轻拍容器,并在这种情况下填满已知容积容器的生颗粒的量。
在静态的Blue M Lindberg实验室型炉中烧结该生颗粒以制备基本上为圆球形的实心陶瓷颗粒。使用12℃/分钟的加热速率加热至1510℃的峰值温度并在该峰值温度下保持30分钟而完成烧结。烧结的实心陶瓷颗粒的烧结性能,如粒径、晶粒度、堆积密度、表观比重和压碎强度如下所报道。
堆积密度、表观比重和压碎强度使用测试支撑剂用的API建议的操作规程RP60进行确定。
                                                      表4
  样品   1   2   3   4   5   6   7
  浆料性能:
  固体(wt%)   56.2   56.2   56.2   56.2   56.2   56.2   56.2
  分散剂(wt%,批料) 0.03 0.03 0.03 0.03 0.03 0.03 0.03
  额外的分散剂(g,喷雾)   7.1   14.3   14.3   14.3   14.3   14.3   14.3
  在20RPM下粘度(厘泊) 385 385 385 385 385 385 385
  雾化条件
  浆料进料速率(gal/hr) 2.0 2.0 2.0 2.0 2.0 3.0 4.0
  雾化压力(psig) 80 80 80 60 45 45 45
  持续时间(分钟)   30   30   35   10   30   15   15
  干燥条件:
  干燥空气速率   N/A   N/A   N/A   N/A   N/A   N/A   N/A
进口空气温度℃ 227 256 221 219 227 297   313
  出口空气温度℃   118   118   107   107   107   107   107
  生料性能:
  残余挥发物,%   3.2   3.7   1.1   3.6   2.9   7.3   11.5
  倾倒密度,g/cc   N/A   0.62   0.59   0.63   0.64   0.84   1.42
  轻拍密度,g/cc   N/A   0.65   0.61   0.66   0.70   0.87   1.45
  粒径,微米
  90%小于   N/A   7.54   403.93   9.72   54.15   33.55   40.54
  50%小于   N/A   2.26   4.32   3.33   41.02   3.64   8.84
                                                    表4
  样品   1   2   3   4   5   6   7
  10%小于   N/A   0.76   0.90   0.89   1.69   0.84   1.42
  产物重量(kg)   0.227   0.488   0.989   0.417   1.783   1.075   2.155
  保留在具有以下美国目数的筛上(或底盘上)的百分比
  30   N/A   0.1   0.0   0.1   0.0   0.1   0.1
  40   N/A   0.1   0.1   0.1   0.2   0.8   1.8
  50   N/A   0.7   0.6   0.5   1.9   4.4   7.8
  70   N/A   3.9   3.2   2.6   6.2   9.6   12.7
  100   N/A   8.4   6.4   5.7   12.2   14.3   16.0
  140   N/A   16.2   12.6   12.2   19.6   17.9   17.8
  200   N/A   20.6   18.6   21.6   27.0   17.5   16.7
  270   N/A   30.5   32.7   32.7   22.6   19.9   17.2
  底盘   N/A   19.1   24.7   24.6   9.7   15.4   10.0
  平均粒径,微米(包括底盘材料) N/A 92.8 82.7 82.6 112.6 126.9 150.9
  烧结性能(30/270材料被烧结)
  筛,美国目
  30   N/A   0.5   0.2   0.0   0.0   0.1   0.2
  40   N/A   1.3   0.1   0.1   0.1   0.2   0.7
  50   N/A   2.5   0.3   0.4   1.7   3.4   1.7
  70   N/A   3.2   2.0   3.0   5.9   9.4   2.5
  100   N/A   5.1   4.8   8.0   10.5   13.4   5.3
  140   N/A   8.7   7.9   13.4   16.1   17.8   10.5
  200   N/A   11.8   11.4   15.8   17.3   16.9   14.9
  270   N/A   17.6   16.6   19.6   18.9   17.1   21.2
  底盘   N/A   49.2   56.7   39.7   29.6   21.6   43.1
  平均粒径,微米(包括底盘材料)   N/A   82.7   62.9   79.0   96.9   117.4   79.0
  晶粒度(GFN)(不包括底盘材料)   N/A   132.3   142.1   135.9   126.5   116.4   139.7
  GFN,带底盘   N/A   214.9   231.7   201.0   177.8   156.1   208.8
  堆积密度(g/cc)   N/A   1.38   1.21   1.25   1.41   1.42   1.38
  表观比重(ASG)   N/A   2.75   2.62   2.66   2.78   2.78   2.78
表4所述的示范性浆料说明了固含量大于约50wt%的浆料可以在适合通过喷雾干燥器的雾化设备进料的粘度下获得。浆料的固含量有助于本文中所述的实心的且基本上为圆球形的颗粒的形成。
表4中所报道的堆积密度和ASG表明至少一部分烧结的颗粒是实心的。用于加工本实施例4浆料的低进口空气温度(其由较低的出口空气温度确定)有助于实心颗粒的制备。此外,没有使用粘结剂制备表4所述的实心的且基本上为圆球形的颗粒。
另外,最大平均粒径的材料由最高残余挥发物的样品(样品7)制备。样品7的残余挥发物含量表明,与从干燥室中排出的具有较低残余挥发物含量的那些样品相比,样品7被暴露于降低的干燥速率中。因此,降低的干燥速率应有助于制备具有本文中所述性能的陶瓷颗粒。
实施例5
从通过实施例1-4所研究出的方法中,可以估算出喷雾干燥设备,特别是干燥室的尺寸,其中所述设备能够制备比实施例1-4实际所制备的那些颗粒还要大的颗粒。
现在参见图4,其图示了可期望设备尺寸的估算。实施例2和3的干燥室高度,和其中所制备的生颗粒的体积在图4上分别绘于点1和2处。图4上的点3相应于由American Custom Drying制造的生产用喷雾干燥室的高度(约9.8m),并且在其测试可以获得。假设线性关系由点1和2确定,则高度为9.8m的干燥室应得到约0.110mm3的生颗粒体积。继续一种线性关系的假设,则绘于图4上的点4和5分别相应于约0.212mm3和约0.234mm3的期望的生颗粒体积。如果给定了所述期望的生颗粒体积,则估算出产生这种体积的干燥室的估算高度并完成点4和5的绘制。
如图4所示,用于制备30/50支撑剂分级的颗粒(生颗粒平均粒径近似为765微米)的干燥室的估算高度将为19.8米。使用工业筛选机如Rotex Inc Model 522,可以筛选干燥的颗粒,并得到分级的支撑剂颗粒以生产20/40、20/30或18/40的产品。
本文中所述的高度为19.8米的干燥室可以具有约7.4250米的直径和约857.33m3的容积。本领域普通技术人员能够意识到本实施例5中所述的干燥室的尺寸可以变化,并能够设计其它的直径和比率。
选择干燥室的尺寸,并结合本文中已论述的方法,也就是,使浆料固含量最大化,使浆料中的可溶物(例如,分散剂和/或粘结剂)的量最小化,但仍然保持可喷雾粘度,并降低进料至干燥室的进口和出口空气温度,应会生产出基本上为圆球形的实心陶瓷颗粒,并且当被烧结时,具有适合用作支撑剂材料的平均粒径、堆积密度、表观比重和压碎强度。
根据本发明方法,通过调节(1)固含量(优选在浆料中较高的固含量);(2)可溶物含量(优选在浆料中最低的或不含分散剂和/或粘结剂);(3)空气进口温度(优选低温以降低颗粒的干燥速率)中的一种或多种而制备实心球形陶瓷颗粒。另外,控制通过干燥室的干燥空气流速(优选低速)可能有助于制备本文中所述的实心球形陶瓷颗粒。此外,选择设备尺寸如喷雾干燥器干燥室的高度,可以提高根据本文中所述方法所制备的颗粒的平均粒径。
根据本文中所述方法所制备的基本上为圆球形的实心陶瓷颗粒适于多种用途,包括但不限于用作油井或气井的支撑剂,以及用作铸造介质。从本文中所公开的本发明说明书和实践考虑,本发明的其它实施方式对于本领域技术人员来说是显而易见的。然而,前述说明书应认为其仅是本发明的示范,而本发明的真正范围和精神由下述权利要求表示。

Claims (18)

1、一种制备基本上为圆球形的实心烧结陶瓷颗粒的方法,其包括:
制备固含量大于约50wt%,并且含有水和陶瓷原料的浆料,其中陶瓷原料的氧化铝含量大于约40wt%;
将该浆料进料至可操作地连接于干燥器的雾化器中;
操作雾化器将浆料雾化为微滴;
操作干燥器以提供约100℃-约500℃的空气进口温度;
通过使微滴通过干燥器并通过干燥器的排放而离开,形成基本上为圆球形的实心颗粒;
将从干燥器排放出的至少一部分颗粒在约1000℃-约1600℃的温度下烧结并在峰值温度下烧结约20-约45分钟,其中形成了基本上为圆球形的烧结实心颗粒,该颗粒平均粒径大于约200微米,平均堆积密度大于约1.40g/cc,并且平均表观比重大于约2.60。
2、如权利要求1的方法,其中空气进口温度的范围选自约100℃-约200℃,约200℃-约300℃,约300℃-约400℃,和约400℃-约500℃。
3、如权利要求1的方法,其中空气进口温度的范围选自约150℃-约200℃和约200℃-约250℃。
4、如权利要求1的方法,其进一步包括:
在将浆料进料至雾化器之前,向浆料中加入粘结剂,其中以低于陶瓷原料重量约0.5wt%的量向浆料中加入粘结剂。
5、如权利要求1的方法,其进一步包括:
在将浆料进料至雾化器之前,向浆料中加入粘结剂,其中以低于陶瓷原料重量约1.0wt%的量向浆料中加入粘结剂。
6、如权利要求1的方法,其进一步包括:
在将浆料进料至雾化器之前,向浆料中加入分散剂,其中以低于约0.3wt%的量向浆料中加入分散剂。
7、如权利要求1的方法,其进一步包括:
在将浆料进料至雾化器之前,向浆料中加入分散剂,其中以低于约0.5wt%的量向浆料中加入分散剂。
8、如权利要求1的方法,其进一步包括:
在将浆料进料至雾化器之前,向浆料中加入分散剂,其中以低于约1.0wt%的量向浆料中加入分散剂。
9、如权利要求1的方法,其中陶瓷原料选自煅烧的材料,未煅烧的材料,部分煅烧的材料以及它们的组合。
10、如权利要求1的方法,其中陶瓷原料选自高岭土、铝矾性高岭土和铝土矿。
11、如权利要求1的方法,其中雾化器选自转轮雾化器、压力喷嘴雾化器和双流体喷嘴雾化器。
12、一种制备基本上为圆球形的实心烧结陶瓷颗粒的方法,其包括:
制备固含量大于约50wt%,并且含有水和陶瓷原料的浆料,其中陶瓷原料的氧化铝含量大于约40wt%;
将该浆料进料至可操作地连接于干燥器的雾化器中;
将干燥空气进料至干燥器中;
操作雾化器将浆料雾化为微滴;
通过使微滴通过干燥器而形成基本上为圆球形的实心颗粒;
控制浆料固含量、进入干燥器的干燥空气的温度、和进入干燥器的干燥空气的进料速率中的至少一种以制备基本上为圆球形的实心颗粒,并且当在约1000℃-约1600℃的温度下烧结并在峰值温度下烧结约20-约45分钟时,其平均粒径大于约200微米,平均堆积密度大于约1.40g/cc,并且平均表观比重大于约2.60。
13、如权利要求12的方法,其进一步包括:
向浆料中加入至少一种选自分散剂和粘结剂的添加剂;和
控制所选添加剂的量以制备基本上为圆球形的烧结实心颗粒,其平均粒径大于约200微米,平均堆积密度大于约1.40g/cc,并且平均表观比重大于约2.60。
14、如权利要求13的方法,其中所选的添加剂是选自胶体、聚合电解质、焦磷酸四钠、焦磷酸四钾、多磷酸盐、柠檬酸铵、柠檬酸铁铵和六偏磷酸钠的分散剂。
15、如权利要求13的方法,其中所选的添加剂是选自聚乙烯醇、聚乙酸乙烯酯、甲基纤维素、糊精和糖蜜的粘结剂。
16、如权利要求12的方法,其进一步包括:
调节干燥器的尺寸以对基本上为圆球形的实心颗粒的平均粒径、堆积密度和表观比重中的至少一种进行调节。
17、如权利要求16的方法,其中提高干燥器的高度以提高基本上为圆球形的实心颗粒的平均粒径。
18、一种颗粒,其特征在于:
是实心的;
基本上为圆球形;
平均粒径大于约200微米;
平均堆积密度大于约1.40g/cc;并且
平均表观比重大于约2.60,其中该颗粒通过下述过程而形成:
制备固含量大于约50wt%,并且含有水和陶瓷原料的浆料,其中陶瓷原料的氧化铝含量大于约40wt%;
将该浆料进料至可操作地连接于干燥器的雾化器中;
操作雾化器将浆料雾化为微滴;
操作干燥器以在约100℃-约500℃的空气进口温度下提供进入干燥器的空气流;
通过使微滴通过干燥器并通过干燥器的排放而离开,形成基本上为圆球形的实心颗粒;
将从干燥器排放出的至少一部分颗粒在约1000℃-约1600℃的温度下烧结并在峰值温度下烧结约20-约45分钟。
CNA2005800302528A 2004-07-09 2005-07-08 使用喷雾干燥法制备实心陶瓷颗粒的方法 Pending CN101043990A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US58680904P 2004-07-09 2004-07-09
US60/586,809 2004-07-09

Publications (1)

Publication Number Publication Date
CN101043990A true CN101043990A (zh) 2007-09-26

Family

ID=35785758

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2005800302528A Pending CN101043990A (zh) 2004-07-09 2005-07-08 使用喷雾干燥法制备实心陶瓷颗粒的方法

Country Status (11)

Country Link
US (2) US7387752B2 (zh)
EP (1) EP1802429A4 (zh)
JP (1) JP2008505835A (zh)
CN (1) CN101043990A (zh)
AU (1) AU2005265298A1 (zh)
BR (1) BRPI0513173A (zh)
CA (1) CA2572759A1 (zh)
EA (1) EA010944B1 (zh)
MX (1) MX2007000072A (zh)
NO (1) NO20070582L (zh)
WO (1) WO2006010036A2 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103963144A (zh) * 2013-02-04 2014-08-06 莱希勒有限公司 用于生产雾化喷嘴的模具,用于生产雾化喷嘴的模具组、阴模和方法
CN105745182A (zh) * 2013-11-19 2016-07-06 普拉德研究及开发股份有限公司 由穿孔膜形成的陶瓷颗粒
CN108751960A (zh) * 2018-07-10 2018-11-06 哈尔滨工业大学 一种高温熔体水雾法制备氧化铝基固溶体陶瓷微米粉的方法
CN111217588A (zh) * 2018-11-27 2020-06-02 大东产业株式会社 瓷砖用高流动性颗粒粉末的制造方法及瓷砖的制造方法
CN111718186A (zh) * 2020-06-18 2020-09-29 淄博启明星新材料股份有限公司 颗粒尺寸可调的zta陶瓷微珠的制备方法
CN114055598A (zh) * 2021-10-27 2022-02-18 湖南省新化县鑫星电子陶瓷有限责任公司 一种易出料的氧化铝陶瓷喷雾造粒装置

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA06011762A (es) * 2004-04-12 2007-04-13 Carbo Ceramics Inc Revestimiento y/o tratamiento de agentes de apoyo para la facturacion hidraulica para mejorar la humectabilidad, la lubricacion de agentes de apoyo y/o para la reduccion del dano por fluidos fracturantes y fluidos de deposito.
EA010944B1 (ru) 2004-07-09 2008-12-30 Карбо Керамикс, Инк. Способ производства твердых спеченных керамических частиц и полученные этим способом частицы
EP1799962A2 (en) * 2004-09-14 2007-06-27 Carbo Ceramics Inc. Sintered spherical pellets
US20070059528A1 (en) * 2004-12-08 2007-03-15 Carbo Ceramics Inc. Low resin demand foundry media
US8012533B2 (en) 2005-02-04 2011-09-06 Oxane Materials, Inc. Composition and method for making a proppant
US7491444B2 (en) * 2005-02-04 2009-02-17 Oxane Materials, Inc. Composition and method for making a proppant
US7867613B2 (en) 2005-02-04 2011-01-11 Oxane Materials, Inc. Composition and method for making a proppant
EP2292894A1 (en) * 2005-02-04 2011-03-09 Oxane Materials, Inc. A composition and method for making a proppant
AU2006218614A1 (en) * 2005-03-01 2006-09-08 Carbo Ceramics Inc. Methods for producing sintered particles from a slurry of an alumina-containing raw material
US20070023187A1 (en) * 2005-07-29 2007-02-01 Carbo Ceramics Inc. Sintered spherical pellets useful for gas and oil well proppants
DE102005045180B4 (de) * 2005-09-21 2007-11-15 Center For Abrasives And Refractories Research & Development C.A.R.R.D. Gmbh Kugelförmige Korundkörner auf Basis von geschmolzenem Aluminiumoxid sowie ein Verfahren zu ihrer Herstellung
BRPI0617713A2 (pt) * 2005-10-19 2011-08-02 Carbo Ceramics Inc meios para fundição de baixa expansão térmica
US7828998B2 (en) 2006-07-11 2010-11-09 Carbo Ceramics, Inc. Material having a controlled microstructure, core-shell macrostructure, and method for its fabrication
EA015865B1 (ru) * 2006-08-30 2011-12-30 Карбо Керамикс Инк. Проппант низкой насыпной плотности и способы его изготовления
US8562900B2 (en) 2006-09-01 2013-10-22 Imerys Method of manufacturing and using rod-shaped proppants and anti-flowback additives
US20080066910A1 (en) * 2006-09-01 2008-03-20 Jean Andre Alary Rod-shaped proppant and anti-flowback additive, method of manufacture, and method of use
JP5334375B2 (ja) * 2007-03-30 2013-11-06 旭有機材工業株式会社 熱硬化性樹脂組成物、繊維強化成形材料及び成形体
TW200843903A (en) * 2007-05-03 2008-11-16 Univ Nat Central Abrasives with function of sliding grinding and its manufacturing method
WO2009009370A1 (en) 2007-07-06 2009-01-15 Carbo Ceramics Inc. Proppants for gel clean-up
US20090118145A1 (en) * 2007-10-19 2009-05-07 Carbo Ceramics Inc. Method for producing proppant using a dopant
BRPI0800374B1 (pt) * 2008-03-10 2019-04-09 Mineração Curimbaba Ltda. Processo para o fraturamento hidráulico de poços de petróleo e de gás
WO2009133904A1 (ja) * 2008-04-30 2009-11-05 電気化学工業株式会社 アルミナ粉末、その製造方法、及びそれを用いた樹脂組成物
JP5234411B2 (ja) * 2008-06-24 2013-07-10 株式会社リコー トナー製造方法およびトナー製造装置
CN101880524A (zh) 2010-04-27 2010-11-10 福建省宁德市俊杰瓷业有限公司 一种超轻密度陶粒支撑剂及其制备方法
BR112012015322A2 (pt) 2009-12-22 2019-09-24 Oxane Mat Inc propante e método para formar o propante
KR101220846B1 (ko) * 2010-01-05 2013-01-10 금호석유화학 주식회사 탄소나노튜브 합성용 촉매 제조 장치
JP5902617B2 (ja) 2010-04-28 2016-04-13 協和発酵キリン株式会社 カチオン性脂質
AU2011245987B2 (en) 2010-04-28 2016-12-15 Kyowa Hakko Kirin Co., Ltd Cationic lipid
JP5171919B2 (ja) * 2010-10-08 2013-03-27 品川リフラクトリーズ株式会社 鋼の連続鋳造用顆粒状モールドパウダーの製造方法
US8865631B2 (en) * 2011-03-11 2014-10-21 Carbo Ceramics, Inc. Proppant particles formed from slurry droplets and method of use
US10077395B2 (en) * 2011-03-11 2018-09-18 Carbo Ceramics Inc. Proppant particles formed from slurry droplets and methods of use
US9670400B2 (en) * 2011-03-11 2017-06-06 Carbo Ceramics Inc. Proppant particles formed from slurry droplets and methods of use
US9175210B2 (en) * 2011-03-11 2015-11-03 Carbo Ceramics Inc. Proppant particles formed from slurry droplets and method of use
US8883693B2 (en) * 2011-03-11 2014-11-11 Carbo Ceramics, Inc. Proppant particles formed from slurry droplets and method of use
US8614157B2 (en) * 2011-03-25 2013-12-24 Carbo Ceramics, Inc. Sintered particles and methods for producing sintered particles from a slurry of an alumina-containing raw material
JP2013095755A (ja) 2011-11-02 2013-05-20 Kyowa Hakko Kirin Co Ltd カチオン性脂質
US9033040B2 (en) 2011-12-16 2015-05-19 Baker Hughes Incorporated Use of composite of lightweight hollow core having adhered or embedded cement in cementing a well
RU2500713C9 (ru) * 2012-02-28 2021-03-17 Общество С Ограниченной Ответственностью "Форэс" Способ изготовления высококремнеземистого керамического проппанта для добычи сланцевого газа
CN104685023B (zh) 2012-08-01 2018-03-13 哈利伯顿能源服务公司 合成支撑剂和单分散支撑剂以及其制备方法
US10301536B2 (en) * 2014-12-16 2019-05-28 Carbo Ceramics Inc. Electrically-conductive proppant and methods for making and using same
EP2792332B1 (de) * 2013-04-18 2015-03-11 Amann Girrbach AG Anordnung mit zumindest einem zu sinternden Werkstück
EP2792985B1 (de) 2013-04-18 2014-11-26 Amann Girrbach AG Sintervorrichtung
CA2849415C (en) 2013-04-24 2017-02-28 Robert D. Skala Methods for fracturing subterranean formations
US20170157582A1 (en) * 2014-07-02 2017-06-08 Corning Incorporated Spray drying mixed batch material for plasma melting
CN106470946A (zh) * 2014-07-04 2017-03-01 陶氏环球技术有限责任公司 具有改良流动性的无机粒子
CN104190423B (zh) * 2014-09-25 2016-05-11 四川理工学院 一种圆球状α-Fe2O3的制备方法
WO2017042611A1 (en) * 2015-09-11 2017-03-16 Saint-Gobain Ceramics & Plastics, Inc. Method of forming porous ceramic particles
US10391679B2 (en) 2016-07-22 2019-08-27 Schlumberger Technology Corporation Perforated membranes and methods of making the same
US11111151B2 (en) 2016-09-13 2021-09-07 National Institute For Materials Science Layered silicate powder granules and method for producing the same
US10589300B2 (en) * 2016-12-02 2020-03-17 General Electric Company Coating system and method
US11067002B2 (en) 2016-12-06 2021-07-20 General Electric Company Gas turbine engine maintenance tool
CN107140953B (zh) * 2017-04-18 2019-11-22 华中科技大学 一种快速挤出制备陶瓷微球的方法
CN109227910B (zh) * 2018-11-15 2020-06-30 琼海财隆建材有限公司 轻质砌块切割置换装置
CN113929439A (zh) * 2021-10-25 2022-01-14 山东高得材料科技有限公司 滤水用球形陶瓷颗粒的制法和用其制作过滤水装置的方法
CN113952886B (zh) * 2021-10-27 2023-09-22 湖南省新化县鑫星电子陶瓷有限责任公司 一种氧化铝陶瓷喷雾造粒机
ES2912038A1 (es) * 2022-01-14 2022-05-24 Asociacion De Investig De Las Industrias Ceramicas Aice Equipo de microatomizacion para la caracterizacion de muestras de materias primas y procedimiento de caracterizacion de una muestra microatomizada
CN115430352B (zh) * 2022-11-09 2023-01-10 山东华农生物制药有限公司 一种基于喷雾干燥的药液造粒设备

Family Cites Families (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3126056A (en) 1964-03-24 Hydraulic fracturing of earth formations
US2799074A (en) * 1957-07-16 qarloni
US1942431A (en) 1934-01-09 Refractory brick and process of
US2566117A (en) 1947-06-14 1951-08-28 Babcock & Wilcox Co Refractory heat transfer bodies and process of manufacture
US2699212A (en) 1948-09-01 1955-01-11 Newton B Dismukes Method of forming passageways extending from well bores
US2950247A (en) 1957-05-16 1960-08-23 Atlantic Refining Co Increasing permeability of subsurface formations
US3026938A (en) 1958-09-02 1962-03-27 Gulf Research Development Co Propping agent for a fracturing process
US3079243A (en) 1959-10-19 1963-02-26 Norton Co Abrasive grain
US3075581A (en) 1960-06-13 1963-01-29 Atlantic Retining Company Increasing permeability of subsurface formations
US3242032A (en) 1961-11-24 1966-03-22 Charles W Schott Glass spheres and underground proppants and methods of making the same
US3245866A (en) 1961-11-24 1966-04-12 Charles W Schott Vitreous spheres of slag and slag-like materials and underground propplants
US3241613A (en) 1962-02-19 1966-03-22 Atlantic Refining Co Shutting off water in vertical fractures
US3350482A (en) 1962-04-18 1967-10-31 Sun Oil Co Method of producing spherical solids
DE1278411B (de) 1963-06-14 1968-09-26 Basf Ag Verfahren zur Herstellung von Katalysatoren oder Katalysatortraegern in Form von Hohlkugeln
US3437148A (en) 1967-01-06 1969-04-08 Union Carbide Corp Method and article for increasing the permeability of earth formations
US3486706A (en) 1967-02-10 1969-12-30 Minnesota Mining & Mfg Ceramic grinding media
US3491492A (en) 1968-01-15 1970-01-27 Us Industries Inc Method of making alumina abrasive grains
US3497008A (en) 1968-03-05 1970-02-24 Exxon Production Research Co Method of propping fractures with ceramic particles
CH490110A (de) 1969-02-28 1970-05-15 Spemag Ag Mischmaschine
US3663165A (en) * 1970-02-09 1972-05-16 Engelhard Min & Chem Zeolitic catalyst and preparation
US3598373A (en) 1970-03-26 1971-08-10 Coors Porcelanin Co Method and apparatus for making small ceramic spheres
US3856441A (en) 1970-10-30 1974-12-24 Ube Industries Apparatus for pelletizing powdered solid substance in a fluidized bed
US3758318A (en) 1971-03-29 1973-09-11 Kaiser Aluminium Chem Corp Production of mullite refractory
US4052794A (en) 1971-06-18 1977-10-11 Struthers Scientific And International Corporation Fluidized bed process
DE2144220C3 (de) 1971-08-31 1974-04-25 Mannesmann Ag, 4000 Duesseldorf Verfahren und Vorrichtung zum Herstellen von sauerstoffarmen Metallpulvern
US3810768A (en) 1972-04-06 1974-05-14 Chicago Fire Brick Co Refractory composition comprising coarse particles of clay or bauxite and carbon
US4051603A (en) 1973-07-02 1977-10-04 Struthers Scientific And International Corporation Fluidized bed apparatus
US3890072A (en) 1973-09-04 1975-06-17 Norton Co Apparatus for forming solid spherical pellets
US3939246A (en) * 1974-03-29 1976-02-17 Mobil Oil Corporation Manufacture of crystalline aluminosilicate zeolites
US3976138A (en) 1974-08-01 1976-08-24 Union Carbide Corporation Method of increasing permeability in subsurface earth formation
US4077908A (en) 1974-12-27 1978-03-07 Hoechst Aktiengesellschaft Production of material consisting of solid hollow spheroids
FR2306327A1 (fr) 1975-03-19 1976-10-29 Inst Francais Du Petrole Procede de soutenement de fractures dans les parois d'un puits traversant des formations geologiques
CA1045027A (en) 1975-09-26 1978-12-26 Walter A. Hedden Hydraulic fracturing method using sintered bauxite propping agent
US4053375A (en) 1976-07-16 1977-10-11 Dorr-Oliver Incorporated Process for recovery of alumina-cryolite waste in aluminum production
US4303204A (en) 1976-10-28 1981-12-01 Reynolds Metals Company Upgrading of bauxites, bauxitic clays, and aluminum mineral bearing clays
US4195010A (en) * 1977-07-06 1980-03-25 Burns & Russell Company of Baltimore City Ceramic coated quartz particles
US4191720A (en) * 1977-10-06 1980-03-04 General Electric Company Method for making porous, crushable core having an integral outer barrier layer
US4140773A (en) 1978-02-24 1979-02-20 Continental Oil Company Production of high pore volume alumina spheres
JPS5857430B2 (ja) 1978-10-23 1983-12-20 四国化成工業株式会社 顆粒状ジクロロイソシアヌル酸アルカリ金属塩の製法
US4371481A (en) 1979-02-06 1983-02-01 Phillips Petroleum Company Iron-containing refractory balls for retorting oil shale
US4407967A (en) 1979-08-16 1983-10-04 Frenchtown American Corp. Method for producing spheroidal ceramics
US4268311A (en) 1979-11-01 1981-05-19 Anchor Hocking Corporation High strength cordierite ceramic
US4442897A (en) 1980-05-23 1984-04-17 Standard Oil Company Formation fracturing method
DK155781C (da) * 1982-01-07 1989-10-09 Niro Atomizer As Fremgangsmaade til fremstilling af sintrede smaakugler af bauxit eller bauxitholdig bjergart, samt middel til udoevelse af fremgangsmaaden
US4440866A (en) * 1980-07-07 1984-04-03 A/S Niro Atomizer Process for the production of sintered bauxite spheres
GB2079261B (en) 1980-07-07 1983-06-08 Niro Atomizer As Process for the production of sintered bauxite spheres
US4343751A (en) 1980-09-15 1982-08-10 Lowe's, Inc. Clay agglomeration process
US4547468A (en) 1981-08-10 1985-10-15 Terra Tek, Inc. Hollow proppants and a process for their manufacture
US4732920A (en) * 1981-08-20 1988-03-22 Graham John W High strength particulates
US4522731A (en) * 1982-10-28 1985-06-11 Dresser Industries, Inc. Hydraulic fracturing propping agent
AU551409B2 (en) 1982-01-07 1986-05-01 A/S Niro Atomizer High strength propping agent
US4396595A (en) 1982-02-08 1983-08-02 North American Philips Electric Corp. Method of enhancing the optical transmissivity of polycrystalline alumina bodies, and article produced by such method
US4879181B1 (en) 1982-02-09 1994-01-11 Carbo Ceramics Inc. Sintered spherical pellets containing clay as a major component useful for gas and oil well proppants
US4894285B1 (en) 1982-02-09 1994-01-11 Carbo Ceramics Inc. Sintered spherical pellets containing clay as a major component useful for gas and oil well proppants
US4623630A (en) 1982-02-09 1986-11-18 Standard Oil Proppants Company Use of uncalcined/partially calcined ingredients in the manufacture of sintered pellets useful for gas and oil well proppants
US4658899A (en) 1982-02-09 1987-04-21 Standard Oil Proppants Company, L.P. Use of uncalcined/partially calcined ingredients in the manufacture of sintered pellets useful for gas and oil well proppants
US4427068A (en) 1982-02-09 1984-01-24 Kennecott Corporation Sintered spherical pellets containing clay as a major component useful for gas and oil well proppants
US4439489A (en) 1982-02-16 1984-03-27 Acme Resin Corporation Particles covered with a cured infusible thermoset film and process for their production
US4450184A (en) 1982-02-16 1984-05-22 Metco Incorporated Hollow sphere ceramic particles for abradable coatings
US4462466A (en) 1982-03-29 1984-07-31 Kachnik Joseph E Method of propping fractures in subterranean formations
US5120455A (en) 1982-10-28 1992-06-09 Carbo Ceramics Inc. Hydraulic fracturing propping agent
US4638029A (en) * 1983-02-22 1987-01-20 Union Carbide Corporation Ceramic composition and process for use thereof
US4521475A (en) 1983-04-01 1985-06-04 Riccio Louis M Method and apparatus for applying metal cladding on surfaces and products formed thereby
US4555493A (en) 1983-12-07 1985-11-26 Reynolds Metals Company Aluminosilicate ceramic proppant for gas and oil well fracturing and method of forming same
US4493875A (en) 1983-12-09 1985-01-15 Minnesota Mining And Manufacturing Company Proppant for well fractures and method of making same
US4618504A (en) 1983-12-20 1986-10-21 Bosna Alexander A Method and apparatus for applying metal cladding on surfaces and products formed thereby
US4680230A (en) 1984-01-18 1987-07-14 Minnesota Mining And Manufacturing Company Particulate ceramic useful as a proppant
US4652411A (en) 1984-05-23 1987-03-24 The United States Of America As Represented By The United States Department Of Energy Method of preparing thin porous sheets of ceramic material
US4668645A (en) 1984-07-05 1987-05-26 Arup Khaund Sintered low density gas and oil well proppants from a low cost unblended clay material of selected composition
US4744831A (en) 1984-07-30 1988-05-17 Minnesota Mining And Manufacturing Company Hollow inorganic spheres and methods for making such spheres
US4601997A (en) * 1984-12-14 1986-07-22 Engelhard Corporation Porous mullite
US4714623A (en) 1985-02-28 1987-12-22 Riccio Louis M Method and apparatus for applying metal cladding on surfaces and products formed thereby
US4713203A (en) 1985-05-23 1987-12-15 Comalco Aluminium Limited Bauxite proppant
US4632876A (en) 1985-06-12 1986-12-30 Minnesota Mining And Manufacturing Company Ceramic spheroids having low density and high crush resistance
US4639427A (en) 1985-06-28 1987-01-27 Norton Company Stress-corrosion resistant proppant for oil and gas wells
US4654266A (en) 1985-12-24 1987-03-31 Kachnik Joseph L Durable, high-strength proppant and method for forming same
US4656568A (en) * 1985-12-26 1987-04-07 Reed Martin R Lamp shade
JPS6379777A (ja) 1986-09-24 1988-04-09 科学技術庁金属材料技術研究所長 セラミツクス基板上への被覆体の製造法
US4840729A (en) * 1987-01-02 1989-06-20 Atlantic Richfield Company Oil spill recovery apparatus
GB8711005D0 (en) * 1987-05-09 1987-06-10 British Petroleum Co Plc Chemical process
US4921820A (en) 1989-01-17 1990-05-01 Norton-Alcoa Proppants Lightweight proppant for oil and gas wells and methods for making and using same
US4921821A (en) 1988-08-02 1990-05-01 Norton-Alcoa Proppants Lightweight oil and gas well proppants and methods for making and using same
US5030603A (en) 1988-08-02 1991-07-09 Norton-Alcoa Lightweight oil and gas well proppants
US4993491A (en) * 1989-04-24 1991-02-19 Amoco Corporation Fracture stimulation of coal degasification wells
US5188175A (en) 1989-08-14 1993-02-23 Carbo Ceramics Inc. Method of fracturing a subterranean formation with a lightweight propping agent
ATE108425T1 (de) 1989-12-22 1994-07-15 Comalco Alu Keramische mikrokugeln.
US5266243A (en) * 1992-07-16 1993-11-30 Kneller James F Method for preparing a ceramic oxide material
US5422183A (en) * 1993-06-01 1995-06-06 Santrol, Inc. Composite and reinforced coatings on proppants and particles
GB9503949D0 (en) 1995-02-28 1995-04-19 Atomic Energy Authority Uk Oil well treatment
US5972835A (en) 1995-09-13 1999-10-26 Research Triangle Institute Fluidizable particulate materials and methods of making same
US6528157B1 (en) * 1995-11-01 2003-03-04 Borden Chemical, Inc. Proppants with fiber reinforced resin coatings
DE19647038B4 (de) 1996-11-14 2007-02-22 Ferro Gmbh Kugelförmige Pigmente, Verfahren zu ihrer Herstellung und deren Verwendung
DE19647037A1 (de) 1996-11-14 1998-05-28 Degussa Kugelförmige Farbpigmente, Verfahren zu ihrer Herstellung und deren Verwendung
US6749025B1 (en) 1996-11-27 2004-06-15 Bj Services Company Lightweight methods and compositions for sand control
US20050028979A1 (en) 1996-11-27 2005-02-10 Brannon Harold Dean Methods and compositions of a storable relatively lightweight proppant slurry for hydraulic fracturing and gravel packing applications
US7426961B2 (en) 2002-09-03 2008-09-23 Bj Services Company Method of treating subterranean formations with porous particulate materials
US6330916B1 (en) 1996-11-27 2001-12-18 Bj Services Company Formation treatment method using deformable particles
US6364018B1 (en) 1996-11-27 2002-04-02 Bj Services Company Lightweight methods and compositions for well treating
US6059034A (en) 1996-11-27 2000-05-09 Bj Services Company Formation treatment method using deformable particles
US6772838B2 (en) 1996-11-27 2004-08-10 Bj Services Company Lightweight particulate materials and uses therefor
US6582819B2 (en) * 1998-07-22 2003-06-24 Borden Chemical, Inc. Low density composite proppant, filtration media, gravel packing media, and sports field media, and methods for making and using same
WO2000005302A1 (en) 1998-07-22 2000-02-03 Borden Chemical, Inc. Composite proppant, composite filtration media and methods for making and using same
US6217646B1 (en) 1999-04-26 2001-04-17 Daubois Inc. Sculptable and breathable wall coating mortar compound
DE60120553T2 (de) 2000-04-28 2007-06-06 Ricoh Co., Ltd. Toner, externes Additiv, und Bilderzeugungsverfahren
US6372678B1 (en) 2000-09-28 2002-04-16 Fairmount Minerals, Ltd Proppant composition for gas and oil well fracturing
US6766817B2 (en) * 2001-07-25 2004-07-27 Tubarc Technologies, Llc Fluid conduction utilizing a reversible unsaturated siphon with tubarc porosity action
DE10138574A1 (de) 2001-08-06 2003-02-27 Degussa Granulate auf Basis von pyrogen hergestelltem Aluminiumoxid, Verfahren zu ihrer Herstellung und ihre Verwendung
US7041250B2 (en) * 2001-08-23 2006-05-09 Powdermet, Inc. Combined liquid phase and activated sintering of refractory metals
US6753299B2 (en) 2001-11-09 2004-06-22 Badger Mining Corporation Composite silica proppant material
RU2211198C2 (ru) * 2001-11-13 2003-08-27 Открытое акционерное общество "Боровичский комбинат огнеупоров" Шихта для изготовления огнеупорных высокопрочных сферических гранул и способ их производства
US6810959B1 (en) * 2002-03-22 2004-11-02 Bj Services Company, U.S.A. Low residue well treatment fluids and methods of use
US6725930B2 (en) 2002-04-19 2004-04-27 Schlumberger Technology Corporation Conductive proppant and method of hydraulic fracturing using the same
US20040023818A1 (en) * 2002-08-05 2004-02-05 Nguyen Philip D. Method and product for enhancing the clean-up of hydrocarbon-producing well
US7036591B2 (en) * 2002-10-10 2006-05-02 Carbo Ceramics Inc. Low density proppant
US6780804B2 (en) * 2003-01-24 2004-08-24 Saint-Gobain Ceramics & Plastics, Inc. Extended particle size distribution ceramic fracturing proppant
US7021379B2 (en) * 2003-07-07 2006-04-04 Halliburton Energy Services, Inc. Methods and compositions for enhancing consolidation strength of proppant in subterranean fractures
US20050028976A1 (en) * 2003-08-05 2005-02-10 Nguyen Philip D. Compositions and methods for controlling the release of chemicals placed on particulates
MXPA06011762A (es) 2004-04-12 2007-04-13 Carbo Ceramics Inc Revestimiento y/o tratamiento de agentes de apoyo para la facturacion hidraulica para mejorar la humectabilidad, la lubricacion de agentes de apoyo y/o para la reduccion del dano por fluidos fracturantes y fluidos de deposito.
EA010944B1 (ru) 2004-07-09 2008-12-30 Карбо Керамикс, Инк. Способ производства твердых спеченных керамических частиц и полученные этим способом частицы
EP1799962A2 (en) * 2004-09-14 2007-06-27 Carbo Ceramics Inc. Sintered spherical pellets
EP1791691A4 (en) * 2004-09-20 2010-06-23 Hexion Specialty Chemicals Res PARTICLES USED AS SUPPORTING AGENTS OR GRAFT GRAPPLES, METHODS OF MAKING AND USING SAME
KR100932575B1 (ko) * 2004-12-20 2009-12-17 셀라니즈 인터내셔날 코포레이션 촉매용 개질된 지지체 물질
US7491444B2 (en) * 2005-02-04 2009-02-17 Oxane Materials, Inc. Composition and method for making a proppant
EP2292894A1 (en) * 2005-02-04 2011-03-09 Oxane Materials, Inc. A composition and method for making a proppant
US7867613B2 (en) * 2005-02-04 2011-01-11 Oxane Materials, Inc. Composition and method for making a proppant
AU2006218614A1 (en) * 2005-03-01 2006-09-08 Carbo Ceramics Inc. Methods for producing sintered particles from a slurry of an alumina-containing raw material
US20070023187A1 (en) * 2005-07-29 2007-02-01 Carbo Ceramics Inc. Sintered spherical pellets useful for gas and oil well proppants
US7828998B2 (en) * 2006-07-11 2010-11-09 Carbo Ceramics, Inc. Material having a controlled microstructure, core-shell macrostructure, and method for its fabrication
US8198505B2 (en) * 2006-07-12 2012-06-12 The Procter & Gamble Company Disposable absorbent articles comprising non-biopersistent inorganic vitreous microfibers
EA015865B1 (ru) * 2006-08-30 2011-12-30 Карбо Керамикс Инк. Проппант низкой насыпной плотности и способы его изготовления
WO2009009370A1 (en) * 2007-07-06 2009-01-15 Carbo Ceramics Inc. Proppants for gel clean-up
US8047288B2 (en) * 2007-07-18 2011-11-01 Oxane Materials, Inc. Proppants with carbide and/or nitride phases
US20090118145A1 (en) * 2007-10-19 2009-05-07 Carbo Ceramics Inc. Method for producing proppant using a dopant

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103963144A (zh) * 2013-02-04 2014-08-06 莱希勒有限公司 用于生产雾化喷嘴的模具,用于生产雾化喷嘴的模具组、阴模和方法
CN103963144B (zh) * 2013-02-04 2017-08-04 莱希勒有限公司 用于生产雾化喷嘴的模具,用于生产雾化喷嘴的模具组、阴模和方法
US10265887B2 (en) 2013-02-04 2019-04-23 Lechler Gmbh Mould for producing atomizer nozzles, mould set, negative mould and method for producing an atomizer nozzle
CN105745182A (zh) * 2013-11-19 2016-07-06 普拉德研究及开发股份有限公司 由穿孔膜形成的陶瓷颗粒
CN108751960A (zh) * 2018-07-10 2018-11-06 哈尔滨工业大学 一种高温熔体水雾法制备氧化铝基固溶体陶瓷微米粉的方法
CN108751960B (zh) * 2018-07-10 2021-08-31 哈尔滨工业大学 一种高温熔体水雾法制备氧化铝基固溶体陶瓷微米粉的方法
CN111217588A (zh) * 2018-11-27 2020-06-02 大东产业株式会社 瓷砖用高流动性颗粒粉末的制造方法及瓷砖的制造方法
CN111718186A (zh) * 2020-06-18 2020-09-29 淄博启明星新材料股份有限公司 颗粒尺寸可调的zta陶瓷微珠的制备方法
CN111718186B (zh) * 2020-06-18 2022-12-09 淄博启明星新材料股份有限公司 颗粒尺寸可调的zta陶瓷微珠的制备方法
CN114055598A (zh) * 2021-10-27 2022-02-18 湖南省新化县鑫星电子陶瓷有限责任公司 一种易出料的氧化铝陶瓷喷雾造粒装置

Also Published As

Publication number Publication date
EA010944B1 (ru) 2008-12-30
US20060006589A1 (en) 2006-01-12
CA2572759A1 (en) 2006-01-26
BRPI0513173A (pt) 2008-04-29
AU2005265298A1 (en) 2006-01-26
WO2006010036A2 (en) 2006-01-26
EP1802429A2 (en) 2007-07-04
MX2007000072A (es) 2007-03-27
WO2006010036A3 (en) 2006-11-02
JP2008505835A (ja) 2008-02-28
EP1802429A4 (en) 2010-03-03
NO20070582L (no) 2007-01-31
US20080241540A1 (en) 2008-10-02
US7387752B2 (en) 2008-06-17
EA200700296A1 (ru) 2007-06-29

Similar Documents

Publication Publication Date Title
CN101043990A (zh) 使用喷雾干燥法制备实心陶瓷颗粒的方法
JP5312953B2 (ja) 微細分散噴霧を生成する噴霧装置、及び同噴霧装置を使用した易流動性噴霧乾燥アルミナ粉末を生成するプロセス
CN103232732B (zh) 一种超细改性重质碳酸钙的制备工艺
CN106458585B (zh) 球形多孔羟基磷灰石吸附剂及其制备方法
CN113045297B (zh) 一种3d直写打印复合陶瓷浆料、制备方法及得到的陶瓷
US10428267B2 (en) Methods for producing solid ceramic particles using a microwave firing process
CN104086176A (zh) 均匀复合的球状陶瓷颗粒及其制备方法
CN108911753A (zh) 一种高韧性无压烧结碳化硼陶瓷制备方法
CN101884892A (zh) 一种超细及纳米WC-Co复合粉的团聚造粒方法
US20180244576A1 (en) Binder materials for use in preparation of ceramic particles
KR20170019185A (ko) 분무 건조법을 이용한 알루미나 과립의 제조방법
CN110981445A (zh) 一种激光3d打印用氧化物陶瓷粉末的制备方法
CN105967690A (zh) 一种超细粉体与大粒径颗粒混料的方法
CN106009573A (zh) 一种3d打印用的abs/pla发光复合材料
KR101538379B1 (ko) Pcb용 고열전도성 세라믹 복합필러의 제조방법 및 그 세라믹 복합필러
US5296177A (en) Process for producing agglomerates from dusts
CN111718186B (zh) 颗粒尺寸可调的zta陶瓷微珠的制备方法
US20040208811A1 (en) Method of preparing granules
CN1226434C (zh) 金属基复合材料增强相预构件的制备方法
JP6276011B2 (ja) 多孔質造粒焼成物の製造方法
CN1084314C (zh) 煅烧溶胶凝胶氧化铝颗粒的方法、由其制得的磨粒及其应用
CN108997015A (zh) 一种碳化硼基防弹陶瓷复合材料及其制备方法
CN203474661U (zh) 均匀复合的球状陶瓷颗粒
KR20150110455A (ko) 제막 방법, 다공질막, 광 전극 및 색소 증감 태양 전지
CN103539481B (zh) 一种植物颗粒成孔剂的制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20070926