CN101140438A - 图像形成装置及图像形成方法 - Google Patents

图像形成装置及图像形成方法 Download PDF

Info

Publication number
CN101140438A
CN101140438A CNA2007101628465A CN200710162846A CN101140438A CN 101140438 A CN101140438 A CN 101140438A CN A2007101628465 A CNA2007101628465 A CN A2007101628465A CN 200710162846 A CN200710162846 A CN 200710162846A CN 101140438 A CN101140438 A CN 101140438A
Authority
CN
China
Prior art keywords
image
toner
concentration
action
carry out
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007101628465A
Other languages
English (en)
Other versions
CN101140438B (zh
Inventor
志村英次
滨高志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003189473A external-priority patent/JP2004102239A/ja
Priority claimed from JP2003189474A external-priority patent/JP4396152B2/ja
Priority claimed from JP2003189475A external-priority patent/JP2004102240A/ja
Priority claimed from JP2003189476A external-priority patent/JP2004109980A/ja
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Publication of CN101140438A publication Critical patent/CN101140438A/zh
Application granted granted Critical
Publication of CN101140438B publication Critical patent/CN101140438B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/385Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective supply of electric current or selective application of magnetism to a printing or impression-transfer material
    • B41J2/41Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective supply of electric current or selective application of magnetism to a printing or impression-transfer material for electrostatic printing

Abstract

一种图像形成装置及图像形成方法,自执行前一图像形成动作后每经过规定时间,就执行伴随补丁图像的形成的浓度控制因子的优化处理。通过这样定期地进行图像形成,可抑制承载于显影辊上的调色剂因长时间放置而引起的浓度斑纹的发生。此外,在补丁图像形成之前,或以规定的时间,定期地执行显影辊的旋转动作,则更加有效。

Description

图像形成装置及图像形成方法
本申请是基于申请号为03146073.9,申请日为2003年7月21日,申请人为精工爱普生株式会社,题为“图像形成装置及图像形成方法”的发明提出的分案申请。
技术领域
本发明涉及一种图像形成装置及图像形成方法,在使形成静电潜像的载像体和承载调色剂的调色剂载体对向配置的状态下,对所述调色剂载体施加显影偏压,使调色剂自所述调色剂载体向所述载像体移动,从而将所述静电潜像显影。
背景技术
作为应用电子照相技术的复印机、打印机、传真装置等图像形成装置,已知有载像体和调色剂载体保持接触状态的接触显影方式的、和这两者保持脱离状态的非接触显影方式的装置。其中,在接触显影方式的图像形成装置中,直流电压或在直流电压上叠加了交流电压的显影偏压被施加在调色剂载体上,在其表面上承载的调色剂接触载像体上的静电潜像时,按照其表面电位,一部分移动到载像体一侧而形成调色剂图像。
此外,在非接触显影方式的图像形成装置中,作为显影偏压的交变电压被施加到调色剂载体上而在调色剂载体与载像体之间的间隙中形成交变电场,通过该交变电场的作用,调色剂飞翔而形成调色剂图像。
在这种装置中,有时会因装置的个体差异、时效变化或温度湿度等装置周围环境的变化而使调色剂像的图像浓度不同。因此,以往提出了用于谋求稳定图像浓度的各种技术。作为这类技术,例如有下述技术:在载像体上形成测试用的小图像(补丁图像(patch image)),根据该补丁图像的浓度使影响图像浓度的浓度控制因子最佳化。此技术力图对浓度控制因子进行各种变更设定并在载像体上形成规定的补丁图像,同时,利用设置在载像体附近的浓度传感器检测其图像浓度,调节浓度控制因子,使其浓度与预先设定的目标浓度一致,从而得到期望的图像浓度。
例如,在日本专利特开2002-72584号公报公开的图像浓度控制技术中,(1)在装置主体电源接通时,(2)在更换处理墨盒或显影墨盒时,(3)在装置长时间未使用的状态下接到新的打印命令时,(4)在打印了规定的张数时,在进行下面的图像形成之前,形成规定的调色剂补丁,并根据其浓度改变作为浓度控制因子的显影偏压、控制图像浓度。
在这种图像形成装置中,无论电源断开或接通与否,在未进行图像形成的动作停止状态长时间持续后的状态下,在其后进行的图像形成动作中形成的图像均有可能产生周期性的浓度斑纹,这是公知的。这种浓度斑纹虽可通过多次重复图像形成动作而逐渐消除,但是,处于动作停止状态的时间越长,该消除所需时间也就会增长,有时,图像品质会降低到难于忽视的程度。
特别是,在形成补丁图像进行浓度控制因子的调节的现有技术的图像形成装置中,当在这种动作停止状态后形成补丁图像时,有时会因上述浓度斑纹引起补丁图像的浓度变动。因此,基于其浓度的浓度控制因子的调节就不能高精度地进行,其结果,存在难于形成稳定的图像的问题。
发明内容
本发明的第一目的在于,提供一种图像形成装置及图像形成方法,通过形成浓度斑纹少的补丁图像,并根据其浓度优化浓度控制因子,就可稳定地形成画质良好的调色剂图像。
本发明的第二目的在于,提供一种图像形成装置及图像形成方法,可抑制动作停止状态长时间持续后在形成的图像上出现的浓度斑纹,并稳定形成画质良好的调色剂图像。
本发明的发明者们对动作停止状态持续后的图像形成动作中周期性浓度斑纹出现的原因,从各种试验的结果得出了下述观点。即,可以得知,由于调色剂附着在调色剂载体表面而长时间放置,调色剂载体与调色剂的结合逐渐牢固,将调色剂自调色剂载体剥离需要更大的力,以及,停止状态时的调色剂载体的表面状态不一样,且与其表面接触的调色剂密度形成因位置不同而处于不均匀的状态。因此,上述调色剂和调色剂载体的结合程度也会不均匀,这种浓度斑纹以此为主要原因而产生。
因此,本发明的第一方式中,为了实现上述第一目的,在形成补丁图像之前,要使调色剂载体旋转一周以上。由此,调色剂载体上的调色剂的不均匀状态被消除,补丁图像上不会出现浓度斑纹。
此外,本发明的第二方式中,为了实现上述第二目的,在超过规定时间而不进行图像形成时,要进行图像形成条件的优化处理。由此,使动作停止状态不会长时间持续。
此外,本发明的第三方式中,为了实现上述第二目的,每隔规定时间使调色剂载体进行旋转。由此,调色剂载体上的调色剂的不均匀状态被消除,图像上不会出现浓度斑纹。
还有,本发明的第四方式中,为了实现上述第二目的,在自前一次图像形成超过规定时间、有下一次图像形成请求时,在进行图像形成前,要使调色剂载体旋转一周以上。由此,调色剂载体上的调色剂的不均匀状态被消除,图像上不会出现浓度斑纹。
再者,这些发明可适当组合实施。
附图说明
图1是显示本发明图像形成装置的第一实施例图。
图2是图1的图像形成装置的电气结构的方块图。
图3是该图像形成装置显影器的剖面图。
图4是显示浓度传感器的结构图。
图5是第一实施例中浓度控制因子的优化处理的概要流程图。
图6是第一实施例中的初始化动作的流程图。
图7是第一实施例中预动作的流程图。
图8A及图8B是表示中间转印带的基体概况的例子的图。
图9是第一实施例中的尖峰噪声除去处理的流程图。
图10是表示第一实施例中除去尖峰噪声的状况图。
图11A、图11B及图11C是表示调色剂粒径和反射光量关系的示意图。
图12A及图12B是表示调色剂粒径分布和OD值变化的对应状况图。
图13是表示第一实施例中控制目标值的导出程序的流程图。
图14A及图14B是表示求控制目标值的查找表的例子的图。
图15是第一实施例中显影偏压设定处理的流程图。
图16是表示高浓度用补丁图像的图。
图17A及图17B是表示在感光体旋转周期产生的图像浓度变动的图。
图18是第一实施例中平均显影偏压的最佳值计算处理的流程图。
图19是第一实施例中曝光能量的设定处理的流程图。
图20是表示低浓度用补丁图像的图。
图21是第一实施例中曝光能量的最佳值计算处理的流程图。
图22是表示本发明的图像形成装置的第二实施例的图。
图23是表示第三实施例中图像形成动作与动作停止状态的流程图。
图24A及图24B是表示由于动作停止时间的长短引起的动作差异的时序图。
图25是表示自动作停止状态返回后时的装置各部分的动作的时序图。
图26是本发明图像形成装置的第四实施例中的图像形成动作及动作停止状态的流程图。
图27A、图27B及图27C是表示动作停止时间长短引起的装置动作差异的时序图。
图28是第四实施例中的图像形成动作及动作停止状态的变形例的流程图;
图29A及图29B是表示图28的处理中动作停止时间的长短和装置动作的关系的时序图。
图30是表示第五实施例中的主处理的流程图。
图31是表示第五实施例中的显影辊的转动动作的流程图。
图32A、图32B及图32C是表示第五实施例中的主处理中的动作的时序图。
图33是表示本发明的图像形成装置的第六实施例中的主处理的流程图。
图34A、图34B及图34C是表示第六实施例的主处理中图像信号的输入定时引起的动作差异的时序图。
图35A及图35B是表示主处理的变形例中的动作的图。
具体实施方式
下面,依次说明应用本发明的图像形成装置的六个实施例及变形例,这些实施例中装置的结构基本上是相同的,只是其一部分动作相互不同。因此,首先,在第一实施例的说明中说明装置的结构及动作,而对其他实施例,主要说明与第一实施例的不同点。
第一实施例
(1)装置的构成
图1是表示本发明的图像形成装置的第一实施例的图。此外,图2是表示图1的图像形成装置的电气结构的方块图。此图像形成装置是将黄(Y)、青(C)、品红(M)、黑(K)这4色调色剂重合而形成全彩色图像或仅用黑色(K)调色剂形成单色图像的装置。在此图像形成装置中,若根据来自用户的成像要求从主计算机等外部设备将图像信号提供给主控制器11,则引擎控制器10就根据来自此主控制器11的指令控制引擎部EG的各部,在片材S上形成与图像信号对应的图像。如后所述,在本实施例中,引擎控制器10作为本发明的“成像部件”而起作用。
在此引擎部EG中,感光体2旋转自如地设置沿图1的箭头方向D1上。在此感光体2的周围,沿其旋转方向D1分别配置有充电单元3、旋转显影单元4及清洁部5。充电单元3从充电控制部103施加充电偏压,使感光体2的外周面均匀地充电到规定的表面电位。这样,在本实施例中,充电单元3作为本发明的“带电部件”而起作用。
然后,从曝光单元6向由此充电单元3充电了的感光体2的外周面照射光束L。此曝光单元6作为本发明的“曝光部件”而起作用,此曝光单元6按照从曝光控制部102提供的控制指令将光束L曝光到感光体2上,在感光体2上形成与图像信号对应的静电潜像。例如,从主计算机等的外部设备经接口112向主控制器11的CPU111提供图像信号后,引擎控制器10的CPU 101按规定的时序向曝光控制部102输出与图像信号对应的控制信号,据此从曝光单元6将光束L照射到感光体2上,在感光体2上形成与图像信号对应的静电潜像。此外,在按照需要来形成后述补丁图像的情况下,从CPU 101向曝光控制部102提供与预先设定的规定图案的补丁图像信号对应的控制信号,在感光体2上形成与该图案对应的静电潜像。这样,在本实施例中,感光体2以本发明的“载像体”而起作用。
这样形成的静电潜像利用显影单元4进行调色剂显影。即,在本实施例中,显影单元4包括可绕轴心自由旋转的支持架40、未图示的旋转驱动部、可自由装卸在支持架40上并内含各色调色剂的黄显影器4Y、青显影器4C、品红显影器4M、及黑显影器4K。如图2所示,此显影单元4由显影器控制部104控制。然后,根据来自此显影器控制部104的控制指令来旋转驱动显影单元4,同时,将这些显影器4Y、4C、4M、4K选择性地定位到与感光体2对置的规定的显影位置,将选择出的颜色的调色剂施加到感光体2的表面上。由此,感光体2上的静电潜像由选择调色剂色被显影。还有,图1示出黄显影器4Y被定位在显影位置的状态。
这些显影器4Y、4C、4M、4K都具有同一构造。因此,这里参照图3来详细说明显影器4K的结构,而其他显影器4Y、4C、4M的构造及功能也与此相同。图3是此图像形成装置的显影器的剖面图。在此显影器4K中,在内部装有调色剂T的壳体41上通过轴安装有供给辊43及显影辊44,该显影器4K被定位到上述显影位置后,作为本发明的“载像体”而起作用的显影辊44与感光体2接触(接触显影方式)或者相隔规定的间隙(非接触显影方式)与感光体2对置定位,并且这些辊43、44与主体一侧所设的旋转驱动部(未图示)配合,沿规定的方向旋转。此显影辊44由铜、铝、不锈钢等金属或合金做成圆筒状,以便被施加后述显影偏压。2个辊43、44一边接触一边旋转,从而将黑调色剂擦附在显影辊44的表面,在显影辊44表面上形成规定厚度的调色剂层。
此外,在此显影器4K中,配置有限制刮板45,用于将显影辊44的表面上形成的调色剂层的厚度限制在规定厚度。此限制刮板45由不锈钢或磷青铜等板状部件451、和板状部件451的前端部上安装的橡胶或树脂部件等弹性部件452构成。此板状部件451的后端部被固定在壳体41上,在显影辊44的旋转方向D3上,板状部件451的前端部上安装的弹性部件452被设置得比板状部件451的后端部更靠上游一侧。于是,此弹性部件452弹性地接触显影辊44表面,将显影辊44的表面上形成的调色剂层最终限制为规定的厚度。
还有,在显影辊44上方的壳体41的端部,配置用于防止壳体41内的调色剂向显影器外部泄漏的薄片材料46。此薄片材料46例如用树脂或金属等的弹性材料形成为薄板状,其一端固定在壳体41上,而另一端弹性接触在显影辊44的表面。因此,承载于显影辊44上并被传送到显影辊44上部的调色剂经过与此薄片材料46的接触处并被再次引导至壳体41内。然后,通过与沿图3所示的方向D4旋转的供给辊43之间的摩擦,将未被用于显影的调色剂从显影辊44的表面剥落,同时,将显影器内新的调色剂供给到显影辊44的表面。
如上所述,在此实施例中,限制刮板45作为本发明的“限制部件”而起作用,而供给辊43作为本发明的“剥离部件”而起作用。此外,在这种结构的显影器4K被配置在显影位置的状态中,如图3所示,限制刮板45配置在显影辊44的下方。此外,进行来自通过供给辊43的显影辊44的调色剂的剥离位置(剥离位置)比在显影辊44的旋转方向D3上显影辊44与限制刮板45的接触位置(限制位置)还位于上游测,而且,比此限制位置还位于上方。
还有,构成显影辊44表面的调色剂层的各调色剂颗粒通过与供给辊43、限制刮板45摩擦而带电,以下说明调色剂带负电的情况,但是通过适当变更装置各部的电位,也可以使用带正电的调色剂。
这样,通过显影辊44的旋转,显影辊44的表面上形成的调色剂层依次被传输到与其表面上形成有静电潜像的感光体2对置的位置。然后,来自显影器控制部104的显影偏压被施加到显影辊44上后,显影辊44上承载的调色剂按照感光体2的表面电位而部分地附着在感光体2的表面各部分上,这样,感光体2上的静电潜像被显影为该调色剂色的调色剂图像。
作为向显影辊44施加的显影偏压,可以使用直流电压、或叠加了交流电压的直流电压,特别是在将感光体2和显影辊44脱离配置、使调色剂在两者之间飞翔来进行调色剂显影的非接触显影方式的图像形成装置中,为了高效地使调色剂飞翔,最好采用对直流电压叠加正弦波、三角波、矩形波等交流电压的电压波形。虽然这种直流电压的大小及交流电压的振幅、频率、占空比等是任意的,但是以下在本说明书中,不管显影偏压是否有交流成分,都将其直流成分(平均值)称为平均显影偏压Vavg。
这里,作为非接触显影方式的图像形成装置中的上述显影偏压,说明优选的一个例子。例如,显影偏压的波形是在直流电压上叠加了矩形波交流电压,其矩形波的频率是3kHz,峰间电压Vpp是1400V。此外,如后所述,在本实施例中,可以将显影偏压Vavg作为浓度控制因子之一来变更,但是,作为其可变范围,可以考虑对图像浓度的影响或感光体2的特性偏差等,设为例如(-110)V~(-330)V。还有,这些数值等不限于上述情况,应该按照装置结构进行适当地变更。
此外,如图2所示,在各显影器4Y、4C、4M、4K中分别设有存储器91~94来存储与该显影器的制造批号或使用历史、内含调色剂的特性等有关的数据。再者,在各显影器4Y、4C、4M、4K中分别设有连接器49Y、49C、49M、49K。然后,按照需要,将它们有选择地与主体一侧所设的连接器108相连,经接口105在CPU 101和各存储器91~94之间进行数据的发送和接收,进行与该显影器有关的消耗品管理等各种信息的管理。而且,在本实施例中,通过主体侧连接器108和各显影器侧的连接器49Y等机械式的配合来相互进行数据发送和接收,但是也可以例如用无线通信等电磁装置非接触地进行数据发送和接收。此外,存储各显影器4Y、4C、4M、4K特有的数据的存储器91~94最好是非易失性存储器,即使在电源关闭状态或该显影器从主体上拆下的状态下,也能够保存其数据,作为这种非易失性存储器,例如可以使用闪速存储器或强电介质存储器、EEPROM等。
回到图1,继续说明装置结构。如上所述,用显影单元4显影了的调色剂图像在一次转印区TR1中被一次转印到转印单元7的中间转印带71上。转印单元7包括架设在多个辊72~75上的中间转印带71、和通过对辊73进行旋转驱动而使中间转印带71沿规定的旋转方向D2旋转的驱动部(未图示)。再者,在夹着中间转印带71与辊73对置的位置上设有二次转印辊78,可通过未图示的电磁离合器相对于该皮带71表面进行接触/脱离移动。于是,在将彩色图像转印到片材S上的情况下,使感光体2上形成的各色调色剂图像在中间转印带71上重合来形成彩色图像,并且在从盒8中取出并传输到中间转印带71和二次转印辊78之间的二次转印区TR2的片材S上二次转印彩色图像。此外,这样形成了彩色图像的片材S经由定影单元9被传输到装置主体的顶面部上所设的排出托盘部。还有,向中间转印带71一次转印调色剂图像后的感光体2由未图示的消电部件对其表面电位进行复位,进而由清洁部5除去其表面残留的调色剂后,由充电单元3进行下次充电。这样,在本实施例中,中间转印带71作为本发明的“中间体”来起作用。
然后,在需要继续形成图像的情况下,重复上述动作来形成所需页数的图像,结束一系列图像形成动作,装置变为待机状态,直至收到新的图像信号;在本装置中,为了抑制待机状态下的功耗,使其动作转移到停止状态。即,停止感光体2、显影辊44及中间转印带71等的旋转驱动,同时,停止向显影辊44施加显影偏压及向充电单元3施加充电偏压,装置变为动作停止状态。
此外,在辊75的近旁,配置有清洁器76、浓度传感器60及垂直同步传感器77。其中,清洁器76可通过未图示的电磁离合器相对于辊75来接近/脱离移动。然后,在移动到辊75一侧的状态下,清洁器76的刮板接触辊75上架设的中间转印带71的表面,在二次转印后除去中间转印带71的外周面上残留附着的调色剂。此外,垂直同步传感器77是用于检测中间转印带71的基准位置的传感器,作为用于得到与中间转印带71的旋转驱动关联而输出的同步信号、即垂直同步信号Vsync的垂直同步传感器来发挥作用。这样,在此装置中,为了协调各部的动作时序,同时使各色形成的调色剂图像正确地重合,装置各部的动作根据此垂直同步信号Vsync来控制。再者,浓度传感器60与中间转印带71的表面对置设置,如后所述来构成,测定中间转印带71的外周面上形成的补丁图像的调色剂浓度。
还有,在图2中,标号113是主控制器11中所设的图像存储器,用于存储从主计算机等的外部设备经接口112提供的图像信号;标号106是ROM,用于存储CPU 101执行的运算程序或控制引擎部EG的控制数据等;而标号107是RAM,临时存储CPU 101中的运算结果或其他数据。
图4是浓度传感器的结构图。此浓度传感器60具有作为本发明的“发光部件”而起作用的LED等发光元件601,用于向中间转印带71的表面区域中的、辊75上卷绕的卷绕区域71a照射光。此外,在此浓度传感器60上设有偏振光分光镜603、用于照射光量监视的受光单元604及照射光量调整单元605,用于如后所述按照从CPU 101提供的光量控制信号S1c来调整照射光的照射光量。
如图4所示,此偏振光分光镜603被配置在发光元件601和中间转印带71之间,将从发光元件601射出的光分割为具有与中间转印带71上的照射光的入射面平行的偏振方向的p偏振光、和具有与其垂直的偏振方向的s偏振光。p偏振光原封不动地入射到中间转印带71,而s偏振光从偏振光分光镜603中被取出后,入射到用于照射光量监视的受光单元604,从此受光单元604的受光元件642将与照射光量成正比的信号输出到照射光量调整单元605。
此照射光量调整单元605根据来自受光单元604的信号、和来自引擎控制器10的CPU 101的光量控制信号S1对发光元件601进行反馈控制,将来自发光元件601的、中间转印带71上照射的照射光量调整为与光量控制信号S1c对应的值。这样,在本实施例中,能够大范围地、适当地变更调整照射光量。
此外,在本实施例中,向用于照射光量监视的受光单元604中所设的受光元件642的输出端施加有输入补偿电压641,只要光量控制信号S1c不超过某个信号电平,发光元件601就被维持在熄灭状态。通过这样,来预防噪声或温度漂移等引起的发光元件601的误点亮。
这样,规定电平的光量控制信号S1c从CPU 101被提供给照射光量调整单元605后,发光元件601点亮,向中间转印带71照射作为照射光的p偏振光。于是,此p偏振光由中间转印带71反射,由反射光量检测单元607检测反射光的光成分中的p偏振光的光量和s偏振光的光量,将与各光量对应的信号输出到CPU 101。
如图4所示,此反射光量检测单元607包括:配置在反射光的光路上的偏振光分光镜671;受光单元670p,接受通过偏振光分光镜671的p偏振光,输出与该p偏振光的光量对应的信号;以及受光单元670s,接受由偏振光分光镜671分割出的s偏振光,输出与该s偏振光的光量对应的信号。在此受光单元670p中,受光元件672p接受来自偏振光分光镜671的p偏振光,将来自此受光元件672p的输出用放大电路673p放大后,将其放大信号作为相当于p偏振光的光量信号Vp而输出到CPU 101。此外,受光单元670s与受光单元670p同样具有受光单元672s及放大电路673s,输出相当于s偏振光的光量信号Vs。因此,能够独立地求出反射光的光成分中互不相同的2个成分光(p偏振光和s偏振光)的光量。
此外,在本实施例中,向受光单元672p、672s的输出端分别施加有输出补偿电压674p、674s,即使在来自各受光元件的输出为零、即反射光量为零时,放大电路673p、673s的输入电位也为规定的正电位。通过这样,能够避免各放大电路673p、673s在零输入附近的死区,输出与反射光量对应的恰当的输出电压。
这些输出电压Vp、Vs的信号经未图示的A/D转换电路被输入到CPU101,同时,CPU 101按照需要以规定的时间间隔(在本实施例中为每隔8msec)对这些输出电压Vp、Vs进行采样。这样,按适当的时序、例如装置电源被接通的时刻、某一个单元刚被更换后等的时序,CPU 101进行显影偏压或曝光能量等影响图像浓度的浓度控制因子的调整处理,来稳定图像浓度。更具体地说,对应于规定的补丁图像图案,将ROM 106中预先存储的图像数据作为图像信号,一边对各调色剂色分别分多级来变更上述浓度控制因子一边执行图像形成动作,形成与该图像信号对应的测试用的小图像(补丁图像),然后,由浓度传感器60检测其调色剂浓度,根据其结果,调整浓度控制因子,以作为得到期望的图像浓度的条件。以下说明此浓度控制因子的调整处理。
(2)调整处理
图5是本实施例中的浓度控制因子调整处理的概要流程图。该优化处理按照其处理顺序由以下6个序列构成:初始化动作(步骤S1)、预动作(步骤S2)、导出控制目标值(步骤S3)、设定显影偏压(步骤S4)、设定曝光能量(步骤S5)及后处理(步骤S6),以下,对上述各序列分别说明其动作的细节。
A.初始化动作
图6是本实施例中的初始化动作的流程图。在此初始化动作中,首先作为准备动作(步骤S101),对显影单元4进行旋转驱动,定位到所谓的原始位置,同时,用电磁离合器使清洁器71及二次转印辊78从中间转印带71移动到脱离位置。然后,在此状态下开始中间转印带71的驱动(步骤S102),接着通过开始感光体2的旋转驱动及消电动作来启动感光体2(步骤S103)。
然后,检测表示中间转印带71的基准位置的垂直同步信号Vsync,确认其旋转后(步骤S104),开始向装置各部施加规定的偏压(步骤S105)。即,从充电控制部103向充电单元3施加充电偏压,使感光体2充电到规定的表面电位,接着从未图示的偏压发生部向中间转印带71施加规定的一次转印偏压。
从此状态起进行中间转印带71的清洁动作(步骤S106)。即,使清洁器76接触中间转印带71的表面,在此状态下使中间转印带71旋转大致1周,除去其表面上残留附着的调色剂或污物。然后,使施加了清洁偏压的二次转印辊78接触中间转印带71。此清洁偏压的极性与执行通常的图像形成动作中向二次转印辊78提供的二次转印偏压相反,因此二次转印辊78上残留附着的调色剂转移到中间转印带71表面上,进而由清洁器76从中间转印带71的表面上除去。这样,中间转印带71及二次转印辊78的清洁动作结束后,使中间转印带71从二次转印辊71脱离的同时,切断清洁偏压。然后,等待下一垂直同步信号Vsync(步骤S107),切断充电偏压及一次转印偏压(步骤S108)。
此外,在本实施例中,不限于执行浓度控制因子的调整处理时,CPU101可以按照需要与其他处理独立来执行此初始化动作。即,在继续执行下一动作时(步骤S109),在执行到上述步骤S108的状态下结束初始化动作,转移到下一动作。另一方面,在未预定下一动作的情况下,作为停止处理(步骤S110),使清洁器76从中间转印带71脱离的同时,停止消电动作及中间转印带71的旋转驱动。在此情况下,中间转印带71最好在其基准位置位于与垂直同步传感器77对置的位置紧前的状态下被停止。这是因为,在以后的动作中中间转印带71被旋转驱动时,其旋转状态根据垂直同步信号Vsync来确认,而如果像上述那样做,则能够按照在驱动开始后是否立即检测出垂直同步信号Vsync来在短时间内判断有无异常。
B.预动作
图7是本实施例中的预动作的流程图。在此预动作中,作为后述形成补丁图像之前的预处理,同时进行2个处理。即,为了高精度地进行浓度控制因子的优化处理,进行装置各部的动作条件的调整(预动作1);与此并行,进行各显影器4Y、4C、4M、4K中分别设置的显影辊44的旋转处理(预动作2)。
B-1.设定动作条件(预动作1)
在图7所示的左侧的流程(预动作1)中,首先进行浓度传感器60的校正(步骤S21a、S21b)。在步骤S21a的校正(1)中,检测浓度传感器60的发光元件601处于熄灭状态时受光单元670p、670s的各输出电压Vp、Vs,作为暗输出Vpo、Vso来存储。接着,在步骤S21b的校正(2)中,改变向发光元件601提供的光量控制信号S1c以变为低光量/高光量这2种点亮状态,按其各个光量来检测受光单元670p的输出电压Vp。然后,根据这3点的值,来求出调色剂未附着的状态下输出电压Vp为规定的基准电平(在本实施例中,是3V加上上述暗输出Vpo的值)的发光元件601的基准光量。这样算出使发光元件601的光量为此基准光量的光量控制信号S1c的电平,将其值设定为基准光量控制信号(步骤S22)。这以后,在需要点亮发光元件601时,从CPU 101向照射光量调整单元605输出此基准光量控制信号,由此,发光元件601被反馈控制为始终按此基准光量来发光。
此外,将发光元件601处于熄灭状态时的输出电压Vpo、Vso作为本传感器系统的“暗输出”来存储,当如后所述检测调色剂图像的浓度时,通过从各输出电压Vp、Vs中减去此值,能够排除暗输出的影响来高精度地检测调色剂图像的浓度。
还有,发光元件601点亮的状态下来自受光单元672p的输出信号依赖于来自中间转印带71的反射光量,但是如后所述,由于中间转印带71的表面状态在光学上未必是均匀的,所以在求此状态下的输出时,最好取中间转印带71的1周范围内输出的平均值。另一方面,在发光元件601熄灭的状态下,无需这样检测中间转印带71的1周范围内的输出信号,但是为了减小检测误差,最好对几点上的输出信号进行平均。
在本实施例中,中间转印带71表面是白色的,所以光的反射率高,该带71上若附着了某一种颜色的调色剂,则其反射率降低。因此,在本实施例中,随着中间转印带71表面上的调色剂附着量的增加,来自受光单元的输出电压Vp、Vs从基准电平逐渐降低,可以根据这些输出电压Vp、Vs的大小来估计调色剂的附着量,进而估计调色剂图像的浓度。
此外,在本实施例中,根据彩色(Y、C、M)调色剂和黑(K)调色剂之间反射特性的不同,后述黑调色剂的补丁图像的浓度根据来自该补丁图像的反射光中的p偏振光的光量来求,而彩色调色剂的补丁图像的浓度根据p偏振光、s偏振光的光量比来求,所以能够在很宽的动态范围内高精度地求图像浓度。
暂且回到图7,继续说明预动作。中间转印带71的表面状态未必可以说在光学上是一样的,而且随着使用,调色剂有时也会熔融等而逐渐变色或变脏。为了防止这种中间转印带71的表面状态的变化使调色剂图像的浓度检测产生误差,在本实施例中,取得了与中间转印带71的1周范围内的基本概况、即未承载调色剂图像的状态下中间转印带71表面的浓淡有关的信息。具体地说,使发光元件601按先前求出的基准光量来发光,一边对来自受光单元670p、670s的输出电压Vp、Vs进行采样一边使中间转印带71旋转1周(步骤S23),将各样本数据(本实施例中的样本数:312)作为基本概况存储到RAM 107中。这样,通过预先掌握中间转印带71的表面各部分的浓淡程度,能够更正确地估计其上形成的调色剂图像的浓度。
然而,在来自上述浓度传感器60的输出电压Vp、Vs上,有时叠加有辊75及中间转印带71的微小的污物或损伤造成的反射率的变化、甚至是传感器电路中混入的电噪声等引起的尖峰状的噪声。图8A及图8B是中间转印带的基本概况的示例图。在中间转印带71的1周以上的范围内,用浓度传感器60检测来自其表面的反射光量并绘图后,如图8A所示,来自传感器60的输出电压Vp有时不仅对应于中间转印带71的周长或其旋转周期而周期性地变化,而且在其波形上叠加有宽度很窄的尖峰状的噪声。此噪声有可能既包含与上述旋转周期同步的成分,又包含与其不同步的不规则的成分。图8B放大了这种样本数据串的一部分。在此图中,由于叠加有噪声,各样本数据中附有标号Vp(8)、Vp(19)的2个数据比其他数据突出地大,而附有标号Vp(4)、Vp(16)的2个数据比其他突出地小。还有,这里描述了2个传感器输出中的p偏振光成分,但是对s偏振光成分也可以同样考虑。
浓度传感器60的检测点直径例如是2~3mm左右,而且认为中间转印带71的变色或变脏一般在更大的范围内产生,所以可以认为这种局部突出的数据受到上述噪声的影响。这样,如果根据叠加有噪声的样本数据来求基本概况或补丁图像的浓度,通过其结果来设定浓度控制因子,则有时未必能够将各浓度控制因子设定为最佳的状态,反而使图像质量变差。
因此,在本实施例中,如图7所示,在步骤S23中对中间转印带71的1周范围进行传感器输出的采样之后,执行尖峰噪声除去处理(步骤S24)。
图9是本实施例中的尖峰噪声除去处理的流程图。在此尖峰噪声除去处理中,提取已取得的“原始的”即未加工的样本数据串中连续的一部分区间(在本实施例中是与21个样本相当的长度)(步骤S241),除去此区间中包含的21个样本数据中电平位于前3个及后3个的数据后(步骤S242、S243),求其余15个数据的算术平均(步骤S244)。然后,将其平均值看作该区间中的平均电平,通过将步骤S242及S243中除去的6个数据置换为此平均值来得到除去了噪声的“校正后”的样本数据串(步骤S245)。进而,按照需要对下一区间也重复上述步骤S241~S245,同样除去尖峰噪声(步骤S246)。
以图8B所示的数据串为例,参照图10来详细说明通过上述处理进行的尖峰噪声除去。图10是本实施例中的尖峰噪声除去的示意图。在图8B的数据串中,被认为在比其他数据突出地大的2个数据Vp(8)及Vp(19)、比其他数据突出地小的数据Vp(4)及Vp(16)中出现了噪声的影响。在此尖峰噪声除去处理中,由于除去了各样本数据中的前3名(图9的步骤S242),所以除去了这些数据中被认为包含噪声的2个数据在内的3个数据Vp(8)、Vp(14)及Vp(19)。同样,也除去了被认为包含噪声的2个数据在内的3个数据Vp(4)、Vp(11)及Vp(16)(图9的步骤S243)。然后,如图10所示,通过将这6个数据置换为其他15个数据的平均值Vpavg(由附有斜线的圆圈来表示),来除去原数据串中包含的尖峰噪声。
还有,在实施此尖峰噪声除去时,提取的样本数、除去的数据数、并不限于上述,可以为任意的个数,但是有的选法非但不能达到足够的噪声除去效果,反而有可能增大误差,所以最好根据以下观点来慎重地决定。
即,如果提取出对噪声的发生频度来说太短的区间的数据串,则在执行噪声除去处理的区间内不包含噪声的概率很高,而且运算处理的次数也增大,所以效率不高。另一方面,如果提取太宽的区间的数据串,则连同传感器输出中的显著的变动、即反映检测对象的浓度变化的变动量也被平均,不能正确地求本来目的的浓度特性。
此外,由于噪声发生的频度不恒定,所以如果只从提取出的数据串中这样一律地分别除去规定个数的前几个或后几个数据,则有可能连上述例子中的数据Vp(11)、Vp(14)那样不包含噪声的数据也除去了,或者相反不能充分除去噪声。其中,即使除去了几个不包含噪声的数据,如图10所示,这些数据Vp(11)、Vp(14)和平均值Vpavg之差也比较小,所以将这些数据置换为平均值Vpavg造成的误差小。另一方面,在未除去而残留包含噪声的数据的情况下,通过用包含该数据而求出的平均值来置换其他数据,误差反而有可能增大。因此,除去的数据数与提取出的数据的样本数的比率最好被决定得与实际的装置中发生的噪声的频度同等或比其大一些。
在本实施例中,如图8A所示,由于噪声的影响,偏向比本来特性大的一侧的数据和偏向比本来特性小的一侧的数据的频度大体相同,而且噪声本身的发生频度是25%以下(在21个样本中为5个样本以下)左右,根据这一实验事实,如上所述构成了尖峰噪声除去处理。
还有,尖峰噪声除去处理方法除了上述以外,还有各种方法。例如,通过对采样得到的“原始的”样本数据实施以往周知的低通滤波处理,也能够去除尖峰状的噪声。但是,在现有滤波处理中,虽然能够缓和噪声波形的尖锐度,但是其结果是,不仅包含噪声的数据改变原值,而且其周边的数据也改变原值,所以由于发生噪声的形式,有可能导致大的误差。
与此相反,在本实施例中,将各样本数据中个数与发生噪声的频度对应的前几个/后几个数据置换为平均值,同时,其他数据原封不动,因此产生这种误差的可能性就很低。
此外,此尖峰噪声除去处理不仅在求上述基本概况时进行,而且在如后所述求调色剂图像的图像浓度时对作为其反射光量而取得的样本数据也被实施。
B-2.显影器的旋转动作(预动作2)
以往知道,处于电源关闭状态、或者尽管电源接通但是未进行图像形成动作的动作停止状态的期间持续很长时间后而进行图像形成时,有时在图像上会出现周期性的浓度斑纹。在本说明书中,将此现象称为放置条纹(banding)现象,本申请发明人发现这是下述情况引起的:由于调色剂被各显影器的显影辊44承载着而放置了很长时间,难以离开显影辊44,而且调色剂附着量或其粘着力在显影辊44表面上不一样,所以显影辊44上的调色剂层逐渐变得不均匀。
以下说明与放置条纹有关的本申请发明人的见解。
放置条纹现象最明显地出现在动作停止状态之后、最初形成的图像上,但是重复几张图像形成后浓度斑纹就不明显了,经过多张的图向形成几乎不见了。此外,在动作停止状态的持续时间长或高温/高湿环境下,特别会出现明显的浓度斑纹。
此外,放置条纹现象在使用其表面具有导电性的显影辊时也会出现。即,使用金属制的显影辊、或非导电性材料的表面设有导电性层的显影辊的装置中,放置条纹现象所引起的浓度斑纹是明显的。
为了揭示放置条纹现象的发生机理,利用图3所示结构的显影器,进而进行实验及观察就得到以下的见解。首先,观察到图像浓度斑纹的发生状况,结果是,图像的浓淡和显影辊44表面位置之间的对应关系如下。即,显影辊44表面中,在动作停止状态承载在位于显影器壳体41的内部位置的表面区域(以下称“显影室部”)上的调色剂所显影的图像是高浓度的,而承载在露出壳体41的外部表面区域(以下称“露出部”)上的调色剂所显影的图像是低浓度的。
此外,用表面电位计测定动作停止状态持续后的显影辊44的调色剂层的电位分布,结果是,调色剂的电位绝对值在对应于显影室部的部分变低,而在对应于露出部的部分变高。此电位差随着使显影辊44旋转逐渐变小,不久就达到大致均匀。
还有,测定显影辊44表面的调色剂带电量(单位:μC/g)和调色剂传送量(mg/cm2),结果是,在显影室部和露出部,调色剂传送量大致相同,但是调色剂带电量在露出部侧更高,其大小为显影室部侧的调色剂带电量的2倍左右。上述的调色剂层电位的差可以认为是由此调色剂带电量的差所引起的。
由以上的结果可以认为,放置条纹现象根据脱离动作停止状态时的显影辊44上的调色剂的带电量,由位置、更具体地说由在显影室部与露出部不一样而引起的。此带电量的差通过显影辊44的旋转逐渐减小,所以可以认为在脱离动作停止状态后,使调色剂摩擦带电的显影辊44表面的状态在显影室部和露出部是不同的。
若观察显影辊44的表面,附着着很多从粒径小的调色剂或调色剂脱落的添加剂等的细微粉末。这种细微粉末的附着量和含有的水份量等的不同影响显影辊44与调色剂之间的摩擦带电状态。于是,在显影器的内部,含有这种细微粉末成分的调色剂总是处于接触显影辊44的状态,而且通过对于显影辊44的供给辊43、限制刮板45以及薄片材料46等的接触,调色剂处于被压靠的状态。因此,显影辊44表面中、在动作停止状态位于显影器内部的区域(显影室部),容易产生细微粉末成分的粘结。与此相反,在露在显影器外部的露出部,调色剂只是静电附着,因此细微粉末成分的粘结比较少。
这样,在动作停止状态被长时间放置,则细微粉末成分的粘结状态在显影辊44上是不均匀的,因此调色剂层的带电量的差产生的主要原因是放置条纹现象。
此外,放置条纹现象容易出现也与装置的结构有关。如本实施例的显影器4K等,在设置于显影辊44下方的、用于显影辊44上形成规定厚度的调色剂层限制刮板45的显影器中,特别容易发生细微粉末成分引起得放置条纹现象。这是由于这种细微粉末成分容易滞留在显影器壳体的下部,因此在限制刮板45和显影辊44的接触位置(限制位置)附近存在很多细微粉末成分。
特别是,如图3所示,在显影辊44的旋转方向D3上在限制位置的上游侧进行显影辊44的调色剂剥离,而且,在其调色剂被剥离的剥离位置比限制位置还处于上方的情况下,放置条纹现象还要明显。即,在剥离位置周围,滞留着由供给辊43和显影辊44之间的摩擦而新产生、从显影辊44上被剥落的细微粉末成分。然后,这些细微粉末成分由于供给辊43和显影辊44的旋转或重力的作用,朝着供给辊43和显影辊44的接触位置或限制位置不断被送入,因此在显影辊44的表面就容易发生细微粉末成分的粘结,因而,容易产生放置条纹现象。
此外,显影辊44的表面由具有导电性材料形成的情况下,镜像力作用的细微粉末的粘结作用较大,因此即使在具有这样的显影辊的装置中也容易出现放置条纹现象。
作为显影辊的结构,一般是将整个辊用同一材料形成筒状,以及用其他材料形成的芯材和套筒同轴组合在一起。其中作为相当于上述的结构可以列出,例如:i)辊子整体或至少套筒由金属或合金形成;ii)辊子整体或至少套筒由导电性橡胶或导电性树脂形成;以及、iii)在绝缘性或导电性的辊子表面覆盖导电性表面层。这里所说的“导电性”指体积电阻率约在1×10-2Ω·m以下,作为这样的材料,例如有金属、其氧化物或氮化物或石墨等。此外,作为上述中的iii)的表面层除了金属、合金、导电性树脂等的导电物之外,可应用在绝缘物中分散有导电性物质的材料,作为其覆盖方法可以应用镀、蒸发、包层、喷镀、喷涂或浸涂等。
还有,放置条纹现象的容易发生也与使用的调色剂的性质有关。即,在使用含有作为防止定影偏移的分离材料的腊成分调色剂的装置中,容易产生放置条纹现象。这是由于,从调色剂粒子游离出来腊的细微粉末或、腊成分露出其表面的调色剂粒子容易产生范德华力引起的对显影辊44的调色剂附着。
回到图7,继续预动作2的说明。在这样显影辊44表面不均匀的状态下经过长时间、装置被置于动作停止状态后,并在进行下一图像形成之前重新优化浓度控制因子时,存在由放置条纹现象而产生的实图像的浓度斑纹对此优化处理产生影响的可能。特别是,在具有至少某个上述结构的图像形成装置中,容易产生由放置条纹现象引起的浓度斑纹,因此有必要叙述用于消除放置条纹现象的措施。
因此,在本实施例的图像形成装置中,为了在形成补丁图像之前消除放置条纹现象,进行各显影辊44的旋转动作。具体地说,如图7右侧的流程(预动作2)所示,首先将黄显影器4Y配置到与感光体2对置的显影位置上(步骤S25),将平均显影偏压Vavg设定为在其可变范围内其绝对值为最小的值(步骤S26),通过主体一侧的旋转驱动部使显影辊44至少旋转1周(步骤S27)。然后,使显影单元4旋转来切换显影器(步骤S28)的同时,使其他显影器4C、4M、4K依次位于显影位置,使其上分别设置的显影辊44同样旋转1周以上。通过这样使各显影辊44分别旋转1周以上,显影辊44表面的调色剂层由供给辊43及限制刮板45暂时剥去并重新形成,在继续形成的补丁图像中,这样重新形成、更均匀的状态的调色剂层被用于图像形成,所以难以发生放置条纹现象所造成的浓度斑纹。
还有,在上述预动作2中,在其步骤S26中使平均显影偏压Vavg的绝对值为最小。其理由如下所述。
如后所述,作为影响图像浓度的浓度控制因子的平均显影偏压Vavg的绝对值|Vavg|越大,则形成的调色剂图像的浓度越高。这是因为,平均显影偏压的绝对值|Vavg|越大,则感光体2上的静电潜像中由光束L曝光的区域、即应使调色剂附着的表面区域和显影辊44之间的电位差越大,更加促进从显影辊44开始的调色剂移动,但是在取得中间转印带71的基本概况时,不希望发生这种调色剂移动。这是因为,如果从显影辊44移动到感光体2上的调色剂在一次转印区TR1中被转印到中间转印带71上,则会改变来自中间转印带71的反射光量,所以不能正确地求基本概况。
在本实施例中,如后所述,能够将平均显影偏压Vavg作为浓度控制因子之一在规定的可变范围内多级变更设定。因此,通过将平均显影偏压Vavg在其可变范围内设定为其绝对值最小的值,实现最难发生调色剂从显影辊44移动到感光体2的状态,而将中间转印带71上的调色剂附着抑制到最少限度。基于同样的理由,在显影偏压具有交流分量的装置中,最好将其振幅设定得小于通常的图像形成时。例如,如前所述,在将显影偏压的峰值间电压Vpp设为1400V的装置中,可以将此峰值间电压Vpp设为1000V左右。而在将平均显影偏压Vavg以外的参数、例如显影偏压的占空比或充电偏压等用作浓度控制因子的装置中,也最好适当设定此浓度控制因子,以便实现难以发生上述调色剂移动的条件。
此外,在本实施例中,通过并行同时执行上述预动作1及预动作2来缩短处理时间。即,在预动作1中,为了取得基本概况而使中间转印带71旋转至少1周,最好为了进行传感器校正再旋转2周,总共需要旋转3周,同时,在预动作2中,最好使各显影辊44尽量多地旋转,而且这些动作能够相互独立地进行,所以通过并行进行这些动作,能够在确保各个处理所需的时间的同时,缩短调整处理整体所需的时间。
C.导出控制目标值
在本实施例的图像形成装置中,如后所述,作为补丁图像而形成2种调色剂图像,进行各浓度控制因子的调节,使其浓度达到预定的浓度目标值,但并不是将此目标值设定为恒定,而是按照装置的工作状况来变更。其理由如下所述。
如前所述,在本实施例的图像形成装置中,通过检测来自在感光体2上显影并一次转印到中间转印带71的表面上的调色剂图像的反射光量来估算其图像浓度。这样根据调色剂图像的反射光量来求图像浓度的技术以往被广泛使用,但是如下详述,这种来自中间转印带71上承载的调色剂图像的反射光量(或与其对应的来自浓度传感器60的传感器输出Vp、Vs)、和最终记录介质的片材S上形成的调色剂图像的光学浓度(OD值)之间的对应关系并不是唯一决定的,而是根据装置或调色剂的状态来微妙地变化。因此,即使像现有技术那样控制各浓度控制因子以使基于传感器输出的“调色剂浓度”恒定,片材S上最终形成的图像的“图像浓度”也会根据调色剂的状态产生变动。
这样传感器输出和片材S上的OD值不一致的原因之一是,经过定影过程而融着在片材S上的调色剂、和不定影而只附着在中间转印带71表面上的调色剂的反射状态不同。图11A、图11B及图11C是调色剂的粒径和反射光量之间的关系的示意图。如图11A所示,在最终在片材S上得到的图像Is中,通过定影过程中的加热/加压而熔融的调色剂Tm为融着在片材S上的状态。因此,其光学浓度(OD值)反映调色剂融着的状态下的反射光量,但是其大小主要由片材S上的调色剂密度(例如,可以由单位面积的调色剂质量来表示)来决定。
与此相反,在不经过定影过程的中间转印带71上的调色剂图像中,各调色剂颗粒不过是个别地附着在中间转印带71表面上。因此,即使调色剂密度相同(即定影后的OD值相等),例如在图11B所示的粒径小的调色剂T1高密度地附着的状态、和图11C所示的粒径大的调色剂T2更低密度地附着并且中间转印带71的表面部分地暴露的状态下,其反射光量也未必相同。换言之,即使来自定影前的调色剂图像相同,定影后的图像浓度(OD值)也不一定相同。根据本申请发明人的实验得知,一般有下述倾向:在反射光量相等的情况下,如果大粒径调色剂在构成调色剂图像的调色剂颗粒中所占的比率高,则定影后的图像浓度高。
这样,片材S上的OD值和来自中间转印带71上的调色剂图像的反射光量之间的对应根据调色剂的状态、特别是其粒径分布来变化。图12A及图12B是调色剂的粒径分布和OD值变化的对应图。为了形成调色剂图像,各显影器中所装的调色剂颗粒的粒径全部集中在设计中心值是理想的。然而,如图12A所示,实际上其粒径具有各种形式的分布,其形式因调色剂的种类或制法而异自不待言,即使是按同一规格制造的调色剂,也会按其每个制造批号、每个产品而有微妙的差异。
由于这些各种粒径的调色剂的质量或带电量不同,所以如果用具有这种粒径分布的调色剂来进行图像形成,则这些调色剂并不是均匀地被消耗,而是由其装置选择性地消耗适合的粒径的调色剂,而其他调色剂则不太消耗而残留在显影器内。因而,随着调色剂的不断消耗,显影器内残留的调色剂的粒径分布也在不断变化。
如前所述,来自定影前的调色剂图像的反射光量根据构成图像的调色剂的粒径来变化,所以即使调节各浓度控制因子而使此反射光量始终恒定,片材S上定影后的图像浓度也未必恒定。图12B示出控制各浓度控制因子以使来自调色剂图像的反射光量恒定、即来自浓度传感器60的输出电压恒定,同时,进行图像形成的情况下片材S上的图像的光学浓度(OD值)的变化。例如,如图12A的曲线a所示,在调色剂的粒径很好地集中在设计上的中心值附近的情况下,如图12B的曲线a所示,即使显影器内的调色剂不断消耗,OD值也大致被保持在目标值。与此相反,例如如图12A的曲线b所示,在使用了具有更宽粒径分布的调色剂的情况下,如图12B的曲线b所示,虽然最初是设计中心值附近的粒径的调色剂被主要消耗,得到大致符合目标值的OD值,但是随着调色剂不断消耗,这种调色剂的比例减小,代之以粒径更大的调色剂被用于图像形成,所以OD值逐渐上升。再者,还有下述情况:如图12A的各虚线所示,根据调色剂或显影器的制造批号,分布的中央值一开始就偏离设计值,对应于此,片材S上的OD值也如图12B的各虚线所示,随着调色剂消耗量的增加而呈现各种变化。
作为这样左右调色剂特性的主要因素,除了上述调色剂的粒径分布以外,还有例如调色剂母颗粒内的颜料分散状态、或调色剂母颗粒和添加剂的混合状态造成的带电性的变化等。这样,调色剂特性按每个产品而有微妙的差异,所以片材S上的图像浓度未必恒定,浓度变化的程度因使用的调色剂而各不相同。因此,在控制各浓度控制因子以使来自浓度传感器的输出电压恒定的现有图像形成装置中,有时不能避免调色剂特性偏差所造成的图像浓度变动,未必能得到令人满意的图像质量。
因此,在本实施例中,按照装置的工作状况,对后述2种补丁图像,分别设定根据来自浓度传感器60的输出而算出的、表示图像浓度的尺度的图像浓度评价值(后述)的控制目标值,通过调节各浓度控制因子以使对各补丁图像得到的评价值达到此控制目标值,来保持片材S上的图像浓度恒定。图13是本实施例中的控制目标值导出过程的流程图。在此过程中,对各调色剂色,分别求与此调色剂的使用状况,具体地说是在填充到显影器时刻求出的调色剂的粒径分布等初始特性、和该显影器中残存的调色剂量的相应的控制目标值。首先选择调色剂色之一(步骤S31),作为用于CPU 101推断该调色剂的使用状况的信息,取得与被选调色剂色有关的调色剂个性信息、表示曝光单元6形成的点数的点计数值及与显影辊旋转时间有关的信息(步骤S32)。这里,以求与黑色对应的控制目标值的情况为例来进行说明,但是对其他调色剂色也是同样的。
“调色剂个性信息”是按照显影器4K中填充的调色剂的特性而写入到该显影器4K中所设的存储器94中的数据。在此装置中,鉴于上述调色剂的粒径分布等诸特性因制造批号而异,将调色剂的特性分类为8种类型。然后,根据制造时的分析来判定其调色剂属于哪种类型,将表示此的3比特数据作为调色剂个性信息给显影器4K。此数据在该显影器4K被安装到显影单元4中时从存储器94中被读出,存储到引擎控制器10的RAM107中。
此外,“点计数值”是用于推断显影器4K内残存的调色剂量的信息。作为推断调色剂余量的方法,根据图像形成页数的累计值来求是最简便的,但是形成1页图像所消耗的调色剂量是不恒定的,所以用此方法难以得知正确的余量。另一方面,曝光单元6在感光体2上形成的点数表示感光体2上由调色剂显影的点数,所以更正确地反映了调色剂的消耗量。因此,在本实施例中,对曝光单元6形成了要由该显影器4K显影的感光体2上的静电潜像时的点数进行计数并存储到RAM 107中,将此点计数值作为表示该显影器4K的调色剂余量的参数。
再者,“显影辊旋转时间”是用于更详细地推断显影器4K内残存的调色剂的特性的信息。如前所述,在显影辊44表面上形成有调色剂层,通过其中一部分调色剂向感光体2上移动来进行显影。此时,在显影辊44表面上,未用于显影的调色剂被传输到与供给辊43接触的位置,由该辊43剥去并形成新的调色剂层,但是通过这样反复对显影辊44的附着、剥离,调色剂疲劳,其特性逐渐发生变化。这种调色剂的特性变化随着显影辊44的不断旋转而进行。因此,即使例如显影器4K内的调色剂余量相同,未使用的新鲜调色剂和重复几次附着、剥离的旧调色剂的特性有时也不同,用它们形成的图像的浓度未必相同。
因此,在本实施例中,根据表示调色剂余量的点计数值、和表示调色剂特性变化程度的显影辊旋转时间这2个参数的组合来推断显影器4K中内含的调色剂的状态,通过按照其状态细致地设定控制目标值来达到稳定画质。
还有,这些信息也被用于管理装置各部的损耗状况来提高维护性。即,1个点计数相当于0.015mg的调色剂量,12000000点计数的消耗量大致为180g,为几乎用完各显影器内贮留的调色剂的状态。此外,显影辊的旋转时间的累计值10600sec相当于A4连续打印8000页,再继续图像形成在图像质量方面是不希望的。因此,在本实施例中,在这些信息中的某一个达到上述值时,在未图示的显示部上显示通知调色剂用完的信息,提醒用户更换显影器。
根据这样取得的与装置的工作状况有关的各信息,按其状况来决定控制目标值。在本实施例中,与根据表示调色剂类型的调色剂个性信息、和点计数值及显影辊旋转时间的组合推断出的残存调色剂特性对应的最佳控制目标值预先通过实验来求,此值作为每种调色剂类型的查找表被存储在引擎控制器10的ROM 106中。CPU 101根据取得的调色剂个性信息,对应于这些查找表中调色剂的类型来选择应参照的1个表(步骤S33),从该表中读出与该时刻的点计数值和显影辊旋转时间的组合对应的值(步骤S34)。
此外,在本实施例的图像形成装置中,用户能够通过未图示的操作部进行规定的操作输入,按照喜好、或者按照需要在规定的范围内增减要形成的图像的浓度。即,每当用户将图像浓度增加或减少1级,就对从上述查找表中读出的值加上或减去规定的补偿值、例如每1级为加上或减去0.005,其结果被设定为此时对于黑色的控制目标值Akt并存储到RAM107中(步骤S35)。这样求出黑色的控制目标值Akt。
图14A及图14B是求控制目标值的查找表的示例图。此表是在使用黑色、其特性属于“类型0”的调色剂的情况下参照的表。在本实施例中,分别对应于后述高浓度用、低浓度用的2种补丁图像,对各调色剂色分别准备与8种类型的调色剂特性对应的8种表,存储在引擎控制器10中所设的ROM 106中。这里,图14A是与高浓度补丁图像对应的表的一例,而图14B是与低浓度用补丁图像对应的表的一例。
假设上述步骤S32中取得的调色剂个性信息例如表示“类型0”,则在后续步骤S33中,从8种表中选择与调色剂个性信息“0”对应的图14的表。然后,根据取得的点计数值和显影辊旋转时间来求控制目标值Akt。例如,对高浓度用补丁图像,如果点计数值是1500000次计数、显影辊旋转时间是2000sec,则参照图14A,与它们的组合相当的值0.984就是此情况下的控制目标值Akt。再者,例如在用户将图像浓度设定得比其标准状态高1级的情况下,此值加上0.005所得的值0.989就为控制目标值Akt。同样,对低浓度用补丁图像也能够求控制目标值。
将这样求出的控制目标值Akt存储到引擎控制器10的RAM 107中,在以后的各浓度控制因子的设定中使根据补丁图像的反射光量求出的评价值与该控制目标值一致。
这样,通过执行上述步骤S31~S35,可以对一种调色剂色求出控制目标值,而通过对各调色剂色重复上述处理(步骤S36),可以对所有调色剂色求出其控制目标值Ayt、Act、Amt及Akt。这里,下标y、c、m及k分别表示各调色剂色即黄、青、品红及黑,而下标t表示是控制目标值。
D.设定显影偏压
在此图像形成装置中,可以改变向显影辊44提供的平均显影偏压Vavg、和对感光体2进行曝光的曝光光束L的单位面积的能量(以下,简称“曝光能量”)E,通过调节它们来进行图像浓度的控制。这里,说明将平均显影偏压Vavg的可变范围从低电平一侧起变更设定为V0至V5这6级、而将曝光能量E的可变范围从低等级一侧起变更设定为等级0至3这4级来求各个最佳值的情况,但是可以按照其装置的规格来适当改变这些可变范围及其分割数。还有,在先前描述过的将平均显影偏压Vavg的可变范围设为(-110)V~(-330)V的装置中,最低电平V0相当于电压的绝对值最小的(-110)V,而最高电平V5相当于电压的绝对值最大的(-330)V。
图15是本实施例中的显影偏压设定处理的流程图。此外,图16是表示高浓度用补丁图像的图。在此处理中,首先将曝光能量E设定为等级2(步骤S41),接着将平均显影偏压Vavg从最小电平V0起逐次增加1级电平,同时,用各偏压值来形成作为高浓度用补丁图像的实(べタ)图像(步骤S42、S43)。
如图16所示,与变更设定为6级的平均显影偏压Vavg相对应,依次在中间转印带71的表面形成6个补丁图像Iv0~Iv5,但是,其中前面5个补丁图像Iv0~Iv4形成为长度L1。此长度L1大于圆筒形感光体2的周长。而最后的补丁图像Iv5形成短于感光体2周长的长度L3。这样做的理由后述。此外,因为变更设定了平均显影偏压Vavg时,直到显影辊44的电位达到均匀之前,存在在若干时间滞后,因此考虑该时间滞后各补丁图像间隔L2而形成。中间转印带71的表面中,可实际承载调色剂图像的区域是同图所示的成像区域710,由于如上构成补丁图像的形状及配置,故可形成于成像区域710的补丁图像为3个左右,如图16所示,6个补丁图像形成在中间转印带71的两周范围上。
这里,参照图1、图17A及图17B说明如上设定补丁图像长度的理由。图17A及图17B是表示在感光体的旋转周期内产生的图像浓度的变动的图。如图1所示,感光体2形成圆筒形(设其周长为L0),但由于制造时的偏差或热变形等,有时其形状不是完全的圆筒或者具有偏心,这种情况下,有时形成的调色剂图像的图像浓度会产生与感光体2的周长L0对应的周期性变动。其原因是:在感光体2和显影辊44接触的状态下进行调色剂显影的接触显影方式的装置中两者间的接触压力变动,且两者分开配置进行调色剂显影的非接触显影方式的装置中,在两者间使调色剂飞翔的电场强度变化,即使在任何装置中,调色剂自显影辊44向感光体2移动的概率都以感光体2的旋转周期进行周期性地变动。
如图17A所示,此浓度变动的幅度特别在平均显影偏压Vavg的绝对值|Vavg|较低时增大,随着该值|Vavg|增大而减小。例如,当将平均显影偏压Vavg的绝对值|Vavg|设定为较小的值来形成补丁图像时,如图17B所示,其图像浓度OD因感光体2上的位置不同以幅度Δ1的范围变化。同样,即使在以其它的平均显影偏压形成补丁图像时,其图像浓度也如图17B的斜线部所示在某一范围变动。这样,补丁图像的浓度OD不仅因平均显影偏压Vavg的大小,也因在感光体2上的形成位置不同而变动。因此,为了由其图像浓度求平均显影偏压Vavg的最佳值,需要排除与上述感光体2的旋转周期对应的浓度变动对补丁图像的影响。
因此,在本实施例中,形成超过感光体2的周长L0的长度L1的补丁图像,如后所述,将对其中的长度L0求出的浓度平均值作为该补丁图像的图像浓度。这样,有效地抑制了与感光体2的旋转周期对应的浓度变动对各补丁图像的影响,其结果,可根据其浓度正确地求出平均显影偏压Vavg的最佳值。
还有,在本实施例中,如图16所示,对各补丁图像Iv0~Iv5中使平均显影偏压Vavg最大而形成的最后的补丁图像Iv5,使其长度L3小于感光体2的周长L0。这是因为:如图17B所示,在平均显影偏压Vavg的绝对值|Vavg|大的条件下形成的补丁图像由于与感光体2的旋转周期对应的浓度变动小,故如上所述不需要求感光体周期范围内的平均值。这样,可缩短补丁图像的形成及其处理所需的时间,同时可降低补丁图像形成中调色剂的消耗量。
这样,为了排除对应感光体周期产生的浓度变动对浓度控制因子的优化处理的影响,最好使补丁图像的长度长于感光体2的周长L0。但未必要使所有补丁图像都采用这种长度,使几个补丁图像采用这种长度应根据各装置中出现的浓度变动的程度或所求的图像品质的等级来适当决定。例如,在感光体周期内的浓度变动的影响较小的情况下,也可仅使在平均显影偏压Vavg最小的条件下形成的补丁图像Iv0采用长度L1,而其他补丁图像Iv1~Iv5也可以形成短于此的长度L3。
相反,虽然也可将所有的补丁图像都形成长度L1,但是在这种情况下,存在处理时间及调色剂消耗量增大的问题。此外,即使在平均显影偏压Vavg最大的状态下,从图像品质来看,出现与感光体周期对应的浓度变动也不理想,自然确定平均显影偏压Vavg的可变范围,以使至少在设定为其最大值时,这种浓度变动不出现。然后,在这样设定平均显影偏压Vavg的可变范围的情况下,至少在其最大值中不出现这种浓度变动,因此,这种情况下的补丁图像长度不需要设定为L1。
回到图15,继续说明显影偏压设定处理。对这样用各平均显影偏压形成的补丁图像Iv0~Iv5,对应于来自其表面的反射光量对从浓度传感器60输出的电压Vp、Vs进行采样(步骤S44)。在本实施例中,在长度L1的补丁图像Iv0~Iv4中取74点(相当于感光体2的周长L0),而长度L3的补丁图像Iv5取21点(相当于显影辊44的周长),按采样周期8msec得到来自浓度传感器60的输出电压Vp、Vs的采样数据。然后,与前述导出基本概况时(图7)同样,从样本数据中除去尖峰噪声后(步骤S45),根据此数据来计算除去了传感器系统的暗输出或基本概况的影响的各补丁图像的“评价值”(步骤S46)。
如前所述,此装置中的浓度传感器60呈现下述特性:调色剂未附着在中间转印带71上的状态下输出电平最大,随着调色剂量增多,其输出减小。再者,由于在此输出上加有暗输出造成的补偿,所以难以将来自该传感器的输出电压数据直接用作评价调色剂附着量的信息。因此,在本实施例中,对得到的数据进行加工,变换为更能反映调色剂附着量大小的数据、即评价值,使得能容易地进行以后的处理。
以黑调色剂色的补丁图像为例来更具体地说明该评价值的计算方法。由黑色调色剂显影的6个补丁图像中第n个补丁图像Ivn(其中n=0、1、...、5)的评价值Ak(n),根据下式算出:
Ak(n)=1-{Vpmeank(n)-Vpo}/{Vpmean_b-Vpo}
这里,上式的各项的意义分别如下所述。
首先,Vpmeank(n)是作为与来自第n个补丁图像Ivn的反射光中的p偏振光分量对应的输出电压Vp从浓度传感器60输出、采样到的各样本数据的除去噪声后的平均值。即,例如与第一个补丁图像Iv0对应的值Vpmeank(0)是在该补丁图像中的长度L0上作为来自浓度传感器60的输出电压Vp而被检测出后、施加尖峰噪声除去处理并存储到RAM 107中的74个样本数据的算术平均。其中,上式中的各项的下标k表示是黑色的值。
此外,Vpo是在先前的预动作1中在熄灭了发光元件601的状态下取得的来自受光单元670p的暗输出电压。这样,通过从采样到的输出电压中减去暗输出电压Vpo,能够排除暗输出的影响,精度更高地求调色剂图像的浓度。
再者,Vpmean_b是先前求出并存储在RAM 107中的基本概况数据中的、在中间转印带71上与检测用于计算上述Vpmeank(n)的74个样本数据的位置相同的位置上检测出的各样本数据的平均值。
即,对黑色的第n个补丁图像Ivn的评价值Ak(n)是从调色剂附着前的中间转印带71的表面得到的传感器输出Vp的平均值、和从附着了调色剂的补丁图像Ivn得到的传感器输出Vp的平均值分别减去传感器的暗输出后取两者之比,从1中减去该值而得到的。因此,在作为补丁图像的调色剂完全未附着在中间转印带71上的状态下,Vpmeank(n)=Vpmean_b,评价值Ak(n)为零;而在中间转印带71的表面由黑调色剂完全覆盖、反射率为零的状态下,Vpmeank(n)=Vpo,评价值Ak(n)=1。
这样,如果不是直接使用传感器输出电压Vp的值而是使用评价值Ak(n),则能够消除中间转印带71的表面状态造成的影响,高精度地测定补丁图像的图像浓度。此外,由于按照中间转印带71上的补丁图像的浓淡进行校正,所以能够进一步提高图像浓度的测定精度。再者,能够用从表示调色剂未附着的状态的最小值0到表示中间转印带71的表面被高密度的调色剂覆盖的状态的最大值1的值来标准化表示补丁图像Ivn的浓度,所以在以后的处理中特别适用于估计调色剂图像的浓度。
还有,对黑以外的调色剂色、即黄色(Y)、青色(C)及品红色(M),由于反射率比黑色高,即使在调色剂覆盖中间转印带71的表面的状态下,其反射光量也不是零,所以有时不能用如上所述求出的评价值来高精度地表示其浓度。因此,在本实施例中,作为在求对这些调色剂色的评价值Ay(n)、Ac(n)、Am(n)时使用的样本数据,不是将与p偏振光成分对应的输出电压Vp,而是将从其中减去暗输出Vpo所得的值除以从与s偏振光分量对应的输出电压Vs中减去其暗输出Vso所得的值而得到的值PS、即PS=(Vp-Vpo)/(Vs-Vso)用作各位置上的样本数据,通过这样,对这些调色剂色也能够高精度地估计其图像浓度。此外,与黑色的情况同样,通过考虑从调色剂附着前的中间转印带71的表面得到的传感器输出,消除中间转印带71的表面状态造成的影响,并且按照中间转印带71上的补丁图像的浓淡进行校正,所以就能够提高图像浓度的测定精度。
例如对青色(C),其评价值Ac(n),可以通过下式
Ac(n)=1-{PSmeanc(n)-PSo}/{PSmean_b-PSo}
来求。这里,PSmeanc(n)是根据青色的第n个补丁图像Ivn的各位置上的传感器输出Vp、Vs求出的上述值PS的去除噪声后的平均值。此外,PSo是与中间转印带71的表面由彩色调色剂完全覆盖的状态下的传感器输出Vp、Vs对应的上述值PS,是该值PS可取的最小值。再者,PSmean_b是根据在中间转印带71的各位置上作为基本概况而采样到的传感器输出Vp、Vs求出的上述值PS的平均值。
通过如上所述定义与彩色调色剂对应的评价值,与先前描述过的黑色的情况同样,能够用从表示调色剂完全未附着在中间转印带71上的状态(此时,PSmeanc(n)=PSmean_b)的最小值0到表示该带71完全被调色剂覆盖的状态(此时,PSmeanc(n)=Pso)的最大值1的值来标准化表示补丁图像Ivn的浓度。
这样求出各补丁图像的调色剂浓度(更准确地说是其评价值)后,根据其值来计算平均显影偏压Vavg的最佳值Vop(步骤S47)。图18是本实施例中的平均显影偏压最佳值计算处理的流程图。还有,此处理的内容不依赖于调色剂色,是相同的,所以在图18及下述中,省略了与调色剂色对应的评价值的下标(y、c、m、k),但是不言而喻,评价值及其目标值对于各调色剂色是不同的值。
首先,将参数n设定为0(步骤S471),比较评价值A(n)即A(0)、和先前求出的控制目标值At(例如在黑色时是Akt)(步骤S472)。此时,如果评价值A(0)在控制目标值At以上,则意味着在平均显影偏压Vavg的最小值V0上得到了超过目标浓度的图像浓度,所以不用讨论比其更高的显影偏压,将此时的平均显影偏压V0作为最佳值Vop而结束处理(步骤S477)。
与此相反,在评价值A(0)未达到目标值At时,读出用高1级电平的平均显影偏压V1形成的补丁图像Iv1的评价值A(1),求其与评价值A(0)之差,并且判断此差值是否在规定值Δa以下(步骤S473)。这里,在两者之差是规定值Δa以下的情况下,与上述同样将平均显影偏压V0作为其最佳值Vop。这样做的理由将在后面详述。
另一方面,在两者之差大于规定值Δa的情况下进行步骤S474,比较评价值A(1)和控制目标值At。此时,如果评价值A(1)在目标值At以上,则目标值At大于评价值A(0)而且在A(1)以下,即A(0)<At≤A(1),所以在平均显影偏压V0和V1之间存在用于得到目标图像浓度的平均显影偏压的最佳值Vop。即,V0<Vop≤V1。
因此,在这种情况下进行步骤S478,通过计算来求最佳值Vop。作为其计算方法有各种方法,例如可以将评价值相对于平均显影偏压Vavg的变化在V0至V1的区间内近似为适当的函数,也可以将此函数的值成为目标值At的平均显影偏压Vavg作为其最佳值Vop。其中用直线来近似评价值的变化的方法最简单,但是通过适当选择平均显影偏压Vavg的可变范围,能够以足够的精度来求最佳值Vop。当然也可以采用其他方法,例如导入更精确的近似函数来计算最佳值Vop,但是如果考虑装置的检测误差或偏差等,则未必现实。
另一方面,在步骤S474中目标值At大于评价值A(1)的情况下,将n递增1(步骤S475),重复上述步骤S473~S475来求平均显影偏压的最佳值Vop,直至n达到最大值(步骤S476),但是在步骤S476中尽管n达到最大值(n=5)也没有求出最佳值Vop、即与6个补丁图像对应的评价值都未达到目标值时,将使浓度达到最大的平均显影偏压V5作为最佳值Vop(步骤S477)。
这样,在本实施例中,将与各补丁图像Iv0~Iv5对应的评价值A(0)~A(5)分别和目标值At进行比较,根据其大小关系来求用于得到目标浓度的平均显影偏压的最佳值Vop,但是如上所述,在步骤S473中,在与连续2个补丁图像对应的评价值A(n)和A(n+1)之差在规定值Δa以下时,将平均显影偏压Vn作为最佳值Vop。其理由如下所述。
即,如图17B所示,如果平均显影偏压Vavg增大,则片材S上的图像浓度OD增加,但是在平均显影偏压Vavg比较大的区域中呈现下述特性:其增加率减小,逐渐饱和。这是因为,调色剂以某种程度高密度地附着后,即使再增多调色剂附着量,图像浓度也不太增加。这样,在图像浓度的增加率减小的区域中,如果为了进一步提高图像浓度而增大平均显影偏压Vavg,则尽管浓度不会太增加,却只会过分增大调色剂的消耗量,是不现实的。相反,在这种区域中,通过在可容许的范围内将浓度变化设定得尽可能低,能够将图像浓度的降低抑制到最小限度,同时大大减少调色剂消耗量。
因此,在本实施例中,在图像浓度相对于平均显影偏压Vavg的增加率比规定值小的区域中,将尽可能低的值设定为平均显影偏压的最佳值Vop。具体地说,在分别表示用Vn及Vn+1这2种平均显影偏压Vavg形成的各补丁图像Ivn、Iv(n+1)的浓度的评价值A(n)和A(n+1)之差为规定值Δa以下的情况下,将较低一方的平均显影偏压、即Vn的值设定为其最佳值Vop。这里,希望此值Δa的选择,使得在有2个图像的评价值只相差Δa时,两者的浓度之差达到用肉眼不能容易地判别的程度、或者其装置中两者的浓度之差可容许的程度。
通过这样做,尽管图像浓度几乎不增加,却防止将平均显影偏压Vavg设定为不必要高的值,实现图像浓度和调色剂消耗量之间的协调。
如上所述,能得到规定的实图像浓度的平均显影偏压Vavg的最佳值Vop被设定为从其最小值V0到最大值V5的范围内的某一个值。还有,在此图像形成装置中,从提高画质的观点来看,使感光体2上的静电潜像中对应于图像信号而不附着调色剂的部分(非画线部)的表面电位和平均显影偏压Vavg之间的电位差始终恒定(例如,325V),如上所述若求出平均显影偏压Vavg的最佳值Vop,则从充电控制部103向充电单元3提供的充电偏压的大小也据此被变更,使上述电位差保持恒定。
E.设定曝光能量
接着,将曝光能量E设定为其最佳值。图19是本实施例中的曝光能量设定处理的流程图。如图19所示,其处理内容与先前描述的显影偏压设定处理(图15)基本相同。即,首先将平均显影偏压Vavg设定为先前求出的最佳值Vop(步骤S51),接着一边使曝光能量E从最小等级的等级0起逐次地增加1个等级,一边用各等级来形成补丁图像(步骤S52、S53)。然后,对与来自各补丁图像的反射光量对应的传感器输出Vp、Vs进行采样(步骤S54),从其样本数据中除去尖峰噪声(步骤S55),同时,求各补丁图像的浓度(步骤S56),根据其结果来求曝光能量的最佳值Eop(步骤S57)。
在此处理(图19)中,其处理内容与上述显影偏压设定处理(图15)的不同的是,它是根据要形成的补丁图像的图案/个数、和评价值来求曝光能量的最佳值Eop的运算处理,其他方面则两者进行大致相同的处理。因此,这里主要说明其不同点。
在此图像形成装置中,感光体2表面由光束L曝光而形成与图像信号对应的静电潜像,但是例如在实图像那样被曝光的面积比较大的高浓度图像中,即使改变曝光能量E,静电潜像的电位分布特性也不太变化。与此相反,在例如细线图像或半色调图像那样被曝光的区域零星地散布在感光体2表面上的低浓度图像中,曝光能量E使其电位分布特性变化很大。这种电位分布特性的变化带来调色剂图像的浓度变化。即,曝光能量E的变化不太影响高浓度图像,但是在低浓度图像中对其浓度影响很大。
因此,在本实施例中,首先形成曝光能量E对图像浓度影响小的实图像作为高浓度用补丁图像,根据其浓度来求平均显影偏压Vavg的最佳值,同时,在求曝光能量E的最佳值时形成低浓度用补丁图像。因此,在此曝光能量设定处理中,使用与平均显影偏压设定处理中形成的补丁图像(图16)不同图案的补丁图像。
还有,虽然对曝光能量E的高浓度图像的影响小,但是如果使其可变范围过宽,则高浓度图像的浓度变化也增大。为了防止这种情况,作为曝光能量E的可变范围,可以使曝光能量从最小(等级0)变化到最大(等级3)时与高浓度图像(例如实图像)对应的静电潜像的表面电位的变化在20V以内,最好在10V以内。
图20是低浓度用补丁图像的图。如先前所述,在本实施例中,将曝光能量E变更设定为4级,这里,用其各等级各形成1个、共形成4个补丁图像Ie0~Ie3。此外,如图20所示,这里所用的补丁图像的图案由相互隔离配置的多个细线构成,更详细地说,是1“开(ON)”10“关(OFF)”的1个虚线图案。低浓度用补丁图像的图案并不限于此,但是如果这样使用线或点相互孤立的图案,则更能够使曝光能量E的变化反映到图像浓度的变化上,能够精度更高地求其最佳值。
此外,各补丁图像的长度L4被设定得小于高浓度用补丁图像的长度L1(图16)。这是因为,在此曝光能量设定处理中,平均显影偏压Vavg已经被设定为其最佳值Vop,在此最佳条件下,不产生以感光体2周期为周期的浓度斑纹(相反,在此状态下,如果产生浓度斑纹,则Vop不是平均显影偏压Vavg的最佳值)。但是,另一方面,也有可能发生伴随显影辊44的变形而造成的浓度斑纹,所以作为补丁图像的浓度,最好使用在与显影辊44的周长相当的长度上进行平均所得的值,因此,补丁图像的周长L4被设定得大于显影辊44的周长。还有,在非接触显影方式的装置中,在显影辊44及感光体2各自的表面的移动速度(圆周速度)不同的情况下,考虑其圆周速度比,将长度与显影辊44的1周对应的补丁图像形成在感光体2上即可。
此外,可以使各补丁图像的间隔L5小于图16所示的间隔L2。这是因为,来自曝光单元6的光束L的能量密度能够在比较短的时间内变更,特别是在其光源由半导体激光器构成的情况下,能够在极短的时间内变更其能量密度。通过这样构成各补丁图像的形状及其配置,如图20所示,能够在中间转印带71的1周上形成所有补丁图像Ie0~Ie3,随之处理时间也被缩短。
对这样形成的低浓度用补丁图像Ie0~Ie3,与先前描述过的高浓度补丁图像的情况同样求表示其图像浓度的评价值。然后,根据此评价值、和从与先前描述过的高浓度补丁图像用的查找表不同的另外准备的低浓度补丁图像用的查找表(图14B)导出的控制目标值来计算曝光能量的最佳值Eop。图21是本实施例中的曝光能量最佳值计算处理的流程图。在此处理中,也与图18所示的显影偏压最佳值计算处理同样,从用低能级形成的补丁图像起依次将其评价值与目标值At进行比较,通过求使评价值与目标值一致的曝光能量E的值决定其最佳值Eop(步骤S571~S577)。
但是,在通常使用的曝光能量E的范围内,在细线图像浓度和曝光能量E之间不出现在实图像浓度和平均显影偏压之间的关系中看到的饱和特性(图17B),所以与图18的步骤S473相当的处理被省略。这样,求出能得到期望的图像浓度的曝光能量E的最佳值Eop。
F.后处理
通过如上所述分别求出平均显影偏压Vavg、曝光能量E的最佳值,此后成为可以规定的图像质量来进行图像形成的状态。因此,此时可以结束浓度控制因子优化处理,既可以停止中间转印带71等的旋转驱动,使装置转移到待机状态,甚至也可以进行某些调节动作以控制其他浓度控制因子,这样,由于后处理的内容是任意的,所以这里省略其说明。
G.效果
如上所述,在本实施例的浓度控制因子的优化处理中,在形成补丁图像之前,进行设于各显影器4Y、4C、4M、4K的显影辊44的回转动作。因此,放置于显影辊44表面的调色剂的不均匀性引起的浓度斑纹对补丁图像浓度的影响被有效地抑制,根据其图像浓度可高精度求出作为浓度控制因子的平均显影偏压Vavg及曝光能量E的最佳值。然后,在这样优化后的条件下进行成像,从而,在此图像形成装置中可稳定地形成画质良好的调色剂图像。
此外,利用浓度传感器60在形成补丁图像前和后,检测来自中间转印带71上补丁图像区域的反射光量,由这些检测结果算出补丁图像浓度对应的评价值,故可排除补丁图像形成前的补丁图像区域的变色或损伤等引起的反射光量的变化的影响,高精度地求出补丁图像的浓度。
而且,可将显影偏压设定为最小,形成难以发生从显影辊44到感光体2的调色剂移动的条件,有效地防止调色剂附着在中间转印带71而影响检测结果,并且,由于时间上与此并行检测来自中间转印带71的反射光量,故可短时间内进行浓度控制因子的调节处理。
第二实施例
上述实施例中,将浓度传感器60与中间转印带71的表面对向配置,检测作为一次转印在中间转印带71上的补丁图像的调色剂图像的浓度,但是本发明的实施例并不限于此。例如,也可如图22所示,将浓度传感器朝向感光体2的表面配置,并检测在感光体2上显影的调色剂图像的浓度。
图22是表示本发明的图像形成装置的第二实施例的图。在本实施例的图像形成装置中,通过与图1所示的第一实施例的图像形成装置对比可知,取代与中间转印带71的表面对向配置的浓度传感器60,沿感光体2的旋转方向D1,在与显影辊44相对位置的下游侧,设有与感光体2相对的浓度传感器61。其他结构和动作与第一实施例的装置相同,所以对同一结构标注相同的符号并省略说明。
此浓度传感器61的结构与图4所示的第一实施例中的浓度传感器60的结构大致相同,但不是检测来自中间转印带71的表面71a而是检测来自感光体2表面的反射光量,这一点在构成上是不同的。即,在本实施例中,求作为补丁图像形成的感光体2上的调色剂图像的图像浓度,并根据其图像浓度进行浓度控制因子的优化处理。对于该处理也可与上述第一实施例基本同样地进行,但是,在因使用的材质不同而使表面的光学特性不同的情况下,需要按照这种情况相应地适当变更传感器的灵敏度及基准光量等。
如上所述,本发明不仅应用于在中间转印带71等的中间体上检测补丁图像的浓度,也可应用于在感光体2等的载像体上检测补丁图像浓度的装置。
第三实施例
在上述第一实施例及第二实施例中,在接通装置电源的时刻或在更换单元后进行浓度控制因子的优化处理,而且,此时,在补丁图像形成之前进行显影辊44的旋转动作,就防止了在补丁图像上出现浓度斑纹。同样的效果也可由下述的本发明的图像形成装置的第三实施例得到。此第三实施例是适于经常发生装置电源已经接通而不进行图像形成的时间为长时间持续的图像形成装置的实施例。
例如,配置于办公室的打印机总是置于电源接通状态,以便可根据需要迅速进行图像形成,即使如此,但实际上根据用户的图像形成要求将图像信号提供给主控制器11进行成像的频度却不太高,有时还会在不进行成像的状态下持续数小时。现有图像形成装置中称作“睡眠模式”等的节电动作模式也是鉴于这种装置的使用情况,为抑制不进行成像状态下白白消耗电力而设置的。
这样在不进行成像的状态下放置的时间持续很长,就会发生上述放置条纹现象,有时会在下一图像形成动作中形成的图像上产生浓度斑纹。此外,还会因气温等周围环境改变而使图像浓度逐渐改变。因此,在本实施例中,不仅在上述电源接通的时刻、某一单元更换后的时刻、在电源接通状态且不进行图像形成动作的时间,即动作停止时间持续一定时间的情况下,也同样执行浓度控制因子的优化处理。
图23是表示本实施例中图像形成动作及动作停止状态的流程图。此外,图24A及图24B是表示动作停止时间的长度引起的装置动作的差异的时序图。在此图像形成装置中,总是判断是否由外部装置通过接口112输入了图像信号(步骤S701),在提供了图像信号的情况下,执行上述一系列图像形成动作,在片材S上形成对应图像信号的图像(步骤S702)。然后,根据需要重复该图像形成动作(步骤S703),形成规定张数的图像。这样,当结束一系列的图像形成动作后,停止中间转印带71等的旋转驱动,同时,停止施加显影偏压及充电偏压等,将装置转到动作停止状态(步骤S704)。此时,更详细的是在停止由充电控制部103向充电单元3提供的充电偏压的输出的时刻,由CPU101使内部计时器复位并开始计时开始(步骤S705),再返回步骤S701,等待图像信号的输入。即,在本实施例中,CPU101由其内部计时器对装置处于动作停止状态的时间,即动作停止时间ts进行计时。
此时,如果迅速提供下一图像信号,则同样重复上述步骤S702~S703,形成必要张数的图像,然后,再由内部计时器开始计时(步骤S705),在未提供图像信号的情况下,进入步骤S706,仍然持续进行计时。然后,在动作停止时间ts达到后述的规定时间t1时,进入步骤S707,进行上述浓度控制因子的优化处理,接着进入步骤S705,将内部计时器暂时复位后,返回步骤S701,在步骤S706中动作停止时间ts未达到时间t1时,直接返回步骤S701。
也就是说,此装置中,图像形成动作结束后,若没有提供伴随用户的图像形成要求的、来自外部装置的新的图像信号,则为动作停止状态并由内部计时器持续动作停止时间ts的计时,而等待下一图像信号的输入。然后,如图24A所示,在动作停止时间ts达到规定时间t1之前下一图像信号被输入的情况下,装置迅速从动作停止状态复位执行图像形成动作。
另一方面,如图24B所示,在不提供下一图像信号、直到动作停止时间ts达到时间t1的情况下,装置从动作停止状态恢复并开始执行上述浓度控制因子的优化处理。然后,其处理一结束,再次返回动作停止状态。此时,也将计时器由于暂时复位,因此这之后的动作停止时间ts每达到时间t1,就同样执行浓度控制因子的优化处理。
这里的优化处理的内容除上述第一实施例的优化处理(图5的步骤S3~S5)之外,还可采用其他公知技术中同样的处理。这在以下各实施例中也是同样的。
如上所述,本实施例的图像形成装置,其构成使得,与自外部装置提供的图像信号对应的图像形成动作,或者,在补丁图像的形成动作的浓度控制因子的优化处理结束后的动作停止时间ts达到时间t1时,进行浓度控制因子的优化处理。因而,该装置中动作停止状态持续的期间最大为时间t1左右。此时间t1相当于本发明的“第一规定时间”。
这样,通过定期进行浓度控制因子的优化处理,使装置的动作停止时间ts在第一规定时间以下,从而,在此图像形成装置中,就抑制调色剂承载于显影辊44的状态下长时间放置而产生的放置条纹现象的发生。而且,通过抑制此放置条纹现象,此现象引起的补丁图像的浓度斑纹也不会发生,因此可根据补丁图像的浓度将浓度控制因子总是设定为最佳状态,其结果,在此图像形成装置中,可稳定地形成画质良好的调色剂图像。
此外,由于即使在动作停止状态时浓度控制因子也总是保持最佳状态,所以若新的图像信号自外部提供,则可迅速从动作停止状态恢复执行图像形成动作,能快速对应用户的要求。
如上所述,在本实施例中,由于每隔规定时间进行浓度控制因子的优化处理,故不易发生放置条纹现象。因而,在进行浓度控制因子的优化处理时,未必需要进行显影辊44的旋转动作。即,对于这种情况下浓度因子的优化处理,可省略图7所示的“预动作2”,由此,可抑制显影辊44的疲劳而变差的加剧,可延长装置寿命。但是,从提高图像品质的观点看,这种情况下最好也进行显影辊44的旋转动作。
在此,问题是如何设定此第一规定时间。即,由于每次形成补丁图像都要消耗调色剂,故为了将装置的运行成本抑制到较低水平,要尽可能减少补丁图像形成的频度,最好使第一规定时间t1较长。另一方面,当动作停止时间ts增长时,就会出现放置条纹现象引起的浓度斑纹,故从保持图像品质的观点看,最好使第一规定时间t1尽可能缩短。这样,第一规定时间t1难以随意决定。因此,例如在具有可容纳大量调色剂的显影器的装置,或更重视画质的装置中,就使第一规定时间t1较短,例如设定为1小时左右,而在重视经济性并允许图像有某种程度的浓度斑纹的装置中,就使第一规定时间t1加长,例如设定为3小时左右,可以根据装置的规格或调色剂特性等适当设定第一规定时间t1。
再者,至于判断图像形成动作及浓度控制因子的优化处理何时开始、或何时结束,则可考虑各种方法。根据本发明的目的,只要能判断前一图像形成动作结束后是否在不进行图像形成的状态下经过了一定时间即可。因而,只要由图像形成动作特有的某些处理结束的时刻、或为使装置进入动作停止状态需要的某些处理进行后的时刻中的任一点开始计时即可。例如,可如下进行。
图25是从动作停止状态恢复时的装置各部的动作的时序图。随着图像形成动作或浓度控制因子的优化处理的开始或结束,进行装置各部的偏压施加或旋转驱动的起动、停止,但是利用它们中任一种的起动、停止动作的定时,就能规定图像形成动作或优化处理的开始、结束。例如,如图25所示,可从图像形成后、从对充电单元3施加的充电偏压的施加停止时刻开始动作停止时间ts的计时。此外,例如在出现从外部的、输入伴随图像形成要求的图像信号时,接收该图像信号而结束动作停止时间ts的计时,或伴随该要求的中间转印带71的旋转驱动开始时结束动作停止时间ts的计时。
在本实施例中,也可与上述第二实施例同样,将浓度传感器朝向感光体2的表面配置,检测作为在感光体2上显影的补丁图像的调色剂图像的浓度。这在以下的各实施例中也是同样的。
第四实施例
本发明的图像形成装置的第四实施例是对上述第三实施例的进一步发展。在本第四实施例中,在动作停止状态超过第一规定时间t1时,进行浓度控制因子的优化处理,这一点与第三实施例相同,但此外还要进行下述动作。即,在动作停止时间ts未达到上述第一规定时间且在短于上述第一规定时间t1的第二规定时间t2以上时,若有伴随用户的图像形成要求的图像信号的输入,则首先执行浓度控制因子的优化处理,然后执行根据图像形成要求的图像形成动作。
图26是本发明图像形成装置的第四实施例的图像形成动作及动作停止状态的流程图。此外,图27是动作停止时间的长度引起的装置动作的差异的时序图。
如图26所示,在本第四实施例中,也总是判断是否有根据用户的图像形成要求的图像信号从外部装置通过接口112输入(步骤S721)。然后,在没有图像信号的输入的动作停止时间ts达到第一规定时间t1时,执行浓度控制因子的优化处理(步骤S729),这一点也与第三实施例相同。
另一方面,在提供了图像信号的情况下,执行上述一系列图像形成动作在片材S上形成对应图像信号的图像(步骤S724),但在本实施例中,在进行图像形成动作之前,比较动作停止时间ts和第二规定时间t2(步骤S722),在动作停止时间ts小于t2时,就跳过步骤S723,直接进行图像形成动作,同时,在动作停止时间ts为t2以上时,执行上述浓度控制因子的优化处理(步骤S723),然后,进行对应提供的图像信号的图像形成。(步骤S724)。
然后,再根据需要重复此图像形成动作(步骤S725),形成规定张数的图像。这样,当一系列的图像形成动作结束后,停止中间转印带71等的旋转驱动并停止显影偏压及充电偏压等的施加,将装置转到动作停止状态(步骤S726)。这样在停止图像形成动作的时刻、例如在停止从充电控制部103提供给充电单元3的充电偏压的输出时刻,CPU101使内部计时器复位并开始其计时(步骤S727),再次返回步骤S721,等待图像信号的输入。
也就是说,在此装置中,根据用户的图像形成要求的图像形成动作或浓度控制因子的优化处理结束后,在没有新的图像形成要求时,转到动作停止状态而等待新的图像信号的输入。此时,由内部计时器继续动作停止时间ts的计时,装置的动作根据何时提供新的图像信号,分为以下三种方式。
(1)ts<t2时(图27A)
这是在动作停止时间ts达到第二规定时间t2之前有新的图像信号输入的情况。此时,跳过图26的步骤S723,因此如图27A所示,根据输入的图像信号直接进行图像形成动作。然后,在其结束后,内部计时器被复位,接着动作停止时间ts再次从零开始计时。
这样,在前一图像形成后经过不太长时间的情况下,由于考虑不存在较大图像浓度的变化,所以根据对应输入的图像信号直接执行图像形成动作,就可快速形成规定图像品质的图像。
(2)t2≤ts<t1时(图27B)
在动作停止时间ts达到第二规定时间t2、但未达到第一规定时间t1之前有新的图像信号提供时,执行图26所示的步骤S723。因而,如图27B所示,在图像信号输入后,首先进行浓度控制因子的优化处理,接着进行对应图像信号的图像形成。此时的优化处理中由于接着进行图像形成动作,因此可在其后处理(图5所示的步骤S6)中将装置转到动作停止状态。
这样,在动作停止时间ts达到第二规定时间t2以上时,通过在进行图像形成之前执行浓度控制因子的优化处理,即使在进行前一图像形成之后经过较长时间后,也可形成具有规定图像品质的图像。
(3)ts=t1时(图27C)
这是在新的图像信号未输入下的动作停止时间ts达到第一规定时间t1的情况。此时,与第三实施例同样,执行图26的步骤S729中的浓度控制因子的优化处理。因而,如图27C所示,在动作停止时间ts达到t1的时刻,执行浓度控制因子的优化处理。此时,由于不需要继续进行图像的形成,因此最好其后处理中将装置转到动作停止状态。然后,此时也要将内部计时器复位,所以如果图像信号未输入的状态进一步持续并经过时间t1,则同样进行浓度控制因子的优化处理。
这样,在本实施例中,即使不提供图像信号,通过每经过一定时间进行浓度控制因子的优化处理,就进行作为补丁图像的调色剂图像的形成。因此,动作停止时间ts不会超过第一规定时间t1,故有效地抑制了放置条纹现象所引起的浓度斑纹的发生。
这样,在进行浓度控制因子的优化处理后,在经过时间t2之前有新的图像信号提供时,可直接形成对应该图像信号的图像。
如上所述,在本实施例中,时间t1及t2分别相当于“第一规定时间”及“第二规定时间”。在本实施例中的问题也是第一及第二规定时间t1及t2如何设定。例如可如下决定。在动作停止时间ts和放置条纹现象引起的浓度斑纹的程度的对应关系中,可以将可允许用户持有的图像的浓度斑纹的动作停止时间ts的最大值作为第二规定时间t2,而将补丁图像上产生的浓度斑纹不会对浓度控制因子的优化处理带来障碍的动作停止时间ts的最大值作为第一停止时间t1。
在本实施例中,也可通过每隔一定时间进行补丁图像的形成来抑制放置条纹现象的加剧,所以此显影辊44的旋转动作不一定是必须的主要条件。即,在上述实施例的预动作(图7)中,也可不进行显影辊44的旋转动作(预动作2),而仅进行预动作1。如上所述,利用显影辊44的旋转使调色剂特性发生稍微变化,但是通过不进行预动作2就可将此特性变化抑制到最小限度。
这里,是否进行预动作2可由例如要求装置的画质的程度来决定。也就是说,可这样分开使用,对要求更高画质的用途,要通过执行预动作2在更高精度上使浓度控制因子优化,而对更重视调色剂的运行成本等经济性的用途,则可不进行预动作2。
此外,也可将此处理(图26)如图28所示进行局部变更来执行。图28是本实施例的图像形成动作及动作停止状态的变形例的流程图。在此变形例中,在其步骤S741中,当没有图像信号输入时,就返回到相同步骤S741。因而,保持动作停止状态直至图像信号输入为止。此外,在步骤S742中,通过将动作停止时间ts和第三规定时间t3进行比较来改变处理。
即,在动作停止时间ts未达到第三规定时间t3就有图像信号输入的情况下,直接进行对应输入图像信号的图像形成动作(步骤S744)。另一方面,在动作停止时间ts到达时间t3以上后有图像信号的输入时,在进行浓度控制因子的调节处理(步骤S743)后,进行对应该图像信号的图像形成动作(步骤S744)。
上述之外的处理内容与图26所示的处理本质上相同。但是,这种情况下的调节处理(步骤S743)与第一实施例的调节处理(图5)同样,要伴随显影辊44的旋转动作(图7所示的预动作2)。
这样做的根据如下。即,在形成对应图像信号的调色剂图像之前,首先进行显影辊44的旋转动作(预动作2),之后,进行补丁图像的形成动作,由此,可抑制放置条纹现象引起的浓度斑纹。这两个动作各自单独也具有降低放置条纹现象的效果,而相继进行这些动作,该效果会更加显著。
这样,通过连续进行这两个动作,可有效地消除放置条纹现象,故有时可省略上述第三及第四实施例中进行的“每隔一定时间进行浓度控制因子的优化处理”的动作。例如,在一天平均连续运行时间为8小时左右的图像形成装置中,若其时间的一半左右,即4小时左右为动作停止时间,则放置条纹现象引起的浓度斑纹为可允许的程度。
因此,在这种装置中,例如在动作停止时间ts不足4小时就有图像信号提供时,根据其图像信号直接进行调色剂图像形成,而在动作停止时间ts经过4小时以上而提供图像信号时,就伴随显影辊44的旋转动作进行浓度控制因子的优化处理,然后进行调色剂图像形成,由此,可抑制放置条纹现象引起的浓度斑纹的发生,稳定地形成画质良好的调色剂图像。这在本发明中相当于将第三规定时间定为4小时的情况。
图29A及图29B是表示图28的处理中动作停止时间的长度和装置动作的关系的时序图。在进行图28的处理的情况下,在图像形成动作结束后的动作停止时间ts不足规定时间t3就有图像信号输入时,如图29A所示,根据图像信号输入直接执行图像形成动作。
另一方面,如图29B所示,在动作停止时间ts在时间t3以上时输入图像信号的情况下,在执行图像形成动作之前,要伴随显影辊的旋转动作执行优化处理。这样,在动作停止状态长期持续后进行图像形成时,在此之前进行伴随旋转动作的优化处理,从而可抑制放置条纹现象引起的浓度斑纹的发生。此外,通过在补丁图像形成之前进行显影辊的旋转动作,可防止放置条纹现象对补丁图像的影响。
如上所述,在此图像形成装置中,通过对应外部装置提供的图像信号、或者在浓度控制因子的优化处理中形成补丁图像,来按一定期间,即第一停止时间t1以内的时间间隔形成某些调色剂图像。因此,在装置电源接通的状态下,动作停止状态不会持续超过时间t1,有效抑制了放置条纹现象引起的浓度斑纹的发生。而且,即使在动作停止时间ts达到时间t1之前,在经过较长时间t2以上后输入图像信号时,在进行图像形成之前进行浓度控制因子的优化处理,因此,这种情况下,也可以形成良好画质的调色剂图像。
此外,在进行浓度控制因子的优化处理时,若在形成补丁图像之前进行显影辊44的旋转动作,则可利用已均匀的调色剂形成补丁图像,能根据其图像浓度高精度地求出平均显影偏压Vavg及曝光能量E的最佳值。然后通过在这种优化的条件下进行图像形成,从而在此图像形成装置中就可稳定地形成画质良好的调色剂图像。
此外,即使不进行每隔规定时间的优化处理,在动作停止时间ts经过第三规定时间t3后输入图像信号的情况下,若也在图像形成动作之前进行伴随显影辊的旋转动作的优化处理,则可同样稳定地形成画质良好的调色剂图像。
第一至第四实施例的变形例
还有,本发明不限于上述各实施例,只要不脱离其宗旨,就可在上述实施例以外进行各种变更。例如,在上述各实施例中,可实施下述的变形例。
例如,在上述各实施例中,浓度传感器60由朝向中间转印带71的表面照射光并检测从其表面反射的光量的反射型光传感器构成,但除此之外,例如也可将浓度传感器的发光元件和受光元件夹置中间转印带对向配置,来检测透过中间转印带的光量。
此外,例如在上述各实施例中,作为高浓度用补丁图像采用了实图像,而作为低浓度用的补丁图像采用了1接通10断开的多个1点线构成的图像,但是各补丁图像的图案并不限于此,也可以是其他图案的半色调的图像等。
此外,例如上述第一实施例的浓度控制因子的调节处理的构成使得,在将各显影器依次置于显影位置进行各显影辊44的旋转动作后,一边重新切换各显影器一边依次形成补丁图像,但也可以对每个显影器连续进行显影辊的旋转动作和补丁图像的形成。这种情况下,可减少显影器切换动作的次数,因此例如在要求待机状态的静音性的装置中,可通过如此构成将伴随显影器的切换而产生的动作声的频度抑制到最小限度。
此外,在上述各实施例中浓度控制因子的调节处理及优化处理的顺序是表示其中的一个例子,也可以是除此之外的顺序。例如,在第一实施例中,图像形成动作及浓度控制因子的调节处理都是按黄、青、品红、黑的顺序进行的,但也可以是除此之外的顺序。
此外,在上述各实施例中,作为中间转印带71的基本概况,存储按中间转印带71的一周对浓度传感器60的输出进行采样得到的各采样数据。但也可存储后面补丁图像形成的位置,即仅存储来自补丁图像区域的样本数据,这样可减少应存储的数据量。这种情况下,只要尽可能使各补丁图像对中间转印带71的形成位置一致,就可对各补丁图像使用通用的基本概况进行运算,从而更有效果。
此外,在上述各实施例中,可改变作为控制图像浓度的浓度控制因子的平均显影偏压及曝光能量,但也仅改变其中之一也可控制图像浓度,此外,也可使用其他浓度控制因子。甚至是,在上述各实施例中,其构成使充电偏压随着平均显影偏压而变化,但并不限于此,也可以将充电偏压固定,或可使其独立于平均显影偏压而变更。
第五实施例
迄今所叙述的各实施例中,即使没有图像形成要求或在图像形成动作之前,通过图像形成条件的优化处理,来定期形成作为补丁图像的调色剂图像,由此,防止放置条纹现象对图像品质的影响。与此相反,在下述第五及第六实施例中,通过定期进行显影辊44的旋转动作,力求消除放置条纹现象。
图30是表示第五实施例的主处理的流程图。在本实施例的引擎控制器10中,判断CPU101是否来自主控制器11的CPU111输入图像信号(步骤S801)。当判断输入了图像信号时,就进入下一流程,执行先前所述的图像形成动作,形成一张片材的图像(步骤S802)。然后,判断有无要形成的下一图像(步骤S803),当有下一图像时,返回步骤S802,重复必要张数的图像形成动作。这样,在图像形成动作结束后,如后所述,使设于CPU101的内部的电子计数器的值n复位为零(步骤S804),同时,使装置转到动作停止状态(步骤S805)。
此外,在本实施例中,也由CPU101的内部计时器对引擎部EG处于动作停止状态的时间,即动作停止时间ts进行计时,如上所述,当引擎部EG一转到动作停止状态,就将内部计时器暂时复位,重新开始动作停止时间ts的计时(步骤S806)。虽然在本例中的结构使得,从停止自充电控制部103向充电单元3施加充电偏压的时刻开始对装置的动作停止时间ts进行计时,但也可在此之外的定时对动作停止时间ts计时。
这样在结束一系列的图像形成动作使装置转到动作停止状态后,就再次返回步骤S801,并以待机状态等待新的图像信号的输入。
另一方面,在步骤S801中,当判断无图像信号输入时,CPU101沿右侧的流程进行处理。即,首先,判断在转到动作停止状态后由内部计时器持续计时的动作停止时间ts是否达到预定的第四规定时间t4(步骤S807)。在此,在动作停止时间ts未达到时间t4的情况下,再次返回步骤S801,等待输入图像信号。与此相反,在动作停止时间ts达到时间t4的情况下,将电子计数器的值n增大(步骤S808),同时,为消除放置条纹现象而执行显影辊44的周向回转动作(步骤S809)。
图3 1是本实施例中显影辊旋转动作的流程图。在此旋转动作中,首先,将黄色的显影器4Y配置在显影位置(步骤S891),将该显影器4Y的显影辊44与主体侧的旋转驱动部配合并旋转一周以上(步骤S892)。然后,使旋转的显影单元4旋转进行显影器的切换(步骤S893),对其他显影器4C、4M、4K也同样使显影辊44分别旋转一周以上。这样在对所有调色剂色结束旋转动作后(步骤S894),重新返回主处理。
返回图30,继续说明主处理的动作。在步骤S808中增值的电子计数器对执行旋转动作的次数进行计数,当在步骤S810中判断其计数值n达到规定的值(本例中为3),即持续3次执行了旋转动作时,在该旋转动作后,接着执行影响图像浓度的浓度控制因子的优化处理(步骤S811)。这里的优化处理中,不必重新进行显影辊的旋转动作。而且,在执行此优化处理后,或执行先前所述的图像形成动作后,使此计数值n复位为零的同时(步骤S804),在步骤S810中计数值n为3以外的值的情况下,在旋转动作结束后,电子计数器不复位而保持其计数值n直接使装置再次返回动作停止状态(步骤S805)。
这样,进行图30所示的处理,对动作停止时间ts进行计时并对旋转动作的执行次数n进行计数,因此,在本实施例中,因在前一图像形成动作结束后直至下一图像信号输入前的时间经过不同,则其动作不同。图32A、图32B及图32C是表示本实施例的主处理中根据图像信号的输入定时的动作差异的时序图。在前一图像形成动作结束装置转到动作停止状态后,在其动作停止时间ts达到规定时间t4之前有下一新图像信号输入时,如图32A所示,直接进行图像形成动作、形成对应此图像信号的调色剂图像。
此外,在前一图像形成动作结束后未输入新的图像信号的状态下动作停止时间ts达到时间t4时,如图32B所示,暂时脱离动作停止状态进行旋转动作。然后,当此旋转动作一结束,装置就再次转到动作停止状态,同时,重新开始动作停止时间ts的计时。进而,在动作停止时间ts达到时间t4时就再次执行旋转动作,而若在动作停止时间ts达到时间t4之前若有新的图像信号输入,则立即执行图像形成动作。
这样,在本实施例中,即使在不输入图像信号的状态下经过较长时间时,每经过一定时间(t4)就进行显影辊44的旋转动作,但是,这样每重复进行旋转动作,电子计数器的计数值就被增值。于是,如图32C所示,在执行了第三次的旋转动作(即n=3)时,在其旋转动作后,接着进行浓度控制因子的优化处理。也就是说,若从前一图像形成动作结束在无图像形成要求的状态下经过时间t5,则进行浓度控制因子的优化处理。此时间t5在本实施例中约为时间t4的n倍。
这里,由于旋转动作所需时间为每次数秒左右,故若将时间t4定为例如4小时,则时间t5约为12小时。如上所述,由于温度湿度等装置周围环境的变化就造成图像浓度时刻变化,故为了总能稳定地得到一定浓度的图像,最好尽可能频繁地进行浓度控制因子的优化。但是,若根据补丁图像浓度进行的浓度控制因子的优化处理过于频繁,则补丁图像形成中消耗的调色剂量也会增多。特别是,在显影器内可容纳的调色剂量少的小型图像形成装置中,调色剂补给(或显影器的更换)的频度也会增加,会降低装置的便利性,同时导致运行成本的上升。
因此,在本实施例中,在认为周围环境变化较小的时间间隔中,仅通过进行不伴随补丁图像形成的显影辊的旋转动作,就将放置条纹现象的发生防患于未然。另一方面,在经过更长时间认为周围环境变化大的时间间隔中,执行浓度控制因子的优化处理。这样可实现画质及图像浓度的稳定,将调色剂的消耗量抑制到最小限度。并且,通过在使浓度控制因子优化之前执行显影辊的旋转动作,可形成无放置条纹现象所引起的浓度斑纹的补丁图像,因此可根据这样形成的补丁图像的浓度能高精度地进行浓度控制因子的优化。
这样,在本实施例中,进行显影辊44的旋转动作的时间间隔t4相当于本发明的“第四规定时间”,此外图像形成动作结束后直至进行伴随浓度控制因子优化处理的显影辊44的旋转动作为止的时间t5相当于本发明的“第五规定时间”。
如上所述,在本实施例的图像形成装置中,当前一图像形成动作结束后,就变为等待新的图像信号的输入的待机状态,但在其待机中并不是总是完全停止动作,每经过一定的时间t4就要临时脱离动作停止状态执行显影辊44的旋转动作。因此,可有效地抑制装置长时间防止引起的放置条纹现象的发生,可稳定地形成无浓度斑纹的画质良好的调色剂图像。
然后,在结束图像形成动作后的时间达到长于上述时间t4的时间t5时,来执行浓度控制因子的优化处理,因此即使装置被长时间放置时,也可将图像浓度的变化抑制得很小,同时,由于在其优化处理之前进行显影辊的旋转动作,所以补丁图像浓度不会受放置条纹现象带来的影响,可更高精度地进行浓度控制因子的优化处理。
因而,在此图像形成装置中,通过减少补丁图像形成的频度来抑制调色剂的消耗量,而且,可有效地抑制放置条纹现象引起的浓度斑纹及伴随周围环境变化的图像浓度变化,可稳定地形成画质良好的调色剂图像。
第六实施例
下面说明本发明的图像形成装置的第六实施例。在本第六实施例中,主处理的内容和第五实施例不同,随之,待机状态下的动作与第五实施例不同。因此,在这里主要说明此主处理中的动作。
在第五实施例的图像形成装置中,即使不输入图像信号,通过每隔一定时间执行显影辊44的旋转动作,就防止了放置条纹现象(图32C)。与此相反,在第六实施例中,在不输入图像信号期间维持动作停止状态,而在有新的图像信号输入时,在进行与其对应的图像形成动作之前,根据之前的动作停止时间的大小进行必要的前处理,即进行显影辊44的旋转动作和浓度控制因子的优化处理。
参照图33、图34A、图34B及图34C更详细地说明第六实施例的主处理。图33是表示本发明的图像形成装置的第六实施例的主处理的流程图。此外,图34A、图34B及图34C是本实施例的主处理中图像信号的输入定时引起的动作差异的时序图。在本实施例的主处理中,与第五实施例的装置同样,引擎控制器10的CPU101判断有无图像信号的输入(步骤S901),但在本第六实施例中,若没有图像信号的输入,则装置仍然保持动作停止状态。
然后,当图像信号输入后,比较内部计时器计时的动作停止时间ts和预定的时间t6(步骤S902)。此时,若动作停止时间ts在时间t6以上,则进行显影辊44的旋转动作(步骤S903)。此旋转动作的内容与第五实施例的动作(图31)相同。另一方面,在动作停止时间ts未达到时间t6时,就跳过旋转动作及以下的步骤S904、S905。
接着,再比较动作停止时间ts和大于预定的上述时间t6的时间t7(步骤S904)。然后,若动作停止时间ts在时间t7以上,则执行浓度控制因子的优化处理(步骤S905)。而在动作停止时间ts未达到时间t7时,跳过此优化处理。
这样在根据动作停止时间ts的大小进行必要的前处理后,执行图像形成动作,并形成所需张数的图像(步骤S906~S907)。然后,在图像形成结束后,将装置转到动作停止状态(步骤S908),同时,将对动作停止时间ts进行计时的内部计时器复位、开始新的计时(步骤S909)并返回步骤S101。
通过进行这种主处理,在本实施例的装置中,根据从前一图像形成动作结束后到输入下一图像信号为止的时间经过,如下区分其动作。首先,在前一图像形成动作结束后的动作停止时间ts达到规定的时间t6之前输入了新的图像信号时,如图34A所示,立即执行对应其图像信号的图像形成动作。与此相反,如图34B所示,在动作停止时间ts在时间t6以上而不足时间t7时输入了新的图像信号的情况下,在执行显影辊44的旋转动作之后执行图像形成动作。这样,在动作停止时间ts较长时,通过在图像形成之前进行显影辊44的旋转动作就可消除放置条纹现象,形成画质良好的调色剂图像。这样,在本实施例中,时间t6相当于本发明的“第六规定时间”。
进而,如图34C所示,在动作停止时间ts超过时间t7后输入新的图像信号的情况下,执行显影辊44的旋转动作以及接着进行浓度控制因子的优化处理之后,执行图像形成动作。这样,在动作停止时间ts更长的情况下,通过在图像形成之前执行浓度控制因子的优化处理,就可不依赖于温度、湿度等装置周围环境的变化形成画质稳定的调色剂图像。而且,由于在进行其优化处理之前进行了显影辊44的旋转动作,因此补丁图像浓度不受放置条纹现象的影响,可高精度地进行浓度控制因子的优化处理。这样,在本实施例中,时间t7就相当于本发明的“第七规定时间”。
如上所述,在本实施例的图像形成装置中,在输入了新的图像信号时,根据前一图像形成动作结束后的动作停止时间ts的大小,使其动作不同。即,在动作停止时间ts不足时间t6时,立即执行图像形成动作,而在动作停止时间ts在时间t6以上时,进行显影辊44的旋转动作。因此,由于显影辊44在承载调色剂而被放置引起的放置条纹现象可在进行图像形成前消除,能稳定地形成无浓度斑纹的画质良好的调色剂图像。
此外,在动作停止时间ts达到更长的时间t7以上时,由于在显影辊44的旋转动作之后进行浓度控制因子的优化处理,因此即使因长时间放置而装置的周围环境发生了变化,也可抑制由其影响所带来的图像浓度的变动,稳定地形成调色剂图像。
这样,上述第五及第六实施例,其主处理中的动作虽然有某些不同,但其本质上的技术思想是相通的。即,通过按照动作停止时间ts的大小进行显影辊44的旋转动作,达到不增加调色剂消耗量就可消除放置条纹现象,同时,通过进一步根据需要进行浓度控制因子的优化处理来实现图像浓度的稳定。其结果,在这些图像形成装置中,都可稳定地形成画质良好的调色剂图像。因而,在将本发明应用于图像形成装置时,可采用上述两实施例的任一个,此外,何种程度地进行显影辊44的旋转动作及浓度控制因子的优化处理也可根据装置适当决定。
第五及第六实施例的变形例
还有,本发明不限于上述实施例,只要不脱离其宗旨,在上述实施例之外可进行种种变更。例如,在上述各实施例中,动作停止时间ts由CPU101的内部计时器进行计时,但也可用其他计时装置进行计时,例如也可在引擎控制器10另设计时器IC或计数器等,由此对动作停止时间ts进行计时。
此外,例如在上述各实施例中,是从停止自充电控制部103向感光体2施加的充电偏压的时刻起对动作停止时间ts进行计时,但开始计算动作停止时间ts的定时并不限于此,例如也可从停止自显影器控制部104向显影辊44施加显影偏压或停止感光体2的旋转驱动、中间转印带71的旋转驱动等的时刻开始计算动作停止时间ts。
此外,例如,在上述实施例中,在动作停止时间ts达到规定时间以上时,进行显影辊44的旋转动作,而在动作停止时间ts更长时,还要执行浓度控制因子的优化处理,但是,即使在后者的情况下,也可以仅执行显影辊44的旋转动作。甚至是,也可以仅在有来自主控制器11的要求等情况下,只是特别需要时,执行浓度控制因子的优化处理。
还有,除此之外也可以采用例如如下的变形例。图35A及图35B是表示主处理的变形例的动作的图。在该变形例中,每当动作停止时间ts达到规定时间t8时,就执行显影辊44的旋转动作,而对前一图像形成动作结束后的待机时间tw预先进行计时。动作停止时间ts由于旋转动作的执行而停止计时及复位,而此待机时间tw的计时不因旋转动作的执行而被中断。
然后,在此待机时间tw到达规定时间t9(其中,t9>t8)之前有下一图像信号输入的情况下(图35A),立即执行对应其图像信号的图像形成动作。此外,在待机时间tw达到时间t9以上并有新的图像信号输入时(图35B),首先执行浓度控制因子的优化处理,然后进行对应图像信号的图像形成。
即使在此变形例中,通过每隔一定时间进行显影辊44的旋转动作就可抑制放置条纹现象引起的浓度斑纹的发生,而在待机时间tw较长时在图像形成之前,通过执行浓度控制因子的优化处理,就可抑制图像浓度的变动,稳定地形成画质良好的调色剂图像。
此外,例如在上述第五实施例中,在连续执行三次显影辊44的旋转动作的情况下,接着进行浓度控制因子的优化处理,因而,相当于“第五规定时间”的时间t5为相当于本发明的“第四规定时间”t4的约三倍,但两者的关系也可不一定形成这种整数比。
第一~第六实施例的变形例
上述各实施例是具有作为临时承载感光体2上显影的调色剂图像的中间媒体的中间转印带71的图像形成装置,但本发明也可应用于具有转印鼓或转印辊等其他中间媒体的图像形成装置、或不具有中间媒体而直接将形成于感光体2上的调色剂图像转印在作为最终转印材料的片材S上的图像形成装置。
此外,上述各实施例是用黄、青、品红、黑四色的调色剂可形成全色图像的图像形成装置,但使用的调色剂色及其色数不限于此,是任意的,例如,也可将本发明应用于仅使用黑色调色剂形成单色图像的装置。
还有,在上述各实施例中,是将本发明应用于根据来自装置外部的图像信号进行图像形成动作的打印机,但本发明当然也可应用于:根据用户的成像要求,例如通过按动复印钮在装置内部生成图像信号,并根据其图像信号执行图像形成动作的复印机;或根据通讯线路提供的图像信号执行图像形成动作的传真机装置。

Claims (12)

1.一种图像形成装置,包括:
可在表面上承载静电潜像的载像体;
调色剂载体,一边在表面上承载调色剂一边向规定方向旋转,由此将所述调色剂运送到所述载像体的相对位置;和
像形成单元,向所述调色剂载体施加规定的显影偏压,使所述调色剂载体上承载的调色剂向所述载像体移动,从而通过调色剂将所述静电潜像显影;
其中,可以执行根据图像形成要求而形成与该图像形成要求相对应的调色剂像的图像形成动作,并且,
在结束调色剂像的形成之后的经过时间达到第一规定时间却没有新的图像形成要求时,在根据下一个图像形成要求执行所述图像形成动作之前,执行使所述调色剂载体至少旋转一周以上的所述调色剂载体的旋转动作。
2.如权利要求1所述的图像形成装置,其中,
当结束调色剂图像的形成之后的经过时间达到所述第一规定时间时,如果此时没有新的所述图像形成要求,则执行所述调色剂载体的旋转动作。
3.如权利要求2所述的图像形成装置,其中,
结束所束旋转动作之后再次经过所述第一规定时间却没有新的图像形成要求时,再次执行所述旋转动作。
4.如权利要求2所述的图像形成装置,其中,
所述经过时间达到比所述第一停止时间长的第二规定时间时,执行所述旋转动作,进而,
作为补丁图像形成规定的调色剂图像并检测该补丁图像浓度,根据其检测结果优化影响图像浓度的浓度控制因子。
5.如权利要求1所述的图像形成装置,其中,
当结束调色剂图像的形成之后的经过时间超过了所述第一规定时间后具有图像形成要求时,在根据该图像形成要求执行所述图像形成动作之前,执行所述旋转动作。
6.如权利要求5所述的图像形成装置,其中,
当所述经过时间超过比所述第一规定时间长的第三规定时间后具有图像形成要求时,在根据该图像形成要求形成调色剂图像之前,依次执行所述旋转动作,以及形成作为补丁图像的调色剂图像且检测该补丁图像的浓度并根据其检测结果优化影响图像浓度的浓度控制因子的优化处理。
7.一种图像形成方法,在载像体的表面形成静电潜像,并且对一边在表面承载调色剂一边在规定方向上旋转的调色剂载体施加规定的显影偏压并使所述调色剂载体上承载的调色剂向所述载像体移动,由此利用调色剂将所述静电潜像显影而形成调色剂图像,其中,
当结束调色剂图像的形成之后的经过时间达到第一规定时间且没有新的图像形成要求时,在根据下一个图像形成要求形成图像之前,执行使所述调色剂载体旋转至少一周以上的所述调色剂载体的旋转动作。
8.如权利要求7所述的图像形成方法,其中,
当结束调色剂图像的形成之后的经过时间达到所述第一规定时间时,如果此时没有新的所述图像形成要求,则执行所述调色剂载体的旋转动作。
9.如权利要求7所述的图像形成装置,其中,
当结束所束旋转动作之后还经过所述第四规定时间并没有新的所述图像形成要求时,就再次执行所述旋转动作。
10.如权利要求8所述的图像形成方法,其中,
当所述经过时间达到比所述第一规定时间长的第二规定时间时,执行所述旋转动作,进而,
作为补丁图像形成规定的调色剂图像并检测该补丁图像浓度,根据其检测结果优化影响图像浓度的浓度控制因子。
11.如权利要求7所述的图像形成方法,其中,
当结束调色剂图像的形成之后的经过时间超过了所述第一规定时间后具有图像形成要求时,在根据该图像形成要求进行调色剂图像形成之前,执行所述旋转动作。
12.如权利要求11所述的图像形成方法,其中,
当所述经过时间超过比所述第一规定时间长的第三规定时间后具有图像形成要求时,在根据该图像形成要求形成调色剂图像之前,依次执行所述旋转动作,以及形成作为补丁图像的调色剂图像且检测其补丁图像的浓度并根据其检测结果优化影响图像浓度的浓度控制因子的优化处理。
CN2007101628465A 2002-07-19 2003-07-21 图像形成装置及图像形成方法 Expired - Fee Related CN101140438B (zh)

Applications Claiming Priority (24)

Application Number Priority Date Filing Date Title
JP2002-211583 2002-07-19
JP2002211582 2002-07-19
JP2002211583 2002-07-19
JP2002211583 2002-07-19
JP2002-211582 2002-07-19
JP2002211582 2002-07-19
JP2002214681 2002-07-24
JP2002-214681 2002-07-24
JP2002214681 2002-07-24
JP2002228754 2002-08-06
JP2002228754 2002-08-06
JP2002-228754 2002-08-06
JP2003-189476 2003-07-01
JP2003189474 2003-07-01
JP2003-189473 2003-07-01
JP2003189475 2003-07-01
JP2003189476 2003-07-01
JP2003189473A JP2004102239A (ja) 2002-07-19 2003-07-01 画像形成装置および画像形成方法
JP2003189474A JP4396152B2 (ja) 2002-08-06 2003-07-01 画像形成装置および画像形成方法
JP2003189475A JP2004102240A (ja) 2002-07-19 2003-07-01 画像形成装置および画像形成方法
JP2003-189474 2003-07-01
JP2003189476A JP2004109980A (ja) 2002-07-24 2003-07-01 画像形成装置および画像形成方法
JP2003189473 2003-07-01
JP2003-189475 2003-07-01

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB031460739A Division CN100367117C (zh) 2002-07-19 2003-07-21 图像形成装置及图像形成方法

Publications (2)

Publication Number Publication Date
CN101140438A true CN101140438A (zh) 2008-03-12
CN101140438B CN101140438B (zh) 2010-12-22

Family

ID=30004127

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB031460739A Expired - Fee Related CN100367117C (zh) 2002-07-19 2003-07-21 图像形成装置及图像形成方法
CN2007101628465A Expired - Fee Related CN101140438B (zh) 2002-07-19 2003-07-21 图像形成装置及图像形成方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNB031460739A Expired - Fee Related CN100367117C (zh) 2002-07-19 2003-07-21 图像形成装置及图像形成方法

Country Status (5)

Country Link
US (2) US7068957B2 (zh)
EP (2) EP1384591B1 (zh)
CN (2) CN100367117C (zh)
AT (1) ATE380671T1 (zh)
DE (1) DE60317979T2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102236305A (zh) * 2010-04-27 2011-11-09 富士施乐株式会社 图像形成设备、控制装置以及检测传送体上的参考指标的方法
CN103454876A (zh) * 2012-06-04 2013-12-18 佳能株式会社 图像形成设备

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7072597B2 (en) 2002-02-20 2006-07-04 Seiko Epson Corporation Image forming apparatus and image method for forming toner images with optimized patch image density
US20050185611A1 (en) * 2004-02-25 2005-08-25 Torarp Carl-Johan Y. Broadband wireless network
US7512131B2 (en) * 2004-02-25 2009-03-31 Schwegman, Lundberg & Woessner, P.A. Systems and methods for centralized control and management of a broadband wireless network with data processing, and enforcement distributed to the network edge
EP1596255A1 (en) * 2004-03-09 2005-11-16 Seiko Epson Corporation Image forming apparatus with developer cartridges containing toner of the same colour
US20050244175A1 (en) * 2004-04-29 2005-11-03 Dennis Abramsohn Initiating a calibration procedure in a printing device
US7379679B2 (en) * 2004-06-14 2008-05-27 Seiko Epson Corporation Image forming apparatus and method with plural developers each storing toner of the same color
US7315703B2 (en) * 2004-08-09 2008-01-01 Seiko Epson Corporation Image forming apparatus, image forming system, and image forming method
JP4669356B2 (ja) * 2004-09-30 2011-04-13 キヤノン株式会社 画像形成装置
US7356272B2 (en) * 2004-10-29 2008-04-08 Seiko Epson Corporation Image forming apparatus with developing roller that rotates during standby to ensure toner uniformity
JP4485961B2 (ja) * 2005-01-07 2010-06-23 株式会社リコー 光量調整装置、色ずれ量検出装置及び画像形成装置
JP4629466B2 (ja) * 2005-03-11 2011-02-09 株式会社沖データ 画像形成装置
JP2007052211A (ja) * 2005-08-17 2007-03-01 Murata Mach Ltd 画像形成装置
DE102007001687B4 (de) * 2007-01-11 2015-09-03 Océ Printing Systems GmbH & Co. KG Verfahren und Vorrichtung zum Verarbeiten eines Messsignals zum Erfassen einer Eigenschaft einer Tonermarke
US20090232526A1 (en) * 2008-03-17 2009-09-17 Ricoh Company, Ltd. Developer cartridge and image formation apparatus
JP5445232B2 (ja) * 2009-03-17 2014-03-19 株式会社リコー 画像形成装置及びそのプログラム
US20110064430A1 (en) * 2009-09-16 2011-03-17 Kabushiki Kaisha Toshiba Image forming method and determination method of contrast potential
JP5062301B2 (ja) 2010-06-22 2012-10-31 コニカミノルタビジネステクノロジーズ株式会社 画像形成装置および画像濃度適正化方法
JP5864866B2 (ja) * 2011-02-10 2016-02-17 キヤノン株式会社 画像形成装置
JP5999305B2 (ja) * 2012-02-20 2016-09-28 株式会社リコー 光学センサ及び画像形成装置
JP5949223B2 (ja) * 2012-06-29 2016-07-06 ブラザー工業株式会社 画像形成装置
JP6362326B2 (ja) * 2013-12-26 2018-07-25 キヤノン株式会社 印刷装置及び印刷装置の制御方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US28084A (en) * 1860-05-01 Improvement in projectiles for breech-loading ordnance
US5307127A (en) 1992-02-28 1994-04-26 Canon Kabushiki Kaisha Developing apparatus using one component toner with improved flowability
JPH06110285A (ja) 1992-09-25 1994-04-22 Toshiba Corp 画像形成装置
US5351107A (en) 1992-09-24 1994-09-27 Kabushiki Kaisha Toshiba Image forming apparatus and method having image density correcting function
JPH06110286A (ja) 1992-09-24 1994-04-22 Toshiba Corp 画像形成装置
JPH06102734A (ja) 1992-09-24 1994-04-15 Toshiba Corp 画像形成装置および画像形成方法
JPH08166700A (ja) 1994-12-13 1996-06-25 Fujitsu Ltd 多色静電記録装置
JPH08254861A (ja) * 1995-03-16 1996-10-01 Konica Corp 線幅制御方法
JP3131115B2 (ja) 1995-04-03 2001-01-31 シャープ株式会社 画像形成装置
DE69631494T2 (de) 1995-04-03 2004-12-02 Sharp K.K. Bilderzeugungsgerät
JP3261285B2 (ja) 1995-09-21 2002-02-25 シャープ株式会社 画像形成装置
JPH096120A (ja) 1995-06-14 1997-01-10 Sharp Corp 画像形成装置
JP2000155518A (ja) * 1998-09-18 2000-06-06 Canon Inc 画像形成装置本体に着脱可能なユニット及び画像形成装置
US6198491B1 (en) * 1998-12-03 2001-03-06 Canon Kabushiki Kaisha Electrophotographic image forming apparatus
US6243542B1 (en) * 1998-12-14 2001-06-05 Canon Kabushiki Kaisha System for controlling the density of toner images in an image forming apparatus
JP3919381B2 (ja) * 1999-05-14 2007-05-23 キヤノン株式会社 現像装置、現像カートリッジ、プロセスカートリッジおよび画像形成装置
AU776943B2 (en) * 1999-08-19 2004-09-30 Katsuragawa Denki Kabushiki Kaisha Developing device
JP3794239B2 (ja) * 2000-04-27 2006-07-05 富士ゼロックス株式会社 画像形成装置
JP4719343B2 (ja) 2000-08-30 2011-07-06 キヤノン株式会社 画像形成装置
DE10225182A1 (de) * 2001-06-13 2003-01-23 Kyocera Corp Bildgebungsvorrichtung
US7072597B2 (en) * 2002-02-20 2006-07-04 Seiko Epson Corporation Image forming apparatus and image method for forming toner images with optimized patch image density

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102236305A (zh) * 2010-04-27 2011-11-09 富士施乐株式会社 图像形成设备、控制装置以及检测传送体上的参考指标的方法
CN102236305B (zh) * 2010-04-27 2015-06-24 富士施乐株式会社 图像形成设备、控制装置以及检测传送体上的参考指标的方法
CN103454876A (zh) * 2012-06-04 2013-12-18 佳能株式会社 图像形成设备
US9274482B2 (en) 2012-06-04 2016-03-01 Canon Kabushiki Kaisha Image forming apparatus with developing contrast control
CN103454876B (zh) * 2012-06-04 2016-06-29 佳能株式会社 图像形成设备

Also Published As

Publication number Publication date
EP1384591A2 (en) 2004-01-28
US20040037577A1 (en) 2004-02-26
CN1477458A (zh) 2004-02-25
EP1886825A1 (en) 2008-02-13
US7068957B2 (en) 2006-06-27
US20060165426A1 (en) 2006-07-27
ATE380671T1 (de) 2007-12-15
CN100367117C (zh) 2008-02-06
US7251423B2 (en) 2007-07-31
EP1384591A3 (en) 2004-04-07
EP1384591B1 (en) 2007-12-12
DE60317979D1 (de) 2008-01-24
DE60317979T2 (de) 2008-12-04
CN101140438B (zh) 2010-12-22

Similar Documents

Publication Publication Date Title
CN101140438B (zh) 图像形成装置及图像形成方法
CN100504631C (zh) 图像形成装置及图像形成方法
CN1312542C (zh) 图像形成装置及方法
US8923716B2 (en) Transfer device, image forming apparatus, and transfer method
US6473574B1 (en) Image forming apparatus with plural transfer means and selecting mechanism for selecting from among a plurality of image bearing members
CN101482725A (zh) 图像形成装置及图像形成方法
JP2015158661A (ja) 画像形成装置
CN101840179A (zh) 图像形成装置
CN102193412B (zh) 成像设备和成像方法
CN102289165A (zh) 成像装置以及该成像装置的控制方法
US20110229185A1 (en) Image forming apparatus
CN101556448B (zh) 图像形成装置以及图像形成装置的控制方法
JP4239503B2 (ja) 画像形成装置および画像形成方法
EP1947523A2 (en) Mass-based sensing of charging knee for active control of charger settings
JP2014145988A (ja) 画像形成装置
CN101373365A (zh) 清洁装置、成像装置以及像保持体单元
JP4396152B2 (ja) 画像形成装置および画像形成方法
US20210041802A1 (en) Image forming apparatus
CN1307489C (zh) 具有表面电位测量部件的成像设备和控制显影电压的方法
US10520846B2 (en) Image formation apparatus
CN101017353A (zh) 图像形成装置及方法
CN100524060C (zh) 图像形成装置
JP2014240880A (ja) 画像形成装置
US11067923B2 (en) Image forming apparatus capable of predicting the level of occurrence of a transfer memory and the cause of occurrence thereof
JP5533567B2 (ja) 転写装置および画像形成装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101222

Termination date: 20170721

CF01 Termination of patent right due to non-payment of annual fee