CN101262950B - 流量计量分析器 - Google Patents

流量计量分析器 Download PDF

Info

Publication number
CN101262950B
CN101262950B CN2006800313599A CN200680031359A CN101262950B CN 101262950 B CN101262950 B CN 101262950B CN 2006800313599 A CN2006800313599 A CN 2006800313599A CN 200680031359 A CN200680031359 A CN 200680031359A CN 101262950 B CN101262950 B CN 101262950B
Authority
CN
China
Prior art keywords
flow
sensor
flow sensor
fluidic circuits
processor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2006800313599A
Other languages
English (en)
Other versions
CN101262950A (zh
Inventor
A·帕马纳布汉
C·卡布斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
Honeywell International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc filed Critical Honeywell International Inc
Priority claimed from PCT/US2006/026212 external-priority patent/WO2007005974A2/en
Publication of CN101262950A publication Critical patent/CN101262950A/zh
Application granted granted Critical
Publication of CN101262950B publication Critical patent/CN101262950B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1456Electro-optical investigation, e.g. flow cytometers without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Electro-optical investigation, e.g. flow cytometers without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502723Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by venting arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1404Fluid conditioning in flow cytometers, e.g. flow cells; Supply; Control of flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1484Electro-optical investigation, e.g. flow cytometers microstructural devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0636Focussing flows, e.g. to laminate flows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0684Venting, avoiding backpressure, avoid gas bubbles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0427Electrowetting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/084Passive control of flow resistance
    • B01L2400/086Passive control of flow resistance using baffles or other fixed flow obstructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502746Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means for controlling flow resistance, e.g. flow controllers, baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502776Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for focusing or laminating flows
    • G01N15/149
    • G01N2015/012
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N2015/1486Counting the particles

Abstract

一种具有流量计量的血液学分析器或细胞计芯子系统。其可以具有芯上或芯外流量计量和控制。所述系统可以具有局部的直接流量测量,以提供准确的单位体积计数。对于芯子的射流回路检验而言,可以存在很多种方案。例子可以包括与回路的零流量、接口、压力、流速、流体类型和质量、回流、干燥鉴定、温度暴露极限等相关的以及与芯子相关项目相关的检验。

Description

流量计量分析器
本发明要求2005年7月1日提交的美国临时专利申请No.60/696162的权益。在此引入2005年7月1日提交的美国临时专利申请No.60/696162以供参考。
技术领域
本发明涉及分析器,具体涉及分析器中的流量计量。更具体而言,本发明涉及血液学分析器和流式细胞器中的流量计量。
背景技术
本发明涉及的专利和申请可以包括:2002年5月7日颁布的名为“Fluid Driving System for Flow Cytometry”的美国专利No.6382228;2003年7月22日颁布的名为“Portable Flow Cytometry”的美国专利No.6597438;2005年11月29日颁布的名为“Optical Alignment DetectionSystem”的美国专利No.6970245;2003年4月15日颁布的名为“OpticalDetection System for Flow Cytometry”的美国专利No.6549275;1998年11月17日颁布的名为“Electrostatically Actuated Mesopump Having aPlurality of Elementary Cells”的美国专利No.5836750;2004年12月30日提交的名为“Optical Detection System with Polarizing Beamsplitter”的美国专利申请No.11/027134;2005年5月16日提交的名为“CytometerAnalysis Cartridge Optical Configuration”的美国专利申请No.10/908543;以及2005年4月25日提交的名为“Flow Control System of a Cartridge”的美国专利申请No.10/908014;在此引入所有的这些专利和申请以供参考。
发明内容
本发明涉及血液学分析器和细胞计的部分的直接流量监视和测量,从而提高诸如单位体积血液计数的某些项目的准确度。而且,还可以实现对分析器或细胞计的各种检验。
附图说明
图1是颗粒计数和尺寸测量系统的方框图;
图2示出了用于白血球的示范性血液分析芯的一部分;
图3示出了用于红血球的示范性血液分析芯的一部分;
图4示出了用于血红蛋白的示范性血液分析芯的一部分;
图5示出了在当前系统中采用的流量传感器的示意图;
图6是带有流量感测,以补偿血液学分析器的处理器输出的方框图;
图7是带有流量感测和闭合环路,以控制向血液学分析器的流动的方框图;
图8示出了针对封闭通道的零流量检验的设置;
图9示出了用于分析器和芯接口检验的设置;
图10示出了用于射流回路的压力和/或流速检验的设置;
图11示出了用于流体类型和质量检验的传感器设置;
图12示出了用于回流检验的设置;
图13示出了用于射流芯的干燥鉴定的设置;
图14示出了用于射流回路的温度暴露极限检验的设置;以及
图15示出了用于芯外流量感测的设置。
具体实施方式
本发明总体上涉及样本分析器,具体而言,涉及在病人的护理点,例如,在医生的办公室、家庭或其他实地使用的带有可拆卸和/或一次性芯子的分析器。通过提供带有所有必需的反应剂和/或流体的可拆卸和/或一次性芯子,可以在实验室环境以外凭借少量的专业培训或者不靠专业培训来可靠地使用所述样本分析器。例如,其可以有助于简化样本分析处理,降低成本以及医疗人员或其他人员的负担,并且提高针对很多病人的样本分析的便利性,这些病人包括那些需要相对频繁地进行血液监测/分析的病人。
流式细胞计量术是一种允许对颗粒悬浮样本中的颗粒进行快速有效的识别的方法。在这种方法中,可以通过流动通道输送血样中的通常为细胞的悬浮颗粒,在所述通道中采用一个或多个聚焦光束照射样本中的各个颗粒。可以通过一个或多个光探测器探测光束与流经所述流动通道的各个颗粒之间的相互作用。通常,可以将所述探测器设计为测量特定射束或发射波长上的光吸收或荧光发射,和/或探测特定散射角上的光散射。因而,可以将穿过所述流动通道的每一颗粒识别为一个或多个与其吸收、荧光、光散射或者其他光或电特性相关的特征。通过所述探测器测量的特性能够将每一颗粒映射到特征空间内,所述特征空间的轴是由探测器测量的光强或其他特性。在理想的方法中,样本中的不同颗粒映射到特征空间的不同的非重叠区域内,由此根据颗粒在特征空间内的映射对每一颗粒进行分析。这样的分析可以包括对颗粒进行计数、识别、量化(关于一种或多种物理特性)和/或分类。
一个示范性的例子可以是一种样本分析器,将所述样本分析器设置为具有接收所采集的样本的可拆卸芯,例如,所采集的样本可以是所采集的全血样本,一旦安装了所述可拆卸芯,并启动了分析器,所述分析器和芯子就可以自动处理样本,所述分析器可以为用户提供足够的信息进行临床决断。在某些例子中,分析器将显示或打印定量结果(例如,处于预定范围之内和/或之外的),因而不需要用户进行额外的计算或数据分析。
例如,可以采用所述样本分析器确定血样中的白血球的数量和/或类型。在一个示范性例子中,所述分析器包括外壳和可拆卸射流芯,其中,所述外壳适于接纳可拆卸射流芯。在某些情况下,所述可拆卸射流芯是一次性芯子。在一个示范性的例子中,所述可拆卸射流芯可以包括一种或多种试剂(例如,球化剂(sphering agent)、溶血剂、染色剂和/或稀释剂)、一个或多个分析通道、一个或多个流量传感器、一个或多个阀门和/或射流回路,所述射流回路适合对样本进行处理(例如,球化、溶解、染色或其他),并将受到处理的样本提供给芯子上的适当分析通道。为了支持所述卡片,所述外壳可以包括,例如,压力源、一个或多个光源、一个或多个光探测器、处理器和电源。所述压力源可以向可拆卸射流芯端口提供适当的压力,从而根据需要驱动流体通过射流回路。可以采用分析器的一个或多个光源询问可拆卸芯的至少一个选定分析通道内的准备样本,所述分析器的一个或多个光探测器可以探测穿过样本、被样本吸收和/或受到样本散射的光。可以将所述处理器连接至所述光源和探测器中的至少一些上,并且所述探测器可以确定所述样本的一个或多个参数。在一些例子中,可拆卸射流芯上的一个或多个分析通道可以包括一个或多个流式细胞计量通道。在一些示范性的例子中,可以向所述可拆卸射流芯提供全血样本,所述可拆卸芯可以适于执行血液分析。
图1是示范性样本分析器10和芯子14的透视图。示范性样本分析器10可以包括外壳12和可拆卸或一次性芯子14。示范性外壳12可以包括基座16、盖18和将基座16附着到盖18上的铰链20,但这不是必需的。在所述示范性例子中,基座16包括第一光源22a、第二光源22b和第三光源22c,连同相关光学部件和样本分析器的操作所需的电子部件。可以具有更多或更少的光源。根据应用场合的不同,每一光源可以是单个光源或多个光源。在某些情况下,外壳的总尺寸可以明显小于四分之一立方英尺。同样地,外壳的总重量可以明显小于一磅。
示范性的盖12可以包括压力源(例如,带有控制微阀的压力室)、第一光探测器24a、第二光探测器22b和第三光探测器22c,每一光探测器带有相关的光学部件和电子部件。可以存在更多或更少的探测器。根据应用场合的不同,每一光探测器也可以是单个光探测器或多个光探测器。根据应用场合的不同,还可以结合偏振器和/或滤光片。所述示范性可拆卸芯14可以适于经由样本采集器端口接收样本流体,在示范性例子中,所述端口带有刺血针32。在某些例子中,所述刺血针32可以是能缩回的和/或弹簧加载的。可以采用帽38在不使用可拆卸芯14时保护样本采集器端口和/或刺血针32。
在示范性例子中,所述可拆卸芯14可以对全血样本执行血液分析。可以采用刺血针32刺破用户的手指,以获得血液样本,可以通过毛细作用将血液吸到可拆卸芯14的涂覆了抗凝血剂的毛细管内。可以将所述可拆卸芯14构造为具有射流回路,某些射流回路是采用带有蚀刻通道的层压结构制造的。但是,可以设想通过任何适当的方式构造可拆卸芯14,包括注入模制或任何其他适当的制造工艺或方法。
在使用过程中,以及在将血样吸入到可拆卸芯14内之后,可以在盖18处于开启位置时将可拆卸芯插入到所述外壳内。在某些情况下,可拆卸芯14可以包括用于接收基座16内的配准销28a和28b的孔26a和26b,其有助于提供仪器的不部分之间的对准和连接。所述可拆卸芯14还可以包括第一透明流动流窗口30a、第二透明流动流窗口30b和第三透明窗口30c,所述窗口分别与第一、第二和第三光源22a、22b和22c以及第一、第二和第三光探测器24a、24b和24c对准。
在将所述盖移动到关闭位置,并对所述系统加压时,盖18可以经由压力提供端口36a、36b、36c和36d分别向示范性可拆卸芯14中的压力接收端口34a、34b、34c和34d提供受控压力。根据应用的不同,可以设想采用更多或更少的压力提供和压力接收端口。或者,或此外,可以设想在可拆卸芯14上设置一个或多个微泵,例如静电激励中泵(mesopump),以提供操作可拆卸芯14上的射流回路所需的压力。例如,在美国专利No5836750、6106245、6179586、6729856和6767190中描述了一些示范性静电激励中泵,在此引入所有的这些专利文献以供参考。一旦加压,所述的示范性的仪器就可以对所采集的血样执行血液分析。
当前系统可以提供基于微型流式细胞器或血液学分析器的全血细胞计数(CBC)卡,以获得一个或多个下述项目,包括:红血球(RBC)计数、球化RBC、血小板计数、RBC的溶解、白血球(WBC)的多部分差分计数、血红蛋白的基于吸收率的测量以及RBC、血小板、WBC、血红蛋白等的各种额外指标,当前系统还外加流体动力聚焦,以建立细胞的单行流,并提供气动流体驱动系统。额外的项目可以由当前系统提供和/或是当前系统的一部分。可以将细胞计和血液学分析器看作是相同或类似的系统。
图2是示出了芯子或卡14的WBC部分的示范性例子的一些方面的示意图。可以从将全血样本11采集到样本采集器13内入手。可以将血液推到位于浮动(fly)注入器33上的溶血剂(lyse)上。可以通过泵机构或流速控制盒35提供用于推动样本的流速以及溶解和包鞘流体。用于浮动注入器上的溶血剂的溶解流体可以来自溶血剂贮存器37。溶血剂流体和血液可以通过溶解通道39前进至流体动力聚焦室23。包鞘流体可以从鞘液贮存器25流到流体动力聚焦室23,以辅助白细胞穿过光通道29按照单行41对准,以供探测和分析。在细胞前进到光通道29之后,可以将细胞和流体运送到废料存储器31。
图3是示出了芯子或卡14的RBC部分的示范性例子的某些方面的示意图。这一卡14可以与WBC卡14类似,只是该卡是针对RBC分析设计的。类似地,可以将仪器10设计为用于RBC。可以从使全血样本11进入样本采集器13入手。可以将血液推导浮动注入器15上的球化剂上。可以通过泵机构或流速控制盒17提供用于推动样本的流速以及球化和包鞘流体。用于浮动注入器15上的球化剂的球化流体可以来自球化溶液贮存器19。所述溶液和血液可以通过所述球化通道21前进到流体动力聚焦室23。包鞘流体可以从鞘液贮存器25流到流体动力聚焦室23,以辅助球化红血球穿过光通道29按照单行27对准,以供探测和分析。在细胞穿过光通道29传输之后,可以将细胞和流体运送到废料存储器31。
图4是示出了芯子或卡14的血红蛋白(HGB)卡33或HGB部分的示范性例子的某些方面的示意图。该卡可以替代WBC卡14,只是该卡是针对HGB分析设计的。类似地,可以将仪器10设计为用于HGB测量。可以从将全血样本11采集到样本采集器13内入手。可以将血液推到吸收率测量试管43上。可以通过泵机构或流速控制盒45提供用于推动样本的流速。血液可以通过吸收率测量试管43传输,吸收率测量试管43可以提供吸收率测量47。在测量之后,可以将血液继续输送至废料贮存器31。
血液学分析器和流式细胞计(即分析器)可以采用处于开环中的注射器泵,并且其不对各种试剂和驱动流体的流速进行测量。在这样的分析器中采用流量传感器可以有助于提高分析器系统的总体准确度。对流的直接和局部测量可以为采用当前系统获得更加准确、精确的流速和每单位体积的血液计数提供基础。采用一次性分析卡的小型化血液学分析器可能需要流量传感器实现流速体积误差补偿。这对于开发提供某些测试的血液分析器是很关键的,所述测试在Clinical LaboratoryImprovement Amendments of 1988(CLIA)法规下可能被放弃。能够提供这样的被放弃的测试的分析器需要自诊断能力,从而针对气泡、流泄漏、闭塞等进行检验、探测和校正。
对小型化、低成本、超灵敏的稳定液体流量传感器的开发可以实现血液分析器中的流速和流体积(剂量)的测量。将流量传感器与闭环泵送系统结合使用能够实现对流速误差和变化的补偿。还可以将流量传感器用作测量仪表诊断传感器,可以通过将其设置在仪器或一次性卡的适当位置处来探测气泡、闭塞和流泄漏。这里是指用于本发明的能够测量非常低的流速的、具有小体积并且消耗很低的功率的流量传感器。
对于医疗、工业、生命科学和商业应用而言,对精确测量流体(即液体和气体)的流速的需求与日俱增。所预期的流速可以从针对给药、生命科学分析仪表检测和机器人液体处理系统的nL/min到针对透析设备和其他工业应用的mL/min乃至升/min。当前微流控技术申请可以采用必须通过某些传感器完成的某种形式的精确流体计量或流体定量配料,所述传感器具有超小尺寸(芯片尺寸小于25mm2),所耗功率低(小于75mW),具有高准确度(优于2%),响应速度快(快于1毫秒)。
可以采用直接或间接测量技术测量流速。通常通过测量静态属性,之后进行计算来间接测量流速。传统方法是测量填充已知体积所需的时间量。这种方法最大的优点是,可以以高精确度了解静态属性,并且可以将其追溯至国际标准。所述计算简单并且以经过验证的自然法则为基础,因而可以提高对结果的信心。这种方法存在弊端。一个明显的弊端在于无法了解流速随时间变化的程度。此外,测量越快,精确度越差。因而,这一技术最适合流速恒定的情况,以及响应时间/速度无关紧要的情况。
另一种间接流量测量方法可以利用有限空间内的流量与压降成正比的原理。可以采用差压传感器测量一定收缩下的压降,所述收缩包括由管道长度导致的限制。这种方法可以克服流速不稳定和长响应时间带来的限制(在时间体积法中),但是其代价是计算更为复杂,潜在的外部误差更大,并且介质的干扰更大。可以通过更小的限制获得更大的精确度,但是其直接改变流动特性。
人们对在实验室之外的实用基础上测量非常低的流量的兴趣越来越大。对于气体而言,其可以小于1升/分,对于液体而言,其可以小于1μL/分。在这样低的流量下,间接方法所固有的误差将被极大地放大,同时信号将被降低。为了避免这样的问题,可以在当前系统中提供对流速的直接测量。
液体流量传感器可以采用经验证的微机电系统(MEMS)技术提供非常小的封装尺寸内的快速、精确的流速测量,包括对非常小的速率的快速、精确测量。如图5所示,这样的流量传感器可以采用基于热的技术,其中,将隔热加热器(Rt)51加热至超过周围环境,并且其中,液体流速与位于加热器两侧的上游(Ru)温度传感器52和下游(Rd)温度传感器53之间的温度差成正比。针对传感器的校正曲线可以随着液体的热传导率而变化。
可以针对要求在1nL/min到50μL/min的极低流速下进行精确流量测量的应用对示例流量传感器进行特定设计。可以将这种传感器用于在这一区域内工作的反馈控制环。所述传感器可以以快速响应时间和自动温度补偿为特征。这一流量传感器可以采用基于MEMS的热测速技术测量经隔离的流动通道内的液体的质量流速。这样的传感器可以从新泽西州莫里森镇的Honeywell International公司获得。其他类似的流量传感器以及适当的压力传感器也可以从该公司获得。
图6是示例分析器系统60(例如,细胞计或血液学分析器)的示意图,所述分析器系统60具有射流回路61、连接至流量传感器65的泵压力源62和连接至流体回路/分析器66的废料贮存器64。射流回路61包括连接至流体回路/分析器66的流量传感器65。这一布局能够实现局部的直接流速测量。源62可以提供经由流量传感器65抵达流体回路/分析器66的流体。有关流体的信号67可以从分析器66到达处理器/控制器63。表示到分析器66的流体流的速度的信号68可以从流量传感器65传输至处理器63。可以将由从分析器66到处理器63的信号67得到的结果作为由流量传感器65感测的流速的函数进行校正。之后,处理器63可以输出校正结果69,所述结果可以包括血液计数,例如,每单位体积内的细胞的数量。
图7是示例分析器系统70(例如细胞计或血液学分析器)的示意图,所述分析器系统70具有与分析器系统60类似的部件,其同样允许局部的直接流速测量。但是,处理器63可以向泵/压力源62提供反馈信号71,由其得到了对流速传感器65经由信号68感测的由泵/压力源62提供的流速的闭环控制。之后,处理器63基于所述闭环控制提供结果72,其可以包括血液计数,例如,每单位体积的细胞的数量。
借助流量传感器的局部直接测量的当前系统60和70的目的在于获得精确的单位体积计数。例如,所述系统的光学部分每秒可以提供来自样本的若干个细胞。可以将这一数据除以(例如)以微升/秒为单位的当前流量传感器的输出,以获得每微升的细胞数。
图8示出了零流量检验的方法。可以以压力IN向通道81注入诸如液体的流体。在通道81内可以具有流量传感器82。沿管道再往下可以具有闭合的阀门83。借助阀门83,在向填充了液体的通道82的入口施加压强的同时流量传感器82探测的流速应当为零。如果传感器82这时读数不为零,那么在所述通道中可能存在气泡或泄漏。这一检验可以假设通道81的壁相对而言是非柔顺的,例如,是刚性的。
图9示出了针对分析器单元91和射流芯92之间的接口泄漏的方法。可以具有输出连接至流量传感器94的泵/压力源93,流量传感器94又连接至分析器93和芯子91之间的接口95。可以将流量传感器96连接于射流回路97和接口95之间。由流量传感器94探测的流速应当与流量传感器96探测的流速匹配,除非在接口95处存在泄漏。
图10示出了针对压力/流速检验的方法。通道101可以具有输入流102。可以将压力传感器103和流量传感器104放到通道101内。由压力传感器103探测的压力和流量传感器104探测的流速的比值应当处于预定范围内,除非在通道101内存在局部或完全的堵塞105、气泡106或其他异常结构。
图11示出了针对流体检验的方法。流动通道111可以具有处于适当位置的温度传感器112、热导率传感器113和粘滞度传感器114。流体的流115可以进入通道111。可以探测由传感器112、113、114和其他传感器指示的穿过流动通道111的流体的温度、热导率、粘滞度和其他特性,并且借助相关计算,流体类型及其特性应当与预期相同。如果不是,那么所述流体可能具有不正常的类型,可能具有吸收的湿气,其内可能具有细菌生长,可能受到了不适当的混合,可能具有沉淀出来的盐,可能由于储藏期限过期而变质,等等。
图12示出了针对回流检验的方法。在射流回路中可以存在通道121。可以将流量传感器122放到通道121内,其中,流123穿过所述通道。流量传感器122可以探测传感器122中的回流,所述回流在很多种情况下是不符合要求的。
图13示出了可以用来对射流芯131进行干燥鉴定的方法。可以存在气源132,其连接至端口133,经由通道或管道134连接至射流芯131,并且连接至背压传感器135。气源132可以将具有已知流速的气体,例如,氮气泵送到射流芯131的端口133内。可以判断由传感器135指示的测量背压是否处于指定的“良好”范围内。气源132可以将具有已知压强的气体,例如氮气泵送到射流芯131的端口133内,其中,采用流速传感器替代压力传感器135,可以判断所测得的流速是否处于指定的“良好”范围内。
图14示出了用于执行温度暴露极限检验的方法。在射流芯141回路内,可能存在连接至正常流动通道143以及连接至旁路通道144的输入通道142。可以在旁路通道144的入口放置由封闭蜡或其他适当的材料构成的温度熔断器145。可以采用这种方法判断射流芯141是否暴露于超过规定温度暴露极限的温度下。就高温极限检验而言,在芯子141暴露于超过高温极限的温度下时,温度熔断器145可以打开旁路通道145的入口(例如,通过石蜡的熔化)。旁路通道145的这一开启能够允许在将芯子141插入到分析器内时,差错能够被芯子分析器探测到。
就流温度极限而言,温度熔断器145可以涉及水或其他适当的材料,例如,在暴露于低于低温极限的温度下时发生收缩而无法返回至其原始尺寸的材料。在将芯子141暴露于这样的温度下时,熔断器145可能受到影响从而打开旁路通道145。旁路通道145的这一开启能够允许在将芯子141插入到分析器内时,差错能够被芯分析器探测到。
图15示出了针对芯外流量感测的方法。该图示出了连接至芯子分析器单元152的芯子151。可以存在处于芯子151和分析器单元152的端子之间的接口153、154和155。可以存在处于芯子151和分析器单元152的端子之间的额外的或备选的接口156和157。芯上流速探测可以采用芯外传感器。芯上流动通道158可以分别经由接口154和155从芯外路由至芯外流量传感器159,以进行流量测量。或者,或此外,可以将两个或更多芯外压力传感器161和162分别经由接口156和157流体连接至沿芯上流动通道158的两个点,以探测通道158内的流速。而且,芯外泵/压力源163可以经由芯外流量传感器164和接口153为芯上流动通道158提供流体流。
在本说明书中,某些内容可能具有假设或预言的性质,尽管这些内容可能是通过其他方式或语气陈述的。
尽管已经相对于至少一个示范性例子说明了本发明,但是在阅读了本说明书的基础上,很多变化和修改对于本领域技术人员而言将变得显而易见。因此,其目的在于在考虑现有技术的基础上对权利要求做出尽可能宽的解释,使之包括所有的此类变化和修改。

Claims (3)

1.一种微流体分析器系统,包括:
具有输入端口的射流回路;
连接至所述输入端口的流量传感器;
具有连接至所述流量传感器的输出的泵/压力源;以及
连接至所述流量传感器和所述射流回路的处理器;并且
其中:
将所述流量传感器处的流速发送至所述处理器;
将所述射流回路处的结果发送至所述处理器;
所述处理器根据所述流速执行结果校正;
所述射流回路具有血液学分析器;并且
所述流量传感器包括隔热加热器和位于隔热加热器两侧的上游温度传感器和下游温度传感器。
2.根据权利要求1所述的系统,其中:
所述流速为单位时间的体积;
所述射流回路处的结果是单位时间的计数;并且
来自所述处理器的结果是单位体积的计数。
3.一种微流体分析器系统,包括:
具有输入端口的射流回路;
连接至所述输入端口的流量传感器;
具有连接至所述流量传感器的输出的泵/压力源;以及
连接至所述流量传感器和所述射流回路的处理器;并且
其中:
所述处理器向所述泵/压力源提供信号;
所述处理器根据所述流量传感器执行对所述泵/压力源提供的流速的闭环控制;
所述流速为单位时间的体积;
所述射流回路处的结果是单位时间的计数;
来自所述处理器的结果是单位体积的计数;
所述射流回路具有血液学分析器;并且
所述流量传感器包括隔热加热器和位于隔热加热器两侧的上游温度传感器和下游温度传感器。 
CN2006800313599A 2005-07-01 2006-06-30 流量计量分析器 Active CN101262950B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US69616205P 2005-07-01 2005-07-01
US60/696,162 2005-07-01
PCT/US2006/026212 WO2007005974A2 (en) 2005-07-01 2006-06-30 A flow metered analyzer

Publications (2)

Publication Number Publication Date
CN101262950A CN101262950A (zh) 2008-09-10
CN101262950B true CN101262950B (zh) 2011-03-09

Family

ID=37102114

Family Applications (3)

Application Number Title Priority Date Filing Date
CN2006800313599A Active CN101262950B (zh) 2005-07-01 2006-06-30 流量计量分析器
CN200680031529.3A Active CN101253401B (zh) 2005-07-01 2006-06-30 带三维流体动力学集中的模制标本盒
CN2006800312581A Active CN101252994B (zh) 2005-07-01 2006-06-30 用于红血细胞分析的微流体卡

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN200680031529.3A Active CN101253401B (zh) 2005-07-01 2006-06-30 带三维流体动力学集中的模制标本盒
CN2006800312581A Active CN101252994B (zh) 2005-07-01 2006-06-30 用于红血细胞分析的微流体卡

Country Status (5)

Country Link
US (1) US8034296B2 (zh)
EP (2) EP1901846B1 (zh)
JP (2) JP2009500612A (zh)
CN (3) CN101262950B (zh)
WO (1) WO2007005973A2 (zh)

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8202733B1 (en) * 2006-12-18 2012-06-19 Shervin Javadi System and method for obtaining a differential flow rate
WO2010009415A1 (en) * 2008-07-18 2010-01-21 Canon U.S. Life Sciences, Inc. Methods and systems for microfluidic dna sample preparation
US20100034704A1 (en) * 2008-08-06 2010-02-11 Honeywell International Inc. Microfluidic cartridge channel with reduced bubble formation
WO2010070461A1 (en) * 2008-12-16 2010-06-24 Koninklijke Philips Electronics N. V. Hydrophobic valve
US20100159498A1 (en) * 2008-12-19 2010-06-24 Ritzen Kalle Blood analyzer with a blood cell sedimentation control mechanism and method of use
EP2216095A1 (en) 2009-01-27 2010-08-11 Koninklijke Philips Electronics N.V. Microfluidic device for full blood count
TWI360438B (en) 2009-08-25 2012-03-21 Ind Tech Res Inst Analytical system, analytical method and flow-path
US8932523B2 (en) 2010-04-16 2015-01-13 Opko Diagnostics, Llc Systems and devices for analysis of samples
USD645971S1 (en) 2010-05-11 2011-09-27 Claros Diagnostics, Inc. Sample cassette
US11236351B2 (en) 2010-05-17 2022-02-01 Dow Agrosciences Llc Production of DHA and other LC PUFAs in plants
US9050595B2 (en) 2010-12-03 2015-06-09 Abbott Point Of Care Inc. Assay devices with integrated sample dilution and dilution verification and methods of using same
JP2014514060A (ja) * 2011-04-01 2014-06-19 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ 透析様治療(dlt)装置
TW201307553A (zh) 2011-07-26 2013-02-16 Dow Agrosciences Llc 在植物中生產二十二碳六烯酸(dha)及其他長鏈多元不飽和脂肪酸(lc-pufa)之技術
JP2013044585A (ja) * 2011-08-23 2013-03-04 Hitachi Engineering & Services Co Ltd 微生物検査装置及び検査方法
CN104411406B (zh) 2012-03-16 2017-05-31 统计诊断与创新有限公司 具有集成传送模块的测试盒
US9625465B2 (en) 2012-05-15 2017-04-18 Defined Diagnostics, Llc Clinical diagnostic systems
US9081001B2 (en) 2012-05-15 2015-07-14 Wellstat Diagnostics, Llc Diagnostic systems and instruments
US9213043B2 (en) 2012-05-15 2015-12-15 Wellstat Diagnostics, Llc Clinical diagnostic system including instrument and cartridge
US9255830B2 (en) 2012-05-21 2016-02-09 Common Sensing Inc. Dose measurement system and method
US8817258B2 (en) 2012-05-21 2014-08-26 Common Sensing Inc. Dose measurement system and method
ES2459269B1 (es) * 2012-10-04 2015-03-24 Universidad De Zaragoza Dispositivo y método de encapsulado de sistemas microfluídicos
CN102854094B (zh) * 2012-10-10 2014-09-10 重庆大学 多通道微流控血流变分析芯片及其分析系统和分析方法
EP2932266A4 (en) 2012-12-17 2016-11-30 Leukodx Ltd SYSTEMS AND METHODS FOR DETERMINING A CHEMICAL STATE
US10610861B2 (en) 2012-12-17 2020-04-07 Accellix Ltd. Systems, compositions and methods for detecting a biological condition
EP2869922B1 (en) * 2013-01-09 2019-11-20 Tecan Trading AG Disposable cartridge for microfluidics systems
EP3467472B1 (en) 2013-03-15 2021-04-21 Iris International, Inc. Sheath fluid systems and methods for particle analysis in blood samples
MX369055B (es) * 2013-04-15 2019-10-25 Becton Dickinson Co Dispositivo de recogida de fluidos biológicos y sistema de recogida y ensayo de fluidos biológicos.
ES2686359T3 (es) * 2013-04-15 2018-10-17 Becton, Dickinson And Company Dispositivo de recogida de fluidos biológicos
AT514210B1 (de) 2013-04-25 2016-08-15 Greiner Bio-One Gmbh Dispenser-befülltes mikrofluidisches Testsystem und Verfahren dazu
US9138746B2 (en) * 2013-05-01 2015-09-22 Honeywell International Inc. Fluid stop for measured sample containment
CN103412023A (zh) * 2013-07-05 2013-11-27 复旦大学 一种基于数字微流技术的电化学集成传感芯片
EP3035979A4 (en) * 2013-08-22 2017-05-03 Intersect Partners, LLC Method and apparatus for monitoring total delivered dose of contrast media
KR101476924B1 (ko) * 2013-08-28 2014-12-26 김보곤 혈액점도측정 키트
US10343165B2 (en) 2013-09-05 2019-07-09 Bio-Rad Laboratories, Inc. On-demand particle dispensing system
US9535000B2 (en) 2013-09-05 2017-01-03 Bio-Rad Laboratories, Inc. On-demand particle dispensing system
WO2015063540A1 (es) * 2013-10-28 2015-05-07 Droguett Bizet Sara Micro dispositivo tipo lab-on-chip para identificar la sensibilidad antibiótica en el punto de atencion de los pacientes
CN106537126B (zh) 2014-08-01 2020-11-27 普通感应股份有限公司 利用温度感测来优化的液体测量系统、装置和方法
EP3001177A1 (de) * 2014-09-29 2016-03-30 Grundfos Holding A/S Vorrichtung zum Erfassen von Partikeln in einer Flüssigkeit
KR20160066835A (ko) * 2014-12-03 2016-06-13 한국지질자원연구원 다채널로 석탄가스의 함유량을 측정하는 휴대용 석탄 가스 측정장치
CN108025904B (zh) 2015-06-12 2021-10-15 芯易诊有限公司 用于多分析物分析的流体单元和流体卡式盒
US10634602B2 (en) 2015-06-12 2020-04-28 Cytochip Inc. Fluidic cartridge for cytometry and additional analysis
WO2017011554A1 (en) 2015-07-14 2017-01-19 Cytochip Inc. Volume sensing in fluidic cartridge
USD804682S1 (en) 2015-08-10 2017-12-05 Opko Diagnostics, Llc Multi-layered sample cassette
US9366606B1 (en) 2015-08-27 2016-06-14 Ativa Medical Corporation Fluid processing micro-feature devices and methods
US20170059590A1 (en) 2015-08-27 2017-03-02 Ativa Medical Corporation Fluid holding and dispensing micro-feature
US11071982B2 (en) 2015-08-27 2021-07-27 Ativa Medical Corporation Fluid holding and dispensing micro-feature
JP6714441B2 (ja) * 2016-06-09 2020-06-24 アズビル株式会社 粒子検出装置及び粒子検出装置の制御方法
JP7315458B2 (ja) * 2016-07-08 2023-07-26 メディカ・コーポレーション 自動顕微鏡血球分析
USD812242S1 (en) * 2016-07-13 2018-03-06 Precision Nanosystems Inc Microfluidic cartridge
USD800336S1 (en) * 2016-07-13 2017-10-17 Precision Nanosystems Inc Microfluidic cartridge
EP3485237B1 (en) 2016-07-15 2024-01-10 Bigfoot Biomedical, Inc. Dose measurement systems
US11333602B2 (en) 2016-10-25 2022-05-17 Pioneer Corporation Fluid measuring apparatus
CN110199186B (zh) * 2016-11-22 2023-01-10 芯易诊有限公司 全血细胞计数测量方法
WO2019083844A1 (en) 2017-10-23 2019-05-02 Cytochip Inc. DEVICES AND METHOD FOR MEASURING TARGET ANALYTES AND PARTICLES
CN109781861B (zh) * 2017-11-10 2021-11-23 国核电站运行服务技术有限公司 电子开关式主/辅多通道超声波采集系统及电子设备
US10871440B2 (en) 2017-12-23 2020-12-22 Lumacyte, LLC Microfluidic chip device for optical force measurements and cell imaging using microfluidic chip configuration and dynamics
CN117109990A (zh) * 2018-02-27 2023-11-24 芯易诊有限公司 获得定量样品混合物的装置及方法
US11060968B2 (en) * 2018-03-30 2021-07-13 International Business Machines Corporation Mobile chemical analysis
US10350324B1 (en) * 2018-05-15 2019-07-16 The Procter & Gamble Company Microfluidic cartridge and microfluidic delivery device comprising the same
TWI678214B (zh) * 2018-11-02 2019-12-01 李韋辰 血液分析模組及其血液收集裝置
CN109655379B (zh) * 2018-12-29 2022-02-01 潍坊医学院 用于研究流体剪切应力对细胞影响的溜槽板装置和测定方法

Family Cites Families (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3822095A (en) * 1972-08-14 1974-07-02 Block Engineering System for differentiating particles
US3928094A (en) * 1975-01-16 1975-12-23 Fairchild Camera Instr Co Method of aligning a wafer beneath a mask and system therefor and wafer having a unique alignment pattern
US3976862A (en) * 1975-03-18 1976-08-24 Block Engineering, Inc. Flow stream processor
US4284412A (en) * 1979-07-13 1981-08-18 Ortho Diagnostics, Inc. Method and apparatus for automated identification and enumeration of specified blood cell subclasses
JPS58143206A (ja) * 1982-02-19 1983-08-25 Canon Inc 位置検知信号処理装置
US4501144A (en) * 1982-09-30 1985-02-26 Honeywell Inc. Flow sensor
US4683159A (en) * 1982-09-30 1987-07-28 Honeywell Inc. Semiconductor device structure and processing
US4651564A (en) * 1982-09-30 1987-03-24 Honeywell Inc. Semiconductor device
US4478077A (en) * 1982-09-30 1984-10-23 Honeywell Inc. Flow sensor
US4478076A (en) * 1982-09-30 1984-10-23 Honeywell Inc. Flow sensor
US4695034A (en) * 1984-11-27 1987-09-22 Stec Inc. Fluid control device
US4745279A (en) * 1986-01-02 1988-05-17 American Hospital Supply Corporation Hematocrit measuring apparatus
US4704033A (en) * 1986-03-06 1987-11-03 Micronix Corporation Multiple wavelength linear zone plate alignment apparatus and method
NL8601000A (nl) * 1986-04-21 1987-11-16 Jan Greve T H Twente Afdeling Het gebruik van gepolariseerd licht in stromingscytometrie.
DE3640616A1 (de) 1986-11-27 1988-06-09 Standard Elektrik Lorenz Ag Justiervorrichtung
US4818263A (en) * 1987-06-11 1989-04-04 Tektronix, Inc. Method and apparatus for precisely positioning microlenses on optical fibers
US4874949A (en) * 1987-09-14 1989-10-17 Vanderbilt University Method of measuring lung vascular function and transcapillary transport by the use of nonradioactive markers
US4911616A (en) * 1988-01-19 1990-03-27 Laumann Jr Carl W Micro miniature implantable pump
US5760900A (en) * 1989-03-18 1998-06-02 Canon Kabushiki Kaisha Method and apparatus for optically measuring specimen
US4932989A (en) * 1989-04-05 1990-06-12 At&T Bell Laboratories Method and apparatus for fabricating microlenses on optical fibers
CH679555A5 (zh) * 1989-04-11 1992-03-13 Westonbridge Int Ltd
CA2016699C (en) * 1989-05-15 2003-11-18 Paul N. Marshall Lytic agents and uses thereof
JPH04501449A (ja) * 1989-06-14 1992-03-12 ウエストンブリッジ インターナショナル リミティド マイクロポンプ
DE3926066A1 (de) * 1989-08-07 1991-02-14 Ibm Deutschland Mikromechanische kompressorkaskade und verfahren zur druckerhoehung bei extrem niedrigem arbeitsdruck
CH681168A5 (en) * 1989-11-10 1993-01-29 Westonbridge Int Ltd Micro-pump for medicinal dosing
KR910012538A (ko) * 1989-12-27 1991-08-08 야마무라 가쯔미 마이크로 펌프 및 그 제조 방법
US5082242A (en) * 1989-12-27 1992-01-21 Ulrich Bonne Electronic microvalve apparatus and fabrication
US5244537A (en) * 1989-12-27 1993-09-14 Honeywell, Inc. Fabrication of an electronic microvalve apparatus
US5050429A (en) * 1990-02-22 1991-09-24 Yamatake-Honeywell Co., Ltd. Microbridge flow sensor
US5096388A (en) * 1990-03-22 1992-03-17 The Charles Stark Draper Laboratory, Inc. Microfabricated pump
DE69104585T2 (de) * 1990-10-30 1995-05-18 Hewlett Packard Co Mikropumpe.
EP0485817B1 (en) * 1990-11-03 1998-04-15 Horiba, Ltd. Apparatus for measuring a particle size distribution
US5108623A (en) * 1990-11-19 1992-04-28 Gould Inc. Moving web filter assembly
US5194909A (en) * 1990-12-04 1993-03-16 Tycko Daniel H Apparatus and method for measuring volume and hemoglobin concentration of red blood cells
US5230866A (en) * 1991-03-01 1993-07-27 Biotrack, Inc. Capillary stop-flow junction having improved stability against accidental fluid flow
DE4119955C2 (de) * 1991-06-18 2000-05-31 Danfoss As Miniatur-Betätigungselement
US5176358A (en) * 1991-08-08 1993-01-05 Honeywell Inc. Microstructure gas valve control
US5350695A (en) * 1991-12-05 1994-09-27 Miles Inc. Methods for the identification and characterization of reticulocytes in whole blood
WO1994001809A1 (en) * 1992-07-02 1994-01-20 Indigo N.V. Concentration detector for colored toner
JP3215175B2 (ja) * 1992-08-10 2001-10-02 シスメックス株式会社 粒子分析装置
US5441597A (en) * 1992-12-01 1995-08-15 Honeywell Inc. Microstructure gas valve control forming method
DE69432410T2 (de) * 1993-05-14 2004-03-04 Coulter International Corp., Miami Retikulozyt bestimmungsverfahren und geraet, das lichtstreuungstechniken verwendet
US5601080A (en) * 1994-12-28 1997-02-11 Coretech Medical Technologies Corporation Spectrophotometric blood analysis
US5793485A (en) * 1995-03-20 1998-08-11 Sandia Corporation Resonant-cavity apparatus for cytometry or particle analysis
US5528045A (en) * 1995-04-06 1996-06-18 Becton Dickinson And Company Particle analyzer with spatially split wavelength filter
US5716852A (en) * 1996-03-29 1998-02-10 University Of Washington Microfabricated diffusion-based chemical sensor
DE69619400T2 (de) 1995-06-16 2002-09-26 Univ Washington Seattle Flacher mikrogefertigter querstromfilter für flüssigkeiten
EP0839318B1 (en) 1995-06-16 2003-05-07 University of Washington Microfabricated differential extraction device and method
US5717631A (en) 1995-07-21 1998-02-10 Carnegie Mellon University Microelectromechanical structure and process of making same
US5633724A (en) * 1995-08-29 1997-05-27 Hewlett-Packard Company Evanescent scanning of biochemical array
US5726751A (en) * 1995-09-27 1998-03-10 University Of Washington Silicon microchannel optical flow cytometer
IT1280475B1 (it) 1995-11-09 1998-01-20 Fiat Ricerche Dispositivi a microfiltri selettivi di colori e immagini.
DE19546570C1 (de) 1995-12-13 1997-03-27 Inst Mikro Und Informationstec Fluidpumpe
JP3308441B2 (ja) * 1995-12-19 2002-07-29 シスメックス株式会社 尿中有形成分分析装置
US5863502A (en) 1996-01-24 1999-01-26 Sarnoff Corporation Parallel reaction cassette and associated devices
US5948684A (en) 1997-03-31 1999-09-07 University Of Washington Simultaneous analyte determination and reference balancing in reference T-sensor devices
EP0910474B1 (en) 1996-06-14 2004-03-24 University of Washington Absorption-enhanced differential extraction method
US5764674A (en) 1996-06-28 1998-06-09 Honeywell Inc. Current confinement for a vertical cavity surface emitting laser
US5799030A (en) * 1996-07-26 1998-08-25 Honeywell Inc. Semiconductor device with a laser and a photodetector in a common container
AU717626B2 (en) 1996-10-03 2000-03-30 Debiotech S.A. Micro-machined device for fluids and method of manufacture
US6124663A (en) 1996-12-16 2000-09-26 The Boeing Company Fiber optic connector having a microelectromechanical positioning apparatus and an associated fabrication method
US5683159A (en) * 1997-01-03 1997-11-04 Johnson; Greg P. Hardware mounting rail
US6097859A (en) 1998-02-12 2000-08-01 The Regents Of The University Of California Multi-wavelength cross-connect optical switch
US5974867A (en) 1997-06-13 1999-11-02 University Of Washington Method for determining concentration of a laminar sample stream
WO1998059233A1 (en) 1997-06-23 1998-12-30 Luminex Corporation Interlaced lasers for multiple fluorescence measurement
US6082185A (en) 1997-07-25 2000-07-04 Research International, Inc. Disposable fluidic circuit cards
US5880474A (en) 1997-08-29 1999-03-09 Becton Dickinson And Company Multi-illumination-source flow particle analyzer with inter-location emissions crosstalk cancelation
US6007775A (en) 1997-09-26 1999-12-28 University Of Washington Multiple analyte diffusion based chemical sensor
US5901939A (en) 1997-10-09 1999-05-11 Honeywell Inc. Buckled actuator with enhanced restoring force
US5836750A (en) 1997-10-09 1998-11-17 Honeywell Inc. Electrostatically actuated mesopump having a plurality of elementary cells
US5822170A (en) 1997-10-09 1998-10-13 Honeywell Inc. Hydrophobic coating for reducing humidity effect in electrostatic actuators
US6106245A (en) 1997-10-09 2000-08-22 Honeywell Low cost, high pumping rate electrostatically actuated mesopump
US6116756A (en) 1997-12-12 2000-09-12 Xerox Corporation Monolithic scanning light emitting devices
US6054335A (en) 1997-12-12 2000-04-25 Xerox Corporation Fabrication of scanning III-V compound light emitters integrated with Si-based actuators
WO1999060397A1 (en) * 1998-05-18 1999-11-25 University Of Washington Liquid analysis cartridge
JP3522535B2 (ja) 1998-05-29 2004-04-26 忠弘 大見 圧力式流量制御装置を備えたガス供給設備
US6091197A (en) 1998-06-12 2000-07-18 Xerox Corporation Full color tunable resonant cavity organic light emitting diode
JP4001436B2 (ja) 1998-07-23 2007-10-31 三菱電機株式会社 光スイッチ及び光スイッチを用いた光路切換装置
DE19835070B4 (de) 1998-08-04 2006-03-16 Carl Zeiss Jena Gmbh Anordnung zur einstellbaren wellenlängenabhängigen Detektion in einem Fluoreszenzmikroskop
US6032689A (en) 1998-10-30 2000-03-07 Industrial Technology Research Institute Integrated flow controller module
US6091537A (en) 1998-12-11 2000-07-18 Xerox Corporation Electro-actuated microlens assemblies
US6215221B1 (en) 1998-12-29 2001-04-10 Honeywell International Inc. Electrostatic/pneumatic actuators for active surfaces
US6184607B1 (en) 1998-12-29 2001-02-06 Honeywell International Inc. Driving strategy for non-parallel arrays of electrostatic actuators sharing a common electrode
US6249341B1 (en) 1999-01-25 2001-06-19 Amnis Corporation Imaging and analyzing parameters of small moving objects such as cells
US6097485A (en) 1999-03-08 2000-08-01 Integrated Waveguides, Inc. Microchip optical transport technology for use in a personal flow cytometer
JP4475695B2 (ja) * 1999-03-16 2010-06-09 株式会社山武 流量制御弁の漏れ検査方法およびその装置
US6270641B1 (en) * 1999-04-26 2001-08-07 Sandia Corporation Method and apparatus for reducing sample dispersion in turns and junctions of microchannel systems
US6179586B1 (en) 1999-09-15 2001-01-30 Honeywell International Inc. Dual diaphragm, single chamber mesopump
US6240944B1 (en) 1999-09-23 2001-06-05 Honeywell International Inc. Addressable valve arrays for proportional pressure or flow control
US6281975B1 (en) 2000-03-07 2001-08-28 Eldex Laboratories, Inc. Capillary flow cell with bulbous ends
US20010030743A1 (en) 2000-03-10 2001-10-18 Carlos Araujo Laser alignment system with plural lasers for impingement on a single target
DE20008228U1 (de) 2000-05-09 2002-01-03 Busch Dieter & Co Prueftech Vorrichtung zur quantitativen Beurteilung der fluchtenden Lage zweier Maschinenteile, Werkstücke o.dgl.
US6597438B1 (en) 2000-08-02 2003-07-22 Honeywell International Inc. Portable flow cytometry
US6549275B1 (en) 2000-08-02 2003-04-15 Honeywell International Inc. Optical detection system for flow cytometry
US7978329B2 (en) 2000-08-02 2011-07-12 Honeywell International Inc. Portable scattering and fluorescence cytometer
US6970245B2 (en) 2000-08-02 2005-11-29 Honeywell International Inc. Optical alignment detection system
US6382228B1 (en) 2000-08-02 2002-05-07 Honeywell International Inc. Fluid driving system for flow cytometry
US6733244B1 (en) * 2000-12-20 2004-05-11 University Of Arkansas, N.A. Microfluidics and small volume mixing based on redox magnetohydrodynamics methods
US20040070757A1 (en) * 2000-12-29 2004-04-15 Moore Richard Channing High viscosity sheath reagent for flow cytometry
AU2002307218A1 (en) * 2001-03-24 2002-10-08 Aviva Biosciences Corporation Biochips including ion transport detecting structures and methods of use
WO2002082057A2 (en) * 2001-04-03 2002-10-17 Micronics, Inc. Split focusing cytometer
US6729856B2 (en) 2001-10-09 2004-05-04 Honeywell International Inc. Electrostatically actuated pump with elastic restoring forces
US6877892B2 (en) * 2002-01-11 2005-04-12 Nanostream, Inc. Multi-stream microfluidic aperture mixers
EP1542010A4 (en) * 2002-07-12 2007-11-21 Mitsubishi Chem Corp ANALYSIS CHIP, ANALYTICAL CHIP UNIT, ANALYSIS APPARATUS, ANALYSIS METHOD WITH THE APPARATUS AND METHOD FOR PRODUCING THE ANALYSIS CHIP
US20040027914A1 (en) 2002-08-08 2004-02-12 Vrane David R. Method and system for maintaining particles in suspension in a fluid
CN102620959B (zh) * 2002-12-26 2015-12-16 梅索磅秤技术有限公司 检定盒及其使用方法
US7122153B2 (en) * 2003-01-08 2006-10-17 Ho Winston Z Self-contained microfluidic biochip and apparatus
DE10320870A1 (de) 2003-05-09 2004-12-09 Evotec Technologies Gmbh Partikelinjektor für einen Zellsortierer
US7344681B1 (en) * 2003-06-06 2008-03-18 Sandia Corporation Planar micromixer
US7273590B2 (en) * 2004-04-29 2007-09-25 Industrial Technology Research Institute gravity-driven apparatus and method for control of microfluidic devices

Also Published As

Publication number Publication date
WO2007005973A3 (en) 2007-06-14
CN101253401B (zh) 2013-01-02
EP1901846A2 (en) 2008-03-26
CN101262950A (zh) 2008-09-10
EP1901847A2 (en) 2008-03-26
US20070031289A1 (en) 2007-02-08
EP1901847B1 (en) 2015-04-08
JP5189976B2 (ja) 2013-04-24
CN101253401A (zh) 2008-08-27
CN101252994B (zh) 2011-04-13
JP2008545141A (ja) 2008-12-11
EP1901846B1 (en) 2015-01-14
WO2007005973A2 (en) 2007-01-11
US8034296B2 (en) 2011-10-11
CN101252994A (zh) 2008-08-27
JP2009500612A (ja) 2009-01-08

Similar Documents

Publication Publication Date Title
CN101262950B (zh) 流量计量分析器
US8361410B2 (en) Flow metered analyzer
CN103471982B (zh) 一种血细胞分析芯片、分析仪及分析方法
CN101379387B (zh) 在一次性卡片上的差示白细胞计数
Graham The Coulter principle: foundation of an industry
CN103217401B (zh) 可弃置流体分析盒
CN1985168B (zh) 具有可拆卸盒的便携式样本分析仪
CN108982193A (zh) 试样制备的装置、系统、方法及粒子分析装置
CN205656141U (zh) 一种可同时测量crp和血常规的分析设备
KR20110080067A (ko) 샘플분석 카트리지 및 샘플분석 카트리지 리더
CN104838268A (zh) 微流体lal反应物质测试方法和设备
JPH076974B2 (ja) ガス混合物のガス・蒸気状成分の濃度測定装置および該装置で用いられる支持体
AU2800099A (en) Disposable apparatus for performing blood cell counts
JPS5983047A (ja) 連続流通分析装置の一体的なマイクロ導管装置
JP6524305B2 (ja) 血液沈降速度およびそれに関連する他のパラメータを決定する装置および方法
US20230131712A1 (en) Blood volume measurement with fluorescent dye
CN104737025A (zh) 用于生物化学传感器的流动管道系统
CN103842796A (zh) 毛细管流体流动测量及用于其的毛细管流动设备
CN103471980A (zh) 一种芯片式血细胞分析装置及方法
CN105074426A (zh) 用于集成复用光度测定模块的系统和方法
CA1187578A (en) Method and apparatus for detecting insufficient liquid levels
Kim et al. Red blood cell quantification microfluidic chip using polyelectrolytic gel electrodes
US9011775B2 (en) Cation exchange capacity titration unit
CN106404640A (zh) 一种血细胞检测分析的系统
CN209646519U (zh) 微流道结构及生物检测平台

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant