CN101346393A - 修饰的siRNA分子及其应用 - Google Patents

修饰的siRNA分子及其应用 Download PDF

Info

Publication number
CN101346393A
CN101346393A CNA2006800491469A CN200680049146A CN101346393A CN 101346393 A CN101346393 A CN 101346393A CN A2006800491469 A CNA2006800491469 A CN A2006800491469A CN 200680049146 A CN200680049146 A CN 200680049146A CN 101346393 A CN101346393 A CN 101346393A
Authority
CN
China
Prior art keywords
sirna
modification
nucleotide
lipid
nucleic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006800491469A
Other languages
English (en)
Other versions
CN101346393B (zh
Inventor
伊恩·麦克拉克伦
亚当·加杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wild strawberry bio pharmaceutical company
Original Assignee
Protiva Biotherapeutics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Protiva Biotherapeutics Inc filed Critical Protiva Biotherapeutics Inc
Publication of CN101346393A publication Critical patent/CN101346393A/zh
Application granted granted Critical
Publication of CN101346393B publication Critical patent/CN101346393B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • A61K9/1272Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers with substantial amounts of non-phosphatidyl, i.e. non-acylglycerophosphate, surfactants as bilayer-forming substances, e.g. cationic lipids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/50Methods for regulating/modulating their activity
    • C12N2320/51Methods for regulating/modulating their activity modulating the chemical stability, e.g. nuclease-resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)

Abstract

本发明提供一种化学修饰的siRNA分子,以及使用这样的siRNA分子使靶基因表达沉默的方法。有利地,本发明的修饰的siRNA比其相对应的未修饰的siRNA序列更少免疫刺激性,并且保留了针对靶序列的RNAi活性。本发明还提供核酸-脂质颗粒,其包括修饰的siRNA,阳离子脂质,和非阳离子脂质,其可以进一步包括抑制颗粒聚集的缀合的脂质。本发明还提供通过给哺乳动物受试者施用修饰的siRNA而使基因表达沉默的方法。本发明还提供鉴定和/或修饰具有免疫刺激特性的siRNA的方法。

Description

修饰的siRNA分子及其应用
相关申请的交叉参考
本申请要求于2005年11月2日递交的美国临时申请号60/732,964和与2006年6月30日递交的美国临时申请号60/817,933的优先权,出于所有目的,它们的内容通过参考完全结合于此。
发明背景
RNA干扰(RNAi)是由双链RNA(dsRNA)引发的进化上保守的、序列-特异性的机制,其诱导互补的靶点单链mRNA的降解,和使相对应的翻译序列“沉默”(McManus等,Nature Rev.Genet.(自然遗传学综述),3:737(2002))。RNAi通过将更长的dsRNA链酶促分裂成长度约21-23个核苷酸的生物活性的“短的干扰RNA”(siRNA)序列而作用(Elbashir等,GenesDev.(基因发育),15:188(2001))。siRNA可以用来下调或者沉默目的基因产物,即靶序列的转录和翻译。
作为针对侵入的病原体的先天抵御机制的一部分,哺乳动物免疫系统由许多外来RNA(Alexopoulou等,Nature(自然),413:732-738(2001);Heil等,Science(科学),303:1526-1529(2004);Diebold等,Science(科学),303:1529-1531(2004))和DNA种类(Krieg,Ann.Rev.Immunol.(免疫学综述年刊),20:709-760(2002))激活,这导致干扰素和炎性细胞因子的释放。激活这种反应的后果可能是严重的,具有潜在地引起毒性休克样综合征的局部和系统的炎症反应。这些免疫毒性可以由非常低剂量的免疫刺激试剂引发,特别是在更敏感的物种中,包括人(Michie等.,N.Engl.J.Med.(新英格兰医学杂志),318:1481-1486(1988);Krown等,Semin.Oncol.(肿瘤学研讨会),13:207-217(1986))。最近已经证明,当与促进细胞内递送的载体一起施用时,合成的siRNA可以是先天免疫应答的有力的激活剂(Judge等,,Nat.Biotechnol.(自然生物技术),23:457-462(2005);Hornung等,Nat.Med.(自然医学),11:263-270(2005);Sioud,J.Mol.Biol.(分子生物学杂志),348:1079-1090(2005))。尽管尚未充分确定,siRNA的免疫识别是序列依赖性的,并且可能通过Toll-样受体-7(TLR7)途径激活先天免疫细胞,引起干扰素-α(IFN-α))和炎性细胞因子的有力的诱导。与体内siRNA的施用有关的毒性已经归因于这样的反应(Morrissey等,Nat.Biotechnol.(自然生物技术),23:1002-1007(2005);Judge等,同前所述)。
合成siRNA抗快速核酸酶降解的稳定性通常视为体内和治疗应用的先决条件。这可以使用早先为其它核酸药物,诸如核酶和反义分子,开发的各种稳定的化学技术而实现(Manoharan,Curr.Opin.Chem.Biol.(现代化学生物学观点),8:570-579(2004))。这些包括对核糖糖骨架中的天然2’-OH基团的化学修饰,诸如在RNA合成过程中可以容易地将作为2’-修饰的核苷酸的2’-O-甲基(2’OMe)和2’-氟(2’F)取代引入到siRNA中。尽管许多报道已经表明,可以设计含有2’OMe(Czauderna等,Nucl.Acids Res.(核酸研究),31:2705-2716(2003);Allerson等,J.Med.Chem.(医学化学杂志),48:901-904(2005);Prakash等,J.Med.Chem.(医学化学杂志),48:4247-4253(2005)),2’F(Chiu等,RNA,9:1034-1048(2003);Layzer等,RNA,10:766-771(2004);Allerson等,同前所述;Prakash等,同前所述),2’-脱氧(Chiu等,同前所述),或“锁定核酸”(LNA)(Hornung等,同前所述;Elmen等,Nucl.Acids Res.(核酸研究),33:439-447(2005))修饰的化学稳定的siRNA,其保留功能性RNAi活性,但是这样的修饰似乎只耐受某些疾病-确定的位置或序列-相关的情形。事实上,在许多情形中,向天然siRNA双链体中引入化学修饰可能对RNAi活性有副作用(Hornung等,同前所述;Czauderna等,同前所述;Prakash等,同前所述,Chiu等,同前所述;Elmen等,同前所述)。结果,化学修饰的siRNA的设计需要随机筛选方法,以鉴定保留有力的基因沉默活性的双链体。
细胞对外来核酸的微弱吸收代表了开发基于siRNA的药物的额外的屏障。siRNA可以包封在脂质体内,叫作稳定的核酸-脂质颗粒(SNALP),其提高核酸的细胞内吸收,并且适于系统施用。这些系统在体外调控RNAi是有效(Judge等,同前所述),并且已经表明,在乙型肝炎的鼠源模型中,在治疗可用的siRNA剂量抑制病毒复制(Morrissey等,同前所述)。然而,这些研究使用包括大于90%的修饰的核苷酸的合成siRNA进行,其可以损害RNAi-介导的基因沉默的效力。
因此,在本领域中,对于消除siRNA的免疫刺激活性而对RNAi活性无副作用的最小程度修饰的siRNA分子存在强烈的需求。本发明阐释了这种以及其它的需求。
发明概述
本发明提供化学修饰的siRNA分子和使用这样的siRNA分子使靶基因表达沉默的方法。
本发明部分是基于这样的令人吃惊的发现,即,在siRNA双链体的一条或两条链内的选择的位置进行最小程度的化学修饰,如2’-O-甲基(2’OMe)修饰,足以减少或完全消除siRNA的免疫刺激活性。在某些情形中,通过将siRNA双链体的非靶有义链进行化学修饰,可以消除siRNA的免疫刺激活性,而保留完全的RNAi活性。备选地,在siRNA双链体的有义和反义链内的选择的位置的最小程度的化学修饰,诸如2’OMe修饰,足以减少siRNA的免疫刺激特性,而保留RNAi活性。使用载脂蛋白B(ApoB)和有丝分裂驱动蛋白Eg5作为内源基因靶点的非限制性实例,使用本发明的修饰的siRNA分子可以在体内获得有力的基因沉默,而没有与相对应的未修饰的siRNA序列引发的免疫激活相关的细胞因子诱导、免疫毒性或非靶点作用。结果,患者将经历siRNA治疗的完全的益处,而不遭受与这样的治疗相关的任何免疫刺激副作用。
一方面,本发明提供一种修饰的siRNA,其包括长度约15-约60个核苷酸(例如,长度约15-60,15-50,15-40,15-30,15-25或19-25个核苷酸)的双链区域,其中所述修饰的siRNA比相对应的未修饰的siRNA序列具有更少免疫刺激性,并且能够使靶序列的表达沉默。
典型地,所述修饰的siRNA在所述siRNA的双链体的双链区包括约1%-约100%(例如,约1%,5%,10%,15%,20%,25%,30%,35%,40%,45%,50%,55%,60%,65%,70%,75%,80%,85%,90%,95%,或100%)的修饰的核苷酸。在优选的实施方案中,在所述双链区中少于约20%(例如,少于约20%,15%,10%,或5%),或者从约1%到约20%(例如,从约1%-20%,5%-20%,10%-20%,或15%-20%)的核苷酸包括修饰的核苷酸。作为非限制性实例,所述修饰的siRNA可以包括如两个2’OMe-修饰的核苷酸一样少,这代表siRNA双链体的双链区中约5%的天然2’-OH位置。这种最小程度的化学修饰,当结合到高度免疫刺激性的siRNA双链体中时,可以在体外和体内减少或者完全消除siRNA-介导的干扰素和炎性细胞因子诱导(参见,实施例1)。
在一些实施方案中,所述修饰的siRNA包括修饰的核苷酸,其包括但不限于,2’OMe核苷酸,2’-脱氧-2’-氟(2’F)核苷酸,2’-脱氧核苷酸,2’-O-(2-甲氧基乙基)(MOE)核苷酸,锁定核酸(LNA)核苷酸,以及它们的混合物。在优选的实施方案中,所述修饰的siRNA包括2’OMe核苷酸(例如,2’OMe嘌呤和/或嘧啶核苷酸),诸如例如,2’OMe-鸟苷核苷酸,2’OMe-尿苷核苷酸,2’OMe-腺苷核苷酸,2’OMe-胞嘧啶核苷酸,以及它们的混合物。在某些情形中,所述修饰的siRNA不包括2’OMe-胞嘧啶核苷酸。在其它实施方案中,所述修饰的siRNA包括发夹环结构。
修饰的siRNA可以在所述siRNA双链区的一条链(即,有义或反义)或两条链中包括修饰的核苷酸。优选地,尿苷和/或鸟苷核苷酸在所述siRNA双链体的双链区中的选择的位置是修饰的。关于尿苷核苷酸修饰,在有义和/或反义链中的至少一个、两个、三个、四个、五个、六个、或更多个尿苷核苷酸可以是修饰的尿苷核苷酸,如2’OMe-尿苷核苷酸。在一些实施方案中,在有义和/或反义链中的每一个尿苷核苷酸是2’OMe-尿苷核苷酸。关于鸟苷核苷酸修饰,在有义和/或反义链中的至少一个、两个、三个、四个、五个、六个、或更多个鸟苷核苷酸可以是修饰的鸟苷核苷酸,如2’OMe-鸟苷核苷酸。在一些实施方案中,在有义和/或反义链中的每一个鸟苷核苷酸是2’OMe-鸟苷核苷酸。
在某些实施方案中,所述修饰的siRNA的免疫刺激性比相对应的未修饰的siRNA序列少至少约5%,10%,15%,20%,25%,30%,35%,40%,45%,50%,55%,60%,65%,70%,75%,80%,85%,90%,91%,92%,93%,94%,95%,96%,97%,98%,或99%。优选地,所述修饰的siRNA的免疫刺激性比相对应的未修饰的siRNA序列少至少约80%(例如,80%,85%,90%,91%,92%,93%,94%,95%,96%,97%,98%,99%,或100%)。本领域的那些熟练的技术人员应该容易地显而易见,所述修饰的siRNA分子和相对应的未修饰的siRNA分子的免疫刺激特性可以通过,例如,在使用适当的基于脂质的递送系统(诸如SNALP递送系统或本文公开的其它脂质核酸复合物(lipoplex)系统)在哺乳动物中系统施用后2-12个小时,测量INF-α和/或IL-6水平而确定。
在某些实施方案中,所述修饰的siRNA具有的IC50小于或等于相对应的未修饰的siRNA的IC50的10倍(即,所述修饰的siRNA具有小于或等于相对应的未修饰的siRNA的IC50的10倍的IC50)。在其它实施方案中,所述修饰的siRNA具有的IC50小于或等于相对应的未修饰的siRNA的IC50的3倍。在其它实施方案中,所述修饰的siRNA优选地具有的IC50小于或等于相对应的未修饰的siRNA的IC50的2倍。本领域熟练的技术人员应该容易地显而易见,可以生成剂量反应曲线,并且使用本领域的技术人员已知的方法可以容易地确定修饰的siRNA和相对应的未修饰的siRNA的IC50值。
优选地,所述修饰的siRNA的免疫刺激性比相对应的未修饰的siRNA序列少至少约80%(例如,80%,85%,90%,91%,92%,93%,94%,95%,96%,97%,98%,99%,或100%),并且所述修饰的siRNA具有的IC50小于或等于相对应的未修饰的siRNA的IC50的10倍(优选地,3倍,并且更优选地,2倍)。
在另一个实施方案中,相对于相应的未修饰的siRNA序列,所述修饰的siRNA能够使至少约5%,10%,15%,20%,25%,30%,35%,40%,45%,50%,55%,60%,65%,70%,75%,80%,85%,90%,95%,100%,105%,110%,115%,120%,125%,或更多的靶序列的表达沉默。
在一些实施方案中,所述修饰的siRNA不包括磷酸骨架修饰,例如,在双链区的有义和/或反义链中。在其它实施方案中,所述修饰的siRNA不包括2’-脱氧核苷酸,例如,在双链区的有义和/或反义链中。在某些情形中,在有义和/或反义链的双链区的3’-端的核苷酸不是修饰的核苷酸。在某些其它的情形中,在接近有义和/或反义链的双链区的3’-端(例如,在3’-端的一个、两个、三个或四个核苷酸内)的核苷酸不是修饰的核苷酸。
本发明的修饰的siRNA可以在双链区的一端或两端具有一个、两个、三个、四个或更多个核苷酸的3’突出端,或者可以缺乏突出端(即,具有平端)。优选地,所述修饰的siRNA在双链区的每一端具有两个核苷酸的3’突出端。在某些情形中,在反义链上的3’突出端具有与靶序列的互补性,并且在有义链上的3’突出端具有与靶序列的互补链的互补性(参见,例如,表3中的ApoB siRNA双链体)。备选地,所述3’突出端不具有与其靶序列或互补链的互补性。在一些实施方案中,所述3’突出端包括一个、两个、三个、四个、或更多个核苷酸,诸如2’-脱氧(2’H)核苷酸。优选地,所述3’突出端包括脱氧胸苷(dT)核苷酸。
在一些实施方案中,相对应的未修饰的siRNA序列包括至少一个、两个、三个、四个、五个、六个、七个、或更多个5’-GU-3’基序。所述5’-GU-3’基序可以在所述未修饰的siRNA序列的有义链、反义链或两条链中。
在某些实施方案中,所述修饰的siRNA还包括载体系统,例如,以将所述修饰的siRNA递送到哺乳动物的细胞。适用于本发明的载体系统的非限制性实例包括核酸-脂质颗粒、脂质体、微团、病毒颗粒、核酸复合物、以及它们的混合物。在某些情形中,所述修饰的siRNA分子与脂质如阳离子脂质复合,以形成脂质核酸复合物。在某些其它的情形中,所述修饰的siRNA分子与聚合物如阳离子聚合物(例如,聚氮丙啶(PEI))复合,以形成聚合物-核酸复合物(polyplex)。所述修饰的siRNA分子还可以与环糊精或其聚合物复合。优选地,将所述修饰的siRNA分子包封在核酸-脂质颗粒中。
本发明还提供一种药物组合物,其包括本文所述的修饰的siRNA和药用载体。
在一个相关的方面中,本发明提供包括长度约15-约60个核苷酸(例如,长度约15-60,15-50,15-40,15-30,15-25,或19-25个核苷酸)的双链区的修饰的siRNA,其中在所述siRNA的有义链中的至少一个、两个、三个、四个、五个、六个、七个、八个、九个、十个或更多个核苷酸包括修饰的核苷酸,并且在所述siRNA的反义链中没有核苷酸是修饰的核苷酸。
在另一个方面中,本发明提供包括长度约15-约60个核苷酸(例如,长度约15-60,15-50,15-40,15-30,15-25,或19-25个核苷酸)的双链区的修饰的siRNA,其中在所述双链区的至少两个核苷酸包括选自由修饰的鸟苷核苷酸、修饰的尿苷核苷酸以及它们的混合物组成的组的修饰的核苷酸。所述修饰的siRNA比相对应的未修饰的siRNA序列具有显著更少的免疫刺激性,并且能够使靶序列的表达沉默。
典型地,所述修饰的siRNA在所述siRNA双链体的双链区包括约1%-约100%(例如,约1%,5%,10%,15%,20%,25%,30%,35%,40%,45%,50%,55%,60%,65%,70%,75%,80%,85%,90%,95%,或100%)的修饰的核苷酸。在优选的实施方案中,双链区中少于约30%(例如,少于约30%,25%,20%,15%,10%,或5%)或者从约1%到约30%(例如,约1%-30%,5%-30%,10%-30%,15%-30%,20%-30%,或25%-30%)的核苷酸包括修饰的核苷酸。作为非限制性实例,所述修饰的siRNA可以包含10个2’OMe-鸟苷和/或2’OMe-尿苷核苷酸,这代表所述siRNA双链体的双链区中少于约30%的天然2’-OH位置。这种最小程度的化学修饰,当结合到高度免疫刺激性的siRNA序列中时,可以在体外和体内减少或者完全消除siRNA-介导的干扰素和炎性细胞因子诱导(参见,实施例2-4)。
在一些实施方案中,所述修饰的siRNA包括修饰的鸟苷和/或尿苷核苷酸,其包括但不限于,2’OMe-鸟苷核苷酸,2’OMe-尿苷核苷酸,2’F-鸟苷核苷酸,2’F-尿苷核苷酸,2’-脱氧鸟苷核苷酸,2’-脱氧尿苷核苷酸,2’OMOE-鸟苷核苷酸,2’OMOE-尿苷核苷酸,LNA鸟苷核苷酸,LNA尿苷核苷酸,以及它们的混合物。在优选的实施方案中,所述修饰的siRNA包括2’OMe-鸟苷核苷酸,2’OMe-尿苷核苷酸,以及它们的混合物。在其它实施方案中,所述修饰的siRNA包括发夹环结构。
所述修饰的siRNA可以在所述siRNA的双链区的一条链(即,有义或反义)或两条链中包括修饰的核苷酸。优选地,在所述siRNA双链体的双链区中的选择的位置,至少两个、三个、四个、五个、六个、七个、八个、九个、十个或更多个尿苷和/或鸟苷核苷酸被修饰。
在某些实施方案中,所述修饰的siRNA比相对应的未修饰的siRNA序列的免疫刺激性少至少约5%,10%,15%,20%,25%,30%,35%,40%,45%,50%,55%,60%,65%,70%,75%,80%,85%,90%,91%,92%,93%,94%,95%,96%,97%,98%,或99%。优选地,所述修饰的siRNA比相对应的未修饰的siRNA序列的免疫刺激性少至少约80%(例如,80%,85%,90%,91%,92%,93%,94%,95%,96%,97%,98%,99%,或100%),并且具有小于或等于相对应的未修饰的siRNA的IC50的10倍的IC50。在其它实施方案中,所述修饰的siRNA具有小于或等于相对应的未修饰的siRNA的IC50的3倍的IC50。在其它实施方案中,所述修饰的siRNA优选地具有小于或等于相对应的未修饰的siRNA的IC50的2倍的IC50
在其它实施方案中,相对于相对应的未修饰的siRNA序列,所述修饰的siRNA能够使至少约5%,10%,15%,20%,25%,30%,35%,40%,45%,50%,55%,60%,65%,70%,75%,80%,85%,90%,95%,100%,105%,110%,115%,120%,125%或更多的靶序列的表达沉默。
在一些实施方案中,所述修饰的siRNA不包括磷酸骨架修饰,例如,在所述双链区的有义和/或反义链中。在其它实施方案中,所述修饰的siRNA不包括2’-脱氧核苷酸,例如,在双链区的有义和/或反义链中。在某些情形中,在有义和/或反义链的双链区的3’-端的核苷酸不是修饰的核苷酸。在某些其它的情形中,在接近有义和/或反义链的双链区的3’-端(例如,在3’-端的一个、两个、三个或四个核苷酸内)的核苷酸不是修饰的核苷酸。
本发明的修饰的siRNA可以在双链区的一端或两端具有一个、两个、三个、四个或更多个核苷酸的3’突出端,或者可以缺乏突出端(即,具有平端)。优选地,所述修饰的siRNA在双链区的每一端具有两个核苷酸的3’突出端。在一些实施方案中,所述3’突出端包括一个、两个、三个、四个、或更多个核苷酸,诸如2’-脱氧(2’H)核苷酸。优选地,所述3’突出端包括脱氧胸苷(dT)核苷酸。
在一些实施方案中,相对应的未修饰的siRNA序列包括至少一个、两个、三个、四个、五个、六个、七个、或更多个5’-GU-3’基序。所述5’-GU-3’基序可以在所述未修饰的siRNA序列的有义链、反义链或两条链中。
在某些实施方案中,所述修饰的siRNA还包括载体系统,例如,以将所述修饰的siRNA递送到哺乳动物的细胞。载体系统的非限制性实例包括核酸-脂质颗粒、脂质体、微团、病毒颗粒、核酸复合物、以及它们的混合物。
在某些情形中,所述修饰的siRNA分子与脂质如阳离子脂质复合,以形成脂质核酸复合物。在某些其它的情形中,所述修饰的siRNA分子与聚合物如阳离子聚合物(例如,PEI)复合,以形成聚合物-核酸复合物。所述修饰的siRNA分子还可以与环糊精或其聚合物复合。优选地,将所述修饰的siRNA分子包封在核酸-脂质颗粒中。
本发明还提供一种药物组合物,其包括本文所述的修饰的siRNA和药用载体。
在另一个方面中,本发明提供一种核酸-脂质颗粒,其包括本文所述的修饰的siRNA、阳离子脂质、和非阳离子脂质。在某些情形中,所述核酸-脂质颗粒还包括抑制颗粒聚集的缀合的脂质。优选地,所述核酸-脂质颗粒包括本文所述的修饰的siRNA、阳离子脂质、非阳离子脂质和抑制颗粒聚集的缀合的脂质。
所述阳离子脂质可以是,例如,N,N-二油基-N,N-二甲基氯化铵(DODAC),N,N-二硬脂酰-N,N-二甲基溴化铵(DDAB),N-(1-(2,3-二油酰氧基)丙基)-N,N,N-三甲基氯化铵(DOTAP),N-(1-(2,3-二油基氧基)丙基)-N,N,N-三甲基氯化铵(DOTMA),N,N-二甲基-2,3-二油基氧基丙胺(DODMA),1,2-二亚油基(linoleyl)氧基-N,N-二甲基氨基丙烷(DLinDMA),1,2-二亚麻基(linolenyl)氧基-N,N-二甲基氨基丙烷(DLendMA),或它们的混合物。所述阳离子脂质可以包括在所述颗粒中存在的总脂质的约20mol%-约50mol%或约40mol%。
所述非阳离子脂质可以是阴离子脂质或中性脂质,其包括但不限于,二硬脂酰磷脂酰胆碱(DSPC),二油酰磷脂酰乙醇胺(DOPE),棕榈酰油酰-磷脂酰胆碱(POPC),棕榈酰油酰-磷脂酰乙醇胺(POPE),棕榈酰油酰-磷脂酰甘油(POPG),二棕榈酰-磷脂酰胆碱(DPPC),二棕榈酰-磷脂酰乙醇胺(DPPE),二肉豆蔻酰-磷脂酰乙醇胺(DMPE),二硬脂酰-磷脂酰乙醇胺(DSPE),一甲基-磷脂酰乙醇胺,二甲基-磷脂酰乙醇胺,二反油酰基(elaidoyl)-磷脂酰乙醇胺(DEPE),硬脂酰油酰-磷脂酰乙醇胺(SOPE),卵磷脂酰胆碱(EPC),胆固醇,或它们的混合物。所述非阳离子脂质可以包括存在于所述颗粒中的总脂质的约5mol%到约90mol%或约20mol%。
抑制颗粒聚集的缀合的脂质可以是聚乙二醇(PEG)-脂质缀合物,聚酰胺(ATTA)-脂质缀合物,阳离子聚合物-脂质缀合物(CPLs),或它们的混合物。在一个优选的实施方案中,所述核酸-脂质颗粒包括PEG-脂质缀合物或ATTA-脂质缀合物。在某些实施方案中,所述PEG-脂质缀合物或ATTA-脂质缀合物与CPL一起使用。抑制颗粒聚集的缀合的脂质可以包括PEG-脂质,包括,例如,PEG-二酰甘油(DAG),PEG-二烷基氧基丙基(DAA),PEG-磷脂,PEG-神经酰胺(Cer),或它们的混合物。所述PEG-DAA缀合物可以是PEG-二月桂基氧基丙基(C12),PEG-二肉豆蔻基氧基丙基(C14),PEG-二棕榈基氧基丙基(C16),或PEG-二硬脂酰氧基丙基(C18)。在一些实施方案中,抑制颗粒聚集的缀合的脂质是具有下式的CPL:A-W-Y,其中A是脂质部分,W是亲水聚合物,并且Y是聚阳离子部分。W可以是选自由下列各项组成的组的聚合物:PEG,聚酰胺,聚乳酸,聚羟基乙酸,聚乳酸/聚羟基乙酸共聚物,或它们的组合,所述聚合物具有从约250到约7000道尔顿的分子量。在一些实施方案中,Y在选择的pH上具有至少4个正电荷。在一些实施方案中,Y可以是赖氨酸、精氨酸、天冬酰胺、谷氨酰胺、它们的衍生物或它们的组合。防止颗粒聚集的缀合的脂质可以是存在于所述颗粒中的总脂质的0mol%-约20mol%或约2mol%。
在一些实施方案中,所述核酸-脂质颗粒还包括胆固醇,例如,为在所述颗粒中存在的总脂质的约10mol%-约60mol%,约30mol%-约50mol%,或约48mol%。
在某些实施方案中,在37℃将所述颗粒暴露于核酸酶至少20,30,45或60分钟后;或者在将所述颗粒在血清中在37℃温育至少30,45或60分钟后,在所述核酸-脂质颗粒中的所述修饰的siRNA基本上不降解。
在一些实施方案中,所述修饰的siRNA完全包封在核酸-脂质颗粒中。在其它实施方案中,所述修饰的siRNA与所述颗粒的脂质部分复合。
本发明还提供包括本文所述的核酸-脂质颗粒和药用载体的药物组合物。
在另一个方面中,本文所述的修饰的siRNA用于使靶序列的表达沉默的方法。特别地,本发明的一个目的是提供在哺乳动物中通过下调或沉默目的靶基因的转录和/或翻译而治疗疾病或病症的体外和体内方法。在一个实施方案中,本发明提供通过将细胞与本文所述的修饰的siRNA接触而将使靶序列的表达(例如,mRNA和/或蛋白质水平)沉默的siRNA引入到细胞中的方法。在另一个实施方案中,本发明提供通过给哺乳动物施用本文所述的修饰的siRNA而体内递送使靶序列的表达沉默的siRNA的方法。所述修饰的siRNA的施用可以通过本领域已知的任何途径进行,诸如例如,口服、鼻内、静脉内、腹膜内、肌内、关节内、病灶内、气管内、皮下、或皮内。
在这些方法中,所述修饰的siRNA典型地与载体系统一起配制,并且将包括所述修饰的siRNA的所述载体系统施用给需要这样的治疗的哺乳动物。适用于本发明的载体系统的实例包括,但不限于,核酸-脂质颗粒、脂质体、微团、病毒颗粒、核酸复合物(例如,脂质核酸复合物,聚合物-核酸复合物,等)、以及它们的混合物。所述载体系统可以包括至少一种、两种、三种、四种、五种、六种、七种、八种、九种、十种或更多种本文所述的修饰的siRNA分子。备选地,将细胞从哺乳动物如人移除,体外递送所述修饰的siRNA,并且然后将所述细胞施用给所述哺乳动物,诸如通过注射施用。
在一些实施方案中,所述修饰的siRNA是在包括所述修饰的siRNA、阳离子脂质和非阳离子脂质的核酸-脂质颗粒中。优选地,所述修饰的siRNA是在包括所述修饰的siRNA、阳离子脂质、非阳离子脂质和抑制颗粒聚集的缀合的脂质的核酸-脂质颗粒中。可以将治疗有效量的所述核酸-脂质颗粒施用给哺乳动物受试者(例如,啮齿动物类,如小鼠,或灵长类动物,如人、黑猩猩或猴子)。
在另一个实施方案中,在施用后约1,2,4,6,8,12,16,18,或24小时,在血浆中存在所述核酸-脂质颗粒的总施用剂量的至少约1%,2%,4%,6%,8%,或10%。在另一个实施方案中,在施用后约1,4,6,8,10,12,20,或24小时,在血浆中存在所述核酸-脂质颗粒的总施用剂量的大于约20%,30%,或40%或者多如约60%,70%,或80%。在一个实施方案中,在施用所述核酸-脂质颗粒后约12,24,48,72,或96小时,或者在约6,8,10,12,14,16,18,19,20,22,24,26,或28天,修饰的siRNA在最接近或远离施用位点的位点的作用(例如,靶序列的下调)是可检测到的。在另一个实施方案中,在施用后约12,24,48,72,或96小时,或者在约6,8,10,12,14,16,18,19,20,22,24,26,或28天,靶序列表达的下调作用是可检测到的。在某些情形中,基因序列表达的下调作用通过测量在来自哺乳动物的生物样品中的mRNA或蛋白质水平而检测。
由于它们在循环中稳定,是导致进入血管外位点的药物动力学行为所需要的大小,并且靶向细胞群体,所以,所述核酸-脂质颗粒适用于静脉内核酸递送。本发明还提供包括核酸-脂质颗粒的药用组合物。
在另一个方面中,本发明提供用于修饰具有免疫刺激特性的siRNA的方法,其包括:(a)提供未修饰的siRNA序列,所述未修饰的siRNA序列能够使靶序列的表达沉默,并且包括长度约15-约60个核苷酸(例如,长度约15-60,15-50,15-40,15-30,15-25,或19-25个核苷酸)的双链序列;并且(b)通过用修饰的核苷酸取代在有义或反义链中的至少一个核苷酸而修饰所述siRNA,由此产生比所述未修饰的siRNA序列更少免疫刺激性并且能够使靶序列的表达沉默的修饰的siRNA。
在一些实施方案中,所述修饰的核苷酸包括,但不限于,2’OMe核苷酸,2’F核苷酸,2’-脱氧核苷酸,2’OMOE核苷酸,LNA核苷酸,以及它们的混合物。在优选的实施方案中,所述修饰的核苷酸包括2’OMe核苷酸(例如,2’OMe嘌呤和/或嘧啶核苷酸),诸如例如,2’OMe-鸟苷核苷酸,2’OMe-尿苷核苷酸,2’OMe-腺苷核苷酸,2’OMe-胞嘧啶核苷酸,以及它们的混合物。在某些情形中,所述修饰的核苷酸不是2’OMe-胞嘧啶核苷酸。
在某些情形中,所述未修饰的siRNA序列包括至少一个、两个、三个、四个、五个、六个、七个、或更多个5’-GU-3’基序。所述5’-GU-3’基序可以是在所述未修饰的siRNA序列的有义链中,反义链中,或者两条链中。优选地,在5’-GU-3’基序中的至少一个核苷酸被修饰的核苷酸取代。作为一个非限制性实例,在5’-GU-3’基序中的两个核苷酸都可以用修饰的核苷酸取代。
在一些实施方案中,所述方法还包括:(c)通过在适用于效应器细胞产生可检测的免疫反应的条件下,将所述修饰的siRNA与哺乳动物效应器细胞接触,而证实所述修饰的siRNA具有更少免疫刺激性。所述哺乳动物效应器细胞可以来自首次免疫的哺乳动物(即,先前没有与所述siRNA序列的基因产物接触的哺乳动物)。所述哺乳动物效应器细胞可以是,例如,外周血单核细胞(PBMC)、巨噬细胞等。所述可检测的免疫反应可以包括产生细胞因子或生长因子,诸如例如,TNF-α,IFN-α,IFN-β,IFN-γ,IL-6,IL-12,或它们的组合。
在一个相关的方面中,本发明提供用于鉴定并且修饰具有免疫刺激特性的siRNA的方法。所述方法包括:(a)在适于效应器细胞产生可检测的免疫反应的条件下,将未修饰的siRNA序列与哺乳动物效应器细胞接触;(b)通过在所述效应器细胞中存在可检测的免疫反应,而将所述未修饰的siRNA序列鉴定为免疫刺激性siRNA;并且(c)通过用修饰的核苷酸取代至少一个核苷酸而修饰所述免疫刺激性siRNA,由此产生比所述未修饰的siRNA序列更低的免疫刺激性的修饰的siRNA序列。
在某些实施方案中,所述修饰的核苷酸包括,但不限于,2’OMe核苷酸,2’F核苷酸,2’-脱氧核苷酸,2’OMOE核苷酸,LNA核苷酸,以及它们的混合物。在优选的实施方案中,所述修饰的核苷酸包括2’OMe核苷酸(例如,2’OMe嘌呤和/或嘧啶核苷酸),诸如例如,2’OMe-鸟苷核苷酸,2’OMe-尿苷核苷酸,2’OMe-腺苷核苷酸,2’OMe-胞嘧啶核苷酸,以及它们的混合物。在某些情形中,所述修饰的核苷酸不是2’OMe-胞嘧啶核苷酸。
在某些情形中,所述未修饰的siRNA序列包括至少一个、两个、三个、四个、五个、六个、七个或更多个5’-GU-3’基序。所述5’-GU-3’基序可以在所述未修饰的siRNA序列的有义链中,反义链中,或者两条链中。优选地,在5’-GU-3’基序中的至少一个核苷酸用修饰的核苷酸取代。作为一个非限制性的实例,在5’-GU-3’基序中的两个核苷酸都用修饰的核苷酸取代。
在一个实施方案中,所述哺乳动物效应器细胞是外周血单核细胞(PBMC)、巨噬细胞等。在另一个实施方案中,可检测的免疫反应包括细胞因子或生长因子,诸如例如,TNF-α,IFN-α,IFN-β,IFN-γ,IL-6,IL-12,或它们的组合的产生。
在另一个方面中,本发明提供包括在表1和2中列出的修饰的序列的分离的核酸分子。所述修饰的序列还可以包括其互补链,由此产生修饰的siRNA双链体。在一个相关的方面中,本发明提供包括在表3,5和6中列出的修饰的siRNA双链体的分离的核酸分子。
本发明的其它特征、目的和优点以及其优选的实施方案将从下述详述、实施例和权利要求中显而易见。
附图简述
图1举例说明表明在人PBMC中2’OMe修饰消除了免疫刺激性ssRNA-介导的干扰素诱导的数据。将表示(A)β-gal和(B)ApoB siRNA的有义(S)或反义(AS)链的脂质体包封的、未修饰的(天然的)和2’OMeU-,G-,或GU-修饰的ssRNA在增加的浓度(5-135nM)与PBMC一起温育。序列显示在表1中。在24小时在培养物上清中测定IFN-α。值是一式三份培养物的平均值+SD。
图2举例说明表明与聚氮丙啶(PEI)复合的ssRNA和siRNA的免疫刺激通过2’OMe修饰消除的数据。来自用PEI复合的(A)天然β-gal有义(S),反义(AS),和2’OMe-修饰的有义ssRNAs与(B)天然的,2’OMe GU(S),和AC(AS)修饰的β-gal对照siRNA双链体处理的人PBMC培养物的干扰素-α反应。RNA以终浓度225nM加入,并且在16小时后在培养物上清中测定IFN-α。RNA序列显示在表1中。
图3举例说明表明在人PBMC中对siRNA双链体的选择的2’OMe修饰消除了细胞因子诱导的数据。来自用增加浓度(25-675nM)的包封的(A)β-gal或(B,C)ApoB或ApoB错配siRNA培养的人PBMC的(A,B)IFN-α和(C)TNF-α诱导。将对未修饰的(天然的)siRNAs的细胞因子反应与如所示(参见,表1的siRNA序列)在有义(S)或反义(AS)链中含有2’OMe U,G,C,或A残基的双链体进行比较。分泌的细胞因子在培养24小时后测定。值是一式三份培养物的平均值+SD。
图4举例说明表明对siRNA双链体的选择性2’OMe修饰在体内消除了细胞因子诱导的数据。在静脉内施用包封的(A,B)β-gal,(C,D)ApoB,(E)ApoB错配,或(F)vFLIP siRNA后6小时,(A,C,E,F)血清IFN-α和(B,D)TNF-α和IL-6水平。将对未修饰的(天然的)siRNAs的反应与如所示(参见,表1的siRNA序列)在有义(S)或反义(AS)链中含有2’OMe U,G,或C残基的双链体进行比较。所有的小鼠接受40μg包封的siRNA。值是来自3-4只动物的平均值+SD。更低的定量水平为IFN-α75pg/mL,TNF-α30pg/mL,和IL-6 60pg/mL。
图5举例说明表明通过将2’OMe-尿苷选择性结合到siRNA有义链中消除了体内对siRNA的细胞因子反应的数据。在静脉内施用含有siRNA靶向的(A)流感核蛋白(NP 1496)和聚合酶(PA2087)或(B)亲环蛋白B(CypB)的SNALPs后6小时,确定在小鼠中的血清干扰素-α水平。将对天然的、未修饰的siRNA的反应与对2’OMe U(S)修饰的双链体的反应进行比较。序列提供在表2中。
图6举例说明表明产生保留全部RNAi活性的非炎性β-gal siRNAs的数据。免疫刺激性β-gal 728 siRNA通过将2’OMe-尿苷(U),鸟苷(G),胞苷(C),或腺苷(A)结合到所述siRNA双链体的有义链(S)中而进行化学修饰。(A)在施用20μg包封在SNALPs中的siRNA后6小时,在小鼠中的干扰素-α诱导。(B)相同的β-gal 728 SNALP制剂的体外RNA干扰活性。RNAi测定在用大肠杆菌(E.coil)LacZ基因稳定转染的Neuro2A细胞中进行。β-gal活性在暴露于SNALPs后48小时进行评估,并且相对于PBS-处理的细胞表示平均值。在这些研究中所用的SNALPs包括摩尔比例48∶10∶40∶2的脂质胆固醇∶DSPC∶DLinDMA∶PEG-C-DMA,并且具有直径在80-90nm范围内的颗粒大小。RNA序列在表2中提供。
图7举例说明表明产生保留全部RNAi活性的非炎性萤光素酶siRNA的数据。免疫刺激性萤光素酶(Luc)siRNA通过将2’OMe-尿苷(U)结合到所述siRNA双链体的有义链(S)中而进行化学修饰。(A)在施用20μg包封在SNALPs中的siRNA后6小时,在小鼠中的干扰素-α诱导。(B)LucSNALP制剂的体外RNA干扰活性。RNAi测定在用萤火虫萤光素酶稳定转染的Neuro2A细胞中进行。萤光素酶活性在暴露于SNALPs后48小时进行评估,并且相对于PBS-处理的细胞表示平均值。在这些研究中所用的SNALPs包括摩尔比例48∶10∶40∶2的脂质胆固醇∶DSPC∶DLinDMA∶PEG-C-DMA,并且具有直径在75-85nm范围内的颗粒大小。RNA序列在表2中提供。
图8举例说明表明通过2’OMe-修饰的siRNA在体外使ApoB表达沉默的数据。将HepG2细胞用在指定浓度的(0-45nM)包封的ApoB或错配的siRNA处理。将未修饰的(天然的)ApoB siRNA与如所示(参见,表1的修饰siRNA序列)在有义链(S)中含有2’OMe U,G.或C残基或在反义(AS)链中含有GU基序,U或C残基的ApoB双链体进行比较。未修饰的和2’OMe-U(S)ApoB错配的siRNA作为对照双链体。在48小时后,通过ELISA测量在培养物上清中的ApoB蛋白。ApoB水平表示为%PBS-处理的对照培养物。每个值来自于一式两份培养物的平均值,并且代表3次独立的实验。
图9举例说明表明将siRNA包封在脂质颗粒中保护免于血清核酸酶降解的数据。将未修饰的裸(上部)或SNALP-包封的(中部)的ApoB siRNA在50%小鼠血清中在37℃温育。在指定的时间点通过非变性PAGE分析评估双链体的完整性。加入曲拉通-X(Triton-X)以破坏脂质颗粒的完整性(下部)恢复了siRNA核酸酶的灵敏性。
图10举例说明表明在体内使ApoB表达沉默而不使先天免疫反应失活的数据。(A)-(E)在小鼠中静脉内施用包封的ApoB或错配的siRNA后的体内作用。在第0,1和2天,将小鼠用包封的未修饰的、2’OMe U(S),或GU(AS)修饰的ApoB,和未修饰的或2’OMe U(S)修饰的错配siRNA以5mg/kg/天处理。(A)在4天的研究时期内,用ApoB(实心标记)和错配(空心标记)siRNA处理的小鼠的体重的每日变化(%第0天的体重)。(B)在初始处理后6小时,来自检测采血的血清IFN-α。ND=没有检测;更低的定量水平=75pg/ml。(C)肝脏中的ApoB mRNA水平。(D)血清中的ApoB蛋白。(E)在最后的siRNA处理后2天的血清胆固醇(mM)。ApoB水平表示为%ApoB mRNA或将ApoB蛋白与PBS-处理的动物进行比较。所有的值是5只动物的平均值+SD。所有的数据代表2次独立的实验。
图11举例说明表明各种未修饰的和化学修饰的ApoB siRNA的沉默活性的数据。在以每天2mg/kg的siRNA剂量连续三天进行IV处理结束后7天,测量SNALP-配制的siRNA沉默效力。ApoB沉默活性关于与PBS-处理的对照的血浆ApoB-100蛋白水平的减少而进行测量。每个柱状物代表组的平均值(n=5)±标准偏差(SD)。
图12举例说明表明各种未修饰的和化学修饰的ApoB siRNA的免疫刺激特性的数据。在初始IV给药SNALP-配制的siRNA后6小时,测量每种siRNA的免疫刺激特性,其特征在于细胞因子的释放。使用ELISA测量细胞因子干扰素-α的血浆浓度。对于引起显著反应的处理(值超过200pg/mL),将血浆样品稀释10倍,并且独立分析每只动物,以致在附图中的柱状物代表组平均值(n=5)±标准偏差(SD)。对于引起非常小的反应的处理(值小于200pg/mL),将样品收集在一起,并且以4倍稀释液进行测定。
图13举例说明表明对Eg5 2263 siRNA的选择性2’OMe修饰在人HeLa细胞中保留了RNAi活性的数据。
图14举例说明表明对Eg5 2263 siRNA的选择性2’OMe修饰在小鼠Neuro2A细胞中保留了RNAi活性的数据。
图15举例说明表明对Eg5 2263 siRNA的选择性2’OMe修饰消除了与系统施用天然双链体相关的干扰素诱导的数据。
图16举例说明表明对Eg5 2263 siRNA的两条链的选择性2’OMe修饰是完全消除针对SNALP递送载体的PEG成分的抗体反应所必需的数据。
图17举例说明表明包括对有义链的选择性2’OMe修饰的NP 411,NP929,NP 1116,和NP 1496 siRNA在MDCK细胞中在体外保持流感击倒活性的数据。图17A显示在用修饰的或未修饰的siRNA预处理5小时后48小时MDCK细胞的流感病毒感染。图17B显示在将MDCK细胞用流感病毒的1∶800稀释液感染并且用2μg/ml修饰的或未修饰的siRNA转染的48小时,相对于只是对照的病毒的HA的百分数。
图18举例说明表明当与未修饰的负体序列或对照序列相比较时,对NP 1496 siRNA有义链的选择性2’OMe修饰没有不利地影响流感击倒活性的数据。
图19举例说明表明2’OMe-修饰的siRNA的组合在MDCK细胞中在体外提供增强的流感击倒的数据。图19A显示在用修饰的siRNA的各种组合预处理5小时后的48小时MDCK细胞的流感病毒感染。图17B显示在将MDCK细胞用流感病毒的1∶800稀释液感染并且用2μg/ml修饰的siRNA转染的48小时,相对于只是对照的病毒的HA的百分数。
图20举例说明表明对NP 1496 siRNA的选择性2’OMe修饰在体外细胞培养系统中消除干扰素诱导的数据。
图21举例说明表明对NP 1496 siRNA的选择性2’OMe修饰消除与系统施用和阳离子聚合物聚氮丙啶(PEI)复合的天然双链体相关的干扰素诱导的数据。
发明详述
I.介绍
通过合成的siRNA将疾病-相关的基因靶向沉默拥有成为新型治疗策略的希望。然而,未修饰的siRNA可以是免疫刺激性的,例如,刺激来自先天免疫细胞的有力的炎性反应,特别是当与促进细胞内吸收的递送载体相关时。由于与炎性反应相关的毒性和脱靶(off-target)基因作用,这代表了siRNA治疗开发的显著障碍。本发明通过使用将修饰的核苷酸如2’-O-甲基(2’OMe)尿苷和/或鸟苷核苷酸选择性结合到siRNA双链体的一条或两条链中而减少或者完全消除对合成的siRNA的免疫反应,从而克服了这些限制。特别地,通过在siRNA双链体的双链区结合选择性的2’OMe修饰,可以容易地产生保留完全的基因沉默活性的无免疫刺激性的siRNA。作为一个非限制性的实例,当包封在有效的系统递送载体如核酸-脂质颗粒中时,2’OMe-修饰的siRNA靶向载脂蛋白B(ApoB)可以调控其靶mRNA的有力的沉默,引起血清ApoB和胆固醇的显著减少。这在治疗可行的siRNA剂量获得,而没有与使用未修饰的siRNA相关的细胞因子诱导、毒性和脱靶作用。有利地,本文所述的siRNA设计和递送的方法是广泛适用的,并且将合成siRNA提高到宽范围的治疗领域。
因此,本发明提供化学合成的修饰的siRNA分子,和使用这样的siRNA分子使靶基因表达沉默的方法。本发明还提供核酸-脂质颗粒,其包括本文所述的修饰的siRNA分子、阳离子脂质和非阳离子脂质,其还可以包括抑制颗粒聚集的缀合的脂质。本发明进一步提供通过给哺乳动物受试者施用本文所述的修饰的siRNA分子而使基因表达沉默的方法。本发明还提供了用于鉴定和/或修饰具有免疫刺激性特性的siRNA的方法。
II.定义
当用于本文时,下述术语具有归于它们的意思,除非另外指明。
术语“干扰RNA”或“RNAi”或“干扰RNA序列”是指双链RNA(即,双链体RNA),当所述干扰RNA在与靶基因相同的细胞中时,其能够减少或者抑制靶基因表达(即,通过调控与所述干扰RNA的序列互补的mRNAs的降解)。因此,干扰RNA是指通过两个互补链或通过单一的、自我互补的链形成的双链的RNA。干扰RNA可以具有与靶基因基本或完全的同一性,或者可以包括错配区(即,错配基序)。干扰RNA的序列可与全长的靶基因或其亚序列(subsequence)一致。
干扰RNA包括“小的-干扰RNA”或“siRNA”,例如,长度约15-60,15-50,或15-40个(双链体)核苷酸,更典型地长度约15-30,15-25或19-25个(双链体)核苷酸的干扰RNA,并且优选地是长度约20-24,21-22或21-23个(双链体)核苷酸的干扰RNA(例如,双链siRNA的每个互补序列是15-60,15-50,15-40,15-30,15-25或19-25个核苷酸长度,优选地约20-24,21-22或21-23个核苷酸长度,并且所述双链siRNA是约15-60,15-50,15-40,15-30,15-25或19-25个碱基对长度,优选地约20-24,21-22或21-23个碱基对长度)。siRNA双链体可包括约1至约4个核苷酸,或约2至约3个核苷酸的3’突出端和5’-磷酸末端。siRNA的实例包括,但不限于,由两个单链分子组装的双链多核苷酸分子,其中一条链是有义链,另一条链是互补的反义链;由单链分子组装的双链多核苷酸分子,其中有义和反义区通过基于核酸或不基于核酸的接头连接;带有具有自我互补的有义和反义区的发夹二级结构的双链多核苷酸分子;和带有两个或多个环结构以及具有自我互补的有义和反义区的茎的环形单链多核苷酸分子,其中所述环形多核苷酸可以在体内或在体外加工,以产生活性双链siRNA分子。
优选地,所述siRNA是化学合成的。siRNA还可以通过用大肠杆菌RNase III或切酶裂解更长的dsRNA(例如,长度超过约25个核苷酸的dsRNA)来产生。这些酶将dsRNA处理为生物活性的siRNA(参见,例如,Yang等,Proc.Natl.Acad.Sci.USA(美国国家科学院学报)99:9942-9947(2002);Calegari等,Proc.Natl.Acad.Sci.USA(美国国家科学院学报)99:14236(2002);Byrom等,Ambion TechNotes 10(1):4-6(2003);Kawasaki等,Nucleic Acids Res.(核酸研究)31:981-987(2003);Knight等,Science(科学)293:2269-2271(2001);和Robertson等,J.Biol.Chem.(生物的化学杂志)243:82(1968))。优选地,dsRNA在长度上是至少50个核苷酸到约100,200,300,400或500个核苷酸。dsRNA可以在长度上长至1000,1500,2000,5000个核苷酸或更长。所述dsRNA可以编码完整的基因转录物或部分基因转录物。在某些情形中,siRNA可以由质粒编码(例如,作为自动折叠成具有发夹环的双链体的序列而转录)。
当用于本文时,术语“错配基序”或“错配区”是指与其靶序列不具有100%互补性的siRNA序列的部分。siRNA可以具有至少一个、两个、三个、四个、五个、六个或更多的错配区。所述错配区可以是连续的,或者可以由1,2,3,4,5,6,7,8,9,10,11,12或更多个核苷酸分开。所述错配基序或区域可以包括单个核苷酸或可以包括两个、三个、四个、五个或更多个核苷酸。
siRNA的“有效量”或“治疗有效量”是足以产生理想效果的量,所述理想效果是例如与在缺乏siRNA时检测到的正常表达水平比较靶序列表达的抑制。当相对于对照使用siRNA获得的值是约90%,85%,80%,75%,70%,65%,60%,55%,50%,45%,40%,35%,30%,25%,20%,15%,10%,5%,或0%时,获得靶基因或靶序列的表达的抑制。用于测量靶基因或靶序列的表达的适当的测定包括,例如,使用本领域的技术人员已知的技术如点印迹、RNA印迹、原位杂交、ELISA、免疫沉淀、酶功能、以及本领域的技术人员已知的表型测定,而检验蛋白或mRNA水平。
通过siRNA“降低(decrease)”,“降低(decreasing)”,“减少(reduce)”,或“减少(reducing)”免疫反应意欲指针对siRNA(例如,修饰的siRNA)的免疫反应的可检测的降低。修饰的siRNA减少的免疫反应的量可以相对于存在未修饰的siRNA时的免疫反应的水平而确定。可检测的减少可以比在存在未修饰的siRNA时检测到的免疫反应低约5%,10%,15%,20%,25%,30%,35%,40%,45%,50%,55%,60%,65%,70%,75%,80%,85%,90%,95%,100%,或更多。在针对siRNA的免疫反应中的减少典型地通过在体外在效应器细胞中的细胞因子生产(例如,IFNγ,IFNα,TNFα,IL-6,或IL-12)的减少或者在施用siRNA后在哺乳动物受试者的血清中的细胞因子生产的减少而测量。
当用于本文时,术语“效应器细胞”是指细胞,优选哺乳动物细胞,其在与免疫刺激性siRNA接触时,产生可检测的免疫反应。示例性的效应器细胞包括,例如,树突细胞、巨噬细胞、外周血单核细胞(PBMCs)、脾细胞等。可检测的免疫反应包括,例如,细胞因子或生长因子如TNF-α,IFN-α,IFN-β,IFN-γ,IL-1,IL-2,IL-3,IL-4,IL-5,IL-6,IL-10,IL-12,IL-13,TGF,以及它们的组合的产生。
“基本同一性”指在严格条件下与参照序列杂交的序列,或在参照序列的特定区域具有特定百分比同一性的序列。
在两个或多个核酸的情形中,术语“基本上同一”或“基本同一性”指这样的两个或多个序列或亚序列,即,当如使用下述序列比较算法之一或通过手工对比和肉眼观察进行测量,在比较窗,或指定区域上比较和比对最大对应时,它们是相同的或具有特定百分比的相同的核苷酸(即,在具体区域上至少约60%,优选地至少约65%,70%,75%,80%,85%,90%,或95%的同一性)。当上下文指出时,这种定义还类似地指序列的互补体。优选地,所述基本同一性存在于长度至少为约5,10,15,20,25,30,35,40,45,50,55,或60个核苷酸的区域上。
对于序列比较,典型地,一个序列充当与测试序列比较的参照序列。当使用序列比较算法时,将测试和参照序列输入计算机,如果必要的话,指定亚序列坐标,并且指定序列算法程序参数。可以使用默认的程序参数,或可以指定备选的参数。然后基于所述程序参数,所述序列比较算法计算测试序列相对于参照序列的百分比序列同一性。
当用于本文时,“比较窗”包括与任一个连续位置数目的片段的参比,所述连续位置的数目选自由约5至约60个,通常约10至约45个,更通常地约15至约30个组成的组,其中在两个序列被最优化地比对后,序列可以与相同数目的连续位置的参照序列进行比较。用于比较的序列比对方法是本领域公知的。用于比较的序列的最优比对可以通过Smith和Waterman,Adv.Appl.Math.(高级应用数学)2:482(1981)的局部同源性算法,通过Needleman和Wunsch,J.Mol.Blol.(分子生物学杂志)48:443(1970)的同源性比对算法,通过Pearson和Lipman,Proc.Natl.Acad.Sci.USA(美国国家科学院学报)85:2444(1988)的相似性搜索的方法,通过这些算法的计算机化执行(在威斯康辛遗传软件包(Wisconsin Genetics Software Package)中的GAP,BESTFIT,FASTA,和TFASTA,遗传计算组(Genetics ComputerGroup),575 Science Dr.,Madison,WI),或通过手工比对和视觉观察(参见,例如,Current Protocols in Molecular Biology(现代分子生物学方法),Ausubel等,编,(1995增补))进行。
适合于确定序列同一性百分比和序列相似性的算法的优选实例是BLAST和BLAST 2.0算法,其分别描述于Altschul等,Nuc.Acids Res.(核酸研究)25:3389-3402(1977)和Altschul等,J.Mol.Biol.(分子生物学杂志)215:403-410(1990)。使用BLAST和BLAST 2.0,以本文描述的参数,来确定本发明的核酸的序列同一性百分比。执行BLAST分析的软件是可通过国家生物技术信息中心(National Center for Biotechnology Information,http://www.ncbi.nlm.nih.gov/)来公开获得。
所述BLAST算法还进行两个序列之间相似性的统计学分析(参见,例如,Karlin和Altschul,Proc.Natl.Acad.Sci.USA(美国国家科学院学报)90:5873-5787(1993))。由BLAST算法提供的相似性的一个措施是最小的总和或然性(P(N)),其提供或然性的指示,通过它,在两个核苷酸序列之间的匹配将偶然发生。例如,如果在测试核酸和参照核酸比较中的最小总和或然性少于约0.2,更优选地少于约0.01,并且最优选地少于约0.001,那么就认为核酸与参照序列相似。
当用于本文时,术语“核酸”指以单或双链形式的包含至少两个脱氧核糖核苷酸或核糖核苷酸的聚合物,并且包括DNA和RNA。DNA可以是,例如,反义分子、质粒DNA、预先凝聚的DNA(pre-condensed DNA)、PCR产物、载体(P1,PAC,BAC,YAC,人工染色体)、表达盒、嵌合序列、染色体DNA、、或这些组的衍生物和组合的形式。RNA可以是siRNA,mRNA,tRNA,rRNA,tRNA,vRNA以及它们的组合的形式。核酸包括含有已知核苷酸类似物或修饰的主链残基或键的核酸,其是合成的、天然存在的和天然不存在的,并且其具有与参照核酸相似的结合性质。这些类似物的实例包括,但不限于,硫代磷酸酯、氨基磷酸酯、磷酸甲酯、手性-磷酸甲酯、2’-O-甲基核糖核苷酸、和肽-核酸(PNAs)。除非特别限定,术语包括含有已知的天然核苷酸的类似物的核酸,其与参照核酸具有相似的结合性质。除非另外指明,特别的核酸序列还潜在地包括其保守修饰的变体(例如,简并密码子取代)、等位基因、直向同源物、SNPs和互补序列以及明确指明的序列。特别地,简并密码子取代可以通过生成将其中的一个或多个选择的(或全部)密码子的第三个位置用混合碱基和/或脱氧肌苷残基取代的序列而获得(Batzer等,Nucleic Acid Res.(核酸研究),19:5081(1991);Ohtsuka等,,J Biol.Chem.(生物的化学杂志),260.2605-2608(1985);Rossolini等,Mol.Cell.Probes(分子细胞探针),8:91-98(1994))。“核苷酸”包括糖脱氧核糖(DNA)或核糖(RNA)、碱基和磷酸基团。核苷酸通过磷酸基团连接在一起。“碱基”包括嘌呤和嘧啶,其进一步包括天然化合物腺嘌呤、胸腺嘧啶、鸟嘌呤、胞嘧啶、尿嘧啶、肌苷、和嘌呤和嘧啶的天然类似物以及合成的衍生物,其包括,但不限于,放置新的反应基团,诸如,但不限于,胺、醇、硫羟、羧酸酯和卤化烷的修饰。
术语“基因”是指包括部分长度或完整长度的编码序列的核酸(例如,DNA或RNA)序列,所述序列是产生多肽或前体多肽必需的。
当用于本文时,“基因产物”是指基因如RNA转录物的产物或多肽。
术语“脂质”是指一组有机化合物,其包括,但不限于,脂肪酸的酯,并且特征是在水中不溶,但是在许多有机溶剂中是可溶的。通常将它们分成至少三类:(1)“简单的脂质”,其包括脂肪和油以及蜡;(2)“化合物脂质”,其包括磷脂和糖脂;和(3)“衍生的脂质”,诸如类固醇。
“脂质小泡”指可用于递送化合物如siRNA的任何脂质组合物,其包括,但不限于,脂质体,其中水体积由两亲性脂双层包封;或其中脂质包被包括大分子组分的内部,诸如包括干扰RNA序列的质粒,具有减少的水性内部;或脂质聚集体或胶团,其中被包封的成分包含在相对混乱的脂质混合物中。术语脂质小泡包括各种基于脂质的载体系统中的任一种,其包括,但不限于,SPLPs,pSPLPs,SNALPs,脂质体,胶团,病毒颗粒,脂质-核酸复合物,以及它们的混合物。
当用于本文时,“包封的脂质”可以指提供具有充分包封、部分包封或两者的化合物如siRNA的脂质制剂。在一个优选的实施方案中,将所述核酸充分包封在所述脂质制剂中(例如,以形成SPLP,pSPLP,SNALP,或其它的核酸-脂质颗粒)。
当用于本文时,术语“SNALP”指稳定的核酸-脂质颗粒,包括SPLP。SNALP代表包被减少的水性内部的脂质的小泡,所述内部包括核酸(例如,siRNA,ssDNA,dsDNA,ssRNA,微小RNA(miRNA),短的发夹RNA(shRNA),dsRNA,或质粒,包括从其中转录干扰RNA的质粒)。当用于本文时,术语“SPLP”是指一种核酸-脂质颗粒,其包括包封在脂质小泡内的核酸(例如,质粒)。SNALPs和SPLPs典型地包含阳离子脂质,非阳离子脂质,和防止颗粒聚集的脂质(例如,PEG-脂质缀合物)。由于它们在静脉内(i.v.)注射后表现出延长的循环寿命,在远端位点(例如,与施用位点在身体上分开的位点)累积,并且可以调控转染的基因在这些远端位点的表达,所以,SNALPs和SPLPs特别用于系统应用。SPLPs包括“pSPLP”,其包括在PCT公布号WO 00/03683中描述的包封的凝聚剂-核酸复合物。
本发明的核酸-脂质颗粒典型地具有约50nm到约150nm,更典型地约60到约130nm,更典型地约70nm到约110nm,最典型地约70nm到约90nm的平均直径,并且基本上无毒。另外,当存在于本发明的核酸-脂质颗粒中时,所述核酸在水性溶液中抗核酸酶的降解。例如,核酸-脂质颗粒以及它们的制备方法在美国专利号5,976,567;5,981,501;6,534,484;6,586,410;和6,815,432;和PCT公布号WO 96/40964中公开。
术语“形成小泡的脂质”意欲包括具有疏水部分和极性头基团的任何两亲性脂质,并且其在水中自身可以自发形成双层小泡,示例为大部分的磷脂。
术语“采用小泡的脂质”意欲包括与其它的两亲性脂质组合稳定得结合到脂双层中的任何两亲性脂,其疏水部分与内部,双层膜的疏水区域接触,并且其极性头部基团部分朝向外部,膜的极性表面。采用小泡的脂质包括这样的脂质,其能够独立地倾向于采用非层状的相,其还能够在存在双层稳定组分时,采取双层结构。典型的实例是二油酰磷脂酰乙醇胺(DOPE)。双层稳定组分包括,但不限于,抑制核酸-脂质颗粒聚集的缀合的脂质,聚酰胺寡聚物(例如,ATTA-脂质衍生物),肽,蛋白质,去污剂,脂质-衍生物,PEG-脂质衍生物诸如与二烷氧基丙基偶联的PEG、与二酰基甘油偶联的PEG、与磷脂酰-乙醇胺偶联的PEG,与神经酰胺缀合的PEG(参见,例如美国专利号5,885,613),阳离子PEG脂质,以及它们的混合物。PEG可以直接缀合到脂质上,或者可以通过接头部分与脂质连接。可以使用适用于将PEG与脂质偶联的任何接头部分,其包括,例如,含有非酯的接头部分,和含有酯的接头部分。
术语“两亲性脂质”部分是指任何适合的材料,其中脂质材料的疏水部分朝向疏水相,而亲水部分朝向水相。两亲性脂质通常是脂质小泡的主要成分。亲水性质来自极性或带电基团诸如碳水化合物,磷酸盐(酯),羧基、硫酸根合、氨基、巯基、硝基、羟基和其它类似基团的存在。疏水性可以通过包含非极性基团而赋予,所述非极性基团包括,但不限于,长链饱和和不饱和脂族烃基团和由一个或多个芳香族、脂环族或杂环基团取代的这样的基团。两亲性化合物的实例包括,但不限于,磷脂、氨脂质和神经鞘脂类。磷脂的代表性实例包括,但不限于,磷脂酰胆碱、磷脂酰乙醇胺、磷脂酰丝氨酸、磷脂酰肌苷、磷脂酸、棕榈酰油酰磷脂酰胆碱、溶血磷脂酰胆碱、溶血磷脂酰乙醇胺、二棕榈酰磷脂酰胆碱、二油酰磷脂酰胆碱、二硬脂酰磷脂酰胆碱或二亚油酰磷脂酰胆碱。缺乏磷的其它化合物,诸如鞘磷脂、鞘糖脂家族、二酰基甘油和β-酰氧基酸也在被称为两亲性脂质的组中。另外,上述的两亲性脂质可与其它脂质混和,所述脂质包括甘油三酯和固醇。
术语“中性脂质”是指在选定的pH以不带电荷或中性两性离子形式存在的许多脂质种类中的任何一种。在生理pH,这样的脂质包括,例如,二酰基磷脂酰胆碱、二酰基磷脂酰乙醇胺、神经酰胺、神经鞘磷脂、脑磷脂、胆固醇、脑苷脂和二酰基甘油。
术语“非阳离子脂质”指如上所述的任何中性脂质以及阴离子脂质。
术语“阴离子脂质”指在生理pH带负电荷的任何脂质。这些脂质包括,但不限于,磷脂酰甘油、心磷脂、二酰基磷脂酰丝氨酸、二酰基磷脂酸、N-十二烷酰磷脂酰乙醇胺、N-琥珀酰磷脂酰乙醇胺、N-戊二酰磷脂酰乙醇胺,赖氨酰磷脂酰甘油、棕榈酰油酰磷脂酰甘油(POPG),和其它与中性脂质连接的阴离子修饰基团。
术语“阳离子脂质”指许多脂质种类中的任何一种,其在选定的pH,诸如生理pH(例如,pH值约7.0)携带净正电荷。已经令人惊奇地发现,包含具有多个不饱和位点,例如至少两个或三个不饱和位点的烷基链的阳离子脂质特别用于形成具有增加的膜流动性的核酸-脂质颗粒。许多也用于本发明的阳离子脂质和相关的类似物,已经在美国专利公布号20060083780;美国专利号5,208,036;5,264,618;5,279,833;5,283,185;5,753,613;和5,785,992;以及PCT公布号WO 96/10390中进行了描述。阳离子脂质的实例包括,但不限于,N,N-二油基-N,N-二甲基氯化铵(DODAC);双十八烷基二甲基铵(DODMA);二硬脂基二甲基铵(DSDMA);N-(1-(2,3-二油基氧基)丙基)-N,N,N-三甲基氯化铵(DOTMA);N,N-二硬脂基-N,N-二甲基溴化铵(DDAB);N-(1-(2,3-二油酰氧基)丙基)-N,N,N-三甲基氯化铵(DOTAP);3-(N-(N’,N’-二甲基氨基乙烷)-氨基甲酰基)胆固醇(DC-Chol),N-(1,2二肉豆蔻基氧基丙-3-基)-N,N-二甲基-N-羟乙基溴化铵(DMRIE),1,2-二亚油基氧基-N,N-二甲基氨基丙烷(DLinDMA),1,2-二亚麻基氧基-N,N-二甲基氨基丙烷(DLenDMA),以及它们的混合物。作为非限制性实例,在低于生理pH时具有正电荷的阳离子脂质包括,但不限于,DODAP,DODMA和DSDMA。在一些情形中,所述阳离子脂质包括质子化的叔胺头部基团、C18烷基链、在所述头部基团和烷基链之间的醚连接、以及0至3个双键。这样的脂质包括,例如,DSDMA,DLinDMA,DLenDMA,和DODMA。所述阳离子脂质还可以包括醚连接和可pH滴定的头部基团。这样的脂质包括,例如DODMA。
术语“疏水脂质”指具有非极性基团的化合物,其包括,但不限于,长链饱和和不饱和脂族烃基团,并且这些基团任选地被一个或多个芳香族、脂环族或杂环族基团所取代。适合的实例包括,但不限于,二酰基甘油、二烷基甘油、N-N-二烷基氨基、1,2-二酰氧基-3-氨基丙烷和1,2-二烷基-3-氨基丙烷。
术语“融合性的”指脂质体,SNALP或其它药物递送系统与细胞膜融合的能力。所述膜可以是质膜或围绕细胞器,例如内体、核等的膜。
当用于本文时,术语“水溶液”指全部或部分包含水的组合物。
用于本文时,术语“有机脂质溶液”指全部或部分包含具有脂质的有机溶剂的组合物。
当用于本文时,“远端位点”指物理上分离的位点,其不限于邻近的毛细血管床,而包括广泛分布于整个生物体的位点。
与核酸-脂质颗粒相关的“血清-稳定性”指在暴露于将显著降解游离DNA或RNA的血清或核酸酶测定后不被明显降解的颗粒。合适的测定包括,例如,标准血清测定,或DNA酶测定,或RNA酶测定。
当用于本文时,“系统递送”是指导致化合物如siRNA在生物体内的广泛生物分布的递送。一些施用技术可以导致某些化合物的系统递送,但不能导致其它化合物的系统递送。系统递送意指将有用的,优选治疗的量的化合物暴露于机体的大部分。为了获得广泛的生物分布,通常需要这样的血液存在期,以致所述化合物不会在到达远离施用位点的疾病位点之前被快速地降解或清除(诸如通过首过器官(肝、肺等)或者通过快速、非特异性的细胞结合)。核酸-脂质颗粒的系统递送可以通过本领域已知的任何方式进行,包括,例如,静脉内、皮下和腹膜内。在一个优选的实施方案中,核酸-脂质颗粒的系统递送是通过静脉内递送。
当用于本文时,“局部递送”指在生物体内,化合物如siRNA直接向靶位点的递送。例如,化合物可以通过直接注射到疾病位点诸如肿瘤或其它靶位点诸如炎症位点或靶器官诸如肝、心脏、胰腺、肾等来进行局部递送。
术语“哺乳动物”是指任何哺乳动物物种,诸如人、小鼠、大鼠、狗、猫、仓鼠、豚鼠、兔、家畜等。
III.siRNAs
本发明的修饰的siRNA分子能够使靶序列的表达沉默,长度约15-60个核苷酸,比相对应的未修饰的siRNA序列更少免疫刺激性,并且保留针对靶序列的RNAi活性。在一些实施方案中,所述修饰的siRNA包含至少一个2’OMe嘌呤或嘧啶核苷酸,诸如2’OMe-鸟苷,2’OMe-尿苷,2’OMe-腺苷,和/或2’OMe-胞嘧啶核苷酸。在优选的实施方案中,一种或多个尿苷和/或鸟苷核苷酸是修饰的。所述修饰的核苷酸可以存在于所述siRNA的一条链(即,有义或反义)或两条链中。所述siRNA序列可以具有突出端(例如,3’或5’突出端,如在Elbashir等,Genes Dev.(基因发育),15:188(2001)或
Figure A20068004914600401
等,Cell(细胞),107:309(2001)中所述),或者可以没有突出端(即,具有平端)。
所述修饰的siRNA通常在所述siRNA双链体的双链区中包括约1%到约100%(例如,约1%,5%,10%,15%,20%,25%,30%,35%,40%,45%,50%,55%,60%,65%,70%,75%,80%,85%,90%,95%,或100%)的修饰的核苷酸。在一个优选的实施方案中,在双链区中少于约20%(例如,小于约20%,19%,18%,17%,16%,15%,14%,13%,12%,11%,10%,9%,8%,7%,6%,5%,4%,3%,2%,或1%)或约1%到约20%(例如,从约1%-20%,2%-20%,3%-20%,4%-20%,5%-20%,6%-20%,7%-20%,8%-20%,9%-20%,10%-20%,11%-20%,12%-20%,13%-20%,14%-20%,15%-20%,16%-20%,17%-20%,18%-20%,或19%-20%)的核苷酸包括修饰的核苷酸。在另一个优选的实施方案中,例如,当所述siRNA的一条或两条链在尿苷和/或鸟苷核苷酸进行选择性修饰时,所得到的修饰的siRNA可以包括小于约30%的修饰的核苷酸(例如,小于约30%,29%,28%,27%,26%,25%,24%,23%,22%,21%,20%,19%,18%,17%,16%,15%,14%,13%,12%,11%,10%,9%,8%,7%,6%,5%,4%,3%,2%,或1%的修饰的核苷酸),或从约1%到约30%的修饰的核苷酸(例如,约1%-30%,2%-30%,3%-30%,4%-30%,5%-30%,6%-30%,7%-30%,8%-30%,9%-30%,10%-30%,11%-30%,12%-30%,13%-30%,14%-30%,15%-30%,16%-30%,17%-30%,18%-30%,19%-30%,20%-30%,21%-30%,22%-30%,23%-30%,24%-30%,25%-30%,26%-30%,27%-30%,28%-30%,或29%-30%的修饰的核苷酸)。
A.siRNA序列的选择
适当的siRNA序列可以使用本领域已知的任何方法进行鉴定。典型地,将在Elbashir等,Nature(自然),411:494-498(2001)和Elbashir等,EMBO J.(胚胎学杂志),20:6877-6888(2001)中所述的方法与在Reynolds等,NatureBiotech.(自然生物技术),22(3):326-330(2004)中所述的合理设计法则结合。
一般地,对于二核苷酸序列(例如,AA,NA,CC,GG,或UU,其中N=C,G,或U)检查从目的靶基因的转录物的AUG起始密码子的3’核苷酸序列(参见,例如,Elbashir等,EMBO J.(胚胎学杂志),20:6877-6888(2001))。紧接所述二核苷酸序列的3’端的核苷酸鉴定为潜在的siRNA靶序列。典型地,将紧邻所述二核苷酸序列的3’端的19,21,23,25,27,29,31,33,35,或更多个核苷酸鉴定为潜在的siRNA靶位点。在一些实施方案中,所述二核苷酸是AA或NA序列,并且紧邻所述AA或NA二核苷酸的3’端的19个核苷酸鉴定为潜在的siRNA靶位点。siRNA靶位点通常在沿靶基因的长度上的不同的位置间隔。为了进一步增强所述siRNA序列的沉默效率,可以分析潜在的siRNA靶位点,以鉴定不包含与其它编码序列,例如,在靶细胞或生物体内,同源的区域的位点。例如,约21个碱基对的适当的siRNA靶位点典型地将不具有与在靶细胞或生物体内的编码序列同源的大于16-17个连续的碱基对。如果所述siRNA序列将由RNA Pol III启动子表达,那么选择缺少大于4个连续的A或T的siRNA靶序列。
一旦已经鉴定了潜在的siRNA序列,所述序列可以使用本领域已知的各种标准进行分析。例如,为了提高它们的沉默效率,所述siRNA序列可以通过合理设计算法进行分析,以鉴定具有下述特征中的一种或多种的序列:(1)约25%到约60%的G/C的G/C含量;(2)在有义链的位置15-19的至少3个A/U;(3)没有内部重复;(4)在有义链的位置19为A;(5)在有义链的位置3为A;(6)在有义链的位置10为U;(7)在有义链的位置19不是G/C;和(8)在有义链的位置13不是G。结合为这些特征中的每一种指定适当的值并且用于选择siRNA的算法的siRNA设计工具可以在,例如http://boz094.ust.hk/RNAi/siRNA找到。本领域的技术人员应该理解,具有一种或多种前述特征的序列可以选择用于作为潜在的siRNA序列的进一步的分析和检测。
另外,具有一种或多种下述标准的潜在的siRNA靶序列通常可以排除作为siRNA:(1)在一行包括4个或更多个相同的碱基的片段的序列;(2)包括G均聚物的序列(即,以减少由于这些聚合物的结构特征导致的可能的非特异性作用);(3)包括三个碱基基序的序列(例如,GGG,CCC,AAA,或TTT);(4)在一行包括7个或更多个G/C的片段的序列;和(5)在候选物内包含4个或更多个碱基的直接重复导致内部折回结构的序列。然而,本领域的技术人员应该理解,仍然可以选择具有一种或多种上述特征的序列用于作为潜在的siRNA序列的进一步的分析和检测。
在一些实施方案中,潜在的siRNA靶序列可以基于siRNA双链体不对称性进行进一步分析,如在,例如Khvorova等,Cell(细胞),115:209-216(2003);和Schwarz等,Cell(细胞),115:199-208(2003)中所述。在其它实施方案中,潜在的siRNA靶序列可以基于在mRNA靶位点的二级结构进行进一步分析,如在,例如Luo等,Biophys.Res.Cmmun.(生物物理学研究交流),318:303-310(2004)中所述。例如,mRNA二级结构可以使用Mfold算法(可获得于http://www.bioinfo.rpi.edu/applications/mfold/rna/forml.cgi)进行模拟,以选择有利于在mRNA靶位点处的可及性的siRNA序列,在所述mRNA靶位点处,存在更少的以碱基-配对和茎-环形式存在的二级结构。
一旦已经鉴定了潜在的siRNA序列,可以分析所述序列存在任何免疫刺激特性,例如,使用体外细胞因子测定或体内动物模型分析。在siRNA序列的有义和/或反义链中的基序,诸如富含GU的基序(例如,5’-GU-3’,5’-UGU-3’,5’-GUGU-3’,5’-UGUGU-3’,等)也可以提供所述序列是否可以是免疫刺激性的指示。一旦发现siRNA分子是免疫刺激性的,然后可以对其进行修饰,以减少它的免疫刺激性质,如本文所述。作为非限制性的实例,siRNA序列可以与哺乳动物效应器细胞在以致所述细胞产生可检测的免疫反应的条件下接触,以确定所述siRNA是免疫刺激性的还是非免疫刺激性的siRNA。所述哺乳动物效应器细胞可以来自首次用于实验的哺乳动物(即,先前没有与所述siRNA序列的基因产物接触的哺乳动物)。所述哺乳动物效应器细胞可以是,例如,外周血单核细胞(PBMC)、巨噬细胞等。所述可检测的免疫反应可以包括细胞因子或生长因子,诸如例如,TNF-α,IFN-α,IFN-β,IFN-γ,IL-6,IL-12,或它们的组合的产生。然后可以通过将在有义和/或反义链上的至少一个核苷酸用修饰的核苷酸取代,而将鉴定为是免疫刺激性的siRNA分子修饰,以减少其免疫刺激性质。例如,在所述siRNA双链体的双链区中小于约30%(例如,小于约30%,25%,20%,15%,10%,或5%)的核苷酸可以用修饰的核苷酸如2’OMe核苷酸取代。然后,可以将所述修饰的siRNA与哺乳动物效应器细胞按上文所述进行接触,以证实它的免疫刺激性质已经被减少或消除。
用于检测免疫反应的适当的体外测定包括,但不限于,David等的双单克隆抗体夹心免疫测定技术(美国专利号4,376,110);单克隆-多克隆抗体夹心测定(Wide等,在Kirkham和Hunter,编,Radioimmunoassay Methods(放射免疫测定方法),E.和S.Livingstone,Edinburgh(1970));Gordon等的“蛋白质印迹”方法(美国专利号4,452,901);标记的配体的免疫沉淀(Brown等,J Biol.Chem.(生物的化学杂志),255:4980-4983(1980));酶联免疫吸附测定(ELISA),例如,如Raines等,J.Biol.Chem.(生物的化学杂志),257:5154-5160(1982)所述;免疫细胞化学技术,包括荧光染料的应用(Brooks等,Clin.Exp.Immunol.(临床实验免疫学),39:477(1980));和活性中和(Bowen-Pope等,Proc.Natl.Acad.Sci.USA(美国国家科学院学报),81:2396-2400(1984))。除了上文所述的免疫测定,许多其它的免疫测定是可用的,其包括在美国专利号3,817,827;3,850,752;3,901,654;3,935,074;3,984,533;3,996,345;4,034,074;和4,098,876中所述的那些。
用于检测免疫反应的体内模型的非限制性实例包括体内小鼠细胞因子诱导测定,其可以按下述实施:(1)siRNA可以通过标准的静脉内注射施用到侧尾静脉中;(2)在施用后约6小时,可以通过心脏穿刺收集血液,并且如血浆处理用于细胞因子分析;和(3)可以使用夹心ELISA试剂盒,按照供应商的用法说明,定量细胞因子(例如,小鼠和人IFN-α(PBL生物医学;Piscataway,新泽西);人IL-6和TNF-α(eBioscience;San Diego,加利福尼亚);和小鼠IL-6,TNF-α,以及IFN-γ(BD生物科学;San Diego,加利福尼亚))。
特异性结合细胞因子和生长因子的单克隆抗体可从多种来源商购获得,并且可以使用本领域已知的方法产生(参见,例如,Kohler和Milstein,Nature(自然),256:495-497(1975);和Harlow与Lane,ANTIBODIES,ALABORATORY MANUAL(抗体,实验室手册),冷泉港出版社(Cold SpringHarbor Publication),纽约(1999))。单克隆抗体的产生先前已经描述过,并且可以通过本领域已知的任何方式实现(参见,Buhring等,在Hybridoma(杂交瘤)中,卷10,1号,第77-78页(1991))。在一些方法中,将单克隆抗体标记(例如,使用通过分光镜、光化学、生物化学、电学、光学、化学方法等可检测的任何组合物标记),以促进检测。
B.产生siRNA分子
siRNA分子可以以一些形式提供,包括,例如,作为一种或多种分离的小的干扰RNA(siRNA)双链体。所述siRNA序列可以具有突出端(例如,3’或5’突出端,如在Elbashir等,Genes Dev.(基因发育),15:188(2001)或
Figure A20068004914600441
等,Cell(细胞),107:309(2001)中所述),或者可以缺少突出端(即,具有平端)。
优选地,siRNA分子是化学合成的。包括所述siRNA分子的单链分子可以使用本领域已知的许多技术中的任一种合成,诸如在Usman等,J.Am.Chem.Soc.(美国化学学会杂志),109:7845(1987);Scaringe等,Nucl.AcidsRes.(核酸研究),18:5433(1990);Wincott等,Nucl.Acids Res.(核酸研究),23:2677-2684(1995);和Wincott等,Methods Mol.Bio.(分子生物学方法),74:59(1997)中所述的那些。公开用于本发明的常规方法的其它基础的教科书包括Sambrook等,Molecular Cloning,A Laboratory Manual(分子克隆,实验室手册)(第2版.1989);Kriegler,Gene Transfer and Expression:ALaboratory Manual(基因转移和表达:实验室手册)(1990);以及CurrentProtocols in Molecular Biology(现代分子生物学方法)(Ausubel等,编,1994)。单链分子的合成使用常规核酸保护和偶联基团,如在5’端的二甲氧基三苯甲基和在3’端的亚磷酰胺。作为非限制性实例,小规模的合成可以在应用生物系统合成仪(Applied Biosystems synthesizer)上进行,其使用0.2μmol规模的方法,具有对于2’-O-甲基化的核苷酸的2.5分钟的偶联步骤。备选地,在0.2μmol规模的合成可以在来自Protogene(Palo Alto,CA)的96孔平板合成仪上进行。然而,更大的或更小规模的合成也在本发明的范围内。用于合成siRNA单链分子的适当的试剂,RNA去保护的方法,和RNA纯化的方法,是本领域的那些技术人员已知的。
所述siRNA分子还可以通过串联合成技术合成,其中两条链作为单一的连续的片段或由分解接头分开的链而合成,其随后可以被分解,以提供杂交形成siRNA双链体的分开的片段或链。所述接头可以是多核苷酸接头或非核苷酸接头。siRNA的串联合成可以容易地采用多孔/多平板合成平台,以及使用批次反应器、合成柱等的大规模合成平台。备选地,所述siRNA分子可以由两个不同的单链分子组装,其中一条链包括有义链,而另一条包括siRNA的反义链。例如,每条链可以单独合成,并且在合成和/或去保护后通过杂交或连接而连接在一起。在某些其它情形中,siRNA分子可以作为单一的连续的片段合成,其中自我-互补的有义和反义区杂交,形成具有发夹二级结构的siRNA双链体。
C.修饰siRNA序列
在某些方面中,本发明的siRNA分子包括具有两条链和在双链区的至少一个修饰的核苷酸的双链体,其中每条链长度约15到约60个核苷酸。有利地,所述修饰的siRNA比相对应的未修饰的siRNA序列免疫刺激性更小,但是保留了使靶序列的表达沉默的能力。
适用于本发明的修饰的核苷酸的实例包括,但不限于,具有2’-O-甲基(2’OMe),2’-脱氧-2’-氟(2’F),2’-脱氧,5-C-甲基,2’-O-(2-甲氧基乙基)(MOE),4’-硫代,2’-氨基,或2’-C-烯丙基基团的核糖核苷酸。具有RNA印迹证实的修饰的核苷酸,诸如,例如在Saenger,Principles of Nucleic AcidStructure(核酸结构原理),Springer-Verlag编.(1984)中所述的那些,也适合用在本发明的siRNA分子中。一些修饰的核苷酸包括,但不限于,锁定核酸(LNA)核苷酸(例如,2’-O,4’-C-亚甲基-(D-呋喃核糖基)核苷酸),2’-O-(2-甲氧基乙基)(MOE)核苷酸,2’-甲基-硫代-乙基核苷酸,2’-脱氧-2’-氟(2’F)核苷酸,2’-脱氧-2’-氯(2’Cl)核苷酸,以及2’-叠氮核苷酸。在某些情形中,本发明的siRNA分子包括一个或多个G-夹环(clamp)核苷酸。G-夹环核苷酸是指修饰的胞嘧啶类似物,其中所述修饰赋予双链体内互补的鸟嘌呤核苷酸的沃森-克里克和Hoogsteen面的氢键能力(参见,例如,Lin等,J.Am.Chem.Soc.(美国化学学会杂志),120:8531-8532(1998))。另外,具有核苷酸碱基类似物的核苷酸,诸如例如,C-苯基,C-萘基,其它芳香族衍生物,肌苷,吡咯羧酰胺,以及硝基吡咯衍生物,诸如3-硝基吡咯、4-硝基吲哚、5-硝基吲哚、和6-硝基吲哚(参见,例如,Loakes,Nucl,Acids Res.(核酸研究),29:2437-2447(2001)),可以结合到本发明的siRNA分子中。
在某些实施方案中,本发明的siRNA分子还包括一个或多个化学修饰,诸如末端封端部分,磷酸骨架修饰,等。末端封端部分的实例包括,但不限于,反向脱氧非碱基残基,甘油修饰,4’,5’-亚甲基核苷酸,1-(β-D-赤呋喃糖基)核苷酸,4’-硫代核苷酸,碳环核苷酸,1,5-失水己糖醇核苷酸,L-核苷酸,α-核苷酸,修饰的碱基核苷酸,苏-呋喃戊糖基核苷酸,非环3’,4’-断裂核苷酸,非环3,4-二羟丁基核苷酸,非环3,5-二羟戊基核苷酸,3’-3’-反向核苷酸部分,3’-3’-反向非碱基部分,3’-2’-反向核苷酸部分,3’-2’-反向非碱基部分,5’-5’反向核苷酸部分,5’-5’-反向非碱基部分,3’-5’-反向脱氧非碱基部分,5’-氨基-烷基磷酸酯,1,3-二氨基-2-丙基磷酸酯,3-氨基丙基磷酸酯,6-氨基己基磷酸酯,1,2-氨基十二烷基磷酸酯,羟丙基磷酸酯,1,4-丁二醇磷酸酯,3’-氨基磷酸酯,5’-氨基磷酸酯,己基磷酸酯,氨基己基磷酸酯,3’-磷酸酯,5’-氨基,3’-硫代磷酸酯,5’-硫代磷酸酯,二硫代磷酸酯,和桥接或非桥接的甲基磷酸酯或5’-巯基部分(参见,例如,美国专利号5,998,203;Beaucage等,Tetrahedron(四面体)49:1925(1993))。磷酸主链修饰(即,导致修饰的核苷酸之间的连接)的非限制性实例包括硫代磷酸酯,二硫代磷酸酯,甲基磷酸酯,磷酸三酯,吗啉代,酰胺化物,氨基甲酸酯,羧甲基,acetamidate,聚酰胺,磺酸酯,磺胺,氨基磺酸酯,formacetal,thioformacetal,和烷基甲硅烷基取代(参见,例如,Hunziker等,Nucleic AcidAnalogues:Synthesis and Properties(核酸类似物:合成和性质),在ModernSynthetic Methods(现代合成方法)中,VCH,331-417(1995);Mesmaeker等,Novel Backbone Replacements for Oligonucleotides(寡核苷酸的新骨架取代),在Carbohydrate Modifications in Antisense Research(反义研究中的碳水化合物取代),ACS,24-39(1994))。这样的化学修饰可以发生在siRNA的有义链、反义链或两条链的5’-端和/或3’-端。
在一些实施方案中,所述有义和/或反义链可以进一步包括具有约1到约4个(例如,1,2,3,或4个)2’-脱氧核糖核苷酸和/或修饰的和未修饰的核苷酸的任意组合的3’-端突出端。可以引入到本发明的修饰的siRNA分子中的修饰的核苷酸和化学修饰的类型的其它实例,例如,在英国专利号GB2,397,818B和美国专利公布号20040192626和20050282188中描述。
本发明的修饰的siRNA分子可以任选地在siRNA的一条或两条链中包括一个或多个非核苷酸。当用于本文时,术语“非核苷酸”是指可以引入到核酸链中取代一个或多个核苷酸单位的任何基团或化合物,包括糖和/或磷酸取代,并且其允许剩余的碱基表现它们的活性。由于它不含有通常所称的核苷酸碱基,诸如腺苷、鸟苷、胞嘧啶、尿嘧啶或胸腺嘧啶,并且因此在1’-位置缺少碱基,所以,所述基团或化合物是非碱基的。
在其它实施方案中,siRNA的化学修饰包括将缀合物附着到化学修饰的siRNA分子上。所述缀合物可以通过共价附着,诸如例如,可生物降解的接头,而附着到化学修饰的siRNA的有义和/或反义链的5’和/或3’端。所述缀合物还可以这样附着到化学修饰的siRNA上,例如,通过氨基甲酸酯基团或其它连接基团附着(参见,例如,美国专利公布号20050074771,20050043219,和20050158727)。在某些情形中,所述缀合物是促进所述化学修饰的siRNA递送到细胞中的分子。适于附着到本发明的化学修饰的siRNA上的缀合物分子的实例包括,但不限于,类固醇,诸如胆固醇,乙二醇,如聚乙二醇(PEG),人血清白蛋白(HSA),脂肪酸,类胡萝卜素,萜,胆汁酸,叶酸(例如,叶酸、叶酸类似物及其衍生物),糖(例如,半乳糖,半乳糖胺,N-乙酰半乳糖胺,葡萄糖,甘露糖,果糖,海藻糖等),磷脂,肽,能够调控细胞摄入的细胞受体的配体,以及它们的组合(参见,例如,美国专利公布号20030130186,20040110296,和20040249178;美国专利号6,753,423)。其它实例包括在美国专利公布号20050119470和20050107325中描述的亲脂性部分,维生素,聚合物,肽,蛋白,核酸,小分子,寡糖,碳水化合物簇,嵌入剂,小沟结合剂,分解剂和交联剂缀合物分子。在美国专利公布号20050153337中描述的其它实例包括2’-O-烷基胺,2’-O-烷氧基烷基胺,聚胺,C5-阳离子修饰的嘧啶,阳离子肽,胍基团,铵基团,阳离子氨基酸缀合物分子。其它的实例包括在美国专利公布号20040167090中描述的疏水基团,膜活性化合物,细胞穿透化合物,细胞靶向信号,相互作用修饰剂,和空间稳定剂缀合物分子。其它的实例包括在美国专利公布号20050239739中描述的缀合物分子。可以评估所用的缀合物的类型和与所述化学修饰的siRNA分子的缀合程度,以提高所述siRNA的药物代谢动力学性质、生物利用度、和/或稳定性,同时保留完全的RNAi活性。同样地,使用许多公知的体外细胞培养或体内动物模型中的任一种,本领域的技术人员可以筛选在其上附着了一些缀合物的化学修饰的siRNA分子,以鉴定具有提高的性质和完全的RNAi活性的那些siRNA分子。
D.靶基因
本文所述的修饰的siRNA分子可以用来下调或者沉默目的基因的翻译(即,表达)。目的基因包括,但不限于,与病毒感染和存活相关的基因,与代谢疾病和病症(例如,肝病和病症)相关的基因,与肿瘤发生和细胞转化相关的基因,血管生成基因,免疫调控基因,如与炎性和自体免疫反应相关的那些基因,配体受体基因,和与神经变性病症相关的基因。
与病毒感染和存活相关的基因包括由病毒表达的以结合、进入和在细胞中复制的那些基因。特别感兴趣的是与慢性病毒疾病相关的病毒序列。特别感兴趣的病毒序列包括下列病毒的序列:线状病毒,如依波拉病毒和马尔堡病毒(参见,例如,美国专利申请号11/584,341;和Geisbert等,J.Infect.Dis.(传染病杂志),193:1650-1657(2006));沙粒病毒,如拉沙病毒,Junin病毒,玻利维亚出血热病毒,Guanarito病毒,和Sabia病毒(Buchmeier等,Arenaviridae:the viruses and their replication(沙粒病毒科:病毒和它们的复制),在:FIELDS VIROLOGY(病毒学领域)中,Knipe等(编),第4版,Lippincott-Raven,费城,(2001));流感病毒,如流感A、B和C病毒(参见,例如,美国临时专利申请号60/737,945;Steinhauer等,AnnuRev Genet.(遗传学综述年刊),36:305-332(2002);和Neumann等,J GenVirol.(普通病毒学杂志),83:2635-2662(2002));肝炎病毒(Hamasaki等,FEBS Lett.,543:51(2003);Yokota等,EMBO Rep.(胚胎学报道),4:602(2003);Schlomai等,Hepatology(肝脏病学),37:764(2003);Wilson等,Proc.Natl.Acad.Sci.USA(美国国家科学院学报),100:2783(2003);Kapadia等,Proc.Natl.Acad.Sci.USA(美国国家科学院学报),100:2014(2003);和FIELDS VIROLOGY(病毒学领域),Knipe等(编),第4版,Lippincott-Raven,费城(2001));人免疫缺陷病毒(HIV)(Banerjea等,Mol.Ther.(分子治疗),8:62(2003);Song等,J.Virol.(病毒学杂志),77:7174(2003);Stephenson,JAMA,289:1494(2003);Qin等,Proc.Natl.Acad.Sci.USA(美国国家科学院学报),100:183(2003));疱疹病毒(Jia等,J.Virol.(病毒学杂志),77:3301(2003));和人乳头瘤病毒(HPV)(Hall等,J.Virol.(病毒学杂志).77:6066(2003);Jiang等,Oncogene(癌基因),21:6041(2002))。
可以被沉默的示例性的线状病毒核酸序列包括,但不限于,编码结构蛋白(例如,VP30,VP35,核蛋白(NP),聚合酶蛋白(L-pol))以及膜相关的蛋白(例如,VP40,糖蛋白(GP),VP24)的核酸序列。依波拉病毒的完整的基因组序列在,例如,Genbank登记号NC_002549;AY769362;NC_006432;NC_004161;AY729654;AY354458;AY142960;AB050936;AF522874;AF499101;AF272001;和AF086833中列出。依波拉病毒VP24序列在,例如,Genbank登记号U77385和AY058897中列出。依波拉病毒L-pol序列在,例如,Genbank登记号X67110中列出。依波拉病毒VP40序列在,例如,Genbank登记号AY058896中列出。依波拉病毒NP序列在,例如,Genbank登记号AY058895中列出。依波拉病毒GP序列在,例如,Genbank登记号AY058898;Sanchez等,Virus Res.(病毒研究),29:215-240(1993);Will等,J.Virol.(病毒学研究),67:1203-1210(1993);Volchkov等,FEBS Lett.,305:181-184(1992);和美国专利号6,713,069中列出。其它的依波拉病毒序列在,例如,Genbank登记号L11365和X61274中列出。马尔堡病毒的完整的基因组序列在,例如,Genbank登记号NC_001608;AY430365;AY430366;和AY358025中列出。马尔堡病毒GP序列在,例如,Genbank登记号AF005734;AF005733;和AF005732中列出。马尔堡病毒VP35序列在,例如,Genbank登记号AF005731和AF005730中列出。其它的马尔堡病毒序列在,例如,Genbank登记号X64406;Z29337;AF005735;和Z12132中列出。
可以被沉默的示例性的流感病毒核酸序列包括,但不限于,编码核蛋白(NP)、基质蛋白(M1和M2)、非结构蛋白(NS1和NS2)、RNA聚合酶(PA,PB1,PB2)、神经氨酸酶(NA)、和血细胞凝集素(HA)的核酸序列。流感病毒ANP序列在,例如,Genbank登记号NC_004522;AY818138;AB166863;AB188817;AB189046;AB189054;AB189062;AY646169;AY646177;AY651486;AY651493;AY651494;AY651495;AY651496;AY651497;AY651498;AY651499;AY651500;AY651501;AY651502;AY651503;AY651504;AY651505;AY651506;AY651507;AY651509;AY651528;AY770996;AY790308;AY818138;和AY818140中列出。流感A PA序列在,例如,Genhank登记号AY818132;AY790280;AY646171;AY818132;AY818133;AY646179;AY818134;AY551934;AY651613;AY651610;AY651620;AY651617;AY651600;AY651611;AY651606;AY651618;AY651608;AY651607;AY651605;AY651609;AY651615;AY651616;AY651640;AY651614;AY651612;AY651621;AY651619;AY770995;和AY724786中列出。
可以被沉默的示例性的肝炎病毒核酸序列包括,但不限于,参与转录和翻译的核酸序列(例如,En1,En2,X,P)和编码结构蛋白(例如,核心蛋白,包括C和C-相关的蛋白,衣壳蛋白和包膜蛋白,包括S,M和/或L蛋白,或它们的片段)的核酸序列(参见,例如,FIELDS VIROLOGY(病毒学领域),如前所述)。可以被沉默的示例性的丙型肝炎核酸序列包括,但不限于,丝氨酸蛋白酶(例如,NS3/NS4),解旋酶(例如,NS3),聚合酶(例如,NS5B),和包膜蛋白(例如,E1,E2,和p7)。甲型肝炎核酸序列在,例如,Genbank登记号NC_001489中列出;乙型肝炎核酸序列在,例如,Genbank登记号NC_003977中列出;丙型肝炎核酸序列在,例如,Genbank登记号NC_004102中列出;丁型肝炎核酸序列在,例如,Genbank登记号NC_001653中列出;戊型肝炎核酸序列在,例如,Genbank登记号NC_001434中列出;并且G型肝炎核酸序列在,例如,Genbank登记号NC_001710中列出。使编码与病毒感染和存活相关的基因的序列沉默可以便利地与用于治疗所述病毒病况的常规药剂的施用组合使用。
与代谢疾病和病症(例如,其中肝脏是靶点的病症以及肝病和病症)相关的基因包括,例如,在血脂异常中表达的基因(例如,肝脏X受体,如LXRα和LXRβ(Genbank登记号NM_007121),法尼醇X受体(FXR)(Genbank登记号NM_005123),固醇-调节元件结合蛋白(SREBP),位点I蛋白酶(S1P),3-羟基-3-甲基戊二酰基辅酶-A还原酶(HMG辅酶-A还原酶),载脂蛋白B(ApoB),和载脂蛋白(ApoE));和在糖尿病中异常表达的基因(例如,葡萄糖-6-磷酸酶)(参见,例如,Forman等,Cell(细胞),81:687(1995);Seol等,Mol.Endocrinol.(分子内分泌学),9:72(1995),Zavacki等,Proc.Natl.Acad.Sci.USA(美国国家科学院学报),94:7909(1997);Sakai等,Cell(细胞),85:1037-1046(1996);Duncan等,J.Biol.Chem.(生物的化学杂志),272:12778-12785(1997);Willy等,Genes Dev.(基因发育学),9:1033-1045(1995);Lehmann等,J.Biol.Chem.(生物的化学杂志),272:3137-3140(1997);Janowski等,Nature(自然),383:728-731(1996);和Peet等,Cell(细胞),93:693-704(1998))。本领域的技术人员应该理解,与代谢疾病和病症(例如,其中肝脏是靶点的疾病和病症以及肝病和病症)相关的基因包括在肝脏本身中表达的基因以及在其它器官和组织中表达的基因。编码与代谢疾病和病症相关的基因的序列的沉默可以容易地与用来治疗所述疾病或病症的常规药剂的施用组合使用。
与肿瘤发生和细胞转化相关的基因序列的实例包括有丝分裂驱动蛋白,如Eg5;易位序列,如MLL融合基因,BCR-ABL(Wilda等,Oncogene(癌基因),21:5716(2002);Scherr等,Blood(血液),101:1566(2003)),TEL-AML1,EWS-FLI1,TLS-FUS,PAX3-FKHR,BCL-2,AML1-ETO,和AML1-MTG8(Heidenreich等,Blood(血液),101:3157(2003));过表达的序列,如多药耐药基因(Nieth等,FEBS Lett.,545:144(2003);Wu等,CancerRes.(癌症研究)63:1515(2003)),细胞周期蛋白(Li等,Cancer Res.(癌症研究),63:3593(2003);Zou等,Genes Dev.(基因发育学),16:2923(2002)),β-联蛋白(Verma等,Clin Cancer Res.(临床癌症研究),9:1291(2003)),端粒末端转移酶基因(Kosciolek等,Mol Cancer Ther.(分子癌症治疗),2:209(2003)),c-MYC,N-MYC,BCL-2,ERBB1,和ERBB2(Nagy等,Exp.Cell Res.(细胞研究实验),285:39(2003));以及突变的序列,如RAS(在Tuschl和Borkhardt,Mol.Interventions(分子干涉)中综述,2:158(2002))。编码DNA修复酶的序列的沉默与化学治疗药剂的施用组合使用(Collis等,CancerRes.(癌症研究),63:1550(2003))。编码与肿瘤迁移相关的蛋白的基因也是目的靶序列,例如,整联蛋白,选择蛋白,和金属蛋白酶。上述实例不是唯一的。可以包含有助于或者促进肿瘤发生或细胞转化、肿瘤生长,或肿瘤转移的任何完整的或部分基因序列作为模板序列。
血管生成基因能够促进新血管的形成。特别感兴趣的是血管内皮生长因子(VEGF)(Reich等,Mol.Vis.(分子观点),9:210(2003))或VEGFr。靶向VEGFr的siRNA序列在,例如,GB 2396864;美国专利公布号20040142895;和CA2456444中列出。
抗血管生成基因能够抑制新血管形成。这些基因特别用于治疗血管生成在疾病的病理发展中起作用的那些癌症。抗血管生成基因的实例包括,但不限于,内皮抑制素(参见,例如,美国专利号6,174,861),制管张素(参见,例如,美国专利号5,639,725),和VEGF-R2(参见,例如,Decaussin等,J.Pathol.(病理学杂志),188:369-377(1999))。
免疫调控基因是调控一种或多种免疫反应的基因。免疫调控基因的实例包括,但不限于,细胞因子,如生长因子(例如,TGF-α,TGF-β,EGF,FGF,IGF,NGF,PDGF,CGF,GM-CSF,SCF,等),白介素(例如,IL-2,IL-4,IL-12(Hill等.J.Immunol.,171:691(2003)),IL-15,IL-18,IL-20,等),干扰素(例如,IFN-α,IFN-β,IFN-γ,等)和TNF。Fas和Fas配体基因也是感兴趣的免疫调控靶序列(Song等,Nat.Med.(自然医学),9:347(2003))。在造血和淋巴细胞中编码次级信号传导分子的基因也包含在本发明中,例如,Tec家族激酶,如Bruton’s酪氨酸激酶(Btk)(Heinonen等,FEBS Lett.,527:274(2002))。
细胞受体配体包括这样的配体,其能够结合细胞表面受体(例如,胰岛素受体,EPO受体,G-蛋白偶联的受体,具有酪氨酸激酶活性的受体,细胞因子受体,生长因子受体,等),以调控(例如,抑制,激活,等)所述受体参与的生理途径(例如,葡萄糖水平调控,血细胞发育,有丝分裂发生,等)。细胞受体配体的实例包括,但不限于,细胞因子,生长因子,白介素,干扰素,红细胞生成素(EPO),胰岛素,胰高血糖素,G-蛋白偶联的受体配体,等。编码三核苷酸重复(例如,CAG重复)的扩展的模板在由三核苷酸重复的扩展引起的神经变性病症中用于使病理序列沉默,所述由三核苷酸重复的扩展引起的神经变性病症如脊髓延髓肌肉萎缩症和亨廷顿病(Caplen等,Hum.Mol.Genet.(人类分子遗传学),11:175(2002))。
除了它在用于治疗目的的沉默上述基因中的任一种的表达的应用之外,本文所述的siRNA还用于研究和开发应用,以及诊断、预防、预后、临床和其它保健应用。作为一个非限制性的实例,本发明的修饰的siRNA分子可以用于针对检测目的基因是否具有成为治疗靶点的潜力的靶点验证研究。本发明的修饰的siRNA分子还可以用于目的在于发现作为潜在的治疗靶点的基因的靶鉴定研究。
IV.含有siRNA的载体系统
在一个方面中,本发明提供含有本文所述的修饰的siRNA分子的载体系统。在一些实施方案中,所述载体系统是基于脂质的载体系统,诸如稳定的核酸-脂质颗粒(例如,SNALP或SPLP),阳离子脂质或脂质体核酸复合物(即,脂质核酸复合物),脂质体,胶团,病毒颗粒,或它们的混合物。在其它实施方案中,所述载体系统是基于聚合物的载体系统,诸如阳离子聚合物-核酸复合物(即,聚合物核酸复合物)。在其它实施方案中,所述载体系统是基于环糊精的载体系统,如环糊精聚合物-核酸复合物。在其它实施方案中,所述载体系统是基于蛋白质的载体系统,如阳离子肽-核酸复合物。优选地,所述载体系统是稳定的核酸-脂质颗粒,如SNALP或SPLP。本领域的技术人员应该理解,本发明的修饰的siRNA分子还可以作为裸siRNA递送。
A.稳定的核酸-脂质颗粒
本发明的稳定的核酸-脂质颗粒(SNALPs)典型地包括本文所述的修饰的siRNA分子,阳离子脂质(例如,式I或II的阳离子脂质),和非阳离子脂质。所述SNALPs可以进一步包括双层稳定成分(即,抑制颗粒聚集的缀合的脂质)。所述SNALPs可以包括至少1,2,3,4,5,6,7,8,9,10,或更多个本文所述的修饰的siRNA分子,所述修饰的siRNA分子是单独的或与至少1,2,3,4,5,6,7,8,9,10,或更多个未修饰的siRNA分子组合。
本发明的SNALPs典型地具有约50nm至约150nm,更典型地约60nm至约130nm,更典型地约70nm至约110nm,最典型地约70nm至约90nm的平均直径,并且是基本无毒的。此外,当存在于所述核酸-脂质颗粒中时,核酸在水溶液中对于用核酸酶进行的降解是具有抗性的。核酸-脂质颗粒以及它们的制备方法在,例如,美国专利号5,753,613;5,785,992;5,705,385;5,976,567;5,981,501;6,110,745;和6,320,017;以及PCT公布号WO96/40964中公开。
1.阳离子脂质
各种阳离子脂质可以单独或与一个或多个其它的阳离子脂质种类或非阳离子脂质种类结合而在本发明的稳定的核酸-脂质颗粒中进行使用。
有效用在本发明中的阳离子脂质可以是许多脂质种类中的任何一种,其在生理pH下携带净正电荷。这样的脂质包括,但不限于,DODAC,DODMA,DSDMA,DOTMA,DDAB,DOTAP,DOSPA,DOGS,DC-Chol,DMRIE,和它们的组合。许多这些脂质和相关的类似物已经在美国专利公布号20060083780;美国专利号5,208,036,5,264,618,5,279,833,5,283,185,和5,753,613与5,785,992;以及PCT公布号WO 96/10390中有所描述。另外,许多商购阳离子脂质制剂是可用的,并且可以用于本发明。这些包括,例如,
Figure A20068004914600551
(包括DOTMA和DOPE的商购阳离子脂质体,来自GIBCO/BRL,Grand Island,纽约,美国);
Figure A20068004914600552
(包括DOSPA和DOPE的商购阳离子脂质体,来自GIBCO/BRL);和(包括DOGS的商购阳离子脂质体,来自普洛麦格公司(Promega Corp.),Madison,Wisconsin,美国)。
并且,具有下述结构的式I的阳离子脂质有效用于本发明。
其中R1和R2独立地选择,并且是H或C1-C3烷基,R3和R4独立地选择,并且是具有约10至约20个碳原子的烷基基团,并且R3和R4中的至少一个包括至少两个不饱和位点。在某些情形中,R3和R4都是相同的,即,R3和R4都是亚油基(C18),等等。在某些其它的情形中,R3和R4是不同的,即,R3是十四碳三烯基(C14),并且R4是亚油基(C18)。在一个优选的实施方案中,式I的阳离子脂质是对称的,即R3和R4都是相同的。在另一个优选的实施方案中,R3和R4都包括至少两个不饱和位点。在一些实施方案中,R3和R4独立地选自十二碳二烯基,十四碳二烯基,十六碳二烯基,亚油基,和二十碳二烯基。在一个优选的实施方案中,R3和R4都是亚油基。在一些实施方案中,R3和R4包括至少三个不饱和位点,并且独立地选自,例如,十二碳三烯基,十四碳三烯基,十六碳三烯基,亚麻基,和二十碳三烯基。在一个特别优选的实施方案中,式I的阳离子脂质是DLinDMA或DLenDMA。
此外,具有下述结构的式II的阳离子脂质有效用于本发明。
Figure A20068004914600555
其中R1和R2独立地选择,并且是H或C1-C3烷基,R3和R4独立地选择,并且是具有约10至约20个碳原子的烷基基团,并且R3和R4中的至少一个包括至少两个不饱和位点。在某些情形中,R3和R4都是相同的,即,R3和R4都是亚油基(C18),等等。在某些其它的情形中,R3和R4是不同的,即,R3是十四碳三烯基(C14),并且R4是亚油基(C18)。在一个优选的实施方案中,本发明的阳离子脂质是对称的,即R3和R4都是相同的。在另一个优选的实施方案中,R3和R4都包括至少两个不饱和位点。在一些实施方案中,R3和R4独立地选自十二碳二烯基,十四碳二烯基,十六碳二烯基,亚油基,和二十碳二烯基。在一个优选的实施方案中,R3和R4都是亚油基。在一些实施方案中,R3和R4包括至少三个不饱和位点,并且独立地选自,例如,十二碳三烯基,十四碳三烯基,十六碳三烯基,亚麻基,和二十碳三烯基。
所述阳离子脂质典型地占在所述颗粒中存在总脂质的约2mol%至约60mol%,约5mol%至约50mol%,约10mol%至约50mol%,约20mol%至约50mol%,约20mol%至约40mol%,约30mol%至约40mol%,或约40mol%。本领域的技术人员应该容易理解,取决于所述颗粒的目的用途,所述组分的比例发生变化并且具体制剂的递送效率可使用,例如,内体释放参数(ERP)测定进行测量。例如,对于全身递送,所述阳离子脂质可以包括在所述颗粒中存在的总脂质的约5mol%至约15mol%,并且对于局部或区域性递送,所述阳离子脂质可以包括在所述颗粒中存在的总脂质的约30mol%-约50mol%,或约40mol%。
2.非阳离子脂质
用于本发明的稳定的核酸-脂质颗粒中的非阳离子脂质可以是能产生稳定复合体的多种中性不带电荷、两性离子或阴离子脂质的任一种。它们优选地是中性的,尽管它们可以备选地是带正电荷或负电荷的。非阳离子脂质的实例包括,但不限于,磷脂相关的物质,诸如磷脂酰胆碱,磷脂酰乙醇胺,溶血磷脂酰胆碱,溶血磷脂酰乙醇胺,磷脂酰丝氨酸,磷脂酰肌苷,鞘磷脂,卵鞘磷脂(ESM),脑磷脂,心磷脂,磷脂酸,脑苷酯,二十六烷基磷酸酯,二硬脂酰磷脂酰胆碱(DSPC),二油酰磷脂酰胆碱(DOPC),二棕榈酰磷脂酰胆碱(DPPC),二油酰磷脂酰甘油(DOPG),二棕榈酰磷脂酰甘油(DPPG),二油酰磷脂酰乙醇胺(DOPE),棕榈酰油酰-磷脂酰胆碱(POPC),棕榈酰油酰-磷脂酰乙醇胺(POPE),棕榈酰油酰-磷脂酰甘油(POPG),二油酰磷脂酰乙醇胺4-(N-马来酰亚胺基甲基)-环己烷-1-羧酸酯(DOPE-mal),二棕榈酰-磷脂酰乙醇胺(DPPE),二肉豆蔻酰-磷脂酰乙醇胺(DMPE),二硬脂酰-磷脂酰乙醇胺(DSPE),一甲基-磷脂酰乙醇胺,二甲基-磷脂酰乙醇胺,二反油酰基(dielaidoyl)-磷脂酰乙醇胺(DEPE),和硬脂酰油酰-磷脂酰乙醇胺(SOPE)。非阳离子脂质或固醇诸如胆固醇也可以存在。另外的不包含磷的脂质包括例如,十八胺,十二胺,十六胺,乙酰基十六烷酯,甘油蓖麻醇酸酯,硬脂酸十六烷基酯,肉豆蔻酸异丙酯,两性丙烯酸类聚合物,三乙醇胺-硫酸月桂酯,烷基-芳基硫酸酯聚乙氧基化(polyethyloxylated)脂肪酸酰胺,双十八烷基二甲基溴化铵,神经酰胺,二酰基磷脂酰胆碱,二酰基磷脂酰乙醇胺,等等。可以存在其它的脂质,诸如溶血磷脂酰胆碱和溶血磷脂酰乙醇胺。非阳离子脂质还包括基于聚乙二醇的聚合物,诸如PEG 2000,PEG 5000和与磷脂或与神经酰胺缀合的聚乙二醇(称为PEG-Cer),如在美国专利申请号08/3 16,429中所描述的。
在优选的实施方案中,非阳离子脂质是二酰基磷脂酰胆碱(例如,二硬脂酰磷脂酰胆碱、二油酰磷脂酰胆碱、二棕榈酰磷脂酰胆碱和二亚油酰磷脂酰胆碱),二酰基磷脂酰乙醇胺(例如,二油酰磷脂酰乙醇胺和棕榈酰油酰-磷脂酰乙醇胺),神经酰胺,或鞘磷脂。在这些脂质中的酰基基团优选是衍生自具有C10-C24碳链的脂肪酸的酰基基团。更优选地,所述酰基基团是月桂酰、肉豆蔻酰、棕榈酰、硬脂酰,或油酰。在特别优选的实施方案中,非阳离子脂质包括一个或多个胆固醇、DOPE或ESM。
所述非阳离子脂质典型地占在所述颗粒中存在的总脂质的约5mol%至约90mol%,约10mol%至约85mol%,约20mol%至约80mol%,或约20mol%。所述颗粒还可包括胆固醇。如果存在,所述胆固醇典型地占在所述颗粒中存在的总脂质的约0mol%至约10mol%,约2mol%至约10mol%,约10mol%至约60mol%,约12mol%至约58mol%,约20mol%至约55mol%,约30mol%至约50mol%,或约48mol%。
3.双层稳定组分
除了阳离子和非阳离子脂质之外,本发明的稳定的核酸-脂质颗粒可以包括双层稳定组分(BSC),诸如ATTA-脂质或PEG-脂质,诸如,例如在PCT公布号WO 05/026372中所述的与二烷氧基丙基偶联的PEG(PEG-DAA),例如在美国专利公布号20030077829和2005008689中所述的与二酰基甘油偶联的PEG(PEG-DAG),与磷脂如磷脂酰乙醇胺偶联的PEG(PEG-PE),与神经酰胺缀合的PEG,或它们的混合物(参见,例如,美国专利号5,885,613)。在一个优选的实施方案中,所述BSC是抑制颗粒聚集的缀合的脂质。合适的缀合的脂质包括,但不限于,PEG-脂质缀合物、ATTA-脂质缀合物、阳离子-聚合物-脂质缀合物(CPLs),以及它们的混合物。在另一个优选的实施方案中,所述颗粒包括与CPL一起的PEG-脂质缀合物或ATTA-脂质缀合物。
PEG是具有两个末端羟基基团的乙烯PEG重复单位的线性的、水溶性的聚合物。PEGs根据它们的分子量分类:例如,PEG 2000具有约2,000道尔顿的平均分子量,PEG 5000具有约5,000道尔顿的平均分子量。PEGs从西格玛化学公司(Sigma Chemical Co.)和其它的公司商购获得,并且包括,例如,下述:单甲氧基聚乙二醇(MePEG-OH),单甲氧基聚乙二醇-琥珀酸酯(MePEG-S),单甲氧基聚乙二醇-琥珀酰亚胺基琥珀酸酯(MePEG-S--NHS),单甲氧基聚乙二醇-胺(MePEG-NH2),单甲氧基聚乙二醇-tresylate(MePEG-TRES),和单甲氧基聚乙二醇-咪唑基-羰基化合物(MePEG-IM)。另外,单甲氧基聚乙二醇-乙酸(MePEG-CH2COOH)特别有效地用于制备PEG-脂质缀合物,包括,例如,PEG-DAA缀合物。
在一个优选的实施方案中,PEG具有约550道尔顿到约10,000道尔顿的平均分子量,更优选地约750道尔顿到约5,000道尔顿,更优选地约1,000道尔顿到约5,000道尔顿,更优选地约1,500道尔顿到约3,000道尔顿,并且甚至更优选地约2,000道尔顿,或约750道尔顿的平均分子量。PEG可以任选地用烷基、烷氧基、酰基、或芳基基团取代。PEG可以直接缀合到脂质上,或者可以通过接头部分连接到脂质上。可以使用适合将PEG偶联到脂质上的任何接头部分,包括,例如,不含酯的接头部分和含有酯的接头部分。在一个优选的实施方案中,所述接头部分是不含酯的接头部分。当用于本文时,术语“不含酯的接头部分”是指不含羧酸酯键(-OC(O)-)的接头部分。适当的不含酯的接头部分包括,但不限于,酰氨基(-C(O)NH-),氨基(-NR-),羰基(-C(O)-),氨基甲酸酯(-NHC(O)O-),脲(-NHC(O)NH-),二硫化物(-S-S-),醚(-O-),琥珀酰(-(O)CCH2CH2C(O)-),琥珀酰胺基(-NHC(O)CH2CH2C(O)NH-),醚,二硫化物,以及它们的组合(诸如含有氨基甲酸酯接头部分和氨基接头部分的接头)。在一个优选的实施方案中,氨基甲酸酯接头用于将PEG偶联到脂质上。
在其它实施方案中,含有酯的接头部分用于将PEG偶联到脂质上。适当的含有酯的接头部分包括,例如,碳酸酯(-OC(O)O-),琥珀酰,磷酸酯(-O-(O)POH-O-),磺酸酯,以及它们的组合。
具有多个不同的链长度和饱和度的酰基链基团的磷脂酰乙醇胺可以与PEG缀合,形成双层稳定组分。这样的磷脂酰乙醇胺可商购获得,或者可以使用本领域的技术人员已知的常规技术分离或合成。优选含有具有碳链长度在C10到C20范围的饱和的或不饱和脂肪酸的磷脂酰乙醇胺。也可以使用具有单-或二不饱和脂肪酸和饱和与不饱和脂肪酸的混合物的磷脂酰乙醇胺。适当的磷脂酰乙醇胺包括,但不限于,二肉豆蔻酰-磷脂酰乙醇胺(DMPE),二棕榈酰-磷脂酰乙醇胺(DPPE),二油酰磷脂酰乙醇胺(DOPE),和二硬脂酰-磷脂酰乙醇胺(DSPE)。
术语“ATTA”或“聚酰胺”是指,但不限于,在美国专利号6,320,017和6,586,559中公开的化合物。这些化合物包括具有下式的化合物:
Figure A20068004914600591
其中R是选自由氢、烷基和酰基组成的组的一员;R1是选自由氢和烷基组成的组的一员;或者任选地,R和R1与它们所结合的氮形成叠氮部分;R2是选自氢,任选地取代的烷基,任选地取代的芳基和氨基酸的侧链的组的一员;R3是选自由氢、卤、羟基、烷氧基、巯基、肼基、氨基和NR4R5组成的组的一员,其中R4和R5是独立的氢或烷基;n是4-80;m是2-6;p是1-4;并且q是0或1。本领域的技术人员应该明白,其它的聚酰胺可以用于本发明的化合物中。
术语“二酰基甘油”是指具有2-脂肪酰基链R1和R2的化合物,R1和R2都独立地具有通过酯键与甘油的1-和2-位置键合的2-30个碳原子。所述酰基基团可以是饱和的或具有不同的不饱和度。适当的酰基基团包括,但不限于,月桂基(C12),肉豆蔻基(C14),棕榈基(C16),硬脂酰(C18),和二十烷基(C20)。在优选的实施方案中,R1和R2是相同的,即,R1和R2都是肉豆蔻基(即,二肉豆蔻基),R1和R2都是硬脂酰(即,二硬脂酰),等等。二酰基甘油具有如下的通式:
术语“二烷氧基丙基”指具有2-烷基链R1和R2的化合物,其R1和R2都独立地具有2-30个碳。烷基基团可以是饱和的或具有不同的不饱和度。二烷氧基丙基具有如下的通式:
在一个优选的实施方案中,所述PEG-脂质是具有下式的PEG-DAA缀合物:
Figure A20068004914600603
其中R1和R2独立地选择,并且是具有约10到约22个碳原子的长链烷基基团;PEG是聚乙二醇;并且L是如上文所述的不含酯的接头部分或含酯的接头部分。所述长链烷基基团可以是饱和的或不饱和的。适当的烷基基团包括,但不限于,月桂基(C12),肉豆蔻基(C14),棕榈基(C16),硬脂酰(C18),和二十烷基(C20)。在优选的实施方案中,R1和R2是相同的,即,R1和R2都是肉豆蔻基(即,二肉豆蔻基),R1和R2都是硬脂酰(即,二硬脂酰),等等。
在上述式VI中,PEG具有约550道尔顿到约10,000道尔顿的平均分子量,更优选地约750道尔顿到约5,000道尔顿,更优选地约1,000道尔顿到约5,000道尔顿,更优选地约1,500道尔顿到约3,000道尔顿,并且甚至更优选地约2,000道尔顿,或约750道尔顿的平均分子量。PEG可以任选地用烷基、烷氧基、酰基、或芳基基团取代。在一个优选的实施方案中,末端羟基基团用甲氧基或甲基基团取代。
在一个优选的实施方案中,“L”是不含酯的接头部分。适当的不含酯的接头包括,但不限于,酰氨基接头部分,氨基接头部分,羰基接头部分,氨基甲酸酯接头部分,脲接头部分,醚接头部分,二硫化物接头部分,琥珀酰胺基接头部分,和它们的组合。在一个优选的实施方案中,所述不含酯的接头部分是氨基甲酸酯接头部分(即,PEG-C-DAA缀合物)。在另一个优选的实施方案中,所述不含酯的接头部分是酰氨基接头部分(即,PEG-A-DAA缀合物)。在另一个优选的实施方案中,所述不含酯的接头部分是琥珀酰胺基接头部分(即,PEG-S-DAA缀合物)。
PEG-DAA缀合物使用本领域的技术人员已知的标准技术和试剂合成。应该认识到,所述PEG-DAA缀合物应该包含各种酰胺、胺、醚、硫代、氨基甲酸酯和脲连接。本领域的技术人员应该认识到,形成这些键的方法和试剂是公知的,并且容易获得。参见,例如,March,ADVANCEDORGANIC CHEMISTRY(高级有机化学)(Wiley 1992),Larock,COMPREHENSIVE ORGANIC TRANSFORMATIONS(综合有机转化)(VCH 1989);和Fumiss,VOGEL’S TEXTBOOK OF PRACTICALORGANIC CHEMISTRY(VOGEL’S实用有机化学教科书)第5版.(朗曼(Longman),1989)。应该理解,在合成PEG-DAA缀合物的不同的点,任何存在的官能团可能需要保护和去保护。本领域的技术人员应该理解,这样的技术是公知的。参见,例如,Green和Wuts,PROTECTIVE GROUPSIN ORGANIC SYNTHESIS(有机合成中的保护基团)(Wiley 1991)。
优选地,所述PEG-DAA缀合物是二月桂基氧基丙基(C12)-PEG缀合物,二肉豆蔻基氧基丙基(C14)-PEG缀合物,二棕榈基氧基丙基(C16)-PEG缀合物,或二硬脂酰氧基丙基(C18)-PEG缀合物。本领域的技术人员应该容易地理解,其它的二烷氧基丙基类可以用于本发明的PEG-DAA缀合物中。
除了前述之外,本领域的技术人员应该容易地理解,其它的亲水性聚合物可以用来替代PEG。可以用来替代PEG的适当的聚合物的实例包括,但不限于,聚乙烯吡咯烷酮,聚甲基噁唑啉,聚乙基噁唑啉,聚羟丙基甲基丙烯酰胺,聚甲基丙烯酰胺和聚二甲基丙烯酰胺,聚乳酸,聚羟基乙酸,和衍生的纤维素,诸如羟基甲基纤维素或羟基乙基纤维素。
除了前述成分之外,本发明的颗粒(例如,SNALPs或SPLPs)可以进一步包括阳离子聚(乙二醇)(PEG)脂质或CPLs,它们被设计成插入到脂双层中,以赋予正电荷(参见,例如,Chen等,Bioconj.Chem.(生物缀合物化学),11:433-437(2000))。用于本发明的适当的SPLPs和SPLP-CPLs,以及制备和使用SPLPs和SPLP-CPLs的方法,例如,在美国专利号6,852,334和PCT公布号WO 00/62813中公开。用于本发明的阳离子聚合物脂质(CPLs)具有下述结构特征:(1)脂质锚定物,诸如疏水脂质,用于将所述CPLs结合到脂双层中;(2)亲水间隔,诸如聚乙二醇,用于将所述脂质锚定物连接到阳离子头部基团上;和(3)聚阳离子部分,诸如天然存在的氨基酸,以产生质子化的阳离子头部基团。
适当的CPLs包括式VII的化合物:
A-W-Y(VII),
其中A,W,和Y如下文所述。
参考式VII,“A”是脂质部分,诸如两亲性脂质,中性脂质,或作用为脂质锚定物的疏水脂质。适当的脂质的实例包括形成小泡的脂质,或采用小泡的脂质,并且包括,但不限于,二酰基甘油,二烷基甘油,N-N-二烷基氨基,1,2-二酰基氧基-3-氨基丙烷,和1,2-二烷基-3-氨基丙烷。
“W”是聚合物或寡聚物,诸如亲水性聚合物或寡聚物。优选地,所述亲水性聚合物是生物相容性聚合物,其无免疫原性,或者具有低的内在的免疫原性。备选地,如果与适当的佐剂一起使用,所述亲水性聚合物可以是弱抗原性的。适当的无免疫原性的聚合物包括,但不限于,PEG,聚酰胺,聚乳酸,聚羟基乙酸,聚乳酸/聚羟基乙酸共聚物,以及它们的组合。在一个优选的实施方案中,所述聚合物具有约250到约7,000道尔顿的分子量。
“Y”是聚阳离子部分。术语聚阳离子部分是指在选择的pH,优选生理pH下具有正电荷,优选至少2个正电荷的化合物、衍生物或官能团。适当的聚阳离子部分包括碱性氨基酸和它们的衍生物,诸如精氨酸、天冬酰胺、谷氨酰胺、赖氨酸和组氨酸;精胺;亚精胺;阳离子树枝状大分子;聚胺;聚胺糖;和氨基聚糖。所述聚阳离子部分在结构上可以是线性的,诸如线性的四赖氨酸,分支的或树枝状大分子的。在选择的pH值下,聚阳离子部分具有约2到约15个正电荷,优选地约2到约12个正电荷,并且更优选地约2到约8个正电荷。选择使用哪种聚阳离子部分可以通过需要的颗粒应用的类型而确定。
在所述聚阳离子部分上的电荷可以沿着整个颗粒部分分布,或者备选地,它们可以是在所述颗粒部分的一个具体的区域上的电荷强度的不连续集中,例如,电荷脉冲(charge spike)。如果电荷强度分布在颗粒上,那么电荷强度可以均匀分布,或者不均匀分布。本发明包括了聚阳离子部分的电荷分布的所有变化。
脂质“A”和无免疫原性的聚合物“W”可以通过各种方法附着,并且优选地通过共价附着而附着。本领域的技术人员已知的方法可以用于“A”和“W”的共价附着。适当的键合包括,但不限于,但不限于,酰胺、胺、羧基、碳酸酯、氨基甲酸酯、酯和腙键合。本领域技术人员应该清楚的是“A”和“W”必须具有互补的官能团从而完成所述键合。这样两个基团的反应将提供理想的键合,所述基团一个在脂质上并且另一个在聚合物上。例如,当所述脂质是二酰基甘油,并且所述末端羟基被用例如NHS和DCC激活从而形成活性酯,接着与包含氨基基团的聚合物诸如与聚酰胺反应时(参见,例如美国专利号6,320,017和6,586,559),将在两个基团之间形成酰胺键。
在某些情形中,所述聚阳离子部分可以具有附着诸如靶向配体或络合钙的鳌合部分的配体。优选地,在所述配体附着后,所述阳离子部分维持正电荷。在某些情形中,附着的配体具有正电荷。合适的配体包括,但不限于,具有反应官能团的化合物或装置,并且包括脂质,两亲性脂质,载体化合物,生物亲和性化合物,生物材料,生物聚合物,生物医用装置,在分析上可检测的化合物,治疗上有活性的化合物,酶,肽,蛋白质,抗体,免疫刺激物,放射性标记,荧光团,生物素,药物,半抗原,DNA,RNA,多糖,脂质体,病毒颗粒,微团,免疫球蛋白,官能团,其它靶向部分或毒素。
所述双层稳定组分(例如,PEG-脂质)典型地占在所述颗粒中存在总脂质的约0mol%至约20mol%,约0.5mol%至约20mol%,约1.5mol%至约18mol%,约4mol%至约15mol%,约5mol%至约12mol%,或约2mol%。本领域的普通技术人员应该理解,取决于所用的双层稳定组分和所述核酸-脂质颗粒变成融合性的速率,所述双层稳定组分的浓度可以改变。
通过控制所述双层稳定组分的组成和浓度,人们可以控制所述双层稳定组分从所述核酸-脂质颗粒中交换出来的速率,并且依次控制所述核酸-脂质颗粒变成融合性的速率。例如,当将聚乙二醇-磷脂酰乙醇胺缀合物或聚乙二醇-神经酰胺缀合物用作所述双层稳定组分时,所述核酸-脂质颗粒变成融合性的速率可以改变,例如,通过改变所述双层稳定组分的浓度,通过改变聚乙二醇的分子量,或者通过改变在磷脂酰乙醇胺或神经酰胺上的酰基链基团的链长度和饱和程度而改变。另外,其它的变量包括,例如,pH,温度,离子强度,等,可以用来改变和/或控制所述核酸-脂质颗粒变成融合性的速率。当阅读本内容时,本领域的技术人员应该清楚可以用来控制所述核酸-脂质颗粒变成融合性的其它的方法。
B.其它的载体系统
适用于本发明的其它的基于脂质的载体系统的非限制性实例包括脂质核酸复合物(参见,例如,美国专利公布号20030203865;和Zhang等,J.Control Release(控制释放杂志),100:165-180(2004)),pH-敏感性脂质核酸复合物(参见,例如,美国专利公布号20020192275),可逆地掩蔽的脂质核酸复合物(参见,例如,美国专利公布号20030180950),基于阳离子脂质的组合物(参见,例如,美国专利号6,756,054;和美国专利公布号20050234232),阳离子脂质体(参见,例如,美国专利公布号20030229040,20020160038,和20020012998;美国专利号5,908,635;和PCT公布号WO01/72283),阴离子脂质体(参见,例如,美国专利公布号20030026831),pH-敏感性脂质体(参见,例如,美国专利公布号20020192274;和AU2003210303),抗体包被的脂质体(参见,例如,美国专利公布号20030108597;和PCT公布号WO 00/50008),细胞-类型特异的脂质体(参见,例如,美国专利公布号20030198664),含有核酸和肽的脂质体(参见,例如,美国专利号6,207,456),含有用可释放的亲水性聚合物衍生的脂质的脂质体(参见,例如,美国专利公布号20030031704),脂质-包埋的核酸(参见,例如,PCT公布号WO 03/057190和WO 03/059322),脂质-包封的核酸(参见,例如,美国专利公布号20030129221;和美国专利号5,756,122),其它的脂质体组合物(参见,例如,美国专利公布号20030035829和20030072794;以及美国专利号6,200,599),稳定的脂质体和乳液的混合物(参见,例如,EP1304160),乳液组合物(参见,例如,美国专利号6,747,014),和核酸微乳液(参见,例如,美国专利公布号20050037086)。
适用于本发明的基于聚合物的载体系统的实例包括,但不限于,阳离子聚合物-核酸复合物(即,聚合物-核酸复合物)。为了形成聚合物-核酸复合物,核酸(例如,siRNA)典型地与具有线性的、分支的、星形的、或树枝状聚合物结构的阳离子聚合物复合,所述阳离子聚合物将所述核酸浓缩成带正电荷的颗粒,所述颗粒能够与细胞表面上的阴离子蛋白聚糖相互作用,并且通过内吞作用进入细胞。在一些实施方案中,所述聚合物-核酸复合物包括与阳离子聚合物复合的核酸(例如,siRNA),所述阳离子聚合物诸如聚氮丙啶(PEI)(参见,例如,美国专利号6,013,240;从Qbiogene,公司(Carlsbad,CA)商购作为体内jetPEITM,线性形式的PEI),聚丙烯亚胺(PPI),聚乙烯吡咯烷酮(PVP),聚-L-赖氨酸(PLL),二乙基氨基乙基(DEAE)-葡聚糖,聚(β-氨基酯)(PAE)聚合物(参见,例如,Lynn等,J.Am.Chem.Soc.(美国化学协会杂志),123:8155-8156(2001)),脱乙酰壳多糖,聚酰氨基胺(PAMAM)树枝状大分子(参见,例如,Kukowska-Latallo等,Proc.Natl.Acad.Sci.USA(美国国家科学院学报),93:4897-4902(1996)),卟啉(参见,例如,美国专利号6,620,805),聚乙烯醚(参见,例如,美国专利公布号20040156909),多环amidinium(参见,例如,美国专利公布号20030220289),包括伯胺、亚胺、胍和/或咪唑基团的其它聚合物(参见,例如,美国专利号6,013,240;PCT公布号WO/9602655;PCT公布号W095/21931;Zhang等,J.Control Release(控制释放杂志),100:165-180(2004);和Tiera等,Curr.Gene Ther(现代基因治疗),6:59-71(2006)),以及它们的混合物。在其它实施方案中,所述聚合物-核酸复合物包括如在美国专利公布号20060211643,20050222064,20030125281,和20030185890,以及PCT公布号WO 03/066069中描述的阳离子聚合物-核酸复合物;如在美国专利公布号20040071654中所述的可生物降解的聚(β-氨基酯)聚合物-核酸复合物;如在美国专利公布号20040142475中所述的含有聚合物基质的微粒;如在美国专利公布号20030157030中所述的其它微粒组合物;如在美国专利公布号20050123600中所述的浓缩的核酸复合物;和如在AU2002358514和PCT公布号WO 02/096551中所述的纳米胶囊和微胶囊组合物。
在某些情形中,所述修饰的siRNA分子可以与环糊精或其聚合物复合。基于环糊精的载体系统的非限制性实例包括,在美国专利公布号20040087024中所述的环糊精-修饰的聚合物-核酸复合物;在美国专利号6,509,323,6,884,789,和7,091,192中所述的线性环糊精共聚物-核酸复合物;和在美国专利号7,018,609中所述的环糊精聚合物-复合剂-核酸复合物。在某些其它情形中,所述修饰的siRNA分子可以与肽或多肽复合。基于蛋白质的载体系统的实例包括,但不限于,在PCT公布号WO95/21931中所述的阳离子寡肽-核酸复合物。
V.制备核酸-脂质颗粒
本发明的血清稳定性核酸-脂质颗粒,其中本文所述的修饰的siRNA被包封在脂双层中并被保护以免于降解,可以通过本领域已知的任何方法制备,所述方法包括,但不限于,连续混合方法,直接稀释处理,去污剂透析方法,或改良的反相方法,所述反相方法使用有机溶剂在成分混合过程中提供单相。
在优选的实施方案中,所述阳离子脂质是式I和II的脂质或它们的组合。在其它优选的实施方案中,所述非阳离子脂质是卵鞘磷脂(ESM),二硬脂酰磷脂酰胆碱(DSPC),二油酰磷脂酰胆碱(DOPC),1-棕榈酰-2-油酰-磷脂酰胆碱(POPC),二棕榈酰-磷脂酰胆碱(DPPC),一甲基-磷脂酰乙醇胺,二甲基-磷脂酰乙醇胺,14:0 PE(1,2-二肉豆蔻酰-磷脂酰乙醇胺(DMPE)),16:0 PE(1,2-二棕榈酰-磷脂酰乙醇胺(DPPE)),18:0 PE(1,2-二硬脂酰-磷脂酰乙醇胺(DSPE)),18:1 PE(1,2-二油酰-磷脂酰乙醇胺(DOPE)),18:1反式PE(1,2-反油酰-磷脂酰乙醇胺(DEPE)),18:0-18:1 PE(1-硬脂酰-2-油酰-磷脂酰乙醇胺(SOPE)),16:0-18:1 PE(1-棕榈酰-2-油酰-磷脂酰乙醇胺(POPE)),基于聚乙二醇的聚合物(参见,例如,PEG 2000,PEG 5000,PEG-修饰的二酰基甘油,或PEG-修饰的二烷基氧基丙基),胆固醇,或它们的组合物。在其它优选的实施方案中,有机溶剂是甲醇、氯仿、二氯甲烷、乙醇、二乙醚或它们的组合。
在一个优选的实施方案中,本发明提供通过连续混合方法生产核酸-脂质颗粒的方法,例如,所述方法包括在第一个储存器中提供包括核酸如siRNA的水溶液,在第二个储存器中提供有机脂质溶液,并将所述水溶液和有机脂质溶液混和从而使所述有机脂质溶液与水溶液混和,以基本瞬间地产生包封核酸(例如,siRNA)的脂质体。这种方法和实施该方法的装置在美国专利公布号20040142025中详细描述。
将脂质和缓冲溶液连续引入到混合环境中,诸如引入到混合室中的作用使得所述脂质溶液与所述缓冲溶液连续稀释,由此基本上在混合的瞬间产生脂质体。当用于本文时,短语“用缓冲溶液连续稀释脂质溶液”(以及变化)通常指用足够完成小泡形成的力量在水合作用过程中充分迅速地稀释所述脂质溶液。通过将包括核酸的水溶液和有机脂质溶液进行混和,在存在缓冲溶液(即,水性溶液)时,有机脂质溶液经历持续逐步的稀释,从而产生核酸-脂质颗粒。
使用连续混合方法形成的所述血清-稳定性核酸-脂质颗粒典型地具有约50nm到约150nm,约60nm到约130nm,约70nm到约110nm,或约70nm到约90nm的大小。这样形成的所述颗粒不聚集,并且任选地按大小排列(size)以获得均一的颗粒大小。
在另一个实施方案中,本发明提供通过直接稀释方法生产核酸-脂质颗粒的方法,其包括形成脂质体溶液,并且立即并直接地将脂质体溶液引入到含有控制量的稀释缓冲液的收集容器中。在优选的方面,所述收集容器包括一个或多个元件,所述元件设置成搅拌收集容器中的内容物,以促进稀释。在一个方面中,在收集容器中存在的稀释缓冲液的量基本上等于引入到其中的脂质体溶液的体积。作为一个非限制性的实例,当引入到含有等体积的乙醇的收集容器中时,在45%的乙醇中的脂质体溶液将在约22.5%,约20%,或约15%的乙醇中有利地产生更小的颗粒。
在另一个实施方案中,本发明提供通过直接稀释方法生产核酸-脂质颗粒,其中将含有稀释缓冲液的第三个储存器不固定地偶联到第二混合区。在本实施方案中,将在第一混合区形成的脂质体溶液立即并且直接与在第二混合区的稀释缓冲液混合。在优选的方面,所述第二混合区包括T-连接器,其这样安排,以致所述脂质体溶液和稀释缓冲液流作为相反的180°流而汇合;然而,可以使用提供更小的角度的连接器,例如,从约27°到约180°。泵机械将可控制的缓冲液流递送到第二混合区。在一个方面中,控制提供给第二混合区的稀释缓冲液的流速,使之基本上等于从第一混合区引入其中的脂质体溶液的流速。本实施方案有利地允许对与在第二混合区中的脂质体溶液混合的稀释缓冲液流的更多控制,并且因此在整个第二混合处理过程中还更多地控制在缓冲液中的脂质体溶液的浓度。这样的稀释缓冲液流速控制有利地允许在减少的浓度形成小的颗粒大小。
这些方法和实施这些直接稀释方法的装置在美国专利申请号11/495,150中详细描述。
使用直接稀释方法形成的所述血清-稳定性核酸-脂质颗粒典型地具有约50nm到约150nm,约60nm到约130nm,约70nm到约110nm,或约70nm到约90nm的大小。这样形成的所述颗粒不聚集,并且任选地按大小排列以获得均一的颗粒大小。
在一些实施方案中,所述颗粒使用去污剂透析形成。不希望受到任何具体的形成机制的束缚,将核酸,诸如siRNA与阳离子脂质的去污剂溶液接触,以形成包被的核酸复合物。这些包被的核酸可以聚集并且沉淀。然而,去污剂的存在减少了这种聚集,并且允许包被的核酸与过量的脂质(典型地,非阳离子脂质)反应,以形成其中核酸被包封在脂双层中的颗粒。因此,所述血清稳定性核酸-脂质颗粒可以如下述制备:
(a)在去污剂溶液中使核酸与阳离子脂质结合从而形成被包被的核酸-脂质复合物;
(b)使非阳离子脂质与被包被的核酸-脂质复合物接触从而形成包括核酸-脂质复合物和非阳离子脂质的去污剂溶液;和
(c)透析步骤(b)中的去污剂溶液从而提供血清稳定性核酸-脂质颗粒的溶液,其中所述核酸被包封在脂双层中,并且所述颗粒是血清稳定性的并具有约50至约150nm之间的大小。
包被的核酸-脂质复合物的初始溶液通过将所述核酸与阳离子脂质在去污剂溶液中结合而形成。在这些实施方案中,所述去污剂溶液优选地是具有临界胶束浓度为15-300mM,更优选地为20-50mM的中性去污剂的水溶液。合适的去污剂的实例包括,例如,N,N’-((辛酰基亚氨基)-二-(1,3-亚丙基))-二-(D-葡糖酰胺(gluconamide))(BIGCHAP);BRIJ 35;脱氧-BIGCHAP;十二烷基聚(乙二醇)醚;吐温20;吐温40;吐温60;吐温80;吐温85;Mega 8;Mega 9;3-08;
Figure A20068004914600692
3-10;曲拉通X-405;己基-,庚基-,辛基-和壬基-β-D-比喃葡萄糖苷;和庚基硫代吡喃葡萄糖苷;其中辛基β-D-吡喃葡萄糖苷和吐温20是最优选的。去污剂在去污剂溶液中的浓度典型地是约100mM至约2M,优选地是约200mM至约1.5M。
阳离子脂质和核酸将典型地进行结合,从而产生约1∶1至约20∶1的电荷比率(+/-),约1∶1至约12∶1的比率,约2∶1至约6∶1比率的比率。另外,在溶液中的核酸总浓度将典型地是约25μg/ml至约1mg/ml,约25μg/ml至约200μg/ml,或约50μg/ml至约100μg/ml。将在去污剂溶液中的核酸与阳离子脂质的结合典型地在室温下保持一段时间,所述时间足够形成被包被的复合物。备选地,核酸和阳离子脂质可以在去污剂溶液中结合并被加热到达到约37℃,约50℃,约60℃,或约70℃的温度。对于对温度特别敏感的核酸,被包被的复合物可以在更低的温度形成,所述温度典型地低至约4℃。
在一些实施方案中,在形成的核酸-脂质颗粒中的核酸与脂质的比率(质量/质量比率)的范围在约0.01至约0.2之间,约0.02至约0.1,约0.03至约0.1,或约0.01至约0.08之间。起始物质的比率也在这个范围内。在其它实施方案中,所述核酸-脂质颗粒制剂使用约400μg核酸/10mg总脂质,或约0.01至约0.08,更优选地约0.04的核酸与脂质比率,所述0.04的比率对应于1.25mg的总脂质/50μg核酸。在其它优选的实施方案中,所述颗粒具有约0.08的核酸∶脂质质量比率。
接着,使被包被的核酸-脂质复合物的去污剂溶液与非阳离子脂质接触,从而提供核酸-脂质复合体和非阳离子脂质的去污剂溶液。有效用在该步骤中的非阳离子脂质包括,二酰基磷脂酰胆碱,二酰基磷脂酰乙醇胺,神经酰胺,鞘磷脂,脑磷脂,心磷脂和脑苷脂。在优选的实施方案中,所述非阳离子脂质是二酰基磷脂酰胆碱,二酰基磷脂酰乙醇胺,神经酰胺或鞘磷脂。在这些脂质中的酰基基团优选地是衍生自具有C10-C24碳链的脂肪酸的酰基基团。更优选地,所述酰基基团是月桂酰、肉豆蔻酰、棕榈酰、硬脂酰或油酰。在特别优选的实施方案中,所述非阳离子脂质是DSPC、DOPE、POPC、卵磷脂酰胆碱(EPC)、胆固醇、或它们的混合物。在最优选的实施方案中,所述核酸-脂质颗粒是在体内具有提高特性的融合颗粒,并且所述非阳离子脂质是DSPC或DOPE。此外,本发明的核酸-脂质颗粒还可包含胆固醇。在其它优选的实施方案中,所述非阳离子脂质还可以包含基于聚乙二醇的聚合物,诸如PEG 2,000,PEG 5,000和与二酰基甘油、神经酰胺或磷脂缀合的PEG,如在例如美国专利号5,820,873和在美国专利公布号2003/0077829中所描述的。在其它优选的实施方案中,非阳离子脂质还可以包含基于聚乙二醇的聚合物诸如PEG 2,000,PEG 5,000和与二烷氧基丙基缀合的PEG。
用于本方法的非阳离子脂质的量典型地是约2至约20mg的总脂质比上50μg的核酸。优选地,总脂质的量是约5至约10mg/50μg的核酸。
形成核酸-脂质复合物和非阳离子脂质的去污剂溶液后,优选地通过透析来去除去污剂。去污剂的去除导致形成围绕核酸的脂双层,从而提供血清稳定性的核酸-脂质颗粒,所述颗粒具有约50nm至约150nm,约60nm至约130nm,约70nm至约110nm,或约70nm至约90nm的大小。这样形成的颗粒不聚集,并且任选地按大小排列以获得均一的颗粒大小。
可以通过任一可用的方法来对血清稳定性的核酸-脂质颗粒进行大小排列,以按大小排列脂质体。可以进行按大小排列,以获得理想的大小范围和相对较窄的颗粒大小分布。
一些技术可以用于对所述颗粒进行按大小排列到理想的大小。美国专利号4,737,323描述了用于脂质体并等同地可应用于本颗粒的一种大小排列的方法。通过水浴或探针超声波对颗粒混悬液进行超声处理,产生渐进性的大小减少至小于约50nm的大小的颗粒。匀浆法是依赖于剪切力将更大片段的颗粒断裂为更小的颗粒的另一种方法。在一个典型的匀浆方法中,通过标准的乳液匀浆器使颗粒再循环直到观察到典型地在约60和约80nm之间的选定颗粒大小。在两种方法中,颗粒大小分布可以通过常规激光束颗粒大小辨别,或QELS来进行监测。
通过小孔聚碳酸酯膜或不对称的陶膜来挤压颗粒也是将颗粒大小减少到相对清楚确定的大小分布的有效方法。典型地,通过膜来将混悬液循环一次或数次直到获得理想的颗粒大小分布。可以通过连续更小孔的膜来挤压所述颗粒,从而获得大小的逐渐减少。
在另一组实施方案中,所述血清稳定性核酸-脂质颗粒可以如下述制备:
(a)在有机溶剂中制备包括阳离子脂质和非阳离子脂质的混合物;
(b)使核酸的水溶液与步骤(a)中的所述混合物接触,从而提供清晰的单相;和
(c)移去所述有机溶剂来提供核酸-脂质颗粒的混悬液,其中所述核酸被包封在脂双层中,所述颗粒在血清中是稳定的,并且具有约50-约150nm的大小。
用于该组实施方案中的核酸(例如,siRNA)、阳离子脂质和非阳离子脂质如同对于上述去污剂透析方法所描述的。
对于有机溶剂的选择将典型地包括对溶剂极性和所述溶剂可在颗粒形成的后期被去除的容易性的考虑。也可被用作增溶剂的有机溶剂以足以提供核酸和脂质的清晰单相混合物的量存在。合适的溶剂包括,但不限于,氯仿、二氯甲烷、二乙醚、环己烷、环戊烷、苯、甲苯、甲醇或其它脂族醇诸如丙醇、异丙醇、丁醇、叔-丁醇、异丁醇、戊醇和己醇。两种或更多溶剂的组合也可用在本发明中。
通过将核酸的第一溶液,其典型地是水溶液,与脂质的第二有机溶液混和在一起来完成核酸与阳离子和非阳离子脂质的有机溶液接触。本领域技术人员应该理解可以通过多种方法,例如通过机械方式诸如通过使用涡旋混和器来使该混和发生。
在核酸已经与脂质的有机溶液接触后,将所述有机溶剂去除,因此形成血清稳定性核酸-脂质颗粒的水性混悬液。用于去除有机溶剂的方法将典型地包括在减压下蒸发或将惰性气体(例如,氮或氩气)的气流鼓风吹过所述混合物。
这样形成的血清稳定性核酸脂质颗粒将典型地大小在约50nm至约150nm,约60nm至约130nm,约70nm至约110nm,或约70nm至约90nm。为了获得进一步的颗粒大小减小或大小的均一性,可以按照如上所述进行筛分。
在其它的实施方案中,所述方法将还包括加入非脂质聚阳离子,其可用于利用本组合物实施递送至细胞。合适的非脂质聚阳离子的实例包括,但不限于,海地美溴铵(hexadimethrine bromide)(以商标名
Figure A20068004914600721
出售,从奥地里奇化学公司(Aldrich Chemical Co.),Milwaukee,Wisconsin,美国购得)或其它heaxadimethrine的盐。其它合适的聚阳离子包括,例如,聚-L-鸟氨酸、聚-L-精氨酸、聚-L-赖氨酸、聚-D-赖氨酸、聚烯丙胺和聚乙烯亚胺的盐。
在某些实施方案中,可以在单相系统(例如,Bligh和Dyer单相或水性和有机溶剂的类似混合物)或两相系统中进行核酸-脂质颗粒的形成,伴以合适的混和。
当在单相系统中进行复合物的形成时,阳离子脂质和核酸每个都溶解在一体积的单相混和物中。两种溶液的组合提供单一混合物,复合物形成在所述混合物中。备选地,所述复合物可以在两相混合物中形成,在所述两相混合物中,阳离子脂质与核酸(其存在于水相中)结合,并将其“推”到有机相中。
在另一个实施方案中,所述血清稳定性核酸-脂质颗粒可以如下述制备:
(a)使核酸与包括非阳离子脂质和去污剂的溶液接触以形成核酸-脂质混合物;
(b)使阳离子脂质与所述核酸-脂质混合物接触从而中和核酸的阴性电荷的部分,并形成核酸和脂质的中和电荷的混合物;和
(c)使去污剂从电荷被中和的混合物中去除从而提供核酸-脂质颗粒,其中所述核酸被保护免于降解。
在一组实施方案中,非阳离子脂质和去污剂的溶液是水溶液。通过将核酸的第一溶液与脂质和去污剂的第二溶液混和在一起来典型地完成核酸与非阳离子脂质和去污剂的溶液接触。本领域技术人员应该理解通过任何数目的方法,例如通过机械方式诸如通过使用涡旋混合器,该混和可以发生。优选地,所述核酸溶液还是去污剂溶液。用在本方法中的非阳离子脂质的量典型地基于所用的阳离子脂质的量进行确定,并典型地是阳离子脂质的量的约0.2-约5倍,优选地是所用的阳离子脂质的量的约0.5至约2倍。
在一些实施方案中,将所述核酸如在例如美国专利申请号09/744,103中描述的那样进行预浓缩。
将这样形成的核酸-脂质混合物与阳离子脂质接触,从而中和负电荷部分,其与存在的核酸(或其它聚阴离子物质)关联。所用的阳离子脂质的量将典型地足以中和所述核酸的至少50%的负电荷。优选地,所述负电荷将至少有70%被中和,更优选地有至少90%被中和。有效用在本发明中的阳离子脂质包括,例如DLinDMA和DLenDMA。这些脂质和相关的类似物已经在美国专利公布号20060083780中有所描述。
可以通过许多技术的任一种,优选地通过将阳离子脂质的溶液和包含所述核酸-脂质混合物的溶液混合在一起,来完成阳离子脂质与核酸-脂质混合物的接触。在将两种溶液混和(或以任何其它方式接触)后,与核酸关联的负电荷部分被中和。但是,核酸仍旧保持在未压缩的状态并获得亲水特性。
在阳离子脂质已经与核酸-脂质混合物接触后,将去污剂(或去污剂和有机溶剂的组合)去除,因此形成所述核酸-脂质颗粒。用于去除去污剂的方法将典型地包括透析。当有机溶剂存在时,通过在减压下蒸发或通过将惰性气体(例如,氮气或氩气)的气流鼓风吹过混合物来典型地成功去除它。
这样形成的颗粒的大小将典型地从约50nm到数微米,约50nm到约150nm,约60nm到约130nm,约70nm到约110nm,或约70nm到约90nm。为了进一步获得在所述颗粒大小的减小或大小的均一性,可以将所述核酸-脂质颗粒进行超声波处理、过滤或进行其它用在脂质体制剂中并且是本领域技术人员所熟知的大小排列技术。
在其它实施方案中,该方法将还包括添加非脂质聚阳离子,其可用于利用本发明的组合物实施脂质转染。合适的非脂质聚阳离子的实例包括,海地美溴铵(以商标名
Figure A20068004914600741
出售,从奥地里奇化学公司(AldrichChemical Co.),Milwaukee,Wisconsin,美国购得)或其它heaxadimethrine的盐。其它合适的聚阳离子包括,例如,聚-L-鸟氨酸,聚-L-精氨酸,聚-L-赖氨酸,聚-D-赖氨酸,聚烯丙胺和聚乙烯亚胺的盐。这些盐的添加优选地在颗粒已经形成后进行。
在另一方面,所述血清稳定性的核酸-脂质颗粒按下述制备:
(a)在溶液中使一定量的阳离子脂质与核酸接触;所述溶液包括约15-35%的水和约65-85%的有机溶剂,并且阳离子脂质的量足以产生从约0.85至约2.0的+/-电荷比率,从而提供疏水的核酸-脂质复合物;
(b)在溶液中使疏水的,核酸-脂质复合物与非阳离子脂质接触,从而提供核酸-脂质混合物;和
(c)从核酸-脂质混合物去除有机溶剂从而提供这样的核酸-脂质颗粒,其中核酸被保护免于降解。
有效用在本发明该方面中的所述核酸(例如,siRNA)、非阳离子脂质、阳离子脂质和有机溶剂与对于上面使用去污剂的方法所述的那些相同。在一组实施方案中,步骤(a)的溶液是单相的。在另一组实施方案中,步骤(a)的溶液是两相的。
在优选的实施方案中,所述非阳离子脂质是ESM,DSPC,DOPC,POPC,DPPC,一甲基-磷脂酰乙醇胺,二甲基-磷脂酰乙醇胺,DMPE,DPPE,DSPE,DOPE,DEPE,SOPE,POPE,基于PEG的聚合物(例如,PEG 2000,PEG5000,PEG-修饰的二酰基甘油,或PEG-修饰的二烷氧基丙基),胆固醇,或它们的组合。在其它优选的实施方案中,有机溶剂是甲醇、氯仿、二氯甲烷,乙醇,二乙醚或它们的组合。
在一个实施方案中,所述核酸是本文所述的siRNA;所述阳离子脂质是DLindMA,DLenDMA,DODAC,DDAB,DOTMA,DOSPA,DMRIE,DOGS,或它们的组合;所述非阳离子脂质是ESM,DOPE,PEG-DAG,DSPC,DPPC,DPPE,DMPE,一甲基-磷脂酰乙醇胺,二甲基-磷脂酰乙醇胺,DSPE,DEPE,SOPE,POPE,胆固醇,或它们的组合(例如,DSPC和PEG-DAA);并且所述有机溶剂是甲醇、氯仿,二氯甲烷、乙醇、二乙醚或它们的组合。
如上,优选地通过机械方式诸如通过使用涡旋混和器将核酸的第一溶液,和脂质的第二溶液混和在一起,来典型地完成所述核酸与阳离子脂质的接触。得到的混合物包含如上所述的复合物。接着,通过添加非阳离子脂质和去除有机溶剂而将这些复合物转化成颗粒。非阳离子脂质的添加典型地通过简单将非阳离子脂质的溶液添加到包含所述复合物的混合物中完成。还可以使用反向添加。可以通过本领域那些技术人员已知的并也如上文所述的方法来完成有机溶剂的后续去除。
用于本发明该方面中的非阳离子脂质的量典型地是用于提供电荷被中和的核酸-脂质复合体的阳离子脂质的量(基于摩尔基础)的约0.2至约15倍的量。优选地,所述量是所用的阳离子脂质的量的约0.5至约9倍。
在一个实施方案中,按照上述方法制备的核酸-脂质颗粒是净电荷中性的或携带这样的总电荷,所述总电荷给所述颗粒提供更大的基因脂转染活性。优选地,所述颗粒的核酸组分是干扰不需要的蛋白质的产生的核酸。在其它优选的实施方案中,所述非阳离子脂质可以进一步包括胆固醇。
如本文所讨论的多种制备SNALP-CPLs(包含CPL的SNALPs)的通用方法。两种通用技术包括“插入后”技术,即将CPL插入到,例如预形成的SNALP中,和“标准”技术,其中在例如,SNALP形成步骤过程中,将CPL包括在脂质混合物中。所述插入后技术导致这样的SNALPs,所述SNALPs主要在SNALP双层膜的外面中具有CPLs,而标准技术提供这样的SNALPs,所述SNALPs在内面和外面都具有CPLs。所述方法特别适用于由磷脂制备的小泡(其可包含胆固醇),并还适用于包含PEG-脂质的小泡(诸如PEG-DAAs和PEG-DAGs)。在例如美国专利号5,705,385;6,586,410;5,981,501;6,534,484;和6,852,334;美国专利公布号20020072121;以及PCT公布号WO 00/62813中教导了制备SNALP-CPL的方法。
VI.试剂盒
本发明还提供以试剂盒形式存在的核酸-脂质颗粒。所述试剂盒可以包括容器,所述容器被进行划分以容纳所述核酸-脂质颗粒的各种组分(例如,所述颗粒的核酸和单个脂质组分)。在一些实施方案中,所述试剂盒进一步包括内体膜的去稳定剂(例如,钙离子)。所述试剂盒典型地包含本发明的核酸-脂质颗粒组合物,其优选地以脱水形式存在,以及它们的再水合和施用的说明书。在某些情形中,所述颗粒和/或包括所述颗粒的组合物可以具有附着于颗粒表面的靶向部分。将靶向部分(例如,抗体,蛋白质)附着于脂质(诸如用在本颗粒中的那些)的方法是本领域的技术人员已知的。
VII.核酸-脂质颗粒的施用
一旦形成,本发明的血清稳定性核酸-脂质颗粒有效地用于将核酸(例如,siRNA)引入到细胞中。因此,本发明还提供将核酸(例如,siRNA)引入细胞的方法。所述方法通过首先形成如上所述的颗粒,接着使所述颗粒与细胞接触一段时间,所述时间足以使核酸至细胞的递送发生,而在体外或体内进行。
本发明的核酸-脂质颗粒可以被与它们混合或接触的几乎任何细胞类型吸附。一旦被吸附,所述颗粒可以被细胞的部分内吞,与细胞膜交换脂质,或与细胞融合。颗粒的核酸部分的转移或结合可以通过这些途径的任何一种发生。具体而言,当融合发生时,所述颗粒的膜被整合到细胞膜中,并且所述颗粒的内容物与细胞内的流体接触。
本发明的核酸-脂质颗粒可以单独地或者与药用载体(例如,生理盐水或磷酸缓冲液)在混合物中施用,所述药用载体是依据施用途径和标准的药物实践而选择的。通常,正常的缓冲盐水(例如,135-150mM NaCl)将用作药用载体。其它适当的载体包括,例如,水,缓冲的水,0.4%的盐水,0.3%的甘油,等等,包括用于提高稳定性的糖蛋白,诸如白蛋白、脂蛋白、球蛋白等。其它适当的载体在,例如,REMINGTON’SPHARMACEUTICAL SCIENCES(雷明顿药典科学),Mack出版公司,Philadelphia,PA,第17版.(1985)中描述。当用于本文时,术语“载体”包括任何和所有的溶剂,分散介质,赋形剂,涂层,稀释剂,抗细菌和抗真菌剂,等渗和吸收延缓剂,缓冲剂,载体溶液,混悬液,胶体,等等。短语“药用”是指当施用给人时不产生过敏或类似的不利反应的分子实体和组合物。
所述药用载体通常在颗粒形成之后加入。因此,在颗粒形成之后,所述颗粒可以稀释到药用载体如正常缓冲的盐水中。
药物制剂中的颗粒的浓度可以在广泛范围内变化,即从少于约0.05重量%,通常在或至少约2-5重量%,到多至约10-90重量%,并将按照选定的具体的施用模式,主要通过流体体积、粘度等进行选择。例如,所述浓度可以增加,以降低与治疗相关的流体负荷。这在患有动脉粥样硬化-相关的充血性心脏衰竭或严重高血压的患者中可能是特别理想的。备选地,可以将由刺激性脂质组成的颗粒稀释到低浓度,以减轻在施用位点的炎症。
本发明的药物组合物可以通过常规的、公知的灭菌技术进行灭菌。水溶液可以包装备用,或者在无菌条件下过滤并且冻干,在施用前将所述冻干的制剂与无菌水溶液组合。所述组合物可以包含适应生理条件所需要的药用辅助物质,诸如pH调节和缓冲剂,张性调节剂等,例如,醋酸钠,乳酸钠,氯化钠,氯化钾,和氯化钙。另外,所述颗粒混悬液可以包括脂质-保护剂,其保护脂质在储存时免受自由基和脂质-过氧化物的损伤。亲脂性自由基猝灭剂,诸如α生育酚,和水溶性铁离子特异性螯合剂,如ferrioxamine,是适当的。
A.体内施用
使用核酸-脂质颗粒,诸如在PCT公布号WO 96/40964,和美国专利号5,705,385;5,976,567;5,981,501;和6,410,328中公开的那些,已经实现了通过机体系统诸如循环进行体内治疗的全身递送,即,将治疗性核酸递送到远端靶细胞。该后者方式提供保护核酸免于血清中的核酸酶降解的充分包封的核酸-脂质颗粒,是非免疫原性的,是小尺寸的,并且适合于重复给药。
对于体内施用,施用可以是本领域已知的任何途径,例如,通过注射,口服施用,吸入(例如,鼻内或气管内地),透皮施用,或直肠施用。施用可以通过单次或分开的给药而实现。所述药物组合物可以肠胃外施用,即,关节内地、静脉内地、腹膜内地、皮下地、或肌内地。在一些实施方案中,所述药物组合物通过大丸剂(bolus)注射静脉内或腹膜内地施用(参见,例如,美国专利号5,286,634)。细胞内的核酸递送也已经在Straubringer等,Methods Enzymol.(酶学方法),101:512(1983);Mannino等,Biotechniques(生物技术),6:682(1988);Nicolau等,Crit.Rev.Ther.DrugCarrier Syst.(治疗性药物载体系统的重要综述),6:239(1989);和Behr,Acc.Chem,Res.(化学研究的说明),26:274(1993)中讨论。施用基于脂质的治疗剂的其它方法在,例如,美国专利号3,993,754;4,145,410;4,235,871;4,224,179;4,522,803;和4,588,578中描述。所述脂质-核酸颗粒可以通过在疾病位点的直接注射或者通过在远离疾病位点的位点注射而施用(参见,例如,Culver,HUMAN GENE THERAPY(人类基因治疗),MaryAnn Liebert,公司,出版社,纽约.第70-71页(1994))。
本发明的组合物,单独地或与其它适合的组成组合,可以制成气雾剂制剂(即,它们可以是“喷雾状的”),以通过吸入(例如,鼻内或气管内)进行施用(参见,例如,Brigham等,Am.J.Sci.(美国科学杂志),298:278(1989))。气雾剂制剂可以放置在加压的可用的推进剂中,所述推进剂如二氯二氟甲烷,丙烷,氮气,等。
在某些实施方案中,所述药物组合物可以通过鼻内喷雾、吸入、和/或其它气雾剂递送载体而递送。用于通过鼻气雾剂喷雾直接将核酸组合物递送至肺部的方法已经在,例如,美国专利号5,756,353和5,804,212中描述。同样地,使用鼻内微粒树脂和溶血磷脂酰-甘油化合物(美国专利5,725,871)递送药物也是药学领域公知的。类似地,以聚四氟乙烯(polytetrafluoroetheylene)支持基质形式的透粘膜的药物递送在美国专利号5,780,045中描述。
适于肠胃外施用,诸如例如,通过关节内(在关节处)、静脉内、肌内、皮内、腹膜内和皮下途径施用的制剂,包括水性和非水性的、等渗的无菌注射溶液,其可以包含抗氧化剂、缓冲剂、抑菌剂、以及使得所述制剂与目的受体的血液等渗的溶质,以及水性和非水性无菌混悬液,其可以包括混悬剂、增溶剂、增稠剂、稳定剂和防腐剂。在实施本发明时,组合物优选地,例如,通过静脉内输注、口服、局部、腹膜内、膀胱内、或鞘内施用。
通常,当静脉内施用时,所述核酸-脂质制剂是用适当的药物载体配制。许多药用载体可以用于本发明的组合物和方法。用于本发明的适当的制剂,例如,在REMINGTON’S PHARMACEUTICAL SCIENCES(雷明顿药典科学),Mack出版公司,Philadelphia,PA,第17版(1985)中找到。可以使用许多水性载体,例如,水,缓冲的水,0.4%的盐水,0.3%的甘油,等等,并且可以包括提高稳定性的糖蛋白,诸如白蛋白、脂蛋白、球蛋白等。通常,正常缓冲的盐水(135-150mM NaCl)将用作药用载体,但是其它适当的载体应该是足够的。这些组合物可以通过常规脂质体灭菌技术,诸如过滤,而进行灭菌。所述组合物可以包含适应生理条件所需要的药用辅助物质,诸如pH调节和缓冲剂,张性调节剂等,湿润剂等,例如,醋酸钠,乳酸钠,氯化钠,氯化钾,氯化钙,单月桂酸失水山梨糖醇酯,油酸三乙醇胺,等。这些组合物可以使用上文提及的技术灭菌,或者备选地,它们可以在无菌条件下生产。得到的水溶液可以包装备用,或者在无菌条件下过滤并且冻干,在施用前,将所述冻干的制剂与无菌水溶液组合。
在某些应用中,本文公开的核酸-脂质颗粒可以通过口服施用给个体而递送。所述颗粒可以与赋形剂结合,并且以可吸收的片剂、口腔含片、药片、胶囊、丸剂、锭剂、酏剂、漱口水、混悬液、口服喷雾剂、糖浆、糯米纸囊剂等形式使用(参见,例如,美国专利号5,641,515,5,580,579,和5,792,451)。这些口服剂型还可以包含下述:粘合剂,明胶;赋形剂,滑润剂,和/或调味剂。当所述单位剂型是胶囊时,除了上述物质之外,它可以包含液体载体。各种其它的物质可以存在,作为涂层,或者另外改良所述剂量单位的物理形式。当然,用于制备任何单位剂型的任何物质应该是药物纯的,并且在所用的量上基本上无毒。
典型地,这些口服制剂可以包含至少约0.1%的所述核酸-脂质颗粒,或者更多,尽管所述颗粒的百分比当然可以改变,并且可以容易地在总制剂重量或体积的约1%或2%和约60%或70%或更多之间。自然地,在每种治疗用的组合物中可以制备的颗粒的量是这样的方式,即,在化合物的任何给定的单位剂量中,应该获得适当的剂量。在制备这样的药物制剂的领域内的技术人员应该考虑这样的因素,诸如溶解性,生物利用度,生物半衰期,施用途径,产品的保存寿命,以及其它的药学考虑,并且因此,许多剂量和治疗方案可以是理想的。
适于口服施用的制剂可以由下述组成:(a)脂质溶液,诸如有效量的包装的核酸(例如,siRNA),其混悬在稀释剂如水、盐水或PEG 400中;(b)胶囊,香袋,或片剂,每种包含预先确定量的核酸(例如,siRNA),作为液体、固体、颗粒或明胶;(c)在适当的液体中的混悬液;和(d)适当的乳液。片剂形式可以包括下列各项中的一种或多种:乳糖、蔗糖、甘露醇、山梨糖醇、磷酸钙、玉米淀粉、马铃薯淀粉、微晶纤维素、明胶、胶体二氧化硅、滑石、硬脂酸镁、硬脂酸、和其它赋形剂、着色剂、填充剂、粘合剂、稀释剂、缓冲剂、增湿剂、防腐剂、调味剂、染料、崩解剂、和药物相容的载体。锭剂形式可以包括在调味剂如蔗糖中的核酸(例如,siRNA),以及包括在惰性基质中的核酸(例如,siRNA)的软锭剂,所述惰性基质诸如明胶和甘油,或除了所述核酸(例如,siRNA)之外,包含本领域已知的载体的蔗糖和阿拉伯树胶乳液、凝胶等。
在它们的应用的另一个实例中,核酸-脂质颗粒可以结合到宽范围的局部剂型中。例如,可以配制包含所述核酸-脂质颗粒的混悬液,并且作为凝胶、油、乳液、局部乳膏、糊剂、油膏、洗液、泡沫剂、起泡剂(mousses)等而施用。
当制备本发明的核酸-脂质颗粒的药物制剂时,优选地使用许多已经纯化的颗粒,以减少或消除空的颗粒或者与具有外表面缔合的核酸的颗粒。
本发明的方法可以在各种宿主中实施。优选的宿主包括哺乳动物物种,诸如鸟类(例如,鸭),灵长类(例如,人和黑猩猩,以及其它非人灵长类),犬类,猫科,马,牛,绵羊,公山羊,啮齿动物(例如,大鼠和小鼠),兔类,和猪。
施用的颗粒的量将取决于核酸与脂质的比率,所用的具体的核酸,诊断的疾病状态,患者的年龄、体重和状况,以及临床医师的判断,但是通常应该在约0.01-约50mg/kg体重,优选地约0.1-约5mg/kg体重,或每次施用(例如,注射)约108-1010个颗粒。
B.体外施用
对于体外应用,可以将核酸(例如,siRNA)递送到培养在培养物中的任何细胞,所述培养物不管是植物或动物起源,脊椎动物或无脊椎动物,并且是任何组织或类型的。在优选的实施方案中,所述细胞将是动物细胞,更优选地是哺乳动物细胞,并且最优选地是人细胞。
当在体外进行时,在细胞和核酸-脂质颗粒之间的接触发生在生物相容性的培养基中。取决于具体应用,颗粒的浓度在广泛范围内变化,但是通常是介于约1μmol和约10mmol之间。用核酸-脂质颗粒对细胞进行处理通常在生理温度(约37℃)进行约1到约48小时,优选地从约2-4小时的时间阶段。
在一组优选的实施方案中,将核酸-脂质颗粒混悬液加入到60-80%汇合的被接种细胞中,所述细胞具有约103至约105个细胞/ml,更优选地约2×104个细胞/ml的密度。被添加到细胞中的混悬液的浓度是优选地约0.01-0.2μg/ml,更优选地约0.1μg/ml。
使用内体释放参数(ERP)测定,可以对SNALP或其它的基于脂质的载体系统的递送效率进行优化。ERP测定在美国专利公开号20030077829中详细描述。更具体地,ERP测定的目的是基于它们对内体膜的结合/吸收或与其的融合/不稳定化的相对影响来区分各种阳离子脂质和SNALPs的辅助脂质成分的作用。该测定允许人们从数量上确定SNALP的每个组分或其它基于脂质的载体系统怎样影响递送效率,由此使SNALPs或其它的基于脂质的载体系统优化。通常,ERP测定测量报告蛋白(例如,萤光素酶、β-半乳糖苷酶、绿色荧光蛋白(GFP)等)的表达,并且在一些情形中,对于表达质粒优化的SNALP制剂还将对于包封干扰RNA是合适的。在其它情形中,ERP测定还可以在存在或不存在干扰RNA(例如,siRNA)的情形中适用于测量靶序列的转录或翻译的下调。通过比较各种SNALPs的每个或其它基于脂质的制剂的ERPs,可以容易地确定被优化的系统,例如在细胞中具有最大吸收的SNALP或其它基于脂质的制剂。
C.用于递送干扰RNA的细胞
本发明的组合物和方法用于在体内和体外治疗广泛种类的细胞类型。适当的细胞包括,例如,造血前体(干)细胞,成纤维细胞,角质化细胞,肝细胞,内皮细胞,骨骼和平滑肌细胞,成骨细胞,神经元,静止淋巴细胞,终末分化的细胞,慢或不循环的初级细胞,实质细胞,淋巴样细胞,上皮细胞,骨细胞等。
包封干扰RNA(例如,siRNA)的核酸-脂质颗粒的体内递送适于靶向任何细胞类型的细胞。所述方法和组合物可以用于广泛种类的脊椎动物的细胞,包括哺乳动物,诸如例如,犬类、猫科、马、牛、绵羊、公山羊、啮齿类(例如,小鼠、大鼠和豚鼠)、兔类、猪和灵长类(例如,猴子、黑猩猩和人)。
对于可能需要的细胞的组织培养物的程度,是本领域内公知的。例如,Freshney,Culture of Animal Cells,a Manual of Basic Technique(动物细胞培养,基本技术手册),第3版,Wiley-Liss,纽约(1994),Kuchler等.Biochemical Methods in Cell Culture and Virology(细胞培养和病毒学的生物化学方法),Dowden,Hutchinson and Ross公司.(1977),以及其中所引用的参考文献,提供了关于细胞培养的通用指导。培养的细胞系统通常将是单层细胞的形式,尽管也使用细胞的混悬液。
D.SNALPs的检测
在一些实施方案中,在施用所述颗粒后约8,12,24,48,60,72,或96小时后,或6,8,10,12,14,16,18,19,22,24,25,或28天后,所述核酸-脂质颗粒在受试者中可以检测到的。在来自受试者的细胞、组织或其它生物样品中,可以检测到所述颗粒的存在。所述颗粒可以这样检测,例如,通过直接检测所述颗粒,检测干扰RNA(例如,siRNA)序列,检测目标靶序列(即,通过检测目标序列的表达或减少的表达),或它们的组合。
1.颗粒的检测
核酸-脂质颗粒可以使用本领域已知的任何方法进行检测。例如,使用本领域公知的方法,将标记直接或间接与SNALP的成分或其它载体系统偶联。可以使用广泛种类的标记,其中取决于需要的敏感性,与SNALP成分的缀合的容易性,稳定性要求和可用的工具和处理的准备来选择标记。合适的标记包括,但不限于,光谱标记,诸如荧光染料(例如,荧光素和衍生物,诸如异硫氰酸荧光素(FITC)和Oregon GreenTM;罗丹明和衍生物,诸如德克萨斯红,异硫氰酸四罗丹明(tetrarhodimine isothiocynate)(TRITC),等,洋地黄毒苷,生物素,藻红蛋白,AMCA,CyDyesTM等);放射性标记,诸如3H,125I,35S,14C,32P,33P,等;酶诸如辣根过氧化物酶,碱性磷酸酶等;光谱比色标记诸如胶态金或有色玻璃或塑料珠,诸如聚苯乙烯,聚丙烯,胶乳等。所述标记可以使用本领域已知的任何方式进行检测。
2.核酸的检测
通过本领域那些技术人员公知的许多方式的任何一种来对核酸(例如,siRNA)进行检测和定量。通过本领域公知的方法,诸如DNA印迹分析,RNA印迹分析,凝胶电泳,PCR,放射性标记,闪烁计数和亲和性层析法,进行核酸的检测。还可以应用其它的分析生化方法,诸如分光光度测定法,X光线照相术,电泳,毛细管电泳,高效液相层析(HPLC),薄层层析法(TLC),超扩散(hyperdiffusion)层析法。
核酸杂交形式的选择不是关键性的。多种核酸杂交形式是本领域技术人员已知的。例如,常见形式包括夹层(sandwich)测定和竞争性或置换测定法。杂交技术通常在,例如,“Nucleic Acid Hybridization,A PracticalApproach(核酸杂交,实用方法),”Hames,和Higgins,编,IRL出版社(1985)中描述。
通过应用核酸扩增系统可以提高杂交测定的敏感性,所述核酸扩增系统使被检测的靶核酸成倍增加。适合用于扩增用作分子探针的序列或产生核酸片段以进行随后的亚克隆的体外扩增技术是已知的。通过这些体外扩增方法,包括聚合酶链反应(PCR),连接酶链反应(LCR),Qβ-复制酶扩增和其它的RNA聚合酶介导的技术(例如,NASBATM),足以指导技术人员的技术实例见于Sambrook等,Molecular Cloning:A Laboratory Manual(分子克隆:实验室手册),Cold Spring Harbor Laboratory Press(冷泉港实验室出版社),2000,和Ausubel等,SHORT PROTOCOLS IN MOLECULAR BIOLOGY(分子生物学的快速方法),eds.,Current Protocols(现代方法),GreenePublishing Associates,Inc(格林出版联合公司).与John Wiley和Sons公司,(2002);以及美国专利号4,683,202;PCR Protocols,A Guide to Methods andApplications(PCR方法,方法和应用的指导)(Innis等编),Academic PressInc(学院出版公司).San Diego,CA(1990);Arnheim和Levinson(1990年10月1日),C&EN 36;The Journal Of NIH Research(NIH研究杂志),3:81(1991);Kwoh等,Proc.Natl.Acad.Sci.USA(美国科学院学报),86:1173(1989);Guatelli等,Proc.Natl.Acad.Sci.USA(美国科学院学报),87:1874(1990);Lomell等,J.Clin.Chem.(临床化学杂志),35:1826(1989);Landegren等,Science(科学),241:1077(1988);Van Brunt,Biotechnology(生物技术),8:291(1990);Wu和Wallace,Gene(基因),4:560(1989);Barringer等,Gene(基因),89:117(1990),和Sooknanan和Malek,Biotechnology(生物技术),13:563(1995)。克隆体外扩增核酸的改进的方法描述于美国专利号5,426,039。本领域描述的其它方法是基于核酸序列的扩增(NASBATM,Cangene,Mississauga,Ontario)和Qβ-复制酶系统。这些系统可以用于直接鉴定这样的突变体,即,其中所述PCR或LCR引物设计成只在存在选择序列时被延伸或连接。备选地,所述选择的序列通常可以使用,例如,非特异性PCR引物进行扩增,并且所扩增的靶点区域后来探测指示突变的特异性序列。
按照Beaucage等,Tetrahedron Letts.,22:18591862(1981)所述的固相亚磷酰胺三酯方法,例如使用自动合成仪,如在Needham VanDevanter等,Nucleic Acids Res.(核酸研究),12:6159(1984)中所述,典型地化学合成核酸,所述核酸用作,例如在体外扩增方法中用作探针,用作基因探针,或作为抑制剂成分。当必要时,通过非变性丙烯酰胺凝胶电泳或通过阴离子交换HPLC来典型地进行多核苷酸的纯化,如在Pearson等,J.Chrom.(层析杂志),255:137 149(1983)中所述。使用Maxam和Gilbert(1980)在Grossman和Moldave(eds.),学院出版社,纽约,Methods in Enzymology(酶学方法),65:499中的化学降解方法可以证实合成的多核苷酸的序列。
确定转录水平的备选方式是原位杂交。原位杂交测定是公知的,并且通常描述于Angerer等,Methods Enzymol.(酶学方法),152:649(1987)中。在原位杂交测定中,将细胞固定在固体支持物上,典型地是载玻片上。如果要探测DNA,用热或碱使细胞变性。接着,在适合的温度,使细胞与杂交溶液接触以容许被标记的特异性探针的退火。所述探针优选地用放射性同位素或荧光报道物进行标记。
VIII.实施例
本发明将通过下述实施例的方式进行更详细地描述。下述实施例出于举例说明的目的提供,并且不是意欲以任何方式限制本发明。本领域的技术人员应该容易地识别各种非关键性的参数,其可以进行变化或修改而在实质上产生相同的结果。
实施例1.设计在体内调控有力的基因沉默的非炎性合成的siRNA
本实施例举例说明在siRNA双链体的一条链中的选择的位置上的最小程度的2’-O-甲基(2’OMe)修饰足以减少或者完全消除siRNA的免疫刺激活性,而与其序列无关。事实上,通过将2’OMe修饰限制在siRNA双链体的非靶有义链上,可以消除siRNA的免疫刺激活性,而保留充分的RNAi活性。结果
在ssRNA内的2’OMe修饰消除了免疫刺激性。为了检验通过RNA抑制免疫细胞活化所需要的化学修饰的程度和类型,将2’OMe核苷酸选择性地引入到衍生于β-半乳糖苷酶(β-gal)siRNA的单链RNA多核苷酸(ssRNA)的富含GU的免疫刺激性基序中(Judge等,Nat.Biotechnol.(自然生物技术),23:457-462(2005))。本研究中所用的多核苷酸序列在表1中提供。当人外周血单核细胞(PBMC)培养物用包封ssRNA的脂质处理时,在β-gal有义ssRNA中包括免疫刺激性5’-UGUGU-3’基序(2’OMe GU)的5个核苷酸的2’OMe修饰完全消除了干扰素-α(IFN-α)的诱导(图1A)。通过选择性地修饰所述基序内的2个鸟苷(2’OMe 2xG)或3个尿苷(2’OMe 3xU)核苷酸,也获得干扰素反应的抑制。由于在所述UGUGU基序的3’端,朝向β-galssRNA的末端的2个鸟苷残基(2’OMe 2xG 3’),也在PBMC培养物中导致干扰素反应的完全消除(图1A),所以,2’-O-甲基作用的抑制作用似乎不需要直接修饰在免疫刺激性的富含GU的基序内的核苷酸。如前文所述,在这些测定中,未修饰的互补反义(AS)ssRNA序列内在地是非免疫刺激性的(Judge等,如前所述)。当使用阳离子聚合物聚氮丙啶(PEI)将β-gal ssRNA递送至PBMC时,获得相似的结果(图2A)。
使用类似的方法来修饰靶向人和小鼠ApoB的siRNA双链体的成分21-和23-碱基的链(Soutschek等,Nature(自然),432:173-178(2004))。正如通过其富含GU的核苷酸序列所预测的(Heil等,Science(科学),303:1526-1529(2004);Judge等,如前所述),未修饰的ApoB(AS)ssRNA在PBMC培养物中刺激强IFN-α反应,即使在低浓度下(图1B)。这种反应通过在ApoB(AS)ssRNA中对包括5’-GUGUG-3’基序的5个核苷酸(2’OMeGU)或6个鸟苷(2’OMe G)或7个尿苷(2’OMe U)残基的2’OMe修饰而完全被抑制(图1B)。包封在脂质颗粒中的未修饰的、互补的ApoB有义多核苷酸(ApoB(S))在PBMC中没有诱导IFN-α(图1B),尽管由于发现PEI聚合物-核酸复合物激活细胞因子反应而递送了高剂量的这种多核苷酸。针对PEI-复合的ApoB(S)ssRNA的这种弱反应也受到2’OMe-尿苷修饰的抑制。这些发现表明,在ssRNA内选择性结合2’OMe-修饰的核苷酸足以防止对来自先天免疫细胞的干扰素反应的刺激。
表1.在本研究中所用的RNA多核苷酸。
Figure A20068004914600861
未修饰的(天然的)和2’OMe-修饰的RNA多核苷酸对应β-gal,ApoB,ApoB错配和vFLIP siRNA的有义(S)和反义(AS)链。2’OMe-修饰的核苷酸以黑体和下划线表示。星号表示5’磷酸。“dT”=脱氧胸苷。
在siRNA内的选择性核苷酸修饰消除了免疫刺激性。为了检验在siRNA双链体内的选择性2’OMe修饰是否还抑制免疫刺激性,产生了包括与它们的互补未修饰的多核苷酸退火的2’OMe-修饰的有义或AS链的β-gal和ApoB siRNA系列(参见,表1)。包封双链β-gal siRNA的脂质没有诱导来自人PBMC的可检测的干扰素反应(图3A),所述双链β-gal siRNA包括与未修饰的(非免疫刺激性的)AS链退火的2’OMe-修饰的UGUGU,2xG,或3xU有义链。有趣地,在AS链中互补性5’-ACACA-3’基序的选择性2’OMe修饰,也减弱了IFN-α的诱导的水平,而不管包含未修饰的(免疫刺激性的)有义链的退火的双链体(图3A),所述5’-ACACA-3’基序与有义链中的未修饰的5’-UGUGU-3’基序并列。当使用PEI将β-gal siRNA递送到PBMC时,获得了相似的结果(图2B)。同样地,未修饰的ApoB siRNA在PBMC中诱导强IFN-α反应,并且当将2’OMe GU,U,或G修饰的AS链结合到ApoB双链体中时,这种反应被完全消除(图3B)。令人注意的,包含与未修饰的、免疫刺激性AS链退火的2’OMe G或U修饰的有义链的修饰的ApoBsiRNA也没有赋予免疫刺激性(图3B)。由于即使高浓度(675nM,~9μg/ml)的修饰的siRNA也不能在PBMC培养物中诱导IFN-α或炎性细胞因子,如TNF(图3B和3C),所以,通过对修饰的ApoB siRNA的有义链的2’OMe G或U修饰消除细胞因子的诱导似乎是绝对的。
然而,由于包含2’OMe-修饰的胞苷残基的ApoB siRNA诱导与通过天然双链体诱导的那些相似的细胞因子水平(图3B),所以,使用所有的修饰模式,没有观察到2’-O-甲基化作用对siRNA的免疫刺激的抑制作用。结合2’OMe腺苷导致对细胞因子反应的显著的,而不是绝对的抑制。由于所述2’OMe G,U,C,和A修饰的ApoB在有义链中分别包含2,5,6,和8个修饰的核苷酸,所以,这些差异不是简单地反映化学修饰的程度。这表明未修饰的U和/或G残基可能在双链体siRNA的免疫识别中起着重要作用。
为了证实这种siRNA设计方法将在体内成功地抑制针对siRNA的炎性反应,在小鼠中评估2’OMe-修饰的β-gal和ApoB siRNA的免疫刺激活性。静脉内施用包封β-gal(图4A和4B)或ApoB(图4C和4D)siRNA的脂质在血清IFN-α或炎性细胞因子如TNF中没有引起可检测的增加,所述β-gal或ApoB siRNA在有义或反义链中含有2’OMe-修饰的鸟苷或尿苷残基。这与未修饰的或胞嘧啶修饰的siRNAs显著不同,其诱导这些细胞因子水平的实质升高。选择性2’OMe修饰的这些显著的作用通过使用修饰ApoB错配(Soutschek等,Nature(自然),432:173-178(2004))和vFLIP(Guasparri等,J.Exp.Med.(实验医学杂志),199:993-1003(2004))siRNA序列(参见,表1)的类似的方法而证实。对于ApoB错配(图4E)和vFLIP(图4F)siRNA双链体,修饰在任一条RNA链中的富含GU区或只是尿苷残基完全消除了所述siRNA双链体的细胞因子诱导。针对修饰的ApoB错配siRNA的细胞因子反应的抑制还在人PBMC培养物中得到证实(图3B和3C)。如同使用ApoB,将2’OMe胞嘧啶残基结合到vFLIP siRNA中基本上没有减少IFN-α反应(图4F)。对于检测的每种siRNA序列,已经一致地获得类似的结果,其中结合2’OMe-尿苷或鸟苷残基产生非炎性的siRNA双链体。例如,图5-7显示对于在表2中提供的5种另外的siRNA序列,引入2’OMe-尿苷或鸟苷残基产生非炎性的siRNA双链体。综合看来,这些发现支持这样的推论,即,在小鼠和人之间对于免疫识别短RNA双链体的潜在的机制是保守的(Judge等,如前所述;Hornung等,Nat.Med.(自然医学),11:263-270(2005))。这些结果表明,在任一种物种中,这种机制可以通过在siRNA双链体的任一条链中结合少至2个2’OMe-修饰的核苷酸而严重中断。
表2.在本研究中所用的其它的RNA多核苷酸。
Figure A20068004914600891
未修饰的(天然的)和2’OMe-修饰的RNA多核苷酸对应β-gal,萤光素酶(Luc),亲环蛋白B(Cyp B),流感核衣壳蛋白(NP)和流感聚合酶(PA)siRNA的有义(S)和反义(AS)链。2’OMe-修饰的核苷酸以黑体和下划线表示。星号表示5’磷酸。“dT”=脱氧胸苷。
对siRNA有义链的限制性修饰保持了RNAi活性。在体外评估天然和2’OMe-修饰的ApoB siRNAs的基因沉默活性。包封在脂质体内的未修饰的ApoB在HepG2细胞培养物上清中引起对ApoB蛋白的有力的、剂量-依赖性的抑制(图8)。估计的IC50值(~1.5nM)与在类似的体外模型中使用Oligofectamine转染确定的关于这种siRNA序列的那些值一致(Soutschek等,如前所述)。其中2’OMe修饰限制在非靶有义或过客链(passenger strand)中的修饰的ApoB双链体表现出与天然siRNA的ApoB沉默活性相似的ApoB沉默活性(图8)。相反,对靶反义(AS)或指导链的修饰严重地影响所述双链体的RNAi活性。在AS链中结合2’OMe尿苷或鸟苷残基消除了ApoB基因沉默,而与天然的或有义修饰的双链体相比,含有5’-GUGUG-3’修饰的AS链的双链体表现出基本上减少的活性(估计的IC50=~15nM)。未修饰的或修饰的ApoB错配对照siRNAs没有产生对ApoB蛋白表达的显著抑制(图8)。将2’OMe修饰限制在β-gal 728和萤光素酶siRNA的有义链的相似策略也证明成功地产生了保留完全的RNAi活性的非炎性siRNA(图6-7)。尽管AS链修饰对基因沉默活性的不利影响与先前的工作是一致的,所述先前的工作表明,对siRNA双链体AS链的2’OMe修饰,特别是在5’端,可以减少RNAi活性(Prakash等,J.Med.Chem.(医学化学杂志),48:4247-4253(2005)),但是已经鉴定了可以耐受对AS链的延长的2’OMe修饰的siRNA序列(Morrissey等,Hepatology(肝脏病学),41:3149-1356(2005);Czauderna等,Nucl.Acids Res.(核酸研究),31:2705-2716(2003))。这些数据表明,限制在siRNA的有义链的选择性2’OMe修饰提供了克服siRNA免疫激活的问题同时减少不利地影响RNAi活性的机会的强有力方法。这些结果表明,这种方法可以应用到许多,如果不是全部的,具有刺激先天免疫反应的固有的能力的siRNA序列,包括大量的常规设计的合成的siRNA。
在体内有力的RNAi活性而无免疫刺激性。评估2’OMe-修饰的ApoBsiRNA它们在体内沉默基因表达和免疫刺激的能力。2’OMe U(S)和GU(AS)修饰的ApoB选择作为非炎性双链体(参见,图3和4)。这还提供了评估在体外减少AS修饰的siRNA的RNAi活性的化学修饰的作用的机会(参见,图8)。将天然的或2’OMe-修饰的ApoB和错配siRNA配制在稳定的核酸-脂质颗粒(SNALPs)中,所述核酸-脂质颗粒先前表现出将siRNA递送至肝脏(Morrissey等,Nat.Biotechnol(自然生物技术),23:1002-1007(2005))。对于在系统应用中的用途,基于核酸的药物需要稳定或免受核酸酶降解的保护。在体外在37℃,包封在脂双层内部保护了未修饰的并且另外不稳定的siRNA免受血清核酸酶降解超过24小时,这表明包封提供了充分的核酸酶保护,而无需对siRNA进行延伸的化学修饰。通过比较,在相似的条件下,裸siRNA在4小时内完全降解(图9)。
将包封的ApoB siRNA静脉内施用给BALB/c小鼠,以5mg/kg/天,持续3天。这种方案表示对在使用胆固醇-缀合的、化学修饰的ApoB siRNA的实验中最初报道为有效的ApoB siRNA剂量(Soutschek等,如前所述)的10倍减少。接受天然的、免疫刺激性ApoB或错配siRNA的动物表现出明显的毒性症状,这分别由到第3天初始体重的10.5%和9%的减少(图10A)以及在整个治疗过程中综合身体状况的轻微恶化所表明。相反,用2’OMe-修饰的siRNA治疗很好地耐受了最小程度的(小于1%)或没有体重减少(图10A)。在这些功效研究中对先天性细胞因子反应的消除由一生中的血清IFN-α分析而证实(图10B),并且因此与施用未修饰的siRNA相关的毒性归因于系统细胞因子反应。应该注意,由未修饰的错配siRNA诱导的细胞因子水平和体重减少低于相对应的活性ApoB双链体。在这种情形中,错配对照通过在ApoB序列内的4个G/C取代而产生(Soutschek等,如前所述),这为RNA双链体对免疫刺激的序列-依赖性作用提供了进一步的证据。
作为对RNAi-介导的击倒的直接测量,在最后的siRNA治疗后两天确定在肝脏中的ApoB mRNA(图10C)。在天然的和2’OMe U(S)修饰的ApoB-治疗组中,与PBS-治疗的动物相比较,ApoB mRNA水平显著减少(分别为,18±2%和18±5%PBS对照)。通过比较,用2’OMe GU(AS)修饰的ApoB siRNA治疗的小鼠表现出较不明显的ApoB mRNA沉默(44±4%对照),这与这种修饰的siRNA的减少的体外RNAi活性相关(参见,图8)。在修饰的错配组中的ApoB mRNA水平等价于在PBS对照中的那些(图10C),而天然的错配siRNA在ApoB mRNA水平中引起中等减少(79±12%PBS对照)。在这三次独立的实验中,使用所述天然错配siRNA观察到的肝脏ApoB mRNA的中等减少是明显的,并且与所述未修饰的siRNA的系统施用和递送相关的干扰素释放和毒性症状有关。
在肝脏中ApoB mRNA的沉默导致血清ApoB蛋白的成比例的、序列-特异性的减少。用天然的,2’OMe U(S),或GU(AS)修饰的ApoB siRNA处理的小鼠,具有分别为PBS-处理的动物的那些水平的26%,28%,和47%的血清ApoB蛋白水平(图10D)。ApoB表达的功能性沉默还反映在血清胆固醇的显著减少上,其与所述ApoB双链体对mRNA和蛋白质击倒的相对效力相关。用天然的,2’OMe U(S),或GU(AS)修饰的ApoB siRNA治疗的小鼠表现出是PBS对照组的胆固醇水平的48%,51%和69%的血清胆固醇水平(图10E)。错配siRNA对血清胆固醇没有任何作用(图10E)。在独立的实验中,在不存在IFN诱导时,非炎性2’OMe G(S)修饰的ApoB siRNA调控ApoB mRNA、蛋白和血清胆固醇的相似的减少。
来自这些研究的结果表明,siRNA的脂质包封为系统应用提供充足的血清稳定性,并且取消了对RNA的延伸的化学修饰的需求。在肝脏的情形中,与有效负荷到靶器官的siRNA的有效递送偶联,这促进了内源基因的沉默,在这些研究中由ApoB示例,ApoB是代表对血胆固醇过多症的潜在的治疗靶点的蛋白。重要地,所述2’OMe-修饰的siRNA,设计成是非炎性的,在体内表现出等价于未修饰的siRNA但是没有与未修饰的siRNA的系统施用相关的免疫毒性和其它脱靶作用的功效。本文所述的方法通常可以适用于宽范围的基因靶点,并且适合用在各种治疗方法中。
讨论
基于siRNA的免疫激活是序列-依赖性的发现,先前已经表明通过选择缺少富含GU基序的序列而设计具有可忽略的免疫刺激活性的活性siRNA是可能的(Judge等,Nat.Biotechnol(自然生物技术),23:457-462(2005))。然而,这种测量显著地限制了针对给定的靶点可以设计的新型siRNA序列的数目。此外,由于推定的RNA免疫刺激性基序的相对不清楚的性质,目前需要某种程度的筛选。本研究突出了通过将2’OMe-修饰的核苷酸选择性结合到siRNA双链体中而消除合成的siRNA-介导的免疫刺激性的新型的和强有力的方法。显著地,在人PBMC中和在小鼠体内,在高度免疫刺激性的siRNA分子中结合少至2个2’OMe鸟苷或尿苷残基完全消除了siRNA-介导的干扰素和炎性细胞因子诱导。这种化学修饰程度代表siRNA双链体中的~5%的天然2’-OH位置。由于完全消除免疫反应只需要将RNA链中的一条进行选择性修饰,所以,2’OMe修饰可以限制在双链体的有义链上,因此将减轻siRNA功效的潜在可能性减少到最小。这些发现已经为基于具有已证明的RNAi活性的天然序列合成无免疫刺激性的siRNA提供了简单的基本原理。通过将选择性修饰的siRNA与有效的系统递送载体如核酸-脂质颗粒结合,在体内以治疗可行性剂量可以实现对内源性基因靶点的有力的沉默,而没有与先天性免疫反应的系统激活相关的不利的副作用。
由于在核糖主链中的2’-OH是RNA的区别特征,在这一位置的延伸的化学取代预计将破坏RNA结合受体途径对修饰的核酸的识别。然而,本研究出乎意料地表明,尽管保留了达到95%的它们的天然的核糖核苷酸,包括含有所述RNA的确定的免疫刺激性区域的那些核糖核苷酸,但是,2’OMe-修饰的siRNA表现出无免疫刺激性。认为2’OMe是在2’位置的相对较大的化学基团,其位于RNA双链体的小沟内,而没有显著扭曲它的A-型螺旋结构(Chiu等,RNA,9:1034-1048(2003);Cummins等,Nucl.Acids Res.(核酸研究),23:2019-2024(1995))。这可以足以破坏双链RNA双链体与其推定的免疫受体或辅助分子之间的相互作用。2’-O-甲基化的反式抑制作用,由此2’OMe-修饰的ssRNA与未修饰的免疫刺激性ssRNA退火产生无免疫刺激性的双链体,与包括作为双链分子的siRNA的识别的这样的假说一致。
许多其它的稳定化学常规用于合成的siRNA设计中,以努力赋予还可能影响免疫识别和RNAi的核酸酶抗性。在糖环中含有2’-O,4’-C亚甲基桥的锁定核酸(LNA)已经表现出,部分减少siRNA的免疫刺激活性(Hornung等,Nat.Med.(自然医学),11:263-270(2005))。已经发现含有反向脱氧非碱性末端封端的siRNA保留了免疫刺激活性(Morrissey等,Nat.Biotechnol(自然生物技术),23:1002-1007(2005))。使用LNA修饰的双链体没有观察到反式抑制作用的证据。这些观察表明,相对于其它充分描述的稳定化学,siRNA的免疫刺激性对2’OMe修饰的抑制特别敏感。
本研究表明,当包封在脂质颗粒中,并且系统施用时,未修饰的和2’OMe-修饰的合成的siRNA可以调控内源基因靶ApoB的有力的沉默。静脉内施用包封的未修饰的或修饰的ApoB siRNA导致肝脏中ApoB mRNA水平的显著减少,以及在血液中ApoB蛋白的伴随减少。重要地,假定对ApoB作为血胆固醇过多症的治疗靶点的兴趣,ApoB沉默导致血清胆固醇的显著的减少。脂质包封赋予对血清核酸酶降解的极好的抗性,使得可以在体内使用最小化修饰的siRNA双链体。通过防止诱导干扰素和炎性细胞因子,对基因表达的非特异性作用的潜在可能性是有限的,而siRNA制剂的耐受性是提高的。特别地,静脉内施用包封的2’OMe-修饰的siRNA是有效的和很好耐受的。这些发现促进合成的siRNA在宽范围的体内和治疗应用中的应用。
方法
siRNA:这些研究中所用的所有的siRNA都是由Dharmacon(Lafayette,CO)化学合成的,并且接受为脱盐的、去保护的多核苷酸。双链体通过标准方法退火。将等摩尔浓度的互补链加热到90℃持续2分钟,然后在37℃缓慢冷却60分钟。退火的双链体的形成通过非变性PAGE分析证实。本研究中所用的全部的天然的和2’OMe-修饰的序列在表1和2中列出。
RNA的脂质包封:通过自发性小泡形成作用,接着进行逐步的乙醇稀释,如Jeffs等,Pharm.Res.(药学研究),22:362-372(2005)对pDNA的描述,将siRNA或ssRNA包封在脂质体中。脂质体由下述脂质组成:合成的胆固醇(西格玛(Sigma);Louis,MO),磷脂DSPC(1,2-二硬脂酰-sn-甘油-3-胆碱磷酸;Avanti极性脂质(Avanti Polar Lipids);Alabaster,AL),PEG-脂质PEG-cDMA(3-N-[(甲氧基聚(乙二醇)2000)氨基甲酰基]-1,2-dimyrestyl氧基丙胺)和阳离子脂质DLinDMA(1,2-二亚油基氧基-3-(N,N-二甲基)氨基丙烷),摩尔比率为48∶20∶2∶30。所述脂质PEG-cDMA和DLinDMA(Heyes等,J.Control Release(控制释放杂志),107:276-287(2005))在普洛体维生物治疗公司(Protiva Biotherapeutics)合成。将获得的稳定的脂质颗粒在PBS中透析,并且在使用前通过0.2μm滤器进行过滤除菌。每种脂质体制剂的颗粒大小在100-130nm范围,并且典型地包含90-95%的包封在脂质体内的siRNA。在加入去污剂破坏脂双层之前和之后,使用膜-不渗透性的荧光染料,
Figure A20068004914600941
(分子探针(MolecularProbes);Eugene,OR)确定配制的siRNA的浓度和包封百分数(Jeffs等,如前所述)。
血清核酸酶保护测定:将未修饰的裸露的或脂质-包封的siRNA(0.25mg/ml)在50%的小鼠血清中在37℃温育。在指定的时间,吸取等分试样直接加入到含有0.1%SDS的凝胶加载缓冲液中,并且在液氮中冷冻。在最后的时间点后,将siRNA样品在非变性的20%聚丙烯酰胺TBE凝胶上运行,并且通过溴化乙锭染色显现。为了证实通过脂质包封赋予了siRNA的核酸酶保护,在与血清温育之前立即加入0.1%曲拉通-X 100,以破坏脂双层的完整性。
细胞分离和培养:人PBMC通过标准的Ficoll-Hypaque密度离心技术分离自健康供体的全血。对于免疫刺激测定,将3×105个新鲜分离的PBMC一式三份接种在96孔平板中,并在含有10%FBS,2mM谷氨酰胺,100U/ml青霉素,和100μg/ml链霉素的RPMI 1640培养基中培养。将脂质体包封的siRNA以指定的最终核酸浓度加入到细胞中,并且在16-20个小时后收集培养物上清,并通过夹心ELISA测定IFN-α,IL-6,和TNF-α。
体外RNA干扰测定:将HepG2细胞以20,000个细胞/孔接种到24孔平板中。为了确定2’OMe-修饰的ApoB siRNA的体外RNAi活性,将HepG2培养物一式三份用包封的siRNA处理,核酸浓度在0.6nM和45nM之间。在加入siRNA后24小时更换培养基,然后再温育48小时。通过夹心ELISA确定在培养物上清中的人ApoB蛋白水平,如在Soutschek等,Nature(自然),432:173(2004)中详细所述,使用多克隆山羊抗-人ApoB捕获抗体(Chemicon International)和辣根过氧化物酶-缀合的山羊抗-人ApoB-100抗体(生物医学学院(Academy Bio-medical)),以检测结合的ApoB。ELISA平板使用TMB底物显色,用2N硫酸终止,并且在450nm-570nm读取吸光度。A450值相对于由未处理的HepG2条件培养基产生的标准曲线进行标准化,以确定ELISA的线性范围。在siRNA-处理的培养物上清中的平均、残留的ApoB蛋白水平计算为PBS-处理的对照的百分数。
体内细胞因子诱导:依据加拿大动物护理指南委员会(CanadianCouncil on Animal Care guideline),在得到当地普洛体维生物治疗公司(Protiva Biotherapeutics)动物护理和使用委员会的批准后,完成动物研究。在使用之前,将6-8周龄的CD1 ICR小鼠(Harlan;Indianapolis,IN)进行3周的隔离检疫和适应时间。在0.2ml PBS中的包封的siRNA制剂通过标准的静脉内注射施用到侧尾静脉中。在施用后6小时通过心脏穿刺收集血液,并且如血浆处理用于细胞因子分析。在RNAi功效实验中,在初始siRNA施用后6小时,从50μl的测试采血中收集血浆。
细胞因子ELISA:所有的细胞因子都使用夹心ELISA试剂盒,按照供应商的用法说明进行定量。这些包括小鼠和人IFN-α(PBL生物医学(PBLBiomedical);Piscataway,NJ),人IL-6和TNF-α(eBioscience;San Diego,CA),和小鼠IL-6,TNF-α,和IFN-γ(BD生物科学;San Diego,CA)。
体内RNA干扰:将5只Balb/C小鼠的组用脂质包封的siRNA(天然的,2’OMe U(S),2’OMe,或GU(AS)ApoB和天然的或2’OMe U(S)错配)通过在侧面尾静脉的标准静脉内注射以5mg/kg每天处理一次,持续连续的3天。在整个研究的持续期间记录体重和综合观察。在最后siRNA处理后48小时,将小鼠处死。通过心脏穿刺收集血液,用于ApoB蛋白和胆固醇的血清分析。将肝脏称重,并且收集到6ml RNALater(西格玛)中,用于通过QuantiGene测定(Genospectra;Fremont,CA)进行ApoB mRNA分析。
血清胆固醇使用商购的胆固醇检测试剂盒按照供应商的用法说明(Thermo电子公司(Thermo electron Corp);Melbourne,澳大利亚)进行测量。使用单克隆小鼠ApoB-100捕获抗体LF3,通过夹心ELISA(Zlot等,J.Lipid Res.(脂质研究杂志),40:76-84(1999)),检测来自个体动物的血清中的ApoB-100。结合的ApoB-100使用多克隆兔抗-小鼠ApoB(生物设计国际(Biodesign International);Saco,Maine)和辣根过氧化物酶-缀合的山羊抗-兔Ig’s(Jackson免疫研究(Jackson Immunoresearch);West Grove,PA)进行检测。使用用正常的小鼠血清产生的标准曲线,从A450值确定血清ApoB水平,以定义ELISA的线性范围,并且表示为PBS-处理的对照组的百分数。
QuantiGene测定(Genospectra)用来定量在siRNA处理后在肝脏组织中的小鼠ApoB mRNA的减少。小的均匀的组织样品采自在最后注射后48小时收集并且保存在RNAlater(西格玛)中的肝脏。将裂解物直接用于ApoB和GAPDH mRNA定量,并且计算ApoB和GAPDH mRNA的比率,并表示为相对于PBS对照组的组平均值。用于mRNA检测的特异性探针组由Genospectra设计,以靶向下述区域:对于ApoB mRNA,登记号XM_137955的位置5183-5811;对于GAPDH mRNA,登记号NM_008084的位置9-319。
实施例2.设计具有选择性化学修饰的ApoB siRNA
本实施例举例说明在ApoB siRNA双链体的有义和反义链中选择的位置的最小程度的2’OMe修饰足以减少ApoB siRNA的免疫刺激特性,同时保留RNAi活性。具体地,在两条链中少于约30%的核苷酸位置的选择性2’OMe-尿苷和/或2’OMe-鸟苷修饰提供具有理想的沉默和无免疫刺激性特性的结合的ApoB siRNA。
结果
将雌性BALB/c小鼠模型用于确定包含ApoB siRNA的SNALP制剂的功效和毒性特性,所述ApoB siRNA在有义和反义链中具有选择性的化学修饰。在本研究中所用的ApoB siRNA双链体提供在表3中。
表3.包含有义和反义ApoB RNA多核苷酸的siRNA双链体。
Figure A20068004914600971
第1列:数字是指相对于小鼠ApoB mRNA序列XM_137955在有义链的5’碱基的核苷酸位置。第2列:数字是指在每条链中的2’OMe化学修饰的分布。例如,“U2/4”是指在有义链中的2个尿苷2’OMe修饰和在反义链中的4个尿苷2’OMe修饰。第3列:2’OMe-修饰的核苷酸以黑体和下划线表示。
第4列:提供在siRNA双链体中的2’OMe-修饰的核苷酸的数目和百分数。第5列:提供在siRNA双链体的双链(DS)区中的修饰的核苷酸的数目和百分数。
对于ApoB 10048 siRNA家族序列,在siRNA双链体中在16.7%或23.8%的核苷酸位置的2’OMe修饰产生如同未修饰的siRNA的相似的沉默活性(图11,2-6排)。对于在19%的核苷酸位置具有2’OMe修饰的ApoB 10048siRNA序列获得相似的结果。然而,在siRNA双链体中35.7%的核苷酸位置的2’OMe修饰导致减少的活性(图11,7-8排)。对于ApoB 10886 siRNA序列,与未修饰的siRNA相比,在siRNA双链体中16.7%的核苷酸位置的2’OMe修饰导致提高的活性(图11,9-10排)。对于ApoB 10346 siRNA序列,与未修饰的siRNA相比,在siRNA双链体中16.7%的核苷酸位置的2’OMe修饰导致减少的活性(图11,11-12排)。
使用2’OMe取代化学修饰siRNA通过消除细胞因子反应而改善了体内siRNA治疗的毒性特征。如在图12中所示,在这一组检测的修饰的ApoBsiRNA中没有一条刺激干扰素-α的释放,而用三种未修饰的siRNA负体中的任一种治疗在第6小时在血浆中导致相当大的干扰素-α浓度。
讨论
本实施例表明,相对于PBS对照,在第IV次治疗后7天的延长的时间点,SNALP-配制的ApoB-靶向的siRNA能够沉默多到77%的血浆ApoB蛋白水平,所述ApoB-靶向的siRNA包括在有义和反义链内选择的位置的最小程度的2’OMe修饰。实际上,在siRNA双链体的两条链的少于约30%(例如,16.7%,19%,或23.8%)的核苷酸位置的2’OMe-尿苷和/或2’OMe-鸟苷选择性修饰典型地产生如同未修饰的siRNA序列的相似的沉默活性。另外,这样的2’OMe修饰通过减少ApoB siRNA的免疫刺激特性而改善体内治疗的毒性特征。
方法
siRNA:siRNA双链体通过将两条去保护的和脱盐的RNA多核苷酸退火而制备。每个多核苷酸设计成长度为21个碱基,并且每个双链体设计成包含19个碱基的双链区,在所述双链区的每一端带有2个3’突出端。所有的双链体都设计成针对小鼠和人ApoB是交叉反应性的。ApoB 10048 siRNA有义链对应人ApoB mRNA序列NM_000384的核苷酸10164-10184。ApoB10886 siRNA有义链对应人ApoB mRNA序列NM_000384的核苷酸11002-11022。ApoB 10346 siRNA有义链对应人ApoB mRNA序列NM_000384的核苷酸10462-10482。
RNA的脂质包封:使用直接稀释方法,在0.04的靶核酸比脂质比率,制备“2∶40∶10”的DSPC∶胆固醇∶PEG-C-DMA∶DLinDMA(10∶48∶2∶40摩尔比率)SNALP制剂。
体内治疗方案:BALB/c小鼠(雌性,4周龄)获自Harlan实验室。在至少7天的适应期后,通过静脉内(IV)注射,在第0,1和2研究日每天一次(每只动物总共3次给药)在侧面尾静脉向动物施用表4所示的SNALP制剂。剂量为2mg siRNA/kg体重,对应10ml/kg(四舍五入到最接近的10μl)。作为阴性对照,一组动物给与PBS载体的IV注射。在第0-3,9和16研究日,记录体重和动物行为和/或外观的笼内观察。实施尾切口,以收集少量(50μl)的全血,将其如血浆处理。在第16研究日,将动物用致死剂量的氯胺酮/赛拉嗪麻醉,并且在颈脱位法之前通过心脏穿刺收集血液。将血液收集在lavendar EDTA微量容器(microtainer)中,并且处理血浆。
表4.在本研究中所用的体内治疗方案和SNALP制剂。
Figure A20068004914600991
分析方法:使用ELISA方法,如在Zlot等,J.Lipid Res.(脂质研究杂志),40:76-84(1999)中所述,测量血浆中的ApoB蛋白水平。使用夹心ELISA方法,按照供应商的用法说明(PBL生物医学;Piscataway,NJ),测量血浆中的干扰素-α水平。
实施例3.设计具有选择性化学修饰的Eg5 siRNA
本实施例举例说明在Eg5 siRNA双链体的有义和/或反义链中选择的位置的最小程度的2’OMe修饰足以减少Eg5 siRNA的免疫刺激性,同时保留RNAi活性。特别地,在一条或两条链中少于约20%的核苷酸位置的选择性2’OMe-尿苷和/或2’OMe-鸟苷修饰提供具有理想的沉默和无免疫刺激性特性的结合的Eg5 siRNA。
结果
对Eg5 siRNA的选择性修饰保留了抗增殖活性。制备一组2’OMe-修饰的Eg5 siRNA分子,并且在人HeLa细胞和小鼠Neuro2A细胞中评估它们的RNAi活性。在本研究中所用的Eg5 siRNA双链体提供在表5中。所述修饰包括在Eg5 2263 siRNA序列的有义和/或反义链的选择的位置引入2’OMe-尿苷和/或2’OMe-鸟苷,其中所述siRNA双链体包含少于约20%的2’OMe-修饰的核苷酸。在细胞存活性生物测定中评估抗增殖活性。特别地,在用包含Eg5 2263 siRNA的SNALP制剂处理后48小时,测量细胞培养物的细胞存活性,并且表示为平均荧光单位。图13显示对Eg5 2263 siRNA双链体的选择性化学修饰在人HeLa细胞中保留了RNAi活性。类似地,图14表明对Eg5 2263 siRNA双链体的选择性化学修饰在小鼠Neuro2A细胞中保留了RNAi活性。
表5.包含有义和反义Eg5RNA多核苷酸的siRNA双链体。
  修饰   Eg5 2263 siRNA序列   %2′OMe-修饰的   在DS区的%修饰
  0/0   5′-CUGAAGACCUGAAGACAAUdTdT-3′3′-dTdTGACUUCUGGACUUCUGUUA-5′   0/42=0%   0/38=0%
  U/0   5′-CUGAAGACCUGAAGACAAUdTdT-3′3′-dTdTGACUUCUGGACUUCUGUUA-5′   3/42=7.1%   3/38=7.9%
  G/0   5′-CUGAAGACCUGAAGACAAUdTdT-3′3′-dTdTGACUUCUGGACUUCUGUUA-5′   4/42=9.5%   4/38=10.5%
  0/U   5′-CUGAAGACCUGAAGACAAUdTdT-3′3′-dTdTGACUUCUGGACUUCUGUUA-5′   3/42=7.1%   3/38=7.9%
  0/G   5′-CUGAAGACCUGAAGACAAUdTdT-3′3′-dTdTGACUUCUGGACUUCUGUUA-5′   3/42=7.1%   3/38=7.9%
  U/U   5′-CUGAAGACCUGAAGACAAUdTdT-3′3′-dTdTGACUUCUGGACUUCUGUUA-5′   6/42=14.3%   6/38=15.8%
  U/G   5′-CUGAAGACCUGAAGACAAUdTdT-3′3′-dTdTGACUUCUGGACUUCUGUUA-5′   6/42=14.3%   6/38=15.8%
  G/G   5′-CUGAAGACCUGAAGACAAUdTdT-3′3′-dTdTGACUUCUGGACUUCUGUUA-5′   7/42=16.7%   7/38=18.4%
  G/U   5′-CUGAAGACCUGAAGACAAUdTdT-3′3′-dTdTGACUUCUGGACUUCUGUUA-5′   7/42=16.7%   7/38=18.4%
第1列:“0/0”=未修饰的siRNA双链体;“U/0”=2’OMe-尿苷修饰的有义链(SS);“G/0”=2’OMe-鸟苷修饰的SS;“0/U”=2’OMe-尿苷修饰的反义链(AS);“0/G”=2’OMe-鸟苷修饰的AS;“U/U”=2’OMe-尿苷修饰的siRNA双链体;“U/G”=2’OMe-尿苷修饰的SS和2’OMe鸟苷修饰的AS;“G/G”=2’OMe-鸟苷修饰的siRNA双链体;并且“G/U”=2’OMe-鸟苷修饰的SS和2’OMe-尿苷修饰的AS。第2列:2’OMe-修饰的核苷酸以黑体和下划线表示;“dT”=脱氧胸苷。
第3列:提供在siRNA双链体中的2’OMe-修饰的核苷酸的数目和百分数。第4列:提供在siRNA双链体的双链(DS)区中的修饰的核苷酸的数目和百分数。
对Eg5 siRNA的选择性修饰在体内消除了细胞因子诱导。将未修饰的Eg5 2263 siRNA(即,0/0)和它的某些2’OMe-修饰的变体(即,U/0,G/0,U/U,和G/G)包封在具有2mol%PEG-cDMA,40mol%DLinDMA,10mol%DSPC,和48mol%胆固醇的SNALPs中。在体内检测这些SNALP-配制的Eg5-靶向的siRNA,以寻找免疫反应的诱导,例如,细胞因子的诱导。BALB/c小鼠(n=3/治疗组)注射40μg包含Eg5 2263 siRNA的SNALP制剂。在治疗后6小时,收集样品,并且通过ELISA测定检测干扰素-α的水平。图15显示对Eg5 2263 siRNA的选择性2’OMe修饰消除了与系统施用天然(即,未修饰的)双链体相关的干扰素诱导。
对Eg5 siRNA的选择性修饰消除了针对递送载体的抗体反应。将未修饰的Eg5 2263 siRNA(即,0/0)及其某些2’OMe-修饰的变体(即,U/0和U/U)包封在具有2mol%PEG-cDMA,40mol%DLinDMA,10mol%DSPC,和48mol%胆固醇的SNALPs中。在小鼠体内检测这些SNALP-配制的Eg5-靶向的siRNA,以寻找针对递送载体成分如PEG的免疫反应的诱导。具体地,将小鼠(n=4)用包含Eg5 2263 siRNA的SNALP制剂每天处理3×2mg/kg,并且在第10天检测抗-PEG IgM和IgG抗体的血清水平。图16显示了对Eg52263 siRNA双链体的两条链的选择性2’OMe修饰(即,U/U)是完全消除针对与系统施用天然(即,未修饰的)双链体相关的SNALP递送载体的PEG成分的抗体反应。
方法
siRNA:这些研究中所用的全部siRNA都是由普洛体维生物治疗公司(Protiva Biotherapeutics)(Burnaby,BC),卡尔加里大学(University ofCalgary)(Calgary,AB),或Dharmacon公司.(Lafayette,CO)化学合成。siRNA使用标准方法脱盐并且退火。Eg5 2263 siRNA有义链对应人Eg5 mRNA序列NM_004523的核苷酸2263-2281。
siRNA的脂质包封:除非另外指明,siRNAs包封在由下述脂质组成的脂质体中:合成的胆固醇(西格玛;St.Louis,MO),磷脂DSPC(1,2-二硬脂酰-sn-甘油-3-胆碱磷酸;Avanti Polar脂质;Alabaster,AL),PEG-脂质PEG-cDMA(3-N-[(-甲氧基聚(乙二醇)2000)氨基甲酰基]-1,2-dimyrestyl氧基-丙胺),和阳离子脂质DLinDMA(1,2-二亚油基氧基-3-(N,N-二甲基)氨基丙烷),摩尔比48∶10∶2∶40。换言之,除非另外指明,siRNAs包封在下述SNALP制剂的脂质体中:2mol%PEG-cDMA,40mol%DLinDMA,10mol%DSPC,和48mol%胆固醇。对于载体对照,在不存在siRNA时,形成具有同样的脂质组成的空脂质体。
体内细胞因子诱导:依据加拿大动物护理指南委员会,在得到当地普洛体维生物治疗公司(Protiva Biotherapeutics)动物护理和使用委员会的批准后,完成动物研究。在使用之前,将6-8周龄的CD1 ICR小鼠(Harlan;Indianapolis,IN)进行3周的隔离检疫和适应时间。在0.2ml PBS中的包封的siRNA制剂通过标准的静脉内注射施用到侧面尾静脉中。在施用后6小时通过心脏穿刺收集血液,并且如血浆处理用于细胞因子分析。在RNAi功效实验中,在初始siRNA施用后6小时,从50μl的测试采血中收集血浆。使用夹心ELISA方法,按照供应商的用法说明(PBL生物医学;Piscataway,NJ),测量血浆中的干扰素-α水平。
细胞存活性测定:使用商购试剂CellTiter_BlueTM(普洛麦格公司(Promega Corp.);Madison,WI),一种刃天青染料,其由代谢活性细胞还原成荧光产物试卤灵(resorufin),评估体外细胞培养物的细胞存活性。各种癌细胞系使用标准组织培养技术在体外进行培养,在用siRNA制剂或小分子药物处理后48-72小时,将CellTiter-BlueTM试剂加入到培养物中,以定量细胞的代谢活性,细胞存活性的测量。
抗体检测:研发一种ELISA,以检测针对PEG-脂质和SNALP的其它脂质成分的IgM和IgG抗体。简言之,将10μg的PEG-cDSA加入到20μl 100%乙醇中,于含有PVDF膜(密里博公司(Millipore Corp.);Bedford,MA)的96孔平板中。在用在PBS中的10%FBS封闭1小时之前,允许PEG-cDSA-包被的膜完全空气干燥2小时。然后将100μl在封闭缓冲液中连续稀释的血清样品加入到一式两个孔中1小时,并且用在PBS中的1%的FBS洗涤4次。用HRP-缀合的山羊抗-IgM Fcμ或IgG Fcγ,检测平板结合的抗体。结合的酶用TMB底物显色,用2N硫酸终止,然后在分光光度计上在450nm-570nm读取。
实施例4.设计具有选择性化学修饰的抗流感siRNA。
本实施例举例说明在流感核衣壳蛋白(NP)siRNA双链体有义链中选择的位置的最小程度2’OMe修饰足以减少NP siRNA的免疫刺激性,同时保留RNAi活性。具体地,在有义链中少于约20%的核苷酸位置的选择性2’OMe-尿苷修饰提供具有理想的沉默和非免疫刺激特性的结合的NPsiRNA。
结果
对NP siRNA的选择性修饰保留了病毒击倒活性。制备一组2’OMe-修饰的NP siRNA,并且在Madin-Darby犬肾(MDCK)细胞中评估它们的RNAi活性。在本研究中所用的NP siRNA双链体在表6中提供。修饰包括在NP siRNA序列的有义链的选定的位置引入2’OMe-尿苷,其中所述siRNA双链体包含少于约20%的2’OMe-修饰的核苷酸。将NP siRNA分子配制成脂质核酸复合物,并且在感染后约48小时,检测它们显著减少由流感病毒产生的细胞病变作用(CPE)的能力。还检测所述NP siRNA分子相对于只是对照的病毒产生的HA的量(即,HA单位/孔)和产生的HA的百分数(即,百分数击倒)。
表6.包含有义和反义NP RNA多核苷酸的siRNA双链体。
位置 修饰   NP siRNA序列   %2′OMe修饰的   在DS区的%修饰
  411   0/0   5′-AGCUAAUAAUGGUGACGAUdTdT-3′3′-dTdTUCGAUUAUUACCACUGCUA-5′   0/42=0%   0/38=0%
  411   U5/0   5′-AGCUAAUAAUGGUGACGAUdTdT-3′3′-dTdTUCGAUUAUUACCACUGCUA-5′   5/42=11.9%   5/38=13.2%
  929   0/0   5′-GAUACUCUCUAGUCGGAAUdTdT-3′3′-dTdTCUAUGAGAGAUCAGCCUUA-5′   0/42=0%   0/38=0%
  929   U6/0   5′-GAUACUCUCUAGUCGGAAUdTdT-3′3′-dTdTCUAUGAGAGAUCAGCCUUA-5′   6/42=14.3%   6/38=15.8%
  1116   0/0   5′-GCUUUCCACUAGAGGAGUUdTdT-3′3′-dTdTCGAAAGGUGAUCUCCUCAA-5′   0/42=0%   0/38=0%
  1116   U5/0   5′-GCUUUCCACUAGAGGAGUUdTdT-3′3′-dTdTCGAAAGGUGAUCUCCUCAA-5′   5/42=11.9%   5/38=13.2%
  1496   0/0   5′-GGAUCUUAUUUCUUCGGAGdTdT-3′3′-dTdTCCUAGAAUAAAGAAGCCUC-5′   0/42=0%   0/38=0%
  1496   U4/0   5′-GGAUCUUAUUUCUUCGGAGdTdT-3′3′-dTdTCCUAGAAUAAAGAAGCCUC-5′   4/42=9.5%   4/38=10.5%
  1496   U8/0   5′-GGAUCUUAUUUCUUCGGAGdTdT-3′3′-dTdTCCUAGAAUAAAGAAGCCUC-5′   8/42=19%   8/38=21%
第1列:数字是指相对于流感A病毒NP ssRNA序列NC_004522,有义链的5’碱基的核苷酸位置。第2列:数字是指在每条链中的2’OMe化学修饰的分布。例如,“U5/0”表示在有义链中的5个尿苷2’OMe修饰,和在反义链中的无尿苷2’OMe修饰。第3列:2’OMe-修饰的核苷酸以黑体和下划线表示;“dT”=脱氧胸苷。
第4列:提供在siRNA双链体中的2’OMe-修饰的核苷酸的数目和百分数。第5列:提供在siRNA双链体的双链(DS)区中的修饰的核苷酸的数目和百分数。
图17和18显示,当与未修饰的负体序列或对照序列相比时,对NPsiRNA双链体的有义链的选择性2’OMe修饰没有不利地影响流感击倒活性。图19显示,在MDCK细胞中,相对于对照,这些2’OMe-修饰的NP siRNA分子的各种组合提供了流感病毒的提高的击倒。
对NP siRNA的选择性修饰在体外和体内消除了细胞因子诱导。将未修饰的NP 1496 siRNA(即,0/0)及其2’OMe-修饰的变体(即,U8/0)包封在具有2mol%PEG-cDMA,40mol%DLinDMA,10mol%DSPC,和48mol%胆固醇的SNALPs中,或者与聚氮丙啶(PEI)复合,以形成聚合物-核酸复合物。在体外检测SNALP-配制的NP-靶向的siRNA,以寻找免疫反应的诱导,例如,细胞因子诱导。将人外周血单核细胞(PBMCs)用40μg包含NP 1496siRNA的SNALP制剂转染,并且在第16小时,收集上清用于细胞因子分析。在体内检测聚合物-核酸复合物制剂,以寻找免疫反应的诱导,例如,细胞因子诱导。将小鼠以120μg siRNA/小鼠静脉内注射所述聚合物-核酸复合物,并且在治疗后6小时收集血浆样品,并通过ELISA测定检测干扰素-α的水平。图20显示对NP 1496 siRNA的选择性2’OMe修饰在体外细胞培养系统中消除了干扰素的诱导。图21显示对NP 1496 siRNA的选择性2’OMe修饰消除了与天然(即,未修饰的)双链体的系统施用相关的干扰素的诱导。
方法
siRNA:这些研究中所用的全部siRNA都是由普洛体维生物治疗公司(Protiva Biotherapeutics)(Burnaby,BC),卡尔加里大学(University ofCalgary)(Calgary,AB),或Dharmacon公司.(Lafayette,CO)化学合成。siRNA使用标准方法脱盐并且退火。
siRNA的脂质包封:除非另外指明,siRNAs包封在由下述脂质组成的脂质体中:合成的胆固醇(西格玛;St.Louis,MO),磷脂DSPC(1,2-二硬脂酰-sn-甘油-3-胆碱磷酸;Avanti Polar脂质;Alabaster,AL),PEG-脂质PEG-cDMA(3-N-[(-甲氧基聚(乙二醇)2000)氨基甲酰基]-1,2-dimyrestyloxy-丙胺),和阳离子脂质DLinDMA(1,2-二亚油基氧基-3-(N,N-二甲基)氨基丙烷),摩尔比48∶10∶2∶40。换言之,除非另外指明,siRNAs包封在下述SNALP制剂的脂质体中:2mol%PEG-cDMA,40mol%DLinDMA,10mol%DSPC,和48mol%胆固醇。
脂质核酸复合物治疗和体外流感感染:当存在胰蛋白酶时,当感染时,流感病毒(例如,流感A/PR/8/34H1N1)在MDCK细胞中产生细胞病变作用。MDCK细胞的脂质核酸复合物治疗和体外流感感染按照下述方法实施:
1.将MDCK细胞以约8000个细胞/孔(约4×104个细胞/ml)接种在96孔平板中,以致在接种后24小时,细胞约50%的密度。
2.约24小时后,培养基更换为新鲜的完全培养基(无抗生素),并且将细胞用在LipofectamineTM 2000(LF2000)(Invitrogen公司;Camarillo,CA)中含有核酸的脂质核酸复合物转染,核酸∶LF2000比率为1∶4。
3.约4小时后,去除复合物,将细胞用PBS洗涤,并且将细胞用在病毒感染培养基(DMEM,0.3%BSA,10mM HEPES)中的各种流感病毒稀释液进行感染,加入约50μl稀释的病毒/孔中。
4.将病毒在细胞上在37℃温育约1-2小时,然后去除病毒,并且加入约200μl的病毒生长培养基(DMEM,0.3%BSA,10mM HEPES,0.25μg/ml胰蛋白酶)。
5.在约48小时,监测细胞的细胞病变作用。
6.对上清进行流感HA酶免疫测定(EIA)。
聚合物-核酸复合物治疗和体内细胞因子诱导:依据加拿大动物护理指南委员会,在得到当地普洛体维生物治疗公司(Protiva Biotherapeutics)动物护理和使用委员会的批准后,完成动物研究。在使用之前,将6-8周龄的CD1 ICR小鼠(Harlan;Indianapolis,IN)进行3周的隔离检疫和适应时间。将siRNAs用体内jetPEITM(Qbiogene,公司;Carlsbad,CA)按照供应商的用法说明以5的N/P比率在室温下混合20分钟。将小鼠施用在0.2ml PBS中的体内jetPEITM聚合物-核酸复合物,对应120μg siRNA/小鼠,通过标准的静脉内注射施用到侧尾静脉中。在施用后6小时通过心脏穿刺收集血液,并且如血浆处理用于细胞因子分析。使用夹心ELISA方法,按照供应商的用法说明(PBL生物医学;Piscataway,NJ),测量血浆中的干扰素-α水平。关于PEI聚合物-核酸复合物形成的其它方法在Judge等,Nat.Biotechnol.(自然生物技术),23:457-462(2005)中提供。
体外细胞因子诱导:将PBMCs用40μg的SNALP配制的siRNA转染,并且在16小时后使用夹心ELISA方法按照供应商的用法说明(PBL生物医学;Piscataway,NJ)检测在细胞培养物上清中的干扰素-α的水平。
应该理解,上述描述的目的是举例说明,并不是限制性的。对于本领域的技术人员,在阅读上述描述后,许多实施方案是显而易见的。因此,本发明的范围应该不是参照上述描述而确定,而是应该参照后附的权利要求以及所述权利要求授予的等价物的完整范围而确定。所有的论文和参考文献的公开内容,包括专利申请,专利,PCT公布,和Genbank登记号,都通过引用结合于本文用于所有的目的。

Claims (137)

1.一种包括长度约15到约60个核苷酸的双链区的修饰的siRNA,其中在所述双链区中少于约20%的核苷酸包括修饰的核苷酸,
其中所述修饰的siRNA比相对应的未修饰的siRNA序列具有更少的免疫刺激性,并且
其中所述修饰的siRNA能够使靶序列的表达沉默。
2.权利要求1的修饰的siRNA,其中所述修饰的siRNA包括修饰的核苷酸,所述核苷酸选自由下列各项组成的组:2’-O-甲基(2’OMe)核苷酸,2’-脱氧-2’-氟(2’F)核苷酸,2’-脱氧核苷酸,2’-O-(2-甲氧基乙基)(MOE)核苷酸,锁定核酸(LNA)核苷酸,以及它们的混合物。
3.权利要求1或2的修饰的siRNA,其中所述修饰的siRNA包括2’OMe核苷酸。
4.权利要求1-3中任一项所述的修饰的siRNA,其中所述修饰的siRNA包括2’OMe核苷酸,其选自由下列各项组成的组:2’OMe-鸟苷核苷酸,2’OMe-尿苷核苷酸,2’OMe-腺苷核苷酸,以及它们的混合物。
5.权利要求1-4中任一项所述的修饰的siRNA,其中所述修饰的siRNA不包含2’OMe-胞嘧啶核苷酸。
6.权利要求1-5中任一项所述的修饰的siRNA,其中所述修饰的siRNA包含长度约15至约30个核苷酸的双链区。
7.权利要求1-6中任一项所述的修饰的siRNA,其中所述修饰的siRNA在所述修饰的siRNA的一条链中包含修饰的核苷酸。
8.权利要求1-7中任一项所述的修饰的siRNA,其中所述修饰的siRNA在所述修饰的siRNA的有义或反义链中包含修饰的核苷酸。
9.权利要求7或8所述的修饰的siRNA,其中所述修饰的siRNA包含2’OMe-鸟苷核苷酸,2’OMe-尿苷核苷酸,或它们的混合物。
10.权利要求1-6中任一项所述的修饰的siRNA,其中所述修饰的siRNA在所述修饰的siRNA的两条链中包含修饰的核苷酸。
11.权利要求10所述的修饰的siRNA,其中所述修饰的siRNA包含2’OMe-鸟苷核苷酸,2’OMe-尿苷核苷酸,或它们的混合物。
12.权利要求1-11中任一项所述的修饰的siRNA,其中在双链区中少于约15%的核苷酸包含修饰的核苷酸。
13.权利要求1-11中任一项所述的修饰的siRNA,其中在双链区中少于约10%的核苷酸包含修饰的核苷酸。
14.权利要求1-11中任一项所述的修饰的siRNA,其中在双链区中少于约5%的核苷酸包含修饰的核苷酸。
15.权利要求1-11中任一项所述的修饰的siRNA,其中在双链区中约1%到约20%的核苷酸包含修饰的核苷酸。
16.权利要求1-11中任一项所述的修饰的siRNA,其中在双链区中约5%到约20%的核苷酸包含修饰的核苷酸。
17.权利要求1-11中任一项所述的修饰的siRNA,其中在双链区中约10%到约20%的核苷酸包含修饰的核苷酸。
18.权利要求1-17中任一项所述的修饰的siRNA,其中所述修饰的siRNA与相对应的未修饰的siRNA序列相比,免疫刺激性少至少约80%。
19.权利要求1-18中任一项所述的修饰的siRNA,其中所述修饰的siRNA具有小于或等于相对应的未修饰的siRNA序列的IC50的10倍的IC50
20.权利要求1-18中任一项所述的修饰的siRNA,其中所述修饰的siRNA具有小于或等于相对应的未修饰的siRNA序列的IC50的3倍的IC50
21.权利要求1-18中任一项所述的修饰的siRNA,其中所述修饰的siRNA具有小于或等于相对应的未修饰的siRNA序列的IC50的2倍的IC50
22.权利要求1-19中任一项所述的修饰的siRNA,其中所述修饰的siRNA不包括磷酸骨架修饰。
23.权利要求1-22中任一项所述的修饰的siRNA,其中所述修饰的siRNA在双链区不包含2’-脱氧核苷酸。
24.权利要求1-23中任一项所述的修饰的siRNA,其中所述修饰的siRNA在所述修饰的siRNA的一条链中包含3’突出端。
25.权利要求1-23中任一项所述的修饰的siRNA,其中所述修饰的siRNA在所述修饰的siRNA的两条链中包含3’突出端。
26.权利要求1-23中任一项所述的修饰的siRNA,其中所述修饰的siRNA不包含3’突出端。
27.权利要求1-26中任一项所述的修饰的siRNA,其中相对应的未修饰的siRNA序列包含至少一个5’-GU-3’基序。
28.权利要求1-27中任一项所述的修饰的siRNA,其中相对应的未修饰的siRNA序列在有义链中包含至少一个5’-GU-3’基序。
29.权利要求1-28中任一项所述的修饰的siRNA,其中相对应的未修饰的siRNA序列在反义链中包含至少一个5’-GU-3’基序。
30.权利要求1-29中任一项所述的修饰的siRNA,其中所述修饰的siRNA包含发夹环结构。
31.权利要求1-30中任一项所述的修饰的siRNA,其还包括载体系统。
32.权利要求31所述的修饰的siRNA,其中所述载体系统选自由核酸-脂质颗粒、脂质体、微团、病毒颗粒、核酸复合物、以及它们的混合物组成的组。
33.权利要求32所述的修饰的siRNA,其中所述载体系统是核酸-脂质颗粒。
34.权利要求32所述的修饰的siRNA,其中所述核酸复合物包括与阳离子脂质、阳离子聚合物、环糊精或它们的混合物复合的修饰的siRNA。
35.权利要求34所述的修饰的siRNA,其中所述修饰的siRNA与阳离子聚合物复合,其中所述阳离子聚合物是聚氮丙啶(PEI)。
36.一种药物组合物,其包括权利要求1-35中任一项所述的修饰的siRNA和药用载体。
37.一种包含长度为约15到约60个核苷酸的双链区的修饰的siRNA,其中在所述双链区中的至少两个核苷酸包括修饰的核苷酸,
其中所述修饰的核苷酸选自由修饰的鸟苷核苷酸、修饰的尿苷核苷酸、以及它们的混合物组成的组,
其中所述修饰的siRNA比相对应的未修饰的siRNA序列具有更少的免疫刺激性,并且
其中所述修饰的siRNA能够使靶序列的表达沉默。
38.权利要求37的修饰的siRNA,其中所述修饰的siRNA包括选自由2’OMe-鸟苷核苷酸,2’OMe-尿苷核苷酸,以及它们的混合物组成的组的修饰的核苷酸。
39.权利要求37或38所述的修饰的siRNA,其中所述修饰的siRNA包含长度为约15到约30个核苷酸的双链区。
40.权利要求37-39中任一项所述的修饰的siRNA,其中所述修饰的siRNA在所述修饰的siRNA的一条链中包含修饰的核苷酸。
41.权利要求37-40中任一项所述的修饰的siRNA,其中所述修饰的siRNA在所述修饰的siRNA的有义或反义链中包含修饰的核苷酸。
42.权利要求37-39中任一项所述的修饰的siRNA,其中所述修饰的siRNA在所述修饰的siRNA的两条链中包含修饰的核苷酸。
43.权利要求37-42中任一项所述的修饰的siRNA,其中在双链区中少于约30%的核苷酸包含修饰的核苷酸。
44.权利要求37-42中任一项所述的修饰的siRNA,其中在双链区中少于约25%的核苷酸包含修饰的核苷酸。
45.权利要求37-42中任一项所述的修饰的siRNA,其中在双链区中少于约20%的核苷酸包含修饰的核苷酸。
46.权利要求37-45中任一项所述的修饰的siRNA,其中所述修饰的siRNA与相对应的未修饰的siRNA序列相比,免疫刺激性少至少约80%。
47.权利要求37-46中任一项所述的修饰的siRNA,其中所述修饰的siRNA具有小于或等于相对应的未修饰的siRNA序列的IC50的10倍的IC50
48.权利要求37-46中任一项所述的修饰的siRNA,其中所述修饰的siRNA具有小于或等于相对应的未修饰的siRNA序列的IC50的3倍的IC50
49.权利要求37-46中任一项所述的修饰的siRNA,其中所述修饰的siRNA具有小于或等于相对应的未修饰的siRNA序列的IC50的2倍的IC50
50.权利要求37-47中任一项所述的修饰的siRNA,其中所述修饰的siRNA不包括磷酸骨架修饰。
51.权利要求37-50中任一项所述的修饰的siRNA,其中所述修饰的siRNA在双链区不包含2’-脱氧核苷酸。
52.权利要求37-51中任一项所述的修饰的siRNA,其中所述修饰的siRNA在所述修饰的siRNA的一条链中包含3’突出端。
53.权利要求37-51中任一项所述的修饰的siRNA,其中所述修饰的siRNA在所述修饰的siRNA的两条链中包含3’突出端。
54.权利要求37-51中任一项所述的修饰的siRNA,其中所述修饰的siRNA不包含3’突出端。
55.权利要求37-54中任一项所述的修饰的siRNA,其中相对应的未修饰的siRNA序列包含至少一个5’-GU-3’基序。
56.权利要求37-55中任一项所述的修饰的siRNA,其中所述修饰的siRNA包含发夹环结构。
57.权利要求37-56中任一项所述的修饰的siRNA,其还包括载体系统。
58.一种药物组合物,其包括权利要求37-57中任一项所述的修饰的siRNA和药用载体。
59.一种核酸-脂质颗粒,其包括:
权利要求1或37的修饰的siRNA;
阳离子脂质;和
非阳离子脂质。
60.权利要求59所述的核酸-脂质颗粒,其中所述阳离子脂质是选自由下列各项组成的组的一员:N,N-二油基-N,N-二甲基氯化铵(DODAC),N,N-二硬脂基-N,N-二甲基溴化铵(DDAB),N-(1-(2,3-二油酰氧基)丙基)-N,N,N-三甲基氯化铵(DOTAP),N-(1-(2,3-二油基氧基)丙基)-N,N,N-三甲基氯化铵(DOTMA),N,N-二甲基-2,3-二油基氧基丙胺(DODMA),1,2-二亚油基氧基-N,N-二甲基氨基丙烷(DLinDMA),1,2-二亚麻基氧基-N,N-二甲基氨基丙烷(DLendMA),以及它们的混合物。
61.权利要求59所述的核酸-脂质颗粒,其中所述阳离子脂质是DLinDMA。
62.权利要求59所述的核酸-脂质颗粒,其中所述非阳离子脂质是阴离子脂质。
63.权利要求59所述的核酸-脂质颗粒,其中所述非阳离子脂质是中性脂质。
64.权利要求59所述的核酸-脂质颗粒,其中所述非阳离子脂质是选自由下列各项组成的组的一员:二硬脂酰磷脂酰胆碱(DSPC),二油酰磷脂酰乙醇胺(DOPE),棕榈酰油酰-磷脂酰胆碱(POPC),棕榈酰油酰-磷脂酰乙醇胺(POPE),棕榈酰油酰-磷脂酰甘油(POPG),二棕榈酰磷脂酰胆碱(DPPC),二棕榈酰-磷脂酰乙醇胺(DPPE),二肉豆蔻酰-磷脂酰乙醇胺(DMPE),二硬脂酰-磷脂酰乙醇胺(DSPE),一甲基-磷脂酰乙醇胺,二甲基-磷脂酰乙醇胺,二反油酰基-磷脂酰乙醇胺(DEPE),硬脂酰油酰-磷脂酰乙醇胺(SOPE),卵磷脂酰胆碱(EPC),胆固醇,以及它们的混合物。
65.权利要求59所述的核酸-脂质颗粒,其中所述非阳离子脂质是DSPC,DPPC,或DSPE。
66.权利要求59所述的核酸-脂质颗粒,其还包括抑制颗粒聚集的缀合的脂质。
67.权利要求66所述的核酸-脂质颗粒,其中所述抑制颗粒聚集的缀合的脂质是选自由聚乙二醇(PEG)-脂质缀合物、聚酰胺(ATTA)-脂质缀合物、以及它们的混合物组成的组的一员。
68.权利要求67所述的核酸-脂质颗粒,其中所述PEG-脂质是选自由PEG-二酰基甘油、PEG-二烷氧基丙基、PEG-磷脂、PEG-神经酰胺、以及它们的混合物组合的组的一员。
69.权利要求67所述的核酸-脂质颗粒,其中所述抑制颗粒聚集的缀合的脂质包括聚乙二醇(PEG)-二烷氧基丙基(PEG-DAA)缀合物。
70.权利要求69所述的核酸-脂质颗粒,其中所述PEG-DAA缀合物是选自由下列各项组成的组的一员:PEG-二月桂基氧基丙基(C12),PEG-二肉豆蔻基氧基丙基(C14),PEG-二棕榈基氧基丙基(C16),和PEG-二硬脂酰氧基丙基(C18)。
71.权利要求69所述的核酸-脂质颗粒,其中所述PEG-DAA缀合物是PEG-二肉豆蔻基氧基丙基(C14)。
72.权利要求59所述的核酸-脂质颗粒,其中所述阳离子脂质占在所述颗粒中存在的总脂质的约20mol%到约50mol%。
73.权利要求59所述的核酸-脂质颗粒,其中所述阳离子脂质占在所述颗粒中存在的总脂质的约40mol%。
74.权利要求59所述的核酸-脂质颗粒,其中所述非阳离子脂质占在所述颗粒中存在的总脂质的约5mol%到约90mol%。
75.权利要求59所述的核酸-脂质颗粒,其中所述非阳离子脂质占在所述颗粒中存在的总脂质的约20mol%。
76.权利要求69所述的核酸-脂质颗粒,其中所述PEG-DAA缀合物占在所述颗粒中存在的总脂质的约0mol%到约20mol%。
77.权利要求69所述的核酸-脂质颗粒,其中所述PEG-DAA缀合物占在所述颗粒中存在的总脂质的约2mol%。
78.权利要求59所述的核酸-脂质颗粒,其还包含胆固醇。
79.权利要求78所述的核酸-脂质颗粒,其中所述胆固醇占在所述颗粒中存在的总脂质的约10mol%到约60mol%。
80.权利要求78所述的核酸-脂质颗粒,其中所述胆固醇占在所述颗粒中存在的总脂质的约48mol%。
81.权利要求59所述的核酸-脂质颗粒,其中在将所述颗粒在37℃暴露于核酸酶20分钟后,所述核酸-脂质颗粒中的核酸基本上不降解。
82.权利要求59所述的核酸-脂质颗粒,其中在将所述颗粒在血清中在37℃温育30分钟后,所述核酸-脂质颗粒中的核酸基本上不降解。
83.权利要求59所述的核酸-脂质颗粒,其中所述核酸完全包封在所述核酸-脂质颗粒中。
84.权利要求59所述的核酸-脂质颗粒,其中所述颗粒具有约0.01到约0.2的核酸:脂质质量比率。
85.权利要求59所述的核酸-脂质颗粒,其中所述颗粒具有约0.02到约0.1的核酸:脂质质量比率。
86.权利要求59所述的核酸-脂质颗粒,其中所述颗粒具有约0.08的核酸:脂质质量比率。
87.权利要求59所述的核酸-脂质颗粒,其中所述颗粒具有约50nm到约150nm的中位值直径。
88.权利要求59所述的核酸-脂质颗粒,其中所述颗粒具有约70nm到约90nm的中位值直径。
89.一种药物组合物,其包括权利要求59所述的核酸-脂质颗粒和药用载体。
90.一种将使靶序列的表达沉默的siRNA引入到细胞中的方法,所述方法包括:
将所述细胞与权利要求1或37所述的修饰的siRNA接触。
91.权利要求90所述的方法,其中所述修饰的siRNA是在载体系统中。
92.权利要求91所述的方法,其中所述载体系统选自由核酸-脂质颗粒、脂质体、微团、病毒颗粒、核酸复合物、以及它们的混合物组成的组。
93.权利要求92所述的方法,其中所述核酸复合物包括与阳离子脂质、阳离子聚合物、环糊精或它们的混合物复合的修饰的siRNA。
94.权利要求93所述的方法,其中所述修饰的siRNA与阳离子聚合物复合,其中所述阳离子聚合物是聚氮丙啶(PEI)。
95.权利要求91所述的方法,其中所述载体系统是核酸-脂质颗粒,其包括:
修饰的siRNA;
阳离子脂质;和
非阳离子脂质。
96.权利要求95所述的方法,其中所述核酸-脂质颗粒还包含防止颗粒聚集的缀合的脂质。
97.权利要求95所述的方法,其中所述核酸-脂质颗粒的存在在施用所述颗粒后至少1小时是可检测的。
98.权利要求95所述的方法,其中在施用后约1小时,多种所述颗粒中大于10%存在于哺乳动物的血浆中。
99.权利要求95所述的方法,其中在施用所述核酸-脂质颗粒后至少72小时,所述修饰的siRNA在远离施用位点的位点的作用是可检测的。
100.权利要求90所述的方法,其中所述细胞是在哺乳动物中。
101.权利要求100所述的方法,其中所述哺乳动物是人。
102.一种用于体内递送使靶序列的表达沉默的siRNA的方法,所述方法包括:
给哺乳动物受试者施用权利要求1或37所述的修饰的siRNA。
103.权利要求102所述的方法,其中所述修饰的siRNA是在载体系统中。
104.权利要求103所述的方法,其中所述载体系统选自由核酸-脂质颗粒、脂质体、微团、病毒颗粒、核酸复合物、以及它们的混合物组成的组。
105.权利要求104所述的方法,其中所述核酸复合物包括与阳离子脂质、阳离子聚合物、环糊精、或它们的混合物复合的修饰的siRNA。
106.权利要求105所述的方法,其中所述修饰的siRNA与阳离子聚合物复合,其中所述阳离子聚合物是聚氮丙啶(PEI)。
107.权利要求103所述的方法,其中所述载体系统是核酸-脂质颗粒,其包括:
所述修饰的siRNA;
阳离子脂质;和
非阳离子脂质。
108.权利要求107所述的方法,其中所述核酸-脂质颗粒还包含防止颗粒聚集的缀合的脂质。
109.权利要求102所述的方法,其中所述施用选自由口服、鼻内、静脉内、腹膜内、肌内、关节内、病灶内、气管内、皮下和皮肤内组成的组。
110.权利要求102所述的方法,其中所述哺乳动物受试者是人。
111.一种修饰具有免疫刺激特性的siRNA的方法,所述方法包括:
(a)提供一种未修饰的siRNA序列,所述序列能够使靶序列的表达沉默,并且包括长度约15到约60个核苷酸的双链序列;和
(b)通过用修饰的核苷酸取代有义或反义链中的至少一个核苷酸而修饰所述siRNA,
由此产生比所述未修饰的siRNA序列更少免疫刺激性并且能够使靶序列的表达沉默的修饰的siRNA。
112.权利要求111所述的方法,其中所述修饰的核苷酸选自由下列各项组成的组:2’-O-甲基(2’OMe)核苷酸,2’-脱氧-2’-氟(2’F)核苷酸,2’-脱氧核苷酸,2’-O-(2-甲氧基乙基)(MOE)核苷酸,锁定核酸(LNA)核苷酸,以及它们的混合物。
113.权利要求111所述的方法,其中所述修饰的核苷酸是2’OMe核苷酸。
114.权利要求111所述的方法,其中所述修饰的核苷酸选自由下列各项组成的组:2’OMe-鸟苷核苷酸,2’OMe-尿苷核苷酸,2’OMe-腺苷核苷酸,以及它们的混合物。
115.权利要求111所述的方法,其中所述修饰的核苷酸不是2’OMe-胞嘧啶核苷酸。
116.权利要求111所述的方法,其中所述未修饰的siRNA序列包含5’-GU-3’基序。
117.权利要求116所述的方法,其中所述未修饰的siRNA序列的有义链包含5’-GU-3’基序。
118.权利要求116所述的方法,其中所述未修饰的siRNA序列的反义链包含5’-GU-3’基序。
119.权利要求116所述的方法,其中在所述5’-GU-3’基序中的至少一个核苷酸被修饰的核苷酸取代。
120.权利要求116所述的方法,其中在5’-GU-3’基序中的两个核苷酸都被修饰的核苷酸取代。
121.权利要求111所述的方法,其还包括:
(c)通过在适合效应器细胞产生可检测的免疫反应的条件下将所述修饰的siRNA与哺乳动物效应器细胞接触,而证实所述修饰的siRNA具有更少免疫刺激性。
122.一种用于鉴定并且修饰具有免疫刺激特性的siRNA的方法,所述方法包括:
(a)在适合效应器细胞产生可检测的免疫反应的条件下,将未修饰的siRNA序列与哺乳动物效应器细胞接触;
(b)通过在所述效应器细胞中存在可检测的免疫反应而鉴定所述未修饰的siRNA序列为免疫刺激性siRNA;并且
(c)通过用修饰的核苷酸取代至少一个核苷酸而修饰所述免疫刺激性siRNA,由此产生比所述未修饰的siRNA序列具有更少免疫刺激性的修饰的siRNA序列。
123.权利要求122所述的方法,其中所述修饰的核苷酸选自由下列各项组成的组:2’-O-甲基(2’OMe)核苷酸,2’-脱氧-2’-氟(2’F)核苷酸,2’-脱氧核苷酸,2’-O-(2-甲氧基乙基)(MOE)核苷酸,锁定核酸(LNA)核苷酸,以及它们的混合物。
124.权利要求122所述的方法,其中所述修饰的核苷酸是2’OMe核苷酸。
125.权利要求122所述的方法,其中所述修饰的核苷酸选自由下列各项组成的组:2’OMe-鸟苷核苷酸,2’OMe-尿苷核苷酸,2’OMe-腺苷核苷酸,以及它们的混合物。
126.权利要求122所述的方法,其中所述修饰的核苷酸不是2’OMe-胞嘧啶核苷酸。
127.权利要求122所述的方法,其中所述未修饰的siRNA序列包含5’-GU-3’基序。
128.权利要求122所述的方法,其中所述哺乳动物效应器细胞是外周血单核细胞。
129.权利要求122所述的方法,其中所述可检测的免疫反应包括选自由下列各项组成的组的细胞因子或生长因子的产生:TNF-α,IFN-α,IFN-β,IFN-γ,IL-6,IL-12,以及它们的组合。
130.权利要求1-35或37-57中任一项所述的修饰的siRNA的应用,其用于配制药物组合物。
131.权利要求59-88中任一项所述的核酸-脂质颗粒的应用,其用于配制药物组合物。
132.权利要求1-35或37-57中任一项所述的修饰的siRNA的应用,其用于使靶序列在细胞中的表达沉默。
133.权利要求59-88中任一项所述的核酸-脂质颗粒的应用,其用于使靶序列在细胞中的表达沉默。
134.权利要求1-35或37-57中任一项所述的修饰的siRNA的应用,其用于使靶序列在哺乳动物受试者中的表达沉默。
135.权利要求59-88中任一项所述的核酸-脂质颗粒的应用,其用于使靶序列在哺乳动物受试者中的表达沉默。
136.权利要求1-35或37-57中任一项所述的修饰的siRNA的应用,其用于配制使靶序列在哺乳动物受试者中的表达沉默的药物组合物。
137.权利要求59-88中任一项所述的核酸-脂质颗粒的应用,其用于配制使靶序列在哺乳动物受试者中的表达沉默的药物组合物。
CN200680049146.9A 2005-11-02 2006-11-02 修饰的siRNA分子及其应用 Expired - Fee Related CN101346393B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US73296405P 2005-11-02 2005-11-02
US60/732,964 2005-11-02
US81793306P 2006-06-30 2006-06-30
US60/817,933 2006-06-30
PCT/CA2006/001801 WO2007051303A1 (en) 2005-11-02 2006-11-02 MODIFIED siRNA MOLECULES AND USES THEREOF

Publications (2)

Publication Number Publication Date
CN101346393A true CN101346393A (zh) 2009-01-14
CN101346393B CN101346393B (zh) 2015-07-22

Family

ID=38005393

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200680049146.9A Expired - Fee Related CN101346393B (zh) 2005-11-02 2006-11-02 修饰的siRNA分子及其应用

Country Status (9)

Country Link
US (4) US8101741B2 (zh)
EP (2) EP2395012B8 (zh)
JP (1) JP5336853B2 (zh)
CN (1) CN101346393B (zh)
AU (1) AU2006308765B2 (zh)
CA (1) CA2628300C (zh)
HK (1) HK1126785A1 (zh)
IL (1) IL191192A (zh)
WO (1) WO2007051303A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103492569A (zh) * 2010-11-05 2014-01-01 米拉根医疗公司 碱基经修饰的寡核苷酸
CN104114571A (zh) * 2011-10-05 2014-10-22 普洛体维生物治疗公司 用于沉默醛脱氢酶的组合物和方法
CN104487055A (zh) * 2012-03-29 2015-04-01 夏尔人类遗传性治疗公司 脂质衍生的中性纳米颗粒
CN105163721A (zh) * 2012-05-23 2015-12-16 俄亥俄州立大学 脂质纳米颗粒组合物以及制备和使用其的方法
CN108601794A (zh) * 2015-12-04 2018-09-28 联邦科学技术研究组织 调节细胞因子产生
CN109475624A (zh) * 2016-03-29 2019-03-15 瓦尔基里治疗有限公司 染色体-1表达的结构维持的调节
CN110325540A (zh) * 2016-11-07 2019-10-11 纳诺索尔公司 转录后化学修饰的双链rna
CN112707943A (zh) * 2020-12-31 2021-04-27 北京大学 结合5′-末端缀合物和中性/阳离子混合脂材包载的小干扰rna及其修饰方法
CN114181942A (zh) * 2014-08-20 2022-03-15 阿尔尼拉姆医药品有限公司 经修饰的双链rna试剂

Families Citing this family (286)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60310944T3 (de) * 2002-08-05 2017-08-03 Silence Therapeutics Gmbh Weitere neue formen von interferierende rns moleküle
US9228186B2 (en) 2002-11-14 2016-01-05 Thermo Fisher Scientific Inc. Methods and compositions for selecting siRNA of improved functionality
EP1735009A4 (en) 2004-03-12 2011-03-30 Alnylam Pharmaceuticals Inc RNAI AGENTS TARGETING THE VASCULAR ENDOTHELIUM GROWTH FACTOR (VEGF)
US20060134189A1 (en) * 2004-11-17 2006-06-22 Protiva Biotherapeutics, Inc siRNA silencing of apolipoprotein B
US20070054873A1 (en) * 2005-08-26 2007-03-08 Protiva Biotherapeutics, Inc. Glucocorticoid modulation of nucleic acid-mediated immune stimulation
US20120164730A1 (en) * 2005-10-11 2012-06-28 Ben-Gurion University Of The Negev Research And Development Authority Ltd. Compositions for silencing the expression of vdac1 and uses thereof
WO2007048046A2 (en) 2005-10-20 2007-04-26 Protiva Biotherapeutics, Inc. Sirna silencing of filovirus gene expression
EP2395012B8 (en) 2005-11-02 2018-06-06 Arbutus Biopharma Corporation Modified siRNA molecules and uses thereof
US20070218122A1 (en) * 2005-11-18 2007-09-20 Protiva Biotherapeutics, Inc. siRNA silencing of influenza virus gene expression
WO2007134161A2 (en) 2006-05-11 2007-11-22 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of the pcsk9 gene
US8598333B2 (en) * 2006-05-26 2013-12-03 Alnylam Pharmaceuticals, Inc. SiRNA silencing of genes expressed in cancer
US7915399B2 (en) 2006-06-09 2011-03-29 Protiva Biotherapeutics, Inc. Modified siRNA molecules and uses thereof
JP2010507361A (ja) 2006-07-31 2010-03-11 キュアバック ゲーエムベーハー 具体的には免疫刺激剤/アジュバントとしての、一般式(I):GlXmGn、または一般式(II):ClXmCnで表される核酸
LT2056845T (lt) 2006-08-08 2017-11-27 Rheinische Friedrich-Wilhelms-Universität Bonn 5` fosfato oligonukleotidų struktūra ir panaudojimas
CA2660204A1 (en) * 2006-08-16 2008-02-21 Protiva Biotherapeutics, Inc. Nucleic acid modulation of toll-like receptor-mediated immune stimulation
US9371348B2 (en) * 2006-11-27 2016-06-21 The Trustees Of The University Of Pennsylvania Photocleavable oligonucleotide and uses thereof
CN104480112B (zh) 2007-05-22 2018-06-12 阿克丘勒斯治疗公司 用于治疗的una寡聚体
AR066984A1 (es) 2007-06-15 2009-09-23 Novartis Ag Inhibicion de la expresion de la subunidad alfa del canal epitelial de sodio (enac) por medio de arni (arn de interferencia)
US20110046206A1 (en) * 2007-06-22 2011-02-24 Isis Pharmaceuticals, Inc. Double strand compositions comprising differentially modified strands for use in gene modulation
WO2009030254A1 (en) 2007-09-04 2009-03-12 Curevac Gmbh Complexes of rna and cationic peptides for transfection and for immunostimulation
JP5723154B2 (ja) 2007-09-19 2015-05-27 アプライド バイオシステムズ リミテッド ライアビリティー カンパニー RNAiにおけるオフターゲット表現型の影響を減少させるためのSiRNA配列非依存性修飾フォーマットおよびその安定化型
JP5530933B2 (ja) 2007-12-10 2014-06-25 アルナイラム ファーマシューティカルズ, インコーポレイテッド 第vii因子遺伝子発現阻害のための組成物及び方法
WO2009073984A1 (en) * 2007-12-12 2009-06-18 University Health Network High-density lipoprotein-like peptide-phospholipid scaffold ('hpps') nanoparticles
CA2710713C (en) * 2007-12-27 2017-09-19 Protiva Biotherapeutics, Inc. Silencing of polo-like kinase expression using interfering rna
US20110038941A1 (en) * 2007-12-27 2011-02-17 The Ohio State University Research Foundation Lipid Nanoparticle Compositions and Methods of Making and Using the Same
GB0801321D0 (en) * 2008-01-24 2008-03-05 Lab901 Ltd Gel composition
AU2009241591A1 (en) * 2008-01-31 2009-11-05 Alnylam Pharmaceuticals, Inc. Optimized methods for delivery of DSRNA targeting the PCSK9 gene
SG188104A1 (en) * 2008-01-31 2013-03-28 Curevac Gmbh Nucleic acids comprising formula (nuglxmgnnv)a and derivatives thereof as an immunostimulating agents /adjuvants
JP2011518117A (ja) * 2008-03-05 2011-06-23 アルナイラム ファーマシューティカルズ, インコーポレイテッド Eg5およびVEGF遺伝子の発現を阻害するための組成物および方法
ES2605618T3 (es) * 2008-03-31 2017-03-15 National Institute Of Advanced Industrial Science And Technology ARN de doble cadena, modificado con lípidos con elevado efecto de interferencia por ARN
JP2011516094A (ja) 2008-04-15 2011-05-26 プロチバ バイオセラピューティクス インコーポレイティッド 干渉rnaを用いたcsn5遺伝子発現のサイレンシング方法
NZ588583A (en) * 2008-04-15 2012-08-31 Protiva Biotherapeutics Inc Novel lipid formulations for nucleic acid delivery
FR2931152B1 (fr) * 2008-05-16 2010-07-30 Centre Nat Rech Scient Nouveau systeme de transfert d'acide nucleique
EP2297323A1 (en) * 2008-05-21 2011-03-23 Hartmann, Gunther 5' triphosphate oligonucleotide with blunt end and uses thereof
KR101630888B1 (ko) * 2008-08-01 2016-06-15 교와 핫꼬 기린 가부시키가이샤 표적 유전자의 발현을 억제하는 조성물
US9433684B2 (en) 2008-08-19 2016-09-06 Nektar Therapeutics Conjugates of small-interfering nucleic acids
WO2010028054A1 (en) 2008-09-02 2010-03-11 Alnylam Europe Ag. Compositions and methods for inhibiting expression of mutant egfr gene
EP2334793B1 (en) 2008-09-25 2016-04-06 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of serum amyloid a gene
WO2010037408A1 (en) 2008-09-30 2010-04-08 Curevac Gmbh Composition comprising a complexed (m)rna and a naked mrna for providing or enhancing an immunostimulatory response in a mammal and uses thereof
WO2010042877A1 (en) 2008-10-09 2010-04-15 Tekmira Pharmaceuticals Corporation Improved amino lipids and methods for the delivery of nucleic acids
EA029762B1 (ru) 2008-10-20 2018-05-31 Элнилэм Фармасьютикалз, Инк. Композиции и способы для ингибирования экспрессии транстиретина
CN104673798B (zh) 2008-12-03 2018-03-20 阿克丘勒斯治疗公司 UsiRNA复合物
WO2010068816A1 (en) 2008-12-10 2010-06-17 Alnylam Pharmaceuticals, Inc. Gnaq targeted dsrna compositions and methods for inhibiting expression
US9023820B2 (en) 2009-01-26 2015-05-05 Protiva Biotherapeutics, Inc. Compositions and methods for silencing apolipoprotein C-III expression
WO2010099341A1 (en) 2009-02-26 2010-09-02 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of mig-12 gene
US8975389B2 (en) 2009-03-02 2015-03-10 Alnylam Pharmaceuticals, Inc. Nucleic acid chemical modifications
CN102428179A (zh) * 2009-03-06 2012-04-25 国立大学法人三重大学 用于增强t细胞功能的方法
JP6032724B2 (ja) * 2009-03-12 2016-11-30 アルナイラム ファーマシューティカルズ, インコーポレイテッドAlnylam Pharmaceuticals, Inc. 脂質製剤組成物およびEg5遺伝子とVEGF遺伝子の発現を阻害する方法
WO2010105372A1 (en) * 2009-03-20 2010-09-23 Protiva Biotherapeutics, Inc. Compositions and methods for silencing hepatitis c virus expression
AU2010245933B2 (en) 2009-05-05 2016-06-16 Arbutus Biopharma Corporation Methods of delivering oligonucleotides to immune cells
KR101224828B1 (ko) 2009-05-14 2013-01-22 (주)바이오니아 siRNA 접합체 및 그 제조방법
WO2010147992A1 (en) 2009-06-15 2010-12-23 Alnylam Pharmaceuticals, Inc. Methods for increasing efficacy of lipid formulated sirna
CN104651408A (zh) * 2009-06-15 2015-05-27 阿尔尼拉姆医药品有限公司 靶向pcsk9基因的脂质配制的dsrna
US20100324124A1 (en) * 2009-06-17 2010-12-23 Massachusetts Institute Of Technology Compositions and methods relating to DNA-based particles
US20100323018A1 (en) * 2009-06-17 2010-12-23 Massachusetts Institute Of Technology Branched DNA/RNA monomers and uses thereof
GB0910723D0 (en) 2009-06-22 2009-08-05 Sylentis Sau Novel drugs for inhibition of gene expression
US8283333B2 (en) * 2009-07-01 2012-10-09 Protiva Biotherapeutics, Inc. Lipid formulations for nucleic acid delivery
CA2767129C (en) * 2009-07-01 2015-01-06 Protiva Biotherapeutics, Inc. Compositions and methods for silencing apolipoprotein b
WO2011007795A1 (ja) * 2009-07-14 2011-01-20 協和発酵キリン株式会社 標的遺伝子の発現を抑制する組成物
US8716464B2 (en) 2009-07-20 2014-05-06 Thomas W. Geisbert Compositions and methods for silencing Ebola virus gene expression
AP2015008874A0 (en) 2009-08-14 2015-11-30 Alnylam Pharmaceuticals Inc Lipid formulated compositions and methods for inhibiting expression of a gene from the ebola virus
US20110053829A1 (en) 2009-09-03 2011-03-03 Curevac Gmbh Disulfide-linked polyethyleneglycol/peptide conjugates for the transfection of nucleic acids
CN102639115A (zh) 2009-09-15 2012-08-15 阿尔尼拉姆医药品有限公司 脂质配制的组合物及抑制eg5和vegf基因的表达的方法
US9187746B2 (en) 2009-09-22 2015-11-17 Alnylam Pharmaceuticals, Inc. Dual targeting siRNA agents
WO2011038160A2 (en) * 2009-09-23 2011-03-31 Protiva Biotherapeutics, Inc. Compositions and methods for silencing genes expressed in cancer
US9101643B2 (en) 2009-11-03 2015-08-11 Alnylam Pharmaceuticals, Inc. Lipid formulated compositions and methods for inhibiting expression of transthyretin (TTR)
PT2506857T (pt) 2009-12-01 2018-05-14 Translate Bio Inc Entrega de arnm para o acréscimo de proteínas e enzimas em doenças genéticas humanas
AR079494A1 (es) 2009-12-18 2012-02-01 Novartis Ag Composiciones organicas para tratar las enfermedades relacionadas con el factor de choque por calor 1 hsf1
JP2011155914A (ja) * 2010-02-01 2011-08-18 Osaka Univ 脂質異常症治療薬剤としての化学修飾siRNA
WO2011109294A1 (en) * 2010-03-01 2011-09-09 Dicerna Pharmaceuticals, Inc. Lipid delivery formulations
US20130323165A1 (en) * 2010-03-08 2013-12-05 Northeastern University Magnetic Nanoplatforms for Theranostic and Multi-Modal Imaging Applications
AU2011235276B2 (en) 2010-03-29 2015-09-03 Alnylam Pharmaceuticals, Inc. SiRNA therapy for transthyretin (TTR) related ocular amyloidosis
US8455455B1 (en) 2010-03-31 2013-06-04 Protiva Biotherapeutics, Inc. Compositions and methods for silencing genes involved in hemorrhagic fever
ES2699630T3 (es) 2010-04-23 2019-02-12 Cold Spring Harbor Laboratory Novedosos ARNhc diseñados estructuralmente
AR081082A1 (es) 2010-04-23 2012-06-06 Novartis Ag Composiciones organicas para tratar enfermedades relacionadas con beta-enac
WO2011141703A1 (en) * 2010-05-12 2011-11-17 Protiva Biotherapeutics Inc. Compositions and methods for silencing apolipoprotein b
CA2799091A1 (en) 2010-05-12 2011-11-17 Protiva Biotherapeutics, Inc. Cationic lipids and methods of use thereof
WO2011141704A1 (en) 2010-05-12 2011-11-17 Protiva Biotherapeutics, Inc Novel cyclic cationic lipids and methods of use
EP2576579B1 (en) 2010-06-02 2018-08-08 Alnylam Pharmaceuticals, Inc. Compositions and methods directed to treating liver fibrosis
DE102010022937A1 (de) * 2010-06-04 2011-12-08 Universitätsklinikum Jena Zellspezifisch aktivierbare biologisch wirksame Moleküle auf Grundlage von siRNA, Verfahren zu deren Aktivierung sowie Applikationskit zur Verabreichung
WO2012000104A1 (en) 2010-06-30 2012-01-05 Protiva Biotherapeutics, Inc. Non-liposomal systems for nucleic acid delivery
BR112013002298A2 (pt) 2010-07-30 2016-05-24 Curevac Gmbh complexação de ácidos nucleicos com componentes catiônicos reticulados com dissulfeto para transfecção e estimulação imunológica.
JP5686814B2 (ja) * 2010-09-17 2015-03-18 独立行政法人科学技術振興機構 Hmgbタンパクによって仲介される免疫応答の活性化の抑制剤及びスクリーニング方法
KR20130110170A (ko) 2010-09-22 2013-10-08 앨리오스 바이오파마 인크. 치환된 뉴클레오타이드 유사체
US20130274317A1 (en) 2010-11-04 2013-10-17 Sandra Milena Ocampo Derivatives of small interfering rnas and use thereof
WO2012075040A2 (en) 2010-11-30 2012-06-07 Shire Human Genetic Therapies, Inc. mRNA FOR USE IN TREATMENT OF HUMAN GENETIC DISEASES
WO2012078967A2 (en) 2010-12-10 2012-06-14 Alnylam Pharmaceuticals, Inc. Compositions and methods for increasing erythropoietin (epo) production
EP2648763A4 (en) 2010-12-10 2014-05-14 Alnylam Pharmaceuticals Inc COMPOSITIONS AND METHODS FOR EXPRESSION INHIBITION OF GENES KLF-1 AND BCL11A
EP2666856A4 (en) * 2011-01-19 2015-01-14 Kyowa Hakko Kirin Co Ltd COMPOSITION TO INHIBIT TARGET EXPRESSION
EP2508530A1 (en) 2011-03-28 2012-10-10 Rheinische Friedrich-Wilhelms-Universität Bonn Purification of triphosphorylated oligonucleotides using capture tags
JP6108628B2 (ja) 2011-03-29 2017-04-05 アルナイラム ファーマシューティカルズ, インコーポレイテッドAlnylam Pharmaceuticals, Inc. Tmprss6遺伝子の発現を阻害する組成物および方法
EP4074693A1 (en) 2011-06-08 2022-10-19 Translate Bio, Inc. Cleavable lipids
SI2717893T1 (sl) 2011-06-08 2019-10-30 Translate Bio Inc Sestavki lipidnih nanodelcev in postopki za dostavo mRNA
US9442046B2 (en) 2011-06-19 2016-09-13 Abogen, Inc. Device for sample collection
CA2839896A1 (en) 2011-06-21 2012-12-27 Alnylam Pharmaceuticals, Inc. Assays and methods for determining activity of a therapeutic agent in a subject
EP3388068A1 (en) 2011-06-21 2018-10-17 Alnylam Pharmaceuticals, Inc. Composition and methods for inhibition of expression of protein c (proc) genes
RU2631805C2 (ru) 2011-06-21 2017-09-26 Элнилэм Фармасьютикалз, Инк. Композиции и способы ингибирования экспрессии генов аполипопротеина с-iii (арос3)
CN103890000B (zh) 2011-06-21 2017-09-01 阿尔尼拉姆医药品有限公司 血管生成素样3(ANGPTL3)iRNA组合物及其使用方法
EP3366312A1 (en) 2011-06-23 2018-08-29 Alnylam Pharmaceuticals, Inc. Serpina 1 sirnas: compositions of matter and methods of treatment
US20140328811A1 (en) 2011-08-01 2014-11-06 Alnylam Pharmaceuticals, Inc. Method for improving the success rate of hematopoietic stem cell transplants
MX2014002536A (es) * 2011-09-02 2014-09-01 Novartis Ag Composiciones organicas para tratar enfermedades relacionadas con el factor de choque de calor 1 (hsf1).
KR102011048B1 (ko) 2011-10-18 2019-08-14 다이서나 파마수이티컬, 인크. 아민 양이온성 지질 및 그것의 용도
CA2853685C (en) * 2011-11-04 2019-09-03 Nitto Denko Corporation Single use system for sterilely producing lipid-nucleic acid particles
US9579338B2 (en) 2011-11-04 2017-02-28 Nitto Denko Corporation Method of producing lipid nanoparticles for drug delivery
KR102385013B1 (ko) 2011-11-18 2022-04-12 알닐람 파마슈티칼스 인코포레이티드 트랜스티레틴(TTR) 관련 질병을 치료하기 위한 RNAi 제제, 조성 및 그의 사용방법
CN105861503A (zh) 2011-11-18 2016-08-17 阿尔尼拉姆医药品有限公司 修饰的RNAi试剂
US8980865B2 (en) 2011-12-22 2015-03-17 Alios Biopharma, Inc. Substituted nucleotide analogs
US9035039B2 (en) * 2011-12-22 2015-05-19 Protiva Biotherapeutics, Inc. Compositions and methods for silencing SMAD4
CN104302768A (zh) 2012-01-09 2015-01-21 诺华股份有限公司 治疗β-联蛋白相关疾病的有机组合物
JP5906327B2 (ja) * 2012-01-18 2016-04-20 バイオニア コーポレーションBioneer Corporation 磁性ナノ粒子−SAMiRNA複合体およびその製造方法
WO2013113326A1 (en) 2012-01-31 2013-08-08 Curevac Gmbh Pharmaceutical composition comprising a polymeric carrier cargo complex and at least one protein or peptide antigen
KR102239887B1 (ko) 2012-02-24 2021-04-13 아뷰터스 바이오파마 코포레이션 트리알킬 양이온성 지질 및 그의 사용 방법
US8916538B2 (en) 2012-03-21 2014-12-23 Vertex Pharmaceuticals Incorporated Solid forms of a thiophosphoramidate nucleotide prodrug
EP2827876A4 (en) 2012-03-22 2015-10-28 Alios Biopharma Inc PHARMACEUTICAL COMBINATIONS WITH A THIONUCLEOTIDE ANALOG
JP6283655B2 (ja) 2012-03-29 2018-02-21 シャイアー ヒューマン ジェネティック セラピーズ インコーポレイテッド イオン化可能なカチオン性脂質
US9133461B2 (en) 2012-04-10 2015-09-15 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of the ALAS1 gene
US9127274B2 (en) 2012-04-26 2015-09-08 Alnylam Pharmaceuticals, Inc. Serpinc1 iRNA compositions and methods of use thereof
EP3272868A1 (en) 2012-05-02 2018-01-24 Arrowhead Pharmaceuticals, Inc. Organic compositions to treat kras-related diseases
EP3536787A1 (en) 2012-06-08 2019-09-11 Translate Bio, Inc. Nuclease resistant polynucleotides and uses thereof
JP6561378B2 (ja) 2012-06-08 2019-08-21 トランスレイト バイオ, インコーポレイテッド 非肺標的細胞へのmRNAの経肺送達
EP2712870A1 (en) 2012-09-27 2014-04-02 Rheinische Friedrich-Wilhelms-Universität Bonn Novel RIG-I ligands and methods for producing them
AU2013359199C1 (en) 2012-12-12 2021-06-17 Massachusetts Institute Of Technology Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications
WO2014122648A1 (en) * 2013-02-05 2014-08-14 B. G. Negev Technologies And Applications Ltd. Positively charged polysaccharides for rna transfection
US20150366890A1 (en) 2013-02-25 2015-12-24 Trustees Of Boston University Compositions and methods for treating fungal infections
CN105247051A (zh) 2013-02-28 2016-01-13 箭头研究公司 治疗epas1相关疾病的有机组合物
KR102311614B1 (ko) 2013-03-14 2021-10-08 샤이어 휴먼 지네틱 테라피즈 인크. Cftr mrna 조성물 및 관련 방법 및 사용
AU2014239184B2 (en) 2013-03-14 2018-11-08 Translate Bio, Inc. Methods and compositions for delivering mRNA coded antibodies
AU2014236396A1 (en) 2013-03-14 2015-08-13 Shire Human Genetic Therapies, Inc. Methods for purification of messenger RNA
CA3120574A1 (en) 2013-03-14 2014-09-25 Dicerna Pharmaceuticals, Inc. Process for formulating an anionic agent
WO2014144423A2 (en) * 2013-03-15 2014-09-18 Techulon Inc. Antisense molecules for treatment of staphylococcus aureus infection
US20140288149A1 (en) 2013-03-15 2014-09-25 Graham Lord Mir-142 and antagonists thereof for treating disease
EP2972360B1 (en) 2013-03-15 2018-03-07 Translate Bio, Inc. Synergistic enhancement of the delivery of nucleic acids via blended formulations
US9784730B2 (en) 2013-03-21 2017-10-10 University Of Washington Through Its Center For Commercialization Nanoparticle for targeting brain tumors and delivery of O6-benzylguanine
AR096203A1 (es) 2013-05-06 2015-12-16 Alnylam Pharmaceuticals Inc Dosificaciones y métodos para administrar moléculas de ácido nucleico formuladas en lípidos
RU2716420C2 (ru) 2013-06-17 2020-03-11 Те Брод Инститьют Инк. Доставка и применение систем crispr-cas, векторов и композиций для целенаправленного воздействия и терапии в печени
BR122021009076B1 (pt) 2013-06-17 2024-02-15 The Broad Institute Inc. Vetor viral contendo molécula(s) de ácido nucleico heterólogo, composição, uso e métodos do mesmo
WO2014204728A1 (en) 2013-06-17 2014-12-24 The Broad Institute Inc. Delivery, engineering and optimization of systems, methods and compositions for targeting and modeling diseases and disorders of post mitotic cells
EP3027222A1 (en) * 2013-07-31 2016-06-08 QBI Enterprises Ltd. Sphingolipid-polyalkylamine-oligonucleotide compounds
RU2723328C2 (ru) 2013-08-21 2020-06-09 Куревак Аг Вакцина против респираторно-синцитиального вируса (рсв)
EP3052626A1 (en) 2013-10-02 2016-08-10 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of the lect2 gene
UA124961C2 (uk) 2013-10-04 2021-12-22 Елнілем Фармасьютикалз, Інк. ДВОНИТКОВА РИБОНУКЛЕЇНОВА КИСЛОТА (dsRNA) ДЛЯ ІНГІБУВАННЯ ЕКСПРЕСІЇ ALAS1
WO2015051135A2 (en) 2013-10-04 2015-04-09 Novartis Ag Organic compositions to treat hepcidin-related diseases
CN105658242A (zh) 2013-10-22 2016-06-08 夏尔人类遗传性治疗公司 用于苯丙酮尿症的mrna疗法
CA2928078A1 (en) 2013-10-22 2015-04-30 Shire Human Genetic Therapies, Inc. Lipid formulations for delivery of messenger rna
EA201690588A1 (ru) 2013-10-22 2016-09-30 Шир Хьюман Дженетик Терапис, Инк. Доставка мрнк в цнс и ее применение
AU2014340092B2 (en) 2013-10-22 2019-09-19 Translate Bio, Inc. mRNA therapy for Argininosuccinate Synthetase Deficiency
WO2015089473A1 (en) 2013-12-12 2015-06-18 The Broad Institute Inc. Engineering of systems, methods and optimized guide compositions with new architectures for sequence manipulation
CA2932479A1 (en) 2013-12-12 2015-06-18 The Rockefeller University Delivery, use and therapeutic applications of the crispr-cas systems and compositions for hbv and viral diseases and disorders
KR20160097338A (ko) 2013-12-12 2016-08-17 더 브로드 인스티튜트, 인코퍼레이티드 뉴클레오티드 반복 장애에서의 crispr-cas 시스템의 조성물 및 방법 및 용도
WO2015089486A2 (en) 2013-12-12 2015-06-18 The Broad Institute Inc. Systems, methods and compositions for sequence manipulation with optimized functional crispr-cas systems
AU2014361826A1 (en) 2013-12-12 2016-06-23 Massachusetts Institute Of Technology Delivery, use and therapeutic applications of the CRISPR-Cas systems and compositions for targeting disorders and diseases using particle delivery components
EP3079725B1 (en) 2013-12-12 2019-10-16 The Broad Institute, Inc. Delivery, use and therapeutic applications of the crispr-cas systems and compositions for genome editing
WO2015148582A1 (en) 2014-03-25 2015-10-01 Arcturus Therapeutics, Inc. Transthyretin allele selective una oligomers for gene silencing
US9856475B2 (en) 2014-03-25 2018-01-02 Arcturus Therapeutics, Inc. Formulations for treating amyloidosis
WO2015148580A2 (en) 2014-03-25 2015-10-01 Arcturus Therapeutics, Inc. Una oligomers having reduced off-target effects in gene silencing
US10369216B2 (en) 2014-04-01 2019-08-06 Curevac Ag Polymeric carrier cargo complex for use as an immunostimulating agent or as an adjuvant
SG11201608798YA (en) * 2014-04-23 2016-11-29 Modernatx Inc Nucleic acid vaccines
CN110511927A (zh) 2014-04-25 2019-11-29 川斯勒佰尔公司 信使rna的纯化方法
JP6557722B2 (ja) 2014-05-30 2019-08-07 シャイアー ヒューマン ジェネティック セラピーズ インコーポレイテッド 核酸の送達のための生分解性脂質
AU2015274367B2 (en) 2014-06-13 2020-11-26 Beth Israel Deaconess Medical Center, Inc. Products and methods to isolate mitochondria
CN111588695A (zh) 2014-06-24 2020-08-28 川斯勒佰尔公司 用于递送核酸的立体化学富集组合物
CN114146063A (zh) 2014-07-02 2022-03-08 川斯勒佰尔公司 信使rna的包封
EP3169784B1 (en) 2014-07-16 2020-06-10 Arrowhead Pharmaceuticals, Inc. Rnai compositions to treat apoc3-related diseases
ES2780904T3 (es) 2014-08-17 2020-08-27 Broad Inst Inc Edición genómica usando nickasas Cas9
US9765333B2 (en) 2014-08-21 2017-09-19 Protiva Biotherapeutics, Inc. Compositions and methods for silencing marburg virus gene expression
CN113599539A (zh) 2014-08-29 2021-11-05 阿尔尼拉姆医药品有限公司 治疗甲状腺素运载蛋白(ttr)介导的淀粉样变性的方法
WO2016038550A1 (en) 2014-09-11 2016-03-17 Novartis Ag Inhibition of prmt5 to treat mtap-deficiency-related diseases
WO2016049163A2 (en) 2014-09-24 2016-03-31 The Broad Institute Inc. Use and production of chd8+/- transgenic animals with behavioral phenotypes characteristic of autism spectrum disorder
WO2016049258A2 (en) 2014-09-25 2016-03-31 The Broad Institute Inc. Functional screening with optimized functional crispr-cas systems
US10479997B2 (en) 2014-12-01 2019-11-19 Novartis Ag Compositions and methods for diagnosis and treatment of prostate cancer
MA56412A (fr) 2014-12-05 2022-05-04 Translate Bio Inc Thérapie par l'arn messager pour le traitement des maladies articulaires
EP3230451B1 (en) 2014-12-12 2021-04-07 The Broad Institute, Inc. Protected guide rnas (pgrnas)
WO2016094880A1 (en) 2014-12-12 2016-06-16 The Broad Institute Inc. Delivery, use and therapeutic applications of crispr systems and compositions for genome editing as to hematopoietic stem cells (hscs)
WO2016094874A1 (en) 2014-12-12 2016-06-16 The Broad Institute Inc. Escorted and functionalized guides for crispr-cas systems
WO2016094872A1 (en) 2014-12-12 2016-06-16 The Broad Institute Inc. Dead guides for crispr transcription factors
WO2016100716A1 (en) 2014-12-18 2016-06-23 Vasant Jadhav Reversirtm compounds
EP3234192B1 (en) 2014-12-19 2021-07-14 The Broad Institute, Inc. Unbiased identification of double-strand breaks and genomic rearrangement by genome-wide insert capture sequencing
WO2016106236A1 (en) 2014-12-23 2016-06-30 The Broad Institute Inc. Rna-targeting system
CA2970370A1 (en) 2014-12-24 2016-06-30 Massachusetts Institute Of Technology Crispr having or associated with destabilization domains
US11045488B2 (en) 2014-12-26 2021-06-29 Nitto Denko Corporation RNA interference agents for GST-π gene modulation
US20180002702A1 (en) 2014-12-26 2018-01-04 Nitto Denko Corporation Methods and compositions for treating malignant tumors associated with kras mutation
US10264976B2 (en) * 2014-12-26 2019-04-23 The University Of Akron Biocompatible flavonoid compounds for organelle and cell imaging
ES2789049T3 (es) * 2014-12-26 2020-10-23 Nitto Denko Corp Agentes de interferencia de ARN para modulación génica de GST-pi
US10792299B2 (en) 2014-12-26 2020-10-06 Nitto Denko Corporation Methods and compositions for treating malignant tumors associated with kras mutation
EP3900702A1 (en) 2015-03-19 2021-10-27 Translate Bio, Inc. Mrna therapy for pompe disease
US10519447B2 (en) 2015-04-01 2019-12-31 Arcturus Therapeutics, Inc. Therapeutic UNA oligomers and uses thereof
EP3277815B1 (en) 2015-04-03 2021-09-22 University of Massachusetts Oligonucleotide compounds for treatment of preeclampsia and other angiogenic disorders
EP3302525A2 (en) 2015-06-05 2018-04-11 Novartis AG Methods and compositions for diagnosing, treating, and monitoring treatment of shank3 deficiency associated disorders
AU2016279077A1 (en) 2015-06-18 2019-03-28 Omar O. Abudayyeh Novel CRISPR enzymes and systems
WO2016205749A1 (en) 2015-06-18 2016-12-22 The Broad Institute Inc. Novel crispr enzymes and systems
WO2016205745A2 (en) * 2015-06-18 2016-12-22 The Broad Institute Inc. Cell sorting
US9790490B2 (en) 2015-06-18 2017-10-17 The Broad Institute Inc. CRISPR enzymes and systems
KR102575342B1 (ko) 2015-06-18 2023-09-05 더 브로드 인스티튜트, 인코퍼레이티드 표적외 효과를 감소시키는 crispr 효소 돌연변이
WO2017015671A1 (en) 2015-07-23 2017-01-26 Arcturus Therapeutics, Inc. Compositions for treating amyloidosis
IL296476A (en) 2015-07-31 2022-11-01 Alnylam Pharmaceuticals Inc Preparations of transthyretin (ttr) irna and methods of using them for the treatment or prevention of ttr-related diseases
US10633653B2 (en) 2015-08-14 2020-04-28 University Of Massachusetts Bioactive conjugates for oligonucleotide delivery
AU2016308339A1 (en) 2015-08-18 2018-04-12 Baylor College Of Medicine Methods and compositions for altering function and structure of chromatin loops and/or domains
WO2017069958A2 (en) 2015-10-09 2017-04-27 The Brigham And Women's Hospital, Inc. Modulation of novel immune checkpoint targets
MA56219A (fr) 2015-10-14 2022-04-20 Translate Bio Inc Modification d'enzymes apparentées à l'arn pour une production améliorée
EP3365441A1 (en) 2015-10-22 2018-08-29 The Broad Institute Inc. Type vi-b crispr enzymes and systems
CA3002922A1 (en) * 2015-10-22 2017-04-27 Modernatx, Inc. Human cytomegalovirus vaccine
WO2017074788A1 (en) 2015-10-27 2017-05-04 The Broad Institute Inc. Compositions and methods for targeting cancer-specific sequence variations
EP3368689B1 (en) 2015-10-28 2020-06-17 The Broad Institute, Inc. Composition for modulating immune responses by use of immune cell gene signature
WO2017075451A1 (en) 2015-10-28 2017-05-04 The Broad Institute Inc. Compositions and methods for evaluating and modulating immune responses by detecting and targeting pou2af1
WO2017075465A1 (en) 2015-10-28 2017-05-04 The Broad Institute Inc. Compositions and methods for evaluating and modulating immune responses by detecting and targeting gata3
EP3373939A4 (en) 2015-11-10 2019-06-26 B.G. Negev Technologies and Applications Ltd., at Ben-Gurion University MEDIUM AND METHOD FOR REDUCING TUMORIGENITY OF CANCER STEM CELLS
WO2017095940A1 (en) 2015-11-30 2017-06-08 Flagship Pioneering, Inc. Methods and compositions relating to chondrisomes from cultured cells
US10975149B2 (en) 2015-12-16 2021-04-13 The Walter And Eliza Hall Institute Of Medical Research Inhibition of cytokine-induced SH2 protein in NK cells
EP3181698A1 (en) 2015-12-16 2017-06-21 European Molecular Biology Laboratory (EMBL) Microrna mir-142 as stem cell marker
US20190233814A1 (en) 2015-12-18 2019-08-01 The Broad Institute, Inc. Novel crispr enzymes and systems
EP3408391A4 (en) 2016-01-31 2019-08-28 University of Massachusetts BRANCHED OLIGONUCLEOTIDES
EP3825400A1 (en) 2016-04-08 2021-05-26 Translate Bio Ma, Inc. Multimeric coding nucleic acid and uses thereof
AU2017253107B2 (en) 2016-04-19 2023-07-20 Massachusetts Institute Of Technology CPF1 complexes with reduced indel activity
CN110382692A (zh) 2016-04-19 2019-10-25 博德研究所 新型crispr酶以及系统
AU2017257274B2 (en) 2016-04-19 2023-07-13 Massachusetts Institute Of Technology Novel CRISPR enzymes and systems
JP2019519228A (ja) * 2016-05-31 2019-07-11 ディーエヌエー ジェノテック インク 水溶液からの洗浄剤の除去のための組成物、システムおよび方法
CN109312313A (zh) 2016-06-13 2019-02-05 川斯勒佰尔公司 用于治疗鸟氨酸转氨甲酰酶缺乏症的信使rna疗法
JP7267013B2 (ja) 2016-06-17 2023-05-01 ザ・ブロード・インスティテュート・インコーポレイテッド Vi型crisprオルソログ及び系
US20210222164A1 (en) 2016-06-29 2021-07-22 The Broad Institute, Inc. Crispr-cas systems having destabilization domain
CA3033368A1 (en) 2016-08-12 2018-02-15 University Of Massachusetts Conjugated oligonucleotides
EP3500670A4 (en) 2016-08-17 2020-08-19 The Broad Institute, Inc. NEW CRISPR SYSTEMS AND ENZYMES
EP3500671A4 (en) 2016-08-17 2020-07-29 The Broad Institute, Inc. NEW CRISPR ENZYMS AND SYSTEMS
US20190262399A1 (en) 2016-09-07 2019-08-29 The Broad Institute, Inc. Compositions and methods for evaluating and modulating immune responses
WO2018047148A1 (en) 2016-09-12 2018-03-15 Novartis Ag Compounds for the inhibition of mirna
US20200016202A1 (en) 2016-10-07 2020-01-16 The Brigham And Women's Hospital, Inc. Modulation of novel immune checkpoint targets
CN112587504B (zh) * 2016-10-17 2022-10-18 南京绿叶制药有限公司 一种抑制bcl-2的反义寡聚核酸的脂质纳米粒及其制备方法
WO2018075980A1 (en) 2016-10-21 2018-04-26 Modernatx, Inc. Human cytomegalovirus vaccine
WO2018083606A1 (en) 2016-11-01 2018-05-11 Novartis Ag Methods and compositions for enhancing gene editing
JP2019508379A (ja) * 2017-02-16 2019-03-28 日東電工株式会社 悪性腫瘍に対する治療方法及び治療用組成物
MA47603A (fr) 2017-02-27 2020-01-01 Translate Bio Inc Nouvel arnm cftr à codons optimisés
CA3056236A1 (en) 2017-03-15 2018-09-20 The Broad Institute, Inc. Novel cas13b orthologues crispr enzymes and systems
CN110799645A (zh) 2017-04-12 2020-02-14 博德研究所 新型vi型crispr直系同源物和系统
US20200405639A1 (en) 2017-04-14 2020-12-31 The Broad Institute, Inc. Novel delivery of large payloads
US11591601B2 (en) 2017-05-05 2023-02-28 The Broad Institute, Inc. Methods for identification and modification of lncRNA associated with target genotypes and phenotypes
BR112019023323A2 (pt) 2017-05-08 2020-07-21 Flagship Pioneering Innovations V, Inc. composições para facilitar a fusão de membrana e usos das mesmas
IL270631B2 (en) 2017-05-16 2024-03-01 Translate Bio Inc Treatment of cystic fibrosis through the administration of mRNA with an optimal codon encoding ctfr
US20200123203A1 (en) 2017-06-13 2020-04-23 Flagship Pioneering Innovations V, Inc. Compositions comprising curons and uses thereof
AU2018297262A1 (en) 2017-07-06 2020-02-27 Arrowhead Pharmaceuticals, Inc. RNAi agents for inhibiting expression of alpha-ENaC and methods of use
EP4085919A3 (en) 2017-07-21 2023-02-08 Novartis AG Compositions and methods to treat cancer
CN111433360B (zh) 2017-09-07 2024-01-12 北京泰德制药股份有限公司 靶向ckip-1的双链rna分子及其用途
MX2020002648A (es) 2017-09-11 2020-07-22 Arrowhead Pharmaceuticals Inc Agentes de iarn y composiciones para inhibir la expresion de la apolipoproteina c-iii (apoc3).
US11806360B2 (en) 2017-09-19 2023-11-07 Alnylam Pharmaceuticals, Inc. Compositions and methods for treating transthyretin (TTR) mediated amyloidosis
JP2020535802A (ja) 2017-09-21 2020-12-10 ザ・ブロード・インスティテュート・インコーポレイテッド 標的化核酸編集のための系、方法、及び組成物
WO2019071054A1 (en) 2017-10-04 2019-04-11 The Broad Institute, Inc. METHODS AND COMPOSITIONS FOR MODIFYING THE FUNCTION AND STRUCTURE OF BUCKLES AND / OR CHROMATIN DOMAINS
WO2019089803A1 (en) 2017-10-31 2019-05-09 The Broad Institute, Inc. Methods and compositions for studying cell evolution
EP3707278A1 (en) 2017-11-09 2020-09-16 Alnylam Pharmaceuticals Inc. Assays and methods for determining expression of the lect2 gene
WO2019094983A1 (en) 2017-11-13 2019-05-16 The Broad Institute, Inc. Methods and compositions for treating cancer by targeting the clec2d-klrb1 pathway
MA51306A (fr) 2017-12-20 2020-10-28 Translate Bio Inc Compositions et procédés améliorés pour le traitement du déficit en ornithine transcarbamylase
WO2019150309A1 (en) 2018-02-02 2019-08-08 Hammack Scott Modulators of gpr68 and uses thereof for treating and preventing diseases
WO2019213276A1 (en) 2018-05-02 2019-11-07 Novartis Ag Regulators of human pluripotent stem cells and uses thereof
EP3814502A4 (en) * 2018-06-29 2022-10-05 John Mansell COMPOSITIONS AND METHODS FOR THE TREATMENT OF ANESTHESIA-RELATED NEUROTOXICITY
WO2020033601A1 (en) 2018-08-07 2020-02-13 The Broad Institute, Inc. Novel cas12b enzymes and systems
SG11202101288TA (en) 2018-08-10 2021-03-30 Univ Massachusetts Modified oligonucleotides targeting snps
TW202020157A (zh) 2018-08-16 2020-06-01 美商艾爾妮蘭製藥公司 用於抑制lect2基因表現之組合物及方法
US20210317429A1 (en) 2018-08-20 2021-10-14 The Broad Institute, Inc. Methods and compositions for optochemical control of crispr-cas9
CN112930396A (zh) 2018-08-24 2021-06-08 川斯勒佰尔公司 用于纯化信使rna的方法
CN113166783A (zh) 2018-10-09 2021-07-23 不列颠哥伦比亚大学 包含无有机溶剂和去污剂的转染活性囊泡的组合物和系统以及与之相关的方法
WO2020097493A1 (en) * 2018-11-09 2020-05-14 Arbutus Biopharma Corporation Negatively charged peg-lipid conjugates
US11166996B2 (en) 2018-12-12 2021-11-09 Flagship Pioneering Innovations V, Inc. Anellovirus compositions and methods of use
TW202039000A (zh) 2018-12-20 2020-11-01 瑞士商休曼斯生物醫藥公司 組合hbv療法
EP3908328A1 (en) 2019-01-10 2021-11-17 BioNTech RNA Pharmaceuticals GmbH Localized administration of rna molecules for therapy
WO2020191102A1 (en) 2019-03-18 2020-09-24 The Broad Institute, Inc. Type vii crispr proteins and systems
WO2020236972A2 (en) 2019-05-20 2020-11-26 The Broad Institute, Inc. Non-class i multi-component nucleic acid targeting systems
US20220290152A1 (en) 2019-09-03 2022-09-15 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of the lect2 gene
US20220389429A1 (en) 2019-10-04 2022-12-08 Alnylam Pharmaceuticals, Inc. Compositions and methods for silencing ugt1a1 gene expression
EP4051796A1 (en) 2019-11-01 2022-09-07 Alnylam Pharmaceuticals, Inc. Compositions and methods for silencing dnajb1-prkaca fusion gene expression
IL295445A (en) 2020-02-10 2022-10-01 Alnylam Pharmaceuticals Inc Preparations and methods for silencing vegf-a expression
EP4127171A2 (en) 2020-03-30 2023-02-08 Alnylam Pharmaceuticals, Inc. Compositions and methods for silencing dnajc15 gene expression
CA3179411A1 (en) 2020-04-06 2021-10-14 Alnylam Pharmaceuticals, Inc. Compositions and methods for silencing myoc expression
CN116134135A (zh) 2020-04-07 2023-05-16 阿尔尼拉姆医药品有限公司 用于沉默scn9a表达的组合物和方法
EP4153746A1 (en) 2020-05-21 2023-03-29 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting marc1 gene expression
AU2021296848A1 (en) 2020-06-24 2023-02-09 Humabs Biomed Sa Engineered hepatitis B virus neutralizing antibodies and uses thereof
US11406703B2 (en) 2020-08-25 2022-08-09 Modernatx, Inc. Human cytomegalovirus vaccine
IL303195A (en) 2020-11-25 2023-07-01 Akagera Medicines Inc Lipid nanoparticles for delivery of nucleic acids and related methods of use
TW202305136A (zh) 2021-04-19 2023-02-01 美商戴瑟納製藥股份有限公司 用於抑制核受體次家族1組別h成員3(nr1h3)表現之組成物與方法
CA3173953A1 (en) 2021-06-11 2023-12-10 Tyson D. BOWEN Rna polymerase iii promoters and methods of use
CA3174095A1 (en) 2021-06-23 2022-12-29 Vignesh Narayan HARIHARAN Optimized anti-flt1 oligonucleotide compounds for treatment of preeclampsia and other angiogenic disorders
CA3226019A1 (en) 2021-07-20 2023-01-26 Ags Therapeutics Sas Extracellular vesicles from microalgae, their preparation, and uses
WO2023014677A1 (en) 2021-08-03 2023-02-09 Alnylam Pharmaceuticals, Inc. Transthyretin (ttr) irna compositions and methods of use thereof
WO2023144798A1 (en) 2022-01-31 2023-08-03 Genevant Sciences Gmbh Ionizable cationic lipids for lipid nanoparticles
WO2023144127A1 (en) 2022-01-31 2023-08-03 Ags Therapeutics Sas Extracellular vesicles from microalgae, their biodistribution upon administration, and uses
WO2023144792A1 (en) 2022-01-31 2023-08-03 Genevant Sciences Gmbh Poly(alkyloxazoline)-lipid conjugates and lipid particles containing same
WO2023196818A1 (en) 2022-04-04 2023-10-12 The Regents Of The University Of California Genetic complementation compositions and methods
WO2023229535A1 (en) 2022-05-27 2023-11-30 Engine Biosciences Pte. Ltd. Bet polypeptide therapeutic agents for generating synthetic lethality in tumors
WO2023232976A1 (en) 2022-06-03 2023-12-07 Ags Therapeutics Sas Extracellular vesicles from genetically-modified microalgae containing endogenously-loaded cargo, their preparation, and uses
WO2024033901A1 (en) 2022-08-12 2024-02-15 LifeEDIT Therapeutics, Inc. Rna-guided nucleases and active fragments and variants thereof and methods of use

Family Cites Families (229)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL154598B (nl) 1970-11-10 1977-09-15 Organon Nv Werkwijze voor het aantonen en bepalen van laagmoleculire verbindingen en van eiwitten die deze verbindingen specifiek kunnen binden, alsmede testverpakking.
US3901654A (en) 1971-06-21 1975-08-26 Biological Developments Receptor assays of biologically active compounds employing biologically specific receptors
US3817827A (en) 1972-03-30 1974-06-18 Scott Paper Co Soft absorbent fibrous webs containing elastomeric bonding material and formed by creping and embossing
US3935074A (en) 1973-12-17 1976-01-27 Syva Company Antibody steric hindrance immunoassay with two antibodies
US3996345A (en) 1974-08-12 1976-12-07 Syva Company Fluorescence quenching with immunological pairs in immunoassays
US4034074A (en) 1974-09-19 1977-07-05 The Board Of Trustees Of Leland Stanford Junior University Universal reagent 2-site immunoradiometric assay using labelled anti (IgG)
US3993754A (en) 1974-10-09 1976-11-23 The United States Of America As Represented By The United States Energy Research And Development Administration Liposome-encapsulated actinomycin for cancer chemotherapy
US3984533A (en) 1975-11-13 1976-10-05 General Electric Company Electrophoretic method of detecting antigen-antibody reaction
US4086257A (en) 1976-10-12 1978-04-25 Sears Barry D Phosphatidyl quaternary ammonium compounds
US4098876A (en) 1976-10-26 1978-07-04 Corning Glass Works Reverse sandwich immunoassay
CH624011A5 (zh) 1977-08-05 1981-07-15 Battelle Memorial Institute
US4394448A (en) 1978-02-24 1983-07-19 Szoka Jr Francis C Method of inserting DNA into living cells
US4235871A (en) 1978-02-24 1980-11-25 Papahadjopoulos Demetrios P Method of encapsulating biologically active materials in lipid vesicles
ATE8584T1 (de) 1980-01-16 1984-08-15 Hans Georg Prof. Dr. Weder Verfahren und dialysiereinrichtung zur herstellung von bilayer-vesikeln und verwendung der bilayer-vesikel.
US4598051A (en) 1980-03-12 1986-07-01 The Regents Of The University Of California Liposome conjugates and diagnostic methods therewith
US4452901A (en) 1980-03-20 1984-06-05 Ciba-Geigy Corporation Electrophoretically transferring electropherograms to nitrocellulose sheets for immuno-assays
US4376110A (en) 1980-08-04 1983-03-08 Hybritech, Incorporated Immunometric assays using monoclonal antibodies
US4522803A (en) 1983-02-04 1985-06-11 The Liposome Company, Inc. Stable plurilamellar vesicles, their preparation and use
US4588578A (en) 1983-08-08 1986-05-13 The Liposome Company, Inc. Lipid vesicles prepared in a monophase
US4515736A (en) 1983-05-12 1985-05-07 The Regents Of The University Of California Method for encapsulating materials into liposomes
US5550289A (en) 1985-01-07 1996-08-27 Syntex (U.S.A.) Inc. N-(1,(1-1)-dialkyloxy)-and N-(1,(1-1)-dialkenyloxy alk-1-yl-N-N,N-tetrasubstituted ammonium lipids and uses therefor
US4897355A (en) 1985-01-07 1990-01-30 Syntex (U.S.A.) Inc. N[ω,(ω-1)-dialkyloxy]- and N-[ω,(ω-1)-dialkenyloxy]-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor
US5208036A (en) 1985-01-07 1993-05-04 Syntex (U.S.A.) Inc. N-(ω, (ω-1)-dialkyloxy)- and N-(ω, (ω-1)-dialkenyloxy)-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor
US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
US4737323A (en) 1986-02-13 1988-04-12 Liposome Technology, Inc. Liposome extrusion method
US5320906A (en) 1986-12-15 1994-06-14 Vestar, Inc. Delivery vehicles with amphiphile-associated active ingredient
US5703055A (en) 1989-03-21 1997-12-30 Wisconsin Alumni Research Foundation Generation of antibodies through lipid mediated DNA delivery
FR2645866B1 (fr) 1989-04-17 1991-07-05 Centre Nat Rech Scient Nouvelles lipopolyamines, leur preparation et leur emploi
US5725871A (en) 1989-08-18 1998-03-10 Danbiosyst Uk Limited Drug delivery compositions comprising lysophosphoglycerolipid
US5286634A (en) 1989-09-28 1994-02-15 Stadler Joan K Synergistic method for host cell transformation
US5225212A (en) 1989-10-20 1993-07-06 Liposome Technology, Inc. Microreservoir liposome composition and method
US5013556A (en) 1989-10-20 1991-05-07 Liposome Technology, Inc. Liposomes with enhanced circulation time
US5707644A (en) 1989-11-04 1998-01-13 Danbiosyst Uk Limited Small particle compositions for intranasal drug delivery
US6753423B1 (en) 1990-01-11 2004-06-22 Isis Pharmaceuticals, Inc. Compositions and methods for enhanced biostability and altered biodistribution of oligonucleotides in mammals
US5279833A (en) 1990-04-04 1994-01-18 Yale University Liposomal transfection of nucleic acids into animal cells
US5264618A (en) 1990-04-19 1993-11-23 Vical, Inc. Cationic lipids for intracellular delivery of biologically active molecules
US6465188B1 (en) 1990-06-11 2002-10-15 Gilead Sciences, Inc. Nucleic acid ligand complexes
US5283185A (en) 1991-08-28 1994-02-01 University Of Tennessee Research Corporation Method for delivering nucleic acids into cells
US6831166B2 (en) 1992-10-23 2004-12-14 Isis Pharmaceuticals, Inc. Derivatized oligonucleotides having improved uptake and other properties
WO1993012240A1 (en) 1991-12-17 1993-06-24 The Regents Of The University Of California Gene therapy for cystic fibrosis transmembrane conductance regulator activity (cftr)
US5858784A (en) 1991-12-17 1999-01-12 The Regents Of The University Of California Expression of cloned genes in the lung by aerosol- and liposome-based delivery
US5756353A (en) 1991-12-17 1998-05-26 The Regents Of The University Of California Expression of cloned genes in the lung by aerosol-and liposome-based delivery
WO1993017125A1 (en) 1992-02-19 1993-09-02 Baylor College Of Medicine Oligonucleotide modulation of cell growth
ATE155681T1 (de) 1992-05-18 1997-08-15 Minnesota Mining & Mfg Einrichtung zur transmucosalen wirkstoffabgabe
EP0646178A1 (en) 1992-06-04 1995-04-05 The Regents Of The University Of California expression cassette with regularoty regions functional in the mammmlian host
US5792451A (en) 1994-03-02 1998-08-11 Emisphere Technologies, Inc. Oral drug delivery compositions and methods
US5334761A (en) 1992-08-28 1994-08-02 Life Technologies, Inc. Cationic lipids
US5578475A (en) 1993-07-12 1996-11-26 Life Technologies, Inc. Composition and methods for transfecting eukaryotic cells
US5426039A (en) 1993-09-08 1995-06-20 Bio-Rad Laboratories, Inc. Direct molecular cloning of primer extended DNA containing an alkane diol
US5674908A (en) 1993-12-20 1997-10-07 Life Technologies, Inc. Highly packed polycationic ammonium, sulfonium and phosphonium lipids
FR2714830B1 (fr) 1994-01-10 1996-03-22 Rhone Poulenc Rorer Sa Composition contenant des acides nucléiques, préparation et utilisations.
FR2715847B1 (fr) 1994-02-08 1996-04-12 Rhone Poulenc Rorer Sa Composition contenant des acides nucléiques, préparation et utilisations.
US6989434B1 (en) 1994-02-11 2006-01-24 Invitrogen Corporation Reagents for intracellular delivery of macromolecules
US6075012A (en) 1994-02-11 2000-06-13 Life Technologies, Inc. Reagents for intracellular delivery of macromolecules
US5639725A (en) 1994-04-26 1997-06-17 Children's Hospital Medical Center Corp. Angiostatin protein
CA2194221C (en) 1994-06-22 2001-01-02 Timothy D. Heath Cationic amphiphiles
FR2722506B1 (fr) 1994-07-13 1996-08-14 Rhone Poulenc Rorer Sa Composition contenant des acides nucleiques, preparation et utilisations
US5908635A (en) 1994-08-05 1999-06-01 The United States Of America As Represented By The Department Of Health And Human Services Method for the liposomal delivery of nucleic acids
US5753613A (en) 1994-09-30 1998-05-19 Inex Pharmaceuticals Corporation Compositions for the introduction of polyanionic materials into cells
US5885613A (en) 1994-09-30 1999-03-23 The University Of British Columbia Bilayer stabilizing components and their use in forming programmable fusogenic liposomes
DE69527206T2 (de) 1994-09-30 2003-02-27 Inex Pharmaceuticals Corp Mittel zum einbringen polyanionischer materialien in zellen
US5820873A (en) 1994-09-30 1998-10-13 The University Of British Columbia Polyethylene glycol modified ceramide lipids and liposome uses thereof
US5627159A (en) 1994-10-27 1997-05-06 Life Technologies, Inc. Enhancement of lipid cationic transfections in the presence of serum
US5580579A (en) 1995-02-15 1996-12-03 Nano Systems L.L.C. Site-specific adhesion within the GI tract using nanoparticles stabilized by high molecular weight, linear poly (ethylene oxide) polymers
IE80468B1 (en) 1995-04-04 1998-07-29 Elan Corp Plc Controlled release biodegradable nanoparticles containing insulin
US20030069173A1 (en) 1998-03-16 2003-04-10 Life Technologies, Inc. Peptide-enhanced transfections
US5705385A (en) 1995-06-07 1998-01-06 Inex Pharmaceuticals Corporation Lipid-nucleic acid particles prepared via a hydrophobic lipid-nucleic acid complex intermediate and use for gene transfer
AU5979296A (en) 1995-06-07 1996-12-30 Life Technologies, Inc. Peptide-enhanced cationic lipid transfections
US5811406A (en) 1995-06-07 1998-09-22 Regents Of The University Of California Dry powder formulations of polynucleotide complexes
AU701106B2 (en) 1995-06-07 1999-01-21 Promega Biosciences, Inc. Novel carbamate-based cationic lipids
US5756122A (en) 1995-06-07 1998-05-26 Georgetown University Liposomally encapsulated nucleic acids having high entrapment efficiencies, method of manufacturer and use thereof for transfection of targeted cells
US6051429A (en) 1995-06-07 2000-04-18 Life Technologies, Inc. Peptide-enhanced cationic lipid transfections
AU705549B2 (en) 1995-06-07 1999-05-27 Promega Biosciences, Inc. Phosphonic acid-based cationic lipids
US7422902B1 (en) 1995-06-07 2008-09-09 The University Of British Columbia Lipid-nucleic acid particles prepared via a hydrophobic lipid-nucleic acid complex intermediate and use for gene transfer
JP4335310B2 (ja) 1995-06-07 2009-09-30 ザ ユニバーシティ オブ ブリティッシュ コロンビア 疎水性脂質−核酸複合中間体を通して調製される脂質−核酸粒子、及び遺伝子移送のための使用
US5981501A (en) 1995-06-07 1999-11-09 Inex Pharmaceuticals Corp. Methods for encapsulating plasmids in lipid bilayers
NZ313839A (en) 1995-07-21 1998-12-23 Genta Inc Amide-based cationic lipids
US6339173B1 (en) 1996-07-22 2002-01-15 Promega Biosciences, Inc. Amide-based cationic lipids
IL115199A (en) 1995-09-07 2005-05-17 Opperbas Holding Bv Composition comprising a polynucleic acid molecule in a liposome and method using said composition
US20030216335A1 (en) 2001-11-30 2003-11-20 Jennifer Lockridge Method and reagent for the modulation of female reproductive diseases and conditions
US20040142895A1 (en) 1995-10-26 2004-07-22 Sirna Therapeutics, Inc. Nucleic acid-based modulation of gene expression in the vascular endothelial growth factor pathway
US6330349B1 (en) 1995-11-30 2001-12-11 Chromavision Medical Systems, Inc. Automated method for image analysis of residual protein
US5998203A (en) 1996-04-16 1999-12-07 Ribozyme Pharmaceuticals, Inc. Enzymatic nucleic acids containing 5'-and/or 3'-cap structures
US6620805B1 (en) 1996-03-14 2003-09-16 Yale University Delivery of nucleic acids by porphyrins
AU2284697A (en) 1996-04-11 1997-10-29 University Of British Columbia, The Fusogenic liposomes
US6713069B1 (en) 1996-04-16 2004-03-30 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Compositions and methods for detecting, preventing, and treating African Hemorrhagic Fever
EP0918790B1 (en) 1996-05-24 2004-01-28 Ic-Vec Limited Polycationic sterol derivatives as transfection agents
US20050119470A1 (en) 1996-06-06 2005-06-02 Muthiah Manoharan Conjugated oligomeric compounds and their use in gene modulation
US5898031A (en) * 1996-06-06 1999-04-27 Isis Pharmaceuticals, Inc. Oligoribonucleotides for cleaving RNA
EP0941122B1 (en) 1996-08-13 2003-10-29 Chiron Corporation Compositions for polynucleotide delivery
US6111085A (en) 1996-09-13 2000-08-29 Isis Pharmaceuticals, Inc. Carbamate-derivatized nucleosides and oligonucleosides
US6174861B1 (en) 1996-10-22 2001-01-16 The Children's Medical Center Corporation Methods of inhibiting angiogenesis via increasing in vivo concentrations of endostatin protein
US6034135A (en) 1997-03-06 2000-03-07 Promega Biosciences, Inc. Dimeric cationic lipids
US5877220A (en) 1997-03-06 1999-03-02 Genta, Incorporated Amide-based oligomeric cationic lipids
US20030229040A1 (en) 1997-03-21 2003-12-11 Georgetown University Cationic liposomal delivery system and therapeutic use thereof
US6126965A (en) 1997-03-21 2000-10-03 Georgetown University School Of Medicine Liposomes containing oligonucleotides
WO1998051278A2 (en) 1997-05-14 1998-11-19 Inex Pharmaceuticals Corporation High efficiency encapsulation of charged therapeutic agents in lipid vesicles
US20030104044A1 (en) 1997-05-14 2003-06-05 Semple Sean C. Compositions for stimulating cytokine secretion and inducing an immune response
WO1999001579A1 (en) 1997-07-01 1999-01-14 Isis Pharmaceuticals, Inc. Compositions and methods for the delivery of oligonucleotides via the alimentary canal
US20030073640A1 (en) 1997-07-23 2003-04-17 Ribozyme Pharmaceuticals, Inc. Novel compositions for the delivery of negatively charged molecules
AU8428998A (en) 1997-07-24 1999-02-16 Inex Pharmaceuticals Corporation Preparation of lipid-nucleic acid particles using a solvent extraction and direct hydration method
JP2001510808A (ja) 1997-07-24 2001-08-07 イネックス ファーマシューティカルズ コーポレイション 核酸触媒の供給のためのリポソーム組成物
US20030036516A1 (en) * 1997-09-10 2003-02-20 Sudhir Agrawal Method for using oligonucleotides having modified cpg dinucleotides
US6320017B1 (en) 1997-12-23 2001-11-20 Inex Pharmaceuticals Corp. Polyamide oligomers
US6410328B1 (en) 1998-02-03 2002-06-25 Protiva Biotherapeutics Inc. Sensitizing cells to compounds using lipid-mediated gene and compound delivery
US7091192B1 (en) 1998-07-01 2006-08-15 California Institute Of Technology Linear cyclodextrin copolymers
US6509323B1 (en) 1998-07-01 2003-01-21 California Institute Of Technology Linear cyclodextrin copolymers
CA2335393C (en) 1998-07-20 2008-09-23 Inex Pharmaceuticals Corporation Liposomal encapsulated nucleic acid-complexes
AU772847B2 (en) 1998-11-12 2004-05-06 Invitrogen Corporation Transfection reagents
DE19956568A1 (de) 1999-01-30 2000-08-17 Roland Kreutzer Verfahren und Medikament zur Hemmung der Expression eines vorgegebenen Gens
ES2278597T3 (es) 1999-02-22 2007-08-16 Georgetown University Inmunoliposomas dirigidos mediante un fragmento de anticuerpo para la administracion sistematica de genes.
JP5117648B2 (ja) 1999-04-20 2013-01-16 ザ・ユニバーシティ・オブ・ブリティッシュ・コロンビア カチオン性peg脂質および使用方法。
US6852334B1 (en) 1999-04-20 2005-02-08 The University Of British Columbia Cationic peg-lipids and methods of use
US7112337B2 (en) 1999-04-23 2006-09-26 Alza Corporation Liposome composition for delivery of nucleic acid
US7098032B2 (en) 2001-01-02 2006-08-29 Mirus Bio Corporation Compositions and methods for drug delivery using pH sensitive molecules
JP5388395B2 (ja) 1999-07-15 2014-01-15 ザ・ユニバーシティ・オブ・ブリティッシュ・コロンビア 脂質に被包された治療剤の製造方法
US6200599B1 (en) 1999-10-07 2001-03-13 The Regents Of The University Of California Ortho ester lipids
US20050037086A1 (en) 1999-11-19 2005-02-17 Zycos Inc., A Delaware Corporation Continuous-flow method for preparing microparticles
US20010044416A1 (en) 2000-01-20 2001-11-22 Mccluskie Michael J. Immunostimulatory nucleic acids for inducing a Th2 immune response
US20070026394A1 (en) * 2000-02-11 2007-02-01 Lawrence Blatt Modulation of gene expression associated with inflammation proliferation and neurite outgrowth using nucleic acid based technologies
US8273866B2 (en) 2002-02-20 2012-09-25 Merck Sharp & Dohme Corp. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (SINA)
US8202979B2 (en) * 2002-02-20 2012-06-19 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid
US7491805B2 (en) 2001-05-18 2009-02-17 Sirna Therapeutics, Inc. Conjugates and compositions for cellular delivery
US20050020525A1 (en) 2002-02-20 2005-01-27 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
US7833992B2 (en) 2001-05-18 2010-11-16 Merck Sharpe & Dohme Conjugates and compositions for cellular delivery
WO2003070918A2 (en) 2002-02-20 2003-08-28 Ribozyme Pharmaceuticals, Incorporated Rna interference by modified short interfering nucleic acid
US20020012998A1 (en) 2000-03-29 2002-01-31 Igor Gonda Cationic liposomes
US7189705B2 (en) 2000-04-20 2007-03-13 The University Of British Columbia Methods of enhancing SPLP-mediated transfection using endosomal membrane destabilizers
CA2410052A1 (en) 2000-06-02 2001-12-13 Zycos Inc. Delivery systems for bioactive agents
US20030072794A1 (en) 2000-06-09 2003-04-17 Teni Boulikas Encapsulation of plasmid DNA (lipogenes™) and therapeutic agents with nuclear localization signal/fusogenic peptide conjugates into targeted liposome complexes
US6680068B2 (en) 2000-07-06 2004-01-20 The General Hospital Corporation Drug delivery formulations and targeting
AU2001278485B2 (en) 2000-07-21 2006-08-03 Societe Des Produits Nestle S.A. Egg-based powder and food containing the same
CA2419894A1 (en) 2000-09-15 2002-03-21 Coley Pharmaceutical Gmbh Process for high throughput screening of cpg-based immuno-agonist/antagonist
US7427394B2 (en) 2000-10-10 2008-09-23 Massachusetts Institute Of Technology Biodegradable poly(β-amino esters) and uses thereof
DE60126801T2 (de) 2000-10-25 2007-12-06 The University Of British Columbia, Vancouver Lipidformulierungen zur zielgerichteten abgabe
WO2002034879A2 (en) 2000-10-27 2002-05-02 Invitrogen Corporation Method for introducing antisense oligonucleotides into eucaryotic cells
CZ308053B6 (cs) * 2000-12-01 2019-11-27 Max Planck Gesellschaft Izolovaná molekula dvouřetězcové RNA, způsob její výroby a její použití
TWI321054B (en) 2000-12-19 2010-03-01 California Inst Of Techn Compositions containing inclusion complexes
GB0106041D0 (en) 2001-03-12 2001-05-02 Cancer Res Ventures Ltd Lipids and liposomes
JP2004525138A (ja) 2001-03-26 2004-08-19 アルザ・コーポレーシヨン 治療剤の改良された細胞内送達のためのリポソーム組成物
US20020192274A1 (en) 2001-03-26 2002-12-19 Ponnappa Biddanda C. pH sensitive liposomal drug delivery
US20030026831A1 (en) 2001-04-20 2003-02-06 Aparna Lakkaraju Anionic liposomes for delivery of bioactive agents
US20040142892A1 (en) 2001-04-30 2004-07-22 The University Of British Columbia Autogene nucleic acids encoding a secretable RNA polymerase
WO2002088318A2 (en) 2001-04-30 2002-11-07 Targeted Genetics Corporation Lipid-comprising drug delivery complexes and methods for their production
US20030077829A1 (en) 2001-04-30 2003-04-24 Protiva Biotherapeutics Inc.. Lipid-based formulations
US20040019001A1 (en) 2002-02-20 2004-01-29 Mcswiggen James A. RNA interference mediated inhibition of protein typrosine phosphatase-1B (PTP-1B) gene expression using short interfering RNA
US20030130186A1 (en) 2001-07-20 2003-07-10 Chandra Vargeese Conjugates and compositions for cellular delivery
US20060211642A1 (en) 2001-05-18 2006-09-21 Sirna Therapeutics, Inc. RNA inteference mediated inhibition of hepatitis C virus (HVC) gene expression using short interfering nucleic acid (siNA)
US20070042983A1 (en) 2001-05-18 2007-02-22 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using short interfering nucleic acid (siNA)
US7109165B2 (en) 2001-05-18 2006-09-19 Sirna Therapeutics, Inc. Conjugates and compositions for cellular delivery
CA2526831C (en) 2001-05-18 2012-07-31 Sirna Therapeutics, Inc. Rna interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (sina)
US20030175950A1 (en) 2001-05-29 2003-09-18 Mcswiggen James A. RNA interference mediated inhibition of HIV gene expression using short interfering RNA
US20050282188A1 (en) 2001-05-18 2005-12-22 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using short interfering nucleic acid (siNA)
DE10127526A1 (de) 2001-05-31 2002-12-12 Novosom Ag Verfahren zur Herstellung und Auflösung von Nano- und Mikrokapseln
US7063860B2 (en) 2001-08-13 2006-06-20 University Of Pittsburgh Application of lipid vehicles and use for drug delivery
US7101995B2 (en) 2001-08-27 2006-09-05 Mirus Bio Corporation Compositions and processes using siRNA, amphipathic compounds and polycations
GB0123401D0 (en) 2001-09-28 2001-11-21 Novartis Forschungsstiftung Methods of inducing gene expression
CN1633598A (zh) 2001-10-05 2005-06-29 科勒制药股份公司 Toll样受体3信号传导的激动剂和拮抗剂
DE10152145A1 (de) 2001-10-19 2003-05-22 Novosom Ag Stabilisierung von Liposomen und Emulsionen
GB0125265D0 (en) * 2001-10-20 2001-12-12 Qinetiq Ltd Optical filter
AU2002368202B2 (en) 2001-11-02 2008-06-05 Insert Therapeutics, Inc Methods and compositions for therapeutic use of RNA interference
DE10157046A1 (de) 2001-11-18 2003-06-12 Novosom Ag Nano- und Mikrokapseln umfassend Reaktivpolymere
AU2002359892A1 (en) 2001-12-31 2003-07-24 Elan Pharmaceuticals, Inc. Efficient nucleic acid encapsulation into medium sized liposomes
EP1478341A4 (en) 2002-01-09 2009-05-20 Transave Inc EFFICIENT ENCAPSULATION OF NUCLEIC ACIDS IN MEDIUM SIZE LIPOSOMES
US20060051315A1 (en) 2002-02-01 2006-03-09 Scaria Puthupparampil V Polymers for delivering peptides and small molecules in vivo
US20060009409A1 (en) 2002-02-01 2006-01-12 Woolf Tod M Double-stranded oligonucleotides
DE10207177A1 (de) 2002-02-19 2003-09-04 Novosom Ag Fakultativ kationische Lipide
US20050222064A1 (en) 2002-02-20 2005-10-06 Sirna Therapeutics, Inc. Polycationic compositions for cellular delivery of polynucleotides
AU2003207708A1 (en) 2002-02-20 2003-09-09 Sirna Therapeutics, Inc. Rna interference mediated inhibition of map kinase genes
AU2003239121A1 (en) 2002-02-22 2003-09-09 Insert Therapeutics, Inc. Carbohydrate-modified polymers, compositions and uses related thereto
US7037520B2 (en) 2002-03-22 2006-05-02 Baylor College Of Medicine Reversible masking of liposomal complexes for targeted delivery
WO2003083443A2 (en) 2002-03-29 2003-10-09 University Of Florida Lipid mediated screening of drug candidates for identification of active compounds
CA2480775C (en) 2002-04-04 2016-05-31 Coley Pharmaceutical Gmbh Immunostimulatory g,u-containing oligoribonucleotides
US8496961B2 (en) 2002-05-15 2013-07-30 Sutter West Bay Hospital Delivery of nucleic acid-like compounds
DE60328383D1 (de) 2002-05-24 2009-08-27 Mirus Bio Corp Zusammensetzungen zur zuführung von nukleinsäuren an zellen
US20040009949A1 (en) 2002-06-05 2004-01-15 Coley Pharmaceutical Group, Inc. Method for treating autoimmune or inflammatory diseases with combinations of inhibitory oligonucleotides and small molecule antagonists of immunostimulatory CpG nucleic acids
JP4722481B2 (ja) 2002-06-28 2011-07-13 プロティバ バイオセラピューティクス リミテッド リポソーム製造方法および装置
CA2500224C (en) 2002-09-25 2015-04-28 University Of Massachusetts In vivo gene silencing by chemically modified and stable sirna
JP2006507841A (ja) * 2002-11-14 2006-03-09 ダーマコン, インコーポレイテッド 機能的siRNAおよび超機能的siRNA
WO2004046324A2 (en) 2002-11-15 2004-06-03 University Of Massachusetts Allele-targeted rna interference
ATE477337T1 (de) 2003-01-16 2010-08-15 Univ Pennsylvania Zusammensetzungen und verfahren zur sirna-hemmung von icam-1
US7682626B2 (en) 2003-02-07 2010-03-23 Roche Madison Inc. Polyvinylethers for delivery of polynucleotides to mammalian cells
ATE426398T1 (de) 2003-02-20 2009-04-15 Constant Res & Dev Ltd Prozess zur herstellung einer dexamethason enthaltenden formulierung zur oralen anwendung
US20040167090A1 (en) 2003-02-21 2004-08-26 Monahan Sean D. Covalent modification of RNA for in vitro and in vivo delivery
US7803781B2 (en) 2003-02-28 2010-09-28 Isis Pharmaceuticals, Inc. Modulation of growth hormone receptor expression and insulin-like growth factor expression
WO2004090105A2 (en) * 2003-04-02 2004-10-21 Dharmacon, Inc. Modified polynucleotides for use in rna interference
US20040198640A1 (en) 2003-04-02 2004-10-07 Dharmacon, Inc. Stabilized polynucleotides for use in RNA interference
EP1608735A4 (en) 2003-04-03 2008-11-05 Alnylam Pharmaceuticals RNAI CONJUGATES
AU2004229519B2 (en) 2003-04-09 2011-07-21 Alnylam Pharmaceuticals, Inc. iRNA conjugates
EP2664672A1 (en) 2003-04-17 2013-11-20 Alnylam Pharmaceuticals Inc. Modified iRNA agents
BRPI0411505A (pt) 2003-06-18 2006-07-25 Yissum Res Dev Co uso de um composto, método para modular a resposta imune de um indivìduo, composição farmacêutica, vacina, complexo, e, kit para a captura de uma molécula biologicamente ativa
EP1635846A4 (en) 2003-06-20 2009-01-28 Coley Pharm Gmbh SMALL MOLECULAR TLR (TOLL-LIKE RECEPTOR) ANTAGONISTS
AU2004257373B2 (en) 2003-07-16 2011-03-24 Arbutus Biopharma Corporation Lipid encapsulated interfering RNA
US20050136437A1 (en) * 2003-08-25 2005-06-23 Nastech Pharmaceutical Company Inc. Nanoparticles for delivery of nucleic acids and stable double-stranded RNA
JP4842821B2 (ja) 2003-09-15 2011-12-21 プロチバ バイオセラピューティクス インコーポレイティッド ポリエチレングリコール修飾脂質化合物およびその使用
US7615539B2 (en) 2003-09-25 2009-11-10 Coley Pharmaceutical Group, Inc. Nucleic acid-lipophilic conjugates
CA2542835A1 (en) * 2003-10-23 2005-05-19 Sirna Therapeutics, Inc. Rna interference mediated inhibition of gene expression using short interfering nucleic acid (sina)
US20050239733A1 (en) 2003-10-31 2005-10-27 Coley Pharmaceutical Gmbh Sequence requirements for inhibitory oligonucleotides
US20050100983A1 (en) 2003-11-06 2005-05-12 Coley Pharmaceutical Gmbh Cell-free methods for identifying compounds that affect toll-like receptor 9 (TLR9) signaling
WO2005078094A2 (en) 2004-02-06 2005-08-25 Dharmacon, Inc. Stabilized rnas as transfection controls and silencing reagents
EP1720568A2 (en) 2004-02-19 2006-11-15 Coley Pharmaceutical Group, Inc. Immunostimulatory viral rna oligonucleotides
US20060019916A1 (en) 2004-04-02 2006-01-26 Coley Pharmaceutical Group, Inc. Immunostimulatory nucleic acids for inducing IL-10 responses
US7755603B2 (en) * 2004-05-24 2010-07-13 Alps Electric Co., Ltd. Coordinate input device
EP1781593B1 (en) 2004-06-07 2011-12-14 Protiva Biotherapeutics Inc. Cationic lipids and methods of use
JP4796062B2 (ja) 2004-06-07 2011-10-19 プロチバ バイオセラピューティクス インコーポレイティッド 脂質封入干渉rna
EP1773857A4 (en) 2004-07-02 2009-05-13 Protiva Biotherapeutics Inc THE IMMUNE SYSTEM STIMULATING SIRNA MOLECULES AND APPLICATIONS THEREOF
US20060051405A1 (en) * 2004-07-19 2006-03-09 Protiva Biotherapeutics, Inc. Compositions for the delivery of therapeutic agents and uses thereof
CN101133074B (zh) 2004-09-24 2012-05-30 阿尔尼拉姆医药品有限公司 APOB的RNAi调节及其用途
US20060134189A1 (en) 2004-11-17 2006-06-22 Protiva Biotherapeutics, Inc siRNA silencing of apolipoprotein B
US8003619B2 (en) 2004-12-09 2011-08-23 Alnylam Pharmaceuticals, Inc. Method of stimulating an immune response and inhibiting expression of a gene using an oligonucleotide
WO2006074546A1 (en) 2005-01-13 2006-07-20 Protiva Biotherapeutics, Inc. Lipid encapsulated interfering rna
AU2006236453B2 (en) * 2005-01-25 2012-02-23 Board Of Regents, The University Of Texas System Delivery of siRNA by neutral lipid compositions
SG124419A1 (en) 2005-02-03 2006-08-30 Agency Science Tech & Res Polycations capable of forming complexes with nucleic acids
CA2597724A1 (en) 2005-02-14 2007-08-02 Sirna Therapeutics, Inc. Cationic lipids and formulated molecular compositions containing them
US20060228406A1 (en) 2005-03-17 2006-10-12 Invitrogen Corporation Transfection reagent for non-adherent suspension cells
LT2578685T (lt) 2005-08-23 2019-06-10 The Trustees Of The University Of Pennsylvania Rnr, apimančios modifikuotus nukleozidus ir jų panaudojimo būdai
EP1764108A1 (en) 2005-09-14 2007-03-21 Gunther Hartmann Compositions comprising immunostimulatory RNA oligonucleotides and methods for producing said RNA oligonucleotides
WO2007048046A2 (en) * 2005-10-20 2007-04-26 Protiva Biotherapeutics, Inc. Sirna silencing of filovirus gene expression
EP2395012B8 (en) 2005-11-02 2018-06-06 Arbutus Biopharma Corporation Modified siRNA molecules and uses thereof
US20070218122A1 (en) 2005-11-18 2007-09-20 Protiva Biotherapeutics, Inc. siRNA silencing of influenza virus gene expression
WO2007133800A2 (en) 2006-05-15 2007-11-22 University Of Kentucky Toll-like receptor (tlr) stimulation for ocular angiogenesis and macular degeneration
US7915399B2 (en) 2006-06-09 2011-03-29 Protiva Biotherapeutics, Inc. Modified siRNA molecules and uses thereof
CA2660204A1 (en) 2006-08-16 2008-02-21 Protiva Biotherapeutics, Inc. Nucleic acid modulation of toll-like receptor-mediated immune stimulation
NZ588583A (en) 2008-04-15 2012-08-31 Protiva Biotherapeutics Inc Novel lipid formulations for nucleic acid delivery
DE102008028754A1 (de) * 2008-06-17 2009-12-24 Bernd Hansen Vorrichtung zum Herstellen und Befüllen von Behältern
US20110071208A1 (en) 2009-06-05 2011-03-24 Protiva Biotherapeutics, Inc. Lipid encapsulated dicer-substrate interfering rna
US8283333B2 (en) 2009-07-01 2012-10-09 Protiva Biotherapeutics, Inc. Lipid formulations for nucleic acid delivery
CA2767129C (en) 2009-07-01 2015-01-06 Protiva Biotherapeutics, Inc. Compositions and methods for silencing apolipoprotein b
ES2702428T3 (es) 2010-11-15 2019-02-28 Life Technologies Corp Reactivos de transfección que contienen amina y métodos para prepararlos y usarlos

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103492569A (zh) * 2010-11-05 2014-01-01 米拉根医疗公司 碱基经修饰的寡核苷酸
CN104114571A (zh) * 2011-10-05 2014-10-22 普洛体维生物治疗公司 用于沉默醛脱氢酶的组合物和方法
CN104487055A (zh) * 2012-03-29 2015-04-01 夏尔人类遗传性治疗公司 脂质衍生的中性纳米颗粒
CN105163721A (zh) * 2012-05-23 2015-12-16 俄亥俄州立大学 脂质纳米颗粒组合物以及制备和使用其的方法
CN105163721B (zh) * 2012-05-23 2018-05-22 俄亥俄州立大学 脂质纳米颗粒组合物以及制备和使用其的方法
CN114181942A (zh) * 2014-08-20 2022-03-15 阿尔尼拉姆医药品有限公司 经修饰的双链rna试剂
CN108601794A (zh) * 2015-12-04 2018-09-28 联邦科学技术研究组织 调节细胞因子产生
CN109475624A (zh) * 2016-03-29 2019-03-15 瓦尔基里治疗有限公司 染色体-1表达的结构维持的调节
CN110325540A (zh) * 2016-11-07 2019-10-11 纳诺索尔公司 转录后化学修饰的双链rna
US11174480B2 (en) 2016-11-07 2021-11-16 nanoSUR LLC Post-transcriptionally chemically modified double strand RNAs
CN112707943A (zh) * 2020-12-31 2021-04-27 北京大学 结合5′-末端缀合物和中性/阳离子混合脂材包载的小干扰rna及其修饰方法

Also Published As

Publication number Publication date
US20140179756A1 (en) 2014-06-26
CA2628300C (en) 2018-04-17
AU2006308765A8 (en) 2008-06-05
AU2006308765A1 (en) 2007-05-10
EP1948674A1 (en) 2008-07-30
EP2395012B1 (en) 2018-04-18
US9074208B2 (en) 2015-07-07
US8513403B2 (en) 2013-08-20
US8188263B2 (en) 2012-05-29
IL191192A (en) 2012-06-28
US8101741B2 (en) 2012-01-24
US20120328668A1 (en) 2012-12-27
JP5336853B2 (ja) 2013-11-06
EP2395012A2 (en) 2011-12-14
AU2006308765B2 (en) 2013-09-05
US20070135372A1 (en) 2007-06-14
JP2009513151A (ja) 2009-04-02
EP2395012A3 (en) 2012-03-14
HK1126785A1 (zh) 2009-09-11
EP1948674A4 (en) 2009-02-04
CN101346393B (zh) 2015-07-22
WO2007051303A1 (en) 2007-05-10
US20090270481A1 (en) 2009-10-29
CA2628300A1 (en) 2007-05-10
EP2395012B8 (en) 2018-06-06

Similar Documents

Publication Publication Date Title
CN101346393B (zh) 修饰的siRNA分子及其应用
US7838658B2 (en) siRNA silencing of filovirus gene expression
CN102119217B (zh) 用于核酸递送的新型制剂
AU2008342535B2 (en) Silencing of polo-like kinase expression using interfering RNA
US7915399B2 (en) Modified siRNA molecules and uses thereof
AU2009236219B8 (en) Silencing of CSN5 gene expression using interfering RNA
US20070218122A1 (en) siRNA silencing of influenza virus gene expression
EP2199298A1 (en) Sirna silencing of Apolipoprotein B
US20090149403A1 (en) siRNA silencing of genes expressed in cancer
CN1981044A (zh) 包封干扰rna的脂质
CA2660204A1 (en) Nucleic acid modulation of toll-like receptor-mediated immune stimulation
AU2013203219B2 (en) MODIFIED siRNA MOLECULES AND USES THEREOF
AU2013202970A1 (en) Silencing of polo-like kinase expression using interfering RNA

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1126785

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1126785

Country of ref document: HK

TR01 Transfer of patent right

Effective date of registration: 20180808

Address after: Vancouver, Canada

Patentee after: Wild strawberry bio pharmaceutical company

Address before: British Columbia

Patentee before: Protiva Biotherapeutics Inc.

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150722

Termination date: 20191102

CF01 Termination of patent right due to non-payment of annual fee