CN101426617A - 分子存储器和用于加工它的处理系统与方法 - Google Patents

分子存储器和用于加工它的处理系统与方法 Download PDF

Info

Publication number
CN101426617A
CN101426617A CN200580013610.4A CN200580013610A CN101426617A CN 101426617 A CN101426617 A CN 101426617A CN 200580013610 A CN200580013610 A CN 200580013610A CN 101426617 A CN101426617 A CN 101426617A
Authority
CN
China
Prior art keywords
molecule
counterelectrode
working electrode
electrochemical cell
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200580013610.4A
Other languages
English (en)
Other versions
CN101426617B (zh
Inventor
K·J·莫布利
A·R·加洛
R·什里瓦斯塔瓦
T·德波尔斯克
W·库尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZettaCore Inc
Original Assignee
ZettaCore Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZettaCore Inc filed Critical ZettaCore Inc
Priority claimed from PCT/US2005/015070 external-priority patent/WO2006031260A2/en
Publication of CN101426617A publication Critical patent/CN101426617A/zh
Application granted granted Critical
Publication of CN101426617B publication Critical patent/CN101426617B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0009RRAM elements whose operation depends upon chemical change
    • G11C13/0014RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0009RRAM elements whose operation depends upon chemical change
    • G11C13/0014RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material
    • G11C13/0016RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material comprising polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/701Organic molecular electronic devices

Abstract

本发明公开了分子存储器,即掺入了用于电荷存储的分子的存储器。还公开了分子存储单元、分子存储阵列和包括分子存储器的电子装置,以及用于制造分子存储器的加工系统和方法。在此还公开了使得半导体装置和互连部件能够采用分子存储器集成制造的制造分子存储器的方法。

Description

分子存储器和用于加工它的处理系统与方法
相关申请
[0001]本申请是(A)提交于2005年1月28日的名称为“MolecularMemory Devices and Methods”的美国专利申请号11/046,518和(B)提交于2004年4月29日的名称为“Systems,Tools and Methods forProduction of Molecular Memory”的美国专利申请号10/834,630的部分继续申请,其全部内容在此引入作为参考。
技术领域
[0002]本申请公开的实施方案广泛涉及分子存储器,即掺入了用于电荷存储的分子的存储器。更具体而言,本申请公开的实施方案涉及分子存储单元、分子存储器阵列、包括分子存储器的电子设备和用于生产分子存储器的加工系统和方法。
背景技术
[0003]半导体加工和装置设计的进步导致计算装置被掺入无穷类型的从常规的可编程计算机到通讯设备和娱乐装置的工具和设备中。不论其最终目的如何,计算装置一般都包括中央处理器(CPU)、随机存取存储器(RAM)和使CPU与RAM之间能够进行数据交换的访问与通信机构。在计算装置中,数据以信号(例如,电压、电流和光等等)的形式进行存储、通讯和处理。CPU包含逻辑处理上述信号的线路,同时存储器包含在CPU处理那些信号之前、期间和之后用于存储这些信号的线路。
[0004]通常将CPU、储存装置和数据通信机构集成为固体电子元件装置。虽然有时称为“半导体装置”,但是,固体电子元件装置有赖于多种固体材料(包括金属、半导体和绝缘体)的电学性能。近年来,生产固体器件的技术和设备得到了显著的改良,已经能够生产具有亚微米尺寸的构造的装置了,比如开关、电容、电阻和相互连接器。
[0005]当今,存储装置在单个集成电路中实现了数百兆位的存储。这些装置包括易失性存储器(例如,动态随机存储器(DRAM)和静态随机存储器(SRAM))和非易失性存储器(例如,电可擦可编程只读存储器(EEPROM)、可擦EPROM、铁电DRAM)等。存储器生产系统和工艺还持续推动了精细几何布图和制作工艺的限度。
[0006]计算装置存储器部件的性能已经成为决定总体系统性能的愈加重要的因素。更大容量的存储器使得更多种类的应用和功能能够通过计算装置得到实现,并且可以降低或者消除对分离的大量存储装置的需求。更高的存储速度保证了更高的CPU处理频率,使得计算装置更适用于复杂的任务或者实时任务。密集的储存装置支撑着增多种类的电池供电电子装置,比如便携式计算机、PDA和多功能移动电话等。同时,许多上述应用都受益于降低的能量消耗。
[0007]在多种情形中,半导体加工工艺的改进导致能够制造更密集、更大、更快和更高能量效率的储存装置。在多种情形中,所述装置的固态电子性能由于所述装置变得更小而得到改进。不幸地,比如硅基DRAM存储器的常规内存已经达到了临界点,常规半导体存储器单元尺寸的继续降低预计将会不利地影响一些重要参数和不合意地增加成本。
[0008]在较小尺寸时速度降低和能量消耗增加的原因之一是存储单元通常要为每个存储信息单位提供电容器。电容器是由导电板形成的电荷存储装置,所述导电板通过绝缘体隔开。当电容器较小时,其能够存储的电荷数量也会降低。为了在存储单元中充当可靠的存储装置,电容器需要具有容纳一定水平的信号的充分容量,该水平的信号可以被可靠地检测为数据。此外,常规的电容器会随时间经连接到每个存储位置的开关或者晶体管而损失它们存储的电荷。晶体管是固有地具有“渗漏”作用的装置,一些存储在电容器中的电荷随时间将会被消散或者泄漏。基于较小电容器的存储单元对渗漏问题更为敏感,因为它们仅仅具有较少的在存储数据不可恢复之前可以失去的电荷。这还会导致它们的可靠性降低。
[0009]为了克服电容存储的瞬时性质,存储装置可以利用通常读出存储信号、将其放大至较高水平和将其存储回电容器的更新电路。由于分配给电容器的物理面积被降低,因此在较小可用面积时愈加难以保持相同的电荷存储容量。除非与降低存储容量相联系的渗漏可以得到降低,否则必须增加电容器的更新频率。然而,较高的电容器刷新速率将会降低存储单元用于读取和写入数据的时间百分比。此外,此时存储器总能量消耗中更高的百分比部分将用于刷新存储器。即使当所述装置处于休眠状态或者待用状态时,常规的DRAM也需要持续刷新,由此将持续进行能量消耗。据此,研究人员开始积极寻求克服常规的基于电容器的存储单元中与较小的平版印刷特征和复杂的电容器几何结构相联系的问题的存储数据信号的新方法。
[0010]存储单元设计者试图通过提高可以在定量基片面积中形成的容量值,在较小的存储单元中保持低刷新速率。提高电容量通常包括增加电容器的电荷容纳材料的表面积,但是当电容器的总体尺寸被缩小时这是很难实现的。虽然设计者通过将电荷容纳材料形成为三维槽和叠层电容器设计,在控制表面积上取得了某些成功,但是为了在较小的单元中形成充分的电容量,仅仅这些技术未必可靠。当各种单元零件的尺寸变小时,预期基于单元性能的固体电子元件的行为开始衰减,使得电容器不能再存储充分的电荷达充分的时间,以满足存储单元的应用需要。
[0011]一种缓解该问题的可能方法是采用分子装置,该分子装置用分子级结构和组件完成了电子装置或者系统的一些或者全部组件。这些分子级结构和部件显示出了分子特性,而不是固体特性,这在多种情形中可以提供增强的性能。此外,由于分子,下至单个分子水平都保持其主要的性能,因此当未来处理工具和工艺得到开发时,分子级部件和装置结构可以被标度(或者缩小)。
[0012]分子在电子装置(比如开关、电容器和导体等等)中能否得到广泛应用取决于连接化学过程和以合理生产率和成本实现高产率的工艺的开发。然而,迄今为止,设备供应商和工具开发设计者都没有开发出用于应用连接化学的有效工具和工艺,其中所述化学过程可以用于分子电子装置的制造中。对于广泛应用,分子级部件需要能够将期望的化学物质连接到基质、其它装置结构以及彼此连接的可重复工艺。此外,为了使新型部件(例如,用于电荷存储的微米或者亚微米尺寸的电化学电池)能够与半导体部件结合起来,需要形成分子结构的稳固工艺。
[0013]对于分子装置制造工艺,可以合意地使其与现有半导体工业工艺兼容,并且可以合意地应用现有半导体工业工具或者其改进。然而,分子装置工艺对于多种对半导体加工具有不同影响的变量和条件都是灵敏的。例如,在差不多整个半导体制造工艺中,水作为清洗液并且以环境湿度的形式存在。然而,由于水分子妨碍连接化学或者破坏活性分子,因此水会对一些分子工艺具有破坏性作用。类似地,在半导体加工工艺中,稀薄的自然形成的氧化层和极低的杂质含量也是可以容忍的,因为这些异常特征的总作用与总体设备功能相比是极小的。相比之下,当装置采用分子级零件进行构造时,这些分子级缺陷会变得显著。
[0014]存储器设计者面临的另一难题是要设法增加信息密度(例如,可以存储到含有存储器的芯片给定区域中的信息量)。在目前的DRAM技术的实际限制下,具有常规固态电容器的每个存贮单元只能存储一位信息。据此,可以合意地使存储器(和用于此的处理系统和方法)具有改良的信息存储密度,例如通过使用可以可靠地存储多于两个离散状态的存储单元。
[0015]由上述可知,需要改良的存储装置。特别是需要分子存储单元、分子存储器阵列和包括分子存储器的电子装置。此外,需要用于制造分子存储器的更为有效的工具和工艺。此外,需要可以通过使用与现有半导体制造实践相兼容的技术制造的分子存储器,从而使得半导体装置和互相连接器可以与分子存储器一起得到制造。
发明概述
[0016]本发明满足上述需求。
[0017]本发明的一方面涉及包括微米或者亚微米尺寸的电化学电池的分子存储装置。所述电化学电池包括工作电极;反电极;辅助反电极;连接工作电极、反电极和辅助反电极的电解质;和与至少一个电极电连接的氧化还原活性分子。
[0017]本发明的另一方面涉及包括与微米或者亚微米尺寸的电化学电池相连接的开关装置的存储元件。所述电化学电池包括工作电极;反电极;辅助反电极;连接工作电极、反电极和辅助反电极的电解质;和与至少一个电极电连接的氧化还原活性分子。
[0019]本发明的另一方面涉及包括一系列存储元件的存储器阵列。至少一些存储元件包括与微米或者亚微米尺寸的电化学电池相连接的开关装置。所述电化学电池包括工作电极;反电极;辅助反电极;连接工作电极、反电极和辅助反电极的电解质;和与至少一个电极电连接的氧化还原活性分子。
[0020]本发明的另一方面涉及计算装置,其包括与包括一系列存储元件的分子存储器相连接的中央处理器。至少一些存储元件包括与微米或者亚微米尺寸的电化学电池相连接的开关装置。所述电化学电池包括工作电极;反电极;辅助反电极;连接工作电极、反电极和辅助反电极的电解质;和与至少一个电极电连接的氧化还原活性分子。
[0021]本发明的另一方面涉及包括微米或者亚微米尺寸的电化学电池的分子存储装置。所述电化学电池包括与化学吸附的存储分子层电连接的工作电极;与化学吸附的氧化还原活性分子层电相连接的反电极;和连接所述工作电极和反电极的电解质。
[0022]本发明的另一方面涉及包括与微米或者亚微米尺寸的电化学电池相连接的开关装置的存储元件。所述电化学电池包括与化学吸附存储分子层电连接的工作电极;与化学吸附的氧化还原活性分子层电连接的反电极;和连接所述工作电极和反电极的电解质。
[0023]本发明的另一方面涉及包括一系列存储元件的存储器阵列。至少一些存储元件包括与微米或者亚微米尺寸的电化学电池相连接的开关装置。所述电化学电池包括与化学吸附存储分子层电相连接的工作电极;与化学吸附氧化还原活性分子层电相连接的反电极;和连接所述工作电极和反电极的电解质。
[0024]本发明的另一方面涉及计算装置,其包括与包括一系列存储元件的分子存储器相连接的中央处理器。至少一些存储元件包括与微米或者亚微米尺寸的电化学电池相连接的开关装置。所述电化学电池包括与化学吸附的存储分子层电相连接的工作电极;与化学吸附的氧化还原活性分子层电相连接的反电极;和连接所述工作电极和反电极的电解质。
[0025]本发明的另一方面涉及通过将位线连接至电化学电池来读取分子存储器装置的方法。所述电化学电池包括与存储分子相连接的工作电极;反电极;辅助反电极;和连接所述工作电极、反电极和辅助反电极的电解质。所述位线用于监测指示存储分子的氧化态的电位的变化。
[0026]本发明的另一方面涉及通过将位线连接至电化学电池来写入分子存储器装置的方法。所述电化学电池包括与存储分子相连接的工作电极;反电极;辅助反电极;和连接所述工作电极、反电极和辅助反电极的电解质。对位线施加电位差,从而设定存储分子的氧化态。
[0027]本发明的另一方面涉及通过将位线连接至电化学电池来读取分子存储器装置的方法。所述电化学电池包括与化学吸附的存储分子层电相连接的工作电极;与化学吸附氧化还原活性分子层电相连接的反电极;和连接所述工作电极和反电极的电解质。所述位线用于监测指示存储分子的氧化态的电位的变化。
[0028]本发明的另一方面涉及通过将位线连接至电化学电池来写入分子存储器装置的方法。所述电化学电池包括与化学吸附的存储分子层电相连接的工作电极;与化学吸附的氧化还原活性分子层电相连接的反电极;和连接所述工作电极和反电极的电解质。对位线施加电位差,从而设定存储分子的氧化态。
[0029]本发明的另一方面涉及一种装置,其包括涂覆元件,它被构造成用于将氧化还原活性分子沉积在单元制造的半导体片上;包含所述涂覆元件的封闭室;一个或多个气体传感器,用于监测封闭室内的一种或多种气体;和控制系统,它管理涂覆元件的操作。
[0030]本发明的另一方面涉及一种装置,其包括加热元件,它被构造成用于使单独制造的半导体片退火至350~450℃;包含所述加热元件的封闭室;一个或多个气体传感器,用于监测封闭室内的一种或多种气体;和控制系统,它管理加热元件的操作。
[0031]本发明的另一方面涉及一种集成装置,其包括涂覆元件,它被构造成用于将氧化还原活性分子沉积在单独制造的半导体片上;加热元件,它被构造成用于使单独制造的半导体片退火至350~450℃;包含所述涂覆元件和加热元件的封闭室;一个或多个气体传感器,监控一个或者多个封闭室内的一种或多种气体;和控制系统,控制涂覆元件和加热元件的操作。
[0032]本发明的另一方面涉及一种装置,其包括涂布元件,它被构造成用于将电解质沉积在单独制造的半导体片上;包含所述涂布元件的封闭室;一个或多个气体传感器,它监控封闭室内的一种或多种气体;和控制系统,它管理涂布元件的操作。
[0033]本发明的另一方面涉及一种在单独制造的半导体片上形成一系列分子存储装置的方法,通过:形成一系列工作电极;形成一个或多个用于所述系列分子存储装置的辅助反电极;将存储分子连接到工作电极上;形成一种或多种用于所述系列分子存储装置的电解质;和形成一个或多个用于所述系列分子存储装置的反电极。
[0034]本发明的另一方面涉及一种方法,其包括在第一监测的气体环境下,将氧化还原活性分子沉积在单独制造的半导体片的表面;在第二监测的气体环境下,将一些氧化还原活性分子化学连接到半导体片上的许多工作电极的表面上;将未连接的氧化还原活性分子从半导体片上除去;在半导体片上形成电解质;和将导体沉积在电解质上。
附图简述
[0035]为了更透彻地理解本发明上述方面及其另外的方面和实施方案,应当结合以下附图对下述实施方案说明进行参考,其中相同的附图标记引用整个附图中的对应部分。
[0036]图1是根据本发明一种实施方案的分子存储装置的示意性剖面图。
[0037]图2a和2b为根据本发明一种实施方案的一系列分子存储装置中分子存储装置的示意性剖面图,所述的一系列分子存储装置被构造为在工作电极和反电极上都具有氧化还原活性分子的电化学电池。
[0038]图3a和3b为根据本发明一种实施方案的一系列分子存储装置中分子存储装置的示意性剖面图,所述的一系列分子存储装置被构造为具有工作电极、反电极和一个或多个辅助反电极的电化学电池。
[0039]图4是根据本发明另一实施方案的分子存储装置的示意性剖面图,其中所述分子存储装置被构造成具有工作电极、反电极和辅助反电极的电化学电池。
[0040]图5为根据本发明一种实施方案的槽或者“暗沟孔”分子存储装置及其掺入存储元件组成中的示意性剖面图。
[0041]图6是掺入了分子存储器阵列的分子存储器的示意性方框图。
[0042]图7是根据本发明一种实施方案的在具有嵌入的分子存储器的芯片上的系统的示意性方框图。
[0043]图8是根据本发明一种实施方案的存储单元的示意电路图。
[0044]图9是根据本发明一种实施方案的表示从分子存储器读取数据的方法的流程图。
[0045]图10是表示三态(两个氧化态加上基态)单体卟啉存储分子的伏安特性的例证性循环伏安图。
[0046]图11是根据本发明一种实施方案的表示向分子存储器写入数据的方法的流程图。
[0047]图12描绘了具有多重不同氧化态的存储分子的例证性电流-电压伏安图。
[0048]图13为图5存储元件部件的例证性伏安特性曲线,该部件中应用了具有多重不同氧化态的存储分子。
[0049]图14a和14b为根据本发明两种实施方案的读取分子存储单元的逻辑状态的两种布置的示意性方框图。
[0050]图15是根据本发明一种实施方案的分子存储器和支撑界面和控制逻辑的示意图。
[0051]图16是根据本发明一种实施方案的分子连接加工工具的示意图。
[0052]图17a和17b分别为根据本发明一种实施方案的热处理单元的顶视示意图和侧视示意图。
[0053]图18是与电极表面吸附差的存储分子的示意图。
[0054]图19表示与电极表面连接差的存储分子的例证性电流-电压曲线。
[0055]图20是说明根据本发明一种实施方案的分子连接加工工具控制系统的方框图。
[0056]图21是根据本发明一种实施方案的电解质加工工具的示意图。
[0057]图22是说明根据本发明一种实施方案的电解质加工工具控制系统的方框图。
[0058]图23是根据本发明一种实施方案的批处理工具的部分示意图。
[0059]图24a~24d图解说明了在根据本发明的一种实施方案的各种加工阶段的分子电子装置的一部分。
[0060]图25是表示根据本发明一种实施方案的制造一系列分子存储装置的方法流程图。
[0061]图26是表示根据本发明一种实施方案的制造具有辅助反电极的分子存储装置的方法流程图。
[0062]图27a~27i是表示根据本发明一种实施方案的制造具有辅助反电极的分子存储装置的方法的横截面示意图。
[0063]图28a至28h分别表示了氧化还原活性分子的结构式,在图28a中为茂金属,其具体实施方案为图28b~28g的二茂铁形式,和在图28h中为卟啉。
[0064]图29a、29b和29c描绘了各种氧化还原活性分子。图29a表明了包括两个氧化还原活性亚基、卟啉和二茂铁的氧化还原活性分子。图29b与图29a类似,但是描绘了可能的取代基。图29c描绘了图29b结构的聚合物,其中n为至少为2的整数。
[0065]图30a、30b和30c示意地描绘了多种聚合物构造。图30a描绘了在电极3015上,独立选择的氧化还原活性分子3000与独立选择的连接物3010的Z-方向线性聚合物,n为0或者更大的整数,优选1~8,并且连接部分未描绘出来。图30b描绘了具有交联3015的如图30a中所示的Z-方向线性聚合物。如下所述,还可以考虑枝状的具有一个或者多个分枝点的Z-方向聚合物。图30c描绘了具有多个连接部分3020的X-Y方向线性氧化还原活性分子聚合物;还考虑了包括不同氧化还原活性分子的线性聚合物的表面,同样可以使用均聚物或者杂聚物。分枝的氧化还原活性分子聚合物还可以具有任选的交联。
[0066]图31描绘了大环配体(例如,前配体(proligand)(当q为0时)或者配合物(当q为1时))。
[0067]图32a、32b和32c描绘了多种氧化还原活性分子。这些结构将氮用作配位杂原子,不过也可以使用其它杂原子(特别是氧和硫)(本领域熟练技术人员应当理解,大环的化合价可以改变)。图32a为酞菁衍生物,图32b为卟啉衍生物,和图32c为扩展的卟啉。
[0068]图33a~33i描绘了基于环烯衍生物的大环前配体;其中金属离子未显示,并且由此应当理解,还可能存在其它未显示的氢原子。取决于-Y-结构中骨架原子的数目,所述衍生物可以为12、13、14、15或者16元环,并且其它骨架原子可以为碳或者杂原子。在图33b中为12元环,其中A、B、C和D可以独立地选自单键和双键。在图33c中,环烯在两个杂原子之间具有“桥”,同时各个A-B独立地选自-CR2-CR2-、-CR=CR-、-CR2-CR2CR2-、-CR=CR-CR2-、-CR2-CR=CR-、CR2-NR-CR2-、-CR=N-CR2-和-CR2-N=CR-。图33D~33G描绘了具有可用的取代基位置的多种具体结构。图33H描绘了环烯衍生物的一个“支臂”的“损失”;根据在此的教导应当理解,多种另外的基于环烯的衍生物也可以改变键的化合价和除去R基团。图33I为具有5个给体杂原子的大环前配体。在某些情形中,使用更大的环,并且由此导致形成了多核配合物。同样,在此所述的任何大环前配体和配合物、或者其混合物以及与其它种类ReAMs形成的混合物都可以在聚合反应中用作单体。
实施方案说明
[0069]在此描述了分子存储器和用于此的加工系统和方法。在此要参照本发明某些实施方案,其中一些实施例被图解说明于附图中。虽然将结合实施方案对本发明进行描述,但是应当理解,并不意图将本发明仅仅限于这些具体的实施方案。与此相反,本发明意图包括所有在如所附的权利要求所定义的本发明精神和范围内的备用方案、变型和等价物。
[0070]特别针对使用分子存储装置实现电荷存储的分子存储器对本发明进行了描述。分子存储器已经得到了制造和证实。然而,可以容易地将本发明的教导应用到多种分子电子装置中,包括分子开关、分子逻辑和分子数据处理器等。据此,可以预期,人们可以轻易对在此所述具体教导和实施例进行改造,从而制造多种其中一些或者所有装置部件包括分子级结构的装置。
[0071]此外,为了彻底了解本发明,在以下说明书中阐述了许多细节。然而,很显然对于本领域熟练的技术人员而言,即使没有这些细节,本发明也可以被实践。为了防止使本发明的方面含糊不清,在此未对其它本领域熟练技术人员熟知的其它情形、方法、工艺、部件和系统进行详述。
定义:
[0072]在此所用的:
[0073]术语“氧化”是指从元素、化合物、分子或者化学取代基/亚基中失去一个或多个电子。在氧化反应中,电子由参与反应的原子或者分子失去。随后,这些原子或者分子上的电荷将必然变得更为阳性。电子从进行氧化反应的物质中失去,由此电子在氧化反应中表现为产物。在反应Fe2+(aq)->Fe3+(aq)+e-中发生氧化作用,因为在氧化反应中电子从被氧化的物质(Fe2+(aq))中失去,尽管明显产生了作为“游离“实体的电子。相反地,术语“还原”是指由元素、化合物、分子或者化学取代基/亚基获得一个或多个电子。
[0074]“氧化态”是指电中性状态或者通过元素、化合物、分子或者化学取代基/亚基得到或者失去电子所产生的状态。
[0075]术语“多重氧化态”是指超过一个的氧化态。氧化态可以反映一个或者多个电子的获得(还原)或者一个或者多个电子的失去(氧化)。
[0076]当涉及两个或者更多个氧化态时,“不同的和可区分的”是指实体(原子、分子、聚合体、亚基等等)上的净电荷可以以至少两种状态存在。当状态之间的差异大于热能时,所述状态是“可区分的”。
[0077]当参考多亚基(例如聚合物的)存储分子的亚基使用时,术语“紧密连接的”是指将亚基彼此之间相对定位,使得一种亚基的氧化改变了另一亚基的氧化电势。在一些实施方案中,所述改变足以使得第二亚基的(非中性)氧化态与第一亚基的非中性氧化态不同和可区分。在一些实施方案中,所述紧密连接是通过共价健(例如,单键、双键、三键等等)而实现的。然而,在某些实施方案中,所述紧密连接可以通过连接物、经离子相互作用、经疏水相互作用、通过金属配位(例如,夹层配位化合物)或者通过简单的机械并置而实现。应当理解,所述亚基可以被紧密连接,使得氧化还原作用在具有多重氧化态的单个超分子中进行。
[0078]在电化学上下文中,术语“电极”是指在电化学电池中,允许电子迁移入反应物(例如,氧化还原活性分子比如存储分子)和/或从反应物迁移出的电化学电池的部分。优选电极为金属或者导电的有机分子。对于一些电极(例如,W、Ti、Ta和Si),在电极表面上可以存在一层天然氧化物或者有目的地生长的氧化物。在电化学电池中,这种氧化物仍然允许电子迁移入反应物和/或迁移出反应物(例如,经隧道效应或者由于氧化物上的针孔)事实上,可以将所述电极制造成任何的二维或者三维形状(例如,分离的线、衬垫、平面、球、圆柱等)。在其它背景内,电极是指用于电连接电路部分的导体。
[0079]术语“固定的电极”意图用来反映以下事实,相对于存储介质,电极基本上是稳定的和不可移动的。也就是说,电极和存储介质以彼此基本上固定的几何关系进行布置。应当承认,由于介质随温度变化的收缩或者由于包括电极和/或存储介质的分子构造的变化,上述相对关系会发生某些改变。尽管如此,其总体空间布置仍然基本上是恒定的。该术语意图将其中电极为可活动的“探针”(例如,写或者记录“头”、原子力显微镜(AFM)尖、扫描隧道显微镜STM尖等)的系统排除在外。
[0080]术语“工作电极”是指用于设置或者读取存储介质和/或存储分子状态的电极。
[0081]术语“参比电极”用来指为使用工作电极进行的测定提供参比(例如,具体的参比电压)的电极。在优选的实施方案中,分子存储器中的参比电极处于相同的电位,不过在一些实施方案中它们的电位不必相同。
[0082]术语“反电极”用来指向电化学电池的工作电极提供电流的电极,例如通过与电化学电池的电解质形成电连接从而提供电流。当描述分子存储装置中的电化学电池的一些实施方案时,术语“反电极”与“参比电极”可互换地使用,因为在这些实施方案中该电极用于向工作电极提供馈电电流和提供参比电位,基于该参比电位可以对工作电极的电位进行测量。
[0083]术语“辅助反电极”用来指用于提高工作电极处的反应速度,使其超过仅仅用反电极可能达到的速度的电极。通过提供用于分子在工作电极上氧化或者还原期间的瞬时电容,辅助反电极可以降低电化学电池的电解质和/或反电极的低电流密度的电阻抗的影响,所述影响可以限制在工作电极处的总体反应速度。辅助反电极可以具有一种或多种以下性能:(1)与反电极相比,它位于更接近工作电极的位置,(2)其具有与其紧固电连接的氧化还原活性分子,这些分子可以与连接于工作电极的分子相同或者不同,(3)对其加偏压,以便可以将期望的电流量提供给工作电极处的反应,和(4)其自身可以具有氧化还原活性(例如,金属铜,其可以发生电化学反应)。
[0084]术语“电解质”是指在电化学电池中用于传导离子的的介质。电解质可以由一种或者多种组分组成,所述组分可以为液体、凝胶、固体或者其组合。示例性的电解质包括但不限于:聚合物基质和离子液体;传导离子的玻璃或者陶瓷;传导离子的过渡金属氧化物和固体电解质。
[0085]当参考存储分子(或者,更一般而言,氧化还原活性分子)和/或存储介质和电极使用时,术语“电连接”是指所述存储介质或者分子与电极之间的连接,从而使得电子从存储介质/分子移动到电极或者从电极移动到存储介质/分子,并且由此改变所述存储介质/分子的氧化态。电连接可以包括存储介质/分子和电极之间的直接共价键、间接共价连接(例如,经连接物连接)、存储介质/分子和电极之间的直接或者间接离子键或者其它键(例如,疏水键合)。此外,实际上可以不需要进行键合,和所述存储介质/分子可以简单地连接电极表面。同样,在电极和存储介质/分子之间也不必存在任何连接,电极可以充分接近于存储介质/分子,从而使得介质/分子和电极之间存在电子通道。
[0086]术语“氧化还原活性单位”、“氧化还原活性分子”(ReAM)或者“氧化还原活性亚基”是指通过施加适宜的电压,能够得到氧化或者还原的分子或者分子的组成部分。
[0087]在此使用的术语“亚基”是指分子的组成部分。
[0088]术语“存储分子”和“记忆分子”是指可以用于存储信息的具有一种或者多种氧化态的分子(例如,包括一个或者多个氧化还原活性亚基的分子)。优选存储分子具有两种或者更多种不同的和可区分的非中性氧化态。
[0089]术语“存储介质”是指包括两种或者更多种存储分子的组合物。所述存储介质可以仅仅包含一种存储分子,或者其可以包含两种或者更多种不同的存储分子。在优选的实施方案中,术语“存储介质”是指存储分子的集合。优选存储介质包括多个(至少2个)不同的和可区分的(优选为非中性)氧化态。多重不同和可区分的氧化态可以通过组合不同类型的存储分子而形成,各种类型的分子都有助于多重不同氧化态的形成,并且每种类型都具有惟一的非中性氧化态。可替代地或者此外,所述存储介质可以包括一种或者多种具有多重非中性氧化态的存储分子。所述存储介质可以主要含有一种存储分子,或者其可以含有许多种不同的存储分子。所述存储介质还可以包括非存储分子的分子(例如,用来提供化学稳定性、适宜的机械性能,为了防止电荷泄漏等)。
[0090]术语“化学吸附物质”是指化学键合(包括共价健)至基质的分子。
[0091]术语“电化学电池”是指当所述装置中发生化学反应(例如,还原/氧化)时,将化学能转化为电能的装置,或者反之亦然。
[0092]术语“分子存储装置”(MSD)是指包括两个或者更多个电极和电解质,同时氧化还原活性分子电连接至至少一个电极上的微米或者亚微米尺寸的电化学电池。
[0093]术语“存储单元”和“存储元件”是指电荷存储装置(例如,常规存储器中的电容器或者分子存储器中的分子存储装置)及其相关的线路(例如,比如晶体管的开关装置)。根据另一观点,此术语是指存储信息的最小独立可访问电路元件。
[0094]术语“存储器阵列”是指一系列存储单元。术语“分子存储器阵列”和“分子阵列”是指一系列用于分子存储装置的存储单元。
[0095]术语“存储位置”是指布置存储介质的分离的域或者区域。当用一个或者多个电极编址时,所述存储位置可以形成存储单元。
[0096]“访问”具体的存储元件是指为了提供通向存储元件的通路(例如用于读取和写入操作),将此存储元件与电极联系起来(例如,电连接)。
[0097]术语“读取”和“查询”是指确定一种或者多种存储元件的状态。
[0098]当参考分子存储元件应用时,术语“刷新”是指将电压施加到存储分子或者存储元件的存储介质,从而在即时刷新操作之前,将存储分子或者存储介质的氧化态复位至与存储元件逻辑状态相关的预定状态。通过刷新操作,存储元件的逻辑状态可以得到保持。
[0099]术语“E1/2”是指氧化还原过程中克式量电位(Eo)的实际定义,被定义为E1/2=Eo+(RT/nF)ln(Dox/Rred),其中R为气体常数,T为温度(表示为K(开尔文)),n为参与该过程的电子数目,F为法拉第常数(96,485库仑/摩尔),Dox为被氧化物质的扩散系数和Dred为被还原物质的扩散系数。
[00100]“电压电源”是任何能够向目标(例如,电极)施加电压的电源(例如,分子、装置、电路等)。
[00101]措词“集成电路的输出”是指由一个或者多个集成电路和/或一个或者多个集成电路部件产生的电压或者信号。
[00102]“伏安计装置”是指能够测量由于施加电压或者电压改变而在电化学电池中产生的电流的装置。
[00103]“安培计装置”是指能够测量由于施加特定的电位(“电压”)一段时期而在电化学电池中产生的电流的装置。
[00104]“电位计装置”是指能够测量由于电化学电池中氧化还原分子的平衡浓度的差异而产生的跨界面的电位的装置。
[00105]“库仑计装置”是能够测量在向电化学电池施加位场(“电压”)期间产生的净电荷的装置。
[00106]“阻抗频谱仪”是指能够确定电化学电池的总阻抗的装置。
[00107]“正弦伏安计”是能够确定电化学电池的频域性能的伏安计装置。
[00108]在分子连接的上下文中,“基质”为适于连接一种或者多种氧化还原活性分子的材料,优选为固体。基质可以由以下材料形成,包括但不限于玻璃、塑料、碳、硅、锗、矿物质(例如,石英)、半导体材料(例如掺杂硅、氧化硅、掺杂锗等)、陶瓷、金属、金属氧化物或者金属氮化物等。在其它上下文中,基质是指:(a)硅片或者(b)集成电路的主体或者基层,其上沉积有其它层,例如硅基片或者蓝宝石基片。
分子存储器
[00109]图1是根据本发明一种实施方案的分子存储装置的示意性剖面图。
[00110]整个结构可以建立并且电连接在下面的半导体装置的电极或者接合垫片上。例如,导电通路或者塞101可以向下延伸穿过半导体装置的钝化和平面化层,从而使得其与存取晶体管(803,如图8中所示)或者其它有源装置的源区/漏区形成电连接。导电塞101可以连接在金属接合垫片上或者连接在半导体装置的有源区域。在一种具体的实施方案中,塞101含有钨,但是其可以使用任何可以有效地实现电连接的金属、合金、硅化物或者其它材料制造。
[00111]工作电极103可以含有,例如铝、金、银、钨或者其它可利用的导体(比如铜、铂、氮化钛或者多晶体硅)。其它适宜的材料包括:Ti、Ta、TaN和导电氧化物(例如,IrO、RuO、OsO、RhO)等或者其组合。在一些实施方案中,将工作电极103同时形成为其它结构,比如用于集成电路的接合衬垫和互相连接器。形成塞101和电极103的工艺和材料是半导体加工工业广泛利用的工艺和材料。在许多集成电路工艺中,都对金属衬垫涂覆绝缘层105,以用来保护和/或钝化工作电极103。绝缘层105可以被实施为沉积的氧化物或者氮化物等。将层105图案化,从而暴露一部分工作电极103,在某些工艺中,这可以通过以与暴露一部分集成电路接合衬垫的操作相同的操作进行。工作电极103的暴露部分被确定为用于连接存储分子的“有源区域”。在一些实施方案中,所述结构通过使用工业标准工艺流程形成氧化物105并将其图案化而得到制造。
[00112]存储分子的薄层107是在工作电极103的活性区域上形成的并且被附着和电连接至那里。在具体实施例中,层107的厚度可以为1~100纳米。在一些实施方案中,层107为化学吸附的分子层。在一些实施方案中,层107为自组装的单层(SAM)。在其它实施方案中,层107还可以通过例如选择性沉积或者其它适宜的工艺(包括原位聚合)形成,如下所述和如U.S.S.N.10/800,147中所述,其全文在此引入作为参考。分子的连接位点可以通过在如上所述的导电材料上由图案化层105以平板印刷方式限定。仅仅作为代表性实施例,被设计以与基质形成共价健(从而形成化学吸附的物质层)的具有特定连接子组件的广泛卟啉库(~150种化合物)可以作为用于层107中的可能存储分子。目前,这些分子包括许多不同的构造,包括但不限于多种构造的氧化还原部分(ReAMs)(包括单体和聚合ReAMs)、其衍生物及其聚合物,如下进一步所述。
[00113]一旦将分子连接在上面,薄化(例如,1~200纳米)材料层就可以用于形成电解质109了。电解质109是用于电化学电池的电解质。金属层111可以通过蒸发、溅射、化学蒸汽淀积或者其它沉积方法被沉积到电解质层109上。金属层111形成所述电化学电池的参比电极和/或反电极,并且例如可以含有任何反电极材料,比如铜、银和铂等。
[00114]电解质109应当与存储分子以及其它用于分子存储装置中的导体和绝缘体化学相容,并且适合于半导体加工工艺,其中所述电解质109可以为液体、凝胶、固体或者其组合。电解质109可以促进电化学电池中工作电极和其它电极(例如,参比电极)之间离子性的电荷迁移。
[00115]示于图1中的堆栈结构的一个优点在于分子存储装置的底面形成了电极表面和存储分子能够在此表面上形成一层或者多层化学吸附物质层。并且,电解质层109还包覆了存储分子,基本上封装它们和保护它们使它们免于后续步骤。此外,图1的结构提供了一种实现三维构造的方法,其中在制造作为基础的基于半导体的微电子学装置后,随后增加金属层、绝缘体层和分子(例如,化学吸附的物质层中的分子)层等。
[00116]图2a和2b为根据本发明的一种实施方案的一系列分子存储装置中分子存储装置的示意性剖面图,所述的一系列分子存储装置被构造为在工作电极(WE)201和反电极(CE)203上具有氧化还原活性分子的电化学电池。
[00117]同图1中的工作电极103一样,这些电化学电池中的工作电极201都可以被建立并且电连接在下面的半导体装置的电极或者接合垫片上。例如,导电通路和/或塞211、213、215等可以向下延伸穿过钝化层和平面化层(例如,绝缘体219),从而与存取晶体管(803,示于图8中)或者其它活性装置形成电连接。
[00118]同图1中的工作电极103相同,这些电化学电池中的工作电极201都电连接至存储分子205的薄层。在一些实施方案中,存储分子层205为化学吸附层。
[00119]在此实施方案中,微米或者亚微米尺寸的电化学电池使用常规的电解质层207与工作电极201和反电极203连接。在一些实施方案中,施加给反电极203的偏压是通过导线217(其从图2的平面伸出)提供的。
[00120]此外,这些电化学电池中的反电极203与氧化还原活性分子层205电相连接。在一些实施方案中,反电极203上的氧化还原活性分子层205为化学吸附层。在一些实施方案中,反电极203与工作电极连接了相同的分子层205(例如,为化学吸附层)。在其它实施方案中,同存在于工作电极201上的氧化还原活性分子层相比,反电极203连接了不同的紧固氧化还原活性分子层(图2中未显示)。在其它实施方案中,反电极203没有连接任何氧化还原活性分子(图2中未显示),而是代之以利用反电极材料自身(例如,铜)的氧化还原化学。在图2a中,工作电极201上的化学吸附的存储分子层和反电极203上的化学吸附的氧化还原活性分子层彼此共平面,分别如工作和反电极201和203一样。
[00121]如图2b所示,在一些实施方案中,反电极203和相邻工作电极201之间的距离可以通过将导电材料层221(例如,掺杂多晶体硅、纳米晶体掺杂硅、Cu、Ti、Ta、TiN、TaN、TiW或者W)沉积、图案化和蚀刻在含有工作电极201和反电极203(例如,掺杂多晶体硅,纳米晶体掺杂硅、Cu、Ti、Ta、TiN、TaN、TiW或者W)的表面上而得到降低。然后,可以将分子205沉积、附着和电连接至材料221,这将形成工作电极201和反电极203的新表面。在此实施方案中,工作电极201上的化学吸附的存储分子层和反电极203上的化学吸附的氧化还原活性分子层仍然基本上彼此共平面,分别如工作和反电极201和203一样。
[00122]在示于图2a和图2b的两个实施方案中,工作电极201和相邻的反电极203之间的间隔通过使用的光刻法进行确定,而不是通过电解质的厚度进行确定。取决于所应用的光刻法和电解质,这些实施方案可以降低电解质207的电阻抗的影响,所述电阻抗的影响会限制工作电极201处的总体反应速度。
[00123]图3a和3b为根据本发明一种实施方案的一系列分子存储装置中分子存储装置的示意性剖面图,所述的一系列分子存储装置被构造为具有工作电极(WE)301、反电极309和一个或多个辅助反电极(ACE)303的电化学电池。
[00124]这些电化学电池中的工作电极301可以被建立并且电连接在下面的半导体装置的电极或者接合垫片上。例如,导电通路和/或塞311、313、315等可以向下延伸穿过钝化和平面化层(例如,绝缘体319),从而与存取晶体管(803,示于图8中)或者其它活性装置形成电连接。
[00125]这些电化学电池中的工作电极301都电连接在存储分子薄层305上。在一些实施方案中,存储分子层305为化学吸附层。
[00126]在此实施方案中,所述电化学电池使用通常的电解质层307和通常的反电极309。
[00127]此外,此实施方案中的电化学电池具有一个或者多个辅助反电极303。辅助反电极303的主要目的是提高工作电极301处氧化/还原反应的速度,使其高于仅仅使用反电极309时的速度。辅助反电极303可以降低电解质307的电阻抗的影响和/或降低反电极309的电流密度,所述电阻抗和/或电流密度会限制工作电极301处的总体反应速度。辅助反电极303一般定位于比反电极309更接近工作电极301的位置。在一些实施方案中,辅助反电极303与工作电极301连接了相同的分子层305(例如,为化学吸附层)。在其它实施方案中,同存在于工作电极301上的氧化还原活性分子层相比,辅助反电极303连接了不同的紧固的氧化还原活性分子层(图3中未显示)。在其它实施方案中,辅助反电极303没有连接任何氧化还原活性分子(图3中未显示),而是代之以利用辅助反电极材料自身(例如,铜)的氧化还原化学性质。在一些实施方案中,对辅助反电极施加偏压,从而向工作电极301处的反应提供更强的电流。在一些实施方案中,施加给辅助反电极303的偏压是通过导线317(其从图3的平面伸出)提供的。
[00128]如图3b所示,在一些实施方案中,附着反电极303和相邻的工作电极301之间的距离可以通过将导电材料层321(例如,掺杂多晶体硅、纳米晶体掺杂硅、Cu、Ti、Ta、TiN、TaN、TiW或者W)沉积、图案化和蚀刻在含有工作电极301和辅助反电极303(例如,掺杂多晶体硅、纳米晶体掺杂硅、Cu、Ti、Ta、TiN、TaN、TiW或者W)的表面上而得到降低。然后,可以将分子305沉积、附着和电连接至材料321,这将形成工作电极301和辅助反电极303的新表面。
[00129]图4是根据本发明另一实施方案的分子存储装置的示意性剖面图,其中所述分子存储装置被构造成具有工作电极、反电极和辅助反电极的电化学电池。
[00130]在此实施方案中,工作电极403形成在另一导体401上。导体401是与存取晶体管或者其它活性装置形成电连接的系列导体的一部分。工作电极403和导体401周围分别环绕有绝缘体(例如,SiO2)405和402。绝缘层406(例如,SiO2)将工作电极403与辅助反电极407分离开来。导体400和404用于向辅助反电极407施加偏压。氧化还原活性分子层409(例如,化学吸附层)连接在工作电极403和辅助反电极407上。在此实施方案中,电解质410和反电极411并非为多个电化学电池所共有。相反地,每个电化学电池都具有其固有的电解质和固有的反电极。绝缘层408(例如,SiO2)用于形成容纳电解质410的槽。反电极411通过防水层412(例如,聚合物或者绝缘体,比如SiN和SiOx等)得到密封。以下根据图27对制造此实施方案的方法进行了更为详尽的描述。
[00131]示于图4中的分子存储装置实施方案提供了另一种结构,其中将一个或者多个辅助反电极407紧靠工作电极403进行放置。本领域熟练的技术人员应当理解,示于图3和4中的结构仅仅是可以将辅助反电极结合入分子存储装置电化学电池中的多种方式中的例证性结构。
[00132]图5为根据本发明一种实施方案的槽或者“暗沟孔”分子存储装置及其掺入存储单元组件中的示意性剖面图。
[00133]在此实施方案中,电化学电池或者在槽结构或者在“暗沟孔”结构中形成(例如,参见提交于2001年10月26日的美国专利申请10/046,499,其全文在此引入作为参考)。在一些实施方案中,槽穿过覆盖介质层505(例如,氧化物)和反电极511延伸到基质501。由此,槽壁得到暴露,从而提供了可以使存储分子507得到连接或者装配的表面接触。将存储分子507和电解质加入其中,然后,此结构可以被聚合物513(或者比如SiN和SiOx的绝缘体)覆盖,从而密封阵列。
[00134]示于图5中的构造可以以防止金属可能沉积在分子层507上,从而防止该分子层507受到损坏的方式形成。槽的内侧形成工作电极和反电极的表面,以及分子在所述槽的内表面上形成一层或者多层化学吸附物质层。由此,通过增加槽的深度,分子数目可以得到增加。应当指出,在图5中没有按比例绘出工作电极502和反电极511的相对高度。反电极511的高度典型地大于工作电极502的高度。此外,可以通过蚀刻金属-绝缘体-金属夹层中的槽或者暗沟孔而形成工作电极502,而不是在半导体基质的大量掺杂区域中形成工作电极502。这些夹层可以沉积在半导体基质上或者半导体片的后线端(BEOL)加工期间所形成的其它表面上。各个金属层的高度决定槽的高度,由此使得所述两种电极的有效面积易于调节。因为使用的是垂直尺度,因此可以使用更多的分子。这使得给定横截面积的半导体片(该片在图5中油基质501表示)的灵敏度得到大大增强。此外,图5的设计易于以各个电极的相对尺寸实现任何变化。
[00135]在一些实施方案中,每个反电极511都连接到MOS晶体管的栅极515上,优选为p-通道MOS晶体管的栅极515上,而工作电极502连接在固定电位上,在此表示为地线515。由此,栅极517上的电压将通过分子层507的氧化态得到调节,从而分子层507的状态可以通过测量在电流开始流动处的源节点519上施加的电压,或者可替代地通过测量当固定的高电位被施加在节点519处时所流动的电流值而得到确定。当安装在完全的存储单元中时,此组件将通过向节点517施加写入电压而得到写入和通过向节点519施加试探电压得到读取,从而允许一种非破坏性的读取机制。
[00136]分子存储装置(比如示于图1~5中的那些分子存储装置)都非常适于应用于基于分子的电子装置的存储元件中,并且可以被用于实施具有1兆位或者更大容量的高容量、高密度分子存储器阵列和装置。
[00137]在分子存储装置中,连接至工作电极(例如,比如103、301、403或者502的工作电极)的氧化还原活性分子被用于存储字节。在一些实施方案中,每个氧化还原态可以表示一个字节或者字节组合。连接至电极的氧化还原分子为可以在多种氧化态中存储一个或者多个字节的存储单元的一部分。在一些实施方案中,所述存储单元包括电连接至存储介质的固定工作电极,所述存储介质包括一种或者多种氧化还原活性分子并且具有不同的和可区分的氧化态。通过存储介质经电连接电极得到或者失去一个或者多个电子,数据被存储到氧化态(优选为非中性氧化态)中。可以利用电化学方法(例如,循环伏安法)对氧化还原活性分子的氧化态进行设置和/或读取,例如,如美国专利6,272,038、6,212,093和6,208,553以及PCT公开文本WO01/03126所述,其全部内容在此引入作为参考。具体应用的是带有不同类型链的卟啉、二茂铁衍生的卟啉、翼形三聚卟啉、直接连接的二聚和三聚卟啉、双层结构和三层结构卟啉,如以下所详述。
[00138]图6是含有分子存储器阵列601的分子存储器600的示意性方框图。在一些实施方案中,分子存储器阵列601包括2N行和2M列的陈列。2N行中的每一个都与字线607相连,同时2M列中每一个都与位线609相连。在一般应用中,字线607和位线609将彼此跨越或者交迭。字线和位线跨越的位置有时被称为“交叉”,虽然字线和位线并没有彼此连接。分子存储单元800(图8)一般位于或者定位于各个行与列的交叉点附近。分子存储器阵列601可以包括许多以满足具体应用需要的方式布置的分子存储单元800。
[00139]存储器600通过将地址接收入地址寄存器619中而得到运行,其将N-位行地址传送到行地址解码器603中和将M-位列地址传送到列地址解码器605中。行地址解码器603在一个字线607上形成信号。字线607可以包括将强电流信号驱动到字线607上的字线驱动电路615。因为字线607倾向于形成为铺设穿过大部分基片表面的长而薄的导体,因此需要将显著的电流和大功率的开关来驱动字线的信号。由此,除了为其它逻辑线路提供运转功率的电源电路(未显示)之外,线驱动电路615通常还装配有电源617。由此,字线驱动器615倾向于形成大的部件。强大电流的高速开关易于形成噪音、使电源和电源调节器的极限受迫以及使分离结构受迫。
[00140]在常规的存储器阵列中,往往存在比行(字线)数目更多的列(位线),因为在刷新操作期间,每个字线都得到活化,以刷新所有与该字线连接的存储元件。因此,行的数目越少,刷新所有行所需要的时间就越少。在一些实施方案中,可以对分子存储单元800进行装配,从而使其显示出比一般电容器显著更长的数据保持时间,长约数十、数百或者数千秒。由此,刷新循环进行的频率可以得到降低(例如,频率可以数量级的降低)或者完全省去。据此,实际上影响存储器阵列物理布局的刷新考虑事项可以得到放宽以及多种几何结构的阵列可以被实施。例如,分子存储器阵列601可以使用更多的字线607容易地得到制造,这会使得每个字线的长度更短。从而,由于以高速驱动每个字线需要较小的电流,因此可以将字线驱动电路615制造的较小或者将其消除。可替代地或者另外,较短的字线607可以被更快地驱动,从而可以提高读/写存取次数。在另一替代方案中,可以给每行存储位置装配多重字线,以提供用于在每个存储位置中存储多个信息状态的装置。
[00141]读出放大器611与每个位线609连接并且运行以检测位线609上的信号,其表明连接至位线上的存储单元800的状态并且将此状态放大为适当的逻辑电平信号。在一种实施方案中,读出放大器611可以用基本上常规的设计实现,所述常规设计将会运行用来检测和放大来自分子存储单元800的信号。另外,与常规电容器不同,一些分子存储装置提供了指示其状态的非常明显的信号。
[00142]读/写逻辑613包括用于将存储器置于读或者写状态的电路。在读取状态中,来自分子阵列601的数据被置于位线609上(有或者没有,但是典型地有读出放大器611的操作),并且通过读/写逻辑613中的缓冲器/锁存器进行捕获。在具体的读操作中,列地址解码器605将选择活性的位线609。在写操作中,读/写逻辑613将数据信号驱动到选定的位线609上,从而使得当字线得到激活时,这些数据可以覆盖已经存储到编址存储元件800中的任何数据。
[00143]刷新操作基本上与读操作相似,但是,字线607通过刷新电路(未显示)进行驱动,而不是通过外加地址进行驱动。在刷新操作中,读出放大器611(如果使用)将位线609驱动至表明存储元件800当前状态的信号电平,并且该值将自动写回存储元件800。与读操作不同,在刷新期间,位线609的状态没有与读/写逻辑613联系在一起。如果所应用的分子的电荷保留时间低于所应用的装置的使用年限(闪速存储器的使用期限为10年左右),那么仅仅需要刷新操作。
[00144]图7是根据本发明一种实施方案的在具有嵌入的分子存储器的基片(SOC)上的系统的示意性方框图。
[00145]SOC 700包括中央处理器701和分子存储器703。存储总线705将CPU 701和分子存储器703相连接,从而交换地址、数据和控制信号。任选地,SOC 700还可以包含与存储总线705相连接的常规存储器707。常规存储器707可以包括随机存取存储器(例如,DRAM、SRAM和SDRAM等)或者只读存储器(例如,ROM、EPROM和EEPROM等)。除了存储总线705之外,SOC 700可以包括存储控制器(未显示),用于将CPU 701连接至分子存储器703和其它任何包含在SOC 700内的存储装置。SOC 700可以包括一个或多个能够使CPU 701与外部装置和系统通讯的输入/输出(I/O)界面709。I/O界面709可以通过串行端口、并行端口、射频端口、光学端口和红外端口等得到实现。此外,可以对界面709进行构造,从而使其进行传送任何可用的记录(包括基于数据包的记录)。众所周知,在本领域中,SOC可以被包含在和用于多种计算装置中,这些计算装置包括但不限于便携式计算机、个人数字助理(PDAs)、手机、数码相机和摄像机和嵌入式计算机等。分子存储器600自身或者嵌入SOC 700内的分子存储器703也可以被容易地包含在和用于上述计算装置中。
[00146]图8是根据本发明一种实施方案的存储单元800的示意电路图。存储单元800类似于广泛应用的一晶体管一电容器(1T1C)的存储单元设计。然而,存储单元800的不同之处在于其使用的是分子存储装置801,而不是常规的电容器。在一些实施方案中,分子存储装置801是以一种在其中形成具有活性装置的半导体基质之后并且在该半导体基质之上形成的结构形成被实施的。在其它实施方案中,分子存储装置801是以在其中形成具有活性装置的半导体基质中的微米至纳米尺寸的孔或者槽的形式被实施的。所述分子存储装置801是使用与所述半导体基质和事先在半导体基质内形成的活性装置相兼容的处理技术进行制造。在一些实施方案中,所述分子存储装置801包括具有两个或者更多个通过电解质隔离的电极表面的电化学电池。存储分子(例如,可以用于存储信息的具有一个或多个氧化态的分子)与电化学电池内的电极表面相连接。存储分子的实例包括单体卟啉、二茂铁衍生的卟啉、三聚卟啉、卟啉聚合物或者三层构造夹层卟啉以及其它化合物。适宜的存储分子的实例将在以下进行更为详尽的描述。
[00147]图9是根据本发明一种实施方案的表示从分子存储器读取数据的方法的流程图。
[00148]当字线607被激活时,存取晶体管803就处于导电状态,从而将分子存储装置801连接(902)至其相应的位线609。在多数情形中,由分子存储装置801产生的信号并不足以驱动常规的逻辑装置。读出放大器805检测由分子存储装置801产生的信号并且将该信号放大至适当的逻辑电平(即,与其它系统逻辑相适合的信号)。例如,使用卟啉存储分子时,可以构造具有稳定氧化态的分子存储装置,氧化态为+0.55V、+0.48V、+0.39V、+0.17V、-0.05V和-0.18V(相对于Ag/Ag+)。在给定的实施方案中,可以提供更高或者更低的稳定氧化态。通过向位线609施加适当的电压,同时活化适当的字线607,可以将存储分子置于这些氧化态中的一种选定的氧化态。一旦分子存储装置处于期望的氧化态,在特定的实施方案中,就可以将此氧化态保持数十秒、数百秒、数千秒或者无穷长时间。
[00149]在读取期间,字线607被活化,和分子存储装置801将位线609驱动至表明其氧化态的电压。在一些实施方案中,将位线预加压至预定的电位,然后将其连接至电化学电池,并且对表现电化学电池中存储分子氧化态的电位变化进行监控(904)。这以与常规存储器中读操作非常类似的方式进行。当存取晶体管803得到激活(即,处于导电状态,形成闭合电路)时,分子存储装置(MSD)801将连接位线609。例如,如果位线被预加压至比分子氧化电位更负的值(相对于MSD或者反电极的顶部金属),并且当分子处于氧化状态时,电流将从分子流动至位线(以及电子从位线流动至分子)。这将导致在位线上产生电荷积聚,其中电荷数量通过MSD中的分子数目和各个分子的氧化态进行确定(Q=nFN,法拉第定律)。上述电荷的出现将改变位线609上的电压(V=Q/C),以及此电压的改变可以通过电压信号读出放大器进行识别,如本领域所通用的。
[00150]由于寄存效应和读取电路的负载,因此在读操作期间的位线电压可以不同于氧化态电压,然而,可以对电路进行布置,使得稳定氧化态得到清晰地读取。所述位线电压可以通过外部逻辑部分直接读取,或者可以通过读出放大器805放大至更为常规的逻辑电平。在具体应用中,所述读出放大器805可以包括多个参照点(例如,多态读出放大器),从而使得其在位线上产生稳定的多值信号。另外,读出放大器805可以包括响应由具体存储单元800读出的多值电压信号而产生许多逻辑水平二进制输出的模拟-数字功能。
[00151]分子存储装置801的一个优点在于,通过选择存储分子,分子存储可以适于在各个位置存储多位数据。图10是表示三态(两个氧化态加上基态)单体卟啉存储分子的伏安特性的例证性循环伏安曲线。峰值和谷值对应于可以用于存储信息的不同氧化态。在图10的实施例中,两个峰值(加上未氧化态)对应于三个不同态,因此分子存储装置801能够存储三态信息。每个氧化态都可以得到顺序地依次设置或者写入。在0V时读取的电荷数量反映了氧化的状态的数目,其随后可以被转化为写入的位图。
[00152]图11是根据本发明一种实施方案的表示向分子存储器写入的方法的流程图。
[00153]为了将状态写入分子存储装置801中,将位线609连接(1102)至分子存储装置801和将电压施加(1104)给位线609,从而形成存储分子的期望氧化态。一般,施加给位线609的电压要比用于MSD801中的分子的E1/2正一些,以用于补偿写入电路中的阻抗和电容损失。与写入电路相关的损失是可测量的并且为常量,因此可以容易地得到补偿。
[00154]在图10的具体实施例中,由水平轴表示的偏压电位表示工作电极相对于反(或者参比)电极(例如,111、309、411或者511)外加电位的电位,其使得在反电极处发生特定反应。由此,曲线沿水平轴的定位由发生在反电极处的电化学反应决定。该参比电压由化学平衡电位确定,通常如能斯特方程所表示。通常将此电位定义为0V,所有的电压都参比于该电位。应当指出,反电极和电解质的化学组成决定着该电压,并且该电压可以在宽调节范围内进行调节(例如,通过选择反电极处的反应物和反应物的浓度进行调节)。在图10的实施例中,工作电极上500mV信号(如上所定义)不足以引起第一分离的氧化态的氧化,然而800mv信号足以引起第一分离氧化态的氧化。为了将第二态写入相同的存储装置801,将工作电极(例如,111、309、411或者511)上的偏压电位设置为1100mV或者更高。800mV信号不足以引起第二分离的氧化态的氧化,然而1100mV信号足以引起第二分离的氧化态的氧化。由此,第一和第二字节可以得到顺序写入。
[00155]在写操作之后,所示存储分子倾向于保持它们的氧化态。实质上,通过写过程得到或者失去的电子都紧密键合在存储分子上。因此,同存储在常规电容器内的电荷相比,存储在存储分子内的电荷的渗漏速度将会降低。一旦存储分子被写入至给定氧化态,那么它们就可以通过电压式读出放大器或者电流式读出放大器进行读取。
[00156]如图10所示,存储分子的一个特征在于,当将线性电压降施加给分子存储装置801时,由于存储分子氧化态发生变化,电流值将会不同,并且电荷将由此从分子上失去或者被吸附到分子上。在示于图10中的电流-电压曲线中,每个峰值都对应于具体氧化态之间的一个具体跃迁。如果存储分子已经位于具体的氧化态,那么当将在另外情形下会导致向此具体氧化态跃迁的“读取电压”施加于该装置时,将几乎没有电流通过。例如,分子存储装置801可以通过在反电极(例如,111、309、411或者511)和工作电极(例如,103、301、403或者502)之间施加0伏电压和测量产生的电荷量而得到读取。相对大量的电荷(即,电流随时间的累积)表示第二逻辑状态(例如,图10中状态2);相对少量的电荷表示第一逻辑状态(例如,图10中状态1);和几乎没有电荷表示完全还原态(例如,图10中状态0)。由此,通过向装置施加已知的电位并且评估信号和从分子上除去或者被分子吸收的电荷总量,分子的初始氧化态可以得到唯一地识别。类似地,在写操作之后存储分子的氧化态由与位线609相连的写入电压的大小确定。
[00157]这种读取方法是部分地或者完全地破坏性的,原因在于在读取期间施加电势将改变分子存储装置801中至少一部分存储分子的氧化态。据此,在一些实施方案中,在读操作之后写回到分子存储装置801,从而恢复存储分子的氧化态。
[00158]图12表明了具有多重不同氧化态的存储分子的例证性电流-电压伏安曲线。各个氧化态由曲线中的一个峰表示。因为可以将存储分子设计成具有许多不同的氧化态,因此分子存储提供了扩大的信息密度,由此,存储器阵列的信息密度可以得到提高。通过提供读/写逻辑、支持分子存储的读出放大装置等,这些多重氧化态可以用于现实存储装置中。
[00159]图13为图5的存储元件组件的例证性的伏安特性曲线,该组件应用了具有多重不同氧化态的存储分子。在施加给通过栅极517上的电压进行门控的晶体管(优选P沟道晶体管)的源节点519处任意特定电压的电压下,电流是通过多种氧化态进行确定的。据此,读取分子507的氧化态可以通过向结点519施加特定的电压、测量电流和将测量的电流绘制在存储于在图5中图解的存储元件组件中的字节数目的适当逻辑状态而得到实现。
[00160]图14a和14b为根据本发明的两种实施方案的用于读取分子存储单元的逻辑状态的两种布置的示意性方框图。这两种布置都适用于多态分子存储器。
[00161]在图14a中,电池电流(ICELL)与积分器1401相连接。电池电流可以直接来自于位线609,或者可以代之以被预放大。预放大器可以包括在积分器1401中或者单独进行提供。积分器1401发展了指示分子存储单元的氧化态的模拟信号。逻辑编码器1403接收来自积分器的模拟信号并且将其映射为逻辑信号,其可以包括平移、翻转或者用其它的组合逻辑进行处理,从而满足具体应用的需要。
[00162]图14b中的布置实施了并流读数并且可以,例如与示于图5中的存储元件组件一同使用。电池电流(ICELL)与电流式读出放大器1407相连接。电池电流可以直接来自于位线609,或者另外可以被预放大。预放大器可以包括在每个电流式读出放大器1407中或者单独地进行提供。每个读出放大器1407都具有指示具体逻辑状态门限电流值的单独电流参比1405。每个读出放大器1407都产生指示电池电流是否高于参比电流的二进制信号。逻辑编码器1409接收二进制信号并且将其映射为逻辑信号,其可以包括平移、翻转或者用其它组合逻辑进行处理,从而满足具体应用的需要。
[00163]图15是根据本发明一种实施方案的分子存储器和支撑界面以及控制逻辑的示意图。
[00164]图15图解说明了将在此所述的多个分子存储装置零件组合成实际的大容量存储器的1M字节设备。与图15中所示类似的布局遵照工业标准引出线布线达到现实可行的程度。然而,当其中每个电池都存储有多重状态时,可以合宜地提供多重引出线,从而可以并联读出数据并且读出花费更少的时间周期。示于图15中的具体设备使用了四组分子存储单元阵列1501,其中每组提供256K存储位置,被布置为512行和512列。示于图15中的整个存储器具有512行和2048列或者1048576个存储位置(即,1M字节存储器)。其它任意尺寸的布置可以容易地替换示于图15中的具体布置。为了易于说明,略去了通用的基片输入端(比如供电电压)和接地端。
[00165]在此实施方案中,九字节行地址被RA<0:8>上的外部装置提供给行预解码器1503′。行预解码器1503′部分地解码行地址,并且将部分解码的行地址输出到各个行解码器1503。为每组提供了行解码器1503,然而行预解码器1503′一般为所有组共用。由于行预解码器1503′的存在,使得行解码器1503较小并且通常速度较快,因为它们处理的是部分得到解码的地址。在图15的具体实施方案中,行解码器包括各个字线的字线驱动电路。列地址被提供至CA<0:8>引出线,从而提供至列地址预解码器1505′。列地址预解码器1505′向列解码器1505提供预解码的地址,列解码器1505产生完全解码的列地址。
[00166]在此实施方案中,每个分子存储器阵列1501都包括512个字线1507。通过位于一个示于图15上部的DBLA线上的适当信号,对用于读和/或写的具体组进行选择,所述信号激活通过列译码器1505编址的位线。将位线参比电压VBLREF提供给每个读出放大器模块1511。位线参比电压可以用于电压式读出放大或者用于驱动串联或者并联的电流式读出放大。
[00167]在此实施方案中,给每个分子存储器阵列1501提供了读出放大模块1511,所述读出放大模块1511包括与存储器阵列1501的512位线相连接的读出放大电路。读出放大模块1511还可以包括使被写入分子存储阵列1501的数据能够绕开读出放大器的写通过栅极,以及使位线与电荷信号(如果使用的话)能够绕开读出放大器的预充电信号通过栅极。位线预充电电压决定在读周期期间,当字线得到激活时电池将被驱动到何种状态。
[00168]在此实施方案中,数据缓冲器1503用于在写操作期间将数据信号驱动到位线上,和用于在读操作期间从位线上读取数据信号。用于编码多位数据的逻辑编码器1405可以包括在数据缓冲器模块1503中。在D<>输入端接收写入数据并且读出数据输出端位于Q<0>-Q<3>输出端。虽然图15的设备是笼统性的,但是显然DRAM电路技术和功能组件可以适用于操作分子存储器。这反过来也使得现有电路技术可以被传动到高密分子存储装置。
处理系统
[00169]图16是根据本发明一种实施方案的分子连接处理工具的示意图。
[00170]图16图解说明了具有通过机械基质传送机构连接的多功能组件的集成处理工具。集成工具方法需要对周围环境进行小心地监控和调节,从而控制杂质含量、湿度和温度等。例如,环境调节元件1605期望地包括去湿作用(从而保持恒定低湿度)、温度控制、和机械、化学和/或电滤作用(从而除去大小在约0.1微米以上的颗粒)。任选地,环境调节元件1605可以使用干燥剂和颗粒团聚机构,从而进一步改良和控制周围的环境条件。
[00171]图16中的集成工具1600处理模块的构造和布置仅仅是用于例证性地说明的目的进行提供,可以使用任何可用的工具构造。另外,工艺模块可以单独地提供于具有多个独立处理站位的非集成环境中。非集成工具会要求每个工具都处于类似控制的条件下,并且各工艺位置之间的传送需要使用密封、环境控制载体进行。
[00172]图16的装置特别适用于连接活性装置分子(例如,存储分子)1604的支撑工艺。这些工艺都特别适用于集成处理,因为与多种半导体加工工艺不同,它们可以顺序地进行,并不需要光布图步骤。光致布图是一种更难于集成的工艺,因为该工艺涉及体积庞大的专用设备以及人们需要以一定的频率运行和保养该设备。据此,可以预期与现实中的其它半导体制造工具相比,分子制造工具可以集成更多的工艺。
[00173]在图16所示的实施方案中,部分经处理的基质穿过负载室进入工具中,该基质充当气锁以保护工具内的内部周围环境。基质可以一次负载一个或者分批进行负载。
[00174]传送机构1602在工艺模块之间移动基质,以及将其移入和移出工艺模块。在具体设备中涂布器1603包括旋涂模块,在具体应用中还可以使用喷雾器、蒸气涂布器和浸渍器等。在本发明的具体设备中,涂布器1603可以连接在含有活性装置分子的溶液供给源1604上,虽然其它装置(比如汽相淀积)也可以用于分配活性分子。如先前所述,可以将涂布器1603保持在通过环境调节单元1605和周围气体1606保持的低湿度、超纯环境中,从而防止其受到污染。其它设备同样有助于浸蚀操作和化学蒸汽淀积工艺等的环境保护。在多种应用中,可以合宜地由供给源1604向各个进行涂覆的基质提供新鲜化学品。这可以避免化学品的损耗和降低与重复利用化学品相联系的污染危险。
[00175]一旦涂覆了分子,就可以通过传送机构1602将基质运送至热处理模块1607。热处理模块1607利用热板、对流加热器、红外加热器、微波加热器加热器或者其它可用的热量调节系统提供加热和/或冷却。选择性化学吸附附着工艺的附着反应动力学通常受温度的影响,由此通过使附着工艺在一定温度下存在一段时间,附着效率可以得到增强、处理时间可以得到降低和/或附着性能可以得到改良。根据满足具体应用的程序化的靠模,所述温度可以为恒定的或者随时间而变化。作为具体实施例,当将醇连接的卟啉用作活性装置分子时,可以将基质保持在400摄氏温度下至少两分钟。热处理还用于驱走溶剂,所述溶剂可以用于含有活性装置分子的溶液中。在高温处理之后,在将基质转入到随后的模块中之前,热处理模块1607还可以冷却基质。
[00176]图17a和17b分别为根据本发明一种实施方案的热处理单元的顶视示意图和侧视示意图。热处理单元1700或者可以为集成分子附着处理工具1600中的热处理模块1607,或者其可以为分离的独立单元。
[00177]热处理单元1700具有包括烘烤板1716和冷却板1714的外部容器1708。在一些实施方案中,烘烤板1716和冷却板1714都被围入内部容器1712中,从而使泄漏入加热和冷却区域的空气最少。入口门1702被密封(例如,用O形环密封)并且其类似于真空负载锁,从而防止空气进入该系统之中。在一些实施方案中,供气系统1720提供惰性气体流(例如,Ar或者N2)以清除每个板周围的气体环境。气体监控和收集系统1706一般包括水传感器1722、氧传感器1724和真空泵1726。外置电脑(例如,2000)控制能量、温度分布、周围气体和水以及氧气的监控。所述电脑还控制该单元的机械功能(例如,用计算机控制的气动装置1718操作入口门1702、穿梭支臂1704和烘烤闸板1710)。
[00178]烘烤板1716能够达到500摄氏度。并且更一般而言,取决于分子和电极材料,烘烤板1716用于将基片加热至350~450℃2~20分钟。烘烤板1716还可以用于其它低温工艺,比如进行溶剂干燥。冷却板1714用于冷却离开烘烤区域之后的基片。冷却板区域还充当进口区域和烘烤区域之间的缓冲区域,该区域为潜在的水和氧污染源。在一些实施方案中,烘烤区域和冷却区域通过内针门/闸板1710进行分离,该内针门/闸板1710仅仅在运送基片期间开放。
[00179]在一些实施方案中,将围绕烘烤板1716的室抽空至高真空度,一般低于1×105乇,从而除去水和氧气。这考虑到了用于随后金属沉积的群集工具的集成。
[00180]返回图16的讨论中,传送机构1602将基质从热处理模块1607运送到清洗模块1609。清洗模块1609将自旋清洗器安装在具体设备中,当基质自旋时,该设备将清洗液从供给源1611喷雾至基质表面。所述清洗液包括,例如,比如醚(四氢呋喃)或者腈(乙腈)等的溶剂。对清洗液进行选择,从而将未能化学连接的分子除去,由此将留下聚集了分子的活性装置区域(例如,图24中2401),同时清除其它装置区域。在清洗之后,可以将基质返回到热处理单元1607以进行干燥。
[00181]任选地可以将一个或者多个测量学模块1613加入其中,从而测定附着的活性装置分子的数量。测量模块1613可以包括对处理基质的直观观察和鉴定,和/或可以包括对处理的基质的电学表征。图18是不良吸附到电极表面的存储分子的示意图。如图18所示,不良连接的氧化还原活性分子可以显示出不良排列、分布和连接。虽然这些特征难以进行视觉观察,但是它们在电学检测中是明显的。图19表示不良连接到电极表面的存储分子的例证性电流-电压曲线。通过对比图19和图12,例如,很显然不良连接可以被容易地发现。可以将其它测量学方法(比如椭圆偏光法或者其它检测存在良好形成的化学吸附物质层的光学方法)结合到群集工具中。在多种情形中,在基质离开处理工具之前,这类测量学方法可以用于检测工艺偏差。可以合宜地包含再制模块(未显示),该模块将剥离不良附着的分子并且再激活残缺基质活性区域(例如,2401)的表面。按照如此方式,在基质被从处理工具上除去之前,不合格的工艺变化和故障可以得到检测和自动更正或者半自动更正。
[00182]经处理的基质经负载端口1601被从处理工具上除去。一旦化学吸附化学步骤得到完成,基质对污染的敏感性将得到降低。然而,可以合宜地将基质置于环境可控的载体中,从而将其运送到随后的处理位置。
[00183]图16中的附着处理工具可以包括单片处理模块(例如,涂布器1603和清洗器1609)、分批处理模块(例如,热处理模块1607)或者其组合。(在一些实施方案中,比如单元1700中,热处理模块1607也是单片模块)可以预期,即使在集成环境中,多种工艺也可以以分批处理的方式实现。相对于工艺控制,单片处理提供了一些益处;然而,分批处理倾向于成本较低。
[00184]图20是说明根据本发明一种实施方案的分子连接处理工具控制系统的方框图。控制系统2000一般地包括一个或多个处理单元(CPUs)2002、一个或者多个网状结构或者其它通信接口2004、存储器2006和一条或多条用于互连这些部件的通信总线2014。控制系统2000任选地可以包括含有显示器2010和键盘2012的用户界面2008。存储器2006可以包括高速随机存取存储器,并且还可以包括非易失性存储器,比如一个或者多个磁盘存储器装置。存储器2006可以任选地包括一个或多个远离CPU 2002定位的存储装置。在一些实施方案中,所述存储器2006存储以下程序、模块和数据结构,或者其亚集或者超集:
操作系统2016,其包括用于处理多种基本系统服务和用于运行硬件依赖任务的程序;
通信模块2018,其用于经一个或多个通信接口2004(有线或者无线)将控制系统2000连接至其它电脑(例如,其它用于存储器制造的控制系统)或者装置;所述通信接口可以包括网络接口(用于连接互联网或者局域网等)、RS232界面或者任何其它适宜的界面;
传送控制模块2020,其管理负载端口1601和传送机构1602的操作;
涂布器控制模块2030,其管理涂布器1603的操作;
环境控制模块2040,其监测(例如,经氧气、水和温度传感器)和控制工具1600中多种模块内和之间(例如,经环境调节单元1605)的处理环境;
热处理控制模块2050,其管理热处理模块1607的操作;
清洗控制模块2060,其管理清洗器1609的操作;和
测量学控制模块2070,其管理一个或者多个测量学模块1613中处理基质的表征。
[00185]图21是根据本发明一种实施方案的电解质处理工具的示意图。
[00186]作为形成系列电化学电池的一部分,可以将电解质施加到基质表面上,用在附着的活性装置分子之上。电解质处理工具2100可以或者与分子施加工具1600串联使用,或者作为独立的工具使用。在一些实施方案中,所述电解质为与光致抗蚀剂组分和稠度类似的凝胶。对于凝胶电解质,光致抗蚀剂施加工具可以适用于将电解质凝胶施加至200nm左右的厚度(或者显著更厚或者更薄)、烘烤它和将其传送至该工艺的下一步骤中。
[00187]图21图解说明了一般用于附着工具1600之后的电解质处理工具2100。另外,所述电解质处理工具2100可以与附着工具1600结合起来或者连接至附着工具1600上,从而使得基质可以在所述工具之间得到自动传送(例如,通过机械传送机构)。在一些实施方案中,电解质的形成涉及应用电解质溶液或者凝胶共形层以覆盖活性装置分子。电解质源2104被保持在环境控制的存储容器中,从而使得电解质可以以稳定的温度、浓度和均匀性递送穿过涂布器2103。适宜的电解质组分的实例物质包括聚环氧乙烷、碳酸亚丙基酯和碳酸亚乙基酯等。基于电解质的粘度和流动特性,对涂布器2103的自旋速度和自旋速度分布图进行调节,从而提供用于具体应用的电解质的适宜覆盖厚度和最终厚度。关于电解质材料和处理条件的额外的细节,参见以下图25和表2所述。
[00188]传送结构2102将基质从涂布器2103移动到热处理模块2107,所述热处理模块2107包括,例如加热板、对流加热、红外加热器、微波加热或者其它用于加热和/或冷却基质的适宜控制加热装置。热处理用于分离溶剂或者载液,从而增加凝胶电解质的粘度。热处理还可以聚合或者部分聚合凝胶电解质,从而改良在某些应用中的机械稳定性。热处理可以在由环境调节单元2105提供的环境气氛中进行,或者由直接提供给热处理模块2107的环境处理气体提供的环境气氛中进行。一般的热处理循环包括在65摄氏度下将基质浸泡约一分钟。
[00189]任选地可以使用测量学单元2114来以物理、视觉或者电子方式表征部分处理的基质,同时这些基质仍然保持在电解质形成工具2100的保护环境中。通过测量学单元2113进行的测试可以以类似于根据图16所述的通过测量学单元1613进行的那些测试。可以包含有集成的再制单元(未显示),从而再制通过测量学单元2113确定的不合格的产品。
[00190]图22是说明根据本发明一种实施方案的电解质处理工具控制系统的方框图。对图22类似于图20的那些方面,在此没有进行描述。在控制系统2200中存储器2206存储以下程序、模块和数据结构,或者其亚集或者超集:
操作系统2216,如上所示;
通信模块2218,如上所述;
传送控制模块2220,其管理负载端口2101和传送机构2102的操作;
涂布器控制模块2230,其管理涂布器2103的操作;
环境控制模块2240,其监测(例如,经氧气、水和温度传感器)和控制工具2100中多种模块内和之间(例如,经环境调节单元2105)的处理环境;
热处理控制模块2250,其管理热处理模块2107的操作;和
测量学控制模块2260,其管理一个或者多个测量学单位2113中处理基质的表征。
[00191]参考图20和22,每个上述确定的模块及其应用对应于用于运行如上所述功能的一组指令。不必将这些模块(即,指令组)实现为独立的软件程序、工艺或者模块,由此,在多种实施方案中,这些模块的多种亚集可以被组合或者另外调整。在一些实施方案中,存储器2006或者2206可以存储上述确定的模块和数据结构的亚集。此外,存储器2006或者2206可以存储并非如上所述的其它模块和数据结构。
[00192]虽然图20和22将控制系统2000和2200表示为分离的项目数字,但是图20和22更意图作为可能存在于控制系统2000和2200中的多种特征的功能描述,而不是意图作为在此所述实施方案的结构示意图。在实践中,并且如本领域熟练技术人员所认可,可以对单独表示的项目进行组合和将一些项目分开。例如,在图20和22中单独表示的一些项目可以在单个电脑上得到实现并且单个项目可以由一台或者多台电脑得到实现。在一种设备与另一种设备中,用于实现控制系统2000和2200的电脑的实际数目以及这些特征在这些电脑之间如何进行分配将会不同。
[00193]图23是根据本发明一种实施方案的部分批处理工具的示意图。
[00194]批处理工艺同时处理多个基片并且有助于在成本上优于单片处理工艺。例如,可以对设计用于在大储槽或者喷雾清洗器中每次清洗25~100个基质(或者更多)的生产工具进行改变,从而将其用作附着分子的大反应容器。由此,可以制备充满了含有活性装置分子(例如,存储分子)的溶液的大储槽并且将其保持在适当温度,并且可以同时对大量基片进行处理。这些自动工具具有串联基片清洗和干燥站能力的优势。
[00195]在图23中,包括悬轨2301的机械传送结构将基片从串联盒(未显示)负载和传送到碳氟聚合物载体2303(或者其它惰性载体)上,所述载体2303被设计成用于与分子和溶剂溶液接触。在大生产工具中可以每次负载多达100个基片,虽然较小的载量(比如,每批25个基片)在多种应用中是合宜的。
[00196]机械支臂2305传送载体2303,并且将其下放至充满了分子溶液的温度受控制的惰性储槽2307中。在一些实施方案中,随后将载体2303和基片放置在储槽中维持足以完成附着化学反应的预定时间。在一些实施方案中,如果附着反应需要高温,在浸入含有分子的溶液之后,可以将基片转入烘箱(图23中未显示)内。在化学附着完成之后,机械支臂2305将载体2303升起并且将载体2303运送到清洗槽2309。清洗槽2309充满着溶剂或者其它适宜的试剂,从而便于将未附着在表面上的分子除去。一般可以对清洗槽2309进行搅拌或者通过鼓入惰性气体或者超声波能对其进行搅拌。在经过一段适宜的时间之后,机械支臂再次将载体升起和将其传送至最终的清洗槽2311。最终清洗槽2311含有溶剂或者其它用于清洗的适宜试剂。在清洗之后,可以在控制的环境气氛(例如,氮气)中对载体2303和基片进行干燥,从而降低污染。
[00197]批处理具有一些潜在的不利特性。首先,从污染的角度看,如果不必要的化学物质或者其它杂质被不经意地引入到任何储槽中,那么它会污染整个基片负载。另外,应该在所有的处理站和传送机构周围提供控制环境气氛的环境密封系统,同单基系统相比,其产生浩大的费用并且难以保持。对于预期表面浓度的活性电荷位点,此污染程度毫无疑问将会较大。此外,有价值和昂贵的化学品会附着在基片的后方以及载体或者盒上。这会发生,例如,在用于当前生产线工具的物质(例如,石英)的生产过程(例如,氧化物、氮化物等)中,在基片处理工艺遗留的基片背侧表面上,特定连接是化学活性的。
[00198]在完成的分子存储装置中,较小百分数的溶液分子实际上停止了对活性区域表面(例如,工作电极表面)的附着。一般认为,即使是当前用于分子装置制造的最小活性装置分子,每平方厘米表面积的饱和覆盖度都为大约1×1014个分子,事实上在溶液中的饱和浓度为大约50毫摩尔。对于单基片工具,假定每个基片需要5ml分子溶液,那么将有大约250mg分子被施加到8"基片上。然而,1×1014个分子/平方厘米意味着实际上纳克级的物质附着在表面上。因此,在随后的清洗步骤中,大量潜在有效的活性装置分子得到了清除。
[00199]在批处理工具情形中,损耗的可能性更为严重。假定溶液具有相同的溶解性,那么一般的30升储槽将含有大约20~30克分子。这需要使无数基片经过此储槽进行处理,从而平均接近克数量的分子被损耗,更不要说千克级的情形了。在用尽这些物质之前,更有可能发生储槽被污染,从而使得溶液没有价值。
[00200]由此,在单基质和批处理工具中都包含在分子附着到表面之后回收溶液和再制溶液使得它们可以用于随后基片的其它处理工艺中的方法是很有价值的。作为此循环研究的一部分,确保高质量的化学提纯方法和与附着表面进行的非竞争性化学反应已经得到了研究,并且正在按照大规模生产所需的容积进行调节。由此,可以对这些工具应用简单组合的策略,比如在旋转器单片工具上收集废液或者将已经应用的溶液槽储在大体积处理工具中。将收集的溶液返还实验室,从而将分子纯化和再溶解至恰当的溶液浓度。基于工艺控制和可重复性考虑,应用质量保证程序(纯度、离子强度等)。
处理方法
[00201]图24a~24d图解说明了根据本发明一种实施方案的处于多种处理阶段的部分分子电子装置。
[00202]在一些实施方案中,使用选择性化学吸附工艺对活性装置分子(例如,存储分子)进行附着。此工艺泛指使装置基质表面特性或者结构与分子附着性能相匹配的工艺。这可以通过操纵基质和/或装置结构的表面性质,使得活性装置分子天然地倾向于以期望方式进行附着而得到实现。选择性的化学吸附允许分子选择性地附着在特定类型的表面(例如,金、硅、多种金属和氧化物),这可以免除掩模和布图操作。此外,选择性的化学吸附工艺可以促使活性装置分子紧紧地叠置在表面上,和在表面上以期望的方式进行排列,从而使得分子显示出一种或者多种期望的性能。在一些情形中,选择性的化学吸附会导致分子在表面上具有一致的定位方向。在一些情形中,选择性的化学吸附可以用于生产自组装的单层。如本文中所述,可以首先进行化学吸附步骤,随后进行ReAMs的原位聚合。
[00203]选择性的化学吸附工艺的一个重要优点就是,具有分子级零件和组件的装置可以使用被设计用于更大规格装置的工具和设备进行制造。可以利用分批工艺将分子施加到整个基片上(例如,通过自旋涂覆、喷雾、气相涂覆和/或浸渍),并且仅仅附着在它们所设计应用的表面上。未附着的分子可以从其它“惰性”表面上被简单地冲走。如此,用于涂覆、蚀刻和光学布图的半导体工具可以用于限定比分子装置更大的结构,同时选择性的化学吸附工艺被用于限定分子级零件。
[00204]在图24a中,活性区域2401已经通过应用微米或者亚微米尺寸的工艺(比如照相平版印刷术、自对准蚀刻等等)得到了限定。第一装置部件2403含有一种物质,在随后的化学吸附工艺中活性装置分子(例如,卟啉)将附着在该物质上。第二装置部件2405含有一种活性装置分子将不会附着的物质。
[00205]在一些实施方案中,活性区域2401包括许多氧化形成薄氧化物层的附着位点。所述氧化物层可以是材料表面2403暴露于氧气时自然形成的氧化物。氧原子键合在潜在的附着位点,这将会防止或者抑制活性装置分子的键合。如图24b所示,在一些实施方案中,在钝化工艺中对活性区域2401进行处理,从而将一些或者全部氧原子替换为氢原子。所述钝化可以通过在适当温度下将基质放入氢气或者合成气体气氛下达一段足以将氧置换为氢的时间而得到实现。在其它实施方案中,薄氧化物层得到保持并且随后将分子附着于薄氧化层上。
[00206]重要的是注意到,同活性区域2401内的表面处的分子总数相比,一般的表面将存在相对较少量的可能附着位点。这意味着同活性装置分子相比,活性区域将可能包括更多的非活性分子。据此,用于附着活性装置分子的工艺都可以被最优化,从而得到高附着速度和低污染。杂质含有任何干扰附着和/或在分子电子装置中具有非有益性能的物质。
[00207]图24b中的钝化表面可以通过暴露于热、光、辐射和/或其它可利用的表面活化方法而得到激活。在图24c中符号“X”表示活化的附着位点。所述活化可以包括应用用于半导体工业中的快速热处理技术。活化用于使得位点处于可以轻易键合到活性装置分子上的状态。所述活化可以在惰性环境中进行,比如在超纯氩气、氮气和真空等进行。在一些情形中,当活性装置分子具有充分的固有附着能力时,不需要进行活化。
[00208]图24c的激活表面或者图24b的钝化表面都涂覆有含有活性装置分子的溶液。在一种具体的实施方案中,所述溶液包括通过旋涂、喷涂、蒸气相涂覆或者类似工艺施加的醇连接的卟啉分子。可以使活性区域暴露于热、电磁能、辐射或者其它光化辐射能量,从而促使活性装置分子的附着。
[00209]为了抑制激活的表面的失活,对化学附着工艺之前、期间和之后的处理环境气氛进行小心地控制。虽然常规的光致抗蚀剂或者HMDS(六甲基二硅氮烷)旋涂工具可以用于施加活性装置分子溶液,但是可以对所述工具进行改进,从而将工件封闭在基本上不含会键合至附着位置的化学物质的低湿度环境中。所述物质包括氢气、氧气、大多数金属原子和水,不过基于所应用的具体活性装置分子和材料,在每种应用中必须被过滤的特定物质将会以可预期的方式变化。
[00210]图25是表示根据本发明一种实施方案的制造系列分子存储装置的方法流程图。这种方法可以,例如,用于制造图2中所示的分子存储装置。
[00211]将常规的BEOL半导体加工方法用于形成(2502)一系列工作电极(例如,301)和用于在一些实施方案中的在部分加工的半导体片(例如,已经具有在基质中形成的晶体管和制造了一个或者多个互连平面的基片)上形成辅助反电极(例如,303)。例证性的工作电极和/或辅助反电极材料包括但不限于,钨、钛、钽、铝、掺杂的多晶或者纳米晶体硅、铜、上述元素的氧化物、氮化钛、氮化钽、氮化钨和钛钨。此外,绝缘体(例如,319)和与工作电极(例如,311、313和315)以及在一些实施方案中与辅助反电极(例如,317)形成电连接的导体也可以应用众所周知的BEOL半导体加工方法进行制备,对该方法不必进行详述。
[00212]在一些实施方案中,将化学机械抛光(CMP)用于制备一系列的稳定的工作电极和辅助的反电极表面(例如,图3a)。在一些实施方案中,将导电材料层(例如,321)沉积、布图和蚀刻在含有工作电极301和辅助反电极303的表面之上,从而形成使得这些电极彼此更接近的新表面(例如,图3b)。
[00213]在一些实施方案中,制备了(2504)电极表面用于沉积活性装置分子(例如,存储分子)。在一些实施方案中,将具有暴露的电极表面的部分加工的基片在非常稀(0.1%)的HF溶液中洗涤30秒钟,随后将其依次浸入丙酮、水和异丙醇清洗液中。在一些实施方案中,对所述电极进行短暂的溅射蚀刻。在一些实施方案中,对于钨电极,用氧等离子体使电极表面形成一层薄(~2nm)的氧化钨层。
[00214]将活性装置分子物理沉积(2506)在基片上。存在进行这种沉积的多种方法。
[00215]在一些实施方案中,将分子包含于喷雾至基片上的液体载体溶剂中(例如,使用涂布器1603或者密闭在受控工艺环境中的独立涂布器)。然后对所述基片进行加热,从而将液体蒸发和将分子留在基片表面上。例证性的溶剂包括但不限于,二甲苯、环己酮、二甘醇二甲醚、四氢呋喃、氯苯和二氯代苯。取决于所应用的溶剂,一般加热至60~120摄氏度。示范性的加工环境包括真空或者惰性气体(比如氩气或者氮气)。在一些实施方案中,应用传感器来监测加工环境中的水和氧气。例证性的独立涂布器是经改进的Brewer Science Cee100自旋涂布器(www.brewerscience.com/cee/products/cee100.html)),其包含在含有水传感器和氧传感器的密封壳内。在沉积期间,环境水浓度一般低于1ppm,并且环境氧浓度一般低于1ppm。
[00216]在一些实施方案中,所述分子被包含在用喷雾器喷雾至基片上(例如,使用涂布器1603或者密闭在受控工艺环境中的独立涂布器)的低沸点溶剂(例如,二甲苯、环己酮、二甘醇二甲醚、氯苯或者二氯代苯)。喷雾器的使用有助于沉积过程中溶剂的蒸发,从而随后几乎不需要加热除去溶剂。例证性的喷雾器为Spraying Systems Co.No.1/8JJAUAir Atomizing Nozzle(例如,参见http://service.spray.com/Literature_PDFs/b553_humidification.pdf)。氩气或者氮气一般用于产生气雾剂。在气雾剂沉积期间,对工艺环境的控制与如上所述的喷雾剂沉积相同。
[00217]在一些实施方案中,喷墨印刷技术可以用于将分子沉积在基片上。与喷雾器相似,含分子溶液的高压喷墨的应用有助于沉积期间溶剂的蒸发,从而随后几乎不需要加热除去溶剂。喷墨工艺的一个优点在于,当其通过基片表面时,通过对喷墨头进行正确地程序控制,将溶液仅仅施加到基片的活性区域而非整个基片表面,分子溶液可以得到节省。
[00218]在一些实施方案中,升华作用可以用于将分子沉积在基片上,不需要使用溶剂。例如,可以在惰性环境中对卟啉晶体进行加热(一般最高达450℃),直至分子升华和沉积在附近基片的表面上为止。
[00219]所述活性装置分子(例如,305)都化学附着(2508)在电极表面(例如,301和303)上。
[00220]在一些实施方案中,将热处理单元1700单独或者作为集成分子附着加工工具1600的一部分用于化学附着所述分子。所述附着工艺在受控的环境中进行,典型地采用尽可能少的氧气和水。在一些实施方案中,通过在惰性气氛(例如,Ar或者N2)中进行温和加热(例如,小于150℃)来将氧气和水除去,从而在升高温度进行实际的化学附着之前除去氧化剂。在温和加热期间,环境水的浓度典型地被降低至低于3ppm,并且环境氧浓度一般被降低至低于10ppm。在高温加热期间,环境水浓度一般低于200ppm,而环境氧浓度一般低于80ppm。在高温加热后进行冷却周期期间,环境水浓度一般低于50ppm,而环境氧浓度一般低于40ppm。
[00221]将分子以化学方式附着到电极表面(例如,作为化学吸附物质层)所需要的温度和时间取决于分子、附着连接剂和表面自身。表1提供了大量表面和分子的例证性化学连接加工条件。
表1 例证性的化学附着加工条件
表面         分子                      温度(℃)            时间(分钟)
硅<100>      A                         180                 200
             A                         300                 60
             A                         350                 20
             A                         375                 10
             A                         400                 6
             A                         425                 2
             A                         450                 2
             B                         300                 60
             B                         350                 20
             B                         375                 10
             B                         400                 6
             B                         425                 2
             B                         450                 2
             C                         400                 2
纳米结晶Si   A                         350                 20
             A                         375                 10
             A                         400                 6
             A                         425                 2
             B                         350                 20
             B                         375                 10
             B                         400                 6
             B                         425                 2
钨           B                         350                 20
             B                         350                 10
             B                         350                 8
             B                         350                 5
             B                         375                 10
             B                         400                 10
             B                         400                 8
             B                         400                 4
             B                         400                 2
             B                         425                 10
              B             425           8
              B             425           6
              B             425           4
              B             425           2
TiN           B             350           20
              B             350           10
              B             350           8
              B             350           5
              B             375           10
              B             400           10
              B             400           8
              B             400           4
              B             400           2
              B             425           10
              B             425           8
              B             425           6
              B             425           4
              B             425           2
TiW           B             400           4
              B             400           2
              B             425           2
WN            B             400           4
              B             400           2
              B             425           2
Ti            B             400           4
              B             400           2
              B             425           2
Al            B             400           4
              B             400           2
              B             425           2
SiO2          二茂铁膦酸盐  180           200
其中:分子A是Zn(II)-5,10,15-三莱基-20-[4-(羟甲基)苯基]卟啉;
分子B是Zn(II)-5,10,15-三-对甲苯基-20-[4-(羟甲基)苯基]卟啉;和
分子C是Cu(II)-5,10,15-三-对甲苯基-20-[4-(羟甲基)苯基]卟啉。
[00222]未反应的分子(例如,绝缘体319上的分子)可以通过清洗和干燥基片而被除去(2510)。在一些实施方案中,将清洗液喷雾至基片上(例如,利用清洗器1609或者密闭在受控工艺环境中的独立清洗器)。用于清洗的例证性溶剂包括但不限于四氢呋喃、甲苯和二甲苯。一般每次清洗进行10~60秒钟,进行5~10次清洗。优选所述清洗在惰性环境(例如,Ar或者N2)中进行。示范性的独立清洗器是包含在包括水传感器和氧传感器的气密壳内的经改动的BrewerScience Cee 100自旋涂布器。在清洗之后,可以将该晶片返回到热处理单元1700以进行干燥。所述干燥一般在60℃下进行30秒钟。
[00223]在一些实施方案中,对在电极表面(例如,305)上的分子和其它暴露表面(例如,绝缘体319的表面)进行制备(2512),以沉积电解质(例如,307)。在一些实施方案中,所述制备包括应用增粘剂(例如,来自于Silicon Resources,Inc(www.siliconresources.com)的AP200、AP225、AP221、AP001或者AP310)。在一些实施方案中,对基片进行清洗,从而除去可能已经积累在表面上的挥发性有机化合物。如果在附着分子305和沉积电解质307之间存在显著的延迟,那么就需要进行上述清洗。
[00224]将电解质(例如,307)沉积(2514)在基片上。有多种方法可以进行所述沉积。
[00225]可以通过集成电解质加工工具2100中的涂布器2103或者通过独立涂布器在受控工艺环境(例如,水低于1ppm和氧低于1ppm)下电解质施加。可以使用多种类型的涂布器,包括但不限于:自旋涂布器、喷涂器、雾化涂布器、浸渍涂布器、喷墨涂布器、刮片涂布器、帘式涂布器、溅射涂布器、化学蒸汽淀积涂布器和物理蒸气沉积涂布器。示范性的独立清洗器是包含在包括水传感器和氧传感器的气密壳内的Brewer Science Cee 100自旋涂布器。
[00226]在一些实施方案中,所述电解质包括聚合基质和离子型液体。在一些实施方案中,所述聚合基质和离子型液体被放置在溶剂中,并且将所述组合溶液(一般含有低于5%的电解质)沉积在基片上。
[00227]在沉积之后,在受控环境(例如,水小于1ppm和氧小于1ppm)中对基片进行加热(例如,在热处理单元2107或者在独立单元1700中),从而除去溶剂。可以使用多种加热源,包括但不限于,加热板、烘箱、IR加热灯(例如,在涂布器中)和微波炉。表2提供了例证性的电解质和加工条件。
[00228]表2.例证性的电解质组分和加工条件
溶剂
环己酮
琥珀酸二乙酯
4-甲基-2-戊酮
2-丁酮
环戊酮
经蒸馏的N,N-二甲基-丙酰胺
N,N-二甲基乙酰胺
N,N-二甲基甲酰胺
丙二醇单甲醚乙酸酯
g-丁内酯
g-丁内酯
甲苯
1,4-二甲苯(二甲苯)
1-甲基-2-吡咯烷酮
甲基四氢呋喃
氯仿
碳酸亚丙基酯
磷酸三乙酯
戊二腈
双(2-氯乙基)醚
四氢呋喃
四氢糠醇
经蒸馏的琥珀酸二甲酯
4-庚酮
聚合基质材料
聚二氟乙烯(PVDF)
在多种制剂中的聚二氟乙烯和六氟丙烯的共聚物(PVDF-HFP),比如
Arkema Kynar PVDF 741
Arkema Kynar Flex 2801
Arkema Super Flex
Arkema Power Flex
聚酰亚胺,比如
聚酯和共聚物
聚丙烯腈和共聚物
聚烯烃和共聚物
聚酰胺
聚(酰胺-酰亚胺)
聚(酰胺-酯)
聚酰亚胺
聚偶氮甲碱
聚苯并噁唑
聚苯并咪唑
聚硅氧烷
聚硅氧烷共聚物
聚(甲基倍半硅氧烷)
离子型液体
1-丁基-1-甲基-吡咯烷鎓二(三氟甲基磺酰基)酰亚胺(BMPTFMSI)
1-己基-3-甲基-咪唑鎓三(五氟乙基)三氟磷酸酯(HMIPFETFP)
1-己基-3-甲基-咪唑鎓二(三氟甲基磺酰基)酰亚胺(HMITFMSI)
三己基-(十四烷基)-膦鎓三(五氟乙基)三氟磷酸酯(THTDPPFETFP)
1-丁基-1-甲基-吡咯烷鎓三(五氟乙基)三氟磷酸酯(BMPPFETFP)
三己基-(十四烷基)-膦鎓二(三氟甲基磺酰基)酰亚胺(THTDPTFMSI)
制剂
离子型液体与聚合物的比例         80:20
                                 70:30
                                 60:40
                                 50:50
                                 40:60
                                 30:70
                                 20:80
聚合物在溶剂中的wt%             0.50
                                 1.00
                                 1.50
                                 2.00
                                 2.50
                                 5.00
沉积条件
                                 第一RPM  时间(sec)    第二 RPM     时间(sec)
(加速度—10,000RPM/sec/sec)      100      30          1000         30
(第一RPM和第二RPM是指             100      30          2000         30
顺序进行的两个步骤。在一些        100      30          3000         30
情形中,仅仅应用一种RPM。)        100      30          4000         30
                                  100      30          1000         60
                                  100      30          2000         60
                                  100      30          3000         60
                                  100      30          4000         60
                                  1000     30
                                  2000     30
                                  3000     30
                                  4000     30
                                  1000     60
                                  2000     60
                                  3000     60
                                  4000     60
沉积后热处理                      温度(℃) 时间(min)
                                  25       1080
                                  25       300
                                  25       120
                                  60       10
60            5
60            3
70            10
70            5
70            3
70            2
85            10
85            5
85            2
90            5
90            3
90            2
100           5
100           3
100           2
100           1
110           3
110           2
110           1
120           2
120           1
[00229]在一些实施方案中,制备(2516)电解质(例如,307)用于沉积反电极(例如,309)。在一些实施方案中,所述制备包括应用粘合促进剂(例如,来自于Silicon Resources,Inc(www.siliconresources.com)的AP200、AP225、AP221、AP001或者AP310)。在一些实施方案中,对基片进行清洗,从而除去可能已经积累在表面上的挥发性有机化合物。在一些实施方案中,对所述电解质进行溅射净化。如果在沉积电解质和沉积反电极之间存在显著延迟,那么可能就需要对电解质表面进行制备。
[00230]将反电极(例如,309)沉积(2518)在基片上。可以用作反电极的材料包括但不限于,银、铜、钛、钽、铝、钨、氮化钛、钛钨、氮化钽和导电的氧化物(比如铟锡氧化物)。
[00231]多种工艺可以用于沉积反电极,包括但不限于物理蒸汽沉积(溅射)、化学蒸汽淀积、等离子增强的化学蒸汽淀积和热或者电子束蒸发。然而,不论应用何种沉积工艺,入射到基片上的辐射值和其它能量都应当被减少,特别是紫外辐射。上述辐射会被存储分子强烈吸收,这反过来会诱发不必要的反应和/或分子裂解。比如溅射和等离子体增强CVD的沉积工艺在用于承载等离子体的载气分子的激发波长处产生辐射。这些波长对于所应用的气体而言是特定的,并且每种气体(例如,Ar、Kr、Xe和He)都具有特征光谱。这些沉积工艺一般使用Ar作为载气。当进行离子化时,Ar发射出可以破坏分子的波长的紫外辐射。一种降低或者消除这种破坏性辐射的方法是使用发射辐射为不被分子强烈吸收的波长的其它气体,比如氙气。在沉积期间,沉积在基片上的潜在不利的能量值还可以通过以下方式降低:当溅射目标在用等离子体进行净化时,用闸板保护基片;应用低沉积速率;和冷却基片。
[00232]常规的、众所周知的BEOL半导体加工方法可以用来连接反电极(2520)、封装分子存储装置(和其它部件)和另外完成分子存储器的制造。
[00233]图26是表示根据本发明一种实施方案的制造具有辅助反电极的一系列分子存储装置的方法流程图,图27a~27i为图解说明该方法的截面示意图。所述加工步骤与上述类似,在此将不再对其进行详述。
[00234]工作电极2703在导电通孔和/或塞2701之上形成(2602),所述导电通孔和/或塞2701向下延伸穿过钝化和平面化层(例如,2702),从而与存取晶体管(803)或者其它活性装置形成电连接。在一些实施方案中,所述工作电极2703通过在塞2701和2700以及绝缘层2702之上沉积、布图和蚀刻导电薄膜而形成,所述塞2701和2700以及绝缘层2702预先通过常规BEOL工艺形成(图27a)。一部分导电薄膜2704还可以用来形成用于偏置辅助反电极2707(在图27a不存在)的电连接。
[00235]将绝缘层2705(例如,SiO2)沉积和平面化至工作电极2703的顶部表面(例如,通过化学机械抛光)(图27b)。
[00236]沉积(图27c)绝缘层2706(例如,SiO2)。在绝缘层2706内对将辅助反电极连接至衬底互连层(例如,2704)的接触孔进行布图和蚀刻。
[00237]形成(2604)辅助反电极2707。在一些实施方案中,通过以下方式制备辅助反电极:将导电膜沉积在绝缘层2706上,然后布图和蚀刻贯穿导电膜2707和绝缘体2706的孔,由此暴露工作电极2703的表面(图27d)。辅助反电极通过绝缘体2706中的孔与互连层2704形成电连接。
[00238]通过沉积、布图和蚀刻绝缘层(例如,SiO2)2708形成容纳电解质2710的孔(图27e)。
[00239]将氧化还原活性分子2709沉积和化学附着(2606)至工作电极2703和辅助反电极2707上,从而将分子2709电连接至电极(图27f)。在一些实施方案中,选择性的化学吸附工艺被用于将分子2709附着到工作电极2703和辅助反电极2707上。在一些实施方案中,分子2709在工作电极2703和辅助反电极2707上形成一层或者多层化学吸附的物质层。在一些实施方案中,分子2709在工作电极2703和辅助反电极2707上形成SAMs。在一些实施方案中,电连接至工作电极2703的分子2709与电连接至辅助反电极2707的分子2709相同。在一些实施方案中,电连接至工作电极2703的分子2709与电连接至辅助反电极2707的分子2709不同。
[00240]所述电解质2710可以通过,例如沉积并且平面化含有离子型导体的层而得到形成(2608)(图27g)。
[00241]反电极2711可以通过,例如在电解质2710顶部上沉积、布图和蚀刻导电层而得到形成(2610)(图27h)。
[00242]对聚合物或者绝缘体层2712进行沉积,从而密封分子存储装置。可以对此密封层进行布图和蚀刻,从而当需要时,实现与分子存储装置的接触(例如,为了形成与反电极2711的电连接)。
分子
[00243]存在多种用于本发明的适宜的存储分子,它们都以氧化还原活性部分或者氧化还原活性分子为基础。“氧化还原部分”或者“氧化还原分子”或者“ReAM”在此是指能够通过施加适当电压被氧化或者还原的部分。
[00244]在一些实施方案中,所述氧化还原活性部分具有至少两个或者更多个可区分的非中性氧化态,具有至少3、4、5、6、7、8或者更高氧化态是有用的,特别是用于每分子存储多位。在一些实施方案中,特别是在每个存储位置使用不同ReAMs的混合物时,单个ReAMs可以仅仅具有单个非中性氧化态,但是在各个位置处不同部分的集合提供了用于所述存储密度的多重氧化态。此外,在ReAM聚合物的情形中,应用具有少量氧化态的不同单体的杂聚物也可以导致产生许多氧化态。
[00245]另外,在一些实施方案中,使用了高电荷密度的存储装置,其中多个电荷(例如,电子)在相同电压下被读取;例如,在特定电压下氧化存储分子可以导致其失去2个或者3个电子,而不是1个电子。由此,可以对ReAMs进行设计,使其具有较少氧化态,但是在每个氧化态上需要失去更多个电子,从而产生更大的表面电荷密度。
[00246]通常,如下所述,存在几种可用于本发明的基于多齿前配体的ReAMs,包括大环和非大环部分。许多适宜的前配体和配合物以及适宜的取代基都公开于以下文献中:美国专利6,212,093;6,728,129;6,451,942;6,777,516;6,381,169;6,208,553;6,657,884;6,272,038;6,484,394;和U.S.S.N.s 10/040,059;10/682,868;10/445,977;10/834,630;10/135,220;10/723,315;10/456,321;10/376,865;其全部内容在此引入作为参考,尤其是其中所表明的结构及其说明。
[00247]适宜的前配体分为两类:使用氮、氧、硫、碳或者磷原子(取决于金属离子)作为配位原子(在文献中泛指σ给体)的配体,和有机金属配体(在文献中泛指π给体,在此表示为Lm)比如茂金属配体。
[00248]此外,单个ReAM可以具有两个或者更多个氧化还原活性亚基。例如,如图29A所示,其中存在两个氧化还原活性亚基,卟啉(示于图29中,不存在金属)和二茂铁(它们都可以任选地被独立选择的取代基在任何位置取代,如下所述并且描绘在图29B中),通常但是任选地,它们经连接物L进行连接。类似地,可以将夹层配位化合物看作是单个ReAM。这与由单体聚合的ReAMs的情形不同;例如,图29C表明了图29B的聚合形式,其中h为2或者更大的整数。此外,本发明的金属离子/配合物可以连接有平衡离子,在此通常未描绘。
大环配体
[00249]在一种实施方案中,ReAM为大环配体,包括大环前配体和大环配合物。“大环前配体”是指含有给体原子(在本文中有时称为“配位原子”)的环状化合物,所述给体原子以使得它们可以键合金属离子的方向定向并且它们具有足以环绕金属原子的大小。通常,给体原子为杂原子,包括但不限于氮、氧和硫,优选前者。然而,本领域技术人员应当理解,不同的金属离子优先结合不同的杂原子,由此采用的杂原子可以取决于期望的金属离子。此外,在一些实施方案中,单个大环可以含有不同类型的杂原子。
[00250]“大环配合物”为具有至少一个金属离子的大环前配体;在一些实施方案中,大环配合物包括一个金属离子,不过如下所述,还可以预期包括多核配合物(包括多核大环配合物)。
[00251]多种大环配体可以被用于本发明中,包括那些电子共轭以及那些没有电子共轭的大环配体;然而,优选本发明的大环配体具有至少一种氧化态,并且优选具有两种或者更多种氧化态,具有4、6和8氧化态是特别重要的。
[00252]适宜的大环配体的多个示意图被显示和描绘于图31中。在此实施方案中,主要是以卟啉为基础,其中预期了16元环(当-X-部分含有单个原子时,或者为碳或者为杂原子)、17元环(其中-X-部分含有两个骨架原子)、18元环(其中两个-X-部分含有两个骨架原子)、19元环(其中三个-X-部分含有两个骨架原子)或者20元环(其中所有四个-X-部分都含有两个骨架原子)。对每个-X-基团独立地进行选择。....Q....部分,以及5元或者6元环的骨架-C-杂原子-C(具有独立连接碳原子和杂原子的单键或者双键)任选地被1个或者2个(在5元环的情形下)或者1、2或者3个(在6元环情形下)独立选择的R2基团取代。在一些实施方案中,对环、键和亚取代基进行选择,从而使得化合物电子共轭并且具有至少两种氧化态。
[00253]在一些实施方案中,所述大环配体选自卟啉(特别是如下所定义的卟啉衍生物)和环烯衍生物。
卟啉
[00254]适用于本发明的特别优选的大环子集为卟啉,包括卟啉衍生物。所述衍生物包括具有邻位稠合或者邻位迫位稠合至卟啉原子核的其它环的卟啉、由另一种元素的原子替换卟啉环中一个或者多个碳原子的卟啉(骨架替换)、由另一种元素的原子替换卟啉环氮原子而形成的衍生物(氮的骨架替换)、具有位于末端(中-、3-或者卟啉核心原子)的非氢取代基的衍生物、饱和了卟啉中一个或者多个键的衍生物(氢化卟啉,例如绿素、菌绿素、异菌绿素、十氢卟啉、corphins、pyrrocorphins等)、具有一个或者多个插入卟啉环中的原子(包括吡咯(pyrrolic)和吡咯亚甲基单元)的衍生物(扩环的卟啉)、从卟啉环中除去一个或者多个基团的衍生物(缩环的卟啉,例如,咕啉、corrole)以及上述衍生物的组合(例如,酞菁、亚酞菁和卟啉异构体)。其它适宜的卟啉衍生物包括但不限于叶绿素,包括初卟啉合镁盐、焦卟啉、玫红卟啉、叶卟啉、叶赤素、叶绿素a和b,以及血红蛋白,包括次卟啉、次氯血红素、血晶素、正铁血红素、原卟啉、中氯化血红素、血卟啉、中卟啉、粪卟啉、uruporphyrin、羽红铜卟啉和一系列四芳基氮杂二吡咯次甲基(tetraarylazadipyrromethines)。
[00255]对于在此所述的化合物确定的以及本领域技术人员应当理解的是,取决于所述系统的期望原子价,每个不饱和位置(无论是碳或者杂原子)都可以包括一个或者多个在此限定的取代基。
[00256]在一种优选的实施方案中,氧化还原活性分子可以为如图28A结构式所示的茂金属,其中L为连接物,M为金属(例如,Fe、Ru、Os Co、Ni、Ti、Nb、Mn、Re、V、Cr、W),S1和S2为独立地选自以下的取代基:芳基、苯基、环烷基、烷基、卤素、烷氧基、烷硫基、全氟烷基、全氟芳基、吡啶基、氰基、氰硫基、硝基、氨基、烷基氨基、酰基、磺基、磺酰基、亚氨基、酰氨基和氨基甲酰基。
[00257]在优选的实施方案中,取代的芳基连接在卟啉上,芳基上的取代基由以下组成:芳基、苯基、环烷基、烷基、卤素、烷氧基、烷硫基、全氟烷基、全氟芳基、吡啶基、氰基、氰硫基、硝基、氨基、烷基氨基、酰基、磺基、磺酰基、亚氨基、酰氨基和氨基甲酰基。
[00258]特别优选的取代基包括但不限于,4-氯苯基、3-乙酰胺基苯基、2,4-二氯-4-三氟甲基以及在美国专利6,208,553、6,381,169、6,657,884、6,324,091、6,272,038、6,212,093、6,451,942、6,777,516、6,642,376、6,728,129和6,855,417中所公开的取代基,其全部内容在此引入作为参考,特别是对于其中所述的取代基和化合物。优选取代基提供小于约2伏特的氧化还原电势范围。X选自基质、可以共价连接至基质的活性部位(例如,醇、硫醇等等)。应当理解,在一些实施方案中,L-X可以为醇或者硫醇。L-X优选为4-羟基苯基、4-(2-(4-羟基苯基)乙炔基)苯基、4-羟甲基苯基、4-巯基苯基、4-(2-(4-巯基苯基)乙炔基)苯基、4-(巯基甲基)苯基、4-氢硒基苯基、4-(2-(4-氢硒基苯基)乙炔基)苯基、4-(氢硒基甲基)苯基、4-氢碲基苯基、4-(2-(4-氢碲基苯基)乙炔基)苯基和4-(氢碲基甲基)苯基。
[00259]图28A结构式的分子的氧化态通过金属和取代基进行确定。由此,特别优选的实施方案由图28B~28G的结构式显示。
[00260]在上述图中结构式所示的二茂铁提供了具有不同的和可区分的氧化态的适宜的单齿形分子系列。由此,这些结构式的分子的氧化态分别为+0.55V、+0.48V、+0.39V、+0.17V、-0.05V和-0.18V,并且提供了包含在本发明存储介质中的适宜分子系列。应当理解,这些分子系列的氧化势通常可以通过改变金属(M)或者取代基而得到改变。
[00261]另外优选的氧化还原活性分子是图28H结构式显示的卟啉,其中,F为氧化还原活性亚基(例如,二茂铁、取代的二茂铁、金属卟啉、金属二氢卟酚等),J1为连接物,M为金属(例如,Zn、Mg、Cd、Hg、Cu、Ag、Au、Ni、Pd、Pt、Co、Rh、Ir、Mn、B、Al、Ga、Pb和Sn),S1和S2为独立地选自以下的取代基:芳基、苯基、环烷基、烷基、卤素、烷氧基、烷硫基、全氟烷基、全氟芳基、吡啶基、氰基、硫氰基、硝基、氨基、烷基氨基、酰基、磺基、磺酰基、酰亚胺基、酰胺基和氨基甲酰基,其中所述取代基提供了小于约2伏特的氧化还原电势范围,K1、K2、K3和K4独立地选自N、O、S、Se和Te;L为连接物;X选自基质、可以共价连接至基质的活性部分和可以离子键连接至基质的活性部分。在优选的实施方案中,X或者L-X可以为醇或者硫醇。在一些实施方案中,可以将L-X除去或者替换为独立地选自与基团S1或者S2相同的取代基。
[00262]对用于本发明储存装置中的氧化还原活性分子的氧化还原活性单元的空穴贮存和空穴跃迁性能的控制使得可以对所述存储装置的结构进行精确控制。
[00263]上述调节的使用贯穿于合成设计。空穴存储性质取决于用于构成存储介质的氧化还原活性单元或者亚基的氧化电势。通过选择骨架分子、相关金属和末端取代基,可以对空穴存储性能和氧化还原电势进行精确调节(Yang等人(1999)J.Porphyrins Phthalocyanines,3:117-147),其全部内容在此引入作为参考。
[00264]例如,在使用卟啉的情形中,Mg卟啉比Zn卟啉更易于氧化,并且吸电子或者给电子芳基可以调节其氧化性能。空穴跃迁存在于纳米结构的等能卟啉中并且经连接卟啉的共价连接物进行介导(Seth等人(1994)J.Am.Chem.Soc,116:10578-10592,Seth等人(1996)J.Am.Chem.Soc,118:11194-11207,Strachan等人(1997)J.Am.Chem.Soc,119:11191-11201;Li等人(1997)J.Mater.Chem.,7:1245-1262,Strachan等人(1998)Inorg.Chem.,37:1191-1201,Yang等人(1999)J.Am.Chem.Soc,121:4008-4018),其全部内容在此引入作为参考。
[00265]具有预期氧化还原电势的化合物的设计是本领域熟练技术人员所熟知的。通常,氧化还原活性单元或者亚基的氧化电势是本领域熟练技术人员所熟知的,并且可以对其进行查阅(参见,例如,Handbook of Electrochemistry of the Elements;PorphyrinHandbook)。此外,一般而言,多种取代基对分子氧化还原电势的影响通常是辅助性的。由此,对于任何可能的数据存储分子,其理论氧化电势可以得到轻易预测。实际氧化电势,特别是信息存储分子或者信息存储介质的氧化电势可以根据标准方法进行测量。一般氧化电势通过以下方法进行预测:比较试验确定的骨架分子的氧化电势和带有一种取代基的骨架分子的氧化电势,从而确定由于具体取代基而引起的电位漂移,对依赖于取代基的相应取代基的电位漂移进行加合,由此给出预测的氧化电势。
[00266]用于本发明方法中的具体氧化还原活性分子的适用性可以轻易得到确定。根据本发明方法将感兴趣的分子连接至表面(例如,氢气钝化的表面)。然后,可以对其进行正弦伏安测量法(例如,如本文中所述或者如美国专利6,272,038;6,212,093;和6,208,553,PCT公开文本WO 01/03126所述,或者如(Roth等人(2000)Vac.Sci.Technol.B18:2359-2364;Roth et al.(2003)J.Am.Chem.Soc125:505-617所述),从而测定1)是否有分子连接至表面,2)覆盖率(连接);3)在连接工艺期间是否有分子被降解,和4)分子针对多次读/写操作的稳定性。
[00267]此外,在“卟啉”的定义范围内包括含有卟啉前配体和至少一个金属离子的卟啉配合物。对于卟啉化合物,适宜的金属将取决于用作配位原子的杂原子,但是其通常选自过渡金属离子。在此使用的术语“过渡金属”一般是指元素周期表第3~12列的38种元素。一般过渡金属的特征在于它们的价电子或者它们用于与其它元素结合的电子,它们一般存在多于一个的壳层中,从而通常显示出数个常见的氧化态。在某些实施方案种,本发明的过渡金属包括但不限于以下金属中的一种或者多种:钪、钛、钒、铬、锰、铁、钴、镍、铜、锌、钇、锆、铌、钼、锝、钌、铑、钯、银、镉、铪、钽、钨、铼、锇、铱、铂、金、汞和/或
Figure A200580013610D0063145431QIETU
其它大环
[00268]还存在许多基于环烯衍生物的大环。图33显示了大概基于环烯/cyclam衍生物的许多大环前配体,其可以包括通过含有独立选择的碳或者杂原子而扩大的骨架扩展。在一些实施方案中,至少一个R基团为氧化还原活性亚基,优选为与金属电子共轭的亚基。在一些实施方案中,包括当至少一个R基团为氧化还原活性亚基时,两个或者更多个相邻的R2基团形成环或者芳基。
[00269]此外,在一些实施方案中,使用了依赖于有机金属配体的大环配合物。除了用作氧化还原部分的纯有机化合物和多种具有δ键有机配体(所述δ键有机配体具有作为杂环或者环外取代基的给体原子)的过渡金属配位配合物之外,还可以使用多种具有π键有机配体的过渡金属有机金属化合物(参见,Advanced Inorganic Chemistry,5th Ed.,Cotton & Wilkinson,John Wiley & Sons,1988,chapter 26;Organometallics,A Concise Introduction,Elschenbroich et al.,2nd Ed.,1992,VCH;和Comprehensive Organometallic Chemistry II,A Reviewof the Literature 1982-1994,Abel等人编辑,Vol.7,chapters 7,8,10 &11,Pergamon Press,其全文在此引入作为参考)。所述有机金属配体包括环状的芳香化合物(比如环戊二烯阴离子[C5H5(-1)])和多种环取代和环稠合衍生物(比如茚基负(-1)离子,其产生一类二(环戊二烯基)金属化合物(即,茂金属));参见,例如Robins等人,J.Am.Chem.Soc.104:1882-1893(1982);和Gassman等人,J.Am.Chem.Soc.108:4228-4229(1986),在此引入作为参考。在这些之中,二茂铁[(C5H5)2Fe]及其衍生物是已经用于多种化学(Connelly等人Chem.Rev.96:877-910(1996),在此引入作为参考)和电化学(Geiger等人,Advances in Organometallic Chemistry 23:1-93;和Geiger等人,Advances in Organometallic Chemistry 24:87,在此引入作为参考)电子转移或者“氧化还原”反应中的原型实施例。多种第一、第二和第三排的过渡金属茂金属衍生物可以用作氧化还原部分(和氧化还原亚基)。其它可能的适宜有机金属配体包括环芳烃,比如苯,从而形成二(芳烃)合金属化合物及其环取代和环稠合衍生物,其中二(苯)合铬是原型实施例;其它非环π键配体(比如烯丙基(-1)离子或者丁二烯)形成可能的适宜有机金属化合物,并且所有这些配体都连同其它π键和δ键配体一起构成一般类型的有机金属化合物,其中存在金属-碳键。对多种具有桥接的有机配体、非桥接的配体以及有或者没有金属-金属键的所述化合物的二聚体和低聚物的电化学研究都是有用的。
[00270]当一种或者多种共配体为有机金属配体时,所述配体通常经有机金属配体中的一个碳原子进行连接,不过对于杂环配体,连接可以经其它原子进行。优选的有机金属配体包括茂金属配体,包括其取代衍生物和metalloceneophanes(参见Cotton and Wilkenson,supra的第1174页)。例如,比如甲基环戊二烯基的茂金属配体衍生物,同时优选带有多个甲基(比如五甲基环戊二烯基),可以用于增强茂金属的稳定性。在一些实施方案中,所述茂金属衍生为带有一个或者多个在此所述取代基的化合物,特别是改变亚基或者部分氧化还原电势的取代基。
[00271]如在此所述,可以使用任意的配体组合。优选的组合包括:a)所有配体都是氮给体配体;b)所有的配体都是有机金属配体。
夹层配位配合物
[00272]在一些实施方案中,所述ReAMs为夹层配位配合物。术语“夹层配位化合物”或者“夹层配位配合物”是指式L-Mn-L的化合物,其中L各自为杂环配体(如下所述),M各自为金属,n为2或者更多,最优选2或者3,和金属各自位于一对配体之间并且键合在各个配体的一个或者多个杂原子(并且典型地为许多杂原子,例如2、3、4、5)上(取决于金属的氧化态)。由此,夹层配位化合物并非是有机金属化合物比如二茂铁,在有机金属化合物中金属键合在碳原子上。在夹层配位化合物中所述配体通常以层叠的方向布置(即,通常共表面定向和彼此轴向对齐排列,不过它们能够或者不能围绕它们彼此相对的轴旋转)(参见,例如,Ng and Jiang(1997)Chemical SocietyReviews 26:433-442,在此引入作为参考)。夹层配位配合物包括但不限于“双层结构夹层配位化合物”和“三层结构夹层配位化合物”。夹层配位化合物的合成和应用详述于美国专利6,212,093、6,451,942和6,777,516中;并且这些分子的聚合描述于美国S.N.10/800,147中,其标题为“Procedure for Preparing Redox-Active Polymers onSurfaces”,Bocian、Liu和Lindsey,受让人为Regents of the Universityof California,其全文在此引入作为参考,特别是用于加成配合物和“单个”大环“配合物”的单独取代基。
[00273]术语“双层结构夹层配位化合物”是指其中n为2的如上所述夹层配位化合物,由此其具有式L′-M′-LZ,其中各个L1和LZ可以相同或者不同(参见,例如,Jiang等人(1999)J.PorphyrinsPhthalocyanines 3:322-328和美国专利No.6,212,093;6,451,942;6,777,516;并且这些分子的聚合描述于美国S.N.10/800,147中,其标题为“Procedure for Preparing Redox-Active Polymers on Surfaces”,Bocian、Liu和Lindsey,受让人为Regents of the University ofCalifornia,其全文在此引入作为参考)。
[00274]术语“三层结构夹层配位化合物”是指其中n为3的如上所述夹层配位化合物,由此其具有式L′-M′-LZ-MZ-L3,其中各个L1、LZ和L3可以相同或者不同,并且M1和MZ可以相同或者不同(参见,例如,Arnold等人(1999)Chemistry Letters 483-484)和美国专利Nos.6,212,093;6,451,942;6,777,516;并且这些分子的聚合描述于美国S.N.10/800,147中,其标题为“Procedure for Preparing Redox-ActivePolymers on Surfaces”,Bocian、Liu和Lindsey,受让人为Regents of theUniversity of California,其全文在此引入作为参考。
[00275]此外,还可以使用这些夹层化合物的聚合物;这包括如U.S.S.N 6,212,093、6,451,942和6,777,516所述的“二元”和“三元”夹层化合物;并且这些分子的聚合描述于美国S.N.10/800,147中,其标题为“Procedure for Preparing Redox-Active Polymers onSurfaces”,Bocian、Liu和Lindsey,受让人为Regents of the Universityof California。
非大环前配体和配合物
[00276]通常,包含非大环螯合剂的ReAMs连接到金属离子上,从而形成非大环螯合物,因此金属的存在允许多个前配体相连接,从而形成多重氧化态。
[00277]在一些实施方案中,使用了氮给体前配体。适宜的氮给体前配体是本领域技术人员所熟知的,并且包括但不限于NH2;NHR;NRR′;吡啶;吡嗪;异烟酰胺;咪唑;二吡啶和二吡啶取代衍生物;三吡啶及其取代衍生物;菲咯啉,特别1,10-菲咯啉(简写为phen)和菲咯啉的取代衍生物,比如4,7-二甲基菲咯啉和二吡啶酚[3,2-a:2′,3′-c]吩嗪(简写为dppz);二吡啶并菲吩嗪;1,4,5,8,9,12-六氮杂苯并[9,10]菲(简写为hat);9,10-菲醌二亚胺(简写为phi);1,4,5,8-四氮杂菲(简写为tap);1,4,8,11-四氮杂环十四烷(简写为cyclam)和异氰化物。也可以使用取代衍生物,包括稠合的衍生物。应当指出,基于上述目的,将不饱和配位金属离子的大环配体和需要加入其它前配体的大环配体看作非大环配体。本领域技术人员应当理解,可以共价连接许多“非大环”配体,从而形成配位饱和化合物,但是其缺少环状骨架。
[00278]利用碳、氧、硫和磷的适宜σ给体配体在本领域是已知的。例如,适宜的σ碳给体公开于Cotton and Wilkenson,Advanced OrganicChemistry,第五版,John Wiley &Sons,1988中,在此引入作为参考;例如,参见38页。类似地,适宜的氧配体包括冠醚、水以及本领域已知的其它氧配体。膦和取代膦也是适宜的;参见Cotton and Wilkenson第38页。
[00279]所述氧、硫、磷和氮给体配体以使得杂原子充当配位原子的方式进行连接。
多核前配体和配合物
[00280]此外,一些实施方案应用了作为多核配体的多给体配体,例如,它们能够连接多于一个金属离子。它们可以为大环或者非大环配体。
[00281]许多适宜的前配体和配合物以及适宜的取代基都公开于美国专利号6,212,093、6,728,129、6,451,942、6,777,516、6,381,169、6,208,553、6,657,884、6,272,038、6,484,394和美国申请顺序号10/040,059、10/682,868、10/445,977、10/834,630、10/135,220、10/723,315、10/456,321、10/376,865中;它们的全部内容在此引入作为参考,尤其是其中所描绘的结构及其说明。
聚合物
[00282]本发明存储元件还可以包括如上所述ReAMs的聚合物;例如,可以使用卟啉聚合物(包括卟啉配合物的聚合物)、大环配合物聚合物和含有两个氧化还原活性亚基的ReAMs等。所述聚合物可以为均聚物或者杂聚物,并且可以包括单体ReAMs的多种不同混合物,其中“单体”还可以包括含有两个或者更多个亚基的ReAMs(例如,夹层配位化合物、被一个或者多个二茂铁取代的卟啉衍生物等)。ReAM聚合物描述于美国申请顺序号10/800,147中,标题为Procedure forPreparing Redox-Active Polymers on Surfaces,Bocian,Liu和Lindsey,受让人为Regents of the University of California,其全部内容在此引入作为参考。
[00283]电极上聚合物的构造可以不同。在一些实施方案中,聚合物在Z方向上为线性(该方向垂直于基质表面,如图30A中所示),并且任选可以是交联的(图30B)。还可以预期Z方向上的支链聚合物,并且任选它也可以是交联的。还包括在X-Y方向(图30C)的线性聚合物或者支链聚合物和/或交联聚合物。此外,在上述任何构造中还可以应用聚合物混合物。
[00284]在一些实施方案中,优选控制ReAMs的方向和距离(不论是聚合物还是单体)的构造(包括连接物的选择),由此通常可以获得ReAMs的更高密度以及更佳电子转移和电子转移速率。连接物的长度可以对电荷的速率和保持有贡献。
[00285]通常,聚合作用实施方案有赖于取代基的使用,这将导致附着至电极表面以及聚合至其它ReAMs上。如美国申请顺序号10/800,147所述,其标题为"Procedure for Preparing Redox-ActivePolymers on Surfaces,"Bocian、Liu和Lindsey,受让人为Regents of theUniversity of California,存在两种合成这些ReAMs的一般方法:在表面上原位“聚合”,和预聚合,随后利用一种或者多种连接部分加成到表面上,详述于美国申请顺序号10/800,147中,其全文在此引入作为参考,并且在此特别称作为“一步”和“两步”聚合/连接步骤。
取代基
[00286]在此描述的多种化合物都带有取代基,在本文中通常表示为“R”。适宜的R基团包括但不限于,氢、烷基、醇、芳基、氨基、酰胺基、硝基、醚、酯、醛、磺酰基、硅部分、卤素、氰基、酰基、含硫部分、含磷部分、酰胺基、亚氨基、氨基甲酰基、连接物、连接部分以及其它ReAMs(例如亚基)。应当指出,一些位置上可以存在两个取代基R和R′,在这种情形中,R和R′可以相同或者不同,并且通常优选其中一个取代基为氢。
[00287]许多适宜的前配体和配合物以及适宜的取代基都公开于以下文件中,美国专利号6,212,093;6,728,129;6,451,942;6,777,516;6,381,169;6,208,553;6,657,884;6,272,038;6,484,394;和美国申请顺序号10/040,059;10/682,868;10/445,977;10/834,630;10/135,220;10/723,315;10/456,321;10/376,865;它们的全部内容在此引入作为参考,特别是其中所述的结构及其描述,在此明确作为取代实施方案被包含在内,它们都作为在此所述以及进一步取代衍生物的具体大环的取代基。
[00288]在此应用的“烷基”或者其语法等价用语是指直链或者支链烷基,优选直链烷基。如果是支链烷基,那么它可以在一个或者多个位置上存在分支,并且除非明确说明,所述分支可以在任何位置。所述烷基可以包括约1~约30个碳原子(C1~C30),优选的实施方案应用了约1~约20个碳原子(C1~C20),优选约1个碳原子至约12~约15个,特别优选C1~C5。在该烷基定义中还包括环烷基(比如C5和C6环)和具有氮、氧、硫或者磷的杂环。烷基还包括具有硫、氧、氮的杂原子的杂烷基,并且优选硅氧烷。
[00289]在此应用的“芳基”或者其语法等价用语实施包括单取代和多取代芳环、单环和多环系统、单取代和多取代杂环和杂芳环和环状系统(比如吡啶、呋喃、噻吩、吡咯、吲哚和嘌呤)的芳环。
[00290]在“烷基”和“芳基”定义范围内还包括取代烷基和取代芳基。也就是说,所述烷基和芳基可以被一个或者多个如本文所定义的“R”取代基所取代。例如,苯基可以是被一个或者多个R基团取代的取代苯基。优选烷基为烷硫基、全氟烷基、烷基氨基和烷氧基。
[00291]在此应用的“氨基”或者其语法等价用语是指-NH2、-NHR和-NR2基团,其中R如在此所定义。
[00292]在此应用的“硝基”是指-NO2基团。
[00293]在此应用的“含硫部分”是指含有硫原子的化合物,包括但不限于硫杂化合物、硫代化合物、磺基化合物、硫醇(-SH和-SR)和硫化物(-RSR-),包括亚硫酰基和磺酰基。在此应用的“含磷部分”是指含磷化合物,包括但不限于膦和磷酸酯。在此应用的“含硅部分”是指含硅化合物。
[00294]在此应用的“醚”是指-O-R基团。优选的醚包括烷氧基,并且优选-O-(CH2)2CH3和-O-(CH2)4CH3
[00295]在此应用的“酯”是指-COOR基团。
[00296]在此应用的“卤素”是指溴、碘、氯或者氟。优选取代的烷基为部分或者完全卤代的烷基,比如CF3等。
[00297]在此应用的“醛”是指-RCHO基团。
[00298]在此应用的“醇”是指-OH基团和烷基醇-ROH。
[00299]在此应用的“酰胺基”是指-RCONH-或者RCONR-基团。
[00300]在此应用的“乙二醇”是指-(O-CH2-CH2)n-基团,不过亚乙基的每个碳原子还可以被单取代或者双取代,即-(O-CR2-CR2)n-,其中R如上所述。还优选其它杂原子代替了氧的乙二醇衍生物(即-(N-CH2-CH2)n-或者-(S-CH2-CH2)n-,或者带有取代基)。
连接部分
[00301]如本文中所述,连接部分(在此表示为“Z”)用于将本发明的ReAMs连接至电极上。“带有连接基团的分子”包括其中连接基团为分子固有组成部分的分子、与连接分子加成的衍生分子、和带有含有连接基团的连接物的衍生分子。
[00302]连接部分的性质取决于电极基质的组成。通常,连接部分与连接物(如果存在)一起允许存储分子与电极的电子偶合。
[00303]通常,适宜的连接部分包括但不限于,羧酸、羧酸酯、醇、硫醇(包括S-乙酰基硫醇)、硒醇、碲醇、膦酸、硫代膦酸酯、胺、酰胺、三甲基甲硅烷基芳烃、腈、芳基和烷基(包括取代芳基和取代烷基,比如碘代芳基和溴代甲基)。美国申请顺序号10/800,147,标题为“Procedure for Preparing Redox-Active Polymers on Surfaces”,Bocian,Liu和Lindsey,受让人为Regents of the University ofCalifornia,基于上述目的在此引入作为参考,其提供了适宜连接部分和连接物的详尽目录((各自独立,并且为“L-Z”基团);参见107~113段)。应当指出,连接部分可以形成经单个基团(例如,“单足”连接)或者多个基团(“多足”连接)连接的ReAM(或者连接至ReAM的连接物)。在一些实施方案中,多足连接(比如三足连接)会导致ReAM(包括ReAM聚合物)更为固定的定位,由此可以产生更高密度和更清晰的信号。应用硫醇、羧酸、醇和膦酸的多足(包括三足)连接部分是特别诱人的。如参考的申请中所公开,一些实施方案应用了基于三苯甲烷和四苯基甲烷单元的连接部分,其中2个或者3个苯基可以被适宜的连接官能团所取代(例如,比如Z-乙酰基硫醇的硫醇或者二羟基磷酰基)
连接物
[00304]连接物可以用于本发明多种构造中(包括将附着部分连接至本发明ReAMs上),将ReAMs的氧化还原活性亚基相连接,以及用于ReAMs聚合反应中。为了实现在低压和小电池尺寸下的快速写和/或删除操作,应用了连接物,可以对用于本发明的连接物尺度进行最优化。最优的连接物尺寸可以通过理论计算得到(参见,U.S.S.N60/473,782,在此引入作为参考)。其它连接物(和事实上也与ReAMs相适合的连接物)可以仅仅凭经验通过以下方法进行测定,如本文以及引用的参考文献所述将ReAM连接至表面,和进行伏安测量法,从而测定连接聚合物的表面性能。
[00305]基于说明的目的,已经参考具体实施方案对上述说明书部分进行了描述。然而,上述例证性说明并非意指本发明全部内容和将本发明限制为具体公开形式。根据上述教导,可以进行多种变型和变体。为了最佳说明本发明原理及其实际应用,对实施方案进行了上述选择和描述,从而使得使得本领域熟练技术人员能够最佳应用本发明以及具有适用于预期具体应用的多种变型的多种实施方案。

Claims (42)

1、一种分子存储装置,其包括
微米或者亚微米尺寸的电化学电池,所述电化学电池包括:
工作电极;
反电极;
辅助反电极;
连接工作电极、反电极和辅助反电极的电解质;和
与至少一个电极电连接的氧化还原活性分子。
2、权利要求1的装置,其中至少一些氧化还原活性分子位于一层或者多层化学吸附层中。
3、权利要求1的装置,其中氧化还原活性分子共价键合至至少一个电极上。
4、权利要求1的装置,其中氧化还原活性分子电连接至工作电极和辅助反电极上。
5、权利要求1的装置,其中所述存储分子为单体卟啉、二茂铁衍生的卟啉、二聚卟啉、三聚卟啉、卟啉衍生物、卟啉聚合物或者其组合。
6、权利要求1的装置,其中所述工作电极含有金、铝、银、碳、钨、铜、铂、钛、钽、钨、多晶体硅、纳米晶体硅、氮化钛、氮化钽、钨化钛、IrO、RuO、OsO、RhO、ITO或者其组合。
7、权利要求1的装置,其中所述辅助反电极含有金、铝、银、碳、钨、铜、铂、钛、钽、钨、多晶体硅、纳米晶体硅、氮化钛、氮化钽、钨化钛、IrO、RuO、OsO、RhO、ITO或者其组合。
8、权利要求1的装置,其中所述电解质包括聚合物基质和离子型液体;传导离子的玻璃或者陶瓷;传导离子的过渡金属氧化物,或者固体电解质。
9、一种存储元件,其包括
与微米或者亚微米尺寸电化学电池相连接的开关装置,其中所述电化学电池包括:
工作电极;
反电极;
辅助反电极;
连接工作电极、反电极和辅助反电极的电解质;和
与至少一个电极电连接的氧化还原活性分子。
10、一种存储器阵列,其包括
一系列存储元件,其中至少一些存储元件包括:
与微米或者亚微米尺寸的电化学电池相连接的开关装置,其中所述电化学电池包括:
工作电极;
反电极;
辅助反电极;
连接工作电极、反电极和辅助反电极的电解质;和
与至少一个电极电连接的氧化还原活性分子。
11、权利要求10的存储器阵列,其中该阵列包括至少250,000个具有连接至微米或者亚微米尺寸的电化学电池的开关装置的存储元件。
12、一种计算装置,其包括
与包括一系列存储元件的分子存储器相连的中央处理器,其中至少一些存储元件包括
与微米或者亚微米尺寸的电化学电池相连接的开关装置,其中该电化学电池包括:
工作电极;
反电极;
辅助反电极;
连接工作电极、反电极和辅助反电极的电解质;和
与至少一个电极电连接的氧化还原活性分子。
13、权利要求12的计算装置,其中该计算装置为便携式计算机、个人数字助手、手机、数码相机、数码摄像机或者嵌入式计算机。
14、权利要求12的计算装置,其中所述开关装置为晶体管。
15、一种分子存储装置,包括
微米或者亚微米尺寸的电化学电池,该电化学电池包括:
与化学吸附的存储分子层电连接的工作电极;
与化学吸附的氧化还原活性分子层电连接的反电极;和
连接工作电极和反电极的电解质。
16、权利要求15的装置,其中所述化学吸附的存储分子层和化学吸附的氧化还原活性分子层基本上是彼此共面的。
17、一种存储元件,包括
与微米或者亚微米尺寸的电化学电池相连接的开关装置,其中该电化学电池包括:
与化学吸附的存储分子层电连接的工作电极;
与化学吸附的氧化还原活性分子层电连接的反电极;和
连接工作电极和反电极的电解质。
18、一种存储器阵列,包括
一系列存储元件,其中至少一些存储元件包括
与微米或者亚微米尺寸的电化学电池相连接的开关装置,其中所述电化学电池包括:
与化学吸附的存储分子层电连接的工作电极;
与化学吸附的氧化还原活性分子层电连接的反电极;和
连接工作电极和反电极的电解质。
19、一种计算装置,包括
与包括一系列存储元件的分子存储器相连接的中央处理器,其中至少一些存储元件包括与微米或者亚微米尺寸的电化学电池相连接的开关装置,其中所述电化学电池包括:
与化学吸附的存储分子层电连接的工作电极;
与化学吸附的氧化还原活性分子层电连接的反电极;和
连接工作电极和反电极的电解质。
20、一种读取分子存储装置的方法,包括
将位线连接至电化学电池上,其中所述电化学电池包括:
与存储分子电连接的工作电极;
反电极;
辅助反电极;和
连接工作电极、反电极和辅助反电极的电解质;和
监测位线,获取指示存储分子的氧化态的电位变化。
21、权利要求20的方法,其中所述辅助反电极电连接至氧化还原活性分子上。
22、权利要求20的方法,其中所述电化学电池为微米或者亚微米尺寸的。
23、一种写入分子存储装置的方法,包括
将位线连接至电化学电池,其中该电化学电池包括:
电连接至存储分子的工作电极;
反电极;
辅助反电极;和
连接工作电极、反电极和辅助反电极的电解质;和
对位线施加电压来设定存储分子的氧化态。
24、权利要求23的方法,其中所述辅助反电极电连接至氧化还原活性分子上。
25、权利要求23的方法,其中所述电化学电池为微米或者亚微米尺寸的。
26、一种读取分子存储装置的方法,包括
将位线连接至电化学电池上,其中该电化学电池包括:
与化学吸附的存储分子层电连接的工作电极;
与化学吸附的氧化还原活性分子层电连接的反电极;和
连接工作电极和反电极的电解质;和
监测位线,获取指示存储分子的氧化态的电位变化。
27、一种写入分子存储装置的方法,包括
将位线连接至电化学电池,其中该电化学电池包括:
与化学吸附的存储分子层电连接的工作电极;
与化学吸附的氧化还原活性分子层电连接的反电极;和
连接工作电极和反电极的电解质;和
对位线施加电压来设定存储分子的氧化态。
28、一种装置,包括:
涂覆元件,它被构造成用于将氧化还原活性分子沉积在单独制造的半导体片上;
包含所述涂覆元件的封闭室;
一个或者多个气体传感器,它监测封闭室内的一种或者多种气体;和
控制系统,它管理涂覆元件的操作。
29、权利要求28的装置,其中所述一个或者多个气体传感器监测封闭室内的水和氧气。
30、一种装置,包括:
加热元件,它被构造成用于将单独制造的半导体片退火至350~450℃;
包含所述加热元件的封闭室;
一个或者多个气体传感器,它监控封闭室内的一种或者多种气体;和
控制系统,它管理加热元件的操作。
31、权利要求30的装置,其中所述一个或者多个气体传感器监测封闭室内的水和氧气。
32、一种集成装置,包括:
涂覆元件,它被构造成用于将氧化还原活性分子沉积在单独制造的半导体片上;
加热元件,它被构造成用于将单独制造的硅片退火至350~450℃;
一个或者多个包含所述的涂覆元件和所述的加热元件的封闭室;
一个或者多个气体传感器,它监控一个或者多个封闭室内的一种或者多种气体;和
控制系统,管理涂覆元件和加热元件的操作。
33、权利要求32的装置,其中所述一个或者多个气体传感器监控所述环境中的水和氧气。
34、一种装置,包括:
涂覆元件,它被构造成用于将电解质沉积在单独制造的半导体片上;
包含所述涂覆元件的封闭室;
一个或者多个气体传感器,它监控封闭室内的一种或者多种气体;和
控制系统,它管理涂覆元件的操作。
35、权利要求34的装置,其中所述一个或者多个气体传感器监控封闭室内的水和氧气。
36、一种方法,包括:
在单独制造的半导体片上,通过下述方法制造一系列分子存储装置:
形成一系列工作电极;
形成一个或者多个用于所述系列分子存储装置的辅助反电极;
将存储分子附着到工作电极上;
形成一种或者多种用于所述系列分子存储装置的电解质;和
形成一种或者多种用于所述系列分子存储装置的反电极。
37、权利要求36的方法,包括将氧化还原活性分子附着到一个或者多个辅助反电极上。
38、权利要求36的方法,其中一个或者多个反电极的形成是以一种降低或者消除氧化还原分子暴露于将会分解该分子的辐射的方式而实现的。
39、一种方法,包括:
在第一监测的气体环境下,将氧化还原活性分子沉积在单独制造的半导体片的表面上;
在第二监测的气体环境下,将一些氧化还原活性分子化学附着至半导体片的许多工作电极表面上;
从所述半导体片上除去未化学附着的氧化还原活性分子;
在所述半导体片上形成电解质;和
将导体沉积在所述电解质上。
40、权利要求39的方法,其中在第一和第二监测的气体环境中监测氧气和水蒸气。
41、权利要求39的方法,其中至少一些附着的氧化还原活性分子位于一层或者多层化学吸附层中。
42、权利要求39的方法,其中导体在电解质上沉积的是以一种降低或者消除氧化还原分子暴露于将会分解所述分子的辐射的方式而实现的。
CN200580013610.4A 2004-04-29 2005-04-29 分子存储器和用于加工它的处理系统与方法 Expired - Fee Related CN101426617B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US10/834,630 2004-04-29
US10/834,630 US7695756B2 (en) 2004-04-29 2004-04-29 Systems, tools and methods for production of molecular memory
US4651805A 2005-01-28 2005-01-28
US11/046,518 2005-01-28
PCT/US2005/015070 WO2006031260A2 (en) 2004-04-29 2005-04-29 Molecular memory and processing systems and methods therefor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN2011100351377A Division CN102157691A (zh) 2004-04-29 2005-04-29 分子存储器和用于加工它的处理系统与方法

Publications (2)

Publication Number Publication Date
CN101426617A true CN101426617A (zh) 2009-05-06
CN101426617B CN101426617B (zh) 2011-09-07

Family

ID=35186898

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200580013610.4A Expired - Fee Related CN101426617B (zh) 2004-04-29 2005-04-29 分子存储器和用于加工它的处理系统与方法

Country Status (2)

Country Link
US (1) US7695756B2 (zh)
CN (1) CN101426617B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105336365A (zh) * 2010-05-11 2016-02-17 耶达研究及发展有限公司 固体多态分子随机访问存储器(ram)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002077633A1 (en) * 2001-03-23 2002-10-03 The Regents Of The University Of California Open circuit potential amperometry and voltammetry
US20090056991A1 (en) * 2007-08-31 2009-03-05 Kuhr Werner G Methods of Treating a Surface to Promote Binding of Molecule(s) of Interest, Coatings and Devices Formed Therefrom
US20090056994A1 (en) 2007-08-31 2009-03-05 Kuhr Werner G Methods of Treating a Surface to Promote Metal Plating and Devices Formed
US20090225585A1 (en) * 2007-12-27 2009-09-10 Hawkins J Adrian Self-Contained Charge Storage Molecules for Use in Molecular Capacitors
US8747599B2 (en) * 2008-05-29 2014-06-10 Chidella Krishna Sastry Process for making self-patterning substrates and the product thereof
US8778534B2 (en) 2008-07-14 2014-07-15 Esionic Es, Inc. Phosphonium ionic liquids, compositions, methods of making and batteries formed there from
US8907133B2 (en) 2008-07-14 2014-12-09 Esionic Es, Inc. Electrolyte compositions and electrochemical double layer capacitors formed there from
US8927775B2 (en) 2008-07-14 2015-01-06 Esionic Es, Inc. Phosphonium ionic liquids, salts, compositions, methods of making and devices formed there from
US8319208B2 (en) * 2008-10-02 2012-11-27 Zettacore Ip, Inc. Methods of forming thin films for molecular based devices
EP2591645B1 (en) 2010-07-06 2018-09-05 Namics Corporation Methods of treating copper surfaces for enhancing adhesion to organic substrates for use in printed circuit boards
EP2590758B1 (en) 2010-07-06 2020-06-10 ATOTECH Deutschland GmbH Methods of treating metal surfaces
KR20140145529A (ko) * 2012-05-12 2014-12-23 아데스토 테크놀러지스 코포레이션 가변 임피던스 메모리 엘리먼트를 위한 접촉 구조 및 방법
EP2870644A2 (en) 2012-07-09 2015-05-13 Yeda Research and Development Co. Ltd. Logic circuits with plug and play solid-state molecular chips
IL229525A0 (en) 2013-11-20 2014-01-30 Yeda Res & Dev Metal complexes of tris-bipyridyl and their uses in electrochromic applications

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5926412A (en) * 1992-02-09 1999-07-20 Raytheon Company Ferroelectric memory structure
RU2099807C1 (ru) * 1993-02-16 1997-12-20 Акционерное общество "Элит" Конденсатор с двойным электрическим слоем
JPH0722669A (ja) * 1993-07-01 1995-01-24 Mitsubishi Electric Corp 可塑性機能素子
US5650061A (en) * 1995-09-18 1997-07-22 The Regents Of The University Of California Large amplitude sinusoidal voltammetry
US6404670B2 (en) * 1996-05-24 2002-06-11 Uniram Technology, Inc. Multiple ports memory-cell structure
US6447951B1 (en) * 1996-09-23 2002-09-10 Valence Technology, Inc. Lithium based phosphates, method of preparation, and uses thereof
US6706473B1 (en) * 1996-12-06 2004-03-16 Nanogen, Inc. Systems and devices for photoelectrophoretic transport and hybridization of oligonucleotides
US5820922A (en) * 1996-12-17 1998-10-13 Sandia Corporation Method for localized deposition of noble metal catalysts with control of morphology
US6462931B1 (en) 1997-10-23 2002-10-08 Texas Instruments Incorporated High-dielectric constant capacitor and memory
US6304483B1 (en) * 1998-02-24 2001-10-16 Micron Technology, Inc. Circuits and methods for a static random access memory using vertical transistors
US6025624A (en) * 1998-06-19 2000-02-15 Micron Technology, Inc. Shared length cell for improved capacitance
US6290839B1 (en) * 1998-06-23 2001-09-18 Clinical Micro Sensors, Inc. Systems for electrophoretic transport and detection of analytes
US6207524B1 (en) * 1998-09-29 2001-03-27 Siemens Aktiengesellschaft Memory cell with a stacked capacitor
KR20000050486A (ko) * 1999-01-11 2000-08-05 김영환 볼 그리드 어레이 반도체 패키지의 인캡슐레이션 방법
US7042755B1 (en) * 1999-07-01 2006-05-09 The Regents Of The University Of California High density non-volatile memory device
US6381169B1 (en) * 1999-07-01 2002-04-30 The Regents Of The University Of California High density non-volatile memory device
US6208553B1 (en) * 1999-07-01 2001-03-27 The Regents Of The University Of California High density non-volatile memory device incorporating thiol-derivatized porphyrins
US6324091B1 (en) * 2000-01-14 2001-11-27 The Regents Of The University Of California Tightly coupled porphyrin macrocycles for molecular memory storage
US6272038B1 (en) * 2000-01-14 2001-08-07 North Carolina State University High-density non-volatile memory devices incorporating thiol-derivatized porphyrin trimers
JP2003520384A (ja) * 2000-01-14 2003-07-02 ノース・キャロライナ・ステイト・ユニヴァーシティ 連結されたサンドイッチ型配位化合物のポリマーを担持する基板およびそれを使用する方法
US6212093B1 (en) * 2000-01-14 2001-04-03 North Carolina State University High-density non-volatile memory devices incorporating sandwich coordination compounds
US6492056B1 (en) * 2000-03-13 2002-12-10 Energy Conversion Devices, Inc. Catalytic hydrogen storage composite material and fuel cell employing same
US7112366B2 (en) * 2001-01-05 2006-09-26 The Ohio State University Chemical monolayer and micro-electronic junctions and devices containing same
US6855950B2 (en) * 2002-03-19 2005-02-15 The Ohio State University Method for conductance switching in molecular electronic junctions
SE520339C2 (sv) * 2001-03-07 2003-06-24 Acreo Ab Elektrokemisk transistoranordning och dess tillverkningsförfarande
JP2002280465A (ja) 2001-03-19 2002-09-27 Sony Corp 不揮発性半導体記憶装置およびその製造方法
WO2002077633A1 (en) 2001-03-23 2002-10-03 The Regents Of The University Of California Open circuit potential amperometry and voltammetry
US6642376B2 (en) * 2001-04-30 2003-11-04 North Carolina State University Rational synthesis of heteroleptic lanthanide sandwich coordination complexes
US6768157B2 (en) * 2001-08-13 2004-07-27 Advanced Micro Devices, Inc. Memory device
US7348206B2 (en) * 2001-10-26 2008-03-25 The Regents Of The University Of California Formation of self-assembled monolayers of redox SAMs on silicon for molecular memory applications
US7074519B2 (en) * 2001-10-26 2006-07-11 The Regents Of The University Of California Molehole embedded 3-D crossbar architecture used in electrochemical molecular memory device
US6674121B2 (en) 2001-12-14 2004-01-06 The Regents Of The University Of California Method and system for molecular charge storage field effect transistor
US6728129B2 (en) * 2002-02-19 2004-04-27 The Regents Of The University Of California Multistate triple-decker dyads in three distinct architectures for information storage applications
US6850096B2 (en) * 2002-05-10 2005-02-01 Yoshio Nishida Interpolating sense amplifier circuits and methods of operating the same
JP4214112B2 (ja) * 2002-06-21 2009-01-28 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア イオン性液体を含む電気光学デバイス用電解質
US6958270B2 (en) * 2002-12-17 2005-10-25 North Carolina State University Methods of fabricating crossbar array microelectronic electrochemical cells
US6944047B2 (en) * 2002-12-19 2005-09-13 North Carolina State University Variable-persistence molecular memory devices and methods of operation thereof
US7312100B2 (en) * 2003-05-27 2007-12-25 The North Carolina State University In situ patterning of electrolyte for molecular information storage devices
US7005237B2 (en) * 2003-05-27 2006-02-28 North Carolina State University Method of making information storage devices by molecular photolithography
US7032277B2 (en) * 2003-10-14 2006-04-25 Hewlett-Packard Development Company, L.P. Cable management system and method of use thereof
US7324385B2 (en) * 2004-01-28 2008-01-29 Zettacore, Inc. Molecular memory
US7019391B2 (en) * 2004-04-06 2006-03-28 Bao Tran NANO IC packaging
JP4811556B2 (ja) * 2004-04-23 2011-11-09 セイコーエプソン株式会社 圧電素子、液体噴射ヘッドおよび液体噴射装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105336365A (zh) * 2010-05-11 2016-02-17 耶达研究及发展有限公司 固体多态分子随机访问存储器(ram)

Also Published As

Publication number Publication date
US7695756B2 (en) 2010-04-13
CN101426617B (zh) 2011-09-07
US20050243597A1 (en) 2005-11-03

Similar Documents

Publication Publication Date Title
CN101426617B (zh) 分子存储器和用于加工它的处理系统与方法
US7358113B2 (en) Processing systems and methods for molecular memory
US7324385B2 (en) Molecular memory
US7230268B2 (en) Attachment of organic molecules to group III, IV or V substrates
US8529996B2 (en) High-temperature attachment of organic molecules to substrates
Zhang et al. The importance of pendant groups on triphenylamine‐based hole transport materials for obtaining perovskite solar cells with over 20% efficiency
CN102157691A (zh) 分子存储器和用于加工它的处理系统与方法
AU778378B2 (en) Substrates carrying polymers of linked sandwich coordination compounds and methods of use thereof
US6451942B1 (en) Substrates carrying polymers of linked sandwich coordination compounds and methods of use thereof
CN100470716C (zh) 用于存储单元形成的原位表面处理
CN1914688B (zh) 分子存储器件、对其进行读取或写入的方法、存储元件、存储阵列和器件
WO2005086826A2 (en) Procedure for preparing redox-active polymers on surfaces
KR20180098603A (ko) 미소 스위치 및 그것을 사용하는 전자 디바이스
Potscavage Jr Physics and engineering of organic solar cells
EP2472627A1 (en) Protein photoelectric conversion element, and tin-substituted cytochrome c
JP3837471B2 (ja) 修飾電極及び電極修飾法
Varotto Supramolecularly self-organized nanomaterials: A voyage from inorganic particles to organic light-harvesting materials
AU2004214622A1 (en) Substrates carrying polymers of linked sandwich coordination compounds and methods of use thereof
Moiz Temperature-Dependent Electrical Characterization of Novel Organic Semiconductor Based Diodes for Sensor Technology

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110907

Termination date: 20130429