CN101438392A - 非易失纳米晶体存储器及其方法 - Google Patents

非易失纳米晶体存储器及其方法 Download PDF

Info

Publication number
CN101438392A
CN101438392A CNA2005800409629A CN200580040962A CN101438392A CN 101438392 A CN101438392 A CN 101438392A CN A2005800409629 A CNA2005800409629 A CN A2005800409629A CN 200580040962 A CN200580040962 A CN 200580040962A CN 101438392 A CN101438392 A CN 101438392A
Authority
CN
China
Prior art keywords
insulating barrier
forms
nitrogen content
semiconductor device
nanocrystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005800409629A
Other languages
English (en)
Inventor
拉杰什·A·拉奥
拉马钱德兰·穆拉利德哈
布鲁斯·E·怀特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NXP USA Inc
Original Assignee
Freescale Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Freescale Semiconductor Inc filed Critical Freescale Semiconductor Inc
Publication of CN101438392A publication Critical patent/CN101438392A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/4234Gate electrodes for transistors with charge trapping gate insulator
    • H01L29/42348Gate electrodes for transistors with charge trapping gate insulator with trapping site formed by at least two separated sites, e.g. multi-particles trapping site
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40114Multistep manufacturing processes for data storage electrodes the electrodes comprising a conductor-insulator-conductor-insulator-semiconductor structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42324Gate electrodes for transistors with a floating gate
    • H01L29/42332Gate electrodes for transistors with a floating gate with the floating gate formed by two or more non connected parts, e.g. multi-particles flating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material

Abstract

一种纳米晶体非易失存储器(NVM)(10)具有控制栅极(26)和纳米晶体(16)之间的介质(22),其具有足以减少介质(22)中能够俘获电子的位置的氮含量。这是通过使氮浓度逐渐变化实现的。氮浓度在纳米晶体(16)附近最高,其中电子/空穴陷阱的浓度趋向于最高,并且朝向控制栅极(26)减小,在控制栅极处电子/空穴陷阱的浓度较低。这已被发现具有减少可俘获电荷的位置数目的有利作用。

Description

非易失纳米晶体存储器及其方法
技术领域
本发明涉及具有用于存储的纳米晶体的非易失存储器,更具体地,涉及该纳米晶体的绝缘以及该纳米晶体上的绝缘。
背景技术
已经发现,由于纳米晶体存储器对栅介质缺陷引起的电荷泄漏具有增加的免疫力,因此优于浮栅存储器。纳米晶体存储器中的一个问题是,关于在控制栅极下面的介质叠层中俘获的电子的电势。在将电子热载流子注入到纳米晶体中的过程中出现该问题。未由纳米晶体俘获的小部分电子可能在介质叠层中被俘获,这导致了阈值电压的移位。由于介质叠层中俘获的这些电子随着重复的编程和擦除周期积累,因此它们是不可电擦除的。因此阈值电压的移位继续随着重复的编程和擦除操作增加,并且需要尝试减轻该效应的电路设计。除此以外,由于内部电场伴随着外部偏置工作,因此介质俘获的电荷可能导致可靠性的劣化。例如,控制栅极和纳米晶体之间的介质叠层部分中俘获的电子可能通过纳米晶体和基板之间的介质叠层部分加速隧穿损失,使利用电子编程的纳米晶体的数据保持劣化。
因此,需要一种方法和结构,其减轻和/或减少一个或多个该问题。
附图说明
本发明借助于示例说明,并且不限于附图,在附图中相似的参考符号表示相似的元素,并且其中:
图1是根据本发明的实施例的一个处理阶段中的器件结构的截面;
图2是后继处理阶段中的图1的器件结构的截面;
图3是后继处理阶段中的图2的器件结构的截面;
图4是后继处理阶段中的图3的器件结构的截面;以及
图5是后继处理阶段中的图4的结构的截面;并且
本领域的技术人员应当认识到,图中的元素是出于简化和清楚的目的说明的,因此没有必要依比例绘制。例如,图中的某些元素的尺寸可以相对于其他元素放大,有助于改善对本发明的实施例的理解。
具体实施方式
在一个方面,纳米晶体非易失存储器(NVM)具有控制栅极和纳米晶体之间的介质,其具有足以减少该介质中能够俘获电子的位置的氮含量。这是通过使氮浓度逐渐变化实现的。氮浓度在纳米晶体附近最高,其中电子/空穴陷阱的浓度趋向于最高,并且朝向控制栅极减小,在控制栅极处电子/空穴陷阱的浓度较低。这已被发现具有减少可俘获电荷的位置数目的有利作用。通过参考附图和下面的描述,这得到了更好的理解。
图1示出了一个半导体器件10,其包括基板12、基板12上的栅介质14、栅介质14上的多个纳米晶体16。基板12优选地是体硅基板,但是也可以是SOI基板,并且可以是不同于硅的半导体材料。栅介质层14优选地是生长的氧化物,其厚度为50~100埃,并且具有逐渐变化的氮浓度,其在距离纳米晶体16最远且距离基板12最近处最高。该示例中的纳米晶体16由硅制成,并且具有5el1~1.2el2/平方厘米的密度。纳米晶体16的尺寸在约3~10纳米之间变化。纳米晶体16优选地是通过化学淀积而淀积的,但是也可以使用其他的工艺。用于形成纳米晶体的其他工艺包括,薄的无定形硅层的再结晶以及预制纳米晶体的淀积。在纳米晶体形成之后,通过使用氧化亚氮使其氧化,可以将其钝化。
图2示出了一个在纳米晶体16上面和周围形成掺杂氮化物的氧化物层18之后的半导体器件10。其厚度优选地是3~5纳米,并且形成了纳米晶体同仍未形成的控制栅极之间的介质的第一部分。层18中的氮含量是逐渐变化的。距离纳米晶体最近处氮含量最高,并且约为5~10原子百分数。优选地,通过使小量的氨同诸如二氯硅烷和氧化亚氮的氧化物形成气体反应,并且逐渐地降低氨的流量,实现了该梯度。一种替换方案是,在一连串注入步骤中将氮注入到氧化物层中。最重剂量的注入具有最高的能量,而最轻剂量的注入具有最低的能量。该注入优选地是在远程等离子体环境中执行的,以防止对层18的损坏。在后继的退火步骤过程中,氧化物层中的氮使最初形成的氧化物层中的悬挂键饱和。特别地,对热电子具有弱免疫力的硅-氢键被转化为更牢固的硅-氮键。由于该键缺陷的最高浓度位于介质层之间的界面处,在该情况中位于层14和18之间以及纳米晶体16和介质层18之间的界面处,因此在这些界面区域中需要较高的氮浓度。离开该界面越远,键缺陷越少,并且需要越少的氮。这些区域中的过多的氮用作电子/空穴陷阱,对于存储器器件是有害的。此外,可以将氧注入到层18中,以协助增加浓度。
图3示出了在层18上面形成介质层20之后的半导体器件10。介质层20优选地是氧化硅,并且在约500~900摄氏度下,在化学气相淀积腔中,通过使诸如硅烷或二氯硅烷的含硅前体同诸如氧或氧化亚氮的氧化剂反应,淀积该介质层20。层20的厚度典型地为4~10纳米。
图4示出了在对层20执行远程等离子体氮化以形成氮化层22之后的半导体器件10。氮化层22中的氮含量优选地小于约2原子百分数。由于通过CVD实现该小的氮含量是困难的,因此远程等离子体淀积是优选方法。结合含氮物质的流量的减小,远程等离子体的能量可以随时间减小,以便于实现氮化层22中的逐渐变化的氮浓度。在该情况中,较高的氮浓度位于层18和22的界面处,并且较低的氮浓度位于层22的顶部表面处。注入氮也是一种替换方案,但是远程等离子体是优选的,原因在于,相比于注入,其在层20的表面处以及附近具有较小的损坏。该远程等离子体淀积,结合足够的能量,还可用于将额外的氮引入到层18中。此外,可以将氧注入到层20中,以协助增加浓度。
在执行氮化之后,优选地在大于700摄氏度或者更高的温度下,执行退火步骤。这些退火步骤中的第一退火步骤是在约高于800摄氏度的温度下在诸如氮或氩的惰性环境中完成的。该步骤有助于氮键合,并且从层18和22中逐出了自由的氢。这些退火步骤中的第二退火步骤是在稀释的氧化环境中执行的,并且用于移除仍可能存在的非化学配比缺陷。这些退火步骤中的第三退火步骤是在接近或者大约玻璃化转变温度下执行的,其约为950摄氏度。该回流条件过程中的高度的原子运动有助于该结构释放层18和22的应力。第二和第三退火步骤能够组合为单一的退火步骤。该退火温度优选地不超过1100摄氏度。
图5示出了执行已知步骤用于形成NVM器件之后的半导体器件10,该NVM器件包括控制栅极26、控制栅极26周围的侧壁隔层28、基板12中的位于控制栅极26一侧的源极/漏极区域30、以及基板12中的位于控制栅极26另一侧的源极/漏极区域32。所得到的图5的半导体器件10是用作NVM器件的晶体管,并且用于形成该器件的阵列。具有所述氮浓度的层18和22减小了由于电子/空穴俘获引起的阈值移位。所述方法的另一优点是,层18和22具有增加的浓度。不同于热生长的氧化物,诸如层14,淀积氧化物的密度较小,并且化学配比是不完美的。这典型地可由淀积氧化物相比于生长氧化物的显著较快的刻蚀速率看出。单独的退火对密度增加的影响是小的。通过远程等离子体注入获得的原子氮和氧的存在,由于较高的反应能力,有助于未饱和的键合完成,并且导致了密度较高的氧化物并因此改善了电气特性,诸如击穿电场和热载流子免疫性。
在前面的说明书中,参考具体的实施例描述了本发明。然而,本领域的普通技术人员应当认识到,不在偏离所附权利要求中阐述的本发明的范围的前提下,可以进行多种修改和变化。例如,栅介质层14被描述为生长氧化物,但是相反地,其也可以是淀积的高k介质。因此,说明书和附图应被视为说明性的,而非限制性的,并且所有该修改方案应涵盖于本发明的范围内。
上文针对具体的实施例描述了益处、其他优点和对问题的解决方案。然而,益处、优点、对问题的解决方案、以及可以使任何益处、优点、解决方案出现或变得更加显著的任何因素,不应被解释为任何或所有权利要求的关键的、必需的或基本的特征或要素。如此处使用的术语“包括”或其任何变化形式,目的在于涵盖非排他性的内含物,由此包括一系列要素的工艺、方法、物体或装置不仅包括这些列出的要素,而且可以包括未明确列出的或者对于该工艺、方法、物体或装置是固有的其他要素。

Claims (31)

1.一种用于形成半导体器件的方法,包括:
提供半导体基板;
在半导体基板的表面上形成第一绝缘层;
在第一绝缘层的表面上形成纳米晶体层;并且
在纳米晶体层上面形成具有逐渐变化的氮含量的第二绝缘层。
2.如权利要求1所述的方法,进一步包括在第二绝缘层上面形成第三绝缘层,其中第三绝缘层相比第二绝缘层,具有相对较低的氮含量。
3.如权利要求2所述的方法,其中形成第三绝缘层包括将第三绝缘层形成为具有小于第二绝缘层的逐渐变化的氮含量的最低氮含量的氮含量。
4.如权利要求2所述的方法,进一步包括,在温度为700~1100摄氏度的包括氧的环境中使半导体器件退火。
5.如权利要求2所述的方法,其中形成第三绝缘层进一步包括使用等离子体氮化来调节第三绝缘层的氮含量。
6.如权利要求5所述的方法,其中使用等离子体氮化包括随时间减小等离子体氮化源的等离子能量,以形成逐渐变化的氮含量。
7.如权利要求5所述的方法,其中使用等离子体氮化包括随时间减小氮源的流量,以形成逐渐变化的氮含量。
8.如权利要求1所述的方法,其中形成第二绝缘层包括使用氧氮化硅形成第二绝缘层。
9.如权利要求1所述的方法,其中形成第二绝缘层包括形成具有约2原子百分数~约10原子百分数的峰值氮含量的第二绝缘层。
10.如权利要求1所述的方法,其中形成第二绝缘层进一步包括使用等离子体氮化来调节第二绝缘层的氮含量。
11.如权利要求10所述的方法,其中使用等离子体氮化包括随时间减小等离子体氮化源的等离子能量,以形成逐渐变化的氮含量。
12.如权利要求10所述的方法,其中使用等离子体氮化包括随时间减小氮源的流量,以形成逐渐变化的氮含量。
13.如权利要求1所述的方法,其中形成第二绝缘层进一步包括:利用包括硅的流动气体、氧化源和氮源,使用化学气相淀积。
14.如权利要求13所述的方法,其中形成第二绝缘层进一步包括随时间减小氮源的流量,以形成逐渐变化的氮含量。
15.如权利要求1所述的方法,其中形成第一绝缘层包括形成具有随着离开半导体基板的距离增加而下降的氮含量的第一绝缘层。
16.如权利要求1所述的方法,其中形成第二绝缘层包括:在同纳米晶体层的界面处具有相对较多的氮,并且具有随着离开纳米晶体层的距离增加而相对减小的氮。
17.如权利要求1所述的方法,其中纳米晶体层的纳米晶体包括硅、锗中的至少一个或者金属。
18.如权利要求1所述的方法,进一步包括使用包括氮的材料涂覆纳米晶体。
19.如权利要求1所述的方法,其中形成第一绝缘层包括由包括硅、铪、镧和铝中的至少一个的氧化物形成第一绝缘层。
20.如权利要求1所述的方法,其中形成第二绝缘层进一步包括使用等离子体氧化来改善第二绝缘层的化学配比。
21.一种半导体器件,包括:
半导体基板;
第一绝缘层,其在半导体基板的表面上形成;
纳米晶体层,其在第一绝缘层的表面上形成;和
第二绝缘层,其在纳米晶体层上面形成,具有逐渐变化的氮含量。
22.如权利要求21所述的半导体器件,进一步包括第三绝缘层,其在第二绝缘层上面形成,其中第三绝缘层相比第二绝缘层,具有相对较低的氮含量。
23.如权利要求22所述的半导体器件,其中第三绝缘层具有小于第二绝缘层的逐渐变化的氮含量的最低氮含量的氮含量。
24.如权利要求21所述的半导体器件,其中第二绝缘层包括氧氮化硅。
25.如权利要求21所述的半导体器件,其中第二绝缘层具有约2原子百分数~约10原子百分数的峰值氮含量。
26.如权利要求21所述的半导体器件,其中第一绝缘层具有随着离开半导体基板的距离增加而下降的氮含量。
27.如权利要求21所述的半导体器件,其中第二绝缘层在同纳米晶体层的界面处具有相对较多的氮,并且具有随着离开纳米晶体层的距离增加而相对减小的氮。
28.如权利要求21所述的半导体器件,其中纳米晶体层的纳米晶体包括硅、锗中的至少一个或者金属。
29.如权利要求21所述的半导体器件,进一步包括涂覆有包括氮的层的纳米晶体。
30.如权利要求21所述的半导体器件,其中第一绝缘层由包括硅、铪、镧和铝中的至少一个的氧化物形成。
31.如权利要求21所述的半导体器件,其中半导体器件是在纳米晶体层中存储电荷的非易失存储器单元。
CNA2005800409629A 2005-01-26 2005-12-14 非易失纳米晶体存储器及其方法 Pending CN101438392A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/043,826 US7361567B2 (en) 2005-01-26 2005-01-26 Non-volatile nanocrystal memory and method therefor
US11/043,826 2005-01-26

Publications (1)

Publication Number Publication Date
CN101438392A true CN101438392A (zh) 2009-05-20

Family

ID=36697390

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2005800409629A Pending CN101438392A (zh) 2005-01-26 2005-12-14 非易失纳米晶体存储器及其方法

Country Status (9)

Country Link
US (1) US7361567B2 (zh)
EP (1) EP1844492B1 (zh)
JP (1) JP4980931B2 (zh)
KR (1) KR101219067B1 (zh)
CN (1) CN101438392A (zh)
AT (1) ATE473515T1 (zh)
DE (1) DE602005022229D1 (zh)
TW (1) TWI407492B (zh)
WO (1) WO2006080999A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709330A (zh) * 2012-05-22 2012-10-03 上海华力微电子有限公司 一种具有低操作电压的be-sonos结构器件及形成方法
CN102709315A (zh) * 2012-05-22 2012-10-03 上海华力微电子有限公司 一种具有锥形能带的be-sonos结构器件及形成方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100673205B1 (ko) * 2004-11-24 2007-01-22 주식회사 하이닉스반도체 플래쉬 메모리소자의 제조방법
US20060166435A1 (en) * 2005-01-21 2006-07-27 Teo Lee W Synthesis of GE nanocrystal memory cell and using a block layer to control oxidation kinetics
US7338894B2 (en) * 2005-01-26 2008-03-04 Freescale Semiconductor, Inc. Semiconductor device having nitridated oxide layer and method therefor
JP2007036025A (ja) * 2005-07-28 2007-02-08 Nec Electronics Corp 不揮発性メモリ半導体装置およびその製造方法
US7525149B2 (en) * 2005-08-24 2009-04-28 Micron Technology, Inc. Combined volatile and non-volatile memory device with graded composition insulator stack
TWI289336B (en) * 2005-11-07 2007-11-01 Ind Tech Res Inst Nanocrystal memory component, manufacturing method thereof and memory comprising the same
US7767588B2 (en) * 2006-02-28 2010-08-03 Freescale Semiconductor, Inc. Method for forming a deposited oxide layer
US7773493B2 (en) * 2006-09-29 2010-08-10 Intel Corporation Probe-based storage device
US20080150004A1 (en) * 2006-12-20 2008-06-26 Nanosys, Inc. Electron Blocking Layers for Electronic Devices
US20080150009A1 (en) * 2006-12-20 2008-06-26 Nanosys, Inc. Electron Blocking Layers for Electronic Devices
US7847341B2 (en) 2006-12-20 2010-12-07 Nanosys, Inc. Electron blocking layers for electronic devices
US8686490B2 (en) 2006-12-20 2014-04-01 Sandisk Corporation Electron blocking layers for electronic devices
US7846793B2 (en) * 2007-10-03 2010-12-07 Applied Materials, Inc. Plasma surface treatment for SI and metal nanocrystal nucleation
US7799634B2 (en) * 2008-12-19 2010-09-21 Freescale Semiconductor, Inc. Method of forming nanocrystals
US7871886B2 (en) * 2008-12-19 2011-01-18 Freescale Semiconductor, Inc. Nanocrystal memory with differential energy bands and method of formation
US8021970B2 (en) * 2009-03-20 2011-09-20 Freescale Semiconductor, Inc. Method of annealing a dielectric layer
JP6125846B2 (ja) * 2012-03-22 2017-05-10 株式会社日立国際電気 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
US8994006B2 (en) * 2012-10-02 2015-03-31 International Business Machines Corporation Non-volatile memory device employing semiconductor nanoparticles
US8895397B1 (en) 2013-10-15 2014-11-25 Globalfoundries Singapore Pte. Ltd. Methods for forming thin film storage memory cells
US9171858B2 (en) 2013-12-30 2015-10-27 Globalfoundries Singapore Pte. Ltd. Multi-level memory cells and methods for forming multi-level memory cells
US9953841B2 (en) * 2015-05-08 2018-04-24 Macronix International Co., Ltd. Semiconductor device and method of fabricating the same
DE102020100099A1 (de) 2019-09-30 2021-04-01 Taiwan Semiconductor Manufacturing Co., Ltd. Gatestrukturen in halbleitervorrichtungen
US11756832B2 (en) * 2019-09-30 2023-09-12 Taiwan Semiconductor Manufacturing Company, Ltd. Gate structures in semiconductor devices

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6320784B1 (en) 2000-03-14 2001-11-20 Motorola, Inc. Memory cell and method for programming thereof
US6413819B1 (en) 2000-06-16 2002-07-02 Motorola, Inc. Memory device and method for using prefabricated isolated storage elements
US6297095B1 (en) 2000-06-16 2001-10-02 Motorola, Inc. Memory device that includes passivated nanoclusters and method for manufacture
AU2001263370A1 (en) * 2000-06-16 2002-01-02 Motorola, Inc. Memory device including nanoclusters and method for manufacture
TW525263B (en) * 2000-09-28 2003-03-21 Chartered Semiconductor Mfg Formation of interfacial oxide layer at the Si3N4/Si interface by H2/O2 annealing
US6444545B1 (en) 2000-12-19 2002-09-03 Motorola, Inc. Device structure for storing charge and method therefore
JP2002261175A (ja) * 2000-12-28 2002-09-13 Sony Corp 不揮発性半導体記憶装置およびその製造方法
JP2002231834A (ja) 2001-02-02 2002-08-16 Ricoh Co Ltd 半導体記憶装置
US6713127B2 (en) 2001-12-28 2004-03-30 Applied Materials, Inc. Methods for silicon oxide and oxynitride deposition using single wafer low pressure CVD
TW569377B (en) * 2002-03-20 2004-01-01 Taiwan Semiconductor Mfg Improvement method for thickness uniformity of super-thin nitridation gate dielectric
JP2004207613A (ja) * 2002-12-26 2004-07-22 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
US7338894B2 (en) * 2005-01-26 2008-03-04 Freescale Semiconductor, Inc. Semiconductor device having nitridated oxide layer and method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709330A (zh) * 2012-05-22 2012-10-03 上海华力微电子有限公司 一种具有低操作电压的be-sonos结构器件及形成方法
CN102709315A (zh) * 2012-05-22 2012-10-03 上海华力微电子有限公司 一种具有锥形能带的be-sonos结构器件及形成方法
CN102709330B (zh) * 2012-05-22 2016-04-27 上海华力微电子有限公司 一种具有低操作电压的be-sonos结构器件及形成方法

Also Published As

Publication number Publication date
EP1844492A4 (en) 2009-10-21
TW200629383A (en) 2006-08-16
EP1844492B1 (en) 2010-07-07
ATE473515T1 (de) 2010-07-15
US7361567B2 (en) 2008-04-22
US20060166452A1 (en) 2006-07-27
EP1844492A2 (en) 2007-10-17
TWI407492B (zh) 2013-09-01
WO2006080999A2 (en) 2006-08-03
JP2008532260A (ja) 2008-08-14
DE602005022229D1 (de) 2010-08-19
KR101219067B1 (ko) 2013-01-18
WO2006080999A3 (en) 2009-04-23
KR20070099625A (ko) 2007-10-09
JP4980931B2 (ja) 2012-07-18

Similar Documents

Publication Publication Date Title
CN101438392A (zh) 非易失纳米晶体存储器及其方法
EP1234324B1 (en) Ono-deposition for 2-bit eeprom devices
US7115469B1 (en) Integrated ONO processing for semiconductor devices using in-situ steam generation (ISSG) process
US6319775B1 (en) Nitridation process for fabricating an ONO floating-gate electrode in a two-bit EEPROM device
TW561513B (en) Semiconductor device and method of manufacturing the same
US4217601A (en) Non-volatile memory devices fabricated from graded or stepped energy band gap insulator MIM or MIS structure
US20060192248A1 (en) Memory Device and Method of Manufacturing Including Deuterated Oxynitride Charge Trapping Structure
KR100843229B1 (ko) 하이브리드 구조의 전하 트랩막을 포함하는 플래쉬 메모리소자 및 그 제조 방법
CN101159292A (zh) 电荷陷阱存储器装置
US6458677B1 (en) Process for fabricating an ONO structure
US6180538B1 (en) Process for fabricating an ONO floating-gate electrode in a two-bit EEPROM device using rapid-thermal-chemical-vapor-deposition
DiMaria Graded or stepped energy band‐gap‐insulator MIS structures (GI‐MIS or SI‐MIS)
USRE31083E (en) Non-volatile memory devices fabricated from graded or stepped energy band gap insulator MIM or MIS structure
KR20100018557A (ko) 기억 소자 및 그 판독 방법
CN101494172B (zh) 半导体装置及其制造方法
US8824208B2 (en) Non-volatile memory using pyramidal nanocrystals as electron storage elements
US20080128786A1 (en) High density semiconductor memory device and method for manufacturing the same
JP2002261175A (ja) 不揮発性半導体記憶装置およびその製造方法
CN101124667A (zh) 具有氮化氧化物层的半导体器件及其方法
KR20030064490A (ko) 에스오엔오에스 구조를 갖는 비휘발성 메모리소자 및 그의제조방법
KR20080010514A (ko) 절연막 구조물의 형성 방법 및 이를 이용한 불 휘발성메모리 소자의 형성 방법
KR101062998B1 (ko) 플라즈마 증착 기술을 이용한 나노결정 실리콘막 구조체, 그의 형성방법, 나노결정 실리콘막 구조체를 구비하는 비휘발성 메모리 소자 및 그의 형성방법
KR100833445B1 (ko) 플래시 메모리 소자의 제조방법
Zhu et al. A $\hbox {TiSi} _ {2}/\hbox {Si} $ Heteronanocrystal Memory Operated With Hot Carrier Injections
CN115274682A (zh) Sonos存储器及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20090520